SemaDecl.cpp revision e0b26b626f91e9fac83d47f17a2f0e44116e6fd7
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/Triple.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName,
67                                TypeTy *ObjectTypePtr) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isSet()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return 0;
90
91        // We know from the grammar that this name refers to a type, so build a
92        // TypenameType node to describe the type.
93        // FIXME: Record somewhere that this TypenameType node has no "typename"
94        // keyword associated with it.
95        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
96                                 II, SS->getRange()).getAsOpaquePtr();
97      }
98
99      return 0;
100    }
101
102    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    // C++ [temp.local]p2:
192    //   Within the scope of a class template specialization or
193    //   partial specialization, when the injected-class-name is
194    //   not followed by a <, it is equivalent to the
195    //   injected-class-name followed by the template-argument s
196    //   of the class template specialization or partial
197    //   specialization enclosed in <>.
198    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
199      if (RD->isInjectedClassName())
200        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
201          T = Template->getInjectedClassNameType(Context);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS)
207      T = getQualifiedNameType(*SS, T);
208
209  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
210    T = Context.getObjCInterfaceType(IDecl);
211  } else if (UnresolvedUsingTypenameDecl *UUDecl =
212               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
213    // FIXME: preserve source structure information.
214    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
215  } else {
216    // If it's not plausibly a type, suppress diagnostics.
217    Result.suppressDiagnostics();
218    return 0;
219  }
220
221  return T.getAsOpaquePtr();
222}
223
224/// isTagName() - This method is called *for error recovery purposes only*
225/// to determine if the specified name is a valid tag name ("struct foo").  If
226/// so, this returns the TST for the tag corresponding to it (TST_enum,
227/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
228/// where the user forgot to specify the tag.
229DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
230  // Do a tag name lookup in this scope.
231  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
232  LookupName(R, S, false);
233  R.suppressDiagnostics();
234  if (R.getResultKind() == LookupResult::Found)
235    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
236      switch (TD->getTagKind()) {
237      case TagDecl::TK_struct: return DeclSpec::TST_struct;
238      case TagDecl::TK_union:  return DeclSpec::TST_union;
239      case TagDecl::TK_class:  return DeclSpec::TST_class;
240      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
241      }
242    }
243
244  return DeclSpec::TST_unspecified;
245}
246
247bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
248                                   SourceLocation IILoc,
249                                   Scope *S,
250                                   const CXXScopeSpec *SS,
251                                   TypeTy *&SuggestedType) {
252  // We don't have anything to suggest (yet).
253  SuggestedType = 0;
254
255  // There may have been a typo in the name of the type. Look up typo
256  // results, in case we have something that we can suggest.
257  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
258                      NotForRedeclaration);
259
260  // FIXME: It would be nice if we could correct for typos in built-in
261  // names, such as "itn" for "int".
262
263  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
264    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
265    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
266        !Result->isInvalidDecl()) {
267      // We found a similarly-named type or interface; suggest that.
268      if (!SS || !SS->isSet())
269        Diag(IILoc, diag::err_unknown_typename_suggest)
270          << &II << Lookup.getLookupName()
271          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
272                                                     Result->getNameAsString());
273      else if (DeclContext *DC = computeDeclContext(*SS, false))
274        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
275          << &II << DC << Lookup.getLookupName() << SS->getRange()
276          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
277                                                     Result->getNameAsString());
278      else
279        llvm_unreachable("could not have corrected a typo here");
280
281      Diag(Result->getLocation(), diag::note_previous_decl)
282        << Result->getDeclName();
283
284      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
285      return true;
286    }
287  }
288
289  // FIXME: Should we move the logic that tries to recover from a missing tag
290  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
291
292  if (!SS || (!SS->isSet() && !SS->isInvalid()))
293    Diag(IILoc, diag::err_unknown_typename) << &II;
294  else if (DeclContext *DC = computeDeclContext(*SS, false))
295    Diag(IILoc, diag::err_typename_nested_not_found)
296      << &II << DC << SS->getRange();
297  else if (isDependentScopeSpecifier(*SS)) {
298    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
299      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
300      << SourceRange(SS->getRange().getBegin(), IILoc)
301      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
302                                               "typename ");
303    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
304  } else {
305    assert(SS && SS->isInvalid() &&
306           "Invalid scope specifier has already been diagnosed");
307  }
308
309  return true;
310}
311
312// Determines the context to return to after temporarily entering a
313// context.  This depends in an unnecessarily complicated way on the
314// exact ordering of callbacks from the parser.
315DeclContext *Sema::getContainingDC(DeclContext *DC) {
316
317  // Functions defined inline within classes aren't parsed until we've
318  // finished parsing the top-level class, so the top-level class is
319  // the context we'll need to return to.
320  if (isa<FunctionDecl>(DC)) {
321    DC = DC->getLexicalParent();
322
323    // A function not defined within a class will always return to its
324    // lexical context.
325    if (!isa<CXXRecordDecl>(DC))
326      return DC;
327
328    // A C++ inline method/friend is parsed *after* the topmost class
329    // it was declared in is fully parsed ("complete");  the topmost
330    // class is the context we need to return to.
331    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
332      DC = RD;
333
334    // Return the declaration context of the topmost class the inline method is
335    // declared in.
336    return DC;
337  }
338
339  if (isa<ObjCMethodDecl>(DC))
340    return Context.getTranslationUnitDecl();
341
342  return DC->getLexicalParent();
343}
344
345void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
346  assert(getContainingDC(DC) == CurContext &&
347      "The next DeclContext should be lexically contained in the current one.");
348  CurContext = DC;
349  S->setEntity(DC);
350}
351
352void Sema::PopDeclContext() {
353  assert(CurContext && "DeclContext imbalance!");
354
355  CurContext = getContainingDC(CurContext);
356}
357
358/// EnterDeclaratorContext - Used when we must lookup names in the context
359/// of a declarator's nested name specifier.
360///
361void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
362  // C++0x [basic.lookup.unqual]p13:
363  //   A name used in the definition of a static data member of class
364  //   X (after the qualified-id of the static member) is looked up as
365  //   if the name was used in a member function of X.
366  // C++0x [basic.lookup.unqual]p14:
367  //   If a variable member of a namespace is defined outside of the
368  //   scope of its namespace then any name used in the definition of
369  //   the variable member (after the declarator-id) is looked up as
370  //   if the definition of the variable member occurred in its
371  //   namespace.
372  // Both of these imply that we should push a scope whose context
373  // is the semantic context of the declaration.  We can't use
374  // PushDeclContext here because that context is not necessarily
375  // lexically contained in the current context.  Fortunately,
376  // the containing scope should have the appropriate information.
377
378  assert(!S->getEntity() && "scope already has entity");
379
380#ifndef NDEBUG
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
384#endif
385
386  CurContext = DC;
387  S->setEntity(DC);
388}
389
390void Sema::ExitDeclaratorContext(Scope *S) {
391  assert(S->getEntity() == CurContext && "Context imbalance!");
392
393  // Switch back to the lexical context.  The safety of this is
394  // enforced by an assert in EnterDeclaratorContext.
395  Scope *Ancestor = S->getParent();
396  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
397  CurContext = (DeclContext*) Ancestor->getEntity();
398
399  // We don't need to do anything with the scope, which is going to
400  // disappear.
401}
402
403/// \brief Determine whether we allow overloading of the function
404/// PrevDecl with another declaration.
405///
406/// This routine determines whether overloading is possible, not
407/// whether some new function is actually an overload. It will return
408/// true in C++ (where we can always provide overloads) or, as an
409/// extension, in C when the previous function is already an
410/// overloaded function declaration or has the "overloadable"
411/// attribute.
412static bool AllowOverloadingOfFunction(LookupResult &Previous,
413                                       ASTContext &Context) {
414  if (Context.getLangOptions().CPlusPlus)
415    return true;
416
417  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
418    return true;
419
420  return (Previous.getResultKind() == LookupResult::Found
421          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
422}
423
424/// Add this decl to the scope shadowed decl chains.
425void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
426  // Move up the scope chain until we find the nearest enclosing
427  // non-transparent context. The declaration will be introduced into this
428  // scope.
429  while (S->getEntity() &&
430         ((DeclContext *)S->getEntity())->isTransparentContext())
431    S = S->getParent();
432
433  // Add scoped declarations into their context, so that they can be
434  // found later. Declarations without a context won't be inserted
435  // into any context.
436  if (AddToContext)
437    CurContext->addDecl(D);
438
439  // Out-of-line function and variable definitions should not be pushed into
440  // scope.
441  if ((isa<FunctionTemplateDecl>(D) &&
442       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
443      (isa<FunctionDecl>(D) &&
444       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
445        cast<FunctionDecl>(D)->isOutOfLine())) ||
446      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
447    return;
448
449  // If this replaces anything in the current scope,
450  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
451                               IEnd = IdResolver.end();
452  for (; I != IEnd; ++I) {
453    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
454      S->RemoveDecl(DeclPtrTy::make(*I));
455      IdResolver.RemoveDecl(*I);
456
457      // Should only need to replace one decl.
458      break;
459    }
460  }
461
462  S->AddDecl(DeclPtrTy::make(D));
463  IdResolver.AddDecl(D);
464}
465
466bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
467  return IdResolver.isDeclInScope(D, Ctx, Context, S);
468}
469
470static bool isOutOfScopePreviousDeclaration(NamedDecl *,
471                                            DeclContext*,
472                                            ASTContext&);
473
474/// Filters out lookup results that don't fall within the given scope
475/// as determined by isDeclInScope.
476static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
477                                 DeclContext *Ctx, Scope *S,
478                                 bool ConsiderLinkage) {
479  LookupResult::Filter F = R.makeFilter();
480  while (F.hasNext()) {
481    NamedDecl *D = F.next();
482
483    if (SemaRef.isDeclInScope(D, Ctx, S))
484      continue;
485
486    if (ConsiderLinkage &&
487        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
488      continue;
489
490    F.erase();
491  }
492
493  F.done();
494}
495
496static bool isUsingDecl(NamedDecl *D) {
497  return isa<UsingShadowDecl>(D) ||
498         isa<UnresolvedUsingTypenameDecl>(D) ||
499         isa<UnresolvedUsingValueDecl>(D);
500}
501
502/// Removes using shadow declarations from the lookup results.
503static void RemoveUsingDecls(LookupResult &R) {
504  LookupResult::Filter F = R.makeFilter();
505  while (F.hasNext())
506    if (isUsingDecl(F.next()))
507      F.erase();
508
509  F.done();
510}
511
512static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
513  if (D->isInvalidDecl())
514    return false;
515
516  if (D->isUsed() || D->hasAttr<UnusedAttr>())
517    return false;
518
519  // White-list anything that isn't a local variable.
520  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
521      !D->getDeclContext()->isFunctionOrMethod())
522    return false;
523
524  // Types of valid local variables should be complete, so this should succeed.
525  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
526    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
527      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
528        if (!RD->hasTrivialConstructor())
529          return false;
530        if (!RD->hasTrivialDestructor())
531          return false;
532      }
533    }
534  }
535
536  return true;
537}
538
539void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
540  if (S->decl_empty()) return;
541  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
542         "Scope shouldn't contain decls!");
543
544  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
545       I != E; ++I) {
546    Decl *TmpD = (*I).getAs<Decl>();
547    assert(TmpD && "This decl didn't get pushed??");
548
549    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
550    NamedDecl *D = cast<NamedDecl>(TmpD);
551
552    if (!D->getDeclName()) continue;
553
554    // Diagnose unused variables in this scope.
555    if (ShouldDiagnoseUnusedDecl(D))
556      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
557
558    // Remove this name from our lexical scope.
559    IdResolver.RemoveDecl(D);
560  }
561}
562
563/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
564/// return 0 if one not found.
565///
566/// \param Id the name of the Objective-C class we're looking for. If
567/// typo-correction fixes this name, the Id will be updated
568/// to the fixed name.
569///
570/// \param RecoverLoc if provided, this routine will attempt to
571/// recover from a typo in the name of an existing Objective-C class
572/// and, if successful, will return the lookup that results from
573/// typo-correction.
574ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
575                                              SourceLocation RecoverLoc) {
576  // The third "scope" argument is 0 since we aren't enabling lazy built-in
577  // creation from this context.
578  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
579
580  if (!IDecl && !RecoverLoc.isInvalid()) {
581    // Perform typo correction at the given location, but only if we
582    // find an Objective-C class name.
583    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
584    if (CorrectTypo(R, TUScope, 0) &&
585        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
586      Diag(RecoverLoc, diag::err_undef_interface_suggest)
587        << Id << IDecl->getDeclName()
588        << CodeModificationHint::CreateReplacement(RecoverLoc,
589                                                   IDecl->getNameAsString());
590      Diag(IDecl->getLocation(), diag::note_previous_decl)
591        << IDecl->getDeclName();
592
593      Id = IDecl->getIdentifier();
594    }
595  }
596
597  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
598}
599
600/// getNonFieldDeclScope - Retrieves the innermost scope, starting
601/// from S, where a non-field would be declared. This routine copes
602/// with the difference between C and C++ scoping rules in structs and
603/// unions. For example, the following code is well-formed in C but
604/// ill-formed in C++:
605/// @code
606/// struct S6 {
607///   enum { BAR } e;
608/// };
609///
610/// void test_S6() {
611///   struct S6 a;
612///   a.e = BAR;
613/// }
614/// @endcode
615/// For the declaration of BAR, this routine will return a different
616/// scope. The scope S will be the scope of the unnamed enumeration
617/// within S6. In C++, this routine will return the scope associated
618/// with S6, because the enumeration's scope is a transparent
619/// context but structures can contain non-field names. In C, this
620/// routine will return the translation unit scope, since the
621/// enumeration's scope is a transparent context and structures cannot
622/// contain non-field names.
623Scope *Sema::getNonFieldDeclScope(Scope *S) {
624  while (((S->getFlags() & Scope::DeclScope) == 0) ||
625         (S->getEntity() &&
626          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
627         (S->isClassScope() && !getLangOptions().CPlusPlus))
628    S = S->getParent();
629  return S;
630}
631
632void Sema::InitBuiltinVaListType() {
633  if (!Context.getBuiltinVaListType().isNull())
634    return;
635
636  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
637  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
638  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
639  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
640}
641
642/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
643/// file scope.  lazily create a decl for it. ForRedeclaration is true
644/// if we're creating this built-in in anticipation of redeclaring the
645/// built-in.
646NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
647                                     Scope *S, bool ForRedeclaration,
648                                     SourceLocation Loc) {
649  Builtin::ID BID = (Builtin::ID)bid;
650
651  if (Context.BuiltinInfo.hasVAListUse(BID))
652    InitBuiltinVaListType();
653
654  ASTContext::GetBuiltinTypeError Error;
655  QualType R = Context.GetBuiltinType(BID, Error);
656  switch (Error) {
657  case ASTContext::GE_None:
658    // Okay
659    break;
660
661  case ASTContext::GE_Missing_stdio:
662    if (ForRedeclaration)
663      Diag(Loc, diag::err_implicit_decl_requires_stdio)
664        << Context.BuiltinInfo.GetName(BID);
665    return 0;
666
667  case ASTContext::GE_Missing_setjmp:
668    if (ForRedeclaration)
669      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
670        << Context.BuiltinInfo.GetName(BID);
671    return 0;
672  }
673
674  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
675    Diag(Loc, diag::ext_implicit_lib_function_decl)
676      << Context.BuiltinInfo.GetName(BID)
677      << R;
678    if (Context.BuiltinInfo.getHeaderName(BID) &&
679        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
680          != Diagnostic::Ignored)
681      Diag(Loc, diag::note_please_include_header)
682        << Context.BuiltinInfo.getHeaderName(BID)
683        << Context.BuiltinInfo.GetName(BID);
684  }
685
686  FunctionDecl *New = FunctionDecl::Create(Context,
687                                           Context.getTranslationUnitDecl(),
688                                           Loc, II, R, /*TInfo=*/0,
689                                           FunctionDecl::Extern, false,
690                                           /*hasPrototype=*/true);
691  New->setImplicit();
692
693  // Create Decl objects for each parameter, adding them to the
694  // FunctionDecl.
695  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
696    llvm::SmallVector<ParmVarDecl*, 16> Params;
697    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
698      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
699                                           FT->getArgType(i), /*TInfo=*/0,
700                                           VarDecl::None, 0));
701    New->setParams(Params.data(), Params.size());
702  }
703
704  AddKnownFunctionAttributes(New);
705
706  // TUScope is the translation-unit scope to insert this function into.
707  // FIXME: This is hideous. We need to teach PushOnScopeChains to
708  // relate Scopes to DeclContexts, and probably eliminate CurContext
709  // entirely, but we're not there yet.
710  DeclContext *SavedContext = CurContext;
711  CurContext = Context.getTranslationUnitDecl();
712  PushOnScopeChains(New, TUScope);
713  CurContext = SavedContext;
714  return New;
715}
716
717/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
718/// same name and scope as a previous declaration 'Old'.  Figure out
719/// how to resolve this situation, merging decls or emitting
720/// diagnostics as appropriate. If there was an error, set New to be invalid.
721///
722void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
723  // If the new decl is known invalid already, don't bother doing any
724  // merging checks.
725  if (New->isInvalidDecl()) return;
726
727  // Allow multiple definitions for ObjC built-in typedefs.
728  // FIXME: Verify the underlying types are equivalent!
729  if (getLangOptions().ObjC1) {
730    const IdentifierInfo *TypeID = New->getIdentifier();
731    switch (TypeID->getLength()) {
732    default: break;
733    case 2:
734      if (!TypeID->isStr("id"))
735        break;
736      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
737      // Install the built-in type for 'id', ignoring the current definition.
738      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
739      return;
740    case 5:
741      if (!TypeID->isStr("Class"))
742        break;
743      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
744      // Install the built-in type for 'Class', ignoring the current definition.
745      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
746      return;
747    case 3:
748      if (!TypeID->isStr("SEL"))
749        break;
750      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
751      // Install the built-in type for 'SEL', ignoring the current definition.
752      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
753      return;
754    case 8:
755      if (!TypeID->isStr("Protocol"))
756        break;
757      Context.setObjCProtoType(New->getUnderlyingType());
758      return;
759    }
760    // Fall through - the typedef name was not a builtin type.
761  }
762
763  // Verify the old decl was also a type.
764  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
765  if (!Old) {
766    Diag(New->getLocation(), diag::err_redefinition_different_kind)
767      << New->getDeclName();
768
769    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
770    if (OldD->getLocation().isValid())
771      Diag(OldD->getLocation(), diag::note_previous_definition);
772
773    return New->setInvalidDecl();
774  }
775
776  // If the old declaration is invalid, just give up here.
777  if (Old->isInvalidDecl())
778    return New->setInvalidDecl();
779
780  // Determine the "old" type we'll use for checking and diagnostics.
781  QualType OldType;
782  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
783    OldType = OldTypedef->getUnderlyingType();
784  else
785    OldType = Context.getTypeDeclType(Old);
786
787  // If the typedef types are not identical, reject them in all languages and
788  // with any extensions enabled.
789
790  if (OldType != New->getUnderlyingType() &&
791      Context.getCanonicalType(OldType) !=
792      Context.getCanonicalType(New->getUnderlyingType())) {
793    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
794      << New->getUnderlyingType() << OldType;
795    if (Old->getLocation().isValid())
796      Diag(Old->getLocation(), diag::note_previous_definition);
797    return New->setInvalidDecl();
798  }
799
800  // The types match.  Link up the redeclaration chain if the old
801  // declaration was a typedef.
802  // FIXME: this is a potential source of wierdness if the type
803  // spellings don't match exactly.
804  if (isa<TypedefDecl>(Old))
805    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
806
807  if (getLangOptions().Microsoft)
808    return;
809
810  if (getLangOptions().CPlusPlus) {
811    // C++ [dcl.typedef]p2:
812    //   In a given non-class scope, a typedef specifier can be used to
813    //   redefine the name of any type declared in that scope to refer
814    //   to the type to which it already refers.
815    if (!isa<CXXRecordDecl>(CurContext))
816      return;
817
818    // C++0x [dcl.typedef]p4:
819    //   In a given class scope, a typedef specifier can be used to redefine
820    //   any class-name declared in that scope that is not also a typedef-name
821    //   to refer to the type to which it already refers.
822    //
823    // This wording came in via DR424, which was a correction to the
824    // wording in DR56, which accidentally banned code like:
825    //
826    //   struct S {
827    //     typedef struct A { } A;
828    //   };
829    //
830    // in the C++03 standard. We implement the C++0x semantics, which
831    // allow the above but disallow
832    //
833    //   struct S {
834    //     typedef int I;
835    //     typedef int I;
836    //   };
837    //
838    // since that was the intent of DR56.
839    if (!isa<TypedefDecl >(Old))
840      return;
841
842    Diag(New->getLocation(), diag::err_redefinition)
843      << New->getDeclName();
844    Diag(Old->getLocation(), diag::note_previous_definition);
845    return New->setInvalidDecl();
846  }
847
848  // If we have a redefinition of a typedef in C, emit a warning.  This warning
849  // is normally mapped to an error, but can be controlled with
850  // -Wtypedef-redefinition.  If either the original or the redefinition is
851  // in a system header, don't emit this for compatibility with GCC.
852  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
853      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
854       Context.getSourceManager().isInSystemHeader(New->getLocation())))
855    return;
856
857  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
858    << New->getDeclName();
859  Diag(Old->getLocation(), diag::note_previous_definition);
860  return;
861}
862
863/// DeclhasAttr - returns true if decl Declaration already has the target
864/// attribute.
865static bool
866DeclHasAttr(const Decl *decl, const Attr *target) {
867  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
868    if (attr->getKind() == target->getKind())
869      return true;
870
871  return false;
872}
873
874/// MergeAttributes - append attributes from the Old decl to the New one.
875static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
876  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
877    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
878      Attr *NewAttr = attr->clone(C);
879      NewAttr->setInherited(true);
880      New->addAttr(NewAttr);
881    }
882  }
883}
884
885/// Used in MergeFunctionDecl to keep track of function parameters in
886/// C.
887struct GNUCompatibleParamWarning {
888  ParmVarDecl *OldParm;
889  ParmVarDecl *NewParm;
890  QualType PromotedType;
891};
892
893
894/// getSpecialMember - get the special member enum for a method.
895static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
896                                               const CXXMethodDecl *MD) {
897  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
898    if (Ctor->isDefaultConstructor())
899      return Sema::CXXDefaultConstructor;
900    if (Ctor->isCopyConstructor())
901      return Sema::CXXCopyConstructor;
902  }
903
904  if (isa<CXXDestructorDecl>(MD))
905    return Sema::CXXDestructor;
906
907  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
908  return Sema::CXXCopyAssignment;
909}
910
911/// MergeFunctionDecl - We just parsed a function 'New' from
912/// declarator D which has the same name and scope as a previous
913/// declaration 'Old'.  Figure out how to resolve this situation,
914/// merging decls or emitting diagnostics as appropriate.
915///
916/// In C++, New and Old must be declarations that are not
917/// overloaded. Use IsOverload to determine whether New and Old are
918/// overloaded, and to select the Old declaration that New should be
919/// merged with.
920///
921/// Returns true if there was an error, false otherwise.
922bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
923  // Verify the old decl was also a function.
924  FunctionDecl *Old = 0;
925  if (FunctionTemplateDecl *OldFunctionTemplate
926        = dyn_cast<FunctionTemplateDecl>(OldD))
927    Old = OldFunctionTemplate->getTemplatedDecl();
928  else
929    Old = dyn_cast<FunctionDecl>(OldD);
930  if (!Old) {
931    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
932      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
933      Diag(Shadow->getTargetDecl()->getLocation(),
934           diag::note_using_decl_target);
935      Diag(Shadow->getUsingDecl()->getLocation(),
936           diag::note_using_decl) << 0;
937      return true;
938    }
939
940    Diag(New->getLocation(), diag::err_redefinition_different_kind)
941      << New->getDeclName();
942    Diag(OldD->getLocation(), diag::note_previous_definition);
943    return true;
944  }
945
946  // Determine whether the previous declaration was a definition,
947  // implicit declaration, or a declaration.
948  diag::kind PrevDiag;
949  if (Old->isThisDeclarationADefinition())
950    PrevDiag = diag::note_previous_definition;
951  else if (Old->isImplicit())
952    PrevDiag = diag::note_previous_implicit_declaration;
953  else
954    PrevDiag = diag::note_previous_declaration;
955
956  QualType OldQType = Context.getCanonicalType(Old->getType());
957  QualType NewQType = Context.getCanonicalType(New->getType());
958
959  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
960      New->getStorageClass() == FunctionDecl::Static &&
961      Old->getStorageClass() != FunctionDecl::Static) {
962    Diag(New->getLocation(), diag::err_static_non_static)
963      << New;
964    Diag(Old->getLocation(), PrevDiag);
965    return true;
966  }
967
968  // If a function is first declared with a calling convention, but is
969  // later declared or defined without one, the second decl assumes the
970  // calling convention of the first.
971  //
972  // For the new decl, we have to look at the NON-canonical type to tell the
973  // difference between a function that really doesn't have a calling
974  // convention and one that is declared cdecl. That's because in
975  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
976  // because it is the default calling convention.
977  //
978  // Note also that we DO NOT return at this point, because we still have
979  // other tests to run.
980  const FunctionType *OldType = OldQType->getAs<FunctionType>();
981  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
982  if (OldType->getCallConv() != CC_Default &&
983      NewType->getCallConv() == CC_Default) {
984    NewQType = Context.getCallConvType(NewQType, OldType->getCallConv());
985    New->setType(NewQType);
986    NewQType = Context.getCanonicalType(NewQType);
987  } else if (!Context.isSameCallConv(OldType->getCallConv(),
988                                     NewType->getCallConv())) {
989    // Calling conventions really aren't compatible, so complain.
990    Diag(New->getLocation(), diag::err_cconv_change)
991      << FunctionType::getNameForCallConv(NewType->getCallConv())
992      << (OldType->getCallConv() == CC_Default)
993      << (OldType->getCallConv() == CC_Default ? "" :
994          FunctionType::getNameForCallConv(OldType->getCallConv()));
995    Diag(Old->getLocation(), diag::note_previous_declaration);
996    return true;
997  }
998
999  // FIXME: diagnose the other way around?
1000  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1001    NewQType = Context.getNoReturnType(NewQType);
1002    New->setType(NewQType);
1003    assert(NewQType.isCanonical());
1004  }
1005
1006  if (getLangOptions().CPlusPlus) {
1007    // (C++98 13.1p2):
1008    //   Certain function declarations cannot be overloaded:
1009    //     -- Function declarations that differ only in the return type
1010    //        cannot be overloaded.
1011    QualType OldReturnType
1012      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1013    QualType NewReturnType
1014      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1015    if (OldReturnType != NewReturnType) {
1016      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1017      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1018      return true;
1019    }
1020
1021    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1022    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1023    if (OldMethod && NewMethod) {
1024      if (!NewMethod->getFriendObjectKind() &&
1025          NewMethod->getLexicalDeclContext()->isRecord()) {
1026        //    -- Member function declarations with the same name and the
1027        //       same parameter types cannot be overloaded if any of them
1028        //       is a static member function declaration.
1029        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1030          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1031          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1032          return true;
1033        }
1034
1035        // C++ [class.mem]p1:
1036        //   [...] A member shall not be declared twice in the
1037        //   member-specification, except that a nested class or member
1038        //   class template can be declared and then later defined.
1039        unsigned NewDiag;
1040        if (isa<CXXConstructorDecl>(OldMethod))
1041          NewDiag = diag::err_constructor_redeclared;
1042        else if (isa<CXXDestructorDecl>(NewMethod))
1043          NewDiag = diag::err_destructor_redeclared;
1044        else if (isa<CXXConversionDecl>(NewMethod))
1045          NewDiag = diag::err_conv_function_redeclared;
1046        else
1047          NewDiag = diag::err_member_redeclared;
1048
1049        Diag(New->getLocation(), NewDiag);
1050        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1051      } else {
1052        if (OldMethod->isImplicit()) {
1053          Diag(NewMethod->getLocation(),
1054               diag::err_definition_of_implicitly_declared_member)
1055          << New << getSpecialMember(Context, OldMethod);
1056
1057          Diag(OldMethod->getLocation(),
1058               diag::note_previous_implicit_declaration);
1059          return true;
1060        }
1061      }
1062    }
1063
1064    // (C++98 8.3.5p3):
1065    //   All declarations for a function shall agree exactly in both the
1066    //   return type and the parameter-type-list.
1067    // attributes should be ignored when comparing.
1068    if (Context.getNoReturnType(OldQType, false) ==
1069        Context.getNoReturnType(NewQType, false))
1070      return MergeCompatibleFunctionDecls(New, Old);
1071
1072    // Fall through for conflicting redeclarations and redefinitions.
1073  }
1074
1075  // C: Function types need to be compatible, not identical. This handles
1076  // duplicate function decls like "void f(int); void f(enum X);" properly.
1077  if (!getLangOptions().CPlusPlus &&
1078      Context.typesAreCompatible(OldQType, NewQType)) {
1079    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1080    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1081    const FunctionProtoType *OldProto = 0;
1082    if (isa<FunctionNoProtoType>(NewFuncType) &&
1083        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1084      // The old declaration provided a function prototype, but the
1085      // new declaration does not. Merge in the prototype.
1086      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1087      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1088                                                 OldProto->arg_type_end());
1089      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1090                                         ParamTypes.data(), ParamTypes.size(),
1091                                         OldProto->isVariadic(),
1092                                         OldProto->getTypeQuals());
1093      New->setType(NewQType);
1094      New->setHasInheritedPrototype();
1095
1096      // Synthesize a parameter for each argument type.
1097      llvm::SmallVector<ParmVarDecl*, 16> Params;
1098      for (FunctionProtoType::arg_type_iterator
1099             ParamType = OldProto->arg_type_begin(),
1100             ParamEnd = OldProto->arg_type_end();
1101           ParamType != ParamEnd; ++ParamType) {
1102        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1103                                                 SourceLocation(), 0,
1104                                                 *ParamType, /*TInfo=*/0,
1105                                                 VarDecl::None, 0);
1106        Param->setImplicit();
1107        Params.push_back(Param);
1108      }
1109
1110      New->setParams(Params.data(), Params.size());
1111    }
1112
1113    return MergeCompatibleFunctionDecls(New, Old);
1114  }
1115
1116  // GNU C permits a K&R definition to follow a prototype declaration
1117  // if the declared types of the parameters in the K&R definition
1118  // match the types in the prototype declaration, even when the
1119  // promoted types of the parameters from the K&R definition differ
1120  // from the types in the prototype. GCC then keeps the types from
1121  // the prototype.
1122  //
1123  // If a variadic prototype is followed by a non-variadic K&R definition,
1124  // the K&R definition becomes variadic.  This is sort of an edge case, but
1125  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1126  // C99 6.9.1p8.
1127  if (!getLangOptions().CPlusPlus &&
1128      Old->hasPrototype() && !New->hasPrototype() &&
1129      New->getType()->getAs<FunctionProtoType>() &&
1130      Old->getNumParams() == New->getNumParams()) {
1131    llvm::SmallVector<QualType, 16> ArgTypes;
1132    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1133    const FunctionProtoType *OldProto
1134      = Old->getType()->getAs<FunctionProtoType>();
1135    const FunctionProtoType *NewProto
1136      = New->getType()->getAs<FunctionProtoType>();
1137
1138    // Determine whether this is the GNU C extension.
1139    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1140                                               NewProto->getResultType());
1141    bool LooseCompatible = !MergedReturn.isNull();
1142    for (unsigned Idx = 0, End = Old->getNumParams();
1143         LooseCompatible && Idx != End; ++Idx) {
1144      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1145      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1146      if (Context.typesAreCompatible(OldParm->getType(),
1147                                     NewProto->getArgType(Idx))) {
1148        ArgTypes.push_back(NewParm->getType());
1149      } else if (Context.typesAreCompatible(OldParm->getType(),
1150                                            NewParm->getType())) {
1151        GNUCompatibleParamWarning Warn
1152          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1153        Warnings.push_back(Warn);
1154        ArgTypes.push_back(NewParm->getType());
1155      } else
1156        LooseCompatible = false;
1157    }
1158
1159    if (LooseCompatible) {
1160      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1161        Diag(Warnings[Warn].NewParm->getLocation(),
1162             diag::ext_param_promoted_not_compatible_with_prototype)
1163          << Warnings[Warn].PromotedType
1164          << Warnings[Warn].OldParm->getType();
1165        Diag(Warnings[Warn].OldParm->getLocation(),
1166             diag::note_previous_declaration);
1167      }
1168
1169      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1170                                           ArgTypes.size(),
1171                                           OldProto->isVariadic(), 0));
1172      return MergeCompatibleFunctionDecls(New, Old);
1173    }
1174
1175    // Fall through to diagnose conflicting types.
1176  }
1177
1178  // A function that has already been declared has been redeclared or defined
1179  // with a different type- show appropriate diagnostic
1180  if (unsigned BuiltinID = Old->getBuiltinID()) {
1181    // The user has declared a builtin function with an incompatible
1182    // signature.
1183    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1184      // The function the user is redeclaring is a library-defined
1185      // function like 'malloc' or 'printf'. Warn about the
1186      // redeclaration, then pretend that we don't know about this
1187      // library built-in.
1188      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1189      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1190        << Old << Old->getType();
1191      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1192      Old->setInvalidDecl();
1193      return false;
1194    }
1195
1196    PrevDiag = diag::note_previous_builtin_declaration;
1197  }
1198
1199  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1200  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1201  return true;
1202}
1203
1204/// \brief Completes the merge of two function declarations that are
1205/// known to be compatible.
1206///
1207/// This routine handles the merging of attributes and other
1208/// properties of function declarations form the old declaration to
1209/// the new declaration, once we know that New is in fact a
1210/// redeclaration of Old.
1211///
1212/// \returns false
1213bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1214  // Merge the attributes
1215  MergeAttributes(New, Old, Context);
1216
1217  // Merge the storage class.
1218  if (Old->getStorageClass() != FunctionDecl::Extern &&
1219      Old->getStorageClass() != FunctionDecl::None)
1220    New->setStorageClass(Old->getStorageClass());
1221
1222  // Merge "pure" flag.
1223  if (Old->isPure())
1224    New->setPure();
1225
1226  // Merge the "deleted" flag.
1227  if (Old->isDeleted())
1228    New->setDeleted();
1229
1230  if (getLangOptions().CPlusPlus)
1231    return MergeCXXFunctionDecl(New, Old);
1232
1233  return false;
1234}
1235
1236/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1237/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1238/// situation, merging decls or emitting diagnostics as appropriate.
1239///
1240/// Tentative definition rules (C99 6.9.2p2) are checked by
1241/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1242/// definitions here, since the initializer hasn't been attached.
1243///
1244void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1245  // If the new decl is already invalid, don't do any other checking.
1246  if (New->isInvalidDecl())
1247    return;
1248
1249  // Verify the old decl was also a variable.
1250  VarDecl *Old = 0;
1251  if (!Previous.isSingleResult() ||
1252      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1253    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1254      << New->getDeclName();
1255    Diag(Previous.getRepresentativeDecl()->getLocation(),
1256         diag::note_previous_definition);
1257    return New->setInvalidDecl();
1258  }
1259
1260  MergeAttributes(New, Old, Context);
1261
1262  // Merge the types
1263  QualType MergedT;
1264  if (getLangOptions().CPlusPlus) {
1265    if (Context.hasSameType(New->getType(), Old->getType()))
1266      MergedT = New->getType();
1267    // C++ [basic.link]p10:
1268    //   [...] the types specified by all declarations referring to a given
1269    //   object or function shall be identical, except that declarations for an
1270    //   array object can specify array types that differ by the presence or
1271    //   absence of a major array bound (8.3.4).
1272    else if (Old->getType()->isIncompleteArrayType() &&
1273             New->getType()->isArrayType()) {
1274      CanQual<ArrayType> OldArray
1275        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1276      CanQual<ArrayType> NewArray
1277        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1278      if (OldArray->getElementType() == NewArray->getElementType())
1279        MergedT = New->getType();
1280    } else if (Old->getType()->isArrayType() &&
1281             New->getType()->isIncompleteArrayType()) {
1282      CanQual<ArrayType> OldArray
1283        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1284      CanQual<ArrayType> NewArray
1285        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1286      if (OldArray->getElementType() == NewArray->getElementType())
1287        MergedT = Old->getType();
1288    }
1289  } else {
1290    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1291  }
1292  if (MergedT.isNull()) {
1293    Diag(New->getLocation(), diag::err_redefinition_different_type)
1294      << New->getDeclName();
1295    Diag(Old->getLocation(), diag::note_previous_definition);
1296    return New->setInvalidDecl();
1297  }
1298  New->setType(MergedT);
1299
1300  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1301  if (New->getStorageClass() == VarDecl::Static &&
1302      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1303    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1304    Diag(Old->getLocation(), diag::note_previous_definition);
1305    return New->setInvalidDecl();
1306  }
1307  // C99 6.2.2p4:
1308  //   For an identifier declared with the storage-class specifier
1309  //   extern in a scope in which a prior declaration of that
1310  //   identifier is visible,23) if the prior declaration specifies
1311  //   internal or external linkage, the linkage of the identifier at
1312  //   the later declaration is the same as the linkage specified at
1313  //   the prior declaration. If no prior declaration is visible, or
1314  //   if the prior declaration specifies no linkage, then the
1315  //   identifier has external linkage.
1316  if (New->hasExternalStorage() && Old->hasLinkage())
1317    /* Okay */;
1318  else if (New->getStorageClass() != VarDecl::Static &&
1319           Old->getStorageClass() == VarDecl::Static) {
1320    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1321    Diag(Old->getLocation(), diag::note_previous_definition);
1322    return New->setInvalidDecl();
1323  }
1324
1325  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1326
1327  // FIXME: The test for external storage here seems wrong? We still
1328  // need to check for mismatches.
1329  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1330      // Don't complain about out-of-line definitions of static members.
1331      !(Old->getLexicalDeclContext()->isRecord() &&
1332        !New->getLexicalDeclContext()->isRecord())) {
1333    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1334    Diag(Old->getLocation(), diag::note_previous_definition);
1335    return New->setInvalidDecl();
1336  }
1337
1338  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1339    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1340    Diag(Old->getLocation(), diag::note_previous_definition);
1341  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1342    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1343    Diag(Old->getLocation(), diag::note_previous_definition);
1344  }
1345
1346  // C++ doesn't have tentative definitions, so go right ahead and check here.
1347  const VarDecl *Def;
1348  if (getLangOptions().CPlusPlus &&
1349      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1350      (Def = Old->getDefinition())) {
1351    Diag(New->getLocation(), diag::err_redefinition)
1352      << New->getDeclName();
1353    Diag(Def->getLocation(), diag::note_previous_definition);
1354    New->setInvalidDecl();
1355    return;
1356  }
1357
1358  // Keep a chain of previous declarations.
1359  New->setPreviousDeclaration(Old);
1360
1361  // Inherit access appropriately.
1362  New->setAccess(Old->getAccess());
1363}
1364
1365/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1366/// no declarator (e.g. "struct foo;") is parsed.
1367Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1368  // FIXME: Error on auto/register at file scope
1369  // FIXME: Error on inline/virtual/explicit
1370  // FIXME: Warn on useless __thread
1371  // FIXME: Warn on useless const/volatile
1372  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1373  // FIXME: Warn on useless attributes
1374  Decl *TagD = 0;
1375  TagDecl *Tag = 0;
1376  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1377      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1378      DS.getTypeSpecType() == DeclSpec::TST_union ||
1379      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1380    TagD = static_cast<Decl *>(DS.getTypeRep());
1381
1382    if (!TagD) // We probably had an error
1383      return DeclPtrTy();
1384
1385    // Note that the above type specs guarantee that the
1386    // type rep is a Decl, whereas in many of the others
1387    // it's a Type.
1388    Tag = dyn_cast<TagDecl>(TagD);
1389  }
1390
1391  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1392    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1393    // or incomplete types shall not be restrict-qualified."
1394    if (TypeQuals & DeclSpec::TQ_restrict)
1395      Diag(DS.getRestrictSpecLoc(),
1396           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1397           << DS.getSourceRange();
1398  }
1399
1400  if (DS.isFriendSpecified()) {
1401    // If we're dealing with a class template decl, assume that the
1402    // template routines are handling it.
1403    if (TagD && isa<ClassTemplateDecl>(TagD))
1404      return DeclPtrTy();
1405    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1406  }
1407
1408  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1409    // If there are attributes in the DeclSpec, apply them to the record.
1410    if (const AttributeList *AL = DS.getAttributes())
1411      ProcessDeclAttributeList(S, Record, AL);
1412
1413    if (!Record->getDeclName() && Record->isDefinition() &&
1414        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1415      if (getLangOptions().CPlusPlus ||
1416          Record->getDeclContext()->isRecord())
1417        return BuildAnonymousStructOrUnion(S, DS, Record);
1418
1419      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1420        << DS.getSourceRange();
1421    }
1422
1423    // Microsoft allows unnamed struct/union fields. Don't complain
1424    // about them.
1425    // FIXME: Should we support Microsoft's extensions in this area?
1426    if (Record->getDeclName() && getLangOptions().Microsoft)
1427      return DeclPtrTy::make(Tag);
1428  }
1429
1430  if (!DS.isMissingDeclaratorOk() &&
1431      DS.getTypeSpecType() != DeclSpec::TST_error) {
1432    // Warn about typedefs of enums without names, since this is an
1433    // extension in both Microsoft an GNU.
1434    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1435        Tag && isa<EnumDecl>(Tag)) {
1436      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1437        << DS.getSourceRange();
1438      return DeclPtrTy::make(Tag);
1439    }
1440
1441    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1442      << DS.getSourceRange();
1443    return DeclPtrTy();
1444  }
1445
1446  return DeclPtrTy::make(Tag);
1447}
1448
1449/// We are trying to inject an anonymous member into the given scope;
1450/// check if there's an existing declaration that can't be overloaded.
1451///
1452/// \return true if this is a forbidden redeclaration
1453static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1454                                         Scope *S,
1455                                         DeclContext *Owner,
1456                                         DeclarationName Name,
1457                                         SourceLocation NameLoc,
1458                                         unsigned diagnostic) {
1459  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1460                 Sema::ForRedeclaration);
1461  if (!SemaRef.LookupName(R, S)) return false;
1462
1463  if (R.getAsSingle<TagDecl>())
1464    return false;
1465
1466  // Pick a representative declaration.
1467  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1468  if (PrevDecl && Owner->isRecord()) {
1469    RecordDecl *Record = cast<RecordDecl>(Owner);
1470    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1471      return false;
1472  }
1473
1474  SemaRef.Diag(NameLoc, diagnostic) << Name;
1475  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1476
1477  return true;
1478}
1479
1480/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1481/// anonymous struct or union AnonRecord into the owning context Owner
1482/// and scope S. This routine will be invoked just after we realize
1483/// that an unnamed union or struct is actually an anonymous union or
1484/// struct, e.g.,
1485///
1486/// @code
1487/// union {
1488///   int i;
1489///   float f;
1490/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1491///    // f into the surrounding scope.x
1492/// @endcode
1493///
1494/// This routine is recursive, injecting the names of nested anonymous
1495/// structs/unions into the owning context and scope as well.
1496bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1497                                               RecordDecl *AnonRecord) {
1498  unsigned diagKind
1499    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1500                            : diag::err_anonymous_struct_member_redecl;
1501
1502  bool Invalid = false;
1503  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1504                               FEnd = AnonRecord->field_end();
1505       F != FEnd; ++F) {
1506    if ((*F)->getDeclName()) {
1507      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1508                                       (*F)->getLocation(), diagKind)) {
1509        // C++ [class.union]p2:
1510        //   The names of the members of an anonymous union shall be
1511        //   distinct from the names of any other entity in the
1512        //   scope in which the anonymous union is declared.
1513        Invalid = true;
1514      } else {
1515        // C++ [class.union]p2:
1516        //   For the purpose of name lookup, after the anonymous union
1517        //   definition, the members of the anonymous union are
1518        //   considered to have been defined in the scope in which the
1519        //   anonymous union is declared.
1520        Owner->makeDeclVisibleInContext(*F);
1521        S->AddDecl(DeclPtrTy::make(*F));
1522        IdResolver.AddDecl(*F);
1523      }
1524    } else if (const RecordType *InnerRecordType
1525                 = (*F)->getType()->getAs<RecordType>()) {
1526      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1527      if (InnerRecord->isAnonymousStructOrUnion())
1528        Invalid = Invalid ||
1529          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1530    }
1531  }
1532
1533  return Invalid;
1534}
1535
1536/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1537/// anonymous structure or union. Anonymous unions are a C++ feature
1538/// (C++ [class.union]) and a GNU C extension; anonymous structures
1539/// are a GNU C and GNU C++ extension.
1540Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1541                                                  RecordDecl *Record) {
1542  DeclContext *Owner = Record->getDeclContext();
1543
1544  // Diagnose whether this anonymous struct/union is an extension.
1545  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1546    Diag(Record->getLocation(), diag::ext_anonymous_union);
1547  else if (!Record->isUnion())
1548    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1549
1550  // C and C++ require different kinds of checks for anonymous
1551  // structs/unions.
1552  bool Invalid = false;
1553  if (getLangOptions().CPlusPlus) {
1554    const char* PrevSpec = 0;
1555    unsigned DiagID;
1556    // C++ [class.union]p3:
1557    //   Anonymous unions declared in a named namespace or in the
1558    //   global namespace shall be declared static.
1559    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1560        (isa<TranslationUnitDecl>(Owner) ||
1561         (isa<NamespaceDecl>(Owner) &&
1562          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1563      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1564      Invalid = true;
1565
1566      // Recover by adding 'static'.
1567      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1568                             PrevSpec, DiagID);
1569    }
1570    // C++ [class.union]p3:
1571    //   A storage class is not allowed in a declaration of an
1572    //   anonymous union in a class scope.
1573    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1574             isa<RecordDecl>(Owner)) {
1575      Diag(DS.getStorageClassSpecLoc(),
1576           diag::err_anonymous_union_with_storage_spec);
1577      Invalid = true;
1578
1579      // Recover by removing the storage specifier.
1580      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1581                             PrevSpec, DiagID);
1582    }
1583
1584    // C++ [class.union]p2:
1585    //   The member-specification of an anonymous union shall only
1586    //   define non-static data members. [Note: nested types and
1587    //   functions cannot be declared within an anonymous union. ]
1588    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1589                                 MemEnd = Record->decls_end();
1590         Mem != MemEnd; ++Mem) {
1591      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1592        // C++ [class.union]p3:
1593        //   An anonymous union shall not have private or protected
1594        //   members (clause 11).
1595        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1596          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1597            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1598          Invalid = true;
1599        }
1600      } else if ((*Mem)->isImplicit()) {
1601        // Any implicit members are fine.
1602      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1603        // This is a type that showed up in an
1604        // elaborated-type-specifier inside the anonymous struct or
1605        // union, but which actually declares a type outside of the
1606        // anonymous struct or union. It's okay.
1607      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1608        if (!MemRecord->isAnonymousStructOrUnion() &&
1609            MemRecord->getDeclName()) {
1610          // This is a nested type declaration.
1611          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1612            << (int)Record->isUnion();
1613          Invalid = true;
1614        }
1615      } else {
1616        // We have something that isn't a non-static data
1617        // member. Complain about it.
1618        unsigned DK = diag::err_anonymous_record_bad_member;
1619        if (isa<TypeDecl>(*Mem))
1620          DK = diag::err_anonymous_record_with_type;
1621        else if (isa<FunctionDecl>(*Mem))
1622          DK = diag::err_anonymous_record_with_function;
1623        else if (isa<VarDecl>(*Mem))
1624          DK = diag::err_anonymous_record_with_static;
1625        Diag((*Mem)->getLocation(), DK)
1626            << (int)Record->isUnion();
1627          Invalid = true;
1628      }
1629    }
1630  }
1631
1632  if (!Record->isUnion() && !Owner->isRecord()) {
1633    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1634      << (int)getLangOptions().CPlusPlus;
1635    Invalid = true;
1636  }
1637
1638  // Mock up a declarator.
1639  Declarator Dc(DS, Declarator::TypeNameContext);
1640  TypeSourceInfo *TInfo = 0;
1641  GetTypeForDeclarator(Dc, S, &TInfo);
1642  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1643
1644  // Create a declaration for this anonymous struct/union.
1645  NamedDecl *Anon = 0;
1646  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1647    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1648                             /*IdentifierInfo=*/0,
1649                             Context.getTypeDeclType(Record),
1650                             TInfo,
1651                             /*BitWidth=*/0, /*Mutable=*/false);
1652    Anon->setAccess(AS_public);
1653    if (getLangOptions().CPlusPlus)
1654      FieldCollector->Add(cast<FieldDecl>(Anon));
1655  } else {
1656    VarDecl::StorageClass SC;
1657    switch (DS.getStorageClassSpec()) {
1658    default: assert(0 && "Unknown storage class!");
1659    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1660    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1661    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1662    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1663    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1664    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1665    case DeclSpec::SCS_mutable:
1666      // mutable can only appear on non-static class members, so it's always
1667      // an error here
1668      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1669      Invalid = true;
1670      SC = VarDecl::None;
1671      break;
1672    }
1673
1674    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1675                           /*IdentifierInfo=*/0,
1676                           Context.getTypeDeclType(Record),
1677                           TInfo,
1678                           SC);
1679  }
1680  Anon->setImplicit();
1681
1682  // Add the anonymous struct/union object to the current
1683  // context. We'll be referencing this object when we refer to one of
1684  // its members.
1685  Owner->addDecl(Anon);
1686
1687  // Inject the members of the anonymous struct/union into the owning
1688  // context and into the identifier resolver chain for name lookup
1689  // purposes.
1690  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1691    Invalid = true;
1692
1693  // Mark this as an anonymous struct/union type. Note that we do not
1694  // do this until after we have already checked and injected the
1695  // members of this anonymous struct/union type, because otherwise
1696  // the members could be injected twice: once by DeclContext when it
1697  // builds its lookup table, and once by
1698  // InjectAnonymousStructOrUnionMembers.
1699  Record->setAnonymousStructOrUnion(true);
1700
1701  if (Invalid)
1702    Anon->setInvalidDecl();
1703
1704  return DeclPtrTy::make(Anon);
1705}
1706
1707
1708/// GetNameForDeclarator - Determine the full declaration name for the
1709/// given Declarator.
1710DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1711  return GetNameFromUnqualifiedId(D.getName());
1712}
1713
1714/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1715DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1716  switch (Name.getKind()) {
1717    case UnqualifiedId::IK_Identifier:
1718      return DeclarationName(Name.Identifier);
1719
1720    case UnqualifiedId::IK_OperatorFunctionId:
1721      return Context.DeclarationNames.getCXXOperatorName(
1722                                              Name.OperatorFunctionId.Operator);
1723
1724    case UnqualifiedId::IK_LiteralOperatorId:
1725      return Context.DeclarationNames.getCXXLiteralOperatorName(
1726                                                               Name.Identifier);
1727
1728    case UnqualifiedId::IK_ConversionFunctionId: {
1729      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1730      if (Ty.isNull())
1731        return DeclarationName();
1732
1733      return Context.DeclarationNames.getCXXConversionFunctionName(
1734                                                  Context.getCanonicalType(Ty));
1735    }
1736
1737    case UnqualifiedId::IK_ConstructorName: {
1738      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1739      if (Ty.isNull())
1740        return DeclarationName();
1741
1742      return Context.DeclarationNames.getCXXConstructorName(
1743                                                  Context.getCanonicalType(Ty));
1744    }
1745
1746    case UnqualifiedId::IK_ConstructorTemplateId: {
1747      // In well-formed code, we can only have a constructor
1748      // template-id that refers to the current context, so go there
1749      // to find the actual type being constructed.
1750      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1751      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1752        return DeclarationName();
1753
1754      // Determine the type of the class being constructed.
1755      QualType CurClassType;
1756      if (ClassTemplateDecl *ClassTemplate
1757            = CurClass->getDescribedClassTemplate())
1758        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1759      else
1760        CurClassType = Context.getTypeDeclType(CurClass);
1761
1762      // FIXME: Check two things: that the template-id names the same type as
1763      // CurClassType, and that the template-id does not occur when the name
1764      // was qualified.
1765
1766      return Context.DeclarationNames.getCXXConstructorName(
1767                                       Context.getCanonicalType(CurClassType));
1768    }
1769
1770    case UnqualifiedId::IK_DestructorName: {
1771      QualType Ty = GetTypeFromParser(Name.DestructorName);
1772      if (Ty.isNull())
1773        return DeclarationName();
1774
1775      return Context.DeclarationNames.getCXXDestructorName(
1776                                                           Context.getCanonicalType(Ty));
1777    }
1778
1779    case UnqualifiedId::IK_TemplateId: {
1780      TemplateName TName
1781        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1782      return Context.getNameForTemplate(TName);
1783    }
1784  }
1785
1786  assert(false && "Unknown name kind");
1787  return DeclarationName();
1788}
1789
1790/// isNearlyMatchingFunction - Determine whether the C++ functions
1791/// Declaration and Definition are "nearly" matching. This heuristic
1792/// is used to improve diagnostics in the case where an out-of-line
1793/// function definition doesn't match any declaration within
1794/// the class or namespace.
1795static bool isNearlyMatchingFunction(ASTContext &Context,
1796                                     FunctionDecl *Declaration,
1797                                     FunctionDecl *Definition) {
1798  if (Declaration->param_size() != Definition->param_size())
1799    return false;
1800  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1801    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1802    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1803
1804    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1805                                        DefParamTy.getNonReferenceType()))
1806      return false;
1807  }
1808
1809  return true;
1810}
1811
1812Sema::DeclPtrTy
1813Sema::HandleDeclarator(Scope *S, Declarator &D,
1814                       MultiTemplateParamsArg TemplateParamLists,
1815                       bool IsFunctionDefinition) {
1816  DeclarationName Name = GetNameForDeclarator(D);
1817
1818  // All of these full declarators require an identifier.  If it doesn't have
1819  // one, the ParsedFreeStandingDeclSpec action should be used.
1820  if (!Name) {
1821    if (!D.isInvalidType())  // Reject this if we think it is valid.
1822      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1823           diag::err_declarator_need_ident)
1824        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1825    return DeclPtrTy();
1826  }
1827
1828  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1829  // we find one that is.
1830  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1831         (S->getFlags() & Scope::TemplateParamScope) != 0)
1832    S = S->getParent();
1833
1834  // If this is an out-of-line definition of a member of a class template
1835  // or class template partial specialization, we may need to rebuild the
1836  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1837  // for more information.
1838  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1839  // handle expressions properly.
1840  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1841  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1842      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1843      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1844       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1845       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1846       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1847    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1848      // FIXME: Preserve type source info.
1849      QualType T = GetTypeFromParser(DS.getTypeRep());
1850
1851      DeclContext *SavedContext = CurContext;
1852      CurContext = DC;
1853      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1854      CurContext = SavedContext;
1855
1856      if (T.isNull())
1857        return DeclPtrTy();
1858      DS.UpdateTypeRep(T.getAsOpaquePtr());
1859    }
1860  }
1861
1862  DeclContext *DC;
1863  NamedDecl *New;
1864
1865  TypeSourceInfo *TInfo = 0;
1866  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1867
1868  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1869                        ForRedeclaration);
1870
1871  // See if this is a redefinition of a variable in the same scope.
1872  if (D.getCXXScopeSpec().isInvalid()) {
1873    DC = CurContext;
1874    D.setInvalidType();
1875  } else if (!D.getCXXScopeSpec().isSet()) {
1876    bool IsLinkageLookup = false;
1877
1878    // If the declaration we're planning to build will be a function
1879    // or object with linkage, then look for another declaration with
1880    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1881    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1882      /* Do nothing*/;
1883    else if (R->isFunctionType()) {
1884      if (CurContext->isFunctionOrMethod() ||
1885          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1886        IsLinkageLookup = true;
1887    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1888      IsLinkageLookup = true;
1889    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1890             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1891      IsLinkageLookup = true;
1892
1893    if (IsLinkageLookup)
1894      Previous.clear(LookupRedeclarationWithLinkage);
1895
1896    DC = CurContext;
1897    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1898  } else { // Something like "int foo::x;"
1899    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1900
1901    if (!DC) {
1902      // If we could not compute the declaration context, it's because the
1903      // declaration context is dependent but does not refer to a class,
1904      // class template, or class template partial specialization. Complain
1905      // and return early, to avoid the coming semantic disaster.
1906      Diag(D.getIdentifierLoc(),
1907           diag::err_template_qualified_declarator_no_match)
1908        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1909        << D.getCXXScopeSpec().getRange();
1910      return DeclPtrTy();
1911    }
1912
1913    if (!DC->isDependentContext() &&
1914        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1915      return DeclPtrTy();
1916
1917    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1918      Diag(D.getIdentifierLoc(),
1919           diag::err_member_def_undefined_record)
1920        << Name << DC << D.getCXXScopeSpec().getRange();
1921      D.setInvalidType();
1922    }
1923
1924    LookupQualifiedName(Previous, DC);
1925
1926    // Don't consider using declarations as previous declarations for
1927    // out-of-line members.
1928    RemoveUsingDecls(Previous);
1929
1930    // C++ 7.3.1.2p2:
1931    // Members (including explicit specializations of templates) of a named
1932    // namespace can also be defined outside that namespace by explicit
1933    // qualification of the name being defined, provided that the entity being
1934    // defined was already declared in the namespace and the definition appears
1935    // after the point of declaration in a namespace that encloses the
1936    // declarations namespace.
1937    //
1938    // Note that we only check the context at this point. We don't yet
1939    // have enough information to make sure that PrevDecl is actually
1940    // the declaration we want to match. For example, given:
1941    //
1942    //   class X {
1943    //     void f();
1944    //     void f(float);
1945    //   };
1946    //
1947    //   void X::f(int) { } // ill-formed
1948    //
1949    // In this case, PrevDecl will point to the overload set
1950    // containing the two f's declared in X, but neither of them
1951    // matches.
1952
1953    // First check whether we named the global scope.
1954    if (isa<TranslationUnitDecl>(DC)) {
1955      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1956        << Name << D.getCXXScopeSpec().getRange();
1957    } else {
1958      DeclContext *Cur = CurContext;
1959      while (isa<LinkageSpecDecl>(Cur))
1960        Cur = Cur->getParent();
1961      if (!Cur->Encloses(DC)) {
1962        // The qualifying scope doesn't enclose the original declaration.
1963        // Emit diagnostic based on current scope.
1964        SourceLocation L = D.getIdentifierLoc();
1965        SourceRange R = D.getCXXScopeSpec().getRange();
1966        if (isa<FunctionDecl>(Cur))
1967          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1968        else
1969          Diag(L, diag::err_invalid_declarator_scope)
1970            << Name << cast<NamedDecl>(DC) << R;
1971        D.setInvalidType();
1972      }
1973    }
1974  }
1975
1976  if (Previous.isSingleResult() &&
1977      Previous.getFoundDecl()->isTemplateParameter()) {
1978    // Maybe we will complain about the shadowed template parameter.
1979    if (!D.isInvalidType())
1980      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1981                                          Previous.getFoundDecl()))
1982        D.setInvalidType();
1983
1984    // Just pretend that we didn't see the previous declaration.
1985    Previous.clear();
1986  }
1987
1988  // In C++, the previous declaration we find might be a tag type
1989  // (class or enum). In this case, the new declaration will hide the
1990  // tag type. Note that this does does not apply if we're declaring a
1991  // typedef (C++ [dcl.typedef]p4).
1992  if (Previous.isSingleTagDecl() &&
1993      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1994    Previous.clear();
1995
1996  bool Redeclaration = false;
1997  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1998    if (TemplateParamLists.size()) {
1999      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2000      return DeclPtrTy();
2001    }
2002
2003    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2004  } else if (R->isFunctionType()) {
2005    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2006                                  move(TemplateParamLists),
2007                                  IsFunctionDefinition, Redeclaration);
2008  } else {
2009    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2010                                  move(TemplateParamLists),
2011                                  Redeclaration);
2012  }
2013
2014  if (New == 0)
2015    return DeclPtrTy();
2016
2017  // If this has an identifier and is not an invalid redeclaration or
2018  // function template specialization, add it to the scope stack.
2019  if (Name && !(Redeclaration && New->isInvalidDecl()))
2020    PushOnScopeChains(New, S);
2021
2022  return DeclPtrTy::make(New);
2023}
2024
2025/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2026/// types into constant array types in certain situations which would otherwise
2027/// be errors (for GCC compatibility).
2028static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2029                                                    ASTContext &Context,
2030                                                    bool &SizeIsNegative) {
2031  // This method tries to turn a variable array into a constant
2032  // array even when the size isn't an ICE.  This is necessary
2033  // for compatibility with code that depends on gcc's buggy
2034  // constant expression folding, like struct {char x[(int)(char*)2];}
2035  SizeIsNegative = false;
2036
2037  QualifierCollector Qs;
2038  const Type *Ty = Qs.strip(T);
2039
2040  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2041    QualType Pointee = PTy->getPointeeType();
2042    QualType FixedType =
2043        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2044    if (FixedType.isNull()) return FixedType;
2045    FixedType = Context.getPointerType(FixedType);
2046    return Qs.apply(FixedType);
2047  }
2048
2049  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2050  if (!VLATy)
2051    return QualType();
2052  // FIXME: We should probably handle this case
2053  if (VLATy->getElementType()->isVariablyModifiedType())
2054    return QualType();
2055
2056  Expr::EvalResult EvalResult;
2057  if (!VLATy->getSizeExpr() ||
2058      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2059      !EvalResult.Val.isInt())
2060    return QualType();
2061
2062  llvm::APSInt &Res = EvalResult.Val.getInt();
2063  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2064    // TODO: preserve the size expression in declarator info
2065    return Context.getConstantArrayType(VLATy->getElementType(),
2066                                        Res, ArrayType::Normal, 0);
2067  }
2068
2069  SizeIsNegative = true;
2070  return QualType();
2071}
2072
2073/// \brief Register the given locally-scoped external C declaration so
2074/// that it can be found later for redeclarations
2075void
2076Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2077                                       const LookupResult &Previous,
2078                                       Scope *S) {
2079  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2080         "Decl is not a locally-scoped decl!");
2081  // Note that we have a locally-scoped external with this name.
2082  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2083
2084  if (!Previous.isSingleResult())
2085    return;
2086
2087  NamedDecl *PrevDecl = Previous.getFoundDecl();
2088
2089  // If there was a previous declaration of this variable, it may be
2090  // in our identifier chain. Update the identifier chain with the new
2091  // declaration.
2092  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2093    // The previous declaration was found on the identifer resolver
2094    // chain, so remove it from its scope.
2095    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2096      S = S->getParent();
2097
2098    if (S)
2099      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2100  }
2101}
2102
2103/// \brief Diagnose function specifiers on a declaration of an identifier that
2104/// does not identify a function.
2105void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2106  // FIXME: We should probably indicate the identifier in question to avoid
2107  // confusion for constructs like "inline int a(), b;"
2108  if (D.getDeclSpec().isInlineSpecified())
2109    Diag(D.getDeclSpec().getInlineSpecLoc(),
2110         diag::err_inline_non_function);
2111
2112  if (D.getDeclSpec().isVirtualSpecified())
2113    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2114         diag::err_virtual_non_function);
2115
2116  if (D.getDeclSpec().isExplicitSpecified())
2117    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2118         diag::err_explicit_non_function);
2119}
2120
2121NamedDecl*
2122Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2123                             QualType R,  TypeSourceInfo *TInfo,
2124                             LookupResult &Previous, bool &Redeclaration) {
2125  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2126  if (D.getCXXScopeSpec().isSet()) {
2127    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2128      << D.getCXXScopeSpec().getRange();
2129    D.setInvalidType();
2130    // Pretend we didn't see the scope specifier.
2131    DC = 0;
2132  }
2133
2134  if (getLangOptions().CPlusPlus) {
2135    // Check that there are no default arguments (C++ only).
2136    CheckExtraCXXDefaultArguments(D);
2137  }
2138
2139  DiagnoseFunctionSpecifiers(D);
2140
2141  if (D.getDeclSpec().isThreadSpecified())
2142    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2143
2144  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2145  if (!NewTD) return 0;
2146
2147  // Handle attributes prior to checking for duplicates in MergeVarDecl
2148  ProcessDeclAttributes(S, NewTD, D);
2149
2150  // Merge the decl with the existing one if appropriate. If the decl is
2151  // in an outer scope, it isn't the same thing.
2152  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2153  if (!Previous.empty()) {
2154    Redeclaration = true;
2155    MergeTypeDefDecl(NewTD, Previous);
2156  }
2157
2158  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2159  // then it shall have block scope.
2160  QualType T = NewTD->getUnderlyingType();
2161  if (T->isVariablyModifiedType()) {
2162    CurFunctionNeedsScopeChecking = true;
2163
2164    if (S->getFnParent() == 0) {
2165      bool SizeIsNegative;
2166      QualType FixedTy =
2167          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2168      if (!FixedTy.isNull()) {
2169        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2170        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2171      } else {
2172        if (SizeIsNegative)
2173          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2174        else if (T->isVariableArrayType())
2175          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2176        else
2177          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2178        NewTD->setInvalidDecl();
2179      }
2180    }
2181  }
2182
2183  // If this is the C FILE type, notify the AST context.
2184  if (IdentifierInfo *II = NewTD->getIdentifier())
2185    if (!NewTD->isInvalidDecl() &&
2186        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2187      if (II->isStr("FILE"))
2188        Context.setFILEDecl(NewTD);
2189      else if (II->isStr("jmp_buf"))
2190        Context.setjmp_bufDecl(NewTD);
2191      else if (II->isStr("sigjmp_buf"))
2192        Context.setsigjmp_bufDecl(NewTD);
2193    }
2194
2195  return NewTD;
2196}
2197
2198/// \brief Determines whether the given declaration is an out-of-scope
2199/// previous declaration.
2200///
2201/// This routine should be invoked when name lookup has found a
2202/// previous declaration (PrevDecl) that is not in the scope where a
2203/// new declaration by the same name is being introduced. If the new
2204/// declaration occurs in a local scope, previous declarations with
2205/// linkage may still be considered previous declarations (C99
2206/// 6.2.2p4-5, C++ [basic.link]p6).
2207///
2208/// \param PrevDecl the previous declaration found by name
2209/// lookup
2210///
2211/// \param DC the context in which the new declaration is being
2212/// declared.
2213///
2214/// \returns true if PrevDecl is an out-of-scope previous declaration
2215/// for a new delcaration with the same name.
2216static bool
2217isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2218                                ASTContext &Context) {
2219  if (!PrevDecl)
2220    return 0;
2221
2222  if (!PrevDecl->hasLinkage())
2223    return false;
2224
2225  if (Context.getLangOptions().CPlusPlus) {
2226    // C++ [basic.link]p6:
2227    //   If there is a visible declaration of an entity with linkage
2228    //   having the same name and type, ignoring entities declared
2229    //   outside the innermost enclosing namespace scope, the block
2230    //   scope declaration declares that same entity and receives the
2231    //   linkage of the previous declaration.
2232    DeclContext *OuterContext = DC->getLookupContext();
2233    if (!OuterContext->isFunctionOrMethod())
2234      // This rule only applies to block-scope declarations.
2235      return false;
2236    else {
2237      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2238      if (PrevOuterContext->isRecord())
2239        // We found a member function: ignore it.
2240        return false;
2241      else {
2242        // Find the innermost enclosing namespace for the new and
2243        // previous declarations.
2244        while (!OuterContext->isFileContext())
2245          OuterContext = OuterContext->getParent();
2246        while (!PrevOuterContext->isFileContext())
2247          PrevOuterContext = PrevOuterContext->getParent();
2248
2249        // The previous declaration is in a different namespace, so it
2250        // isn't the same function.
2251        if (OuterContext->getPrimaryContext() !=
2252            PrevOuterContext->getPrimaryContext())
2253          return false;
2254      }
2255    }
2256  }
2257
2258  return true;
2259}
2260
2261NamedDecl*
2262Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2263                              QualType R, TypeSourceInfo *TInfo,
2264                              LookupResult &Previous,
2265                              MultiTemplateParamsArg TemplateParamLists,
2266                              bool &Redeclaration) {
2267  DeclarationName Name = GetNameForDeclarator(D);
2268
2269  // Check that there are no default arguments (C++ only).
2270  if (getLangOptions().CPlusPlus)
2271    CheckExtraCXXDefaultArguments(D);
2272
2273  VarDecl *NewVD;
2274  VarDecl::StorageClass SC;
2275  switch (D.getDeclSpec().getStorageClassSpec()) {
2276  default: assert(0 && "Unknown storage class!");
2277  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2278  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2279  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2280  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2281  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2282  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2283  case DeclSpec::SCS_mutable:
2284    // mutable can only appear on non-static class members, so it's always
2285    // an error here
2286    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2287    D.setInvalidType();
2288    SC = VarDecl::None;
2289    break;
2290  }
2291
2292  IdentifierInfo *II = Name.getAsIdentifierInfo();
2293  if (!II) {
2294    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2295      << Name.getAsString();
2296    return 0;
2297  }
2298
2299  DiagnoseFunctionSpecifiers(D);
2300
2301  if (!DC->isRecord() && S->getFnParent() == 0) {
2302    // C99 6.9p2: The storage-class specifiers auto and register shall not
2303    // appear in the declaration specifiers in an external declaration.
2304    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2305
2306      // If this is a register variable with an asm label specified, then this
2307      // is a GNU extension.
2308      if (SC == VarDecl::Register && D.getAsmLabel())
2309        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2310      else
2311        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2312      D.setInvalidType();
2313    }
2314  }
2315  if (DC->isRecord() && !CurContext->isRecord()) {
2316    // This is an out-of-line definition of a static data member.
2317    if (SC == VarDecl::Static) {
2318      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2319           diag::err_static_out_of_line)
2320        << CodeModificationHint::CreateRemoval(
2321                                      D.getDeclSpec().getStorageClassSpecLoc());
2322    } else if (SC == VarDecl::None)
2323      SC = VarDecl::Static;
2324  }
2325  if (SC == VarDecl::Static) {
2326    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2327      if (RD->isLocalClass())
2328        Diag(D.getIdentifierLoc(),
2329             diag::err_static_data_member_not_allowed_in_local_class)
2330          << Name << RD->getDeclName();
2331    }
2332  }
2333
2334  // Match up the template parameter lists with the scope specifier, then
2335  // determine whether we have a template or a template specialization.
2336  bool isExplicitSpecialization = false;
2337  if (TemplateParameterList *TemplateParams
2338        = MatchTemplateParametersToScopeSpecifier(
2339                                  D.getDeclSpec().getSourceRange().getBegin(),
2340                                                  D.getCXXScopeSpec(),
2341                        (TemplateParameterList**)TemplateParamLists.get(),
2342                                                   TemplateParamLists.size(),
2343                                                  isExplicitSpecialization)) {
2344    if (TemplateParams->size() > 0) {
2345      // There is no such thing as a variable template.
2346      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2347        << II
2348        << SourceRange(TemplateParams->getTemplateLoc(),
2349                       TemplateParams->getRAngleLoc());
2350      return 0;
2351    } else {
2352      // There is an extraneous 'template<>' for this variable. Complain
2353      // about it, but allow the declaration of the variable.
2354      Diag(TemplateParams->getTemplateLoc(),
2355           diag::err_template_variable_noparams)
2356        << II
2357        << SourceRange(TemplateParams->getTemplateLoc(),
2358                       TemplateParams->getRAngleLoc());
2359
2360      isExplicitSpecialization = true;
2361    }
2362  }
2363
2364  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2365                          II, R, TInfo, SC);
2366
2367  if (D.isInvalidType())
2368    NewVD->setInvalidDecl();
2369
2370  if (D.getDeclSpec().isThreadSpecified()) {
2371    if (NewVD->hasLocalStorage())
2372      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2373    else if (!Context.Target.isTLSSupported())
2374      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2375    else
2376      NewVD->setThreadSpecified(true);
2377  }
2378
2379  // Set the lexical context. If the declarator has a C++ scope specifier, the
2380  // lexical context will be different from the semantic context.
2381  NewVD->setLexicalDeclContext(CurContext);
2382
2383  // Handle attributes prior to checking for duplicates in MergeVarDecl
2384  ProcessDeclAttributes(S, NewVD, D);
2385
2386  // Handle GNU asm-label extension (encoded as an attribute).
2387  if (Expr *E = (Expr*) D.getAsmLabel()) {
2388    // The parser guarantees this is a string.
2389    StringLiteral *SE = cast<StringLiteral>(E);
2390    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2391  }
2392
2393  // Don't consider existing declarations that are in a different
2394  // scope and are out-of-semantic-context declarations (if the new
2395  // declaration has linkage).
2396  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2397
2398  // Merge the decl with the existing one if appropriate.
2399  if (!Previous.empty()) {
2400    if (Previous.isSingleResult() &&
2401        isa<FieldDecl>(Previous.getFoundDecl()) &&
2402        D.getCXXScopeSpec().isSet()) {
2403      // The user tried to define a non-static data member
2404      // out-of-line (C++ [dcl.meaning]p1).
2405      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2406        << D.getCXXScopeSpec().getRange();
2407      Previous.clear();
2408      NewVD->setInvalidDecl();
2409    }
2410  } else if (D.getCXXScopeSpec().isSet()) {
2411    // No previous declaration in the qualifying scope.
2412    Diag(D.getIdentifierLoc(), diag::err_no_member)
2413      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2414      << D.getCXXScopeSpec().getRange();
2415    NewVD->setInvalidDecl();
2416  }
2417
2418  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2419
2420  // This is an explicit specialization of a static data member. Check it.
2421  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2422      CheckMemberSpecialization(NewVD, Previous))
2423    NewVD->setInvalidDecl();
2424
2425  // attributes declared post-definition are currently ignored
2426  if (Previous.isSingleResult()) {
2427    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2428    if (Def && (Def = Def->getDefinition()) &&
2429        Def != NewVD && D.hasAttributes()) {
2430      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2431      Diag(Def->getLocation(), diag::note_previous_definition);
2432    }
2433  }
2434
2435  // If this is a locally-scoped extern C variable, update the map of
2436  // such variables.
2437  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2438      !NewVD->isInvalidDecl())
2439    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2440
2441  return NewVD;
2442}
2443
2444/// \brief Perform semantic checking on a newly-created variable
2445/// declaration.
2446///
2447/// This routine performs all of the type-checking required for a
2448/// variable declaration once it has been built. It is used both to
2449/// check variables after they have been parsed and their declarators
2450/// have been translated into a declaration, and to check variables
2451/// that have been instantiated from a template.
2452///
2453/// Sets NewVD->isInvalidDecl() if an error was encountered.
2454void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2455                                    LookupResult &Previous,
2456                                    bool &Redeclaration) {
2457  // If the decl is already known invalid, don't check it.
2458  if (NewVD->isInvalidDecl())
2459    return;
2460
2461  QualType T = NewVD->getType();
2462
2463  if (T->isObjCInterfaceType()) {
2464    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2465    return NewVD->setInvalidDecl();
2466  }
2467
2468  // Emit an error if an address space was applied to decl with local storage.
2469  // This includes arrays of objects with address space qualifiers, but not
2470  // automatic variables that point to other address spaces.
2471  // ISO/IEC TR 18037 S5.1.2
2472  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2473    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2474    return NewVD->setInvalidDecl();
2475  }
2476
2477  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2478      && !NewVD->hasAttr<BlocksAttr>())
2479    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2480
2481  bool isVM = T->isVariablyModifiedType();
2482  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2483      NewVD->hasAttr<BlocksAttr>())
2484    CurFunctionNeedsScopeChecking = true;
2485
2486  if ((isVM && NewVD->hasLinkage()) ||
2487      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2488    bool SizeIsNegative;
2489    QualType FixedTy =
2490        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2491
2492    if (FixedTy.isNull() && T->isVariableArrayType()) {
2493      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2494      // FIXME: This won't give the correct result for
2495      // int a[10][n];
2496      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2497
2498      if (NewVD->isFileVarDecl())
2499        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2500        << SizeRange;
2501      else if (NewVD->getStorageClass() == VarDecl::Static)
2502        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2503        << SizeRange;
2504      else
2505        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2506        << SizeRange;
2507      return NewVD->setInvalidDecl();
2508    }
2509
2510    if (FixedTy.isNull()) {
2511      if (NewVD->isFileVarDecl())
2512        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2513      else
2514        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2515      return NewVD->setInvalidDecl();
2516    }
2517
2518    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2519    NewVD->setType(FixedTy);
2520  }
2521
2522  if (Previous.empty() && NewVD->isExternC()) {
2523    // Since we did not find anything by this name and we're declaring
2524    // an extern "C" variable, look for a non-visible extern "C"
2525    // declaration with the same name.
2526    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2527      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2528    if (Pos != LocallyScopedExternalDecls.end())
2529      Previous.addDecl(Pos->second);
2530  }
2531
2532  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2533    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2534      << T;
2535    return NewVD->setInvalidDecl();
2536  }
2537
2538  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2539    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2540    return NewVD->setInvalidDecl();
2541  }
2542
2543  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2544    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2545    return NewVD->setInvalidDecl();
2546  }
2547
2548  if (!Previous.empty()) {
2549    Redeclaration = true;
2550    MergeVarDecl(NewVD, Previous);
2551  }
2552}
2553
2554/// \brief Data used with FindOverriddenMethod
2555struct FindOverriddenMethodData {
2556  Sema *S;
2557  CXXMethodDecl *Method;
2558};
2559
2560/// \brief Member lookup function that determines whether a given C++
2561/// method overrides a method in a base class, to be used with
2562/// CXXRecordDecl::lookupInBases().
2563static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2564                                 CXXBasePath &Path,
2565                                 void *UserData) {
2566  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2567
2568  FindOverriddenMethodData *Data
2569    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2570
2571  DeclarationName Name = Data->Method->getDeclName();
2572
2573  // FIXME: Do we care about other names here too?
2574  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2575    // We really want to find the base class constructor here.
2576    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2577    CanQualType CT = Data->S->Context.getCanonicalType(T);
2578
2579    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2580  }
2581
2582  for (Path.Decls = BaseRecord->lookup(Name);
2583       Path.Decls.first != Path.Decls.second;
2584       ++Path.Decls.first) {
2585    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2586      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2587        return true;
2588    }
2589  }
2590
2591  return false;
2592}
2593
2594/// AddOverriddenMethods - See if a method overrides any in the base classes,
2595/// and if so, check that it's a valid override and remember it.
2596void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2597  // Look for virtual methods in base classes that this method might override.
2598  CXXBasePaths Paths;
2599  FindOverriddenMethodData Data;
2600  Data.Method = MD;
2601  Data.S = this;
2602  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2603    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2604         E = Paths.found_decls_end(); I != E; ++I) {
2605      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2606        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2607            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2608            !CheckOverridingFunctionAttributes(MD, OldMD))
2609          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2610      }
2611    }
2612  }
2613}
2614
2615NamedDecl*
2616Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2617                              QualType R, TypeSourceInfo *TInfo,
2618                              LookupResult &Previous,
2619                              MultiTemplateParamsArg TemplateParamLists,
2620                              bool IsFunctionDefinition, bool &Redeclaration) {
2621  assert(R.getTypePtr()->isFunctionType());
2622
2623  DeclarationName Name = GetNameForDeclarator(D);
2624  FunctionDecl::StorageClass SC = FunctionDecl::None;
2625  switch (D.getDeclSpec().getStorageClassSpec()) {
2626  default: assert(0 && "Unknown storage class!");
2627  case DeclSpec::SCS_auto:
2628  case DeclSpec::SCS_register:
2629  case DeclSpec::SCS_mutable:
2630    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2631         diag::err_typecheck_sclass_func);
2632    D.setInvalidType();
2633    break;
2634  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2635  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2636  case DeclSpec::SCS_static: {
2637    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2638      // C99 6.7.1p5:
2639      //   The declaration of an identifier for a function that has
2640      //   block scope shall have no explicit storage-class specifier
2641      //   other than extern
2642      // See also (C++ [dcl.stc]p4).
2643      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2644           diag::err_static_block_func);
2645      SC = FunctionDecl::None;
2646    } else
2647      SC = FunctionDecl::Static;
2648    break;
2649  }
2650  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2651  }
2652
2653  if (D.getDeclSpec().isThreadSpecified())
2654    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2655
2656  bool isFriend = D.getDeclSpec().isFriendSpecified();
2657  bool isInline = D.getDeclSpec().isInlineSpecified();
2658  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2659  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2660
2661  // Check that the return type is not an abstract class type.
2662  // For record types, this is done by the AbstractClassUsageDiagnoser once
2663  // the class has been completely parsed.
2664  if (!DC->isRecord() &&
2665      RequireNonAbstractType(D.getIdentifierLoc(),
2666                             R->getAs<FunctionType>()->getResultType(),
2667                             diag::err_abstract_type_in_decl,
2668                             AbstractReturnType))
2669    D.setInvalidType();
2670
2671  // Do not allow returning a objc interface by-value.
2672  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2673    Diag(D.getIdentifierLoc(),
2674         diag::err_object_cannot_be_passed_returned_by_value) << 0
2675      << R->getAs<FunctionType>()->getResultType();
2676    D.setInvalidType();
2677  }
2678
2679  bool isVirtualOkay = false;
2680  FunctionDecl *NewFD;
2681
2682  if (isFriend) {
2683    // C++ [class.friend]p5
2684    //   A function can be defined in a friend declaration of a
2685    //   class . . . . Such a function is implicitly inline.
2686    isInline |= IsFunctionDefinition;
2687  }
2688
2689  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2690    // This is a C++ constructor declaration.
2691    assert(DC->isRecord() &&
2692           "Constructors can only be declared in a member context");
2693
2694    R = CheckConstructorDeclarator(D, R, SC);
2695
2696    // Create the new declaration
2697    NewFD = CXXConstructorDecl::Create(Context,
2698                                       cast<CXXRecordDecl>(DC),
2699                                       D.getIdentifierLoc(), Name, R, TInfo,
2700                                       isExplicit, isInline,
2701                                       /*isImplicitlyDeclared=*/false);
2702  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2703    // This is a C++ destructor declaration.
2704    if (DC->isRecord()) {
2705      R = CheckDestructorDeclarator(D, SC);
2706
2707      NewFD = CXXDestructorDecl::Create(Context,
2708                                        cast<CXXRecordDecl>(DC),
2709                                        D.getIdentifierLoc(), Name, R,
2710                                        isInline,
2711                                        /*isImplicitlyDeclared=*/false);
2712
2713      isVirtualOkay = true;
2714    } else {
2715      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2716
2717      // Create a FunctionDecl to satisfy the function definition parsing
2718      // code path.
2719      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2720                                   Name, R, TInfo, SC, isInline,
2721                                   /*hasPrototype=*/true);
2722      D.setInvalidType();
2723    }
2724  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2725    if (!DC->isRecord()) {
2726      Diag(D.getIdentifierLoc(),
2727           diag::err_conv_function_not_member);
2728      return 0;
2729    }
2730
2731    CheckConversionDeclarator(D, R, SC);
2732    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2733                                      D.getIdentifierLoc(), Name, R, TInfo,
2734                                      isInline, isExplicit);
2735
2736    isVirtualOkay = true;
2737  } else if (DC->isRecord()) {
2738    // If the of the function is the same as the name of the record, then this
2739    // must be an invalid constructor that has a return type.
2740    // (The parser checks for a return type and makes the declarator a
2741    // constructor if it has no return type).
2742    // must have an invalid constructor that has a return type
2743    if (Name.getAsIdentifierInfo() &&
2744        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2745      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2746        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2747        << SourceRange(D.getIdentifierLoc());
2748      return 0;
2749    }
2750
2751    bool isStatic = SC == FunctionDecl::Static;
2752
2753    // [class.free]p1:
2754    // Any allocation function for a class T is a static member
2755    // (even if not explicitly declared static).
2756    if (Name.getCXXOverloadedOperator() == OO_New ||
2757        Name.getCXXOverloadedOperator() == OO_Array_New)
2758      isStatic = true;
2759
2760    // [class.free]p6 Any deallocation function for a class X is a static member
2761    // (even if not explicitly declared static).
2762    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2763        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2764      isStatic = true;
2765
2766    // This is a C++ method declaration.
2767    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2768                                  D.getIdentifierLoc(), Name, R, TInfo,
2769                                  isStatic, isInline);
2770
2771    isVirtualOkay = !isStatic;
2772  } else {
2773    // Determine whether the function was written with a
2774    // prototype. This true when:
2775    //   - we're in C++ (where every function has a prototype),
2776    //   - there is a prototype in the declarator, or
2777    //   - the type R of the function is some kind of typedef or other reference
2778    //     to a type name (which eventually refers to a function type).
2779    bool HasPrototype =
2780       getLangOptions().CPlusPlus ||
2781       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2782       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2783
2784    NewFD = FunctionDecl::Create(Context, DC,
2785                                 D.getIdentifierLoc(),
2786                                 Name, R, TInfo, SC, isInline, HasPrototype);
2787  }
2788
2789  if (D.isInvalidType())
2790    NewFD->setInvalidDecl();
2791
2792  // Set the lexical context. If the declarator has a C++
2793  // scope specifier, or is the object of a friend declaration, the
2794  // lexical context will be different from the semantic context.
2795  NewFD->setLexicalDeclContext(CurContext);
2796
2797  // Match up the template parameter lists with the scope specifier, then
2798  // determine whether we have a template or a template specialization.
2799  FunctionTemplateDecl *FunctionTemplate = 0;
2800  bool isExplicitSpecialization = false;
2801  bool isFunctionTemplateSpecialization = false;
2802  if (TemplateParameterList *TemplateParams
2803        = MatchTemplateParametersToScopeSpecifier(
2804                                  D.getDeclSpec().getSourceRange().getBegin(),
2805                                  D.getCXXScopeSpec(),
2806                           (TemplateParameterList**)TemplateParamLists.get(),
2807                                                  TemplateParamLists.size(),
2808                                                  isExplicitSpecialization)) {
2809    if (TemplateParams->size() > 0) {
2810      // This is a function template
2811
2812      // Check that we can declare a template here.
2813      if (CheckTemplateDeclScope(S, TemplateParams))
2814        return 0;
2815
2816      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2817                                                      NewFD->getLocation(),
2818                                                      Name, TemplateParams,
2819                                                      NewFD);
2820      FunctionTemplate->setLexicalDeclContext(CurContext);
2821      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2822    } else {
2823      // This is a function template specialization.
2824      isFunctionTemplateSpecialization = true;
2825    }
2826
2827    // FIXME: Free this memory properly.
2828    TemplateParamLists.release();
2829  }
2830
2831  // C++ [dcl.fct.spec]p5:
2832  //   The virtual specifier shall only be used in declarations of
2833  //   nonstatic class member functions that appear within a
2834  //   member-specification of a class declaration; see 10.3.
2835  //
2836  if (isVirtual && !NewFD->isInvalidDecl()) {
2837    if (!isVirtualOkay) {
2838       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2839           diag::err_virtual_non_function);
2840    } else if (!CurContext->isRecord()) {
2841      // 'virtual' was specified outside of the class.
2842      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2843        << CodeModificationHint::CreateRemoval(
2844                                           D.getDeclSpec().getVirtualSpecLoc());
2845    } else {
2846      // Okay: Add virtual to the method.
2847      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2848      CurClass->setMethodAsVirtual(NewFD);
2849    }
2850  }
2851
2852  // C++ [dcl.fct.spec]p6:
2853  //  The explicit specifier shall be used only in the declaration of a
2854  //  constructor or conversion function within its class definition; see 12.3.1
2855  //  and 12.3.2.
2856  if (isExplicit && !NewFD->isInvalidDecl()) {
2857    if (!CurContext->isRecord()) {
2858      // 'explicit' was specified outside of the class.
2859      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2860           diag::err_explicit_out_of_class)
2861        << CodeModificationHint::CreateRemoval(
2862                                          D.getDeclSpec().getExplicitSpecLoc());
2863    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2864               !isa<CXXConversionDecl>(NewFD)) {
2865      // 'explicit' was specified on a function that wasn't a constructor
2866      // or conversion function.
2867      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2868           diag::err_explicit_non_ctor_or_conv_function)
2869        << CodeModificationHint::CreateRemoval(
2870                                          D.getDeclSpec().getExplicitSpecLoc());
2871    }
2872  }
2873
2874  // Filter out previous declarations that don't match the scope.
2875  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2876
2877  if (isFriend) {
2878    // DC is the namespace in which the function is being declared.
2879    assert((DC->isFileContext() || !Previous.empty()) &&
2880           "previously-undeclared friend function being created "
2881           "in a non-namespace context");
2882
2883    if (FunctionTemplate) {
2884      FunctionTemplate->setObjectOfFriendDecl(
2885                                   /* PreviouslyDeclared= */ !Previous.empty());
2886      FunctionTemplate->setAccess(AS_public);
2887    }
2888    else
2889      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2890
2891    NewFD->setAccess(AS_public);
2892  }
2893
2894  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2895      !CurContext->isRecord()) {
2896    // C++ [class.static]p1:
2897    //   A data or function member of a class may be declared static
2898    //   in a class definition, in which case it is a static member of
2899    //   the class.
2900
2901    // Complain about the 'static' specifier if it's on an out-of-line
2902    // member function definition.
2903    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2904         diag::err_static_out_of_line)
2905      << CodeModificationHint::CreateRemoval(
2906                                      D.getDeclSpec().getStorageClassSpecLoc());
2907  }
2908
2909  // Handle GNU asm-label extension (encoded as an attribute).
2910  if (Expr *E = (Expr*) D.getAsmLabel()) {
2911    // The parser guarantees this is a string.
2912    StringLiteral *SE = cast<StringLiteral>(E);
2913    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2914  }
2915
2916  // Copy the parameter declarations from the declarator D to the function
2917  // declaration NewFD, if they are available.  First scavenge them into Params.
2918  llvm::SmallVector<ParmVarDecl*, 16> Params;
2919  if (D.getNumTypeObjects() > 0) {
2920    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2921
2922    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2923    // function that takes no arguments, not a function that takes a
2924    // single void argument.
2925    // We let through "const void" here because Sema::GetTypeForDeclarator
2926    // already checks for that case.
2927    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2928        FTI.ArgInfo[0].Param &&
2929        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2930      // Empty arg list, don't push any params.
2931      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2932
2933      // In C++, the empty parameter-type-list must be spelled "void"; a
2934      // typedef of void is not permitted.
2935      if (getLangOptions().CPlusPlus &&
2936          Param->getType().getUnqualifiedType() != Context.VoidTy)
2937        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2938      // FIXME: Leaks decl?
2939    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2940      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2941        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2942        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2943        Param->setDeclContext(NewFD);
2944        Params.push_back(Param);
2945      }
2946    }
2947
2948  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2949    // When we're declaring a function with a typedef, typeof, etc as in the
2950    // following example, we'll need to synthesize (unnamed)
2951    // parameters for use in the declaration.
2952    //
2953    // @code
2954    // typedef void fn(int);
2955    // fn f;
2956    // @endcode
2957
2958    // Synthesize a parameter for each argument type.
2959    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2960         AE = FT->arg_type_end(); AI != AE; ++AI) {
2961      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
2962                                               SourceLocation(), 0,
2963                                               *AI, /*TInfo=*/0,
2964                                               VarDecl::None, 0);
2965      Param->setImplicit();
2966      Params.push_back(Param);
2967    }
2968  } else {
2969    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2970           "Should not need args for typedef of non-prototype fn");
2971  }
2972  // Finally, we know we have the right number of parameters, install them.
2973  NewFD->setParams(Params.data(), Params.size());
2974
2975  // If the declarator is a template-id, translate the parser's template
2976  // argument list into our AST format.
2977  bool HasExplicitTemplateArgs = false;
2978  TemplateArgumentListInfo TemplateArgs;
2979  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2980    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2981    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2982    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2983    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2984                                       TemplateId->getTemplateArgs(),
2985                                       TemplateId->NumArgs);
2986    translateTemplateArguments(TemplateArgsPtr,
2987                               TemplateArgs);
2988    TemplateArgsPtr.release();
2989
2990    HasExplicitTemplateArgs = true;
2991
2992    if (FunctionTemplate) {
2993      // FIXME: Diagnose function template with explicit template
2994      // arguments.
2995      HasExplicitTemplateArgs = false;
2996    } else if (!isFunctionTemplateSpecialization &&
2997               !D.getDeclSpec().isFriendSpecified()) {
2998      // We have encountered something that the user meant to be a
2999      // specialization (because it has explicitly-specified template
3000      // arguments) but that was not introduced with a "template<>" (or had
3001      // too few of them).
3002      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3003        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3004        << CodeModificationHint::CreateInsertion(
3005                                   D.getDeclSpec().getSourceRange().getBegin(),
3006                                                 "template<> ");
3007      isFunctionTemplateSpecialization = true;
3008    }
3009  }
3010
3011  if (isFunctionTemplateSpecialization) {
3012      if (CheckFunctionTemplateSpecialization(NewFD,
3013                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3014                                              Previous))
3015        NewFD->setInvalidDecl();
3016  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3017             CheckMemberSpecialization(NewFD, Previous))
3018    NewFD->setInvalidDecl();
3019
3020  // Perform semantic checking on the function declaration.
3021  bool OverloadableAttrRequired = false; // FIXME: HACK!
3022  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3023                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3024
3025  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3026          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3027         "previous declaration set still overloaded");
3028
3029  // If we have a function template, check the template parameter
3030  // list. This will check and merge default template arguments.
3031  if (FunctionTemplate) {
3032    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3033    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3034                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3035             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3036                                                : TPC_FunctionTemplate);
3037  }
3038
3039  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3040    // Fake up an access specifier if it's supposed to be a class member.
3041    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3042      NewFD->setAccess(AS_public);
3043
3044    // An out-of-line member function declaration must also be a
3045    // definition (C++ [dcl.meaning]p1).
3046    // Note that this is not the case for explicit specializations of
3047    // function templates or member functions of class templates, per
3048    // C++ [temp.expl.spec]p2.
3049    if (!IsFunctionDefinition && !isFriend &&
3050        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3051      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3052        << D.getCXXScopeSpec().getRange();
3053      NewFD->setInvalidDecl();
3054    } else if (!Redeclaration &&
3055               !(isFriend && CurContext->isDependentContext())) {
3056      // The user tried to provide an out-of-line definition for a
3057      // function that is a member of a class or namespace, but there
3058      // was no such member function declared (C++ [class.mfct]p2,
3059      // C++ [namespace.memdef]p2). For example:
3060      //
3061      // class X {
3062      //   void f() const;
3063      // };
3064      //
3065      // void X::f() { } // ill-formed
3066      //
3067      // Complain about this problem, and attempt to suggest close
3068      // matches (e.g., those that differ only in cv-qualifiers and
3069      // whether the parameter types are references).
3070      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3071        << Name << DC << D.getCXXScopeSpec().getRange();
3072      NewFD->setInvalidDecl();
3073
3074      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3075                        ForRedeclaration);
3076      LookupQualifiedName(Prev, DC);
3077      assert(!Prev.isAmbiguous() &&
3078             "Cannot have an ambiguity in previous-declaration lookup");
3079      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3080           Func != FuncEnd; ++Func) {
3081        if (isa<FunctionDecl>(*Func) &&
3082            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3083          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3084      }
3085    }
3086  }
3087
3088  // Handle attributes. We need to have merged decls when handling attributes
3089  // (for example to check for conflicts, etc).
3090  // FIXME: This needs to happen before we merge declarations. Then,
3091  // let attribute merging cope with attribute conflicts.
3092  ProcessDeclAttributes(S, NewFD, D);
3093
3094  // attributes declared post-definition are currently ignored
3095  if (Redeclaration && Previous.isSingleResult()) {
3096    const FunctionDecl *Def;
3097    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3098    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3099      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3100      Diag(Def->getLocation(), diag::note_previous_definition);
3101    }
3102  }
3103
3104  AddKnownFunctionAttributes(NewFD);
3105
3106  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3107    // If a function name is overloadable in C, then every function
3108    // with that name must be marked "overloadable".
3109    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3110      << Redeclaration << NewFD;
3111    if (!Previous.empty())
3112      Diag(Previous.getRepresentativeDecl()->getLocation(),
3113           diag::note_attribute_overloadable_prev_overload);
3114    NewFD->addAttr(::new (Context) OverloadableAttr());
3115  }
3116
3117  // If this is a locally-scoped extern C function, update the
3118  // map of such names.
3119  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3120      && !NewFD->isInvalidDecl())
3121    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3122
3123  // Set this FunctionDecl's range up to the right paren.
3124  NewFD->setLocEnd(D.getSourceRange().getEnd());
3125
3126  if (FunctionTemplate && NewFD->isInvalidDecl())
3127    FunctionTemplate->setInvalidDecl();
3128
3129  if (FunctionTemplate)
3130    return FunctionTemplate;
3131
3132
3133  // Keep track of static, non-inlined function definitions that
3134  // have not been used. We will warn later.
3135  // FIXME: Also include static functions declared but not defined.
3136  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3137      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3138      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>())
3139    UnusedStaticFuncs.push_back(NewFD);
3140
3141  return NewFD;
3142}
3143
3144/// \brief Perform semantic checking of a new function declaration.
3145///
3146/// Performs semantic analysis of the new function declaration
3147/// NewFD. This routine performs all semantic checking that does not
3148/// require the actual declarator involved in the declaration, and is
3149/// used both for the declaration of functions as they are parsed
3150/// (called via ActOnDeclarator) and for the declaration of functions
3151/// that have been instantiated via C++ template instantiation (called
3152/// via InstantiateDecl).
3153///
3154/// \param IsExplicitSpecialiation whether this new function declaration is
3155/// an explicit specialization of the previous declaration.
3156///
3157/// This sets NewFD->isInvalidDecl() to true if there was an error.
3158void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3159                                    LookupResult &Previous,
3160                                    bool IsExplicitSpecialization,
3161                                    bool &Redeclaration,
3162                                    bool &OverloadableAttrRequired) {
3163  // If NewFD is already known erroneous, don't do any of this checking.
3164  if (NewFD->isInvalidDecl())
3165    return;
3166
3167  if (NewFD->getResultType()->isVariablyModifiedType()) {
3168    // Functions returning a variably modified type violate C99 6.7.5.2p2
3169    // because all functions have linkage.
3170    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3171    return NewFD->setInvalidDecl();
3172  }
3173
3174  if (NewFD->isMain())
3175    CheckMain(NewFD);
3176
3177  // Check for a previous declaration of this name.
3178  if (Previous.empty() && NewFD->isExternC()) {
3179    // Since we did not find anything by this name and we're declaring
3180    // an extern "C" function, look for a non-visible extern "C"
3181    // declaration with the same name.
3182    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3183      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3184    if (Pos != LocallyScopedExternalDecls.end())
3185      Previous.addDecl(Pos->second);
3186  }
3187
3188  // Merge or overload the declaration with an existing declaration of
3189  // the same name, if appropriate.
3190  if (!Previous.empty()) {
3191    // Determine whether NewFD is an overload of PrevDecl or
3192    // a declaration that requires merging. If it's an overload,
3193    // there's no more work to do here; we'll just add the new
3194    // function to the scope.
3195
3196    NamedDecl *OldDecl = 0;
3197    if (!AllowOverloadingOfFunction(Previous, Context)) {
3198      Redeclaration = true;
3199      OldDecl = Previous.getFoundDecl();
3200    } else {
3201      if (!getLangOptions().CPlusPlus) {
3202        OverloadableAttrRequired = true;
3203
3204        // Functions marked "overloadable" must have a prototype (that
3205        // we can't get through declaration merging).
3206        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3207          Diag(NewFD->getLocation(),
3208               diag::err_attribute_overloadable_no_prototype)
3209            << NewFD;
3210          Redeclaration = true;
3211
3212          // Turn this into a variadic function with no parameters.
3213          QualType R = Context.getFunctionType(
3214                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3215                     0, 0, true, 0);
3216          NewFD->setType(R);
3217          return NewFD->setInvalidDecl();
3218        }
3219      }
3220
3221      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3222      case Ovl_Match:
3223        Redeclaration = true;
3224        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3225          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3226          Redeclaration = false;
3227        }
3228        break;
3229
3230      case Ovl_NonFunction:
3231        Redeclaration = true;
3232        break;
3233
3234      case Ovl_Overload:
3235        Redeclaration = false;
3236        break;
3237      }
3238    }
3239
3240    if (Redeclaration) {
3241      // NewFD and OldDecl represent declarations that need to be
3242      // merged.
3243      if (MergeFunctionDecl(NewFD, OldDecl))
3244        return NewFD->setInvalidDecl();
3245
3246      Previous.clear();
3247      Previous.addDecl(OldDecl);
3248
3249      if (FunctionTemplateDecl *OldTemplateDecl
3250                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3251        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3252        FunctionTemplateDecl *NewTemplateDecl
3253          = NewFD->getDescribedFunctionTemplate();
3254        assert(NewTemplateDecl && "Template/non-template mismatch");
3255        if (CXXMethodDecl *Method
3256              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3257          Method->setAccess(OldTemplateDecl->getAccess());
3258          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3259        }
3260
3261        // If this is an explicit specialization of a member that is a function
3262        // template, mark it as a member specialization.
3263        if (IsExplicitSpecialization &&
3264            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3265          NewTemplateDecl->setMemberSpecialization();
3266          assert(OldTemplateDecl->isMemberSpecialization());
3267        }
3268      } else {
3269        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3270          NewFD->setAccess(OldDecl->getAccess());
3271        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3272      }
3273    }
3274  }
3275
3276  // Semantic checking for this function declaration (in isolation).
3277  if (getLangOptions().CPlusPlus) {
3278    // C++-specific checks.
3279    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3280      CheckConstructor(Constructor);
3281    } else if (CXXDestructorDecl *Destructor =
3282                dyn_cast<CXXDestructorDecl>(NewFD)) {
3283      CXXRecordDecl *Record = Destructor->getParent();
3284      QualType ClassType = Context.getTypeDeclType(Record);
3285
3286      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3287      // type is dependent? Both gcc and edg can handle that.
3288      if (!ClassType->isDependentType()) {
3289        DeclarationName Name
3290          = Context.DeclarationNames.getCXXDestructorName(
3291                                        Context.getCanonicalType(ClassType));
3292        if (NewFD->getDeclName() != Name) {
3293          Diag(NewFD->getLocation(), diag::err_destructor_name);
3294          return NewFD->setInvalidDecl();
3295        }
3296      }
3297
3298      Record->setUserDeclaredDestructor(true);
3299      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3300      // user-defined destructor.
3301      Record->setPOD(false);
3302
3303      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3304      // declared destructor.
3305      // FIXME: C++0x: don't do this for "= default" destructors
3306      Record->setHasTrivialDestructor(false);
3307    } else if (CXXConversionDecl *Conversion
3308               = dyn_cast<CXXConversionDecl>(NewFD)) {
3309      ActOnConversionDeclarator(Conversion);
3310    }
3311
3312    // Find any virtual functions that this function overrides.
3313    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3314      if (!Method->isFunctionTemplateSpecialization() &&
3315          !Method->getDescribedFunctionTemplate())
3316        AddOverriddenMethods(Method->getParent(), Method);
3317    }
3318
3319    // Additional checks for the destructor; make sure we do this after we
3320    // figure out whether the destructor is virtual.
3321    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3322      if (!Destructor->getParent()->isDependentType())
3323        CheckDestructor(Destructor);
3324
3325    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3326    if (NewFD->isOverloadedOperator() &&
3327        CheckOverloadedOperatorDeclaration(NewFD))
3328      return NewFD->setInvalidDecl();
3329
3330    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3331    if (NewFD->getLiteralIdentifier() &&
3332        CheckLiteralOperatorDeclaration(NewFD))
3333      return NewFD->setInvalidDecl();
3334
3335    // In C++, check default arguments now that we have merged decls. Unless
3336    // the lexical context is the class, because in this case this is done
3337    // during delayed parsing anyway.
3338    if (!CurContext->isRecord())
3339      CheckCXXDefaultArguments(NewFD);
3340  }
3341}
3342
3343void Sema::CheckMain(FunctionDecl* FD) {
3344  // C++ [basic.start.main]p3:  A program that declares main to be inline
3345  //   or static is ill-formed.
3346  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3347  //   shall not appear in a declaration of main.
3348  // static main is not an error under C99, but we should warn about it.
3349  bool isInline = FD->isInlineSpecified();
3350  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3351  if (isInline || isStatic) {
3352    unsigned diagID = diag::warn_unusual_main_decl;
3353    if (isInline || getLangOptions().CPlusPlus)
3354      diagID = diag::err_unusual_main_decl;
3355
3356    int which = isStatic + (isInline << 1) - 1;
3357    Diag(FD->getLocation(), diagID) << which;
3358  }
3359
3360  QualType T = FD->getType();
3361  assert(T->isFunctionType() && "function decl is not of function type");
3362  const FunctionType* FT = T->getAs<FunctionType>();
3363
3364  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3365    // TODO: add a replacement fixit to turn the return type into 'int'.
3366    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3367    FD->setInvalidDecl(true);
3368  }
3369
3370  // Treat protoless main() as nullary.
3371  if (isa<FunctionNoProtoType>(FT)) return;
3372
3373  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3374  unsigned nparams = FTP->getNumArgs();
3375  assert(FD->getNumParams() == nparams);
3376
3377  bool HasExtraParameters = (nparams > 3);
3378
3379  // Darwin passes an undocumented fourth argument of type char**.  If
3380  // other platforms start sprouting these, the logic below will start
3381  // getting shifty.
3382  if (nparams == 4 &&
3383      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3384    HasExtraParameters = false;
3385
3386  if (HasExtraParameters) {
3387    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3388    FD->setInvalidDecl(true);
3389    nparams = 3;
3390  }
3391
3392  // FIXME: a lot of the following diagnostics would be improved
3393  // if we had some location information about types.
3394
3395  QualType CharPP =
3396    Context.getPointerType(Context.getPointerType(Context.CharTy));
3397  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3398
3399  for (unsigned i = 0; i < nparams; ++i) {
3400    QualType AT = FTP->getArgType(i);
3401
3402    bool mismatch = true;
3403
3404    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3405      mismatch = false;
3406    else if (Expected[i] == CharPP) {
3407      // As an extension, the following forms are okay:
3408      //   char const **
3409      //   char const * const *
3410      //   char * const *
3411
3412      QualifierCollector qs;
3413      const PointerType* PT;
3414      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3415          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3416          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3417        qs.removeConst();
3418        mismatch = !qs.empty();
3419      }
3420    }
3421
3422    if (mismatch) {
3423      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3424      // TODO: suggest replacing given type with expected type
3425      FD->setInvalidDecl(true);
3426    }
3427  }
3428
3429  if (nparams == 1 && !FD->isInvalidDecl()) {
3430    Diag(FD->getLocation(), diag::warn_main_one_arg);
3431  }
3432}
3433
3434bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3435  // FIXME: Need strict checking.  In C89, we need to check for
3436  // any assignment, increment, decrement, function-calls, or
3437  // commas outside of a sizeof.  In C99, it's the same list,
3438  // except that the aforementioned are allowed in unevaluated
3439  // expressions.  Everything else falls under the
3440  // "may accept other forms of constant expressions" exception.
3441  // (We never end up here for C++, so the constant expression
3442  // rules there don't matter.)
3443  if (Init->isConstantInitializer(Context))
3444    return false;
3445  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3446    << Init->getSourceRange();
3447  return true;
3448}
3449
3450void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3451  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3452}
3453
3454/// AddInitializerToDecl - Adds the initializer Init to the
3455/// declaration dcl. If DirectInit is true, this is C++ direct
3456/// initialization rather than copy initialization.
3457void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3458  Decl *RealDecl = dcl.getAs<Decl>();
3459  // If there is no declaration, there was an error parsing it.  Just ignore
3460  // the initializer.
3461  if (RealDecl == 0)
3462    return;
3463
3464  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3465    // With declarators parsed the way they are, the parser cannot
3466    // distinguish between a normal initializer and a pure-specifier.
3467    // Thus this grotesque test.
3468    IntegerLiteral *IL;
3469    Expr *Init = static_cast<Expr *>(init.get());
3470    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3471        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3472      CheckPureMethod(Method, Init->getSourceRange());
3473    else {
3474      Diag(Method->getLocation(), diag::err_member_function_initialization)
3475        << Method->getDeclName() << Init->getSourceRange();
3476      Method->setInvalidDecl();
3477    }
3478    return;
3479  }
3480
3481  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3482  if (!VDecl) {
3483    if (getLangOptions().CPlusPlus &&
3484        RealDecl->getLexicalDeclContext()->isRecord() &&
3485        isa<NamedDecl>(RealDecl))
3486      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3487        << cast<NamedDecl>(RealDecl)->getDeclName();
3488    else
3489      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3490    RealDecl->setInvalidDecl();
3491    return;
3492  }
3493
3494  // A definition must end up with a complete type, which means it must be
3495  // complete with the restriction that an array type might be completed by the
3496  // initializer; note that later code assumes this restriction.
3497  QualType BaseDeclType = VDecl->getType();
3498  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3499    BaseDeclType = Array->getElementType();
3500  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3501                          diag::err_typecheck_decl_incomplete_type)) {
3502    RealDecl->setInvalidDecl();
3503    return;
3504  }
3505
3506  // The variable can not have an abstract class type.
3507  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3508                             diag::err_abstract_type_in_decl,
3509                             AbstractVariableType))
3510    VDecl->setInvalidDecl();
3511
3512  const VarDecl *Def;
3513  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3514    Diag(VDecl->getLocation(), diag::err_redefinition)
3515      << VDecl->getDeclName();
3516    Diag(Def->getLocation(), diag::note_previous_definition);
3517    VDecl->setInvalidDecl();
3518    return;
3519  }
3520
3521  // Take ownership of the expression, now that we're sure we have somewhere
3522  // to put it.
3523  Expr *Init = init.takeAs<Expr>();
3524  assert(Init && "missing initializer");
3525
3526  // Capture the variable that is being initialized and the style of
3527  // initialization.
3528  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3529
3530  // FIXME: Poor source location information.
3531  InitializationKind Kind
3532    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3533                                                   Init->getLocStart(),
3534                                                   Init->getLocEnd())
3535                : InitializationKind::CreateCopy(VDecl->getLocation(),
3536                                                 Init->getLocStart());
3537
3538  // Get the decls type and save a reference for later, since
3539  // CheckInitializerTypes may change it.
3540  QualType DclT = VDecl->getType(), SavT = DclT;
3541  if (VDecl->isBlockVarDecl()) {
3542    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3543      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3544      VDecl->setInvalidDecl();
3545    } else if (!VDecl->isInvalidDecl()) {
3546      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3547      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3548                                          MultiExprArg(*this, (void**)&Init, 1),
3549                                                &DclT);
3550      if (Result.isInvalid()) {
3551        VDecl->setInvalidDecl();
3552        return;
3553      }
3554
3555      Init = Result.takeAs<Expr>();
3556
3557      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3558      // Don't check invalid declarations to avoid emitting useless diagnostics.
3559      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3560        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3561          CheckForConstantInitializer(Init, DclT);
3562      }
3563    }
3564  } else if (VDecl->isStaticDataMember() &&
3565             VDecl->getLexicalDeclContext()->isRecord()) {
3566    // This is an in-class initialization for a static data member, e.g.,
3567    //
3568    // struct S {
3569    //   static const int value = 17;
3570    // };
3571
3572    // Attach the initializer
3573    VDecl->setInit(Init);
3574
3575    // C++ [class.mem]p4:
3576    //   A member-declarator can contain a constant-initializer only
3577    //   if it declares a static member (9.4) of const integral or
3578    //   const enumeration type, see 9.4.2.
3579    QualType T = VDecl->getType();
3580    if (!T->isDependentType() &&
3581        (!Context.getCanonicalType(T).isConstQualified() ||
3582         !T->isIntegralType())) {
3583      Diag(VDecl->getLocation(), diag::err_member_initialization)
3584        << VDecl->getDeclName() << Init->getSourceRange();
3585      VDecl->setInvalidDecl();
3586    } else {
3587      // C++ [class.static.data]p4:
3588      //   If a static data member is of const integral or const
3589      //   enumeration type, its declaration in the class definition
3590      //   can specify a constant-initializer which shall be an
3591      //   integral constant expression (5.19).
3592      if (!Init->isTypeDependent() &&
3593          !Init->getType()->isIntegralType()) {
3594        // We have a non-dependent, non-integral or enumeration type.
3595        Diag(Init->getSourceRange().getBegin(),
3596             diag::err_in_class_initializer_non_integral_type)
3597          << Init->getType() << Init->getSourceRange();
3598        VDecl->setInvalidDecl();
3599      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3600        // Check whether the expression is a constant expression.
3601        llvm::APSInt Value;
3602        SourceLocation Loc;
3603        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3604          Diag(Loc, diag::err_in_class_initializer_non_constant)
3605            << Init->getSourceRange();
3606          VDecl->setInvalidDecl();
3607        } else if (!VDecl->getType()->isDependentType())
3608          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3609      }
3610    }
3611  } else if (VDecl->isFileVarDecl()) {
3612    if (VDecl->getStorageClass() == VarDecl::Extern)
3613      Diag(VDecl->getLocation(), diag::warn_extern_init);
3614    if (!VDecl->isInvalidDecl()) {
3615      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3616      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3617                                          MultiExprArg(*this, (void**)&Init, 1),
3618                                                &DclT);
3619      if (Result.isInvalid()) {
3620        VDecl->setInvalidDecl();
3621        return;
3622      }
3623
3624      Init = Result.takeAs<Expr>();
3625    }
3626
3627    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3628    // Don't check invalid declarations to avoid emitting useless diagnostics.
3629    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3630      // C99 6.7.8p4. All file scoped initializers need to be constant.
3631      CheckForConstantInitializer(Init, DclT);
3632    }
3633  }
3634  // If the type changed, it means we had an incomplete type that was
3635  // completed by the initializer. For example:
3636  //   int ary[] = { 1, 3, 5 };
3637  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3638  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3639    VDecl->setType(DclT);
3640    Init->setType(DclT);
3641  }
3642
3643  Init = MaybeCreateCXXExprWithTemporaries(Init);
3644  // Attach the initializer to the decl.
3645  VDecl->setInit(Init);
3646
3647  if (getLangOptions().CPlusPlus) {
3648    // Make sure we mark the destructor as used if necessary.
3649    QualType InitType = VDecl->getType();
3650    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3651      InitType = Context.getBaseElementType(Array);
3652    if (const RecordType *Record = InitType->getAs<RecordType>())
3653      FinalizeVarWithDestructor(VDecl, Record);
3654  }
3655
3656  return;
3657}
3658
3659void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3660                                  bool TypeContainsUndeducedAuto) {
3661  Decl *RealDecl = dcl.getAs<Decl>();
3662
3663  // If there is no declaration, there was an error parsing it. Just ignore it.
3664  if (RealDecl == 0)
3665    return;
3666
3667  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3668    QualType Type = Var->getType();
3669
3670    // C++0x [dcl.spec.auto]p3
3671    if (TypeContainsUndeducedAuto) {
3672      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3673        << Var->getDeclName() << Type;
3674      Var->setInvalidDecl();
3675      return;
3676    }
3677
3678    switch (Var->isThisDeclarationADefinition()) {
3679    case VarDecl::Definition:
3680      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3681        break;
3682
3683      // We have an out-of-line definition of a static data member
3684      // that has an in-class initializer, so we type-check this like
3685      // a declaration.
3686      //
3687      // Fall through
3688
3689    case VarDecl::DeclarationOnly:
3690      // It's only a declaration.
3691
3692      // Block scope. C99 6.7p7: If an identifier for an object is
3693      // declared with no linkage (C99 6.2.2p6), the type for the
3694      // object shall be complete.
3695      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3696          !Var->getLinkage() && !Var->isInvalidDecl() &&
3697          RequireCompleteType(Var->getLocation(), Type,
3698                              diag::err_typecheck_decl_incomplete_type))
3699        Var->setInvalidDecl();
3700
3701      // Make sure that the type is not abstract.
3702      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3703          RequireNonAbstractType(Var->getLocation(), Type,
3704                                 diag::err_abstract_type_in_decl,
3705                                 AbstractVariableType))
3706        Var->setInvalidDecl();
3707      return;
3708
3709    case VarDecl::TentativeDefinition:
3710      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3711      // object that has file scope without an initializer, and without a
3712      // storage-class specifier or with the storage-class specifier "static",
3713      // constitutes a tentative definition. Note: A tentative definition with
3714      // external linkage is valid (C99 6.2.2p5).
3715      if (!Var->isInvalidDecl()) {
3716        if (const IncompleteArrayType *ArrayT
3717                                    = Context.getAsIncompleteArrayType(Type)) {
3718          if (RequireCompleteType(Var->getLocation(),
3719                                  ArrayT->getElementType(),
3720                                  diag::err_illegal_decl_array_incomplete_type))
3721            Var->setInvalidDecl();
3722        } else if (Var->getStorageClass() == VarDecl::Static) {
3723          // C99 6.9.2p3: If the declaration of an identifier for an object is
3724          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3725          // declared type shall not be an incomplete type.
3726          // NOTE: code such as the following
3727          //     static struct s;
3728          //     struct s { int a; };
3729          // is accepted by gcc. Hence here we issue a warning instead of
3730          // an error and we do not invalidate the static declaration.
3731          // NOTE: to avoid multiple warnings, only check the first declaration.
3732          if (Var->getPreviousDeclaration() == 0)
3733            RequireCompleteType(Var->getLocation(), Type,
3734                                diag::ext_typecheck_decl_incomplete_type);
3735        }
3736      }
3737
3738      // Record the tentative definition; we're done.
3739      if (!Var->isInvalidDecl())
3740        TentativeDefinitions.push_back(Var);
3741      return;
3742    }
3743
3744    // Provide a specific diagnostic for uninitialized variable
3745    // definitions with incomplete array type.
3746    if (Type->isIncompleteArrayType()) {
3747      Diag(Var->getLocation(),
3748           diag::err_typecheck_incomplete_array_needs_initializer);
3749      Var->setInvalidDecl();
3750      return;
3751    }
3752
3753   // Provide a specific diagnostic for uninitialized variable
3754   // definitions with reference type.
3755   if (Type->isReferenceType()) {
3756     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3757       << Var->getDeclName()
3758       << SourceRange(Var->getLocation(), Var->getLocation());
3759     Var->setInvalidDecl();
3760     return;
3761   }
3762
3763    // Do not attempt to type-check the default initializer for a
3764    // variable with dependent type.
3765    if (Type->isDependentType())
3766      return;
3767
3768    if (Var->isInvalidDecl())
3769      return;
3770
3771    if (RequireCompleteType(Var->getLocation(),
3772                            Context.getBaseElementType(Type),
3773                            diag::err_typecheck_decl_incomplete_type)) {
3774      Var->setInvalidDecl();
3775      return;
3776    }
3777
3778    // The variable can not have an abstract class type.
3779    if (RequireNonAbstractType(Var->getLocation(), Type,
3780                               diag::err_abstract_type_in_decl,
3781                               AbstractVariableType)) {
3782      Var->setInvalidDecl();
3783      return;
3784    }
3785
3786    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
3787    InitializationKind Kind
3788      = InitializationKind::CreateDefault(Var->getLocation());
3789
3790    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3791    OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3792                                            MultiExprArg(*this, 0, 0));
3793    if (Init.isInvalid())
3794      Var->setInvalidDecl();
3795    else {
3796      if (Init.get())
3797        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3798
3799      if (getLangOptions().CPlusPlus)
3800        if (const RecordType *Record
3801                        = Context.getBaseElementType(Type)->getAs<RecordType>())
3802          FinalizeVarWithDestructor(Var, Record);
3803    }
3804  }
3805}
3806
3807Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3808                                                   DeclPtrTy *Group,
3809                                                   unsigned NumDecls) {
3810  llvm::SmallVector<Decl*, 8> Decls;
3811
3812  if (DS.isTypeSpecOwned())
3813    Decls.push_back((Decl*)DS.getTypeRep());
3814
3815  for (unsigned i = 0; i != NumDecls; ++i)
3816    if (Decl *D = Group[i].getAs<Decl>())
3817      Decls.push_back(D);
3818
3819  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3820                                                   Decls.data(), Decls.size()));
3821}
3822
3823
3824/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3825/// to introduce parameters into function prototype scope.
3826Sema::DeclPtrTy
3827Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3828  const DeclSpec &DS = D.getDeclSpec();
3829
3830  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3831  VarDecl::StorageClass StorageClass = VarDecl::None;
3832  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3833    StorageClass = VarDecl::Register;
3834  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3835    Diag(DS.getStorageClassSpecLoc(),
3836         diag::err_invalid_storage_class_in_func_decl);
3837    D.getMutableDeclSpec().ClearStorageClassSpecs();
3838  }
3839
3840  if (D.getDeclSpec().isThreadSpecified())
3841    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3842
3843  DiagnoseFunctionSpecifiers(D);
3844
3845  // Check that there are no default arguments inside the type of this
3846  // parameter (C++ only).
3847  if (getLangOptions().CPlusPlus)
3848    CheckExtraCXXDefaultArguments(D);
3849
3850  TypeSourceInfo *TInfo = 0;
3851  TagDecl *OwnedDecl = 0;
3852  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3853
3854  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3855    // C++ [dcl.fct]p6:
3856    //   Types shall not be defined in return or parameter types.
3857    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3858      << Context.getTypeDeclType(OwnedDecl);
3859  }
3860
3861  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3862  // Can this happen for params?  We already checked that they don't conflict
3863  // among each other.  Here they can only shadow globals, which is ok.
3864  IdentifierInfo *II = D.getIdentifier();
3865  if (II) {
3866    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3867      if (PrevDecl->isTemplateParameter()) {
3868        // Maybe we will complain about the shadowed template parameter.
3869        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3870        // Just pretend that we didn't see the previous declaration.
3871        PrevDecl = 0;
3872      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3873        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3874
3875        // Recover by removing the name
3876        II = 0;
3877        D.SetIdentifier(0, D.getIdentifierLoc());
3878        D.setInvalidType(true);
3879      }
3880    }
3881  }
3882
3883  // Parameters can not be abstract class types.
3884  // For record types, this is done by the AbstractClassUsageDiagnoser once
3885  // the class has been completely parsed.
3886  if (!CurContext->isRecord() &&
3887      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3888                             diag::err_abstract_type_in_decl,
3889                             AbstractParamType))
3890    D.setInvalidType(true);
3891
3892  QualType T = adjustParameterType(parmDeclType);
3893
3894  // Temporarily put parameter variables in the translation unit, not
3895  // the enclosing context.  This prevents them from accidentally
3896  // looking like class members in C++.
3897  DeclContext *DC = Context.getTranslationUnitDecl();
3898
3899  ParmVarDecl *New
3900    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
3901                          T, TInfo, StorageClass, 0);
3902
3903  if (D.isInvalidType())
3904    New->setInvalidDecl();
3905
3906  // Parameter declarators cannot be interface types. All ObjC objects are
3907  // passed by reference.
3908  if (T->isObjCInterfaceType()) {
3909    Diag(D.getIdentifierLoc(),
3910         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3911    New->setInvalidDecl();
3912  }
3913
3914  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3915  if (D.getCXXScopeSpec().isSet()) {
3916    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3917      << D.getCXXScopeSpec().getRange();
3918    New->setInvalidDecl();
3919  }
3920
3921  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3922  // duration shall not be qualified by an address-space qualifier."
3923  // Since all parameters have automatic store duration, they can not have
3924  // an address space.
3925  if (T.getAddressSpace() != 0) {
3926    Diag(D.getIdentifierLoc(),
3927         diag::err_arg_with_address_space);
3928    New->setInvalidDecl();
3929  }
3930
3931
3932  // Add the parameter declaration into this scope.
3933  S->AddDecl(DeclPtrTy::make(New));
3934  if (II)
3935    IdResolver.AddDecl(New);
3936
3937  ProcessDeclAttributes(S, New, D);
3938
3939  if (New->hasAttr<BlocksAttr>()) {
3940    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3941  }
3942  return DeclPtrTy::make(New);
3943}
3944
3945void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
3946  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
3947  Param->setDeclContext(CurContext);
3948}
3949
3950void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3951                                           SourceLocation LocAfterDecls) {
3952  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3953         "Not a function declarator!");
3954  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3955
3956  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3957  // for a K&R function.
3958  if (!FTI.hasPrototype) {
3959    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3960      --i;
3961      if (FTI.ArgInfo[i].Param == 0) {
3962        llvm::SmallString<256> Code;
3963        llvm::raw_svector_ostream(Code) << "  int "
3964                                        << FTI.ArgInfo[i].Ident->getName()
3965                                        << ";\n";
3966        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3967          << FTI.ArgInfo[i].Ident
3968          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3969
3970        // Implicitly declare the argument as type 'int' for lack of a better
3971        // type.
3972        DeclSpec DS;
3973        const char* PrevSpec; // unused
3974        unsigned DiagID; // unused
3975        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3976                           PrevSpec, DiagID);
3977        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3978        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3979        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3980      }
3981    }
3982  }
3983}
3984
3985Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3986                                              Declarator &D) {
3987  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3988  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3989         "Not a function declarator!");
3990  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3991
3992  if (FTI.hasPrototype) {
3993    // FIXME: Diagnose arguments without names in C.
3994  }
3995
3996  Scope *ParentScope = FnBodyScope->getParent();
3997
3998  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3999                                  MultiTemplateParamsArg(*this),
4000                                  /*IsFunctionDefinition=*/true);
4001  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4002}
4003
4004static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4005  // Don't warn about invalid declarations.
4006  if (FD->isInvalidDecl())
4007    return false;
4008
4009  // Or declarations that aren't global.
4010  if (!FD->isGlobal())
4011    return false;
4012
4013  // Don't warn about C++ member functions.
4014  if (isa<CXXMethodDecl>(FD))
4015    return false;
4016
4017  // Don't warn about 'main'.
4018  if (FD->isMain())
4019    return false;
4020
4021  // Don't warn about inline functions.
4022  if (FD->isInlineSpecified())
4023    return false;
4024
4025  // Don't warn about function templates.
4026  if (FD->getDescribedFunctionTemplate())
4027    return false;
4028
4029  // Don't warn about function template specializations.
4030  if (FD->isFunctionTemplateSpecialization())
4031    return false;
4032
4033  bool MissingPrototype = true;
4034  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4035       Prev; Prev = Prev->getPreviousDeclaration()) {
4036    // Ignore any declarations that occur in function or method
4037    // scope, because they aren't visible from the header.
4038    if (Prev->getDeclContext()->isFunctionOrMethod())
4039      continue;
4040
4041    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4042    break;
4043  }
4044
4045  return MissingPrototype;
4046}
4047
4048Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4049  // Clear the last template instantiation error context.
4050  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4051
4052  if (!D)
4053    return D;
4054  FunctionDecl *FD = 0;
4055
4056  if (FunctionTemplateDecl *FunTmpl
4057        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4058    FD = FunTmpl->getTemplatedDecl();
4059  else
4060    FD = cast<FunctionDecl>(D.getAs<Decl>());
4061
4062  CurFunctionNeedsScopeChecking = false;
4063
4064  // See if this is a redefinition.
4065  const FunctionDecl *Definition;
4066  if (FD->getBody(Definition)) {
4067    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4068    Diag(Definition->getLocation(), diag::note_previous_definition);
4069  }
4070
4071  // Builtin functions cannot be defined.
4072  if (unsigned BuiltinID = FD->getBuiltinID()) {
4073    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4074      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4075      FD->setInvalidDecl();
4076    }
4077  }
4078
4079  // The return type of a function definition must be complete
4080  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4081  QualType ResultType = FD->getResultType();
4082  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4083      !FD->isInvalidDecl() &&
4084      RequireCompleteType(FD->getLocation(), ResultType,
4085                          diag::err_func_def_incomplete_result))
4086    FD->setInvalidDecl();
4087
4088  // GNU warning -Wmissing-prototypes:
4089  //   Warn if a global function is defined without a previous
4090  //   prototype declaration. This warning is issued even if the
4091  //   definition itself provides a prototype. The aim is to detect
4092  //   global functions that fail to be declared in header files.
4093  if (ShouldWarnAboutMissingPrototype(FD))
4094    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4095
4096  if (FnBodyScope)
4097    PushDeclContext(FnBodyScope, FD);
4098
4099  // Check the validity of our function parameters
4100  CheckParmsForFunctionDef(FD);
4101
4102  // Introduce our parameters into the function scope
4103  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4104    ParmVarDecl *Param = FD->getParamDecl(p);
4105    Param->setOwningFunction(FD);
4106
4107    // If this has an identifier, add it to the scope stack.
4108    if (Param->getIdentifier() && FnBodyScope)
4109      PushOnScopeChains(Param, FnBodyScope);
4110  }
4111
4112  // Checking attributes of current function definition
4113  // dllimport attribute.
4114  if (FD->getAttr<DLLImportAttr>() &&
4115      (!FD->getAttr<DLLExportAttr>())) {
4116    // dllimport attribute cannot be applied to definition.
4117    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4118      Diag(FD->getLocation(),
4119           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4120        << "dllimport";
4121      FD->setInvalidDecl();
4122      return DeclPtrTy::make(FD);
4123    } else {
4124      // If a symbol previously declared dllimport is later defined, the
4125      // attribute is ignored in subsequent references, and a warning is
4126      // emitted.
4127      Diag(FD->getLocation(),
4128           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4129        << FD->getNameAsCString() << "dllimport";
4130    }
4131  }
4132  return DeclPtrTy::make(FD);
4133}
4134
4135Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4136  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4137}
4138
4139Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4140                                              bool IsInstantiation) {
4141  Decl *dcl = D.getAs<Decl>();
4142  Stmt *Body = BodyArg.takeAs<Stmt>();
4143
4144  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
4145  // explosion for destrutors that can result and the compile time hit.
4146  AnalysisContext AC(dcl, false);
4147  FunctionDecl *FD = 0;
4148  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4149  if (FunTmpl)
4150    FD = FunTmpl->getTemplatedDecl();
4151  else
4152    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4153
4154  if (FD) {
4155    FD->setBody(Body);
4156    if (FD->isMain())
4157      // C and C++ allow for main to automagically return 0.
4158      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4159      FD->setHasImplicitReturnZero(true);
4160    else
4161      CheckFallThroughForFunctionDef(FD, Body, AC);
4162
4163    if (!FD->isInvalidDecl())
4164      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4165
4166    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4167      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4168
4169    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4170  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4171    assert(MD == getCurMethodDecl() && "Method parsing confused");
4172    MD->setBody(Body);
4173    CheckFallThroughForFunctionDef(MD, Body, AC);
4174    MD->setEndLoc(Body->getLocEnd());
4175
4176    if (!MD->isInvalidDecl())
4177      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4178  } else {
4179    Body->Destroy(Context);
4180    return DeclPtrTy();
4181  }
4182  if (!IsInstantiation)
4183    PopDeclContext();
4184
4185  // Verify and clean out per-function state.
4186
4187  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4188
4189  // Check goto/label use.
4190  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4191       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4192    LabelStmt *L = I->second;
4193
4194    // Verify that we have no forward references left.  If so, there was a goto
4195    // or address of a label taken, but no definition of it.  Label fwd
4196    // definitions are indicated with a null substmt.
4197    if (L->getSubStmt() != 0)
4198      continue;
4199
4200    // Emit error.
4201    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4202
4203    // At this point, we have gotos that use the bogus label.  Stitch it into
4204    // the function body so that they aren't leaked and that the AST is well
4205    // formed.
4206    if (Body == 0) {
4207      // The whole function wasn't parsed correctly, just delete this.
4208      L->Destroy(Context);
4209      continue;
4210    }
4211
4212    // Otherwise, the body is valid: we want to stitch the label decl into the
4213    // function somewhere so that it is properly owned and so that the goto
4214    // has a valid target.  Do this by creating a new compound stmt with the
4215    // label in it.
4216
4217    // Give the label a sub-statement.
4218    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4219
4220    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4221                               cast<CXXTryStmt>(Body)->getTryBlock() :
4222                               cast<CompoundStmt>(Body);
4223    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4224    Elements.push_back(L);
4225    Compound->setStmts(Context, &Elements[0], Elements.size());
4226  }
4227  FunctionLabelMap.clear();
4228
4229  if (!Body) return D;
4230
4231  CheckUnreachable(AC);
4232
4233  // Verify that that gotos and switch cases don't jump into scopes illegally.
4234  if (CurFunctionNeedsScopeChecking)
4235    DiagnoseInvalidJumps(Body);
4236
4237  // C++ constructors that have function-try-blocks can't have return
4238  // statements in the handlers of that block. (C++ [except.handle]p14)
4239  // Verify this.
4240  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4241    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4242
4243  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4244    MarkBaseAndMemberDestructorsReferenced(Destructor);
4245
4246  // If any errors have occurred, clear out any temporaries that may have
4247  // been leftover. This ensures that these temporaries won't be picked up for
4248  // deletion in some later function.
4249  if (PP.getDiagnostics().hasErrorOccurred())
4250    ExprTemporaries.clear();
4251
4252  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4253  return D;
4254}
4255
4256/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4257/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4258NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4259                                          IdentifierInfo &II, Scope *S) {
4260  // Before we produce a declaration for an implicitly defined
4261  // function, see whether there was a locally-scoped declaration of
4262  // this name as a function or variable. If so, use that
4263  // (non-visible) declaration, and complain about it.
4264  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4265    = LocallyScopedExternalDecls.find(&II);
4266  if (Pos != LocallyScopedExternalDecls.end()) {
4267    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4268    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4269    return Pos->second;
4270  }
4271
4272  // Extension in C99.  Legal in C90, but warn about it.
4273  if (II.getName().startswith("__builtin_"))
4274    Diag(Loc, diag::warn_builtin_unknown) << &II;
4275  else if (getLangOptions().C99)
4276    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4277  else
4278    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4279
4280  // Set a Declarator for the implicit definition: int foo();
4281  const char *Dummy;
4282  DeclSpec DS;
4283  unsigned DiagID;
4284  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4285  Error = Error; // Silence warning.
4286  assert(!Error && "Error setting up implicit decl!");
4287  Declarator D(DS, Declarator::BlockContext);
4288  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4289                                             0, 0, false, SourceLocation(),
4290                                             false, 0,0,0, Loc, Loc, D),
4291                SourceLocation());
4292  D.SetIdentifier(&II, Loc);
4293
4294  // Insert this function into translation-unit scope.
4295
4296  DeclContext *PrevDC = CurContext;
4297  CurContext = Context.getTranslationUnitDecl();
4298
4299  FunctionDecl *FD =
4300 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4301  FD->setImplicit();
4302
4303  CurContext = PrevDC;
4304
4305  AddKnownFunctionAttributes(FD);
4306
4307  return FD;
4308}
4309
4310/// \brief Adds any function attributes that we know a priori based on
4311/// the declaration of this function.
4312///
4313/// These attributes can apply both to implicitly-declared builtins
4314/// (like __builtin___printf_chk) or to library-declared functions
4315/// like NSLog or printf.
4316void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4317  if (FD->isInvalidDecl())
4318    return;
4319
4320  // If this is a built-in function, map its builtin attributes to
4321  // actual attributes.
4322  if (unsigned BuiltinID = FD->getBuiltinID()) {
4323    // Handle printf-formatting attributes.
4324    unsigned FormatIdx;
4325    bool HasVAListArg;
4326    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4327      if (!FD->getAttr<FormatAttr>())
4328        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4329                                               HasVAListArg ? 0 : FormatIdx+2));
4330    }
4331
4332    // Mark const if we don't care about errno and that is the only
4333    // thing preventing the function from being const. This allows
4334    // IRgen to use LLVM intrinsics for such functions.
4335    if (!getLangOptions().MathErrno &&
4336        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4337      if (!FD->getAttr<ConstAttr>())
4338        FD->addAttr(::new (Context) ConstAttr());
4339    }
4340
4341    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4342      FD->setType(Context.getNoReturnType(FD->getType()));
4343    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4344      FD->addAttr(::new (Context) NoThrowAttr());
4345    if (Context.BuiltinInfo.isConst(BuiltinID))
4346      FD->addAttr(::new (Context) ConstAttr());
4347  }
4348
4349  IdentifierInfo *Name = FD->getIdentifier();
4350  if (!Name)
4351    return;
4352  if ((!getLangOptions().CPlusPlus &&
4353       FD->getDeclContext()->isTranslationUnit()) ||
4354      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4355       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4356       LinkageSpecDecl::lang_c)) {
4357    // Okay: this could be a libc/libm/Objective-C function we know
4358    // about.
4359  } else
4360    return;
4361
4362  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4363    // FIXME: NSLog and NSLogv should be target specific
4364    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4365      // FIXME: We known better than our headers.
4366      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4367    } else
4368      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4369                                             Name->isStr("NSLogv") ? 0 : 2));
4370  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4371    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4372    // target-specific builtins, perhaps?
4373    if (!FD->getAttr<FormatAttr>())
4374      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4375                                             Name->isStr("vasprintf") ? 0 : 3));
4376  }
4377}
4378
4379TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4380                                    TypeSourceInfo *TInfo) {
4381  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4382  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4383
4384  if (!TInfo) {
4385    assert(D.isInvalidType() && "no declarator info for valid type");
4386    TInfo = Context.getTrivialTypeSourceInfo(T);
4387  }
4388
4389  // Scope manipulation handled by caller.
4390  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4391                                           D.getIdentifierLoc(),
4392                                           D.getIdentifier(),
4393                                           TInfo);
4394
4395  if (const TagType *TT = T->getAs<TagType>()) {
4396    TagDecl *TD = TT->getDecl();
4397
4398    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4399    // keep track of the TypedefDecl.
4400    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4401      TD->setTypedefForAnonDecl(NewTD);
4402  }
4403
4404  if (D.isInvalidType())
4405    NewTD->setInvalidDecl();
4406  return NewTD;
4407}
4408
4409
4410/// \brief Determine whether a tag with a given kind is acceptable
4411/// as a redeclaration of the given tag declaration.
4412///
4413/// \returns true if the new tag kind is acceptable, false otherwise.
4414bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4415                                        TagDecl::TagKind NewTag,
4416                                        SourceLocation NewTagLoc,
4417                                        const IdentifierInfo &Name) {
4418  // C++ [dcl.type.elab]p3:
4419  //   The class-key or enum keyword present in the
4420  //   elaborated-type-specifier shall agree in kind with the
4421  //   declaration to which the name in theelaborated-type-specifier
4422  //   refers. This rule also applies to the form of
4423  //   elaborated-type-specifier that declares a class-name or
4424  //   friend class since it can be construed as referring to the
4425  //   definition of the class. Thus, in any
4426  //   elaborated-type-specifier, the enum keyword shall be used to
4427  //   refer to an enumeration (7.2), the union class-keyshall be
4428  //   used to refer to a union (clause 9), and either the class or
4429  //   struct class-key shall be used to refer to a class (clause 9)
4430  //   declared using the class or struct class-key.
4431  TagDecl::TagKind OldTag = Previous->getTagKind();
4432  if (OldTag == NewTag)
4433    return true;
4434
4435  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4436      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4437    // Warn about the struct/class tag mismatch.
4438    bool isTemplate = false;
4439    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4440      isTemplate = Record->getDescribedClassTemplate();
4441
4442    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4443      << (NewTag == TagDecl::TK_class)
4444      << isTemplate << &Name
4445      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4446                              OldTag == TagDecl::TK_class? "class" : "struct");
4447    Diag(Previous->getLocation(), diag::note_previous_use);
4448    return true;
4449  }
4450  return false;
4451}
4452
4453/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4454/// former case, Name will be non-null.  In the later case, Name will be null.
4455/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4456/// reference/declaration/definition of a tag.
4457Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4458                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4459                               IdentifierInfo *Name, SourceLocation NameLoc,
4460                               AttributeList *Attr, AccessSpecifier AS,
4461                               MultiTemplateParamsArg TemplateParameterLists,
4462                               bool &OwnedDecl, bool &IsDependent) {
4463  // If this is not a definition, it must have a name.
4464  assert((Name != 0 || TUK == TUK_Definition) &&
4465         "Nameless record must be a definition!");
4466
4467  OwnedDecl = false;
4468  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4469
4470  // FIXME: Check explicit specializations more carefully.
4471  bool isExplicitSpecialization = false;
4472  if (TUK != TUK_Reference) {
4473    if (TemplateParameterList *TemplateParams
4474          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4475                        (TemplateParameterList**)TemplateParameterLists.get(),
4476                                              TemplateParameterLists.size(),
4477                                                    isExplicitSpecialization)) {
4478      if (TemplateParams->size() > 0) {
4479        // This is a declaration or definition of a class template (which may
4480        // be a member of another template).
4481        OwnedDecl = false;
4482        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4483                                               SS, Name, NameLoc, Attr,
4484                                               TemplateParams,
4485                                               AS);
4486        TemplateParameterLists.release();
4487        return Result.get();
4488      } else {
4489        // The "template<>" header is extraneous.
4490        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4491          << ElaboratedType::getNameForTagKind(Kind) << Name;
4492        isExplicitSpecialization = true;
4493      }
4494    }
4495
4496    TemplateParameterLists.release();
4497  }
4498
4499  DeclContext *SearchDC = CurContext;
4500  DeclContext *DC = CurContext;
4501  bool isStdBadAlloc = false;
4502  bool Invalid = false;
4503
4504  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4505                                                   : NotForRedeclaration);
4506
4507  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4508
4509  if (Name && SS.isNotEmpty()) {
4510    // We have a nested-name tag ('struct foo::bar').
4511
4512    // Check for invalid 'foo::'.
4513    if (SS.isInvalid()) {
4514      Name = 0;
4515      goto CreateNewDecl;
4516    }
4517
4518    // If this is a friend or a reference to a class in a dependent
4519    // context, don't try to make a decl for it.
4520    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4521      DC = computeDeclContext(SS, false);
4522      if (!DC) {
4523        IsDependent = true;
4524        return DeclPtrTy();
4525      }
4526    }
4527
4528    if (RequireCompleteDeclContext(SS))
4529      return DeclPtrTy::make((Decl *)0);
4530
4531    DC = computeDeclContext(SS, true);
4532    SearchDC = DC;
4533    // Look-up name inside 'foo::'.
4534    LookupQualifiedName(Previous, DC);
4535
4536    if (Previous.isAmbiguous())
4537      return DeclPtrTy();
4538
4539    if (Previous.empty()) {
4540      // Name lookup did not find anything. However, if the
4541      // nested-name-specifier refers to the current instantiation,
4542      // and that current instantiation has any dependent base
4543      // classes, we might find something at instantiation time: treat
4544      // this as a dependent elaborated-type-specifier.
4545      if (Previous.wasNotFoundInCurrentInstantiation()) {
4546        IsDependent = true;
4547        return DeclPtrTy();
4548      }
4549
4550      // A tag 'foo::bar' must already exist.
4551      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4552      Name = 0;
4553      Invalid = true;
4554      goto CreateNewDecl;
4555    }
4556  } else if (Name) {
4557    // If this is a named struct, check to see if there was a previous forward
4558    // declaration or definition.
4559    // FIXME: We're looking into outer scopes here, even when we
4560    // shouldn't be. Doing so can result in ambiguities that we
4561    // shouldn't be diagnosing.
4562    LookupName(Previous, S);
4563
4564    // Note:  there used to be some attempt at recovery here.
4565    if (Previous.isAmbiguous())
4566      return DeclPtrTy();
4567
4568    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4569      // FIXME: This makes sure that we ignore the contexts associated
4570      // with C structs, unions, and enums when looking for a matching
4571      // tag declaration or definition. See the similar lookup tweak
4572      // in Sema::LookupName; is there a better way to deal with this?
4573      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4574        SearchDC = SearchDC->getParent();
4575    }
4576  }
4577
4578  if (Previous.isSingleResult() &&
4579      Previous.getFoundDecl()->isTemplateParameter()) {
4580    // Maybe we will complain about the shadowed template parameter.
4581    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4582    // Just pretend that we didn't see the previous declaration.
4583    Previous.clear();
4584  }
4585
4586  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4587      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4588    // This is a declaration of or a reference to "std::bad_alloc".
4589    isStdBadAlloc = true;
4590
4591    if (Previous.empty() && StdBadAlloc) {
4592      // std::bad_alloc has been implicitly declared (but made invisible to
4593      // name lookup). Fill in this implicit declaration as the previous
4594      // declaration, so that the declarations get chained appropriately.
4595      Previous.addDecl(StdBadAlloc);
4596    }
4597  }
4598
4599  if (!Previous.empty()) {
4600    assert(Previous.isSingleResult());
4601    NamedDecl *PrevDecl = Previous.getFoundDecl();
4602    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4603      // If this is a use of a previous tag, or if the tag is already declared
4604      // in the same scope (so that the definition/declaration completes or
4605      // rementions the tag), reuse the decl.
4606      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4607          isDeclInScope(PrevDecl, SearchDC, S)) {
4608        // Make sure that this wasn't declared as an enum and now used as a
4609        // struct or something similar.
4610        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4611          bool SafeToContinue
4612            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4613               Kind != TagDecl::TK_enum);
4614          if (SafeToContinue)
4615            Diag(KWLoc, diag::err_use_with_wrong_tag)
4616              << Name
4617              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4618                                                  PrevTagDecl->getKindName());
4619          else
4620            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4621          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4622
4623          if (SafeToContinue)
4624            Kind = PrevTagDecl->getTagKind();
4625          else {
4626            // Recover by making this an anonymous redefinition.
4627            Name = 0;
4628            Previous.clear();
4629            Invalid = true;
4630          }
4631        }
4632
4633        if (!Invalid) {
4634          // If this is a use, just return the declaration we found.
4635
4636          // FIXME: In the future, return a variant or some other clue
4637          // for the consumer of this Decl to know it doesn't own it.
4638          // For our current ASTs this shouldn't be a problem, but will
4639          // need to be changed with DeclGroups.
4640          if (TUK == TUK_Reference || TUK == TUK_Friend)
4641            return DeclPtrTy::make(PrevTagDecl);
4642
4643          // Diagnose attempts to redefine a tag.
4644          if (TUK == TUK_Definition) {
4645            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
4646              // If we're defining a specialization and the previous definition
4647              // is from an implicit instantiation, don't emit an error
4648              // here; we'll catch this in the general case below.
4649              if (!isExplicitSpecialization ||
4650                  !isa<CXXRecordDecl>(Def) ||
4651                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4652                                               == TSK_ExplicitSpecialization) {
4653                Diag(NameLoc, diag::err_redefinition) << Name;
4654                Diag(Def->getLocation(), diag::note_previous_definition);
4655                // If this is a redefinition, recover by making this
4656                // struct be anonymous, which will make any later
4657                // references get the previous definition.
4658                Name = 0;
4659                Previous.clear();
4660                Invalid = true;
4661              }
4662            } else {
4663              // If the type is currently being defined, complain
4664              // about a nested redefinition.
4665              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4666              if (Tag->isBeingDefined()) {
4667                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4668                Diag(PrevTagDecl->getLocation(),
4669                     diag::note_previous_definition);
4670                Name = 0;
4671                Previous.clear();
4672                Invalid = true;
4673              }
4674            }
4675
4676            // Okay, this is definition of a previously declared or referenced
4677            // tag PrevDecl. We're going to create a new Decl for it.
4678          }
4679        }
4680        // If we get here we have (another) forward declaration or we
4681        // have a definition.  Just create a new decl.
4682
4683      } else {
4684        // If we get here, this is a definition of a new tag type in a nested
4685        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4686        // new decl/type.  We set PrevDecl to NULL so that the entities
4687        // have distinct types.
4688        Previous.clear();
4689      }
4690      // If we get here, we're going to create a new Decl. If PrevDecl
4691      // is non-NULL, it's a definition of the tag declared by
4692      // PrevDecl. If it's NULL, we have a new definition.
4693    } else {
4694      // PrevDecl is a namespace, template, or anything else
4695      // that lives in the IDNS_Tag identifier namespace.
4696      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4697        // The tag name clashes with a namespace name, issue an error and
4698        // recover by making this tag be anonymous.
4699        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4700        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4701        Name = 0;
4702        Previous.clear();
4703        Invalid = true;
4704      } else {
4705        // The existing declaration isn't relevant to us; we're in a
4706        // new scope, so clear out the previous declaration.
4707        Previous.clear();
4708      }
4709    }
4710  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4711    // C++ [basic.scope.pdecl]p5:
4712    //   -- for an elaborated-type-specifier of the form
4713    //
4714    //          class-key identifier
4715    //
4716    //      if the elaborated-type-specifier is used in the
4717    //      decl-specifier-seq or parameter-declaration-clause of a
4718    //      function defined in namespace scope, the identifier is
4719    //      declared as a class-name in the namespace that contains
4720    //      the declaration; otherwise, except as a friend
4721    //      declaration, the identifier is declared in the smallest
4722    //      non-class, non-function-prototype scope that contains the
4723    //      declaration.
4724    //
4725    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4726    // C structs and unions.
4727    //
4728    // It is an error in C++ to declare (rather than define) an enum
4729    // type, including via an elaborated type specifier.  We'll
4730    // diagnose that later; for now, declare the enum in the same
4731    // scope as we would have picked for any other tag type.
4732    //
4733    // GNU C also supports this behavior as part of its incomplete
4734    // enum types extension, while GNU C++ does not.
4735    //
4736    // Find the context where we'll be declaring the tag.
4737    // FIXME: We would like to maintain the current DeclContext as the
4738    // lexical context,
4739    while (SearchDC->isRecord())
4740      SearchDC = SearchDC->getParent();
4741
4742    // Find the scope where we'll be declaring the tag.
4743    while (S->isClassScope() ||
4744           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4745           ((S->getFlags() & Scope::DeclScope) == 0) ||
4746           (S->getEntity() &&
4747            ((DeclContext *)S->getEntity())->isTransparentContext()))
4748      S = S->getParent();
4749
4750  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4751    // C++ [namespace.memdef]p3:
4752    //   If a friend declaration in a non-local class first declares a
4753    //   class or function, the friend class or function is a member of
4754    //   the innermost enclosing namespace.
4755    while (!SearchDC->isFileContext())
4756      SearchDC = SearchDC->getParent();
4757
4758    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4759    while (S->getEntity() != SearchDC)
4760      S = S->getParent();
4761  }
4762
4763CreateNewDecl:
4764
4765  TagDecl *PrevDecl = 0;
4766  if (Previous.isSingleResult())
4767    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4768
4769  // If there is an identifier, use the location of the identifier as the
4770  // location of the decl, otherwise use the location of the struct/union
4771  // keyword.
4772  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4773
4774  // Otherwise, create a new declaration. If there is a previous
4775  // declaration of the same entity, the two will be linked via
4776  // PrevDecl.
4777  TagDecl *New;
4778
4779  if (Kind == TagDecl::TK_enum) {
4780    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4781    // enum X { A, B, C } D;    D should chain to X.
4782    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4783                           cast_or_null<EnumDecl>(PrevDecl));
4784    // If this is an undefined enum, warn.
4785    if (TUK != TUK_Definition && !Invalid)  {
4786      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4787                                              : diag::ext_forward_ref_enum;
4788      Diag(Loc, DK);
4789    }
4790  } else {
4791    // struct/union/class
4792
4793    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4794    // struct X { int A; } D;    D should chain to X.
4795    if (getLangOptions().CPlusPlus) {
4796      // FIXME: Look for a way to use RecordDecl for simple structs.
4797      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4798                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4799
4800      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4801        StdBadAlloc = cast<CXXRecordDecl>(New);
4802    } else
4803      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4804                               cast_or_null<RecordDecl>(PrevDecl));
4805  }
4806
4807  if (Kind != TagDecl::TK_enum) {
4808    // Handle #pragma pack: if the #pragma pack stack has non-default
4809    // alignment, make up a packed attribute for this decl. These
4810    // attributes are checked when the ASTContext lays out the
4811    // structure.
4812    //
4813    // It is important for implementing the correct semantics that this
4814    // happen here (in act on tag decl). The #pragma pack stack is
4815    // maintained as a result of parser callbacks which can occur at
4816    // many points during the parsing of a struct declaration (because
4817    // the #pragma tokens are effectively skipped over during the
4818    // parsing of the struct).
4819    if (unsigned Alignment = getPragmaPackAlignment())
4820      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4821  }
4822
4823  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4824    // C++ [dcl.typedef]p3:
4825    //   [...] Similarly, in a given scope, a class or enumeration
4826    //   shall not be declared with the same name as a typedef-name
4827    //   that is declared in that scope and refers to a type other
4828    //   than the class or enumeration itself.
4829    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4830                        ForRedeclaration);
4831    LookupName(Lookup, S);
4832    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4833    NamedDecl *PrevTypedefNamed = PrevTypedef;
4834    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4835        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4836          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4837      Diag(Loc, diag::err_tag_definition_of_typedef)
4838        << Context.getTypeDeclType(New)
4839        << PrevTypedef->getUnderlyingType();
4840      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4841      Invalid = true;
4842    }
4843  }
4844
4845  // If this is a specialization of a member class (of a class template),
4846  // check the specialization.
4847  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4848    Invalid = true;
4849
4850  if (Invalid)
4851    New->setInvalidDecl();
4852
4853  if (Attr)
4854    ProcessDeclAttributeList(S, New, Attr);
4855
4856  // If we're declaring or defining a tag in function prototype scope
4857  // in C, note that this type can only be used within the function.
4858  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4859    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4860
4861  // Set the lexical context. If the tag has a C++ scope specifier, the
4862  // lexical context will be different from the semantic context.
4863  New->setLexicalDeclContext(CurContext);
4864
4865  // Mark this as a friend decl if applicable.
4866  if (TUK == TUK_Friend)
4867    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4868
4869  // Set the access specifier.
4870  if (!Invalid && TUK != TUK_Friend)
4871    SetMemberAccessSpecifier(New, PrevDecl, AS);
4872
4873  if (TUK == TUK_Definition)
4874    New->startDefinition();
4875
4876  // If this has an identifier, add it to the scope stack.
4877  if (TUK == TUK_Friend) {
4878    // We might be replacing an existing declaration in the lookup tables;
4879    // if so, borrow its access specifier.
4880    if (PrevDecl)
4881      New->setAccess(PrevDecl->getAccess());
4882
4883    // Friend tag decls are visible in fairly strange ways.
4884    if (!CurContext->isDependentContext()) {
4885      DeclContext *DC = New->getDeclContext()->getLookupContext();
4886      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4887      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4888        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4889    }
4890  } else if (Name) {
4891    S = getNonFieldDeclScope(S);
4892    PushOnScopeChains(New, S);
4893  } else {
4894    CurContext->addDecl(New);
4895  }
4896
4897  // If this is the C FILE type, notify the AST context.
4898  if (IdentifierInfo *II = New->getIdentifier())
4899    if (!New->isInvalidDecl() &&
4900        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4901        II->isStr("FILE"))
4902      Context.setFILEDecl(New);
4903
4904  OwnedDecl = true;
4905  return DeclPtrTy::make(New);
4906}
4907
4908void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4909  AdjustDeclIfTemplate(TagD);
4910  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4911
4912  // Enter the tag context.
4913  PushDeclContext(S, Tag);
4914}
4915
4916void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4917                                           SourceLocation LBraceLoc) {
4918  AdjustDeclIfTemplate(TagD);
4919  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4920
4921  FieldCollector->StartClass();
4922
4923  if (!Record->getIdentifier())
4924    return;
4925
4926  // C++ [class]p2:
4927  //   [...] The class-name is also inserted into the scope of the
4928  //   class itself; this is known as the injected-class-name. For
4929  //   purposes of access checking, the injected-class-name is treated
4930  //   as if it were a public member name.
4931  CXXRecordDecl *InjectedClassName
4932    = CXXRecordDecl::Create(Context, Record->getTagKind(),
4933                            CurContext, Record->getLocation(),
4934                            Record->getIdentifier(),
4935                            Record->getTagKeywordLoc(),
4936                            Record);
4937  InjectedClassName->setImplicit();
4938  InjectedClassName->setAccess(AS_public);
4939  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4940      InjectedClassName->setDescribedClassTemplate(Template);
4941  PushOnScopeChains(InjectedClassName, S);
4942  assert(InjectedClassName->isInjectedClassName() &&
4943         "Broken injected-class-name");
4944}
4945
4946// Traverses the class and any nested classes, making a note of any
4947// dynamic classes that have no key function so that we can mark all of
4948// their virtual member functions as "used" at the end of the translation
4949// unit. This ensures that all functions needed by the vtable will get
4950// instantiated/synthesized.
4951static void
4952RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
4953                                      SourceLocation Loc) {
4954  // We don't look at dependent or undefined classes.
4955  if (Record->isDependentContext() || !Record->isDefinition())
4956    return;
4957
4958  if (Record->isDynamicClass()) {
4959    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
4960
4961    if (!KeyFunction)
4962      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
4963                                                                   Loc));
4964
4965    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
4966        && Record->getLinkage() == ExternalLinkage)
4967      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
4968  }
4969  for (DeclContext::decl_iterator D = Record->decls_begin(),
4970                               DEnd = Record->decls_end();
4971       D != DEnd; ++D) {
4972    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
4973      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
4974  }
4975}
4976
4977void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4978                                    SourceLocation RBraceLoc) {
4979  AdjustDeclIfTemplate(TagD);
4980  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4981  Tag->setRBraceLoc(RBraceLoc);
4982
4983  if (isa<CXXRecordDecl>(Tag))
4984    FieldCollector->FinishClass();
4985
4986  // Exit this scope of this tag's definition.
4987  PopDeclContext();
4988
4989  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
4990    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
4991                                          RBraceLoc);
4992
4993  // Notify the consumer that we've defined a tag.
4994  Consumer.HandleTagDeclDefinition(Tag);
4995}
4996
4997// Note that FieldName may be null for anonymous bitfields.
4998bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4999                          QualType FieldTy, const Expr *BitWidth,
5000                          bool *ZeroWidth) {
5001  // Default to true; that shouldn't confuse checks for emptiness
5002  if (ZeroWidth)
5003    *ZeroWidth = true;
5004
5005  // C99 6.7.2.1p4 - verify the field type.
5006  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5007  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5008    // Handle incomplete types with specific error.
5009    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5010      return true;
5011    if (FieldName)
5012      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5013        << FieldName << FieldTy << BitWidth->getSourceRange();
5014    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5015      << FieldTy << BitWidth->getSourceRange();
5016  }
5017
5018  // If the bit-width is type- or value-dependent, don't try to check
5019  // it now.
5020  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5021    return false;
5022
5023  llvm::APSInt Value;
5024  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5025    return true;
5026
5027  if (Value != 0 && ZeroWidth)
5028    *ZeroWidth = false;
5029
5030  // Zero-width bitfield is ok for anonymous field.
5031  if (Value == 0 && FieldName)
5032    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5033
5034  if (Value.isSigned() && Value.isNegative()) {
5035    if (FieldName)
5036      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5037               << FieldName << Value.toString(10);
5038    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5039      << Value.toString(10);
5040  }
5041
5042  if (!FieldTy->isDependentType()) {
5043    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5044    if (Value.getZExtValue() > TypeSize) {
5045      if (FieldName)
5046        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5047          << FieldName << (unsigned)TypeSize;
5048      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5049        << (unsigned)TypeSize;
5050    }
5051  }
5052
5053  return false;
5054}
5055
5056/// ActOnField - Each field of a struct/union/class is passed into this in order
5057/// to create a FieldDecl object for it.
5058Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5059                                 SourceLocation DeclStart,
5060                                 Declarator &D, ExprTy *BitfieldWidth) {
5061  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5062                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5063                               AS_public);
5064  return DeclPtrTy::make(Res);
5065}
5066
5067/// HandleField - Analyze a field of a C struct or a C++ data member.
5068///
5069FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5070                             SourceLocation DeclStart,
5071                             Declarator &D, Expr *BitWidth,
5072                             AccessSpecifier AS) {
5073  IdentifierInfo *II = D.getIdentifier();
5074  SourceLocation Loc = DeclStart;
5075  if (II) Loc = D.getIdentifierLoc();
5076
5077  TypeSourceInfo *TInfo = 0;
5078  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5079  if (getLangOptions().CPlusPlus)
5080    CheckExtraCXXDefaultArguments(D);
5081
5082  DiagnoseFunctionSpecifiers(D);
5083
5084  if (D.getDeclSpec().isThreadSpecified())
5085    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5086
5087  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5088                                         ForRedeclaration);
5089
5090  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5091    // Maybe we will complain about the shadowed template parameter.
5092    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5093    // Just pretend that we didn't see the previous declaration.
5094    PrevDecl = 0;
5095  }
5096
5097  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5098    PrevDecl = 0;
5099
5100  bool Mutable
5101    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5102  SourceLocation TSSL = D.getSourceRange().getBegin();
5103  FieldDecl *NewFD
5104    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5105                     AS, PrevDecl, &D);
5106  if (NewFD->isInvalidDecl() && PrevDecl) {
5107    // Don't introduce NewFD into scope; there's already something
5108    // with the same name in the same scope.
5109  } else if (II) {
5110    PushOnScopeChains(NewFD, S);
5111  } else
5112    Record->addDecl(NewFD);
5113
5114  return NewFD;
5115}
5116
5117/// \brief Build a new FieldDecl and check its well-formedness.
5118///
5119/// This routine builds a new FieldDecl given the fields name, type,
5120/// record, etc. \p PrevDecl should refer to any previous declaration
5121/// with the same name and in the same scope as the field to be
5122/// created.
5123///
5124/// \returns a new FieldDecl.
5125///
5126/// \todo The Declarator argument is a hack. It will be removed once
5127FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5128                                TypeSourceInfo *TInfo,
5129                                RecordDecl *Record, SourceLocation Loc,
5130                                bool Mutable, Expr *BitWidth,
5131                                SourceLocation TSSL,
5132                                AccessSpecifier AS, NamedDecl *PrevDecl,
5133                                Declarator *D) {
5134  IdentifierInfo *II = Name.getAsIdentifierInfo();
5135  bool InvalidDecl = false;
5136  if (D) InvalidDecl = D->isInvalidType();
5137
5138  // If we receive a broken type, recover by assuming 'int' and
5139  // marking this declaration as invalid.
5140  if (T.isNull()) {
5141    InvalidDecl = true;
5142    T = Context.IntTy;
5143  }
5144
5145  QualType EltTy = Context.getBaseElementType(T);
5146  if (!EltTy->isDependentType() &&
5147      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5148    InvalidDecl = true;
5149
5150  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5151  // than a variably modified type.
5152  if (!InvalidDecl && T->isVariablyModifiedType()) {
5153    bool SizeIsNegative;
5154    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5155                                                           SizeIsNegative);
5156    if (!FixedTy.isNull()) {
5157      Diag(Loc, diag::warn_illegal_constant_array_size);
5158      T = FixedTy;
5159    } else {
5160      if (SizeIsNegative)
5161        Diag(Loc, diag::err_typecheck_negative_array_size);
5162      else
5163        Diag(Loc, diag::err_typecheck_field_variable_size);
5164      InvalidDecl = true;
5165    }
5166  }
5167
5168  // Fields can not have abstract class types
5169  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5170                                             diag::err_abstract_type_in_decl,
5171                                             AbstractFieldType))
5172    InvalidDecl = true;
5173
5174  bool ZeroWidth = false;
5175  // If this is declared as a bit-field, check the bit-field.
5176  if (!InvalidDecl && BitWidth &&
5177      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5178    InvalidDecl = true;
5179    DeleteExpr(BitWidth);
5180    BitWidth = 0;
5181    ZeroWidth = false;
5182  }
5183
5184  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5185                                       BitWidth, Mutable);
5186  if (InvalidDecl)
5187    NewFD->setInvalidDecl();
5188
5189  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5190    Diag(Loc, diag::err_duplicate_member) << II;
5191    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5192    NewFD->setInvalidDecl();
5193  }
5194
5195  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5196    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5197
5198    if (!T->isPODType())
5199      CXXRecord->setPOD(false);
5200    if (!ZeroWidth)
5201      CXXRecord->setEmpty(false);
5202
5203    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5204      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5205
5206      if (!RDecl->hasTrivialConstructor())
5207        CXXRecord->setHasTrivialConstructor(false);
5208      if (!RDecl->hasTrivialCopyConstructor())
5209        CXXRecord->setHasTrivialCopyConstructor(false);
5210      if (!RDecl->hasTrivialCopyAssignment())
5211        CXXRecord->setHasTrivialCopyAssignment(false);
5212      if (!RDecl->hasTrivialDestructor())
5213        CXXRecord->setHasTrivialDestructor(false);
5214
5215      // C++ 9.5p1: An object of a class with a non-trivial
5216      // constructor, a non-trivial copy constructor, a non-trivial
5217      // destructor, or a non-trivial copy assignment operator
5218      // cannot be a member of a union, nor can an array of such
5219      // objects.
5220      // TODO: C++0x alters this restriction significantly.
5221      if (Record->isUnion()) {
5222        // We check for copy constructors before constructors
5223        // because otherwise we'll never get complaints about
5224        // copy constructors.
5225
5226        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5227
5228        CXXSpecialMember member;
5229        if (!RDecl->hasTrivialCopyConstructor())
5230          member = CXXCopyConstructor;
5231        else if (!RDecl->hasTrivialConstructor())
5232          member = CXXDefaultConstructor;
5233        else if (!RDecl->hasTrivialCopyAssignment())
5234          member = CXXCopyAssignment;
5235        else if (!RDecl->hasTrivialDestructor())
5236          member = CXXDestructor;
5237        else
5238          member = invalid;
5239
5240        if (member != invalid) {
5241          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5242          DiagnoseNontrivial(RT, member);
5243          NewFD->setInvalidDecl();
5244        }
5245      }
5246    }
5247  }
5248
5249  // FIXME: We need to pass in the attributes given an AST
5250  // representation, not a parser representation.
5251  if (D)
5252    // FIXME: What to pass instead of TUScope?
5253    ProcessDeclAttributes(TUScope, NewFD, *D);
5254
5255  if (T.isObjCGCWeak())
5256    Diag(Loc, diag::warn_attribute_weak_on_field);
5257
5258  NewFD->setAccess(AS);
5259
5260  // C++ [dcl.init.aggr]p1:
5261  //   An aggregate is an array or a class (clause 9) with [...] no
5262  //   private or protected non-static data members (clause 11).
5263  // A POD must be an aggregate.
5264  if (getLangOptions().CPlusPlus &&
5265      (AS == AS_private || AS == AS_protected)) {
5266    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5267    CXXRecord->setAggregate(false);
5268    CXXRecord->setPOD(false);
5269  }
5270
5271  return NewFD;
5272}
5273
5274/// DiagnoseNontrivial - Given that a class has a non-trivial
5275/// special member, figure out why.
5276void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5277  QualType QT(T, 0U);
5278  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5279
5280  // Check whether the member was user-declared.
5281  switch (member) {
5282  case CXXDefaultConstructor:
5283    if (RD->hasUserDeclaredConstructor()) {
5284      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5285      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5286        const FunctionDecl *body = 0;
5287        ci->getBody(body);
5288        if (!body ||
5289            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5290          SourceLocation CtorLoc = ci->getLocation();
5291          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5292          return;
5293        }
5294      }
5295
5296      assert(0 && "found no user-declared constructors");
5297      return;
5298    }
5299    break;
5300
5301  case CXXCopyConstructor:
5302    if (RD->hasUserDeclaredCopyConstructor()) {
5303      SourceLocation CtorLoc =
5304        RD->getCopyConstructor(Context, 0)->getLocation();
5305      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5306      return;
5307    }
5308    break;
5309
5310  case CXXCopyAssignment:
5311    if (RD->hasUserDeclaredCopyAssignment()) {
5312      // FIXME: this should use the location of the copy
5313      // assignment, not the type.
5314      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5315      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5316      return;
5317    }
5318    break;
5319
5320  case CXXDestructor:
5321    if (RD->hasUserDeclaredDestructor()) {
5322      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5323      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5324      return;
5325    }
5326    break;
5327  }
5328
5329  typedef CXXRecordDecl::base_class_iterator base_iter;
5330
5331  // Virtual bases and members inhibit trivial copying/construction,
5332  // but not trivial destruction.
5333  if (member != CXXDestructor) {
5334    // Check for virtual bases.  vbases includes indirect virtual bases,
5335    // so we just iterate through the direct bases.
5336    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5337      if (bi->isVirtual()) {
5338        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5339        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5340        return;
5341      }
5342
5343    // Check for virtual methods.
5344    typedef CXXRecordDecl::method_iterator meth_iter;
5345    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5346         ++mi) {
5347      if (mi->isVirtual()) {
5348        SourceLocation MLoc = mi->getSourceRange().getBegin();
5349        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5350        return;
5351      }
5352    }
5353  }
5354
5355  bool (CXXRecordDecl::*hasTrivial)() const;
5356  switch (member) {
5357  case CXXDefaultConstructor:
5358    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5359  case CXXCopyConstructor:
5360    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5361  case CXXCopyAssignment:
5362    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5363  case CXXDestructor:
5364    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5365  default:
5366    assert(0 && "unexpected special member"); return;
5367  }
5368
5369  // Check for nontrivial bases (and recurse).
5370  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5371    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5372    assert(BaseRT && "Don't know how to handle dependent bases");
5373    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5374    if (!(BaseRecTy->*hasTrivial)()) {
5375      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5376      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5377      DiagnoseNontrivial(BaseRT, member);
5378      return;
5379    }
5380  }
5381
5382  // Check for nontrivial members (and recurse).
5383  typedef RecordDecl::field_iterator field_iter;
5384  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5385       ++fi) {
5386    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5387    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5388      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5389
5390      if (!(EltRD->*hasTrivial)()) {
5391        SourceLocation FLoc = (*fi)->getLocation();
5392        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5393        DiagnoseNontrivial(EltRT, member);
5394        return;
5395      }
5396    }
5397  }
5398
5399  assert(0 && "found no explanation for non-trivial member");
5400}
5401
5402/// TranslateIvarVisibility - Translate visibility from a token ID to an
5403///  AST enum value.
5404static ObjCIvarDecl::AccessControl
5405TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5406  switch (ivarVisibility) {
5407  default: assert(0 && "Unknown visitibility kind");
5408  case tok::objc_private: return ObjCIvarDecl::Private;
5409  case tok::objc_public: return ObjCIvarDecl::Public;
5410  case tok::objc_protected: return ObjCIvarDecl::Protected;
5411  case tok::objc_package: return ObjCIvarDecl::Package;
5412  }
5413}
5414
5415/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5416/// in order to create an IvarDecl object for it.
5417Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5418                                SourceLocation DeclStart,
5419                                DeclPtrTy IntfDecl,
5420                                Declarator &D, ExprTy *BitfieldWidth,
5421                                tok::ObjCKeywordKind Visibility) {
5422
5423  IdentifierInfo *II = D.getIdentifier();
5424  Expr *BitWidth = (Expr*)BitfieldWidth;
5425  SourceLocation Loc = DeclStart;
5426  if (II) Loc = D.getIdentifierLoc();
5427
5428  // FIXME: Unnamed fields can be handled in various different ways, for
5429  // example, unnamed unions inject all members into the struct namespace!
5430
5431  TypeSourceInfo *TInfo = 0;
5432  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5433
5434  if (BitWidth) {
5435    // 6.7.2.1p3, 6.7.2.1p4
5436    if (VerifyBitField(Loc, II, T, BitWidth)) {
5437      D.setInvalidType();
5438      DeleteExpr(BitWidth);
5439      BitWidth = 0;
5440    }
5441  } else {
5442    // Not a bitfield.
5443
5444    // validate II.
5445
5446  }
5447
5448  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5449  // than a variably modified type.
5450  if (T->isVariablyModifiedType()) {
5451    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5452    D.setInvalidType();
5453  }
5454
5455  // Get the visibility (access control) for this ivar.
5456  ObjCIvarDecl::AccessControl ac =
5457    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5458                                        : ObjCIvarDecl::None;
5459  // Must set ivar's DeclContext to its enclosing interface.
5460  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5461  DeclContext *EnclosingContext;
5462  if (ObjCImplementationDecl *IMPDecl =
5463      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5464    // Case of ivar declared in an implementation. Context is that of its class.
5465    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5466    assert(IDecl && "No class- ActOnIvar");
5467    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5468  } else
5469    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5470  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5471
5472  // Construct the decl.
5473  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5474                                             EnclosingContext, Loc, II, T,
5475                                             TInfo, ac, (Expr *)BitfieldWidth);
5476
5477  if (II) {
5478    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5479                                           ForRedeclaration);
5480    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5481        && !isa<TagDecl>(PrevDecl)) {
5482      Diag(Loc, diag::err_duplicate_member) << II;
5483      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5484      NewID->setInvalidDecl();
5485    }
5486  }
5487
5488  // Process attributes attached to the ivar.
5489  ProcessDeclAttributes(S, NewID, D);
5490
5491  if (D.isInvalidType())
5492    NewID->setInvalidDecl();
5493
5494  if (II) {
5495    // FIXME: When interfaces are DeclContexts, we'll need to add
5496    // these to the interface.
5497    S->AddDecl(DeclPtrTy::make(NewID));
5498    IdResolver.AddDecl(NewID);
5499  }
5500
5501  return DeclPtrTy::make(NewID);
5502}
5503
5504void Sema::ActOnFields(Scope* S,
5505                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5506                       DeclPtrTy *Fields, unsigned NumFields,
5507                       SourceLocation LBrac, SourceLocation RBrac,
5508                       AttributeList *Attr) {
5509  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5510  assert(EnclosingDecl && "missing record or interface decl");
5511
5512  // If the decl this is being inserted into is invalid, then it may be a
5513  // redeclaration or some other bogus case.  Don't try to add fields to it.
5514  if (EnclosingDecl->isInvalidDecl()) {
5515    // FIXME: Deallocate fields?
5516    return;
5517  }
5518
5519
5520  // Verify that all the fields are okay.
5521  unsigned NumNamedMembers = 0;
5522  llvm::SmallVector<FieldDecl*, 32> RecFields;
5523
5524  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5525  for (unsigned i = 0; i != NumFields; ++i) {
5526    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5527
5528    // Get the type for the field.
5529    Type *FDTy = FD->getType().getTypePtr();
5530
5531    if (!FD->isAnonymousStructOrUnion()) {
5532      // Remember all fields written by the user.
5533      RecFields.push_back(FD);
5534    }
5535
5536    // If the field is already invalid for some reason, don't emit more
5537    // diagnostics about it.
5538    if (FD->isInvalidDecl()) {
5539      EnclosingDecl->setInvalidDecl();
5540      continue;
5541    }
5542
5543    // C99 6.7.2.1p2:
5544    //   A structure or union shall not contain a member with
5545    //   incomplete or function type (hence, a structure shall not
5546    //   contain an instance of itself, but may contain a pointer to
5547    //   an instance of itself), except that the last member of a
5548    //   structure with more than one named member may have incomplete
5549    //   array type; such a structure (and any union containing,
5550    //   possibly recursively, a member that is such a structure)
5551    //   shall not be a member of a structure or an element of an
5552    //   array.
5553    if (FDTy->isFunctionType()) {
5554      // Field declared as a function.
5555      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5556        << FD->getDeclName();
5557      FD->setInvalidDecl();
5558      EnclosingDecl->setInvalidDecl();
5559      continue;
5560    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5561               Record && Record->isStruct()) {
5562      // Flexible array member.
5563      if (NumNamedMembers < 1) {
5564        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5565          << FD->getDeclName();
5566        FD->setInvalidDecl();
5567        EnclosingDecl->setInvalidDecl();
5568        continue;
5569      }
5570      // Okay, we have a legal flexible array member at the end of the struct.
5571      if (Record)
5572        Record->setHasFlexibleArrayMember(true);
5573    } else if (!FDTy->isDependentType() &&
5574               RequireCompleteType(FD->getLocation(), FD->getType(),
5575                                   diag::err_field_incomplete)) {
5576      // Incomplete type
5577      FD->setInvalidDecl();
5578      EnclosingDecl->setInvalidDecl();
5579      continue;
5580    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5581      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5582        // If this is a member of a union, then entire union becomes "flexible".
5583        if (Record && Record->isUnion()) {
5584          Record->setHasFlexibleArrayMember(true);
5585        } else {
5586          // If this is a struct/class and this is not the last element, reject
5587          // it.  Note that GCC supports variable sized arrays in the middle of
5588          // structures.
5589          if (i != NumFields-1)
5590            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5591              << FD->getDeclName() << FD->getType();
5592          else {
5593            // We support flexible arrays at the end of structs in
5594            // other structs as an extension.
5595            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5596              << FD->getDeclName();
5597            if (Record)
5598              Record->setHasFlexibleArrayMember(true);
5599          }
5600        }
5601      }
5602      if (Record && FDTTy->getDecl()->hasObjectMember())
5603        Record->setHasObjectMember(true);
5604    } else if (FDTy->isObjCInterfaceType()) {
5605      /// A field cannot be an Objective-c object
5606      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5607      FD->setInvalidDecl();
5608      EnclosingDecl->setInvalidDecl();
5609      continue;
5610    } else if (getLangOptions().ObjC1 &&
5611               getLangOptions().getGCMode() != LangOptions::NonGC &&
5612               Record &&
5613               (FD->getType()->isObjCObjectPointerType() ||
5614                FD->getType().isObjCGCStrong()))
5615      Record->setHasObjectMember(true);
5616    // Keep track of the number of named members.
5617    if (FD->getIdentifier())
5618      ++NumNamedMembers;
5619  }
5620
5621  // Okay, we successfully defined 'Record'.
5622  if (Record) {
5623    Record->completeDefinition();
5624  } else {
5625    ObjCIvarDecl **ClsFields =
5626      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5627    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5628      ID->setIVarList(ClsFields, RecFields.size(), Context);
5629      ID->setLocEnd(RBrac);
5630      // Add ivar's to class's DeclContext.
5631      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5632        ClsFields[i]->setLexicalDeclContext(ID);
5633        ID->addDecl(ClsFields[i]);
5634      }
5635      // Must enforce the rule that ivars in the base classes may not be
5636      // duplicates.
5637      if (ID->getSuperClass()) {
5638        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5639             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5640          ObjCIvarDecl* Ivar = (*IVI);
5641
5642          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5643            ObjCIvarDecl* prevIvar =
5644              ID->getSuperClass()->lookupInstanceVariable(II);
5645            if (prevIvar) {
5646              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5647              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5648            }
5649          }
5650        }
5651      }
5652    } else if (ObjCImplementationDecl *IMPDecl =
5653                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5654      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5655      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5656        // Ivar declared in @implementation never belongs to the implementation.
5657        // Only it is in implementation's lexical context.
5658        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5659      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5660    }
5661  }
5662
5663  if (Attr)
5664    ProcessDeclAttributeList(S, Record, Attr);
5665}
5666
5667/// \brief Determine whether the given integral value is representable within
5668/// the given type T.
5669static bool isRepresentableIntegerValue(ASTContext &Context,
5670                                        llvm::APSInt &Value,
5671                                        QualType T) {
5672  assert(T->isIntegralType() && "Integral type required!");
5673  unsigned BitWidth = Context.getTypeSize(T);
5674
5675  if (Value.isUnsigned() || Value.isNonNegative())
5676    return Value.getActiveBits() < BitWidth;
5677
5678  return Value.getMinSignedBits() <= BitWidth;
5679}
5680
5681// \brief Given an integral type, return the next larger integral type
5682// (or a NULL type of no such type exists).
5683static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5684  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5685  // enum checking below.
5686  assert(T->isIntegralType() && "Integral type required!");
5687  const unsigned NumTypes = 4;
5688  QualType SignedIntegralTypes[NumTypes] = {
5689    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5690  };
5691  QualType UnsignedIntegralTypes[NumTypes] = {
5692    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5693    Context.UnsignedLongLongTy
5694  };
5695
5696  unsigned BitWidth = Context.getTypeSize(T);
5697  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5698                                            : UnsignedIntegralTypes;
5699  for (unsigned I = 0; I != NumTypes; ++I)
5700    if (Context.getTypeSize(Types[I]) > BitWidth)
5701      return Types[I];
5702
5703  return QualType();
5704}
5705
5706EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5707                                          EnumConstantDecl *LastEnumConst,
5708                                          SourceLocation IdLoc,
5709                                          IdentifierInfo *Id,
5710                                          ExprArg val) {
5711  Expr *Val = (Expr *)val.get();
5712
5713  unsigned IntWidth = Context.Target.getIntWidth();
5714  llvm::APSInt EnumVal(IntWidth);
5715  QualType EltTy;
5716  if (Val) {
5717    if (Enum->isDependentType())
5718      EltTy = Context.DependentTy;
5719    else {
5720      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5721      SourceLocation ExpLoc;
5722      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5723        Val = 0;
5724      } else {
5725        if (!getLangOptions().CPlusPlus) {
5726          // C99 6.7.2.2p2:
5727          //   The expression that defines the value of an enumeration constant
5728          //   shall be an integer constant expression that has a value
5729          //   representable as an int.
5730
5731          // Complain if the value is not representable in an int.
5732          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
5733            Diag(IdLoc, diag::ext_enum_value_not_int)
5734              << EnumVal.toString(10) << Val->getSourceRange()
5735              << EnumVal.isNonNegative();
5736          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
5737            // Force the type of the expression to 'int'.
5738            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
5739
5740            if (Val != val.get()) {
5741              val.release();
5742              val = Val;
5743            }
5744          }
5745        }
5746
5747        // C++0x [dcl.enum]p5:
5748        //   If the underlying type is not fixed, the type of each enumerator
5749        //   is the type of its initializing value:
5750        //     - If an initializer is specified for an enumerator, the
5751        //       initializing value has the same type as the expression.
5752        EltTy = Val->getType();
5753      }
5754    }
5755  }
5756
5757  if (!Val) {
5758    if (Enum->isDependentType())
5759      EltTy = Context.DependentTy;
5760    else if (!LastEnumConst) {
5761      // C++0x [dcl.enum]p5:
5762      //   If the underlying type is not fixed, the type of each enumerator
5763      //   is the type of its initializing value:
5764      //     - If no initializer is specified for the first enumerator, the
5765      //       initializing value has an unspecified integral type.
5766      //
5767      // GCC uses 'int' for its unspecified integral type, as does
5768      // C99 6.7.2.2p3.
5769      EltTy = Context.IntTy;
5770    } else {
5771      // Assign the last value + 1.
5772      EnumVal = LastEnumConst->getInitVal();
5773      ++EnumVal;
5774      EltTy = LastEnumConst->getType();
5775
5776      // Check for overflow on increment.
5777      if (EnumVal < LastEnumConst->getInitVal()) {
5778        // C++0x [dcl.enum]p5:
5779        //   If the underlying type is not fixed, the type of each enumerator
5780        //   is the type of its initializing value:
5781        //
5782        //     - Otherwise the type of the initializing value is the same as
5783        //       the type of the initializing value of the preceding enumerator
5784        //       unless the incremented value is not representable in that type,
5785        //       in which case the type is an unspecified integral type
5786        //       sufficient to contain the incremented value. If no such type
5787        //       exists, the program is ill-formed.
5788        QualType T = getNextLargerIntegralType(Context, EltTy);
5789        if (T.isNull()) {
5790          // There is no integral type larger enough to represent this
5791          // value. Complain, then allow the value to wrap around.
5792          EnumVal = LastEnumConst->getInitVal();
5793          EnumVal.zext(EnumVal.getBitWidth() * 2);
5794          Diag(IdLoc, diag::warn_enumerator_too_large)
5795            << EnumVal.toString(10);
5796        } else {
5797          EltTy = T;
5798        }
5799
5800        // Retrieve the last enumerator's value, extent that type to the
5801        // type that is supposed to be large enough to represent the incremented
5802        // value, then increment.
5803        EnumVal = LastEnumConst->getInitVal();
5804        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5805        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5806        ++EnumVal;
5807
5808        // If we're not in C++, diagnose the overflow of enumerator values,
5809        // which in C99 means that the enumerator value is not representable in
5810        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
5811        // permits enumerator values that are representable in some larger
5812        // integral type.
5813        if (!getLangOptions().CPlusPlus && !T.isNull())
5814          Diag(IdLoc, diag::warn_enum_value_overflow);
5815      } else if (!getLangOptions().CPlusPlus &&
5816                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
5817        // Enforce C99 6.7.2.2p2 even when we compute the next value.
5818        Diag(IdLoc, diag::ext_enum_value_not_int)
5819          << EnumVal.toString(10) << 1;
5820      }
5821    }
5822  }
5823
5824  if (!Enum->isDependentType()) {
5825    // Make the enumerator value match the signedness and size of the
5826    // enumerator's type.
5827    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5828    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5829  }
5830
5831  val.release();
5832  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5833                                  Val, EnumVal);
5834}
5835
5836
5837Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5838                                        DeclPtrTy lastEnumConst,
5839                                        SourceLocation IdLoc,
5840                                        IdentifierInfo *Id,
5841                                        SourceLocation EqualLoc, ExprTy *val) {
5842  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5843  EnumConstantDecl *LastEnumConst =
5844    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5845  Expr *Val = static_cast<Expr*>(val);
5846
5847  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5848  // we find one that is.
5849  S = getNonFieldDeclScope(S);
5850
5851  // Verify that there isn't already something declared with this name in this
5852  // scope.
5853  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
5854                                         ForRedeclaration);
5855  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5856    // Maybe we will complain about the shadowed template parameter.
5857    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5858    // Just pretend that we didn't see the previous declaration.
5859    PrevDecl = 0;
5860  }
5861
5862  if (PrevDecl) {
5863    // When in C++, we may get a TagDecl with the same name; in this case the
5864    // enum constant will 'hide' the tag.
5865    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5866           "Received TagDecl when not in C++!");
5867    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5868      if (isa<EnumConstantDecl>(PrevDecl))
5869        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5870      else
5871        Diag(IdLoc, diag::err_redefinition) << Id;
5872      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5873      if (Val) Val->Destroy(Context);
5874      return DeclPtrTy();
5875    }
5876  }
5877
5878  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5879                                            IdLoc, Id, Owned(Val));
5880
5881  // Register this decl in the current scope stack.
5882  if (New) {
5883    New->setAccess(TheEnumDecl->getAccess());
5884    PushOnScopeChains(New, S);
5885  }
5886
5887  return DeclPtrTy::make(New);
5888}
5889
5890void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5891                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5892                         DeclPtrTy *Elements, unsigned NumElements,
5893                         Scope *S, AttributeList *Attr) {
5894  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5895  QualType EnumType = Context.getTypeDeclType(Enum);
5896
5897  if (Attr)
5898    ProcessDeclAttributeList(S, Enum, Attr);
5899
5900  if (Enum->isDependentType()) {
5901    for (unsigned i = 0; i != NumElements; ++i) {
5902      EnumConstantDecl *ECD =
5903        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5904      if (!ECD) continue;
5905
5906      ECD->setType(EnumType);
5907    }
5908
5909    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
5910    return;
5911  }
5912
5913  // TODO: If the result value doesn't fit in an int, it must be a long or long
5914  // long value.  ISO C does not support this, but GCC does as an extension,
5915  // emit a warning.
5916  unsigned IntWidth = Context.Target.getIntWidth();
5917  unsigned CharWidth = Context.Target.getCharWidth();
5918  unsigned ShortWidth = Context.Target.getShortWidth();
5919
5920  // Verify that all the values are okay, compute the size of the values, and
5921  // reverse the list.
5922  unsigned NumNegativeBits = 0;
5923  unsigned NumPositiveBits = 0;
5924
5925  // Keep track of whether all elements have type int.
5926  bool AllElementsInt = true;
5927
5928  for (unsigned i = 0; i != NumElements; ++i) {
5929    EnumConstantDecl *ECD =
5930      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5931    if (!ECD) continue;  // Already issued a diagnostic.
5932
5933    const llvm::APSInt &InitVal = ECD->getInitVal();
5934
5935    // Keep track of the size of positive and negative values.
5936    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5937      NumPositiveBits = std::max(NumPositiveBits,
5938                                 (unsigned)InitVal.getActiveBits());
5939    else
5940      NumNegativeBits = std::max(NumNegativeBits,
5941                                 (unsigned)InitVal.getMinSignedBits());
5942
5943    // Keep track of whether every enum element has type int (very commmon).
5944    if (AllElementsInt)
5945      AllElementsInt = ECD->getType() == Context.IntTy;
5946  }
5947
5948  // Figure out the type that should be used for this enum.
5949  // FIXME: Support -fshort-enums.
5950  QualType BestType;
5951  unsigned BestWidth;
5952
5953  // C++0x N3000 [conv.prom]p3:
5954  //   An rvalue of an unscoped enumeration type whose underlying
5955  //   type is not fixed can be converted to an rvalue of the first
5956  //   of the following types that can represent all the values of
5957  //   the enumeration: int, unsigned int, long int, unsigned long
5958  //   int, long long int, or unsigned long long int.
5959  // C99 6.4.4.3p2:
5960  //   An identifier declared as an enumeration constant has type int.
5961  // The C99 rule is modified by a gcc extension
5962  QualType BestPromotionType;
5963
5964  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5965
5966  if (NumNegativeBits) {
5967    // If there is a negative value, figure out the smallest integer type (of
5968    // int/long/longlong) that fits.
5969    // If it's packed, check also if it fits a char or a short.
5970    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5971      BestType = Context.SignedCharTy;
5972      BestWidth = CharWidth;
5973    } else if (Packed && NumNegativeBits <= ShortWidth &&
5974               NumPositiveBits < ShortWidth) {
5975      BestType = Context.ShortTy;
5976      BestWidth = ShortWidth;
5977    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5978      BestType = Context.IntTy;
5979      BestWidth = IntWidth;
5980    } else {
5981      BestWidth = Context.Target.getLongWidth();
5982
5983      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5984        BestType = Context.LongTy;
5985      } else {
5986        BestWidth = Context.Target.getLongLongWidth();
5987
5988        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5989          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5990        BestType = Context.LongLongTy;
5991      }
5992    }
5993    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5994  } else {
5995    // If there is no negative value, figure out the smallest type that fits
5996    // all of the enumerator values.
5997    // If it's packed, check also if it fits a char or a short.
5998    if (Packed && NumPositiveBits <= CharWidth) {
5999      BestType = Context.UnsignedCharTy;
6000      BestPromotionType = Context.IntTy;
6001      BestWidth = CharWidth;
6002    } else if (Packed && NumPositiveBits <= ShortWidth) {
6003      BestType = Context.UnsignedShortTy;
6004      BestPromotionType = Context.IntTy;
6005      BestWidth = ShortWidth;
6006    } else if (NumPositiveBits <= IntWidth) {
6007      BestType = Context.UnsignedIntTy;
6008      BestWidth = IntWidth;
6009      BestPromotionType
6010        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6011                           ? Context.UnsignedIntTy : Context.IntTy;
6012    } else if (NumPositiveBits <=
6013               (BestWidth = Context.Target.getLongWidth())) {
6014      BestType = Context.UnsignedLongTy;
6015      BestPromotionType
6016        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6017                           ? Context.UnsignedLongTy : Context.LongTy;
6018    } else {
6019      BestWidth = Context.Target.getLongLongWidth();
6020      assert(NumPositiveBits <= BestWidth &&
6021             "How could an initializer get larger than ULL?");
6022      BestType = Context.UnsignedLongLongTy;
6023      BestPromotionType
6024        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6025                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6026    }
6027  }
6028
6029  // Loop over all of the enumerator constants, changing their types to match
6030  // the type of the enum if needed.
6031  for (unsigned i = 0; i != NumElements; ++i) {
6032    EnumConstantDecl *ECD =
6033      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6034    if (!ECD) continue;  // Already issued a diagnostic.
6035
6036    // Standard C says the enumerators have int type, but we allow, as an
6037    // extension, the enumerators to be larger than int size.  If each
6038    // enumerator value fits in an int, type it as an int, otherwise type it the
6039    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6040    // that X has type 'int', not 'unsigned'.
6041
6042    // Determine whether the value fits into an int.
6043    llvm::APSInt InitVal = ECD->getInitVal();
6044
6045    // If it fits into an integer type, force it.  Otherwise force it to match
6046    // the enum decl type.
6047    QualType NewTy;
6048    unsigned NewWidth;
6049    bool NewSign;
6050    if (!getLangOptions().CPlusPlus &&
6051        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6052      NewTy = Context.IntTy;
6053      NewWidth = IntWidth;
6054      NewSign = true;
6055    } else if (ECD->getType() == BestType) {
6056      // Already the right type!
6057      if (getLangOptions().CPlusPlus)
6058        // C++ [dcl.enum]p4: Following the closing brace of an
6059        // enum-specifier, each enumerator has the type of its
6060        // enumeration.
6061        ECD->setType(EnumType);
6062      continue;
6063    } else {
6064      NewTy = BestType;
6065      NewWidth = BestWidth;
6066      NewSign = BestType->isSignedIntegerType();
6067    }
6068
6069    // Adjust the APSInt value.
6070    InitVal.extOrTrunc(NewWidth);
6071    InitVal.setIsSigned(NewSign);
6072    ECD->setInitVal(InitVal);
6073
6074    // Adjust the Expr initializer and type.
6075    if (ECD->getInitExpr())
6076      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6077                                                      CastExpr::CK_IntegralCast,
6078                                                      ECD->getInitExpr(),
6079                                                      /*isLvalue=*/false));
6080    if (getLangOptions().CPlusPlus)
6081      // C++ [dcl.enum]p4: Following the closing brace of an
6082      // enum-specifier, each enumerator has the type of its
6083      // enumeration.
6084      ECD->setType(EnumType);
6085    else
6086      ECD->setType(NewTy);
6087  }
6088
6089  Enum->completeDefinition(BestType, BestPromotionType);
6090}
6091
6092Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6093                                            ExprArg expr) {
6094  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6095
6096  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6097                                                   Loc, AsmString);
6098  CurContext->addDecl(New);
6099  return DeclPtrTy::make(New);
6100}
6101
6102void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6103                             SourceLocation PragmaLoc,
6104                             SourceLocation NameLoc) {
6105  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6106
6107  if (PrevDecl) {
6108    PrevDecl->addAttr(::new (Context) WeakAttr());
6109  } else {
6110    (void)WeakUndeclaredIdentifiers.insert(
6111      std::pair<IdentifierInfo*,WeakInfo>
6112        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6113  }
6114}
6115
6116void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6117                                IdentifierInfo* AliasName,
6118                                SourceLocation PragmaLoc,
6119                                SourceLocation NameLoc,
6120                                SourceLocation AliasNameLoc) {
6121  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6122  WeakInfo W = WeakInfo(Name, NameLoc);
6123
6124  if (PrevDecl) {
6125    if (!PrevDecl->hasAttr<AliasAttr>())
6126      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6127        DeclApplyPragmaWeak(TUScope, ND, W);
6128  } else {
6129    (void)WeakUndeclaredIdentifiers.insert(
6130      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6131  }
6132}
6133