SemaDecl.cpp revision e57c21a9247ac0755b4464c522c8d9f1db39bb1f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Lex/HeaderSearch.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/DenseSet.h"
33using namespace clang;
34
35Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const {
36  Decl *IIDecl = II.getFETokenInfo<Decl>();
37  // Find first occurance of none-tagged declaration
38  while (IIDecl && IIDecl->getIdentifierNamespace() != Decl::IDNS_Ordinary)
39    IIDecl = cast<ScopedDecl>(IIDecl)->getNext();
40
41  if (!IIDecl) {
42    if (getLangOptions().ObjC1) {
43      // @interface and @compatibility_alias result in new type references.
44      // Creating a class alias is *extremely* rare.
45      ObjCAliasTy::const_iterator I = ObjCAliasDecls.find((IdentifierInfo*)&II);
46      if (I != ObjCAliasDecls.end())
47        return I->second->getClassInterface();
48    }
49    return 0;
50  }
51  // FIXME: remove ObjCInterfaceDecl check when we make it a named decl.
52  if (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl))
53    return IIDecl;
54  return 0;
55}
56
57void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
58  if (S->decl_empty()) return;
59  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
60
61  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
62       I != E; ++I) {
63    Decl *TmpD = static_cast<Decl*>(*I);
64    assert(TmpD && "This decl didn't get pushed??");
65    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
66    assert(D && "This decl isn't a ScopedDecl?");
67
68    IdentifierInfo *II = D->getIdentifier();
69    if (!II) continue;
70
71    // Unlink this decl from the identifier.  Because the scope contains decls
72    // in an unordered collection, and because we have multiple identifier
73    // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
74    if (II->getFETokenInfo<Decl>() == D) {
75      // Normal case, no multiple decls in different namespaces.
76      II->setFETokenInfo(D->getNext());
77    } else {
78      // Scan ahead.  There are only three namespaces in C, so this loop can
79      // never execute more than 3 times.
80      ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>();
81      while (SomeDecl->getNext() != D) {
82        SomeDecl = SomeDecl->getNext();
83        assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
84      }
85      SomeDecl->setNext(D->getNext());
86    }
87
88    // This will have to be revisited for C++: there we want to nest stuff in
89    // namespace decls etc.  Even for C, we might want a top-level translation
90    // unit decl or something.
91    if (!CurFunctionDecl)
92      continue;
93
94    // Chain this decl to the containing function, it now owns the memory for
95    // the decl.
96    D->setNext(CurFunctionDecl->getDeclChain());
97    CurFunctionDecl->setDeclChain(D);
98  }
99}
100
101/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
102/// return 0 if one not found.
103/// FIXME: removed this when ObjCInterfaceDecl's aren't ScopedDecl's.
104ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
105  ScopedDecl *IDecl;
106  // Scan up the scope chain looking for a decl that matches this identifier
107  // that is in the appropriate namespace.
108  for (IDecl = Id->getFETokenInfo<ScopedDecl>(); IDecl;
109       IDecl = IDecl->getNext())
110    if (IDecl->getIdentifierNamespace() == Decl::IDNS_Ordinary)
111      break;
112
113  if (ObjCCompatibleAliasDecl *ADecl =
114      dyn_cast_or_null<ObjCCompatibleAliasDecl>(IDecl))
115    return ADecl->getClassInterface();
116  return cast_or_null<ObjCInterfaceDecl>(IDecl);
117}
118
119/// LookupDecl - Look up the inner-most declaration in the specified
120/// namespace.
121Decl *Sema::LookupDecl(IdentifierInfo *II, unsigned NSI,
122                       SourceLocation IdLoc, Scope *S) {
123  if (II == 0) return 0;
124  Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
125
126  // Scan up the scope chain looking for a decl that matches this identifier
127  // that is in the appropriate namespace.  This search should not take long, as
128  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
129  for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext())
130    if (D->getIdentifierNamespace() == NS)
131      return D;
132
133  // If we didn't find a use of this identifier, and if the identifier
134  // corresponds to a compiler builtin, create the decl object for the builtin
135  // now, injecting it into translation unit scope, and return it.
136  if (NS == Decl::IDNS_Ordinary) {
137    // If this is a builtin on this (or all) targets, create the decl.
138    if (unsigned BuiltinID = II->getBuiltinID())
139      return LazilyCreateBuiltin(II, BuiltinID, S);
140
141    if (getLangOptions().ObjC1) {
142      // @interface and @compatibility_alias introduce typedef-like names.
143      // Unlike typedef's, they can only be introduced at file-scope (and are
144      // not therefore not scoped decls). They can, however, be shadowed by
145      // other names in IDNS_Ordinary.
146      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
147      if (I != ObjCAliasDecls.end())
148        return I->second->getClassInterface();
149    }
150  }
151  return 0;
152}
153
154void Sema::InitBuiltinVaListType()
155{
156  if (!Context.getBuiltinVaListType().isNull())
157    return;
158
159  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
160  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary,
161                            SourceLocation(), TUScope);
162  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
163  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
164}
165
166/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
167/// lazily create a decl for it.
168ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
169                                      Scope *S) {
170  Builtin::ID BID = (Builtin::ID)bid;
171
172  if (BID == Builtin::BI__builtin_va_start ||
173       BID == Builtin::BI__builtin_va_copy ||
174       BID == Builtin::BI__builtin_va_end)
175    InitBuiltinVaListType();
176
177  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
178  FunctionDecl *New = FunctionDecl::Create(Context, SourceLocation(), II, R,
179                                           FunctionDecl::Extern, false, 0);
180
181  // Find translation-unit scope to insert this function into.
182  if (Scope *FnS = S->getFnParent())
183    S = FnS->getParent();   // Skip all scopes in a function at once.
184  while (S->getParent())
185    S = S->getParent();
186  S->AddDecl(New);
187
188  // Add this decl to the end of the identifier info.
189  if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) {
190    // Scan until we find the last (outermost) decl in the id chain.
191    while (LastDecl->getNext())
192      LastDecl = LastDecl->getNext();
193    // Insert before (outside) it.
194    LastDecl->setNext(New);
195  } else {
196    II->setFETokenInfo(New);
197  }
198  return New;
199}
200
201/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
202/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
203/// situation, merging decls or emitting diagnostics as appropriate.
204///
205TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
206  // Verify the old decl was also a typedef.
207  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
208  if (!Old) {
209    Diag(New->getLocation(), diag::err_redefinition_different_kind,
210         New->getName());
211    Diag(OldD->getLocation(), diag::err_previous_definition);
212    return New;
213  }
214
215  // Allow multiple definitions for ObjC built-in typedefs.
216  // FIXME: Verify the underlying types are equivalent!
217  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
218    return Old;
219
220  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
221  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
222  // *either* declaration is in a system header. The code below implements
223  // this adhoc compatibility rule. FIXME: The following code will not
224  // work properly when compiling ".i" files (containing preprocessed output).
225  SourceManager &SrcMgr = Context.getSourceManager();
226  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
227  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
228  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
229  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
230  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
231
232  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
233  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
234       NewDirType != DirectoryLookup::NormalHeaderDir) ||
235      getLangOptions().Microsoft)
236    return New;
237
238  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
239  // TODO: This is totally simplistic.  It should handle merging functions
240  // together etc, merging extern int X; int X; ...
241  Diag(New->getLocation(), diag::err_redefinition, New->getName());
242  Diag(Old->getLocation(), diag::err_previous_definition);
243  return New;
244}
245
246/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
247static bool DeclHasAttr(const Decl *decl, const Attr *target) {
248  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
249    if (attr->getKind() == target->getKind())
250      return true;
251
252  return false;
253}
254
255/// MergeAttributes - append attributes from the Old decl to the New one.
256static void MergeAttributes(Decl *New, Decl *Old) {
257  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
258
259// FIXME: fix this code to cleanup the Old attrs correctly
260  while (attr) {
261     tmp = attr;
262     attr = attr->getNext();
263
264    if (!DeclHasAttr(New, tmp)) {
265       New->addAttr(tmp);
266    } else {
267       tmp->setNext(0);
268       delete(tmp);
269    }
270  }
271}
272
273/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
274/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
275/// situation, merging decls or emitting diagnostics as appropriate.
276///
277FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
278  // Verify the old decl was also a function.
279  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
280  if (!Old) {
281    Diag(New->getLocation(), diag::err_redefinition_different_kind,
282         New->getName());
283    Diag(OldD->getLocation(), diag::err_previous_definition);
284    return New;
285  }
286
287  MergeAttributes(New, Old);
288
289
290  QualType OldQType = Old->getCanonicalType();
291  QualType NewQType = New->getCanonicalType();
292
293  // Function types need to be compatible, not identical. This handles
294  // duplicate function decls like "void f(int); void f(enum X);" properly.
295  if (Context.functionTypesAreCompatible(OldQType, NewQType))
296    return New;
297
298  // A function that has already been declared has been redeclared or defined
299  // with a different type- show appropriate diagnostic
300  diag::kind PrevDiag = Old->getBody() ? diag::err_previous_definition :
301                                         diag::err_previous_declaration;
302
303  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
304  // TODO: This is totally simplistic.  It should handle merging functions
305  // together etc, merging extern int X; int X; ...
306  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
307  Diag(Old->getLocation(), PrevDiag);
308  return New;
309}
310
311/// equivalentArrayTypes - Used to determine whether two array types are
312/// equivalent.
313/// We need to check this explicitly as an incomplete array definition is
314/// considered a VariableArrayType, so will not match a complete array
315/// definition that would be otherwise equivalent.
316static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
317  const ArrayType *NewAT = NewQType->getAsArrayType();
318  const ArrayType *OldAT = OldQType->getAsArrayType();
319
320  if (!NewAT || !OldAT)
321    return false;
322
323  // If either (or both) array types in incomplete we need to strip off the
324  // outer VariableArrayType.  Once the outer VAT is removed the remaining
325  // types must be identical if the array types are to be considered
326  // equivalent.
327  // eg. int[][1] and int[1][1] become
328  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
329  // removing the outermost VAT gives
330  //     CAT(1, int) and CAT(1, int)
331  // which are equal, therefore the array types are equivalent.
332  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
333    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
334      return false;
335    NewQType = NewAT->getElementType().getCanonicalType();
336    OldQType = OldAT->getElementType().getCanonicalType();
337  }
338
339  return NewQType == OldQType;
340}
341
342/// MergeVarDecl - We just parsed a variable 'New' which has the same name
343/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
344/// situation, merging decls or emitting diagnostics as appropriate.
345///
346/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
347/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
348///
349VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
350  // Verify the old decl was also a variable.
351  VarDecl *Old = dyn_cast<VarDecl>(OldD);
352  if (!Old) {
353    Diag(New->getLocation(), diag::err_redefinition_different_kind,
354         New->getName());
355    Diag(OldD->getLocation(), diag::err_previous_definition);
356    return New;
357  }
358
359  MergeAttributes(New, Old);
360
361  // Verify the types match.
362  if (Old->getCanonicalType() != New->getCanonicalType() &&
363      !areEquivalentArrayTypes(New->getCanonicalType(), Old->getCanonicalType())) {
364    Diag(New->getLocation(), diag::err_redefinition, New->getName());
365    Diag(Old->getLocation(), diag::err_previous_definition);
366    return New;
367  }
368  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
369  if (New->getStorageClass() == VarDecl::Static &&
370      (Old->getStorageClass() == VarDecl::None ||
371       Old->getStorageClass() == VarDecl::Extern)) {
372    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
373    Diag(Old->getLocation(), diag::err_previous_definition);
374    return New;
375  }
376  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
377  if (New->getStorageClass() != VarDecl::Static &&
378      Old->getStorageClass() == VarDecl::Static) {
379    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
380    Diag(Old->getLocation(), diag::err_previous_definition);
381    return New;
382  }
383  // We've verified the types match, now handle "tentative" definitions.
384  FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old);
385  FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New);
386
387  if (OldFSDecl && NewFSDecl) {
388    // Handle C "tentative" external object definitions (C99 6.9.2).
389    bool OldIsTentative = false;
390    bool NewIsTentative = false;
391
392    if (!OldFSDecl->getInit() &&
393        (OldFSDecl->getStorageClass() == VarDecl::None ||
394         OldFSDecl->getStorageClass() == VarDecl::Static))
395      OldIsTentative = true;
396
397    // FIXME: this check doesn't work (since the initializer hasn't been
398    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
399    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
400    // thrown out the old decl.
401    if (!NewFSDecl->getInit() &&
402        (NewFSDecl->getStorageClass() == VarDecl::None ||
403         NewFSDecl->getStorageClass() == VarDecl::Static))
404      ; // change to NewIsTentative = true; once the code is moved.
405
406    if (NewIsTentative || OldIsTentative)
407      return New;
408  }
409  if (Old->getStorageClass() != VarDecl::Extern &&
410      New->getStorageClass() != VarDecl::Extern) {
411    Diag(New->getLocation(), diag::err_redefinition, New->getName());
412    Diag(Old->getLocation(), diag::err_previous_definition);
413  }
414  return New;
415}
416
417/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
418/// no declarator (e.g. "struct foo;") is parsed.
419Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
420  // TODO: emit error on 'int;' or 'const enum foo;'.
421  // TODO: emit error on 'typedef int;'
422  // if (!DS.isMissingDeclaratorOk()) Diag(...);
423
424  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
425}
426
427bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
428  // Get the type before calling CheckSingleAssignmentConstraints(), since
429  // it can promote the expression.
430  QualType InitType = Init->getType();
431
432  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
433  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
434                                  InitType, Init, "initializing");
435}
436
437bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
438                         QualType ElementType) {
439  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
440  if (CheckSingleInitializer(expr, ElementType))
441    return true; // types weren't compatible.
442
443  if (savExpr != expr) // The type was promoted, update initializer list.
444    IList->setInit(slot, expr);
445  return false;
446}
447
448bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
449  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
450    // C99 6.7.8p14. We have an array of character type with unknown size
451    // being initialized to a string literal.
452    llvm::APSInt ConstVal(32);
453    ConstVal = strLiteral->getByteLength() + 1;
454    // Return a new array type (C99 6.7.8p22).
455    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
456                                         ArrayType::Normal, 0);
457  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
458    // C99 6.7.8p14. We have an array of character type with known size.
459    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
460      Diag(strLiteral->getSourceRange().getBegin(),
461           diag::warn_initializer_string_for_char_array_too_long,
462           strLiteral->getSourceRange());
463  } else {
464    assert(0 && "HandleStringLiteralInit(): Invalid array type");
465  }
466  // Set type from "char *" to "constant array of char".
467  strLiteral->setType(DeclT);
468  // For now, we always return false (meaning success).
469  return false;
470}
471
472StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
473  const ArrayType *AT = DeclType->getAsArrayType();
474  if (AT && AT->getElementType()->isCharType()) {
475    return dyn_cast<StringLiteral>(Init);
476  }
477  return 0;
478}
479
480// CheckInitializerListTypes - Checks the types of elements of an initializer
481// list. This function is recursive: it calls itself to initialize subelements
482// of aggregate types.  Note that the topLevel parameter essentially refers to
483// whether this expression "owns" the initializer list passed in, or if this
484// initialization is taking elements out of a parent initializer.  Each
485// call to this function adds zero or more to startIndex, reports any errors,
486// and returns true if it found any inconsistent types.
487bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
488                                     bool topLevel, unsigned& startIndex) {
489  bool hadError = false;
490
491  if (DeclType->isScalarType()) {
492    // The simplest case: initializing a single scalar
493    if (topLevel) {
494      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
495           IList->getSourceRange());
496    }
497    if (startIndex < IList->getNumInits()) {
498      Expr* expr = IList->getInit(startIndex);
499      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
500        // FIXME: Should an error be reported here instead?
501        unsigned newIndex = 0;
502        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
503      } else {
504        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
505      }
506      ++startIndex;
507    }
508    // FIXME: Should an error be reported for empty initializer list + scalar?
509  } else if (DeclType->isVectorType()) {
510    if (startIndex < IList->getNumInits()) {
511      const VectorType *VT = DeclType->getAsVectorType();
512      int maxElements = VT->getNumElements();
513      QualType elementType = VT->getElementType();
514
515      for (int i = 0; i < maxElements; ++i) {
516        // Don't attempt to go past the end of the init list
517        if (startIndex >= IList->getNumInits())
518          break;
519        Expr* expr = IList->getInit(startIndex);
520        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
521          unsigned newIndex = 0;
522          hadError |= CheckInitializerListTypes(SubInitList, elementType,
523                                                true, newIndex);
524          ++startIndex;
525        } else {
526          hadError |= CheckInitializerListTypes(IList, elementType,
527                                                false, startIndex);
528        }
529      }
530    }
531  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
532    if (DeclType->isStructureType() || DeclType->isUnionType()) {
533      if (startIndex < IList->getNumInits() && !topLevel &&
534          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
535                                     DeclType)) {
536        // We found a compatible struct; per the standard, this initializes the
537        // struct.  (The C standard technically says that this only applies for
538        // initializers for declarations with automatic scope; however, this
539        // construct is unambiguous anyway because a struct cannot contain
540        // a type compatible with itself. We'll output an error when we check
541        // if the initializer is constant.)
542        // FIXME: Is a call to CheckSingleInitializer required here?
543        ++startIndex;
544      } else {
545        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
546
547        // If the record is invalid, some of it's members are invalid. To avoid
548        // confusion, we forgo checking the intializer for the entire record.
549        if (structDecl->isInvalidDecl())
550          return true;
551
552        // If structDecl is a forward declaration, this loop won't do anything;
553        // That's okay, because an error should get printed out elsewhere. It
554        // might be worthwhile to skip over the rest of the initializer, though.
555        int numMembers = structDecl->getNumMembers() -
556                         structDecl->hasFlexibleArrayMember();
557        for (int i = 0; i < numMembers; i++) {
558          // Don't attempt to go past the end of the init list
559          if (startIndex >= IList->getNumInits())
560            break;
561          FieldDecl * curField = structDecl->getMember(i);
562          if (!curField->getIdentifier()) {
563            // Don't initialize unnamed fields, e.g. "int : 20;"
564            continue;
565          }
566          QualType fieldType = curField->getType();
567          Expr* expr = IList->getInit(startIndex);
568          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
569            unsigned newStart = 0;
570            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
571                                                  true, newStart);
572            ++startIndex;
573          } else {
574            hadError |= CheckInitializerListTypes(IList, fieldType,
575                                                  false, startIndex);
576          }
577          if (DeclType->isUnionType())
578            break;
579        }
580        // FIXME: Implement flexible array initialization GCC extension (it's a
581        // really messy extension to implement, unfortunately...the necessary
582        // information isn't actually even here!)
583      }
584    } else if (DeclType->isArrayType()) {
585      // Check for the special-case of initializing an array with a string.
586      if (startIndex < IList->getNumInits()) {
587        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
588                                                     DeclType)) {
589          CheckStringLiteralInit(lit, DeclType);
590          ++startIndex;
591          if (topLevel && startIndex < IList->getNumInits()) {
592            // We have leftover initializers; warn
593            Diag(IList->getInit(startIndex)->getLocStart(),
594                 diag::err_excess_initializers_in_char_array_initializer,
595                 IList->getInit(startIndex)->getSourceRange());
596          }
597          return false;
598        }
599      }
600      int maxElements;
601      if (DeclType->isIncompleteArrayType()) {
602        // FIXME: use a proper constant
603        maxElements = 0x7FFFFFFF;
604      } else if (const VariableArrayType *VAT =
605                                DeclType->getAsVariableArrayType()) {
606        // Check for VLAs; in standard C it would be possible to check this
607        // earlier, but I don't know where clang accepts VLAs (gcc accepts
608        // them in all sorts of strange places).
609        Diag(VAT->getSizeExpr()->getLocStart(),
610             diag::err_variable_object_no_init,
611             VAT->getSizeExpr()->getSourceRange());
612        hadError = true;
613        maxElements = 0x7FFFFFFF;
614      } else {
615        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
616        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
617      }
618      QualType elementType = DeclType->getAsArrayType()->getElementType();
619      int numElements = 0;
620      for (int i = 0; i < maxElements; ++i, ++numElements) {
621        // Don't attempt to go past the end of the init list
622        if (startIndex >= IList->getNumInits())
623          break;
624        Expr* expr = IList->getInit(startIndex);
625        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
626          unsigned newIndex = 0;
627          hadError |= CheckInitializerListTypes(SubInitList, elementType,
628                                                true, newIndex);
629          ++startIndex;
630        } else {
631          hadError |= CheckInitializerListTypes(IList, elementType,
632                                                false, startIndex);
633        }
634      }
635      if (DeclType->isIncompleteArrayType()) {
636        // If this is an incomplete array type, the actual type needs to
637        // be calculated here
638        if (numElements == 0) {
639          // Sizing an array implicitly to zero is not allowed
640          // (It could in theory be allowed, but it doesn't really matter.)
641          Diag(IList->getLocStart(),
642               diag::err_at_least_one_initializer_needed_to_size_array);
643          hadError = true;
644        } else {
645          llvm::APSInt ConstVal(32);
646          ConstVal = numElements;
647          DeclType = Context.getConstantArrayType(elementType, ConstVal,
648                                                  ArrayType::Normal, 0);
649        }
650      }
651    } else {
652      assert(0 && "Aggregate that isn't a function or array?!");
653    }
654  } else {
655    // In C, all types are either scalars or aggregates, but
656    // additional handling is needed here for C++ (and possibly others?).
657    assert(0 && "Unsupported initializer type");
658  }
659
660  // If this init list is a base list, we set the type; an initializer doesn't
661  // fundamentally have a type, but this makes the ASTs a bit easier to read
662  if (topLevel)
663    IList->setType(DeclType);
664
665  if (topLevel && startIndex < IList->getNumInits()) {
666    // We have leftover initializers; warn
667    Diag(IList->getInit(startIndex)->getLocStart(),
668         diag::warn_excess_initializers,
669         IList->getInit(startIndex)->getSourceRange());
670  }
671  return hadError;
672}
673
674bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
675  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
676  // of unknown size ("[]") or an object type that is not a variable array type.
677  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
678    return Diag(VAT->getSizeExpr()->getLocStart(),
679                diag::err_variable_object_no_init,
680                VAT->getSizeExpr()->getSourceRange());
681
682  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
683  if (!InitList) {
684    // FIXME: Handle wide strings
685    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
686      return CheckStringLiteralInit(strLiteral, DeclType);
687
688    if (DeclType->isArrayType())
689      return Diag(Init->getLocStart(),
690                  diag::err_array_init_list_required,
691                  Init->getSourceRange());
692
693    return CheckSingleInitializer(Init, DeclType);
694  }
695  unsigned newIndex = 0;
696  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
697}
698
699Sema::DeclTy *
700Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
701  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
702  IdentifierInfo *II = D.getIdentifier();
703
704  // All of these full declarators require an identifier.  If it doesn't have
705  // one, the ParsedFreeStandingDeclSpec action should be used.
706  if (II == 0) {
707    Diag(D.getDeclSpec().getSourceRange().getBegin(),
708         diag::err_declarator_need_ident,
709         D.getDeclSpec().getSourceRange(), D.getSourceRange());
710    return 0;
711  }
712
713  // The scope passed in may not be a decl scope.  Zip up the scope tree until
714  // we find one that is.
715  while ((S->getFlags() & Scope::DeclScope) == 0)
716    S = S->getParent();
717
718  // See if this is a redefinition of a variable in the same scope.
719  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, D.getIdentifierLoc(), S);
720  ScopedDecl *New;
721  bool InvalidDecl = false;
722
723  QualType R = GetTypeForDeclarator(D, S);
724  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
725
726  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
727    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
728    if (!NewTD) return 0;
729
730    // Handle attributes prior to checking for duplicates in MergeVarDecl
731    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
732                         D.getAttributes());
733    // Merge the decl with the existing one if appropriate. If the decl is
734    // in an outer scope, it isn't the same thing.
735    if (PrevDecl && S->isDeclScope(PrevDecl)) {
736      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
737      if (NewTD == 0) return 0;
738    }
739    New = NewTD;
740    if (S->getParent() == 0) {
741      // C99 6.7.7p2: If a typedef name specifies a variably modified type
742      // then it shall have block scope.
743      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
744        // FIXME: Diagnostic needs to be fixed.
745        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
746        InvalidDecl = true;
747      }
748    }
749  } else if (R.getTypePtr()->isFunctionType()) {
750    FunctionDecl::StorageClass SC = FunctionDecl::None;
751    switch (D.getDeclSpec().getStorageClassSpec()) {
752      default: assert(0 && "Unknown storage class!");
753      case DeclSpec::SCS_auto:
754      case DeclSpec::SCS_register:
755        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
756             R.getAsString());
757        InvalidDecl = true;
758        break;
759      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
760      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
761      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
762      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
763    }
764
765    bool isInline = D.getDeclSpec().isInlineSpecified();
766    FunctionDecl *NewFD = FunctionDecl::Create(Context, D.getIdentifierLoc(),
767                                               II, R, SC, isInline,
768                                               LastDeclarator);
769    // Handle attributes.
770    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
771                         D.getAttributes());
772
773    // Merge the decl with the existing one if appropriate. Since C functions
774    // are in a flat namespace, make sure we consider decls in outer scopes.
775    if (PrevDecl) {
776      NewFD = MergeFunctionDecl(NewFD, PrevDecl);
777      if (NewFD == 0) return 0;
778    }
779    New = NewFD;
780  } else {
781    if (R.getTypePtr()->isObjCInterfaceType()) {
782      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
783           D.getIdentifier()->getName());
784      InvalidDecl = true;
785    }
786
787    VarDecl *NewVD;
788    VarDecl::StorageClass SC;
789    switch (D.getDeclSpec().getStorageClassSpec()) {
790    default: assert(0 && "Unknown storage class!");
791    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
792    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
793    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
794    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
795    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
796    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
797    }
798    if (S->getParent() == 0) {
799      // C99 6.9p2: The storage-class specifiers auto and register shall not
800      // appear in the declaration specifiers in an external declaration.
801      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
802        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
803             R.getAsString());
804        InvalidDecl = true;
805      }
806      NewVD = FileVarDecl::Create(Context, D.getIdentifierLoc(), II, R, SC,
807                                  LastDeclarator);
808    } else {
809      NewVD = BlockVarDecl::Create(Context, D.getIdentifierLoc(), II, R, SC,
810                                   LastDeclarator);
811    }
812    // Handle attributes prior to checking for duplicates in MergeVarDecl
813    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
814                         D.getAttributes());
815
816    // Emit an error if an address space was applied to decl with local storage.
817    // This includes arrays of objects with address space qualifiers, but not
818    // automatic variables that point to other address spaces.
819    // ISO/IEC TR 18037 S5.1.2
820    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
821      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
822      InvalidDecl = true;
823    }
824    // Merge the decl with the existing one if appropriate. If the decl is
825    // in an outer scope, it isn't the same thing.
826    if (PrevDecl && S->isDeclScope(PrevDecl)) {
827      NewVD = MergeVarDecl(NewVD, PrevDecl);
828      if (NewVD == 0) return 0;
829    }
830    New = NewVD;
831  }
832
833  // If this has an identifier, add it to the scope stack.
834  if (II) {
835    New->setNext(II->getFETokenInfo<ScopedDecl>());
836    II->setFETokenInfo(New);
837    S->AddDecl(New);
838  }
839  // If any semantic error occurred, mark the decl as invalid.
840  if (D.getInvalidType() || InvalidDecl)
841    New->setInvalidDecl();
842
843  return New;
844}
845
846bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
847  SourceLocation loc;
848  // FIXME: Remove the isReference check and handle assignment to a reference.
849  if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
850    assert(loc.isValid() && "isConstantExpr didn't return a loc!");
851    Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
852    return true;
853  }
854  return false;
855}
856
857void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
858  Decl *RealDecl = static_cast<Decl *>(dcl);
859  Expr *Init = static_cast<Expr *>(init);
860  assert(Init && "missing initializer");
861
862  // If there is no declaration, there was an error parsing it.  Just ignore
863  // the initializer.
864  if (RealDecl == 0) {
865    delete Init;
866    return;
867  }
868
869  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
870  if (!VDecl) {
871    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
872         diag::err_illegal_initializer);
873    RealDecl->setInvalidDecl();
874    return;
875  }
876  // Get the decls type and save a reference for later, since
877  // CheckInitializerTypes may change it.
878  QualType DclT = VDecl->getType(), SavT = DclT;
879  if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) {
880    VarDecl::StorageClass SC = BVD->getStorageClass();
881    if (SC == VarDecl::Extern) { // C99 6.7.8p5
882      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
883      BVD->setInvalidDecl();
884    } else if (!BVD->isInvalidDecl()) {
885      if (CheckInitializerTypes(Init, DclT))
886        BVD->setInvalidDecl();
887      if (SC == VarDecl::Static) // C99 6.7.8p4.
888        CheckForConstantInitializer(Init, DclT);
889    }
890  } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) {
891    if (FVD->getStorageClass() == VarDecl::Extern)
892      Diag(VDecl->getLocation(), diag::warn_extern_init);
893    if (!FVD->isInvalidDecl())
894      if (CheckInitializerTypes(Init, DclT))
895        FVD->setInvalidDecl();
896
897    // C99 6.7.8p4. All file scoped initializers need to be constant.
898    CheckForConstantInitializer(Init, DclT);
899  }
900  // If the type changed, it means we had an incomplete type that was
901  // completed by the initializer. For example:
902  //   int ary[] = { 1, 3, 5 };
903  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
904  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
905    VDecl->setType(DclT);
906    Init->setType(DclT);
907  }
908
909  // Attach the initializer to the decl.
910  VDecl->setInit(Init);
911  return;
912}
913
914/// The declarators are chained together backwards, reverse the list.
915Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
916  // Often we have single declarators, handle them quickly.
917  Decl *GroupDecl = static_cast<Decl*>(group);
918  if (GroupDecl == 0)
919    return 0;
920
921  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
922  ScopedDecl *NewGroup = 0;
923  if (Group->getNextDeclarator() == 0)
924    NewGroup = Group;
925  else { // reverse the list.
926    while (Group) {
927      ScopedDecl *Next = Group->getNextDeclarator();
928      Group->setNextDeclarator(NewGroup);
929      NewGroup = Group;
930      Group = Next;
931    }
932  }
933  // Perform semantic analysis that depends on having fully processed both
934  // the declarator and initializer.
935  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
936    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
937    if (!IDecl)
938      continue;
939    FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl);
940    BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl);
941    QualType T = IDecl->getType();
942
943    // C99 6.7.5.2p2: If an identifier is declared to be an object with
944    // static storage duration, it shall not have a variable length array.
945    if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) {
946      if (T->getAsVariableArrayType()) {
947        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
948        IDecl->setInvalidDecl();
949      }
950    }
951    // Block scope. C99 6.7p7: If an identifier for an object is declared with
952    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
953    if (BVD && IDecl->getStorageClass() != VarDecl::Extern) {
954      if (T->isIncompleteType()) {
955        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
956             T.getAsString());
957        IDecl->setInvalidDecl();
958      }
959    }
960    // File scope. C99 6.9.2p2: A declaration of an identifier for and
961    // object that has file scope without an initializer, and without a
962    // storage-class specifier or with the storage-class specifier "static",
963    // constitutes a tentative definition. Note: A tentative definition with
964    // external linkage is valid (C99 6.2.2p5).
965    if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static ||
966                                   FVD->getStorageClass() == VarDecl::None)) {
967      if (T->isIncompleteArrayType()) {
968        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
969        // array to be completed. Don't issue a diagnostic.
970      } else if (T->isIncompleteType()) {
971        // C99 6.9.2p3: If the declaration of an identifier for an object is
972        // a tentative definition and has internal linkage (C99 6.2.2p3), the
973        // declared type shall not be an incomplete type.
974        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
975             T.getAsString());
976        IDecl->setInvalidDecl();
977      }
978    }
979  }
980  return NewGroup;
981}
982
983// Called from Sema::ParseStartOfFunctionDef().
984ParmVarDecl *
985Sema::ActOnParamDeclarator(struct DeclaratorChunk::ParamInfo &PI,
986                           Scope *FnScope) {
987  IdentifierInfo *II = PI.Ident;
988  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
989  // Can this happen for params?  We already checked that they don't conflict
990  // among each other.  Here they can only shadow globals, which is ok.
991  if (/*Decl *PrevDecl = */LookupDecl(II, Decl::IDNS_Ordinary,
992                                      PI.IdentLoc, FnScope)) {
993
994  }
995
996  // FIXME: Handle storage class (auto, register). No declarator?
997  // TODO: Chain to previous parameter with the prevdeclarator chain?
998
999  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1000  // Doing the promotion here has a win and a loss. The win is the type for
1001  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1002  // code generator). The loss is the orginal type isn't preserved. For example:
1003  //
1004  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1005  //    int blockvardecl[5];
1006  //    sizeof(parmvardecl);  // size == 4
1007  //    sizeof(blockvardecl); // size == 20
1008  // }
1009  //
1010  // For expressions, all implicit conversions are captured using the
1011  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1012  //
1013  // FIXME: If a source translation tool needs to see the original type, then
1014  // we need to consider storing both types (in ParmVarDecl)...
1015  //
1016  QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
1017  if (const ArrayType *AT = parmDeclType->getAsArrayType()) {
1018    // int x[restrict 4] ->  int *restrict
1019    parmDeclType = Context.getPointerType(AT->getElementType());
1020    parmDeclType = parmDeclType.getQualifiedType(AT->getIndexTypeQualifier());
1021  } else if (parmDeclType->isFunctionType())
1022    parmDeclType = Context.getPointerType(parmDeclType);
1023
1024  ParmVarDecl *New = ParmVarDecl::Create(Context, PI.IdentLoc, II, parmDeclType,
1025                                         VarDecl::None, 0);
1026
1027  if (PI.InvalidType)
1028    New->setInvalidDecl();
1029
1030  // If this has an identifier, add it to the scope stack.
1031  if (II) {
1032    New->setNext(II->getFETokenInfo<ScopedDecl>());
1033    II->setFETokenInfo(New);
1034    FnScope->AddDecl(New);
1035  }
1036
1037  HandleDeclAttributes(New, PI.AttrList, 0);
1038  return New;
1039}
1040
1041Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1042  assert(CurFunctionDecl == 0 && "Function parsing confused");
1043  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1044         "Not a function declarator!");
1045  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1046
1047  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1048  // for a K&R function.
1049  if (!FTI.hasPrototype) {
1050    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1051      if (FTI.ArgInfo[i].TypeInfo == 0) {
1052        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1053             FTI.ArgInfo[i].Ident->getName());
1054        // Implicitly declare the argument as type 'int' for lack of a better
1055        // type.
1056        FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
1057      }
1058    }
1059
1060    // Since this is a function definition, act as though we have information
1061    // about the arguments.
1062    if (FTI.NumArgs)
1063      FTI.hasPrototype = true;
1064  } else {
1065    // FIXME: Diagnose arguments without names in C.
1066
1067  }
1068
1069  Scope *GlobalScope = FnBodyScope->getParent();
1070
1071  // See if this is a redefinition.
1072  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1073                             D.getIdentifierLoc(), GlobalScope);
1074  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
1075    if (FD->getBody()) {
1076      Diag(D.getIdentifierLoc(), diag::err_redefinition,
1077           D.getIdentifier()->getName());
1078      Diag(FD->getLocation(), diag::err_previous_definition);
1079    }
1080  }
1081  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1082  FunctionDecl *FD = cast<FunctionDecl>(decl);
1083  CurFunctionDecl = FD;
1084
1085  // Create Decl objects for each parameter, adding them to the FunctionDecl.
1086  llvm::SmallVector<ParmVarDecl*, 16> Params;
1087
1088  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
1089  // no arguments, not a function that takes a single void argument.
1090  if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1091      !QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo).getCVRQualifiers() &&
1092      QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo)->isVoidType()) {
1093    // empty arg list, don't push any params.
1094  } else {
1095    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1096      ParmVarDecl *parmDecl;
1097
1098      parmDecl = ActOnParamDeclarator(D.getTypeObject(0).Fun.ArgInfo[i],
1099                                      FnBodyScope);
1100      // C99 6.7.5.3p4: the parameters in a parameter type list in a function
1101      // declarator that is part of a function definition of that function
1102      // shall not have incomplete type.
1103      if (parmDecl->getType()->isIncompleteType()) {
1104        Diag(parmDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1105             parmDecl->getType().getAsString());
1106        parmDecl->setInvalidDecl();
1107      }
1108      Params.push_back(parmDecl);
1109    }
1110  }
1111
1112  FD->setParams(&Params[0], Params.size());
1113
1114  return FD;
1115}
1116
1117Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1118  Decl *dcl = static_cast<Decl *>(D);
1119  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1120    FD->setBody((Stmt*)Body);
1121    assert(FD == CurFunctionDecl && "Function parsing confused");
1122    CurFunctionDecl = 0;
1123  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1124    MD->setBody((Stmt*)Body);
1125    CurMethodDecl = 0;
1126  }
1127  // Verify and clean out per-function state.
1128
1129  // Check goto/label use.
1130  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1131       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1132    // Verify that we have no forward references left.  If so, there was a goto
1133    // or address of a label taken, but no definition of it.  Label fwd
1134    // definitions are indicated with a null substmt.
1135    if (I->second->getSubStmt() == 0) {
1136      LabelStmt *L = I->second;
1137      // Emit error.
1138      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1139
1140      // At this point, we have gotos that use the bogus label.  Stitch it into
1141      // the function body so that they aren't leaked and that the AST is well
1142      // formed.
1143      if (Body) {
1144        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1145        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1146      } else {
1147        // The whole function wasn't parsed correctly, just delete this.
1148        delete L;
1149      }
1150    }
1151  }
1152  LabelMap.clear();
1153
1154  return D;
1155}
1156
1157/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1158/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1159ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1160                                           IdentifierInfo &II, Scope *S) {
1161  if (getLangOptions().C99)  // Extension in C99.
1162    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1163  else  // Legal in C90, but warn about it.
1164    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1165
1166  // FIXME: handle stuff like:
1167  // void foo() { extern float X(); }
1168  // void bar() { X(); }  <-- implicit decl for X in another scope.
1169
1170  // Set a Declarator for the implicit definition: int foo();
1171  const char *Dummy;
1172  DeclSpec DS;
1173  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1174  Error = Error; // Silence warning.
1175  assert(!Error && "Error setting up implicit decl!");
1176  Declarator D(DS, Declarator::BlockContext);
1177  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1178  D.SetIdentifier(&II, Loc);
1179
1180  // Find translation-unit scope to insert this function into.
1181  if (Scope *FnS = S->getFnParent())
1182    S = FnS->getParent();   // Skip all scopes in a function at once.
1183  while (S->getParent())
1184    S = S->getParent();
1185
1186  return dyn_cast<ScopedDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
1187}
1188
1189
1190TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1191                                    ScopedDecl *LastDeclarator) {
1192  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1193  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1194
1195  // Scope manipulation handled by caller.
1196  TypedefDecl *NewTD = TypedefDecl::Create(Context, D.getIdentifierLoc(),
1197                                           D.getIdentifier(),
1198                                           T, LastDeclarator);
1199  if (D.getInvalidType())
1200    NewTD->setInvalidDecl();
1201  return NewTD;
1202}
1203
1204/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1205/// former case, Name will be non-null.  In the later case, Name will be null.
1206/// TagType indicates what kind of tag this is. TK indicates whether this is a
1207/// reference/declaration/definition of a tag.
1208Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1209                             SourceLocation KWLoc, IdentifierInfo *Name,
1210                             SourceLocation NameLoc, AttributeList *Attr) {
1211  // If this is a use of an existing tag, it must have a name.
1212  assert((Name != 0 || TK == TK_Definition) &&
1213         "Nameless record must be a definition!");
1214
1215  Decl::Kind Kind;
1216  switch (TagType) {
1217  default: assert(0 && "Unknown tag type!");
1218  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1219  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1220//case DeclSpec::TST_class:  Kind = Decl::Class; break;
1221  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1222  }
1223
1224  // If this is a named struct, check to see if there was a previous forward
1225  // declaration or definition.
1226  if (TagDecl *PrevDecl =
1227          dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,
1228                                               NameLoc, S))) {
1229
1230    // If this is a use of a previous tag, or if the tag is already declared in
1231    // the same scope (so that the definition/declaration completes or
1232    // rementions the tag), reuse the decl.
1233    if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
1234      // Make sure that this wasn't declared as an enum and now used as a struct
1235      // or something similar.
1236      if (PrevDecl->getKind() != Kind) {
1237        Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1238        Diag(PrevDecl->getLocation(), diag::err_previous_use);
1239      }
1240
1241      // If this is a use or a forward declaration, we're good.
1242      if (TK != TK_Definition)
1243        return PrevDecl;
1244
1245      // Diagnose attempts to redefine a tag.
1246      if (PrevDecl->isDefinition()) {
1247        Diag(NameLoc, diag::err_redefinition, Name->getName());
1248        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1249        // If this is a redefinition, recover by making this struct be
1250        // anonymous, which will make any later references get the previous
1251        // definition.
1252        Name = 0;
1253      } else {
1254        // Okay, this is definition of a previously declared or referenced tag.
1255        // Move the location of the decl to be the definition site.
1256        PrevDecl->setLocation(NameLoc);
1257        return PrevDecl;
1258      }
1259    }
1260    // If we get here, this is a definition of a new struct type in a nested
1261    // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1262    // type.
1263  }
1264
1265  // If there is an identifier, use the location of the identifier as the
1266  // location of the decl, otherwise use the location of the struct/union
1267  // keyword.
1268  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1269
1270  // Otherwise, if this is the first time we've seen this tag, create the decl.
1271  TagDecl *New;
1272  switch (Kind) {
1273  default: assert(0 && "Unknown tag kind!");
1274  case Decl::Enum:
1275    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1276    // enum X { A, B, C } D;    D should chain to X.
1277    New = EnumDecl::Create(Context, Loc, Name, 0);
1278    // If this is an undefined enum, warn.
1279    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1280    break;
1281  case Decl::Union:
1282  case Decl::Struct:
1283  case Decl::Class:
1284    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1285    // struct X { int A; } D;    D should chain to X.
1286    New = RecordDecl::Create(Context, Kind, Loc, Name, 0);
1287    break;
1288  }
1289
1290  // If this has an identifier, add it to the scope stack.
1291  if (Name) {
1292    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1293    // we find one that is.
1294    while ((S->getFlags() & Scope::DeclScope) == 0)
1295      S = S->getParent();
1296
1297    // Add it to the decl chain.
1298    New->setNext(Name->getFETokenInfo<ScopedDecl>());
1299    Name->setFETokenInfo(New);
1300    S->AddDecl(New);
1301  }
1302
1303  HandleDeclAttributes(New, Attr, 0);
1304  return New;
1305}
1306
1307/// ActOnField - Each field of a struct/union/class is passed into this in order
1308/// to create a FieldDecl object for it.
1309Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *tagDecl,
1310                               SourceLocation DeclStart,
1311                               Declarator &D, ExprTy *BitfieldWidth) {
1312  IdentifierInfo *II = D.getIdentifier();
1313  Expr *BitWidth = (Expr*)BitfieldWidth;
1314  Decl *TagDecl = static_cast<Decl *>(tagDecl);
1315  SourceLocation Loc = DeclStart;
1316  if (II) Loc = D.getIdentifierLoc();
1317
1318  // FIXME: Unnamed fields can be handled in various different ways, for
1319  // example, unnamed unions inject all members into the struct namespace!
1320
1321
1322  if (BitWidth) {
1323    // TODO: Validate.
1324    //printf("WARNING: BITFIELDS IGNORED!\n");
1325
1326    // 6.7.2.1p3
1327    // 6.7.2.1p4
1328
1329  } else {
1330    // Not a bitfield.
1331
1332    // validate II.
1333
1334  }
1335
1336  QualType T = GetTypeForDeclarator(D, S);
1337  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1338  bool InvalidDecl = false;
1339
1340  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1341  // than a variably modified type.
1342  if (T->isVariablyModifiedType()) {
1343    // FIXME: This diagnostic needs work
1344    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1345    InvalidDecl = true;
1346  }
1347  // FIXME: Chain fielddecls together.
1348  FieldDecl *NewFD;
1349
1350  if (isa<RecordDecl>(TagDecl))
1351    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1352  else if (isa<ObjCInterfaceDecl>(TagDecl) ||
1353           isa<ObjCImplementationDecl>(TagDecl) ||
1354           isa<ObjCCategoryDecl>(TagDecl) ||
1355           // FIXME: ivars are currently used to model properties, and
1356           // properties can appear within a protocol.
1357           // See corresponding FIXME in DeclObjC.h:ObjCPropertyDecl.
1358           isa<ObjCProtocolDecl>(TagDecl))
1359    NewFD = ObjCIvarDecl::Create(Context, Loc, II, T);
1360  else
1361    assert(0 && "Sema::ActOnField(): Unknown TagDecl");
1362
1363  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1364                       D.getAttributes());
1365
1366  if (D.getInvalidType() || InvalidDecl)
1367    NewFD->setInvalidDecl();
1368  return NewFD;
1369}
1370
1371/// TranslateIvarVisibility - Translate visibility from a token ID to an
1372///  AST enum value.
1373static ObjCIvarDecl::AccessControl
1374TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1375  switch (ivarVisibility) {
1376    case tok::objc_private: return ObjCIvarDecl::Private;
1377    case tok::objc_public: return ObjCIvarDecl::Public;
1378    case tok::objc_protected: return ObjCIvarDecl::Protected;
1379    case tok::objc_package: return ObjCIvarDecl::Package;
1380    default: assert(false && "Unknown visitibility kind");
1381  }
1382}
1383
1384void Sema::ActOnFields(Scope* S,
1385                       SourceLocation RecLoc, DeclTy *RecDecl,
1386                       DeclTy **Fields, unsigned NumFields,
1387                       SourceLocation LBrac, SourceLocation RBrac,
1388                       tok::ObjCKeywordKind *visibility) {
1389  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1390  assert(EnclosingDecl && "missing record or interface decl");
1391  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1392
1393  if (Record && Record->isDefinition()) {
1394    // Diagnose code like:
1395    //     struct S { struct S {} X; };
1396    // We discover this when we complete the outer S.  Reject and ignore the
1397    // outer S.
1398    Diag(Record->getLocation(), diag::err_nested_redefinition,
1399         Record->getKindName());
1400    Diag(RecLoc, diag::err_previous_definition);
1401    Record->setInvalidDecl();
1402    return;
1403  }
1404  // Verify that all the fields are okay.
1405  unsigned NumNamedMembers = 0;
1406  llvm::SmallVector<FieldDecl*, 32> RecFields;
1407  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1408
1409  for (unsigned i = 0; i != NumFields; ++i) {
1410
1411    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1412    assert(FD && "missing field decl");
1413
1414    // Remember all fields.
1415    RecFields.push_back(FD);
1416
1417    // Get the type for the field.
1418    Type *FDTy = FD->getType().getTypePtr();
1419
1420    // If we have visibility info, make sure the AST is set accordingly.
1421    if (visibility)
1422      cast<ObjCIvarDecl>(FD)->setAccessControl(
1423                                TranslateIvarVisibility(visibility[i]));
1424
1425    // C99 6.7.2.1p2 - A field may not be a function type.
1426    if (FDTy->isFunctionType()) {
1427      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1428           FD->getName());
1429      FD->setInvalidDecl();
1430      EnclosingDecl->setInvalidDecl();
1431      continue;
1432    }
1433    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1434    if (FDTy->isIncompleteType()) {
1435      if (!Record) {  // Incomplete ivar type is always an error.
1436        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1437        FD->setInvalidDecl();
1438        EnclosingDecl->setInvalidDecl();
1439        continue;
1440      }
1441      if (i != NumFields-1 ||                   // ... that the last member ...
1442          Record->getKind() != Decl::Struct ||  // ... of a structure ...
1443          !FDTy->isArrayType()) {         //... may have incomplete array type.
1444        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1445        FD->setInvalidDecl();
1446        EnclosingDecl->setInvalidDecl();
1447        continue;
1448      }
1449      if (NumNamedMembers < 1) {  //... must have more than named member ...
1450        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1451             FD->getName());
1452        FD->setInvalidDecl();
1453        EnclosingDecl->setInvalidDecl();
1454        continue;
1455      }
1456      // Okay, we have a legal flexible array member at the end of the struct.
1457      if (Record)
1458        Record->setHasFlexibleArrayMember(true);
1459    }
1460    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1461    /// field of another structure or the element of an array.
1462    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1463      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1464        // If this is a member of a union, then entire union becomes "flexible".
1465        if (Record && Record->getKind() == Decl::Union) {
1466          Record->setHasFlexibleArrayMember(true);
1467        } else {
1468          // If this is a struct/class and this is not the last element, reject
1469          // it.  Note that GCC supports variable sized arrays in the middle of
1470          // structures.
1471          if (i != NumFields-1) {
1472            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1473                 FD->getName());
1474            FD->setInvalidDecl();
1475            EnclosingDecl->setInvalidDecl();
1476            continue;
1477          }
1478          // We support flexible arrays at the end of structs in other structs
1479          // as an extension.
1480          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1481               FD->getName());
1482          if (Record)
1483            Record->setHasFlexibleArrayMember(true);
1484        }
1485      }
1486    }
1487    /// A field cannot be an Objective-c object
1488    if (FDTy->isObjCInterfaceType()) {
1489      Diag(FD->getLocation(), diag::err_statically_allocated_object,
1490           FD->getName());
1491      FD->setInvalidDecl();
1492      EnclosingDecl->setInvalidDecl();
1493      continue;
1494    }
1495    // Keep track of the number of named members.
1496    if (IdentifierInfo *II = FD->getIdentifier()) {
1497      // Detect duplicate member names.
1498      if (!FieldIDs.insert(II)) {
1499        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
1500        // Find the previous decl.
1501        SourceLocation PrevLoc;
1502        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
1503          assert(i != e && "Didn't find previous def!");
1504          if (RecFields[i]->getIdentifier() == II) {
1505            PrevLoc = RecFields[i]->getLocation();
1506            break;
1507          }
1508        }
1509        Diag(PrevLoc, diag::err_previous_definition);
1510        FD->setInvalidDecl();
1511        EnclosingDecl->setInvalidDecl();
1512        continue;
1513      }
1514      ++NumNamedMembers;
1515    }
1516  }
1517
1518  // Okay, we successfully defined 'Record'.
1519  if (Record) {
1520    Record->defineBody(&RecFields[0], RecFields.size());
1521    Consumer.HandleTagDeclDefinition(Record);
1522  } else {
1523    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
1524    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
1525      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
1526    else if (ObjCImplementationDecl *IMPDecl =
1527               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
1528      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
1529      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
1530      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
1531    }
1532  }
1533}
1534
1535Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
1536                                      DeclTy *lastEnumConst,
1537                                      SourceLocation IdLoc, IdentifierInfo *Id,
1538                                      SourceLocation EqualLoc, ExprTy *val) {
1539  theEnumDecl = theEnumDecl;  // silence unused warning.
1540  EnumConstantDecl *LastEnumConst =
1541    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
1542  Expr *Val = static_cast<Expr*>(val);
1543
1544  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1545  // we find one that is.
1546  while ((S->getFlags() & Scope::DeclScope) == 0)
1547    S = S->getParent();
1548
1549  // Verify that there isn't already something declared with this name in this
1550  // scope.
1551  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, IdLoc, S)) {
1552    if (S->isDeclScope(PrevDecl)) {
1553      if (isa<EnumConstantDecl>(PrevDecl))
1554        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
1555      else
1556        Diag(IdLoc, diag::err_redefinition, Id->getName());
1557      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1558      delete Val;
1559      return 0;
1560    }
1561  }
1562
1563  llvm::APSInt EnumVal(32);
1564  QualType EltTy;
1565  if (Val) {
1566    // Make sure to promote the operand type to int.
1567    UsualUnaryConversions(Val);
1568
1569    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
1570    SourceLocation ExpLoc;
1571    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
1572      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
1573           Id->getName());
1574      delete Val;
1575      Val = 0;  // Just forget about it.
1576    } else {
1577      EltTy = Val->getType();
1578    }
1579  }
1580
1581  if (!Val) {
1582    if (LastEnumConst) {
1583      // Assign the last value + 1.
1584      EnumVal = LastEnumConst->getInitVal();
1585      ++EnumVal;
1586
1587      // Check for overflow on increment.
1588      if (EnumVal < LastEnumConst->getInitVal())
1589        Diag(IdLoc, diag::warn_enum_value_overflow);
1590
1591      EltTy = LastEnumConst->getType();
1592    } else {
1593      // First value, set to zero.
1594      EltTy = Context.IntTy;
1595      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
1596    }
1597  }
1598
1599  EnumConstantDecl *New =
1600    EnumConstantDecl::Create(Context, IdLoc, Id, EltTy, Val, EnumVal,
1601                             LastEnumConst);
1602
1603  // Register this decl in the current scope stack.
1604  New->setNext(Id->getFETokenInfo<ScopedDecl>());
1605  Id->setFETokenInfo(New);
1606  S->AddDecl(New);
1607  return New;
1608}
1609
1610void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
1611                         DeclTy **Elements, unsigned NumElements) {
1612  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
1613  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
1614
1615  // TODO: If the result value doesn't fit in an int, it must be a long or long
1616  // long value.  ISO C does not support this, but GCC does as an extension,
1617  // emit a warning.
1618  unsigned IntWidth = Context.Target.getIntWidth();
1619
1620  // Verify that all the values are okay, compute the size of the values, and
1621  // reverse the list.
1622  unsigned NumNegativeBits = 0;
1623  unsigned NumPositiveBits = 0;
1624
1625  // Keep track of whether all elements have type int.
1626  bool AllElementsInt = true;
1627
1628  EnumConstantDecl *EltList = 0;
1629  for (unsigned i = 0; i != NumElements; ++i) {
1630    EnumConstantDecl *ECD =
1631      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1632    if (!ECD) continue;  // Already issued a diagnostic.
1633
1634    // If the enum value doesn't fit in an int, emit an extension warning.
1635    const llvm::APSInt &InitVal = ECD->getInitVal();
1636    assert(InitVal.getBitWidth() >= IntWidth &&
1637           "Should have promoted value to int");
1638    if (InitVal.getBitWidth() > IntWidth) {
1639      llvm::APSInt V(InitVal);
1640      V.trunc(IntWidth);
1641      V.extend(InitVal.getBitWidth());
1642      if (V != InitVal)
1643        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
1644             InitVal.toString());
1645    }
1646
1647    // Keep track of the size of positive and negative values.
1648    if (InitVal.isUnsigned() || InitVal.isNonNegative())
1649      NumPositiveBits = std::max(NumPositiveBits,
1650                                 (unsigned)InitVal.getActiveBits());
1651    else
1652      NumNegativeBits = std::max(NumNegativeBits,
1653                                 (unsigned)InitVal.getMinSignedBits());
1654
1655    // Keep track of whether every enum element has type int (very commmon).
1656    if (AllElementsInt)
1657      AllElementsInt = ECD->getType() == Context.IntTy;
1658
1659    ECD->setNextDeclarator(EltList);
1660    EltList = ECD;
1661  }
1662
1663  // Figure out the type that should be used for this enum.
1664  // FIXME: Support attribute(packed) on enums and -fshort-enums.
1665  QualType BestType;
1666  unsigned BestWidth;
1667
1668  if (NumNegativeBits) {
1669    // If there is a negative value, figure out the smallest integer type (of
1670    // int/long/longlong) that fits.
1671    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
1672      BestType = Context.IntTy;
1673      BestWidth = IntWidth;
1674    } else {
1675      BestWidth = Context.Target.getLongWidth();
1676
1677      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
1678        BestType = Context.LongTy;
1679      else {
1680        BestWidth = Context.Target.getLongLongWidth();
1681
1682        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
1683          Diag(Enum->getLocation(), diag::warn_enum_too_large);
1684        BestType = Context.LongLongTy;
1685      }
1686    }
1687  } else {
1688    // If there is no negative value, figure out which of uint, ulong, ulonglong
1689    // fits.
1690    if (NumPositiveBits <= IntWidth) {
1691      BestType = Context.UnsignedIntTy;
1692      BestWidth = IntWidth;
1693    } else if (NumPositiveBits <=
1694               (BestWidth = Context.Target.getLongWidth())) {
1695      BestType = Context.UnsignedLongTy;
1696    } else {
1697      BestWidth = Context.Target.getLongLongWidth();
1698      assert(NumPositiveBits <= BestWidth &&
1699             "How could an initializer get larger than ULL?");
1700      BestType = Context.UnsignedLongLongTy;
1701    }
1702  }
1703
1704  // Loop over all of the enumerator constants, changing their types to match
1705  // the type of the enum if needed.
1706  for (unsigned i = 0; i != NumElements; ++i) {
1707    EnumConstantDecl *ECD =
1708      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1709    if (!ECD) continue;  // Already issued a diagnostic.
1710
1711    // Standard C says the enumerators have int type, but we allow, as an
1712    // extension, the enumerators to be larger than int size.  If each
1713    // enumerator value fits in an int, type it as an int, otherwise type it the
1714    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
1715    // that X has type 'int', not 'unsigned'.
1716    if (ECD->getType() == Context.IntTy) {
1717      // Make sure the init value is signed.
1718      llvm::APSInt IV = ECD->getInitVal();
1719      IV.setIsSigned(true);
1720      ECD->setInitVal(IV);
1721      continue;  // Already int type.
1722    }
1723
1724    // Determine whether the value fits into an int.
1725    llvm::APSInt InitVal = ECD->getInitVal();
1726    bool FitsInInt;
1727    if (InitVal.isUnsigned() || !InitVal.isNegative())
1728      FitsInInt = InitVal.getActiveBits() < IntWidth;
1729    else
1730      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
1731
1732    // If it fits into an integer type, force it.  Otherwise force it to match
1733    // the enum decl type.
1734    QualType NewTy;
1735    unsigned NewWidth;
1736    bool NewSign;
1737    if (FitsInInt) {
1738      NewTy = Context.IntTy;
1739      NewWidth = IntWidth;
1740      NewSign = true;
1741    } else if (ECD->getType() == BestType) {
1742      // Already the right type!
1743      continue;
1744    } else {
1745      NewTy = BestType;
1746      NewWidth = BestWidth;
1747      NewSign = BestType->isSignedIntegerType();
1748    }
1749
1750    // Adjust the APSInt value.
1751    InitVal.extOrTrunc(NewWidth);
1752    InitVal.setIsSigned(NewSign);
1753    ECD->setInitVal(InitVal);
1754
1755    // Adjust the Expr initializer and type.
1756    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
1757    ECD->setType(NewTy);
1758  }
1759
1760  Enum->defineElements(EltList, BestType);
1761  Consumer.HandleTagDeclDefinition(Enum);
1762}
1763
1764Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
1765                                          ExprTy *expr) {
1766  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
1767
1768  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
1769}
1770
1771Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
1772                                     SourceLocation LBrace,
1773                                     SourceLocation RBrace,
1774                                     const char *Lang,
1775                                     unsigned StrSize,
1776                                     DeclTy *D) {
1777  LinkageSpecDecl::LanguageIDs Language;
1778  Decl *dcl = static_cast<Decl *>(D);
1779  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1780    Language = LinkageSpecDecl::lang_c;
1781  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1782    Language = LinkageSpecDecl::lang_cxx;
1783  else {
1784    Diag(Loc, diag::err_bad_language);
1785    return 0;
1786  }
1787
1788  // FIXME: Add all the various semantics of linkage specifications
1789  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
1790}
1791
1792void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
1793
1794  switch (Attr->getKind()) {
1795  case AttributeList::AT_vector_size:
1796    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1797      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
1798      if (!newType.isNull()) // install the new vector type into the decl
1799        vDecl->setType(newType);
1800    }
1801    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1802      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
1803                                                   Attr);
1804      if (!newType.isNull()) // install the new vector type into the decl
1805        tDecl->setUnderlyingType(newType);
1806    }
1807    break;
1808  case AttributeList::AT_ocu_vector_type:
1809    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
1810      HandleOCUVectorTypeAttribute(tDecl, Attr);
1811    else
1812      Diag(Attr->getLoc(),
1813           diag::err_typecheck_ocu_vector_not_typedef);
1814    break;
1815  case AttributeList::AT_address_space:
1816    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1817      QualType newType = HandleAddressSpaceTypeAttribute(
1818                                                  tDecl->getUnderlyingType(),
1819                                                  Attr);
1820      tDecl->setUnderlyingType(newType);
1821    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1822      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
1823                                                         Attr);
1824      // install the new addr spaced type into the decl
1825      vDecl->setType(newType);
1826    }
1827    break;
1828  case AttributeList::AT_deprecated:
1829    HandleDeprecatedAttribute(New, Attr);
1830    break;
1831  case AttributeList::AT_visibility:
1832    HandleVisibilityAttribute(New, Attr);
1833    break;
1834  case AttributeList::AT_weak:
1835    HandleWeakAttribute(New, Attr);
1836    break;
1837  case AttributeList::AT_dllimport:
1838    HandleDLLImportAttribute(New, Attr);
1839    break;
1840  case AttributeList::AT_dllexport:
1841    HandleDLLExportAttribute(New, Attr);
1842    break;
1843  case AttributeList::AT_nothrow:
1844    HandleNothrowAttribute(New, Attr);
1845    break;
1846  case AttributeList::AT_stdcall:
1847    HandleStdCallAttribute(New, Attr);
1848    break;
1849  case AttributeList::AT_fastcall:
1850    HandleFastCallAttribute(New, Attr);
1851    break;
1852  case AttributeList::AT_aligned:
1853    HandleAlignedAttribute(New, Attr);
1854    break;
1855  case AttributeList::AT_packed:
1856    HandlePackedAttribute(New, Attr);
1857    break;
1858  case AttributeList::AT_annotate:
1859    HandleAnnotateAttribute(New, Attr);
1860    break;
1861  case AttributeList::AT_noreturn:
1862    HandleNoReturnAttribute(New, Attr);
1863    break;
1864  case AttributeList::AT_format:
1865    HandleFormatAttribute(New, Attr);
1866    break;
1867  default:
1868#if 0
1869    // TODO: when we have the full set of attributes, warn about unknown ones.
1870    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
1871         Attr->getName()->getName());
1872#endif
1873    break;
1874  }
1875}
1876
1877void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
1878                                AttributeList *declarator_postfix) {
1879  while (declspec_prefix) {
1880    HandleDeclAttribute(New, declspec_prefix);
1881    declspec_prefix = declspec_prefix->getNext();
1882  }
1883  while (declarator_postfix) {
1884    HandleDeclAttribute(New, declarator_postfix);
1885    declarator_postfix = declarator_postfix->getNext();
1886  }
1887}
1888
1889void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
1890                                        AttributeList *rawAttr) {
1891  QualType curType = tDecl->getUnderlyingType();
1892  // check the attribute arguments.
1893  if (rawAttr->getNumArgs() != 1) {
1894    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1895         std::string("1"));
1896    return;
1897  }
1898  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1899  llvm::APSInt vecSize(32);
1900  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1901    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1902         "ocu_vector_type", sizeExpr->getSourceRange());
1903    return;
1904  }
1905  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1906  // in conjunction with complex types (pointers, arrays, functions, etc.).
1907  Type *canonType = curType.getCanonicalType().getTypePtr();
1908  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1909    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1910         curType.getCanonicalType().getAsString());
1911    return;
1912  }
1913  // unlike gcc's vector_size attribute, the size is specified as the
1914  // number of elements, not the number of bytes.
1915  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1916
1917  if (vectorSize == 0) {
1918    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1919         sizeExpr->getSourceRange());
1920    return;
1921  }
1922  // Instantiate/Install the vector type, the number of elements is > 0.
1923  tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
1924  // Remember this typedef decl, we will need it later for diagnostics.
1925  OCUVectorDecls.push_back(tDecl);
1926}
1927
1928QualType Sema::HandleVectorTypeAttribute(QualType curType,
1929                                         AttributeList *rawAttr) {
1930  // check the attribute arugments.
1931  if (rawAttr->getNumArgs() != 1) {
1932    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1933         std::string("1"));
1934    return QualType();
1935  }
1936  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1937  llvm::APSInt vecSize(32);
1938  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1939    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1940         "vector_size", sizeExpr->getSourceRange());
1941    return QualType();
1942  }
1943  // navigate to the base type - we need to provide for vector pointers,
1944  // vector arrays, and functions returning vectors.
1945  Type *canonType = curType.getCanonicalType().getTypePtr();
1946
1947  if (canonType->isPointerType() || canonType->isArrayType() ||
1948      canonType->isFunctionType()) {
1949    assert(0 && "HandleVector(): Complex type construction unimplemented");
1950    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
1951        do {
1952          if (PointerType *PT = dyn_cast<PointerType>(canonType))
1953            canonType = PT->getPointeeType().getTypePtr();
1954          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
1955            canonType = AT->getElementType().getTypePtr();
1956          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
1957            canonType = FT->getResultType().getTypePtr();
1958        } while (canonType->isPointerType() || canonType->isArrayType() ||
1959                 canonType->isFunctionType());
1960    */
1961  }
1962  // the base type must be integer or float.
1963  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1964    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1965         curType.getCanonicalType().getAsString());
1966    return QualType();
1967  }
1968  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
1969  // vecSize is specified in bytes - convert to bits.
1970  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1971
1972  // the vector size needs to be an integral multiple of the type size.
1973  if (vectorSize % typeSize) {
1974    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
1975         sizeExpr->getSourceRange());
1976    return QualType();
1977  }
1978  if (vectorSize == 0) {
1979    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1980         sizeExpr->getSourceRange());
1981    return QualType();
1982  }
1983  // Instantiate the vector type, the number of elements is > 0, and not
1984  // required to be a power of 2, unlike GCC.
1985  return Context.getVectorType(curType, vectorSize/typeSize);
1986}
1987
1988void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
1989  // check the attribute arguments.
1990  if (rawAttr->getNumArgs() > 0) {
1991    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1992         std::string("0"));
1993    return;
1994  }
1995
1996  if (TagDecl *TD = dyn_cast<TagDecl>(d))
1997    TD->addAttr(new PackedAttr);
1998  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
1999    // If the alignment is less than or equal to 8 bits, the packed attribute
2000    // has no effect.
2001    if (Context.getTypeAlign(FD->getType()) <= 8)
2002      Diag(rawAttr->getLoc(),
2003           diag::warn_attribute_ignored_for_field_of_type,
2004           rawAttr->getName()->getName(), FD->getType().getAsString());
2005    else
2006      FD->addAttr(new PackedAttr);
2007  } else
2008    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2009         rawAttr->getName()->getName());
2010}
2011
2012void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2013  // check the attribute arguments.
2014  if (rawAttr->getNumArgs() != 0) {
2015    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2016         std::string("0"));
2017    return;
2018  }
2019
2020  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2021
2022  if (!Fn) {
2023    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2024         "noreturn", "function");
2025    return;
2026  }
2027
2028  d->addAttr(new NoReturnAttr());
2029}
2030
2031void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2032  // check the attribute arguments.
2033  if (rawAttr->getNumArgs() != 0) {
2034    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2035         std::string("0"));
2036    return;
2037  }
2038
2039  d->addAttr(new DeprecatedAttr());
2040}
2041
2042void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2043  // check the attribute arguments.
2044  if (rawAttr->getNumArgs() != 1) {
2045    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2046         std::string("1"));
2047    return;
2048  }
2049
2050  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2051  Arg = Arg->IgnoreParenCasts();
2052  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2053
2054  if (Str == 0 || Str->isWide()) {
2055    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2056         "visibility", std::string("1"));
2057    return;
2058  }
2059
2060  const char *TypeStr = Str->getStrData();
2061  unsigned TypeLen = Str->getByteLength();
2062  llvm::GlobalValue::VisibilityTypes type;
2063
2064  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2065    type = llvm::GlobalValue::DefaultVisibility;
2066  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2067    type = llvm::GlobalValue::HiddenVisibility;
2068  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2069    type = llvm::GlobalValue::HiddenVisibility; // FIXME
2070  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2071    type = llvm::GlobalValue::ProtectedVisibility;
2072  else {
2073    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2074           "visibility", TypeStr);
2075    return;
2076  }
2077
2078  d->addAttr(new VisibilityAttr(type));
2079}
2080
2081void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2082  // check the attribute arguments.
2083  if (rawAttr->getNumArgs() != 0) {
2084    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2085         std::string("0"));
2086    return;
2087  }
2088
2089  d->addAttr(new WeakAttr());
2090}
2091
2092void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2093  // check the attribute arguments.
2094  if (rawAttr->getNumArgs() != 0) {
2095    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2096         std::string("0"));
2097    return;
2098  }
2099
2100  d->addAttr(new DLLImportAttr());
2101}
2102
2103void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2104  // check the attribute arguments.
2105  if (rawAttr->getNumArgs() != 0) {
2106    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2107         std::string("0"));
2108    return;
2109  }
2110
2111  d->addAttr(new DLLExportAttr());
2112}
2113
2114void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2115  // check the attribute arguments.
2116  if (rawAttr->getNumArgs() != 0) {
2117    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2118         std::string("0"));
2119    return;
2120  }
2121
2122  d->addAttr(new StdCallAttr());
2123}
2124
2125void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2126  // check the attribute arguments.
2127  if (rawAttr->getNumArgs() != 0) {
2128    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2129         std::string("0"));
2130    return;
2131  }
2132
2133  d->addAttr(new FastCallAttr());
2134}
2135
2136void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2137  // check the attribute arguments.
2138  if (rawAttr->getNumArgs() != 0) {
2139    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2140         std::string("0"));
2141    return;
2142  }
2143
2144  d->addAttr(new NoThrowAttr());
2145}
2146
2147static const FunctionTypeProto *getFunctionProto(Decl *d) {
2148  ValueDecl *decl = dyn_cast<ValueDecl>(d);
2149  if (!decl) return 0;
2150
2151  QualType Ty = decl->getType();
2152
2153  if (Ty->isFunctionPointerType()) {
2154    const PointerType *PtrTy = Ty->getAsPointerType();
2155    Ty = PtrTy->getPointeeType();
2156  }
2157
2158  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2159    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2160
2161  return 0;
2162}
2163
2164
2165/// Handle __attribute__((format(type,idx,firstarg))) attributes
2166/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2167void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2168
2169  if (!rawAttr->getParameterName()) {
2170    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2171           "format", std::string("1"));
2172    return;
2173  }
2174
2175  if (rawAttr->getNumArgs() != 2) {
2176    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2177         std::string("3"));
2178    return;
2179  }
2180
2181  // GCC ignores the format attribute on K&R style function
2182  // prototypes, so we ignore it as well
2183  const FunctionTypeProto *proto = getFunctionProto(d);
2184
2185  if (!proto) {
2186    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2187           "format", "function");
2188    return;
2189  }
2190
2191  // FIXME: in C++ the implicit 'this' function parameter also counts.
2192  // this is needed in order to be compatible with GCC
2193  // the index must start in 1 and the limit is numargs+1
2194  unsigned NumArgs  = proto->getNumArgs();
2195  unsigned FirstIdx = 1;
2196
2197  const char *Format = rawAttr->getParameterName()->getName();
2198  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2199
2200  // Normalize the argument, __foo__ becomes foo.
2201  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2202      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2203    Format += 2;
2204    FormatLen -= 4;
2205  }
2206
2207  if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
2208     || (FormatLen == 6 && !memcmp(Format, "printf", 6))
2209     || (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
2210     || (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
2211    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2212           "format", rawAttr->getParameterName()->getName());
2213    return;
2214  }
2215
2216  // checks for the 2nd argument
2217  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2218  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2219  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2220    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2221           "format", std::string("2"), IdxExpr->getSourceRange());
2222    return;
2223  }
2224
2225  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2226    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2227           "format", std::string("2"), IdxExpr->getSourceRange());
2228    return;
2229  }
2230
2231  // make sure the format string is really a string
2232  QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
2233  if (!Ty->isPointerType() ||
2234      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2235    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2236         IdxExpr->getSourceRange());
2237    return;
2238  }
2239
2240
2241  // check the 3rd argument
2242  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2243  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2244  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2245    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2246           "format", std::string("3"), FirstArgExpr->getSourceRange());
2247    return;
2248  }
2249
2250  // check if the function is variadic if the 3rd argument non-zero
2251  if (FirstArg != 0) {
2252    if (proto->isVariadic()) {
2253      ++NumArgs; // +1 for ...
2254    } else {
2255      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2256      return;
2257    }
2258  }
2259
2260  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2261  // the input is just the current time + the format string
2262  if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
2263    if (FirstArg != 0) {
2264      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2265             FirstArgExpr->getSourceRange());
2266      return;
2267    }
2268  // if 0 it disables parameter checking (to use with e.g. va_list)
2269  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2270    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2271           "format", std::string("3"), FirstArgExpr->getSourceRange());
2272    return;
2273  }
2274
2275  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2276                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2277}
2278
2279void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2280  // check the attribute arguments.
2281  if (rawAttr->getNumArgs() != 1) {
2282    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2283         std::string("1"));
2284    return;
2285  }
2286  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2287  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2288
2289  // Make sure that there is a string literal as the annotation's single
2290  // argument.
2291  if (!SE) {
2292    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2293    return;
2294  }
2295  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2296                                          SE->getByteLength())));
2297}
2298
2299void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2300{
2301  // check the attribute arguments.
2302  if (rawAttr->getNumArgs() > 1) {
2303    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2304         std::string("1"));
2305    return;
2306  }
2307
2308  unsigned Align = 0;
2309
2310  if (rawAttr->getNumArgs() == 0) {
2311    // FIXME: This should be the target specific maximum alignment.
2312    // (For now we just use 128 bits which is the maximum on X86.
2313    Align = 128;
2314    return;
2315  } else {
2316    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2317    llvm::APSInt alignment(32);
2318    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2319      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2320           "aligned", alignmentExpr->getSourceRange());
2321      return;
2322    }
2323
2324    Align = alignment.getZExtValue() * 8;
2325  }
2326
2327  d->addAttr(new AlignedAttr(Align));
2328}
2329