SemaDecl.cpp revision e885e188b25dc218132402d1f48fb35e175bfb2e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isCopyConstructor())
1509      return Sema::CXXCopyConstructor;
1510
1511    if (Ctor->isDefaultConstructor())
1512      return Sema::CXXDefaultConstructor;
1513  }
1514
1515  if (isa<CXXDestructorDecl>(MD))
1516    return Sema::CXXDestructor;
1517
1518  if (MD->isCopyAssignmentOperator())
1519    return Sema::CXXCopyAssignment;
1520
1521  return Sema::CXXInvalid;
1522}
1523
1524/// canRedefineFunction - checks if a function can be redefined. Currently,
1525/// only extern inline functions can be redefined, and even then only in
1526/// GNU89 mode.
1527static bool canRedefineFunction(const FunctionDecl *FD,
1528                                const LangOptions& LangOpts) {
1529  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1530          FD->isInlineSpecified() &&
1531          FD->getStorageClass() == SC_Extern);
1532}
1533
1534/// MergeFunctionDecl - We just parsed a function 'New' from
1535/// declarator D which has the same name and scope as a previous
1536/// declaration 'Old'.  Figure out how to resolve this situation,
1537/// merging decls or emitting diagnostics as appropriate.
1538///
1539/// In C++, New and Old must be declarations that are not
1540/// overloaded. Use IsOverload to determine whether New and Old are
1541/// overloaded, and to select the Old declaration that New should be
1542/// merged with.
1543///
1544/// Returns true if there was an error, false otherwise.
1545bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1546  // Verify the old decl was also a function.
1547  FunctionDecl *Old = 0;
1548  if (FunctionTemplateDecl *OldFunctionTemplate
1549        = dyn_cast<FunctionTemplateDecl>(OldD))
1550    Old = OldFunctionTemplate->getTemplatedDecl();
1551  else
1552    Old = dyn_cast<FunctionDecl>(OldD);
1553  if (!Old) {
1554    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1555      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1556      Diag(Shadow->getTargetDecl()->getLocation(),
1557           diag::note_using_decl_target);
1558      Diag(Shadow->getUsingDecl()->getLocation(),
1559           diag::note_using_decl) << 0;
1560      return true;
1561    }
1562
1563    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1564      << New->getDeclName();
1565    Diag(OldD->getLocation(), diag::note_previous_definition);
1566    return true;
1567  }
1568
1569  // Determine whether the previous declaration was a definition,
1570  // implicit declaration, or a declaration.
1571  diag::kind PrevDiag;
1572  if (Old->isThisDeclarationADefinition())
1573    PrevDiag = diag::note_previous_definition;
1574  else if (Old->isImplicit())
1575    PrevDiag = diag::note_previous_implicit_declaration;
1576  else
1577    PrevDiag = diag::note_previous_declaration;
1578
1579  QualType OldQType = Context.getCanonicalType(Old->getType());
1580  QualType NewQType = Context.getCanonicalType(New->getType());
1581
1582  // Don't complain about this if we're in GNU89 mode and the old function
1583  // is an extern inline function.
1584  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1585      New->getStorageClass() == SC_Static &&
1586      Old->getStorageClass() != SC_Static &&
1587      !canRedefineFunction(Old, getLangOptions())) {
1588    if (getLangOptions().Microsoft) {
1589      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1590      Diag(Old->getLocation(), PrevDiag);
1591    } else {
1592      Diag(New->getLocation(), diag::err_static_non_static) << New;
1593      Diag(Old->getLocation(), PrevDiag);
1594      return true;
1595    }
1596  }
1597
1598  // If a function is first declared with a calling convention, but is
1599  // later declared or defined without one, the second decl assumes the
1600  // calling convention of the first.
1601  //
1602  // For the new decl, we have to look at the NON-canonical type to tell the
1603  // difference between a function that really doesn't have a calling
1604  // convention and one that is declared cdecl. That's because in
1605  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1606  // because it is the default calling convention.
1607  //
1608  // Note also that we DO NOT return at this point, because we still have
1609  // other tests to run.
1610  const FunctionType *OldType = cast<FunctionType>(OldQType);
1611  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1612  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1613  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1614  bool RequiresAdjustment = false;
1615  if (OldTypeInfo.getCC() != CC_Default &&
1616      NewTypeInfo.getCC() == CC_Default) {
1617    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1618    RequiresAdjustment = true;
1619  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1620                                     NewTypeInfo.getCC())) {
1621    // Calling conventions really aren't compatible, so complain.
1622    Diag(New->getLocation(), diag::err_cconv_change)
1623      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1624      << (OldTypeInfo.getCC() == CC_Default)
1625      << (OldTypeInfo.getCC() == CC_Default ? "" :
1626          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1627    Diag(Old->getLocation(), diag::note_previous_declaration);
1628    return true;
1629  }
1630
1631  // FIXME: diagnose the other way around?
1632  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1633    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1634    RequiresAdjustment = true;
1635  }
1636
1637  // Merge regparm attribute.
1638  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1639      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1640    if (NewTypeInfo.getHasRegParm()) {
1641      Diag(New->getLocation(), diag::err_regparm_mismatch)
1642        << NewType->getRegParmType()
1643        << OldType->getRegParmType();
1644      Diag(Old->getLocation(), diag::note_previous_declaration);
1645      return true;
1646    }
1647
1648    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1649    RequiresAdjustment = true;
1650  }
1651
1652  if (RequiresAdjustment) {
1653    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1654    New->setType(QualType(NewType, 0));
1655    NewQType = Context.getCanonicalType(New->getType());
1656  }
1657
1658  if (getLangOptions().CPlusPlus) {
1659    // (C++98 13.1p2):
1660    //   Certain function declarations cannot be overloaded:
1661    //     -- Function declarations that differ only in the return type
1662    //        cannot be overloaded.
1663    QualType OldReturnType = OldType->getResultType();
1664    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1665    QualType ResQT;
1666    if (OldReturnType != NewReturnType) {
1667      if (NewReturnType->isObjCObjectPointerType()
1668          && OldReturnType->isObjCObjectPointerType())
1669        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1670      if (ResQT.isNull()) {
1671        if (New->isCXXClassMember() && New->isOutOfLine())
1672          Diag(New->getLocation(),
1673               diag::err_member_def_does_not_match_ret_type) << New;
1674        else
1675          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1676        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1677        return true;
1678      }
1679      else
1680        NewQType = ResQT;
1681    }
1682
1683    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1684    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1685    if (OldMethod && NewMethod) {
1686      // Preserve triviality.
1687      NewMethod->setTrivial(OldMethod->isTrivial());
1688
1689      bool isFriend = NewMethod->getFriendObjectKind();
1690
1691      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1692        //    -- Member function declarations with the same name and the
1693        //       same parameter types cannot be overloaded if any of them
1694        //       is a static member function declaration.
1695        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1696          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1697          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1698          return true;
1699        }
1700
1701        // C++ [class.mem]p1:
1702        //   [...] A member shall not be declared twice in the
1703        //   member-specification, except that a nested class or member
1704        //   class template can be declared and then later defined.
1705        unsigned NewDiag;
1706        if (isa<CXXConstructorDecl>(OldMethod))
1707          NewDiag = diag::err_constructor_redeclared;
1708        else if (isa<CXXDestructorDecl>(NewMethod))
1709          NewDiag = diag::err_destructor_redeclared;
1710        else if (isa<CXXConversionDecl>(NewMethod))
1711          NewDiag = diag::err_conv_function_redeclared;
1712        else
1713          NewDiag = diag::err_member_redeclared;
1714
1715        Diag(New->getLocation(), NewDiag);
1716        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1717
1718      // Complain if this is an explicit declaration of a special
1719      // member that was initially declared implicitly.
1720      //
1721      // As an exception, it's okay to befriend such methods in order
1722      // to permit the implicit constructor/destructor/operator calls.
1723      } else if (OldMethod->isImplicit()) {
1724        if (isFriend) {
1725          NewMethod->setImplicit();
1726        } else {
1727          Diag(NewMethod->getLocation(),
1728               diag::err_definition_of_implicitly_declared_member)
1729            << New << getSpecialMember(OldMethod);
1730          return true;
1731        }
1732      } else if (OldMethod->isExplicitlyDefaulted()) {
1733        Diag(NewMethod->getLocation(),
1734             diag::err_definition_of_explicitly_defaulted_member)
1735          << getSpecialMember(OldMethod);
1736        return true;
1737      }
1738    }
1739
1740    // (C++98 8.3.5p3):
1741    //   All declarations for a function shall agree exactly in both the
1742    //   return type and the parameter-type-list.
1743    // We also want to respect all the extended bits except noreturn.
1744
1745    // noreturn should now match unless the old type info didn't have it.
1746    QualType OldQTypeForComparison = OldQType;
1747    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1748      assert(OldQType == QualType(OldType, 0));
1749      const FunctionType *OldTypeForComparison
1750        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1751      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1752      assert(OldQTypeForComparison.isCanonical());
1753    }
1754
1755    if (OldQTypeForComparison == NewQType)
1756      return MergeCompatibleFunctionDecls(New, Old);
1757
1758    // Fall through for conflicting redeclarations and redefinitions.
1759  }
1760
1761  // C: Function types need to be compatible, not identical. This handles
1762  // duplicate function decls like "void f(int); void f(enum X);" properly.
1763  if (!getLangOptions().CPlusPlus &&
1764      Context.typesAreCompatible(OldQType, NewQType)) {
1765    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1766    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1767    const FunctionProtoType *OldProto = 0;
1768    if (isa<FunctionNoProtoType>(NewFuncType) &&
1769        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1770      // The old declaration provided a function prototype, but the
1771      // new declaration does not. Merge in the prototype.
1772      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1773      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1774                                                 OldProto->arg_type_end());
1775      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1776                                         ParamTypes.data(), ParamTypes.size(),
1777                                         OldProto->getExtProtoInfo());
1778      New->setType(NewQType);
1779      New->setHasInheritedPrototype();
1780
1781      // Synthesize a parameter for each argument type.
1782      llvm::SmallVector<ParmVarDecl*, 16> Params;
1783      for (FunctionProtoType::arg_type_iterator
1784             ParamType = OldProto->arg_type_begin(),
1785             ParamEnd = OldProto->arg_type_end();
1786           ParamType != ParamEnd; ++ParamType) {
1787        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1788                                                 SourceLocation(),
1789                                                 SourceLocation(), 0,
1790                                                 *ParamType, /*TInfo=*/0,
1791                                                 SC_None, SC_None,
1792                                                 0);
1793        Param->setScopeInfo(0, Params.size());
1794        Param->setImplicit();
1795        Params.push_back(Param);
1796      }
1797
1798      New->setParams(Params.data(), Params.size());
1799    }
1800
1801    return MergeCompatibleFunctionDecls(New, Old);
1802  }
1803
1804  // GNU C permits a K&R definition to follow a prototype declaration
1805  // if the declared types of the parameters in the K&R definition
1806  // match the types in the prototype declaration, even when the
1807  // promoted types of the parameters from the K&R definition differ
1808  // from the types in the prototype. GCC then keeps the types from
1809  // the prototype.
1810  //
1811  // If a variadic prototype is followed by a non-variadic K&R definition,
1812  // the K&R definition becomes variadic.  This is sort of an edge case, but
1813  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1814  // C99 6.9.1p8.
1815  if (!getLangOptions().CPlusPlus &&
1816      Old->hasPrototype() && !New->hasPrototype() &&
1817      New->getType()->getAs<FunctionProtoType>() &&
1818      Old->getNumParams() == New->getNumParams()) {
1819    llvm::SmallVector<QualType, 16> ArgTypes;
1820    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1821    const FunctionProtoType *OldProto
1822      = Old->getType()->getAs<FunctionProtoType>();
1823    const FunctionProtoType *NewProto
1824      = New->getType()->getAs<FunctionProtoType>();
1825
1826    // Determine whether this is the GNU C extension.
1827    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1828                                               NewProto->getResultType());
1829    bool LooseCompatible = !MergedReturn.isNull();
1830    for (unsigned Idx = 0, End = Old->getNumParams();
1831         LooseCompatible && Idx != End; ++Idx) {
1832      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1833      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1834      if (Context.typesAreCompatible(OldParm->getType(),
1835                                     NewProto->getArgType(Idx))) {
1836        ArgTypes.push_back(NewParm->getType());
1837      } else if (Context.typesAreCompatible(OldParm->getType(),
1838                                            NewParm->getType(),
1839                                            /*CompareUnqualified=*/true)) {
1840        GNUCompatibleParamWarning Warn
1841          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1842        Warnings.push_back(Warn);
1843        ArgTypes.push_back(NewParm->getType());
1844      } else
1845        LooseCompatible = false;
1846    }
1847
1848    if (LooseCompatible) {
1849      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1850        Diag(Warnings[Warn].NewParm->getLocation(),
1851             diag::ext_param_promoted_not_compatible_with_prototype)
1852          << Warnings[Warn].PromotedType
1853          << Warnings[Warn].OldParm->getType();
1854        if (Warnings[Warn].OldParm->getLocation().isValid())
1855          Diag(Warnings[Warn].OldParm->getLocation(),
1856               diag::note_previous_declaration);
1857      }
1858
1859      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1860                                           ArgTypes.size(),
1861                                           OldProto->getExtProtoInfo()));
1862      return MergeCompatibleFunctionDecls(New, Old);
1863    }
1864
1865    // Fall through to diagnose conflicting types.
1866  }
1867
1868  // A function that has already been declared has been redeclared or defined
1869  // with a different type- show appropriate diagnostic
1870  if (unsigned BuiltinID = Old->getBuiltinID()) {
1871    // The user has declared a builtin function with an incompatible
1872    // signature.
1873    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1874      // The function the user is redeclaring is a library-defined
1875      // function like 'malloc' or 'printf'. Warn about the
1876      // redeclaration, then pretend that we don't know about this
1877      // library built-in.
1878      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1879      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1880        << Old << Old->getType();
1881      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1882      Old->setInvalidDecl();
1883      return false;
1884    }
1885
1886    PrevDiag = diag::note_previous_builtin_declaration;
1887  }
1888
1889  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1890  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1891  return true;
1892}
1893
1894/// \brief Completes the merge of two function declarations that are
1895/// known to be compatible.
1896///
1897/// This routine handles the merging of attributes and other
1898/// properties of function declarations form the old declaration to
1899/// the new declaration, once we know that New is in fact a
1900/// redeclaration of Old.
1901///
1902/// \returns false
1903bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1904  // Merge the attributes
1905  mergeDeclAttributes(New, Old, Context);
1906
1907  // Merge the storage class.
1908  if (Old->getStorageClass() != SC_Extern &&
1909      Old->getStorageClass() != SC_None)
1910    New->setStorageClass(Old->getStorageClass());
1911
1912  // Merge "pure" flag.
1913  if (Old->isPure())
1914    New->setPure();
1915
1916  // Merge attributes from the parameters.  These can mismatch with K&R
1917  // declarations.
1918  if (New->getNumParams() == Old->getNumParams())
1919    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1920      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1921                               Context);
1922
1923  if (getLangOptions().CPlusPlus)
1924    return MergeCXXFunctionDecl(New, Old);
1925
1926  return false;
1927}
1928
1929void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1930                                const ObjCMethodDecl *oldMethod) {
1931  // Merge the attributes.
1932  mergeDeclAttributes(newMethod, oldMethod, Context);
1933
1934  // Merge attributes from the parameters.
1935  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1936         ni = newMethod->param_begin(), ne = newMethod->param_end();
1937       ni != ne; ++ni, ++oi)
1938    mergeParamDeclAttributes(*ni, *oi, Context);
1939}
1940
1941/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1942/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1943/// emitting diagnostics as appropriate.
1944///
1945/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1946/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1947/// check them before the initializer is attached.
1948///
1949void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1950  if (New->isInvalidDecl() || Old->isInvalidDecl())
1951    return;
1952
1953  QualType MergedT;
1954  if (getLangOptions().CPlusPlus) {
1955    AutoType *AT = New->getType()->getContainedAutoType();
1956    if (AT && !AT->isDeduced()) {
1957      // We don't know what the new type is until the initializer is attached.
1958      return;
1959    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1960      // These could still be something that needs exception specs checked.
1961      return MergeVarDeclExceptionSpecs(New, Old);
1962    }
1963    // C++ [basic.link]p10:
1964    //   [...] the types specified by all declarations referring to a given
1965    //   object or function shall be identical, except that declarations for an
1966    //   array object can specify array types that differ by the presence or
1967    //   absence of a major array bound (8.3.4).
1968    else if (Old->getType()->isIncompleteArrayType() &&
1969             New->getType()->isArrayType()) {
1970      CanQual<ArrayType> OldArray
1971        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1972      CanQual<ArrayType> NewArray
1973        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1974      if (OldArray->getElementType() == NewArray->getElementType())
1975        MergedT = New->getType();
1976    } else if (Old->getType()->isArrayType() &&
1977             New->getType()->isIncompleteArrayType()) {
1978      CanQual<ArrayType> OldArray
1979        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1980      CanQual<ArrayType> NewArray
1981        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1982      if (OldArray->getElementType() == NewArray->getElementType())
1983        MergedT = Old->getType();
1984    } else if (New->getType()->isObjCObjectPointerType()
1985               && Old->getType()->isObjCObjectPointerType()) {
1986        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1987                                                        Old->getType());
1988    }
1989  } else {
1990    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1991  }
1992  if (MergedT.isNull()) {
1993    Diag(New->getLocation(), diag::err_redefinition_different_type)
1994      << New->getDeclName();
1995    Diag(Old->getLocation(), diag::note_previous_definition);
1996    return New->setInvalidDecl();
1997  }
1998  New->setType(MergedT);
1999}
2000
2001/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2002/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2003/// situation, merging decls or emitting diagnostics as appropriate.
2004///
2005/// Tentative definition rules (C99 6.9.2p2) are checked by
2006/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2007/// definitions here, since the initializer hasn't been attached.
2008///
2009void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2010  // If the new decl is already invalid, don't do any other checking.
2011  if (New->isInvalidDecl())
2012    return;
2013
2014  // Verify the old decl was also a variable.
2015  VarDecl *Old = 0;
2016  if (!Previous.isSingleResult() ||
2017      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2018    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2019      << New->getDeclName();
2020    Diag(Previous.getRepresentativeDecl()->getLocation(),
2021         diag::note_previous_definition);
2022    return New->setInvalidDecl();
2023  }
2024
2025  // C++ [class.mem]p1:
2026  //   A member shall not be declared twice in the member-specification [...]
2027  //
2028  // Here, we need only consider static data members.
2029  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2030    Diag(New->getLocation(), diag::err_duplicate_member)
2031      << New->getIdentifier();
2032    Diag(Old->getLocation(), diag::note_previous_declaration);
2033    New->setInvalidDecl();
2034  }
2035
2036  mergeDeclAttributes(New, Old, Context);
2037
2038  // Merge the types.
2039  MergeVarDeclTypes(New, Old);
2040  if (New->isInvalidDecl())
2041    return;
2042
2043  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2044  if (New->getStorageClass() == SC_Static &&
2045      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2046    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2047    Diag(Old->getLocation(), diag::note_previous_definition);
2048    return New->setInvalidDecl();
2049  }
2050  // C99 6.2.2p4:
2051  //   For an identifier declared with the storage-class specifier
2052  //   extern in a scope in which a prior declaration of that
2053  //   identifier is visible,23) if the prior declaration specifies
2054  //   internal or external linkage, the linkage of the identifier at
2055  //   the later declaration is the same as the linkage specified at
2056  //   the prior declaration. If no prior declaration is visible, or
2057  //   if the prior declaration specifies no linkage, then the
2058  //   identifier has external linkage.
2059  if (New->hasExternalStorage() && Old->hasLinkage())
2060    /* Okay */;
2061  else if (New->getStorageClass() != SC_Static &&
2062           Old->getStorageClass() == SC_Static) {
2063    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2064    Diag(Old->getLocation(), diag::note_previous_definition);
2065    return New->setInvalidDecl();
2066  }
2067
2068  // Check if extern is followed by non-extern and vice-versa.
2069  if (New->hasExternalStorage() &&
2070      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2071    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2072    Diag(Old->getLocation(), diag::note_previous_definition);
2073    return New->setInvalidDecl();
2074  }
2075  if (Old->hasExternalStorage() &&
2076      !New->hasLinkage() && New->isLocalVarDecl()) {
2077    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2078    Diag(Old->getLocation(), diag::note_previous_definition);
2079    return New->setInvalidDecl();
2080  }
2081
2082  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2083
2084  // FIXME: The test for external storage here seems wrong? We still
2085  // need to check for mismatches.
2086  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2087      // Don't complain about out-of-line definitions of static members.
2088      !(Old->getLexicalDeclContext()->isRecord() &&
2089        !New->getLexicalDeclContext()->isRecord())) {
2090    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2091    Diag(Old->getLocation(), diag::note_previous_definition);
2092    return New->setInvalidDecl();
2093  }
2094
2095  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2096    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2097    Diag(Old->getLocation(), diag::note_previous_definition);
2098  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2099    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2100    Diag(Old->getLocation(), diag::note_previous_definition);
2101  }
2102
2103  // C++ doesn't have tentative definitions, so go right ahead and check here.
2104  const VarDecl *Def;
2105  if (getLangOptions().CPlusPlus &&
2106      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2107      (Def = Old->getDefinition())) {
2108    Diag(New->getLocation(), diag::err_redefinition)
2109      << New->getDeclName();
2110    Diag(Def->getLocation(), diag::note_previous_definition);
2111    New->setInvalidDecl();
2112    return;
2113  }
2114  // c99 6.2.2 P4.
2115  // For an identifier declared with the storage-class specifier extern in a
2116  // scope in which a prior declaration of that identifier is visible, if
2117  // the prior declaration specifies internal or external linkage, the linkage
2118  // of the identifier at the later declaration is the same as the linkage
2119  // specified at the prior declaration.
2120  // FIXME. revisit this code.
2121  if (New->hasExternalStorage() &&
2122      Old->getLinkage() == InternalLinkage &&
2123      New->getDeclContext() == Old->getDeclContext())
2124    New->setStorageClass(Old->getStorageClass());
2125
2126  // Keep a chain of previous declarations.
2127  New->setPreviousDeclaration(Old);
2128
2129  // Inherit access appropriately.
2130  New->setAccess(Old->getAccess());
2131}
2132
2133/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2134/// no declarator (e.g. "struct foo;") is parsed.
2135Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2136                                       DeclSpec &DS) {
2137  return ParsedFreeStandingDeclSpec(S, AS, DS,
2138                                    MultiTemplateParamsArg(*this, 0, 0));
2139}
2140
2141/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2142/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2143/// parameters to cope with template friend declarations.
2144Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2145                                       DeclSpec &DS,
2146                                       MultiTemplateParamsArg TemplateParams) {
2147  Decl *TagD = 0;
2148  TagDecl *Tag = 0;
2149  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2150      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2151      DS.getTypeSpecType() == DeclSpec::TST_union ||
2152      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2153    TagD = DS.getRepAsDecl();
2154
2155    if (!TagD) // We probably had an error
2156      return 0;
2157
2158    // Note that the above type specs guarantee that the
2159    // type rep is a Decl, whereas in many of the others
2160    // it's a Type.
2161    Tag = dyn_cast<TagDecl>(TagD);
2162  }
2163
2164  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2165    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2166    // or incomplete types shall not be restrict-qualified."
2167    if (TypeQuals & DeclSpec::TQ_restrict)
2168      Diag(DS.getRestrictSpecLoc(),
2169           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2170           << DS.getSourceRange();
2171  }
2172
2173  if (DS.isFriendSpecified()) {
2174    // If we're dealing with a decl but not a TagDecl, assume that
2175    // whatever routines created it handled the friendship aspect.
2176    if (TagD && !Tag)
2177      return 0;
2178    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2179  }
2180
2181  // Track whether we warned about the fact that there aren't any
2182  // declarators.
2183  bool emittedWarning = false;
2184
2185  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2186    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2187
2188    if (!Record->getDeclName() && Record->isDefinition() &&
2189        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2190      if (getLangOptions().CPlusPlus ||
2191          Record->getDeclContext()->isRecord())
2192        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2193
2194      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2195        << DS.getSourceRange();
2196      emittedWarning = true;
2197    }
2198  }
2199
2200  // Check for Microsoft C extension: anonymous struct.
2201  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2202      CurContext->isRecord() &&
2203      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2204    // Handle 2 kinds of anonymous struct:
2205    //   struct STRUCT;
2206    // and
2207    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2208    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2209    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2210        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2211         DS.getRepAsType().get()->isStructureType())) {
2212      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2213        << DS.getSourceRange();
2214      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2215    }
2216  }
2217
2218  if (getLangOptions().CPlusPlus &&
2219      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2220    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2221      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2222          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2223        Diag(Enum->getLocation(), diag::ext_no_declarators)
2224          << DS.getSourceRange();
2225        emittedWarning = true;
2226      }
2227
2228  // Skip all the checks below if we have a type error.
2229  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2230
2231  if (!DS.isMissingDeclaratorOk()) {
2232    // Warn about typedefs of enums without names, since this is an
2233    // extension in both Microsoft and GNU.
2234    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2235        Tag && isa<EnumDecl>(Tag)) {
2236      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2237        << DS.getSourceRange();
2238      return Tag;
2239    }
2240
2241    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2242      << DS.getSourceRange();
2243    emittedWarning = true;
2244  }
2245
2246  // We're going to complain about a bunch of spurious specifiers;
2247  // only do this if we're declaring a tag, because otherwise we
2248  // should be getting diag::ext_no_declarators.
2249  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2250    return TagD;
2251
2252  // Note that a linkage-specification sets a storage class, but
2253  // 'extern "C" struct foo;' is actually valid and not theoretically
2254  // useless.
2255  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2256    if (!DS.isExternInLinkageSpec())
2257      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2258        << DeclSpec::getSpecifierName(scs);
2259
2260  if (DS.isThreadSpecified())
2261    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2262  if (DS.getTypeQualifiers()) {
2263    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2264      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2265    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2266      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2267    // Restrict is covered above.
2268  }
2269  if (DS.isInlineSpecified())
2270    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2271  if (DS.isVirtualSpecified())
2272    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2273  if (DS.isExplicitSpecified())
2274    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2275
2276  // FIXME: Warn on useless attributes
2277
2278  return TagD;
2279}
2280
2281/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2282/// builds a statement for it and returns it so it is evaluated.
2283StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2284  StmtResult R;
2285  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2286    Expr *Exp = DS.getRepAsExpr();
2287    QualType Ty = Exp->getType();
2288    if (Ty->isPointerType()) {
2289      do
2290        Ty = Ty->getAs<PointerType>()->getPointeeType();
2291      while (Ty->isPointerType());
2292    }
2293    if (Ty->isVariableArrayType()) {
2294      R = ActOnExprStmt(MakeFullExpr(Exp));
2295    }
2296  }
2297  return R;
2298}
2299
2300/// We are trying to inject an anonymous member into the given scope;
2301/// check if there's an existing declaration that can't be overloaded.
2302///
2303/// \return true if this is a forbidden redeclaration
2304static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2305                                         Scope *S,
2306                                         DeclContext *Owner,
2307                                         DeclarationName Name,
2308                                         SourceLocation NameLoc,
2309                                         unsigned diagnostic) {
2310  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2311                 Sema::ForRedeclaration);
2312  if (!SemaRef.LookupName(R, S)) return false;
2313
2314  if (R.getAsSingle<TagDecl>())
2315    return false;
2316
2317  // Pick a representative declaration.
2318  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2319  assert(PrevDecl && "Expected a non-null Decl");
2320
2321  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2322    return false;
2323
2324  SemaRef.Diag(NameLoc, diagnostic) << Name;
2325  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2326
2327  return true;
2328}
2329
2330/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2331/// anonymous struct or union AnonRecord into the owning context Owner
2332/// and scope S. This routine will be invoked just after we realize
2333/// that an unnamed union or struct is actually an anonymous union or
2334/// struct, e.g.,
2335///
2336/// @code
2337/// union {
2338///   int i;
2339///   float f;
2340/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2341///    // f into the surrounding scope.x
2342/// @endcode
2343///
2344/// This routine is recursive, injecting the names of nested anonymous
2345/// structs/unions into the owning context and scope as well.
2346static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2347                                                DeclContext *Owner,
2348                                                RecordDecl *AnonRecord,
2349                                                AccessSpecifier AS,
2350                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2351                                                      bool MSAnonStruct) {
2352  unsigned diagKind
2353    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2354                            : diag::err_anonymous_struct_member_redecl;
2355
2356  bool Invalid = false;
2357
2358  // Look every FieldDecl and IndirectFieldDecl with a name.
2359  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2360                               DEnd = AnonRecord->decls_end();
2361       D != DEnd; ++D) {
2362    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2363        cast<NamedDecl>(*D)->getDeclName()) {
2364      ValueDecl *VD = cast<ValueDecl>(*D);
2365      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2366                                       VD->getLocation(), diagKind)) {
2367        // C++ [class.union]p2:
2368        //   The names of the members of an anonymous union shall be
2369        //   distinct from the names of any other entity in the
2370        //   scope in which the anonymous union is declared.
2371        Invalid = true;
2372      } else {
2373        // C++ [class.union]p2:
2374        //   For the purpose of name lookup, after the anonymous union
2375        //   definition, the members of the anonymous union are
2376        //   considered to have been defined in the scope in which the
2377        //   anonymous union is declared.
2378        unsigned OldChainingSize = Chaining.size();
2379        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2380          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2381               PE = IF->chain_end(); PI != PE; ++PI)
2382            Chaining.push_back(*PI);
2383        else
2384          Chaining.push_back(VD);
2385
2386        assert(Chaining.size() >= 2);
2387        NamedDecl **NamedChain =
2388          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2389        for (unsigned i = 0; i < Chaining.size(); i++)
2390          NamedChain[i] = Chaining[i];
2391
2392        IndirectFieldDecl* IndirectField =
2393          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2394                                    VD->getIdentifier(), VD->getType(),
2395                                    NamedChain, Chaining.size());
2396
2397        IndirectField->setAccess(AS);
2398        IndirectField->setImplicit();
2399        SemaRef.PushOnScopeChains(IndirectField, S);
2400
2401        // That includes picking up the appropriate access specifier.
2402        if (AS != AS_none) IndirectField->setAccess(AS);
2403
2404        Chaining.resize(OldChainingSize);
2405      }
2406    }
2407  }
2408
2409  return Invalid;
2410}
2411
2412/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2413/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2414/// illegal input values are mapped to SC_None.
2415static StorageClass
2416StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2417  switch (StorageClassSpec) {
2418  case DeclSpec::SCS_unspecified:    return SC_None;
2419  case DeclSpec::SCS_extern:         return SC_Extern;
2420  case DeclSpec::SCS_static:         return SC_Static;
2421  case DeclSpec::SCS_auto:           return SC_Auto;
2422  case DeclSpec::SCS_register:       return SC_Register;
2423  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2424    // Illegal SCSs map to None: error reporting is up to the caller.
2425  case DeclSpec::SCS_mutable:        // Fall through.
2426  case DeclSpec::SCS_typedef:        return SC_None;
2427  }
2428  llvm_unreachable("unknown storage class specifier");
2429}
2430
2431/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2432/// a StorageClass. Any error reporting is up to the caller:
2433/// illegal input values are mapped to SC_None.
2434static StorageClass
2435StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2436  switch (StorageClassSpec) {
2437  case DeclSpec::SCS_unspecified:    return SC_None;
2438  case DeclSpec::SCS_extern:         return SC_Extern;
2439  case DeclSpec::SCS_static:         return SC_Static;
2440  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2441    // Illegal SCSs map to None: error reporting is up to the caller.
2442  case DeclSpec::SCS_auto:           // Fall through.
2443  case DeclSpec::SCS_mutable:        // Fall through.
2444  case DeclSpec::SCS_register:       // Fall through.
2445  case DeclSpec::SCS_typedef:        return SC_None;
2446  }
2447  llvm_unreachable("unknown storage class specifier");
2448}
2449
2450/// BuildAnonymousStructOrUnion - Handle the declaration of an
2451/// anonymous structure or union. Anonymous unions are a C++ feature
2452/// (C++ [class.union]) and a GNU C extension; anonymous structures
2453/// are a GNU C and GNU C++ extension.
2454Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2455                                             AccessSpecifier AS,
2456                                             RecordDecl *Record) {
2457  DeclContext *Owner = Record->getDeclContext();
2458
2459  // Diagnose whether this anonymous struct/union is an extension.
2460  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2461    Diag(Record->getLocation(), diag::ext_anonymous_union);
2462  else if (!Record->isUnion())
2463    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2464
2465  // C and C++ require different kinds of checks for anonymous
2466  // structs/unions.
2467  bool Invalid = false;
2468  if (getLangOptions().CPlusPlus) {
2469    const char* PrevSpec = 0;
2470    unsigned DiagID;
2471    // C++ [class.union]p3:
2472    //   Anonymous unions declared in a named namespace or in the
2473    //   global namespace shall be declared static.
2474    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2475        (isa<TranslationUnitDecl>(Owner) ||
2476         (isa<NamespaceDecl>(Owner) &&
2477          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2478      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2479      Invalid = true;
2480
2481      // Recover by adding 'static'.
2482      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2483                             PrevSpec, DiagID, getLangOptions());
2484    }
2485    // C++ [class.union]p3:
2486    //   A storage class is not allowed in a declaration of an
2487    //   anonymous union in a class scope.
2488    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2489             isa<RecordDecl>(Owner)) {
2490      Diag(DS.getStorageClassSpecLoc(),
2491           diag::err_anonymous_union_with_storage_spec);
2492      Invalid = true;
2493
2494      // Recover by removing the storage specifier.
2495      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2496                             PrevSpec, DiagID, getLangOptions());
2497    }
2498
2499    // Ignore const/volatile/restrict qualifiers.
2500    if (DS.getTypeQualifiers()) {
2501      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2502        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2503          << Record->isUnion() << 0
2504          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2505      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2506        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2507          << Record->isUnion() << 1
2508          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2509      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2510        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2511          << Record->isUnion() << 2
2512          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2513
2514      DS.ClearTypeQualifiers();
2515    }
2516
2517    // C++ [class.union]p2:
2518    //   The member-specification of an anonymous union shall only
2519    //   define non-static data members. [Note: nested types and
2520    //   functions cannot be declared within an anonymous union. ]
2521    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2522                                 MemEnd = Record->decls_end();
2523         Mem != MemEnd; ++Mem) {
2524      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2525        // C++ [class.union]p3:
2526        //   An anonymous union shall not have private or protected
2527        //   members (clause 11).
2528        assert(FD->getAccess() != AS_none);
2529        if (FD->getAccess() != AS_public) {
2530          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2531            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2532          Invalid = true;
2533        }
2534
2535        // C++ [class.union]p1
2536        //   An object of a class with a non-trivial constructor, a non-trivial
2537        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2538        //   assignment operator cannot be a member of a union, nor can an
2539        //   array of such objects.
2540        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2541          Invalid = true;
2542      } else if ((*Mem)->isImplicit()) {
2543        // Any implicit members are fine.
2544      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2545        // This is a type that showed up in an
2546        // elaborated-type-specifier inside the anonymous struct or
2547        // union, but which actually declares a type outside of the
2548        // anonymous struct or union. It's okay.
2549      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2550        if (!MemRecord->isAnonymousStructOrUnion() &&
2551            MemRecord->getDeclName()) {
2552          // Visual C++ allows type definition in anonymous struct or union.
2553          if (getLangOptions().Microsoft)
2554            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2555              << (int)Record->isUnion();
2556          else {
2557            // This is a nested type declaration.
2558            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2559              << (int)Record->isUnion();
2560            Invalid = true;
2561          }
2562        }
2563      } else if (isa<AccessSpecDecl>(*Mem)) {
2564        // Any access specifier is fine.
2565      } else {
2566        // We have something that isn't a non-static data
2567        // member. Complain about it.
2568        unsigned DK = diag::err_anonymous_record_bad_member;
2569        if (isa<TypeDecl>(*Mem))
2570          DK = diag::err_anonymous_record_with_type;
2571        else if (isa<FunctionDecl>(*Mem))
2572          DK = diag::err_anonymous_record_with_function;
2573        else if (isa<VarDecl>(*Mem))
2574          DK = diag::err_anonymous_record_with_static;
2575
2576        // Visual C++ allows type definition in anonymous struct or union.
2577        if (getLangOptions().Microsoft &&
2578            DK == diag::err_anonymous_record_with_type)
2579          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2580            << (int)Record->isUnion();
2581        else {
2582          Diag((*Mem)->getLocation(), DK)
2583              << (int)Record->isUnion();
2584          Invalid = true;
2585        }
2586      }
2587    }
2588  }
2589
2590  if (!Record->isUnion() && !Owner->isRecord()) {
2591    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2592      << (int)getLangOptions().CPlusPlus;
2593    Invalid = true;
2594  }
2595
2596  // Mock up a declarator.
2597  Declarator Dc(DS, Declarator::TypeNameContext);
2598  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2599  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2600
2601  // Create a declaration for this anonymous struct/union.
2602  NamedDecl *Anon = 0;
2603  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2604    Anon = FieldDecl::Create(Context, OwningClass,
2605                             DS.getSourceRange().getBegin(),
2606                             Record->getLocation(),
2607                             /*IdentifierInfo=*/0,
2608                             Context.getTypeDeclType(Record),
2609                             TInfo,
2610                             /*BitWidth=*/0, /*Mutable=*/false);
2611    Anon->setAccess(AS);
2612    if (getLangOptions().CPlusPlus)
2613      FieldCollector->Add(cast<FieldDecl>(Anon));
2614  } else {
2615    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2616    assert(SCSpec != DeclSpec::SCS_typedef &&
2617           "Parser allowed 'typedef' as storage class VarDecl.");
2618    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2619    if (SCSpec == DeclSpec::SCS_mutable) {
2620      // mutable can only appear on non-static class members, so it's always
2621      // an error here
2622      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2623      Invalid = true;
2624      SC = SC_None;
2625    }
2626    SCSpec = DS.getStorageClassSpecAsWritten();
2627    VarDecl::StorageClass SCAsWritten
2628      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2629
2630    Anon = VarDecl::Create(Context, Owner,
2631                           DS.getSourceRange().getBegin(),
2632                           Record->getLocation(), /*IdentifierInfo=*/0,
2633                           Context.getTypeDeclType(Record),
2634                           TInfo, SC, SCAsWritten);
2635  }
2636  Anon->setImplicit();
2637
2638  // Add the anonymous struct/union object to the current
2639  // context. We'll be referencing this object when we refer to one of
2640  // its members.
2641  Owner->addDecl(Anon);
2642
2643  // Inject the members of the anonymous struct/union into the owning
2644  // context and into the identifier resolver chain for name lookup
2645  // purposes.
2646  llvm::SmallVector<NamedDecl*, 2> Chain;
2647  Chain.push_back(Anon);
2648
2649  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2650                                          Chain, false))
2651    Invalid = true;
2652
2653  // Mark this as an anonymous struct/union type. Note that we do not
2654  // do this until after we have already checked and injected the
2655  // members of this anonymous struct/union type, because otherwise
2656  // the members could be injected twice: once by DeclContext when it
2657  // builds its lookup table, and once by
2658  // InjectAnonymousStructOrUnionMembers.
2659  Record->setAnonymousStructOrUnion(true);
2660
2661  if (Invalid)
2662    Anon->setInvalidDecl();
2663
2664  return Anon;
2665}
2666
2667/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2668/// Microsoft C anonymous structure.
2669/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2670/// Example:
2671///
2672/// struct A { int a; };
2673/// struct B { struct A; int b; };
2674///
2675/// void foo() {
2676///   B var;
2677///   var.a = 3;
2678/// }
2679///
2680Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2681                                           RecordDecl *Record) {
2682
2683  // If there is no Record, get the record via the typedef.
2684  if (!Record)
2685    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2686
2687  // Mock up a declarator.
2688  Declarator Dc(DS, Declarator::TypeNameContext);
2689  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2690  assert(TInfo && "couldn't build declarator info for anonymous struct");
2691
2692  // Create a declaration for this anonymous struct.
2693  NamedDecl* Anon = FieldDecl::Create(Context,
2694                             cast<RecordDecl>(CurContext),
2695                             DS.getSourceRange().getBegin(),
2696                             DS.getSourceRange().getBegin(),
2697                             /*IdentifierInfo=*/0,
2698                             Context.getTypeDeclType(Record),
2699                             TInfo,
2700                             /*BitWidth=*/0, /*Mutable=*/false);
2701  Anon->setImplicit();
2702
2703  // Add the anonymous struct object to the current context.
2704  CurContext->addDecl(Anon);
2705
2706  // Inject the members of the anonymous struct into the current
2707  // context and into the identifier resolver chain for name lookup
2708  // purposes.
2709  llvm::SmallVector<NamedDecl*, 2> Chain;
2710  Chain.push_back(Anon);
2711
2712  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2713                                          Record->getDefinition(),
2714                                          AS_none, Chain, true))
2715    Anon->setInvalidDecl();
2716
2717  return Anon;
2718}
2719
2720/// GetNameForDeclarator - Determine the full declaration name for the
2721/// given Declarator.
2722DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2723  return GetNameFromUnqualifiedId(D.getName());
2724}
2725
2726/// \brief Retrieves the declaration name from a parsed unqualified-id.
2727DeclarationNameInfo
2728Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2729  DeclarationNameInfo NameInfo;
2730  NameInfo.setLoc(Name.StartLocation);
2731
2732  switch (Name.getKind()) {
2733
2734  case UnqualifiedId::IK_Identifier:
2735    NameInfo.setName(Name.Identifier);
2736    NameInfo.setLoc(Name.StartLocation);
2737    return NameInfo;
2738
2739  case UnqualifiedId::IK_OperatorFunctionId:
2740    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2741                                           Name.OperatorFunctionId.Operator));
2742    NameInfo.setLoc(Name.StartLocation);
2743    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2744      = Name.OperatorFunctionId.SymbolLocations[0];
2745    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2746      = Name.EndLocation.getRawEncoding();
2747    return NameInfo;
2748
2749  case UnqualifiedId::IK_LiteralOperatorId:
2750    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2751                                                           Name.Identifier));
2752    NameInfo.setLoc(Name.StartLocation);
2753    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2754    return NameInfo;
2755
2756  case UnqualifiedId::IK_ConversionFunctionId: {
2757    TypeSourceInfo *TInfo;
2758    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2759    if (Ty.isNull())
2760      return DeclarationNameInfo();
2761    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2762                                               Context.getCanonicalType(Ty)));
2763    NameInfo.setLoc(Name.StartLocation);
2764    NameInfo.setNamedTypeInfo(TInfo);
2765    return NameInfo;
2766  }
2767
2768  case UnqualifiedId::IK_ConstructorName: {
2769    TypeSourceInfo *TInfo;
2770    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2771    if (Ty.isNull())
2772      return DeclarationNameInfo();
2773    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2774                                              Context.getCanonicalType(Ty)));
2775    NameInfo.setLoc(Name.StartLocation);
2776    NameInfo.setNamedTypeInfo(TInfo);
2777    return NameInfo;
2778  }
2779
2780  case UnqualifiedId::IK_ConstructorTemplateId: {
2781    // In well-formed code, we can only have a constructor
2782    // template-id that refers to the current context, so go there
2783    // to find the actual type being constructed.
2784    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2785    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2786      return DeclarationNameInfo();
2787
2788    // Determine the type of the class being constructed.
2789    QualType CurClassType = Context.getTypeDeclType(CurClass);
2790
2791    // FIXME: Check two things: that the template-id names the same type as
2792    // CurClassType, and that the template-id does not occur when the name
2793    // was qualified.
2794
2795    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2796                                    Context.getCanonicalType(CurClassType)));
2797    NameInfo.setLoc(Name.StartLocation);
2798    // FIXME: should we retrieve TypeSourceInfo?
2799    NameInfo.setNamedTypeInfo(0);
2800    return NameInfo;
2801  }
2802
2803  case UnqualifiedId::IK_DestructorName: {
2804    TypeSourceInfo *TInfo;
2805    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2806    if (Ty.isNull())
2807      return DeclarationNameInfo();
2808    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2809                                              Context.getCanonicalType(Ty)));
2810    NameInfo.setLoc(Name.StartLocation);
2811    NameInfo.setNamedTypeInfo(TInfo);
2812    return NameInfo;
2813  }
2814
2815  case UnqualifiedId::IK_TemplateId: {
2816    TemplateName TName = Name.TemplateId->Template.get();
2817    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2818    return Context.getNameForTemplate(TName, TNameLoc);
2819  }
2820
2821  } // switch (Name.getKind())
2822
2823  assert(false && "Unknown name kind");
2824  return DeclarationNameInfo();
2825}
2826
2827/// isNearlyMatchingFunction - Determine whether the C++ functions
2828/// Declaration and Definition are "nearly" matching. This heuristic
2829/// is used to improve diagnostics in the case where an out-of-line
2830/// function definition doesn't match any declaration within
2831/// the class or namespace.
2832static bool isNearlyMatchingFunction(ASTContext &Context,
2833                                     FunctionDecl *Declaration,
2834                                     FunctionDecl *Definition) {
2835  if (Declaration->param_size() != Definition->param_size())
2836    return false;
2837  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2838    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2839    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2840
2841    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2842                                        DefParamTy.getNonReferenceType()))
2843      return false;
2844  }
2845
2846  return true;
2847}
2848
2849/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2850/// declarator needs to be rebuilt in the current instantiation.
2851/// Any bits of declarator which appear before the name are valid for
2852/// consideration here.  That's specifically the type in the decl spec
2853/// and the base type in any member-pointer chunks.
2854static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2855                                                    DeclarationName Name) {
2856  // The types we specifically need to rebuild are:
2857  //   - typenames, typeofs, and decltypes
2858  //   - types which will become injected class names
2859  // Of course, we also need to rebuild any type referencing such a
2860  // type.  It's safest to just say "dependent", but we call out a
2861  // few cases here.
2862
2863  DeclSpec &DS = D.getMutableDeclSpec();
2864  switch (DS.getTypeSpecType()) {
2865  case DeclSpec::TST_typename:
2866  case DeclSpec::TST_typeofType:
2867  case DeclSpec::TST_decltype:
2868  case DeclSpec::TST_underlying_type: {
2869    // Grab the type from the parser.
2870    TypeSourceInfo *TSI = 0;
2871    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2872    if (T.isNull() || !T->isDependentType()) break;
2873
2874    // Make sure there's a type source info.  This isn't really much
2875    // of a waste; most dependent types should have type source info
2876    // attached already.
2877    if (!TSI)
2878      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2879
2880    // Rebuild the type in the current instantiation.
2881    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2882    if (!TSI) return true;
2883
2884    // Store the new type back in the decl spec.
2885    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2886    DS.UpdateTypeRep(LocType);
2887    break;
2888  }
2889
2890  case DeclSpec::TST_typeofExpr: {
2891    Expr *E = DS.getRepAsExpr();
2892    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2893    if (Result.isInvalid()) return true;
2894    DS.UpdateExprRep(Result.get());
2895    break;
2896  }
2897
2898  default:
2899    // Nothing to do for these decl specs.
2900    break;
2901  }
2902
2903  // It doesn't matter what order we do this in.
2904  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2905    DeclaratorChunk &Chunk = D.getTypeObject(I);
2906
2907    // The only type information in the declarator which can come
2908    // before the declaration name is the base type of a member
2909    // pointer.
2910    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2911      continue;
2912
2913    // Rebuild the scope specifier in-place.
2914    CXXScopeSpec &SS = Chunk.Mem.Scope();
2915    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2916      return true;
2917  }
2918
2919  return false;
2920}
2921
2922Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2923                            bool IsFunctionDefinition) {
2924  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2925                          IsFunctionDefinition);
2926}
2927
2928/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2929///   If T is the name of a class, then each of the following shall have a
2930///   name different from T:
2931///     - every static data member of class T;
2932///     - every member function of class T
2933///     - every member of class T that is itself a type;
2934/// \returns true if the declaration name violates these rules.
2935bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2936                                   DeclarationNameInfo NameInfo) {
2937  DeclarationName Name = NameInfo.getName();
2938
2939  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2940    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2941      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2942      return true;
2943    }
2944
2945  return false;
2946}
2947
2948Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2949                             MultiTemplateParamsArg TemplateParamLists,
2950                             bool IsFunctionDefinition) {
2951  // TODO: consider using NameInfo for diagnostic.
2952  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2953  DeclarationName Name = NameInfo.getName();
2954
2955  // All of these full declarators require an identifier.  If it doesn't have
2956  // one, the ParsedFreeStandingDeclSpec action should be used.
2957  if (!Name) {
2958    if (!D.isInvalidType())  // Reject this if we think it is valid.
2959      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2960           diag::err_declarator_need_ident)
2961        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2962    return 0;
2963  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2964    return 0;
2965
2966  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2967  // we find one that is.
2968  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2969         (S->getFlags() & Scope::TemplateParamScope) != 0)
2970    S = S->getParent();
2971
2972  DeclContext *DC = CurContext;
2973  if (D.getCXXScopeSpec().isInvalid())
2974    D.setInvalidType();
2975  else if (D.getCXXScopeSpec().isSet()) {
2976    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2977                                        UPPC_DeclarationQualifier))
2978      return 0;
2979
2980    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2981    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2982    if (!DC) {
2983      // If we could not compute the declaration context, it's because the
2984      // declaration context is dependent but does not refer to a class,
2985      // class template, or class template partial specialization. Complain
2986      // and return early, to avoid the coming semantic disaster.
2987      Diag(D.getIdentifierLoc(),
2988           diag::err_template_qualified_declarator_no_match)
2989        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2990        << D.getCXXScopeSpec().getRange();
2991      return 0;
2992    }
2993    bool IsDependentContext = DC->isDependentContext();
2994
2995    if (!IsDependentContext &&
2996        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2997      return 0;
2998
2999    if (isa<CXXRecordDecl>(DC)) {
3000      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3001        Diag(D.getIdentifierLoc(),
3002             diag::err_member_def_undefined_record)
3003          << Name << DC << D.getCXXScopeSpec().getRange();
3004        D.setInvalidType();
3005      } else if (isa<CXXRecordDecl>(CurContext) &&
3006                 !D.getDeclSpec().isFriendSpecified()) {
3007        // The user provided a superfluous scope specifier inside a class
3008        // definition:
3009        //
3010        // class X {
3011        //   void X::f();
3012        // };
3013        if (CurContext->Equals(DC))
3014          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3015            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3016        else
3017          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3018            << Name << D.getCXXScopeSpec().getRange();
3019
3020        // Pretend that this qualifier was not here.
3021        D.getCXXScopeSpec().clear();
3022      }
3023    }
3024
3025    // Check whether we need to rebuild the type of the given
3026    // declaration in the current instantiation.
3027    if (EnteringContext && IsDependentContext &&
3028        TemplateParamLists.size() != 0) {
3029      ContextRAII SavedContext(*this, DC);
3030      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3031        D.setInvalidType();
3032    }
3033  }
3034
3035  if (DiagnoseClassNameShadow(DC, NameInfo))
3036    // If this is a typedef, we'll end up spewing multiple diagnostics.
3037    // Just return early; it's safer.
3038    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3039      return 0;
3040
3041  NamedDecl *New;
3042
3043  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3044  QualType R = TInfo->getType();
3045
3046  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3047                                      UPPC_DeclarationType))
3048    D.setInvalidType();
3049
3050  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3051                        ForRedeclaration);
3052
3053  // See if this is a redefinition of a variable in the same scope.
3054  if (!D.getCXXScopeSpec().isSet()) {
3055    bool IsLinkageLookup = false;
3056
3057    // If the declaration we're planning to build will be a function
3058    // or object with linkage, then look for another declaration with
3059    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3060    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3061      /* Do nothing*/;
3062    else if (R->isFunctionType()) {
3063      if (CurContext->isFunctionOrMethod() ||
3064          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3065        IsLinkageLookup = true;
3066    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3067      IsLinkageLookup = true;
3068    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3069             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3070      IsLinkageLookup = true;
3071
3072    if (IsLinkageLookup)
3073      Previous.clear(LookupRedeclarationWithLinkage);
3074
3075    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3076  } else { // Something like "int foo::x;"
3077    LookupQualifiedName(Previous, DC);
3078
3079    // Don't consider using declarations as previous declarations for
3080    // out-of-line members.
3081    RemoveUsingDecls(Previous);
3082
3083    // C++ 7.3.1.2p2:
3084    // Members (including explicit specializations of templates) of a named
3085    // namespace can also be defined outside that namespace by explicit
3086    // qualification of the name being defined, provided that the entity being
3087    // defined was already declared in the namespace and the definition appears
3088    // after the point of declaration in a namespace that encloses the
3089    // declarations namespace.
3090    //
3091    // Note that we only check the context at this point. We don't yet
3092    // have enough information to make sure that PrevDecl is actually
3093    // the declaration we want to match. For example, given:
3094    //
3095    //   class X {
3096    //     void f();
3097    //     void f(float);
3098    //   };
3099    //
3100    //   void X::f(int) { } // ill-formed
3101    //
3102    // In this case, PrevDecl will point to the overload set
3103    // containing the two f's declared in X, but neither of them
3104    // matches.
3105
3106    // First check whether we named the global scope.
3107    if (isa<TranslationUnitDecl>(DC)) {
3108      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3109        << Name << D.getCXXScopeSpec().getRange();
3110    } else {
3111      DeclContext *Cur = CurContext;
3112      while (isa<LinkageSpecDecl>(Cur))
3113        Cur = Cur->getParent();
3114      if (!Cur->Encloses(DC)) {
3115        // The qualifying scope doesn't enclose the original declaration.
3116        // Emit diagnostic based on current scope.
3117        SourceLocation L = D.getIdentifierLoc();
3118        SourceRange R = D.getCXXScopeSpec().getRange();
3119        if (isa<FunctionDecl>(Cur))
3120          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3121        else
3122          Diag(L, diag::err_invalid_declarator_scope)
3123            << Name << cast<NamedDecl>(DC) << R;
3124        D.setInvalidType();
3125      }
3126    }
3127  }
3128
3129  if (Previous.isSingleResult() &&
3130      Previous.getFoundDecl()->isTemplateParameter()) {
3131    // Maybe we will complain about the shadowed template parameter.
3132    if (!D.isInvalidType())
3133      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3134                                          Previous.getFoundDecl()))
3135        D.setInvalidType();
3136
3137    // Just pretend that we didn't see the previous declaration.
3138    Previous.clear();
3139  }
3140
3141  // In C++, the previous declaration we find might be a tag type
3142  // (class or enum). In this case, the new declaration will hide the
3143  // tag type. Note that this does does not apply if we're declaring a
3144  // typedef (C++ [dcl.typedef]p4).
3145  if (Previous.isSingleTagDecl() &&
3146      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3147    Previous.clear();
3148
3149  bool Redeclaration = false;
3150  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3151    if (TemplateParamLists.size()) {
3152      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3153      return 0;
3154    }
3155
3156    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3157  } else if (R->isFunctionType()) {
3158    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3159                                  move(TemplateParamLists),
3160                                  IsFunctionDefinition, Redeclaration);
3161  } else {
3162    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3163                                  move(TemplateParamLists),
3164                                  Redeclaration);
3165  }
3166
3167  if (New == 0)
3168    return 0;
3169
3170  // If this has an identifier and is not an invalid redeclaration or
3171  // function template specialization, add it to the scope stack.
3172  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3173    PushOnScopeChains(New, S);
3174
3175  return New;
3176}
3177
3178/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3179/// types into constant array types in certain situations which would otherwise
3180/// be errors (for GCC compatibility).
3181static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3182                                                    ASTContext &Context,
3183                                                    bool &SizeIsNegative,
3184                                                    llvm::APSInt &Oversized) {
3185  // This method tries to turn a variable array into a constant
3186  // array even when the size isn't an ICE.  This is necessary
3187  // for compatibility with code that depends on gcc's buggy
3188  // constant expression folding, like struct {char x[(int)(char*)2];}
3189  SizeIsNegative = false;
3190  Oversized = 0;
3191
3192  if (T->isDependentType())
3193    return QualType();
3194
3195  QualifierCollector Qs;
3196  const Type *Ty = Qs.strip(T);
3197
3198  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3199    QualType Pointee = PTy->getPointeeType();
3200    QualType FixedType =
3201        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3202                                            Oversized);
3203    if (FixedType.isNull()) return FixedType;
3204    FixedType = Context.getPointerType(FixedType);
3205    return Qs.apply(Context, FixedType);
3206  }
3207  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3208    QualType Inner = PTy->getInnerType();
3209    QualType FixedType =
3210        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3211                                            Oversized);
3212    if (FixedType.isNull()) return FixedType;
3213    FixedType = Context.getParenType(FixedType);
3214    return Qs.apply(Context, FixedType);
3215  }
3216
3217  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3218  if (!VLATy)
3219    return QualType();
3220  // FIXME: We should probably handle this case
3221  if (VLATy->getElementType()->isVariablyModifiedType())
3222    return QualType();
3223
3224  Expr::EvalResult EvalResult;
3225  if (!VLATy->getSizeExpr() ||
3226      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3227      !EvalResult.Val.isInt())
3228    return QualType();
3229
3230  // Check whether the array size is negative.
3231  llvm::APSInt &Res = EvalResult.Val.getInt();
3232  if (Res.isSigned() && Res.isNegative()) {
3233    SizeIsNegative = true;
3234    return QualType();
3235  }
3236
3237  // Check whether the array is too large to be addressed.
3238  unsigned ActiveSizeBits
3239    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3240                                              Res);
3241  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3242    Oversized = Res;
3243    return QualType();
3244  }
3245
3246  return Context.getConstantArrayType(VLATy->getElementType(),
3247                                      Res, ArrayType::Normal, 0);
3248}
3249
3250/// \brief Register the given locally-scoped external C declaration so
3251/// that it can be found later for redeclarations
3252void
3253Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3254                                       const LookupResult &Previous,
3255                                       Scope *S) {
3256  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3257         "Decl is not a locally-scoped decl!");
3258  // Note that we have a locally-scoped external with this name.
3259  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3260
3261  if (!Previous.isSingleResult())
3262    return;
3263
3264  NamedDecl *PrevDecl = Previous.getFoundDecl();
3265
3266  // If there was a previous declaration of this variable, it may be
3267  // in our identifier chain. Update the identifier chain with the new
3268  // declaration.
3269  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3270    // The previous declaration was found on the identifer resolver
3271    // chain, so remove it from its scope.
3272    while (S && !S->isDeclScope(PrevDecl))
3273      S = S->getParent();
3274
3275    if (S)
3276      S->RemoveDecl(PrevDecl);
3277  }
3278}
3279
3280/// \brief Diagnose function specifiers on a declaration of an identifier that
3281/// does not identify a function.
3282void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3283  // FIXME: We should probably indicate the identifier in question to avoid
3284  // confusion for constructs like "inline int a(), b;"
3285  if (D.getDeclSpec().isInlineSpecified())
3286    Diag(D.getDeclSpec().getInlineSpecLoc(),
3287         diag::err_inline_non_function);
3288
3289  if (D.getDeclSpec().isVirtualSpecified())
3290    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3291         diag::err_virtual_non_function);
3292
3293  if (D.getDeclSpec().isExplicitSpecified())
3294    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3295         diag::err_explicit_non_function);
3296}
3297
3298NamedDecl*
3299Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3300                             QualType R,  TypeSourceInfo *TInfo,
3301                             LookupResult &Previous, bool &Redeclaration) {
3302  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3303  if (D.getCXXScopeSpec().isSet()) {
3304    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3305      << D.getCXXScopeSpec().getRange();
3306    D.setInvalidType();
3307    // Pretend we didn't see the scope specifier.
3308    DC = CurContext;
3309    Previous.clear();
3310  }
3311
3312  if (getLangOptions().CPlusPlus) {
3313    // Check that there are no default arguments (C++ only).
3314    CheckExtraCXXDefaultArguments(D);
3315  }
3316
3317  DiagnoseFunctionSpecifiers(D);
3318
3319  if (D.getDeclSpec().isThreadSpecified())
3320    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3321
3322  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3323    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3324      << D.getName().getSourceRange();
3325    return 0;
3326  }
3327
3328  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3329  if (!NewTD) return 0;
3330
3331  // Handle attributes prior to checking for duplicates in MergeVarDecl
3332  ProcessDeclAttributes(S, NewTD, D);
3333
3334  CheckTypedefForVariablyModifiedType(S, NewTD);
3335
3336  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3337}
3338
3339void
3340Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3341  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3342  // then it shall have block scope.
3343  // Note that variably modified types must be fixed before merging the decl so
3344  // that redeclarations will match.
3345  QualType T = NewTD->getUnderlyingType();
3346  if (T->isVariablyModifiedType()) {
3347    getCurFunction()->setHasBranchProtectedScope();
3348
3349    if (S->getFnParent() == 0) {
3350      bool SizeIsNegative;
3351      llvm::APSInt Oversized;
3352      QualType FixedTy =
3353          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3354                                              Oversized);
3355      if (!FixedTy.isNull()) {
3356        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3357        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3358      } else {
3359        if (SizeIsNegative)
3360          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3361        else if (T->isVariableArrayType())
3362          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3363        else if (Oversized.getBoolValue())
3364          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3365        else
3366          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3367        NewTD->setInvalidDecl();
3368      }
3369    }
3370  }
3371}
3372
3373
3374/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3375/// declares a typedef-name, either using the 'typedef' type specifier or via
3376/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3377NamedDecl*
3378Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3379                           LookupResult &Previous, bool &Redeclaration) {
3380  // Merge the decl with the existing one if appropriate. If the decl is
3381  // in an outer scope, it isn't the same thing.
3382  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3383                       /*ExplicitInstantiationOrSpecialization=*/false);
3384  if (!Previous.empty()) {
3385    Redeclaration = true;
3386    MergeTypedefNameDecl(NewTD, Previous);
3387  }
3388
3389  // If this is the C FILE type, notify the AST context.
3390  if (IdentifierInfo *II = NewTD->getIdentifier())
3391    if (!NewTD->isInvalidDecl() &&
3392        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3393      if (II->isStr("FILE"))
3394        Context.setFILEDecl(NewTD);
3395      else if (II->isStr("jmp_buf"))
3396        Context.setjmp_bufDecl(NewTD);
3397      else if (II->isStr("sigjmp_buf"))
3398        Context.setsigjmp_bufDecl(NewTD);
3399      else if (II->isStr("__builtin_va_list"))
3400        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3401    }
3402
3403  return NewTD;
3404}
3405
3406/// \brief Determines whether the given declaration is an out-of-scope
3407/// previous declaration.
3408///
3409/// This routine should be invoked when name lookup has found a
3410/// previous declaration (PrevDecl) that is not in the scope where a
3411/// new declaration by the same name is being introduced. If the new
3412/// declaration occurs in a local scope, previous declarations with
3413/// linkage may still be considered previous declarations (C99
3414/// 6.2.2p4-5, C++ [basic.link]p6).
3415///
3416/// \param PrevDecl the previous declaration found by name
3417/// lookup
3418///
3419/// \param DC the context in which the new declaration is being
3420/// declared.
3421///
3422/// \returns true if PrevDecl is an out-of-scope previous declaration
3423/// for a new delcaration with the same name.
3424static bool
3425isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3426                                ASTContext &Context) {
3427  if (!PrevDecl)
3428    return false;
3429
3430  if (!PrevDecl->hasLinkage())
3431    return false;
3432
3433  if (Context.getLangOptions().CPlusPlus) {
3434    // C++ [basic.link]p6:
3435    //   If there is a visible declaration of an entity with linkage
3436    //   having the same name and type, ignoring entities declared
3437    //   outside the innermost enclosing namespace scope, the block
3438    //   scope declaration declares that same entity and receives the
3439    //   linkage of the previous declaration.
3440    DeclContext *OuterContext = DC->getRedeclContext();
3441    if (!OuterContext->isFunctionOrMethod())
3442      // This rule only applies to block-scope declarations.
3443      return false;
3444
3445    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3446    if (PrevOuterContext->isRecord())
3447      // We found a member function: ignore it.
3448      return false;
3449
3450    // Find the innermost enclosing namespace for the new and
3451    // previous declarations.
3452    OuterContext = OuterContext->getEnclosingNamespaceContext();
3453    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3454
3455    // The previous declaration is in a different namespace, so it
3456    // isn't the same function.
3457    if (!OuterContext->Equals(PrevOuterContext))
3458      return false;
3459  }
3460
3461  return true;
3462}
3463
3464static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3465  CXXScopeSpec &SS = D.getCXXScopeSpec();
3466  if (!SS.isSet()) return;
3467  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3468}
3469
3470NamedDecl*
3471Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3472                              QualType R, TypeSourceInfo *TInfo,
3473                              LookupResult &Previous,
3474                              MultiTemplateParamsArg TemplateParamLists,
3475                              bool &Redeclaration) {
3476  DeclarationName Name = GetNameForDeclarator(D).getName();
3477
3478  // Check that there are no default arguments (C++ only).
3479  if (getLangOptions().CPlusPlus)
3480    CheckExtraCXXDefaultArguments(D);
3481
3482  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3483  assert(SCSpec != DeclSpec::SCS_typedef &&
3484         "Parser allowed 'typedef' as storage class VarDecl.");
3485  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3486  if (SCSpec == DeclSpec::SCS_mutable) {
3487    // mutable can only appear on non-static class members, so it's always
3488    // an error here
3489    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3490    D.setInvalidType();
3491    SC = SC_None;
3492  }
3493  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3494  VarDecl::StorageClass SCAsWritten
3495    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3496
3497  IdentifierInfo *II = Name.getAsIdentifierInfo();
3498  if (!II) {
3499    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3500      << Name.getAsString();
3501    return 0;
3502  }
3503
3504  DiagnoseFunctionSpecifiers(D);
3505
3506  if (!DC->isRecord() && S->getFnParent() == 0) {
3507    // C99 6.9p2: The storage-class specifiers auto and register shall not
3508    // appear in the declaration specifiers in an external declaration.
3509    if (SC == SC_Auto || SC == SC_Register) {
3510
3511      // If this is a register variable with an asm label specified, then this
3512      // is a GNU extension.
3513      if (SC == SC_Register && D.getAsmLabel())
3514        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3515      else
3516        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3517      D.setInvalidType();
3518    }
3519  }
3520
3521  bool isExplicitSpecialization = false;
3522  VarDecl *NewVD;
3523  if (!getLangOptions().CPlusPlus) {
3524    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3525                            D.getIdentifierLoc(), II,
3526                            R, TInfo, SC, SCAsWritten);
3527
3528    if (D.isInvalidType())
3529      NewVD->setInvalidDecl();
3530  } else {
3531    if (DC->isRecord() && !CurContext->isRecord()) {
3532      // This is an out-of-line definition of a static data member.
3533      if (SC == SC_Static) {
3534        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3535             diag::err_static_out_of_line)
3536          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3537      } else if (SC == SC_None)
3538        SC = SC_Static;
3539    }
3540    if (SC == SC_Static) {
3541      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3542        if (RD->isLocalClass())
3543          Diag(D.getIdentifierLoc(),
3544               diag::err_static_data_member_not_allowed_in_local_class)
3545            << Name << RD->getDeclName();
3546
3547        // C++ [class.union]p1: If a union contains a static data member,
3548        // the program is ill-formed.
3549        //
3550        // We also disallow static data members in anonymous structs.
3551        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3552          Diag(D.getIdentifierLoc(),
3553               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3554            << Name << RD->isUnion();
3555      }
3556    }
3557
3558    // Match up the template parameter lists with the scope specifier, then
3559    // determine whether we have a template or a template specialization.
3560    isExplicitSpecialization = false;
3561    bool Invalid = false;
3562    if (TemplateParameterList *TemplateParams
3563        = MatchTemplateParametersToScopeSpecifier(
3564                                  D.getDeclSpec().getSourceRange().getBegin(),
3565                                                  D.getIdentifierLoc(),
3566                                                  D.getCXXScopeSpec(),
3567                                                  TemplateParamLists.get(),
3568                                                  TemplateParamLists.size(),
3569                                                  /*never a friend*/ false,
3570                                                  isExplicitSpecialization,
3571                                                  Invalid)) {
3572      if (TemplateParams->size() > 0) {
3573        // There is no such thing as a variable template.
3574        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3575          << II
3576          << SourceRange(TemplateParams->getTemplateLoc(),
3577                         TemplateParams->getRAngleLoc());
3578        return 0;
3579      } else {
3580        // There is an extraneous 'template<>' for this variable. Complain
3581        // about it, but allow the declaration of the variable.
3582        Diag(TemplateParams->getTemplateLoc(),
3583             diag::err_template_variable_noparams)
3584          << II
3585          << SourceRange(TemplateParams->getTemplateLoc(),
3586                         TemplateParams->getRAngleLoc());
3587      }
3588    }
3589
3590    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3591                            D.getIdentifierLoc(), II,
3592                            R, TInfo, SC, SCAsWritten);
3593
3594    // If this decl has an auto type in need of deduction, make a note of the
3595    // Decl so we can diagnose uses of it in its own initializer.
3596    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3597        R->getContainedAutoType())
3598      ParsingInitForAutoVars.insert(NewVD);
3599
3600    if (D.isInvalidType() || Invalid)
3601      NewVD->setInvalidDecl();
3602
3603    SetNestedNameSpecifier(NewVD, D);
3604
3605    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3606      NewVD->setTemplateParameterListsInfo(Context,
3607                                           TemplateParamLists.size(),
3608                                           TemplateParamLists.release());
3609    }
3610  }
3611
3612  if (D.getDeclSpec().isThreadSpecified()) {
3613    if (NewVD->hasLocalStorage())
3614      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3615    else if (!Context.Target.isTLSSupported())
3616      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3617    else
3618      NewVD->setThreadSpecified(true);
3619  }
3620
3621  // Set the lexical context. If the declarator has a C++ scope specifier, the
3622  // lexical context will be different from the semantic context.
3623  NewVD->setLexicalDeclContext(CurContext);
3624
3625  // Handle attributes prior to checking for duplicates in MergeVarDecl
3626  ProcessDeclAttributes(S, NewVD, D);
3627
3628  // Handle GNU asm-label extension (encoded as an attribute).
3629  if (Expr *E = (Expr*)D.getAsmLabel()) {
3630    // The parser guarantees this is a string.
3631    StringLiteral *SE = cast<StringLiteral>(E);
3632    llvm::StringRef Label = SE->getString();
3633    if (S->getFnParent() != 0) {
3634      switch (SC) {
3635      case SC_None:
3636      case SC_Auto:
3637        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3638        break;
3639      case SC_Register:
3640        if (!Context.Target.isValidGCCRegisterName(Label))
3641          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3642        break;
3643      case SC_Static:
3644      case SC_Extern:
3645      case SC_PrivateExtern:
3646        break;
3647      }
3648    }
3649
3650    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3651                                                Context, Label));
3652  }
3653
3654  // Diagnose shadowed variables before filtering for scope.
3655  if (!D.getCXXScopeSpec().isSet())
3656    CheckShadow(S, NewVD, Previous);
3657
3658  // Don't consider existing declarations that are in a different
3659  // scope and are out-of-semantic-context declarations (if the new
3660  // declaration has linkage).
3661  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3662                       isExplicitSpecialization);
3663
3664  if (!getLangOptions().CPlusPlus)
3665    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3666  else {
3667    // Merge the decl with the existing one if appropriate.
3668    if (!Previous.empty()) {
3669      if (Previous.isSingleResult() &&
3670          isa<FieldDecl>(Previous.getFoundDecl()) &&
3671          D.getCXXScopeSpec().isSet()) {
3672        // The user tried to define a non-static data member
3673        // out-of-line (C++ [dcl.meaning]p1).
3674        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3675          << D.getCXXScopeSpec().getRange();
3676        Previous.clear();
3677        NewVD->setInvalidDecl();
3678      }
3679    } else if (D.getCXXScopeSpec().isSet()) {
3680      // No previous declaration in the qualifying scope.
3681      Diag(D.getIdentifierLoc(), diag::err_no_member)
3682        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3683        << D.getCXXScopeSpec().getRange();
3684      NewVD->setInvalidDecl();
3685    }
3686
3687    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3688
3689    // This is an explicit specialization of a static data member. Check it.
3690    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3691        CheckMemberSpecialization(NewVD, Previous))
3692      NewVD->setInvalidDecl();
3693  }
3694
3695  // attributes declared post-definition are currently ignored
3696  // FIXME: This should be handled in attribute merging, not
3697  // here.
3698  if (Previous.isSingleResult()) {
3699    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3700    if (Def && (Def = Def->getDefinition()) &&
3701        Def != NewVD && D.hasAttributes()) {
3702      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3703      Diag(Def->getLocation(), diag::note_previous_definition);
3704    }
3705  }
3706
3707  // If this is a locally-scoped extern C variable, update the map of
3708  // such variables.
3709  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3710      !NewVD->isInvalidDecl())
3711    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3712
3713  // If there's a #pragma GCC visibility in scope, and this isn't a class
3714  // member, set the visibility of this variable.
3715  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3716    AddPushedVisibilityAttribute(NewVD);
3717
3718  MarkUnusedFileScopedDecl(NewVD);
3719
3720  return NewVD;
3721}
3722
3723/// \brief Diagnose variable or built-in function shadowing.  Implements
3724/// -Wshadow.
3725///
3726/// This method is called whenever a VarDecl is added to a "useful"
3727/// scope.
3728///
3729/// \param S the scope in which the shadowing name is being declared
3730/// \param R the lookup of the name
3731///
3732void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3733  // Return if warning is ignored.
3734  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3735        Diagnostic::Ignored)
3736    return;
3737
3738  // Don't diagnose declarations at file scope.
3739  if (D->hasGlobalStorage())
3740    return;
3741
3742  DeclContext *NewDC = D->getDeclContext();
3743
3744  // Only diagnose if we're shadowing an unambiguous field or variable.
3745  if (R.getResultKind() != LookupResult::Found)
3746    return;
3747
3748  NamedDecl* ShadowedDecl = R.getFoundDecl();
3749  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3750    return;
3751
3752  // Fields are not shadowed by variables in C++ static methods.
3753  if (isa<FieldDecl>(ShadowedDecl))
3754    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3755      if (MD->isStatic())
3756        return;
3757
3758  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3759    if (shadowedVar->isExternC()) {
3760      // For shadowing external vars, make sure that we point to the global
3761      // declaration, not a locally scoped extern declaration.
3762      for (VarDecl::redecl_iterator
3763             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3764           I != E; ++I)
3765        if (I->isFileVarDecl()) {
3766          ShadowedDecl = *I;
3767          break;
3768        }
3769    }
3770
3771  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3772
3773  // Only warn about certain kinds of shadowing for class members.
3774  if (NewDC && NewDC->isRecord()) {
3775    // In particular, don't warn about shadowing non-class members.
3776    if (!OldDC->isRecord())
3777      return;
3778
3779    // TODO: should we warn about static data members shadowing
3780    // static data members from base classes?
3781
3782    // TODO: don't diagnose for inaccessible shadowed members.
3783    // This is hard to do perfectly because we might friend the
3784    // shadowing context, but that's just a false negative.
3785  }
3786
3787  // Determine what kind of declaration we're shadowing.
3788  unsigned Kind;
3789  if (isa<RecordDecl>(OldDC)) {
3790    if (isa<FieldDecl>(ShadowedDecl))
3791      Kind = 3; // field
3792    else
3793      Kind = 2; // static data member
3794  } else if (OldDC->isFileContext())
3795    Kind = 1; // global
3796  else
3797    Kind = 0; // local
3798
3799  DeclarationName Name = R.getLookupName();
3800
3801  // Emit warning and note.
3802  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3803  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3804}
3805
3806/// \brief Check -Wshadow without the advantage of a previous lookup.
3807void Sema::CheckShadow(Scope *S, VarDecl *D) {
3808  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3809        Diagnostic::Ignored)
3810    return;
3811
3812  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3813                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3814  LookupName(R, S);
3815  CheckShadow(S, D, R);
3816}
3817
3818/// \brief Perform semantic checking on a newly-created variable
3819/// declaration.
3820///
3821/// This routine performs all of the type-checking required for a
3822/// variable declaration once it has been built. It is used both to
3823/// check variables after they have been parsed and their declarators
3824/// have been translated into a declaration, and to check variables
3825/// that have been instantiated from a template.
3826///
3827/// Sets NewVD->isInvalidDecl() if an error was encountered.
3828void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3829                                    LookupResult &Previous,
3830                                    bool &Redeclaration) {
3831  // If the decl is already known invalid, don't check it.
3832  if (NewVD->isInvalidDecl())
3833    return;
3834
3835  QualType T = NewVD->getType();
3836
3837  if (T->isObjCObjectType()) {
3838    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3839    return NewVD->setInvalidDecl();
3840  }
3841
3842  // Emit an error if an address space was applied to decl with local storage.
3843  // This includes arrays of objects with address space qualifiers, but not
3844  // automatic variables that point to other address spaces.
3845  // ISO/IEC TR 18037 S5.1.2
3846  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3847    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3848    return NewVD->setInvalidDecl();
3849  }
3850
3851  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3852      && !NewVD->hasAttr<BlocksAttr>())
3853    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3854
3855  bool isVM = T->isVariablyModifiedType();
3856  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3857      NewVD->hasAttr<BlocksAttr>())
3858    getCurFunction()->setHasBranchProtectedScope();
3859
3860  if ((isVM && NewVD->hasLinkage()) ||
3861      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3862    bool SizeIsNegative;
3863    llvm::APSInt Oversized;
3864    QualType FixedTy =
3865        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3866                                            Oversized);
3867
3868    if (FixedTy.isNull() && T->isVariableArrayType()) {
3869      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3870      // FIXME: This won't give the correct result for
3871      // int a[10][n];
3872      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3873
3874      if (NewVD->isFileVarDecl())
3875        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3876        << SizeRange;
3877      else if (NewVD->getStorageClass() == SC_Static)
3878        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3879        << SizeRange;
3880      else
3881        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3882        << SizeRange;
3883      return NewVD->setInvalidDecl();
3884    }
3885
3886    if (FixedTy.isNull()) {
3887      if (NewVD->isFileVarDecl())
3888        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3889      else
3890        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3891      return NewVD->setInvalidDecl();
3892    }
3893
3894    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3895    NewVD->setType(FixedTy);
3896  }
3897
3898  if (Previous.empty() && NewVD->isExternC()) {
3899    // Since we did not find anything by this name and we're declaring
3900    // an extern "C" variable, look for a non-visible extern "C"
3901    // declaration with the same name.
3902    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3903      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3904    if (Pos != LocallyScopedExternalDecls.end())
3905      Previous.addDecl(Pos->second);
3906  }
3907
3908  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3909    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3910      << T;
3911    return NewVD->setInvalidDecl();
3912  }
3913
3914  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3915    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3916    return NewVD->setInvalidDecl();
3917  }
3918
3919  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3920    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3921    return NewVD->setInvalidDecl();
3922  }
3923
3924  // Function pointers and references cannot have qualified function type, only
3925  // function pointer-to-members can do that.
3926  QualType Pointee;
3927  unsigned PtrOrRef = 0;
3928  if (const PointerType *Ptr = T->getAs<PointerType>())
3929    Pointee = Ptr->getPointeeType();
3930  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3931    Pointee = Ref->getPointeeType();
3932    PtrOrRef = 1;
3933  }
3934  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3935      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3936    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3937        << PtrOrRef;
3938    return NewVD->setInvalidDecl();
3939  }
3940
3941  if (!Previous.empty()) {
3942    Redeclaration = true;
3943    MergeVarDecl(NewVD, Previous);
3944  }
3945}
3946
3947/// \brief Data used with FindOverriddenMethod
3948struct FindOverriddenMethodData {
3949  Sema *S;
3950  CXXMethodDecl *Method;
3951};
3952
3953/// \brief Member lookup function that determines whether a given C++
3954/// method overrides a method in a base class, to be used with
3955/// CXXRecordDecl::lookupInBases().
3956static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3957                                 CXXBasePath &Path,
3958                                 void *UserData) {
3959  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3960
3961  FindOverriddenMethodData *Data
3962    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3963
3964  DeclarationName Name = Data->Method->getDeclName();
3965
3966  // FIXME: Do we care about other names here too?
3967  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3968    // We really want to find the base class destructor here.
3969    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3970    CanQualType CT = Data->S->Context.getCanonicalType(T);
3971
3972    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3973  }
3974
3975  for (Path.Decls = BaseRecord->lookup(Name);
3976       Path.Decls.first != Path.Decls.second;
3977       ++Path.Decls.first) {
3978    NamedDecl *D = *Path.Decls.first;
3979    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3980      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3981        return true;
3982    }
3983  }
3984
3985  return false;
3986}
3987
3988/// AddOverriddenMethods - See if a method overrides any in the base classes,
3989/// and if so, check that it's a valid override and remember it.
3990bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3991  // Look for virtual methods in base classes that this method might override.
3992  CXXBasePaths Paths;
3993  FindOverriddenMethodData Data;
3994  Data.Method = MD;
3995  Data.S = this;
3996  bool AddedAny = false;
3997  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3998    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3999         E = Paths.found_decls_end(); I != E; ++I) {
4000      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4001        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4002            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4003            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4004          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4005          AddedAny = true;
4006        }
4007      }
4008    }
4009  }
4010
4011  return AddedAny;
4012}
4013
4014static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4015  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4016                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4017  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4018  assert(!Prev.isAmbiguous() &&
4019         "Cannot have an ambiguity in previous-declaration lookup");
4020  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4021       Func != FuncEnd; ++Func) {
4022    if (isa<FunctionDecl>(*Func) &&
4023        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4024      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4025  }
4026}
4027
4028NamedDecl*
4029Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4030                              QualType R, TypeSourceInfo *TInfo,
4031                              LookupResult &Previous,
4032                              MultiTemplateParamsArg TemplateParamLists,
4033                              bool IsFunctionDefinition, bool &Redeclaration) {
4034  assert(R.getTypePtr()->isFunctionType());
4035
4036  // TODO: consider using NameInfo for diagnostic.
4037  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4038  DeclarationName Name = NameInfo.getName();
4039  FunctionDecl::StorageClass SC = SC_None;
4040  switch (D.getDeclSpec().getStorageClassSpec()) {
4041  default: assert(0 && "Unknown storage class!");
4042  case DeclSpec::SCS_auto:
4043  case DeclSpec::SCS_register:
4044  case DeclSpec::SCS_mutable:
4045    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4046         diag::err_typecheck_sclass_func);
4047    D.setInvalidType();
4048    break;
4049  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4050  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4051  case DeclSpec::SCS_static: {
4052    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4053      // C99 6.7.1p5:
4054      //   The declaration of an identifier for a function that has
4055      //   block scope shall have no explicit storage-class specifier
4056      //   other than extern
4057      // See also (C++ [dcl.stc]p4).
4058      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4059           diag::err_static_block_func);
4060      SC = SC_None;
4061    } else
4062      SC = SC_Static;
4063    break;
4064  }
4065  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4066  }
4067
4068  if (D.getDeclSpec().isThreadSpecified())
4069    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4070
4071  // Do not allow returning a objc interface by-value.
4072  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4073    Diag(D.getIdentifierLoc(),
4074         diag::err_object_cannot_be_passed_returned_by_value) << 0
4075    << R->getAs<FunctionType>()->getResultType();
4076    D.setInvalidType();
4077  }
4078
4079  FunctionDecl *NewFD;
4080  bool isInline = D.getDeclSpec().isInlineSpecified();
4081  bool isFriend = false;
4082  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4083  FunctionDecl::StorageClass SCAsWritten
4084    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4085  FunctionTemplateDecl *FunctionTemplate = 0;
4086  bool isExplicitSpecialization = false;
4087  bool isFunctionTemplateSpecialization = false;
4088
4089  if (!getLangOptions().CPlusPlus) {
4090    // Determine whether the function was written with a
4091    // prototype. This true when:
4092    //   - there is a prototype in the declarator, or
4093    //   - the type R of the function is some kind of typedef or other reference
4094    //     to a type name (which eventually refers to a function type).
4095    bool HasPrototype =
4096    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4097    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4098
4099    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4100                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4101                                 HasPrototype);
4102    if (D.isInvalidType())
4103      NewFD->setInvalidDecl();
4104
4105    // Set the lexical context.
4106    NewFD->setLexicalDeclContext(CurContext);
4107    // Filter out previous declarations that don't match the scope.
4108    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4109                         /*ExplicitInstantiationOrSpecialization=*/false);
4110  } else {
4111    isFriend = D.getDeclSpec().isFriendSpecified();
4112    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4113    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4114    bool isVirtualOkay = false;
4115
4116    // Check that the return type is not an abstract class type.
4117    // For record types, this is done by the AbstractClassUsageDiagnoser once
4118    // the class has been completely parsed.
4119    if (!DC->isRecord() &&
4120      RequireNonAbstractType(D.getIdentifierLoc(),
4121                             R->getAs<FunctionType>()->getResultType(),
4122                             diag::err_abstract_type_in_decl,
4123                             AbstractReturnType))
4124      D.setInvalidType();
4125
4126    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4127      // This is a C++ constructor declaration.
4128      assert(DC->isRecord() &&
4129             "Constructors can only be declared in a member context");
4130
4131      R = CheckConstructorDeclarator(D, R, SC);
4132
4133      // Create the new declaration
4134      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4135                                         Context,
4136                                         cast<CXXRecordDecl>(DC),
4137                                         D.getSourceRange().getBegin(),
4138                                         NameInfo, R, TInfo,
4139                                         isExplicit, isInline,
4140                                         /*isImplicitlyDeclared=*/false);
4141
4142      NewFD = NewCD;
4143    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4144      // This is a C++ destructor declaration.
4145      if (DC->isRecord()) {
4146        R = CheckDestructorDeclarator(D, R, SC);
4147        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4148
4149        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4150                                          D.getSourceRange().getBegin(),
4151                                          NameInfo, R, TInfo,
4152                                          isInline,
4153                                          /*isImplicitlyDeclared=*/false);
4154        NewFD = NewDD;
4155        isVirtualOkay = true;
4156
4157        // If the class is complete, then we now create the implicit exception
4158        // specification. If the class is incomplete or dependent, we can't do
4159        // it yet.
4160        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4161            Record->getDefinition() && !Record->isBeingDefined() &&
4162            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4163          AdjustDestructorExceptionSpec(Record, NewDD);
4164        }
4165
4166      } else {
4167        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4168
4169        // Create a FunctionDecl to satisfy the function definition parsing
4170        // code path.
4171        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4172                                     D.getIdentifierLoc(), Name, R, TInfo,
4173                                     SC, SCAsWritten, isInline,
4174                                     /*hasPrototype=*/true);
4175        D.setInvalidType();
4176      }
4177    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4178      if (!DC->isRecord()) {
4179        Diag(D.getIdentifierLoc(),
4180             diag::err_conv_function_not_member);
4181        return 0;
4182      }
4183
4184      CheckConversionDeclarator(D, R, SC);
4185      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4186                                        D.getSourceRange().getBegin(),
4187                                        NameInfo, R, TInfo,
4188                                        isInline, isExplicit,
4189                                        SourceLocation());
4190
4191      isVirtualOkay = true;
4192    } else if (DC->isRecord()) {
4193      // If the of the function is the same as the name of the record, then this
4194      // must be an invalid constructor that has a return type.
4195      // (The parser checks for a return type and makes the declarator a
4196      // constructor if it has no return type).
4197      // must have an invalid constructor that has a return type
4198      if (Name.getAsIdentifierInfo() &&
4199          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4200        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4201          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4202          << SourceRange(D.getIdentifierLoc());
4203        return 0;
4204      }
4205
4206      bool isStatic = SC == SC_Static;
4207
4208      // [class.free]p1:
4209      // Any allocation function for a class T is a static member
4210      // (even if not explicitly declared static).
4211      if (Name.getCXXOverloadedOperator() == OO_New ||
4212          Name.getCXXOverloadedOperator() == OO_Array_New)
4213        isStatic = true;
4214
4215      // [class.free]p6 Any deallocation function for a class X is a static member
4216      // (even if not explicitly declared static).
4217      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4218          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4219        isStatic = true;
4220
4221      // This is a C++ method declaration.
4222      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4223                                               Context, cast<CXXRecordDecl>(DC),
4224                                               D.getSourceRange().getBegin(),
4225                                               NameInfo, R, TInfo,
4226                                               isStatic, SCAsWritten, isInline,
4227                                               SourceLocation());
4228      NewFD = NewMD;
4229
4230      isVirtualOkay = !isStatic;
4231    } else {
4232      // Determine whether the function was written with a
4233      // prototype. This true when:
4234      //   - we're in C++ (where every function has a prototype),
4235      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4236                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4237                                   true/*HasPrototype*/);
4238    }
4239
4240    if (isFriend && !isInline && IsFunctionDefinition) {
4241      // C++ [class.friend]p5
4242      //   A function can be defined in a friend declaration of a
4243      //   class . . . . Such a function is implicitly inline.
4244      NewFD->setImplicitlyInline();
4245    }
4246
4247    SetNestedNameSpecifier(NewFD, D);
4248    isExplicitSpecialization = false;
4249    isFunctionTemplateSpecialization = false;
4250    if (D.isInvalidType())
4251      NewFD->setInvalidDecl();
4252
4253    // Set the lexical context. If the declarator has a C++
4254    // scope specifier, or is the object of a friend declaration, the
4255    // lexical context will be different from the semantic context.
4256    NewFD->setLexicalDeclContext(CurContext);
4257
4258    // Match up the template parameter lists with the scope specifier, then
4259    // determine whether we have a template or a template specialization.
4260    bool Invalid = false;
4261    if (TemplateParameterList *TemplateParams
4262          = MatchTemplateParametersToScopeSpecifier(
4263                                  D.getDeclSpec().getSourceRange().getBegin(),
4264                                  D.getIdentifierLoc(),
4265                                  D.getCXXScopeSpec(),
4266                                  TemplateParamLists.get(),
4267                                  TemplateParamLists.size(),
4268                                  isFriend,
4269                                  isExplicitSpecialization,
4270                                  Invalid)) {
4271      if (TemplateParams->size() > 0) {
4272        // This is a function template
4273
4274        // Check that we can declare a template here.
4275        if (CheckTemplateDeclScope(S, TemplateParams))
4276          return 0;
4277
4278        // A destructor cannot be a template.
4279        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4280          Diag(NewFD->getLocation(), diag::err_destructor_template);
4281          return 0;
4282        }
4283
4284        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4285                                                        NewFD->getLocation(),
4286                                                        Name, TemplateParams,
4287                                                        NewFD);
4288        FunctionTemplate->setLexicalDeclContext(CurContext);
4289        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4290
4291        // For source fidelity, store the other template param lists.
4292        if (TemplateParamLists.size() > 1) {
4293          NewFD->setTemplateParameterListsInfo(Context,
4294                                               TemplateParamLists.size() - 1,
4295                                               TemplateParamLists.release());
4296        }
4297      } else {
4298        // This is a function template specialization.
4299        isFunctionTemplateSpecialization = true;
4300        // For source fidelity, store all the template param lists.
4301        NewFD->setTemplateParameterListsInfo(Context,
4302                                             TemplateParamLists.size(),
4303                                             TemplateParamLists.release());
4304
4305        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4306        if (isFriend) {
4307          // We want to remove the "template<>", found here.
4308          SourceRange RemoveRange = TemplateParams->getSourceRange();
4309
4310          // If we remove the template<> and the name is not a
4311          // template-id, we're actually silently creating a problem:
4312          // the friend declaration will refer to an untemplated decl,
4313          // and clearly the user wants a template specialization.  So
4314          // we need to insert '<>' after the name.
4315          SourceLocation InsertLoc;
4316          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4317            InsertLoc = D.getName().getSourceRange().getEnd();
4318            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4319          }
4320
4321          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4322            << Name << RemoveRange
4323            << FixItHint::CreateRemoval(RemoveRange)
4324            << FixItHint::CreateInsertion(InsertLoc, "<>");
4325        }
4326      }
4327    }
4328    else {
4329      // All template param lists were matched against the scope specifier:
4330      // this is NOT (an explicit specialization of) a template.
4331      if (TemplateParamLists.size() > 0)
4332        // For source fidelity, store all the template param lists.
4333        NewFD->setTemplateParameterListsInfo(Context,
4334                                             TemplateParamLists.size(),
4335                                             TemplateParamLists.release());
4336    }
4337
4338    if (Invalid) {
4339      NewFD->setInvalidDecl();
4340      if (FunctionTemplate)
4341        FunctionTemplate->setInvalidDecl();
4342    }
4343
4344    // C++ [dcl.fct.spec]p5:
4345    //   The virtual specifier shall only be used in declarations of
4346    //   nonstatic class member functions that appear within a
4347    //   member-specification of a class declaration; see 10.3.
4348    //
4349    if (isVirtual && !NewFD->isInvalidDecl()) {
4350      if (!isVirtualOkay) {
4351        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4352             diag::err_virtual_non_function);
4353      } else if (!CurContext->isRecord()) {
4354        // 'virtual' was specified outside of the class.
4355        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4356             diag::err_virtual_out_of_class)
4357          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4358      } else if (NewFD->getDescribedFunctionTemplate()) {
4359        // C++ [temp.mem]p3:
4360        //  A member function template shall not be virtual.
4361        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4362             diag::err_virtual_member_function_template)
4363          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4364      } else {
4365        // Okay: Add virtual to the method.
4366        NewFD->setVirtualAsWritten(true);
4367      }
4368    }
4369
4370    // C++ [dcl.fct.spec]p3:
4371    //  The inline specifier shall not appear on a block scope function declaration.
4372    if (isInline && !NewFD->isInvalidDecl()) {
4373      if (CurContext->isFunctionOrMethod()) {
4374        // 'inline' is not allowed on block scope function declaration.
4375        Diag(D.getDeclSpec().getInlineSpecLoc(),
4376             diag::err_inline_declaration_block_scope) << Name
4377          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4378      }
4379    }
4380
4381    // C++ [dcl.fct.spec]p6:
4382    //  The explicit specifier shall be used only in the declaration of a
4383    //  constructor or conversion function within its class definition; see 12.3.1
4384    //  and 12.3.2.
4385    if (isExplicit && !NewFD->isInvalidDecl()) {
4386      if (!CurContext->isRecord()) {
4387        // 'explicit' was specified outside of the class.
4388        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4389             diag::err_explicit_out_of_class)
4390          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4391      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4392                 !isa<CXXConversionDecl>(NewFD)) {
4393        // 'explicit' was specified on a function that wasn't a constructor
4394        // or conversion function.
4395        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4396             diag::err_explicit_non_ctor_or_conv_function)
4397          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4398      }
4399    }
4400
4401    // Filter out previous declarations that don't match the scope.
4402    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4403                         isExplicitSpecialization ||
4404                         isFunctionTemplateSpecialization);
4405
4406    if (isFriend) {
4407      // For now, claim that the objects have no previous declaration.
4408      if (FunctionTemplate) {
4409        FunctionTemplate->setObjectOfFriendDecl(false);
4410        FunctionTemplate->setAccess(AS_public);
4411      }
4412      NewFD->setObjectOfFriendDecl(false);
4413      NewFD->setAccess(AS_public);
4414    }
4415
4416    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4417      // A method is implicitly inline if it's defined in its class
4418      // definition.
4419      NewFD->setImplicitlyInline();
4420    }
4421
4422    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4423        !CurContext->isRecord()) {
4424      // C++ [class.static]p1:
4425      //   A data or function member of a class may be declared static
4426      //   in a class definition, in which case it is a static member of
4427      //   the class.
4428
4429      // Complain about the 'static' specifier if it's on an out-of-line
4430      // member function definition.
4431      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4432           diag::err_static_out_of_line)
4433        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4434    }
4435  }
4436
4437  // Handle GNU asm-label extension (encoded as an attribute).
4438  if (Expr *E = (Expr*) D.getAsmLabel()) {
4439    // The parser guarantees this is a string.
4440    StringLiteral *SE = cast<StringLiteral>(E);
4441    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4442                                                SE->getString()));
4443  }
4444
4445  // Copy the parameter declarations from the declarator D to the function
4446  // declaration NewFD, if they are available.  First scavenge them into Params.
4447  llvm::SmallVector<ParmVarDecl*, 16> Params;
4448  if (D.isFunctionDeclarator()) {
4449    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4450
4451    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4452    // function that takes no arguments, not a function that takes a
4453    // single void argument.
4454    // We let through "const void" here because Sema::GetTypeForDeclarator
4455    // already checks for that case.
4456    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4457        FTI.ArgInfo[0].Param &&
4458        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4459      // Empty arg list, don't push any params.
4460      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4461
4462      // In C++, the empty parameter-type-list must be spelled "void"; a
4463      // typedef of void is not permitted.
4464      if (getLangOptions().CPlusPlus &&
4465          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4466        bool IsTypeAlias = false;
4467        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4468          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4469        else if (const TemplateSpecializationType *TST =
4470                   Param->getType()->getAs<TemplateSpecializationType>())
4471          IsTypeAlias = TST->isTypeAlias();
4472        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4473          << IsTypeAlias;
4474      }
4475    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4476      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4477        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4478        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4479        Param->setDeclContext(NewFD);
4480        Params.push_back(Param);
4481
4482        if (Param->isInvalidDecl())
4483          NewFD->setInvalidDecl();
4484      }
4485    }
4486
4487  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4488    // When we're declaring a function with a typedef, typeof, etc as in the
4489    // following example, we'll need to synthesize (unnamed)
4490    // parameters for use in the declaration.
4491    //
4492    // @code
4493    // typedef void fn(int);
4494    // fn f;
4495    // @endcode
4496
4497    // Synthesize a parameter for each argument type.
4498    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4499         AE = FT->arg_type_end(); AI != AE; ++AI) {
4500      ParmVarDecl *Param =
4501        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4502      Param->setScopeInfo(0, Params.size());
4503      Params.push_back(Param);
4504    }
4505  } else {
4506    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4507           "Should not need args for typedef of non-prototype fn");
4508  }
4509  // Finally, we know we have the right number of parameters, install them.
4510  NewFD->setParams(Params.data(), Params.size());
4511
4512  // Process the non-inheritable attributes on this declaration.
4513  ProcessDeclAttributes(S, NewFD, D,
4514                        /*NonInheritable=*/true, /*Inheritable=*/false);
4515
4516  if (!getLangOptions().CPlusPlus) {
4517    // Perform semantic checking on the function declaration.
4518    bool isExplctSpecialization=false;
4519    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4520                             Redeclaration);
4521    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4522            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4523           "previous declaration set still overloaded");
4524  } else {
4525    // If the declarator is a template-id, translate the parser's template
4526    // argument list into our AST format.
4527    bool HasExplicitTemplateArgs = false;
4528    TemplateArgumentListInfo TemplateArgs;
4529    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4530      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4531      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4532      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4533      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4534                                         TemplateId->getTemplateArgs(),
4535                                         TemplateId->NumArgs);
4536      translateTemplateArguments(TemplateArgsPtr,
4537                                 TemplateArgs);
4538      TemplateArgsPtr.release();
4539
4540      HasExplicitTemplateArgs = true;
4541
4542      if (FunctionTemplate) {
4543        // Function template with explicit template arguments.
4544        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4545          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4546
4547        HasExplicitTemplateArgs = false;
4548      } else if (!isFunctionTemplateSpecialization &&
4549                 !D.getDeclSpec().isFriendSpecified()) {
4550        // We have encountered something that the user meant to be a
4551        // specialization (because it has explicitly-specified template
4552        // arguments) but that was not introduced with a "template<>" (or had
4553        // too few of them).
4554        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4555          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4556          << FixItHint::CreateInsertion(
4557                                        D.getDeclSpec().getSourceRange().getBegin(),
4558                                                  "template<> ");
4559        isFunctionTemplateSpecialization = true;
4560      } else {
4561        // "friend void foo<>(int);" is an implicit specialization decl.
4562        isFunctionTemplateSpecialization = true;
4563      }
4564    } else if (isFriend && isFunctionTemplateSpecialization) {
4565      // This combination is only possible in a recovery case;  the user
4566      // wrote something like:
4567      //   template <> friend void foo(int);
4568      // which we're recovering from as if the user had written:
4569      //   friend void foo<>(int);
4570      // Go ahead and fake up a template id.
4571      HasExplicitTemplateArgs = true;
4572        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4573      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4574    }
4575
4576    // If it's a friend (and only if it's a friend), it's possible
4577    // that either the specialized function type or the specialized
4578    // template is dependent, and therefore matching will fail.  In
4579    // this case, don't check the specialization yet.
4580    if (isFunctionTemplateSpecialization && isFriend &&
4581        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4582      assert(HasExplicitTemplateArgs &&
4583             "friend function specialization without template args");
4584      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4585                                                       Previous))
4586        NewFD->setInvalidDecl();
4587    } else if (isFunctionTemplateSpecialization) {
4588      if (CurContext->isDependentContext() && CurContext->isRecord()
4589          && !isFriend && !getLangOptions().Microsoft) {
4590        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4591          << NewFD->getDeclName();
4592        NewFD->setInvalidDecl();
4593        return 0;
4594      } else if (CheckFunctionTemplateSpecialization(NewFD,
4595                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4596                                                     Previous))
4597        NewFD->setInvalidDecl();
4598
4599      // C++ [dcl.stc]p1:
4600      //   A storage-class-specifier shall not be specified in an explicit
4601      //   specialization (14.7.3)
4602      if (SC != SC_None) {
4603        Diag(NewFD->getLocation(),
4604             diag::err_explicit_specialization_storage_class)
4605          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4606      }
4607
4608    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4609      if (CheckMemberSpecialization(NewFD, Previous))
4610          NewFD->setInvalidDecl();
4611    }
4612
4613    // Perform semantic checking on the function declaration.
4614    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4615                             Redeclaration);
4616
4617    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4618            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4619           "previous declaration set still overloaded");
4620
4621    NamedDecl *PrincipalDecl = (FunctionTemplate
4622                                ? cast<NamedDecl>(FunctionTemplate)
4623                                : NewFD);
4624
4625    if (isFriend && Redeclaration) {
4626      AccessSpecifier Access = AS_public;
4627      if (!NewFD->isInvalidDecl())
4628        Access = NewFD->getPreviousDeclaration()->getAccess();
4629
4630      NewFD->setAccess(Access);
4631      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4632
4633      PrincipalDecl->setObjectOfFriendDecl(true);
4634    }
4635
4636    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4637        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4638      PrincipalDecl->setNonMemberOperator();
4639
4640    // If we have a function template, check the template parameter
4641    // list. This will check and merge default template arguments.
4642    if (FunctionTemplate) {
4643      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4644      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4645                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4646                            D.getDeclSpec().isFriendSpecified()
4647                              ? (IsFunctionDefinition
4648                                   ? TPC_FriendFunctionTemplateDefinition
4649                                   : TPC_FriendFunctionTemplate)
4650                              : (D.getCXXScopeSpec().isSet() &&
4651                                 DC && DC->isRecord() &&
4652                                 DC->isDependentContext())
4653                                  ? TPC_ClassTemplateMember
4654                                  : TPC_FunctionTemplate);
4655    }
4656
4657    if (NewFD->isInvalidDecl()) {
4658      // Ignore all the rest of this.
4659    } else if (!Redeclaration) {
4660      // Fake up an access specifier if it's supposed to be a class member.
4661      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4662        NewFD->setAccess(AS_public);
4663
4664      // Qualified decls generally require a previous declaration.
4665      if (D.getCXXScopeSpec().isSet()) {
4666        // ...with the major exception of templated-scope or
4667        // dependent-scope friend declarations.
4668
4669        // TODO: we currently also suppress this check in dependent
4670        // contexts because (1) the parameter depth will be off when
4671        // matching friend templates and (2) we might actually be
4672        // selecting a friend based on a dependent factor.  But there
4673        // are situations where these conditions don't apply and we
4674        // can actually do this check immediately.
4675        if (isFriend &&
4676            (TemplateParamLists.size() ||
4677             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4678             CurContext->isDependentContext())) {
4679              // ignore these
4680            } else {
4681              // The user tried to provide an out-of-line definition for a
4682              // function that is a member of a class or namespace, but there
4683              // was no such member function declared (C++ [class.mfct]p2,
4684              // C++ [namespace.memdef]p2). For example:
4685              //
4686              // class X {
4687              //   void f() const;
4688              // };
4689              //
4690              // void X::f() { } // ill-formed
4691              //
4692              // Complain about this problem, and attempt to suggest close
4693              // matches (e.g., those that differ only in cv-qualifiers and
4694              // whether the parameter types are references).
4695              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4696              << Name << DC << D.getCXXScopeSpec().getRange();
4697              NewFD->setInvalidDecl();
4698
4699              DiagnoseInvalidRedeclaration(*this, NewFD);
4700            }
4701
4702        // Unqualified local friend declarations are required to resolve
4703        // to something.
4704        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4705          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4706          NewFD->setInvalidDecl();
4707          DiagnoseInvalidRedeclaration(*this, NewFD);
4708        }
4709
4710    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4711               !isFriend && !isFunctionTemplateSpecialization &&
4712               !isExplicitSpecialization) {
4713      // An out-of-line member function declaration must also be a
4714      // definition (C++ [dcl.meaning]p1).
4715      // Note that this is not the case for explicit specializations of
4716      // function templates or member functions of class templates, per
4717      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4718      // for compatibility with old SWIG code which likes to generate them.
4719      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4720        << D.getCXXScopeSpec().getRange();
4721    }
4722  }
4723
4724
4725  // Handle attributes. We need to have merged decls when handling attributes
4726  // (for example to check for conflicts, etc).
4727  // FIXME: This needs to happen before we merge declarations. Then,
4728  // let attribute merging cope with attribute conflicts.
4729  ProcessDeclAttributes(S, NewFD, D,
4730                        /*NonInheritable=*/false, /*Inheritable=*/true);
4731
4732  // attributes declared post-definition are currently ignored
4733  // FIXME: This should happen during attribute merging
4734  if (Redeclaration && Previous.isSingleResult()) {
4735    const FunctionDecl *Def;
4736    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4737    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4738      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4739      Diag(Def->getLocation(), diag::note_previous_definition);
4740    }
4741  }
4742
4743  AddKnownFunctionAttributes(NewFD);
4744
4745  if (NewFD->hasAttr<OverloadableAttr>() &&
4746      !NewFD->getType()->getAs<FunctionProtoType>()) {
4747    Diag(NewFD->getLocation(),
4748         diag::err_attribute_overloadable_no_prototype)
4749      << NewFD;
4750
4751    // Turn this into a variadic function with no parameters.
4752    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4753    FunctionProtoType::ExtProtoInfo EPI;
4754    EPI.Variadic = true;
4755    EPI.ExtInfo = FT->getExtInfo();
4756
4757    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4758    NewFD->setType(R);
4759  }
4760
4761  // If there's a #pragma GCC visibility in scope, and this isn't a class
4762  // member, set the visibility of this function.
4763  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4764    AddPushedVisibilityAttribute(NewFD);
4765
4766  // If this is a locally-scoped extern C function, update the
4767  // map of such names.
4768  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4769      && !NewFD->isInvalidDecl())
4770    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4771
4772  // Set this FunctionDecl's range up to the right paren.
4773  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4774
4775  if (getLangOptions().CPlusPlus) {
4776    if (FunctionTemplate) {
4777      if (NewFD->isInvalidDecl())
4778        FunctionTemplate->setInvalidDecl();
4779      return FunctionTemplate;
4780    }
4781  }
4782
4783  MarkUnusedFileScopedDecl(NewFD);
4784
4785  if (getLangOptions().CUDA)
4786    if (IdentifierInfo *II = NewFD->getIdentifier())
4787      if (!NewFD->isInvalidDecl() &&
4788          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4789        if (II->isStr("cudaConfigureCall")) {
4790          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4791            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4792
4793          Context.setcudaConfigureCallDecl(NewFD);
4794        }
4795      }
4796
4797  return NewFD;
4798}
4799
4800/// \brief Perform semantic checking of a new function declaration.
4801///
4802/// Performs semantic analysis of the new function declaration
4803/// NewFD. This routine performs all semantic checking that does not
4804/// require the actual declarator involved in the declaration, and is
4805/// used both for the declaration of functions as they are parsed
4806/// (called via ActOnDeclarator) and for the declaration of functions
4807/// that have been instantiated via C++ template instantiation (called
4808/// via InstantiateDecl).
4809///
4810/// \param IsExplicitSpecialiation whether this new function declaration is
4811/// an explicit specialization of the previous declaration.
4812///
4813/// This sets NewFD->isInvalidDecl() to true if there was an error.
4814void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4815                                    LookupResult &Previous,
4816                                    bool IsExplicitSpecialization,
4817                                    bool &Redeclaration) {
4818  // If NewFD is already known erroneous, don't do any of this checking.
4819  if (NewFD->isInvalidDecl()) {
4820    // If this is a class member, mark the class invalid immediately.
4821    // This avoids some consistency errors later.
4822    if (isa<CXXMethodDecl>(NewFD))
4823      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4824
4825    return;
4826  }
4827
4828  if (NewFD->getResultType()->isVariablyModifiedType()) {
4829    // Functions returning a variably modified type violate C99 6.7.5.2p2
4830    // because all functions have linkage.
4831    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4832    return NewFD->setInvalidDecl();
4833  }
4834
4835  if (NewFD->isMain())
4836    CheckMain(NewFD);
4837
4838  // Check for a previous declaration of this name.
4839  if (Previous.empty() && NewFD->isExternC()) {
4840    // Since we did not find anything by this name and we're declaring
4841    // an extern "C" function, look for a non-visible extern "C"
4842    // declaration with the same name.
4843    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4844      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4845    if (Pos != LocallyScopedExternalDecls.end())
4846      Previous.addDecl(Pos->second);
4847  }
4848
4849  // Merge or overload the declaration with an existing declaration of
4850  // the same name, if appropriate.
4851  if (!Previous.empty()) {
4852    // Determine whether NewFD is an overload of PrevDecl or
4853    // a declaration that requires merging. If it's an overload,
4854    // there's no more work to do here; we'll just add the new
4855    // function to the scope.
4856
4857    NamedDecl *OldDecl = 0;
4858    if (!AllowOverloadingOfFunction(Previous, Context)) {
4859      Redeclaration = true;
4860      OldDecl = Previous.getFoundDecl();
4861    } else {
4862      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4863                            /*NewIsUsingDecl*/ false)) {
4864      case Ovl_Match:
4865        Redeclaration = true;
4866        break;
4867
4868      case Ovl_NonFunction:
4869        Redeclaration = true;
4870        break;
4871
4872      case Ovl_Overload:
4873        Redeclaration = false;
4874        break;
4875      }
4876
4877      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4878        // If a function name is overloadable in C, then every function
4879        // with that name must be marked "overloadable".
4880        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4881          << Redeclaration << NewFD;
4882        NamedDecl *OverloadedDecl = 0;
4883        if (Redeclaration)
4884          OverloadedDecl = OldDecl;
4885        else if (!Previous.empty())
4886          OverloadedDecl = Previous.getRepresentativeDecl();
4887        if (OverloadedDecl)
4888          Diag(OverloadedDecl->getLocation(),
4889               diag::note_attribute_overloadable_prev_overload);
4890        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4891                                                        Context));
4892      }
4893    }
4894
4895    if (Redeclaration) {
4896      // NewFD and OldDecl represent declarations that need to be
4897      // merged.
4898      if (MergeFunctionDecl(NewFD, OldDecl))
4899        return NewFD->setInvalidDecl();
4900
4901      Previous.clear();
4902      Previous.addDecl(OldDecl);
4903
4904      if (FunctionTemplateDecl *OldTemplateDecl
4905                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4906        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4907        FunctionTemplateDecl *NewTemplateDecl
4908          = NewFD->getDescribedFunctionTemplate();
4909        assert(NewTemplateDecl && "Template/non-template mismatch");
4910        if (CXXMethodDecl *Method
4911              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4912          Method->setAccess(OldTemplateDecl->getAccess());
4913          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4914        }
4915
4916        // If this is an explicit specialization of a member that is a function
4917        // template, mark it as a member specialization.
4918        if (IsExplicitSpecialization &&
4919            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4920          NewTemplateDecl->setMemberSpecialization();
4921          assert(OldTemplateDecl->isMemberSpecialization());
4922        }
4923      } else {
4924        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4925          NewFD->setAccess(OldDecl->getAccess());
4926        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4927      }
4928    }
4929  }
4930
4931  // Semantic checking for this function declaration (in isolation).
4932  if (getLangOptions().CPlusPlus) {
4933    // C++-specific checks.
4934    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4935      CheckConstructor(Constructor);
4936    } else if (CXXDestructorDecl *Destructor =
4937                dyn_cast<CXXDestructorDecl>(NewFD)) {
4938      CXXRecordDecl *Record = Destructor->getParent();
4939      QualType ClassType = Context.getTypeDeclType(Record);
4940
4941      // FIXME: Shouldn't we be able to perform this check even when the class
4942      // type is dependent? Both gcc and edg can handle that.
4943      if (!ClassType->isDependentType()) {
4944        DeclarationName Name
4945          = Context.DeclarationNames.getCXXDestructorName(
4946                                        Context.getCanonicalType(ClassType));
4947        if (NewFD->getDeclName() != Name) {
4948          Diag(NewFD->getLocation(), diag::err_destructor_name);
4949          return NewFD->setInvalidDecl();
4950        }
4951      }
4952    } else if (CXXConversionDecl *Conversion
4953               = dyn_cast<CXXConversionDecl>(NewFD)) {
4954      ActOnConversionDeclarator(Conversion);
4955    }
4956
4957    // Find any virtual functions that this function overrides.
4958    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4959      if (!Method->isFunctionTemplateSpecialization() &&
4960          !Method->getDescribedFunctionTemplate()) {
4961        if (AddOverriddenMethods(Method->getParent(), Method)) {
4962          // If the function was marked as "static", we have a problem.
4963          if (NewFD->getStorageClass() == SC_Static) {
4964            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4965              << NewFD->getDeclName();
4966            for (CXXMethodDecl::method_iterator
4967                      Overridden = Method->begin_overridden_methods(),
4968                   OverriddenEnd = Method->end_overridden_methods();
4969                 Overridden != OverriddenEnd;
4970                 ++Overridden) {
4971              Diag((*Overridden)->getLocation(),
4972                   diag::note_overridden_virtual_function);
4973            }
4974          }
4975        }
4976      }
4977    }
4978
4979    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4980    if (NewFD->isOverloadedOperator() &&
4981        CheckOverloadedOperatorDeclaration(NewFD))
4982      return NewFD->setInvalidDecl();
4983
4984    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4985    if (NewFD->getLiteralIdentifier() &&
4986        CheckLiteralOperatorDeclaration(NewFD))
4987      return NewFD->setInvalidDecl();
4988
4989    // In C++, check default arguments now that we have merged decls. Unless
4990    // the lexical context is the class, because in this case this is done
4991    // during delayed parsing anyway.
4992    if (!CurContext->isRecord())
4993      CheckCXXDefaultArguments(NewFD);
4994
4995    // If this function declares a builtin function, check the type of this
4996    // declaration against the expected type for the builtin.
4997    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4998      ASTContext::GetBuiltinTypeError Error;
4999      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5000      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5001        // The type of this function differs from the type of the builtin,
5002        // so forget about the builtin entirely.
5003        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5004      }
5005    }
5006  }
5007}
5008
5009void Sema::CheckMain(FunctionDecl* FD) {
5010  // C++ [basic.start.main]p3:  A program that declares main to be inline
5011  //   or static is ill-formed.
5012  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5013  //   shall not appear in a declaration of main.
5014  // static main is not an error under C99, but we should warn about it.
5015  bool isInline = FD->isInlineSpecified();
5016  bool isStatic = FD->getStorageClass() == SC_Static;
5017  if (isInline || isStatic) {
5018    unsigned diagID = diag::warn_unusual_main_decl;
5019    if (isInline || getLangOptions().CPlusPlus)
5020      diagID = diag::err_unusual_main_decl;
5021
5022    int which = isStatic + (isInline << 1) - 1;
5023    Diag(FD->getLocation(), diagID) << which;
5024  }
5025
5026  QualType T = FD->getType();
5027  assert(T->isFunctionType() && "function decl is not of function type");
5028  const FunctionType* FT = T->getAs<FunctionType>();
5029
5030  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5031    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5032    FD->setInvalidDecl(true);
5033  }
5034
5035  // Treat protoless main() as nullary.
5036  if (isa<FunctionNoProtoType>(FT)) return;
5037
5038  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5039  unsigned nparams = FTP->getNumArgs();
5040  assert(FD->getNumParams() == nparams);
5041
5042  bool HasExtraParameters = (nparams > 3);
5043
5044  // Darwin passes an undocumented fourth argument of type char**.  If
5045  // other platforms start sprouting these, the logic below will start
5046  // getting shifty.
5047  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5048    HasExtraParameters = false;
5049
5050  if (HasExtraParameters) {
5051    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5052    FD->setInvalidDecl(true);
5053    nparams = 3;
5054  }
5055
5056  // FIXME: a lot of the following diagnostics would be improved
5057  // if we had some location information about types.
5058
5059  QualType CharPP =
5060    Context.getPointerType(Context.getPointerType(Context.CharTy));
5061  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5062
5063  for (unsigned i = 0; i < nparams; ++i) {
5064    QualType AT = FTP->getArgType(i);
5065
5066    bool mismatch = true;
5067
5068    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5069      mismatch = false;
5070    else if (Expected[i] == CharPP) {
5071      // As an extension, the following forms are okay:
5072      //   char const **
5073      //   char const * const *
5074      //   char * const *
5075
5076      QualifierCollector qs;
5077      const PointerType* PT;
5078      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5079          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5080          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5081        qs.removeConst();
5082        mismatch = !qs.empty();
5083      }
5084    }
5085
5086    if (mismatch) {
5087      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5088      // TODO: suggest replacing given type with expected type
5089      FD->setInvalidDecl(true);
5090    }
5091  }
5092
5093  if (nparams == 1 && !FD->isInvalidDecl()) {
5094    Diag(FD->getLocation(), diag::warn_main_one_arg);
5095  }
5096
5097  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5098    Diag(FD->getLocation(), diag::err_main_template_decl);
5099    FD->setInvalidDecl();
5100  }
5101}
5102
5103bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5104  // FIXME: Need strict checking.  In C89, we need to check for
5105  // any assignment, increment, decrement, function-calls, or
5106  // commas outside of a sizeof.  In C99, it's the same list,
5107  // except that the aforementioned are allowed in unevaluated
5108  // expressions.  Everything else falls under the
5109  // "may accept other forms of constant expressions" exception.
5110  // (We never end up here for C++, so the constant expression
5111  // rules there don't matter.)
5112  if (Init->isConstantInitializer(Context, false))
5113    return false;
5114  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5115    << Init->getSourceRange();
5116  return true;
5117}
5118
5119namespace {
5120  // Visits an initialization expression to see if OrigDecl is evaluated in
5121  // its own initialization and throws a warning if it does.
5122  class SelfReferenceChecker
5123      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5124    Sema &S;
5125    Decl *OrigDecl;
5126
5127  public:
5128    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5129
5130    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5131                                                    S(S), OrigDecl(OrigDecl) { }
5132
5133    void VisitExpr(Expr *E) {
5134      if (isa<ObjCMessageExpr>(*E)) return;
5135      Inherited::VisitExpr(E);
5136    }
5137
5138    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5139      CheckForSelfReference(E);
5140      Inherited::VisitImplicitCastExpr(E);
5141    }
5142
5143    void CheckForSelfReference(ImplicitCastExpr *E) {
5144      if (E->getCastKind() != CK_LValueToRValue) return;
5145      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5146      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5147      if (!DRE) return;
5148      Decl* ReferenceDecl = DRE->getDecl();
5149      if (OrigDecl != ReferenceDecl) return;
5150      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5151                          Sema::NotForRedeclaration);
5152      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5153        << Result.getLookupName() << OrigDecl->getLocation()
5154        << SubExpr->getSourceRange();
5155    }
5156  };
5157}
5158
5159/// AddInitializerToDecl - Adds the initializer Init to the
5160/// declaration dcl. If DirectInit is true, this is C++ direct
5161/// initialization rather than copy initialization.
5162void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5163                                bool DirectInit, bool TypeMayContainAuto) {
5164  // If there is no declaration, there was an error parsing it.  Just ignore
5165  // the initializer.
5166  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5167    return;
5168
5169  // Check for self-references within variable initializers.
5170  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5171    // Variables declared within a function/method body are handled
5172    // by a dataflow analysis.
5173    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5174      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5175  }
5176  else {
5177    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5178  }
5179
5180  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5181    // With declarators parsed the way they are, the parser cannot
5182    // distinguish between a normal initializer and a pure-specifier.
5183    // Thus this grotesque test.
5184    IntegerLiteral *IL;
5185    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5186        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5187      CheckPureMethod(Method, Init->getSourceRange());
5188    else {
5189      Diag(Method->getLocation(), diag::err_member_function_initialization)
5190        << Method->getDeclName() << Init->getSourceRange();
5191      Method->setInvalidDecl();
5192    }
5193    return;
5194  }
5195
5196  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5197  if (!VDecl) {
5198    if (getLangOptions().CPlusPlus &&
5199        RealDecl->getLexicalDeclContext()->isRecord() &&
5200        isa<NamedDecl>(RealDecl))
5201      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5202    else
5203      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5204    RealDecl->setInvalidDecl();
5205    return;
5206  }
5207
5208  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5209  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5210    TypeSourceInfo *DeducedType = 0;
5211    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5212      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5213        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5214        << Init->getSourceRange();
5215    if (!DeducedType) {
5216      RealDecl->setInvalidDecl();
5217      return;
5218    }
5219    VDecl->setTypeSourceInfo(DeducedType);
5220    VDecl->setType(DeducedType->getType());
5221
5222    // If this is a redeclaration, check that the type we just deduced matches
5223    // the previously declared type.
5224    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5225      MergeVarDeclTypes(VDecl, Old);
5226  }
5227
5228
5229  // A definition must end up with a complete type, which means it must be
5230  // complete with the restriction that an array type might be completed by the
5231  // initializer; note that later code assumes this restriction.
5232  QualType BaseDeclType = VDecl->getType();
5233  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5234    BaseDeclType = Array->getElementType();
5235  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5236                          diag::err_typecheck_decl_incomplete_type)) {
5237    RealDecl->setInvalidDecl();
5238    return;
5239  }
5240
5241  // The variable can not have an abstract class type.
5242  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5243                             diag::err_abstract_type_in_decl,
5244                             AbstractVariableType))
5245    VDecl->setInvalidDecl();
5246
5247  const VarDecl *Def;
5248  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5249    Diag(VDecl->getLocation(), diag::err_redefinition)
5250      << VDecl->getDeclName();
5251    Diag(Def->getLocation(), diag::note_previous_definition);
5252    VDecl->setInvalidDecl();
5253    return;
5254  }
5255
5256  const VarDecl* PrevInit = 0;
5257  if (getLangOptions().CPlusPlus) {
5258    // C++ [class.static.data]p4
5259    //   If a static data member is of const integral or const
5260    //   enumeration type, its declaration in the class definition can
5261    //   specify a constant-initializer which shall be an integral
5262    //   constant expression (5.19). In that case, the member can appear
5263    //   in integral constant expressions. The member shall still be
5264    //   defined in a namespace scope if it is used in the program and the
5265    //   namespace scope definition shall not contain an initializer.
5266    //
5267    // We already performed a redefinition check above, but for static
5268    // data members we also need to check whether there was an in-class
5269    // declaration with an initializer.
5270    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5271      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5272      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5273      return;
5274    }
5275
5276    if (VDecl->hasLocalStorage())
5277      getCurFunction()->setHasBranchProtectedScope();
5278
5279    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5280      VDecl->setInvalidDecl();
5281      return;
5282    }
5283  }
5284
5285  // Capture the variable that is being initialized and the style of
5286  // initialization.
5287  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5288
5289  // FIXME: Poor source location information.
5290  InitializationKind Kind
5291    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5292                                                   Init->getLocStart(),
5293                                                   Init->getLocEnd())
5294                : InitializationKind::CreateCopy(VDecl->getLocation(),
5295                                                 Init->getLocStart());
5296
5297  // Get the decls type and save a reference for later, since
5298  // CheckInitializerTypes may change it.
5299  QualType DclT = VDecl->getType(), SavT = DclT;
5300  if (VDecl->isLocalVarDecl()) {
5301    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5302      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5303      VDecl->setInvalidDecl();
5304    } else if (!VDecl->isInvalidDecl()) {
5305      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5306      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5307                                                MultiExprArg(*this, &Init, 1),
5308                                                &DclT);
5309      if (Result.isInvalid()) {
5310        VDecl->setInvalidDecl();
5311        return;
5312      }
5313
5314      Init = Result.takeAs<Expr>();
5315
5316      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5317      // Don't check invalid declarations to avoid emitting useless diagnostics.
5318      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5319        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5320          CheckForConstantInitializer(Init, DclT);
5321      }
5322    }
5323  } else if (VDecl->isStaticDataMember() &&
5324             VDecl->getLexicalDeclContext()->isRecord()) {
5325    // This is an in-class initialization for a static data member, e.g.,
5326    //
5327    // struct S {
5328    //   static const int value = 17;
5329    // };
5330
5331    // Try to perform the initialization regardless.
5332    if (!VDecl->isInvalidDecl()) {
5333      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5334      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5335                                          MultiExprArg(*this, &Init, 1),
5336                                          &DclT);
5337      if (Result.isInvalid()) {
5338        VDecl->setInvalidDecl();
5339        return;
5340      }
5341
5342      Init = Result.takeAs<Expr>();
5343    }
5344
5345    // C++ [class.mem]p4:
5346    //   A member-declarator can contain a constant-initializer only
5347    //   if it declares a static member (9.4) of const integral or
5348    //   const enumeration type, see 9.4.2.
5349    QualType T = VDecl->getType();
5350
5351    // Do nothing on dependent types.
5352    if (T->isDependentType()) {
5353
5354    // Require constness.
5355    } else if (!T.isConstQualified()) {
5356      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5357        << Init->getSourceRange();
5358      VDecl->setInvalidDecl();
5359
5360    // We allow integer constant expressions in all cases.
5361    } else if (T->isIntegralOrEnumerationType()) {
5362      if (!Init->isValueDependent()) {
5363        // Check whether the expression is a constant expression.
5364        llvm::APSInt Value;
5365        SourceLocation Loc;
5366        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5367          Diag(Loc, diag::err_in_class_initializer_non_constant)
5368            << Init->getSourceRange();
5369          VDecl->setInvalidDecl();
5370        }
5371      }
5372
5373    // We allow floating-point constants as an extension in C++03, and
5374    // C++0x has far more complicated rules that we don't really
5375    // implement fully.
5376    } else {
5377      bool Allowed = false;
5378      if (getLangOptions().CPlusPlus0x) {
5379        Allowed = T->isLiteralType();
5380      } else if (T->isFloatingType()) { // also permits complex, which is ok
5381        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5382          << T << Init->getSourceRange();
5383        Allowed = true;
5384      }
5385
5386      if (!Allowed) {
5387        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5388          << T << Init->getSourceRange();
5389        VDecl->setInvalidDecl();
5390
5391      // TODO: there are probably expressions that pass here that shouldn't.
5392      } else if (!Init->isValueDependent() &&
5393                 !Init->isConstantInitializer(Context, false)) {
5394        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5395          << Init->getSourceRange();
5396        VDecl->setInvalidDecl();
5397      }
5398    }
5399  } else if (VDecl->isFileVarDecl()) {
5400    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5401        (!getLangOptions().CPlusPlus ||
5402         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5403      Diag(VDecl->getLocation(), diag::warn_extern_init);
5404    if (!VDecl->isInvalidDecl()) {
5405      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5406      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5407                                                MultiExprArg(*this, &Init, 1),
5408                                                &DclT);
5409      if (Result.isInvalid()) {
5410        VDecl->setInvalidDecl();
5411        return;
5412      }
5413
5414      Init = Result.takeAs<Expr>();
5415    }
5416
5417    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5418    // Don't check invalid declarations to avoid emitting useless diagnostics.
5419    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5420      // C99 6.7.8p4. All file scoped initializers need to be constant.
5421      CheckForConstantInitializer(Init, DclT);
5422    }
5423  }
5424  // If the type changed, it means we had an incomplete type that was
5425  // completed by the initializer. For example:
5426  //   int ary[] = { 1, 3, 5 };
5427  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5428  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5429    VDecl->setType(DclT);
5430    Init->setType(DclT);
5431  }
5432
5433
5434  // If this variable is a local declaration with record type, make sure it
5435  // doesn't have a flexible member initialization.  We only support this as a
5436  // global/static definition.
5437  if (VDecl->hasLocalStorage())
5438    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5439      if (RT->getDecl()->hasFlexibleArrayMember()) {
5440        // Check whether the initializer tries to initialize the flexible
5441        // array member itself to anything other than an empty initializer list.
5442        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5443          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5444                                         RT->getDecl()->field_end()) - 1;
5445          if (Index < ILE->getNumInits() &&
5446              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5447                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5448            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5449            VDecl->setInvalidDecl();
5450          }
5451        }
5452      }
5453
5454  // Check any implicit conversions within the expression.
5455  CheckImplicitConversions(Init, VDecl->getLocation());
5456
5457  Init = MaybeCreateExprWithCleanups(Init);
5458  // Attach the initializer to the decl.
5459  VDecl->setInit(Init);
5460
5461  CheckCompleteVariableDeclaration(VDecl);
5462}
5463
5464/// ActOnInitializerError - Given that there was an error parsing an
5465/// initializer for the given declaration, try to return to some form
5466/// of sanity.
5467void Sema::ActOnInitializerError(Decl *D) {
5468  // Our main concern here is re-establishing invariants like "a
5469  // variable's type is either dependent or complete".
5470  if (!D || D->isInvalidDecl()) return;
5471
5472  VarDecl *VD = dyn_cast<VarDecl>(D);
5473  if (!VD) return;
5474
5475  // Auto types are meaningless if we can't make sense of the initializer.
5476  if (ParsingInitForAutoVars.count(D)) {
5477    D->setInvalidDecl();
5478    return;
5479  }
5480
5481  QualType Ty = VD->getType();
5482  if (Ty->isDependentType()) return;
5483
5484  // Require a complete type.
5485  if (RequireCompleteType(VD->getLocation(),
5486                          Context.getBaseElementType(Ty),
5487                          diag::err_typecheck_decl_incomplete_type)) {
5488    VD->setInvalidDecl();
5489    return;
5490  }
5491
5492  // Require an abstract type.
5493  if (RequireNonAbstractType(VD->getLocation(), Ty,
5494                             diag::err_abstract_type_in_decl,
5495                             AbstractVariableType)) {
5496    VD->setInvalidDecl();
5497    return;
5498  }
5499
5500  // Don't bother complaining about constructors or destructors,
5501  // though.
5502}
5503
5504void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5505                                  bool TypeMayContainAuto) {
5506  // If there is no declaration, there was an error parsing it. Just ignore it.
5507  if (RealDecl == 0)
5508    return;
5509
5510  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5511    QualType Type = Var->getType();
5512
5513    // C++0x [dcl.spec.auto]p3
5514    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5515      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5516        << Var->getDeclName() << Type;
5517      Var->setInvalidDecl();
5518      return;
5519    }
5520
5521    switch (Var->isThisDeclarationADefinition()) {
5522    case VarDecl::Definition:
5523      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5524        break;
5525
5526      // We have an out-of-line definition of a static data member
5527      // that has an in-class initializer, so we type-check this like
5528      // a declaration.
5529      //
5530      // Fall through
5531
5532    case VarDecl::DeclarationOnly:
5533      // It's only a declaration.
5534
5535      // Block scope. C99 6.7p7: If an identifier for an object is
5536      // declared with no linkage (C99 6.2.2p6), the type for the
5537      // object shall be complete.
5538      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5539          !Var->getLinkage() && !Var->isInvalidDecl() &&
5540          RequireCompleteType(Var->getLocation(), Type,
5541                              diag::err_typecheck_decl_incomplete_type))
5542        Var->setInvalidDecl();
5543
5544      // Make sure that the type is not abstract.
5545      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5546          RequireNonAbstractType(Var->getLocation(), Type,
5547                                 diag::err_abstract_type_in_decl,
5548                                 AbstractVariableType))
5549        Var->setInvalidDecl();
5550      return;
5551
5552    case VarDecl::TentativeDefinition:
5553      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5554      // object that has file scope without an initializer, and without a
5555      // storage-class specifier or with the storage-class specifier "static",
5556      // constitutes a tentative definition. Note: A tentative definition with
5557      // external linkage is valid (C99 6.2.2p5).
5558      if (!Var->isInvalidDecl()) {
5559        if (const IncompleteArrayType *ArrayT
5560                                    = Context.getAsIncompleteArrayType(Type)) {
5561          if (RequireCompleteType(Var->getLocation(),
5562                                  ArrayT->getElementType(),
5563                                  diag::err_illegal_decl_array_incomplete_type))
5564            Var->setInvalidDecl();
5565        } else if (Var->getStorageClass() == SC_Static) {
5566          // C99 6.9.2p3: If the declaration of an identifier for an object is
5567          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5568          // declared type shall not be an incomplete type.
5569          // NOTE: code such as the following
5570          //     static struct s;
5571          //     struct s { int a; };
5572          // is accepted by gcc. Hence here we issue a warning instead of
5573          // an error and we do not invalidate the static declaration.
5574          // NOTE: to avoid multiple warnings, only check the first declaration.
5575          if (Var->getPreviousDeclaration() == 0)
5576            RequireCompleteType(Var->getLocation(), Type,
5577                                diag::ext_typecheck_decl_incomplete_type);
5578        }
5579      }
5580
5581      // Record the tentative definition; we're done.
5582      if (!Var->isInvalidDecl())
5583        TentativeDefinitions.push_back(Var);
5584      return;
5585    }
5586
5587    // Provide a specific diagnostic for uninitialized variable
5588    // definitions with incomplete array type.
5589    if (Type->isIncompleteArrayType()) {
5590      Diag(Var->getLocation(),
5591           diag::err_typecheck_incomplete_array_needs_initializer);
5592      Var->setInvalidDecl();
5593      return;
5594    }
5595
5596    // Provide a specific diagnostic for uninitialized variable
5597    // definitions with reference type.
5598    if (Type->isReferenceType()) {
5599      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5600        << Var->getDeclName()
5601        << SourceRange(Var->getLocation(), Var->getLocation());
5602      Var->setInvalidDecl();
5603      return;
5604    }
5605
5606    // Do not attempt to type-check the default initializer for a
5607    // variable with dependent type.
5608    if (Type->isDependentType())
5609      return;
5610
5611    if (Var->isInvalidDecl())
5612      return;
5613
5614    if (RequireCompleteType(Var->getLocation(),
5615                            Context.getBaseElementType(Type),
5616                            diag::err_typecheck_decl_incomplete_type)) {
5617      Var->setInvalidDecl();
5618      return;
5619    }
5620
5621    // The variable can not have an abstract class type.
5622    if (RequireNonAbstractType(Var->getLocation(), Type,
5623                               diag::err_abstract_type_in_decl,
5624                               AbstractVariableType)) {
5625      Var->setInvalidDecl();
5626      return;
5627    }
5628
5629    // Check for jumps past the implicit initializer.  C++0x
5630    // clarifies that this applies to a "variable with automatic
5631    // storage duration", not a "local variable".
5632    // C++0x [stmt.dcl]p3
5633    //   A program that jumps from a point where a variable with automatic
5634    //   storage duration is not in scope to a point where it is in scope is
5635    //   ill-formed unless the variable has scalar type, class type with a
5636    //   trivial default constructor and a trivial destructor, a cv-qualified
5637    //   version of one of these types, or an array of one of the preceding
5638    //   types and is declared without an initializer.
5639    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5640      if (const RecordType *Record
5641            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5642        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5643        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5644            (getLangOptions().CPlusPlus0x &&
5645             (!CXXRecord->hasTrivialDefaultConstructor() ||
5646              (!CXXRecord->hasTrivialDestructor()))))
5647          getCurFunction()->setHasBranchProtectedScope();
5648      }
5649    }
5650
5651    // C++03 [dcl.init]p9:
5652    //   If no initializer is specified for an object, and the
5653    //   object is of (possibly cv-qualified) non-POD class type (or
5654    //   array thereof), the object shall be default-initialized; if
5655    //   the object is of const-qualified type, the underlying class
5656    //   type shall have a user-declared default
5657    //   constructor. Otherwise, if no initializer is specified for
5658    //   a non- static object, the object and its subobjects, if
5659    //   any, have an indeterminate initial value); if the object
5660    //   or any of its subobjects are of const-qualified type, the
5661    //   program is ill-formed.
5662    // C++0x [dcl.init]p11:
5663    //   If no initializer is specified for an object, the object is
5664    //   default-initialized; [...].
5665    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5666    InitializationKind Kind
5667      = InitializationKind::CreateDefault(Var->getLocation());
5668
5669    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5670    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5671                                      MultiExprArg(*this, 0, 0));
5672    if (Init.isInvalid())
5673      Var->setInvalidDecl();
5674    else if (Init.get())
5675      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5676
5677    CheckCompleteVariableDeclaration(Var);
5678  }
5679}
5680
5681void Sema::ActOnCXXForRangeDecl(Decl *D) {
5682  VarDecl *VD = dyn_cast<VarDecl>(D);
5683  if (!VD) {
5684    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5685    D->setInvalidDecl();
5686    return;
5687  }
5688
5689  VD->setCXXForRangeDecl(true);
5690
5691  // for-range-declaration cannot be given a storage class specifier.
5692  int Error = -1;
5693  switch (VD->getStorageClassAsWritten()) {
5694  case SC_None:
5695    break;
5696  case SC_Extern:
5697    Error = 0;
5698    break;
5699  case SC_Static:
5700    Error = 1;
5701    break;
5702  case SC_PrivateExtern:
5703    Error = 2;
5704    break;
5705  case SC_Auto:
5706    Error = 3;
5707    break;
5708  case SC_Register:
5709    Error = 4;
5710    break;
5711  }
5712  // FIXME: constexpr isn't allowed here.
5713  //if (DS.isConstexprSpecified())
5714  //  Error = 5;
5715  if (Error != -1) {
5716    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5717      << VD->getDeclName() << Error;
5718    D->setInvalidDecl();
5719  }
5720}
5721
5722void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5723  if (var->isInvalidDecl()) return;
5724
5725  // All the following checks are C++ only.
5726  if (!getLangOptions().CPlusPlus) return;
5727
5728  QualType baseType = Context.getBaseElementType(var->getType());
5729  if (baseType->isDependentType()) return;
5730
5731  // __block variables might require us to capture a copy-initializer.
5732  if (var->hasAttr<BlocksAttr>()) {
5733    // It's currently invalid to ever have a __block variable with an
5734    // array type; should we diagnose that here?
5735
5736    // Regardless, we don't want to ignore array nesting when
5737    // constructing this copy.
5738    QualType type = var->getType();
5739
5740    if (type->isStructureOrClassType()) {
5741      SourceLocation poi = var->getLocation();
5742      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5743      ExprResult result =
5744        PerformCopyInitialization(
5745                        InitializedEntity::InitializeBlock(poi, type, false),
5746                                  poi, Owned(varRef));
5747      if (!result.isInvalid()) {
5748        result = MaybeCreateExprWithCleanups(result);
5749        Expr *init = result.takeAs<Expr>();
5750        Context.setBlockVarCopyInits(var, init);
5751      }
5752    }
5753  }
5754
5755  // Check for global constructors.
5756  if (!var->getDeclContext()->isDependentContext() &&
5757      var->hasGlobalStorage() &&
5758      !var->isStaticLocal() &&
5759      var->getInit() &&
5760      !var->getInit()->isConstantInitializer(Context,
5761                                             baseType->isReferenceType()))
5762    Diag(var->getLocation(), diag::warn_global_constructor)
5763      << var->getInit()->getSourceRange();
5764
5765  // Require the destructor.
5766  if (const RecordType *recordType = baseType->getAs<RecordType>())
5767    FinalizeVarWithDestructor(var, recordType);
5768}
5769
5770/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5771/// any semantic actions necessary after any initializer has been attached.
5772void
5773Sema::FinalizeDeclaration(Decl *ThisDecl) {
5774  // Note that we are no longer parsing the initializer for this declaration.
5775  ParsingInitForAutoVars.erase(ThisDecl);
5776}
5777
5778Sema::DeclGroupPtrTy
5779Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5780                              Decl **Group, unsigned NumDecls) {
5781  llvm::SmallVector<Decl*, 8> Decls;
5782
5783  if (DS.isTypeSpecOwned())
5784    Decls.push_back(DS.getRepAsDecl());
5785
5786  for (unsigned i = 0; i != NumDecls; ++i)
5787    if (Decl *D = Group[i])
5788      Decls.push_back(D);
5789
5790  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5791                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5792}
5793
5794/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5795/// group, performing any necessary semantic checking.
5796Sema::DeclGroupPtrTy
5797Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5798                           bool TypeMayContainAuto) {
5799  // C++0x [dcl.spec.auto]p7:
5800  //   If the type deduced for the template parameter U is not the same in each
5801  //   deduction, the program is ill-formed.
5802  // FIXME: When initializer-list support is added, a distinction is needed
5803  // between the deduced type U and the deduced type which 'auto' stands for.
5804  //   auto a = 0, b = { 1, 2, 3 };
5805  // is legal because the deduced type U is 'int' in both cases.
5806  if (TypeMayContainAuto && NumDecls > 1) {
5807    QualType Deduced;
5808    CanQualType DeducedCanon;
5809    VarDecl *DeducedDecl = 0;
5810    for (unsigned i = 0; i != NumDecls; ++i) {
5811      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5812        AutoType *AT = D->getType()->getContainedAutoType();
5813        // Don't reissue diagnostics when instantiating a template.
5814        if (AT && D->isInvalidDecl())
5815          break;
5816        if (AT && AT->isDeduced()) {
5817          QualType U = AT->getDeducedType();
5818          CanQualType UCanon = Context.getCanonicalType(U);
5819          if (Deduced.isNull()) {
5820            Deduced = U;
5821            DeducedCanon = UCanon;
5822            DeducedDecl = D;
5823          } else if (DeducedCanon != UCanon) {
5824            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5825                 diag::err_auto_different_deductions)
5826              << Deduced << DeducedDecl->getDeclName()
5827              << U << D->getDeclName()
5828              << DeducedDecl->getInit()->getSourceRange()
5829              << D->getInit()->getSourceRange();
5830            D->setInvalidDecl();
5831            break;
5832          }
5833        }
5834      }
5835    }
5836  }
5837
5838  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5839}
5840
5841
5842/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5843/// to introduce parameters into function prototype scope.
5844Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5845  const DeclSpec &DS = D.getDeclSpec();
5846
5847  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5848  VarDecl::StorageClass StorageClass = SC_None;
5849  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5850  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5851    StorageClass = SC_Register;
5852    StorageClassAsWritten = SC_Register;
5853  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5854    Diag(DS.getStorageClassSpecLoc(),
5855         diag::err_invalid_storage_class_in_func_decl);
5856    D.getMutableDeclSpec().ClearStorageClassSpecs();
5857  }
5858
5859  if (D.getDeclSpec().isThreadSpecified())
5860    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5861
5862  DiagnoseFunctionSpecifiers(D);
5863
5864  TagDecl *OwnedDecl = 0;
5865  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5866  QualType parmDeclType = TInfo->getType();
5867
5868  if (getLangOptions().CPlusPlus) {
5869    // Check that there are no default arguments inside the type of this
5870    // parameter.
5871    CheckExtraCXXDefaultArguments(D);
5872
5873    if (OwnedDecl && OwnedDecl->isDefinition()) {
5874      // C++ [dcl.fct]p6:
5875      //   Types shall not be defined in return or parameter types.
5876      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5877        << Context.getTypeDeclType(OwnedDecl);
5878    }
5879
5880    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5881    if (D.getCXXScopeSpec().isSet()) {
5882      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5883        << D.getCXXScopeSpec().getRange();
5884      D.getCXXScopeSpec().clear();
5885    }
5886  }
5887
5888  // Ensure we have a valid name
5889  IdentifierInfo *II = 0;
5890  if (D.hasName()) {
5891    II = D.getIdentifier();
5892    if (!II) {
5893      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5894        << GetNameForDeclarator(D).getName().getAsString();
5895      D.setInvalidType(true);
5896    }
5897  }
5898
5899  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5900  if (II) {
5901    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5902                   ForRedeclaration);
5903    LookupName(R, S);
5904    if (R.isSingleResult()) {
5905      NamedDecl *PrevDecl = R.getFoundDecl();
5906      if (PrevDecl->isTemplateParameter()) {
5907        // Maybe we will complain about the shadowed template parameter.
5908        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5909        // Just pretend that we didn't see the previous declaration.
5910        PrevDecl = 0;
5911      } else if (S->isDeclScope(PrevDecl)) {
5912        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5913        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5914
5915        // Recover by removing the name
5916        II = 0;
5917        D.SetIdentifier(0, D.getIdentifierLoc());
5918        D.setInvalidType(true);
5919      }
5920    }
5921  }
5922
5923  // Temporarily put parameter variables in the translation unit, not
5924  // the enclosing context.  This prevents them from accidentally
5925  // looking like class members in C++.
5926  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5927                                    D.getSourceRange().getBegin(),
5928                                    D.getIdentifierLoc(), II,
5929                                    parmDeclType, TInfo,
5930                                    StorageClass, StorageClassAsWritten);
5931
5932  if (D.isInvalidType())
5933    New->setInvalidDecl();
5934
5935  assert(S->isFunctionPrototypeScope());
5936  assert(S->getFunctionPrototypeDepth() >= 1);
5937  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5938                    S->getNextFunctionPrototypeIndex());
5939
5940  // Add the parameter declaration into this scope.
5941  S->AddDecl(New);
5942  if (II)
5943    IdResolver.AddDecl(New);
5944
5945  ProcessDeclAttributes(S, New, D);
5946
5947  if (New->hasAttr<BlocksAttr>()) {
5948    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5949  }
5950  return New;
5951}
5952
5953/// \brief Synthesizes a variable for a parameter arising from a
5954/// typedef.
5955ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5956                                              SourceLocation Loc,
5957                                              QualType T) {
5958  /* FIXME: setting StartLoc == Loc.
5959     Would it be worth to modify callers so as to provide proper source
5960     location for the unnamed parameters, embedding the parameter's type? */
5961  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5962                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5963                                           SC_None, SC_None, 0);
5964  Param->setImplicit();
5965  return Param;
5966}
5967
5968void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5969                                    ParmVarDecl * const *ParamEnd) {
5970  // Don't diagnose unused-parameter errors in template instantiations; we
5971  // will already have done so in the template itself.
5972  if (!ActiveTemplateInstantiations.empty())
5973    return;
5974
5975  for (; Param != ParamEnd; ++Param) {
5976    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5977        !(*Param)->hasAttr<UnusedAttr>()) {
5978      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5979        << (*Param)->getDeclName();
5980    }
5981  }
5982}
5983
5984void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5985                                                  ParmVarDecl * const *ParamEnd,
5986                                                  QualType ReturnTy,
5987                                                  NamedDecl *D) {
5988  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5989    return;
5990
5991  // Warn if the return value is pass-by-value and larger than the specified
5992  // threshold.
5993  if (ReturnTy->isPODType()) {
5994    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5995    if (Size > LangOpts.NumLargeByValueCopy)
5996      Diag(D->getLocation(), diag::warn_return_value_size)
5997          << D->getDeclName() << Size;
5998  }
5999
6000  // Warn if any parameter is pass-by-value and larger than the specified
6001  // threshold.
6002  for (; Param != ParamEnd; ++Param) {
6003    QualType T = (*Param)->getType();
6004    if (!T->isPODType())
6005      continue;
6006    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6007    if (Size > LangOpts.NumLargeByValueCopy)
6008      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6009          << (*Param)->getDeclName() << Size;
6010  }
6011}
6012
6013ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6014                                  SourceLocation NameLoc, IdentifierInfo *Name,
6015                                  QualType T, TypeSourceInfo *TSInfo,
6016                                  VarDecl::StorageClass StorageClass,
6017                                  VarDecl::StorageClass StorageClassAsWritten) {
6018  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6019                                         adjustParameterType(T), TSInfo,
6020                                         StorageClass, StorageClassAsWritten,
6021                                         0);
6022
6023  // Parameters can not be abstract class types.
6024  // For record types, this is done by the AbstractClassUsageDiagnoser once
6025  // the class has been completely parsed.
6026  if (!CurContext->isRecord() &&
6027      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6028                             AbstractParamType))
6029    New->setInvalidDecl();
6030
6031  // Parameter declarators cannot be interface types. All ObjC objects are
6032  // passed by reference.
6033  if (T->isObjCObjectType()) {
6034    Diag(NameLoc,
6035         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6036    New->setInvalidDecl();
6037  }
6038
6039  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6040  // duration shall not be qualified by an address-space qualifier."
6041  // Since all parameters have automatic store duration, they can not have
6042  // an address space.
6043  if (T.getAddressSpace() != 0) {
6044    Diag(NameLoc, diag::err_arg_with_address_space);
6045    New->setInvalidDecl();
6046  }
6047
6048  return New;
6049}
6050
6051void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6052                                           SourceLocation LocAfterDecls) {
6053  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6054
6055  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6056  // for a K&R function.
6057  if (!FTI.hasPrototype) {
6058    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6059      --i;
6060      if (FTI.ArgInfo[i].Param == 0) {
6061        llvm::SmallString<256> Code;
6062        llvm::raw_svector_ostream(Code) << "  int "
6063                                        << FTI.ArgInfo[i].Ident->getName()
6064                                        << ";\n";
6065        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6066          << FTI.ArgInfo[i].Ident
6067          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6068
6069        // Implicitly declare the argument as type 'int' for lack of a better
6070        // type.
6071        AttributeFactory attrs;
6072        DeclSpec DS(attrs);
6073        const char* PrevSpec; // unused
6074        unsigned DiagID; // unused
6075        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6076                           PrevSpec, DiagID);
6077        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6078        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6079        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6080      }
6081    }
6082  }
6083}
6084
6085Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6086                                         Declarator &D) {
6087  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6088  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6089  Scope *ParentScope = FnBodyScope->getParent();
6090
6091  Decl *DP = HandleDeclarator(ParentScope, D,
6092                              MultiTemplateParamsArg(*this),
6093                              /*IsFunctionDefinition=*/true);
6094  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6095}
6096
6097static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6098  // Don't warn about invalid declarations.
6099  if (FD->isInvalidDecl())
6100    return false;
6101
6102  // Or declarations that aren't global.
6103  if (!FD->isGlobal())
6104    return false;
6105
6106  // Don't warn about C++ member functions.
6107  if (isa<CXXMethodDecl>(FD))
6108    return false;
6109
6110  // Don't warn about 'main'.
6111  if (FD->isMain())
6112    return false;
6113
6114  // Don't warn about inline functions.
6115  if (FD->isInlined())
6116    return false;
6117
6118  // Don't warn about function templates.
6119  if (FD->getDescribedFunctionTemplate())
6120    return false;
6121
6122  // Don't warn about function template specializations.
6123  if (FD->isFunctionTemplateSpecialization())
6124    return false;
6125
6126  bool MissingPrototype = true;
6127  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6128       Prev; Prev = Prev->getPreviousDeclaration()) {
6129    // Ignore any declarations that occur in function or method
6130    // scope, because they aren't visible from the header.
6131    if (Prev->getDeclContext()->isFunctionOrMethod())
6132      continue;
6133
6134    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6135    break;
6136  }
6137
6138  return MissingPrototype;
6139}
6140
6141void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6142  // Don't complain if we're in GNU89 mode and the previous definition
6143  // was an extern inline function.
6144  const FunctionDecl *Definition;
6145  if (FD->isDefined(Definition) &&
6146      !canRedefineFunction(Definition, getLangOptions())) {
6147    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6148        Definition->getStorageClass() == SC_Extern)
6149      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6150        << FD->getDeclName() << getLangOptions().CPlusPlus;
6151    else
6152      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6153    Diag(Definition->getLocation(), diag::note_previous_definition);
6154  }
6155}
6156
6157Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6158  // Clear the last template instantiation error context.
6159  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6160
6161  if (!D)
6162    return D;
6163  FunctionDecl *FD = 0;
6164
6165  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6166    FD = FunTmpl->getTemplatedDecl();
6167  else
6168    FD = cast<FunctionDecl>(D);
6169
6170  // Enter a new function scope
6171  PushFunctionScope();
6172
6173  // See if this is a redefinition.
6174  if (!FD->isLateTemplateParsed())
6175    CheckForFunctionRedefinition(FD);
6176
6177  // Builtin functions cannot be defined.
6178  if (unsigned BuiltinID = FD->getBuiltinID()) {
6179    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6180      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6181      FD->setInvalidDecl();
6182    }
6183  }
6184
6185  // The return type of a function definition must be complete
6186  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6187  QualType ResultType = FD->getResultType();
6188  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6189      !FD->isInvalidDecl() &&
6190      RequireCompleteType(FD->getLocation(), ResultType,
6191                          diag::err_func_def_incomplete_result))
6192    FD->setInvalidDecl();
6193
6194  // GNU warning -Wmissing-prototypes:
6195  //   Warn if a global function is defined without a previous
6196  //   prototype declaration. This warning is issued even if the
6197  //   definition itself provides a prototype. The aim is to detect
6198  //   global functions that fail to be declared in header files.
6199  if (ShouldWarnAboutMissingPrototype(FD))
6200    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6201
6202  if (FnBodyScope)
6203    PushDeclContext(FnBodyScope, FD);
6204
6205  // Check the validity of our function parameters
6206  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6207                           /*CheckParameterNames=*/true);
6208
6209  // Introduce our parameters into the function scope
6210  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6211    ParmVarDecl *Param = FD->getParamDecl(p);
6212    Param->setOwningFunction(FD);
6213
6214    // If this has an identifier, add it to the scope stack.
6215    if (Param->getIdentifier() && FnBodyScope) {
6216      CheckShadow(FnBodyScope, Param);
6217
6218      PushOnScopeChains(Param, FnBodyScope);
6219    }
6220  }
6221
6222  // Checking attributes of current function definition
6223  // dllimport attribute.
6224  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6225  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6226    // dllimport attribute cannot be directly applied to definition.
6227    // Microsoft accepts dllimport for functions defined within class scope.
6228    if (!DA->isInherited() &&
6229        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6230      Diag(FD->getLocation(),
6231           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6232        << "dllimport";
6233      FD->setInvalidDecl();
6234      return FD;
6235    }
6236
6237    // Visual C++ appears to not think this is an issue, so only issue
6238    // a warning when Microsoft extensions are disabled.
6239    if (!LangOpts.Microsoft) {
6240      // If a symbol previously declared dllimport is later defined, the
6241      // attribute is ignored in subsequent references, and a warning is
6242      // emitted.
6243      Diag(FD->getLocation(),
6244           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6245        << FD->getName() << "dllimport";
6246    }
6247  }
6248  return FD;
6249}
6250
6251/// \brief Given the set of return statements within a function body,
6252/// compute the variables that are subject to the named return value
6253/// optimization.
6254///
6255/// Each of the variables that is subject to the named return value
6256/// optimization will be marked as NRVO variables in the AST, and any
6257/// return statement that has a marked NRVO variable as its NRVO candidate can
6258/// use the named return value optimization.
6259///
6260/// This function applies a very simplistic algorithm for NRVO: if every return
6261/// statement in the function has the same NRVO candidate, that candidate is
6262/// the NRVO variable.
6263///
6264/// FIXME: Employ a smarter algorithm that accounts for multiple return
6265/// statements and the lifetimes of the NRVO candidates. We should be able to
6266/// find a maximal set of NRVO variables.
6267static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6268  ReturnStmt **Returns = Scope->Returns.data();
6269
6270  const VarDecl *NRVOCandidate = 0;
6271  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6272    if (!Returns[I]->getNRVOCandidate())
6273      return;
6274
6275    if (!NRVOCandidate)
6276      NRVOCandidate = Returns[I]->getNRVOCandidate();
6277    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6278      return;
6279  }
6280
6281  if (NRVOCandidate)
6282    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6283}
6284
6285Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6286  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6287}
6288
6289Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6290                                    bool IsInstantiation) {
6291  FunctionDecl *FD = 0;
6292  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6293  if (FunTmpl)
6294    FD = FunTmpl->getTemplatedDecl();
6295  else
6296    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6297
6298  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6299  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6300
6301  if (FD) {
6302    FD->setBody(Body);
6303    if (FD->isMain()) {
6304      // C and C++ allow for main to automagically return 0.
6305      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6306      FD->setHasImplicitReturnZero(true);
6307      WP.disableCheckFallThrough();
6308    }
6309
6310    // MSVC permits the use of pure specifier (=0) on function definition,
6311    // defined at class scope, warn about this non standard construct.
6312    if (getLangOptions().Microsoft && FD->isPure())
6313      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6314
6315    if (!FD->isInvalidDecl()) {
6316      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6317      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6318                                             FD->getResultType(), FD);
6319
6320      // If this is a constructor, we need a vtable.
6321      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6322        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6323
6324      ComputeNRVO(Body, getCurFunction());
6325    }
6326
6327    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6328  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6329    assert(MD == getCurMethodDecl() && "Method parsing confused");
6330    MD->setBody(Body);
6331    if (Body)
6332      MD->setEndLoc(Body->getLocEnd());
6333    if (!MD->isInvalidDecl()) {
6334      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6335      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6336                                             MD->getResultType(), MD);
6337    }
6338  } else {
6339    return 0;
6340  }
6341
6342  // Verify and clean out per-function state.
6343  if (Body) {
6344    // C++ constructors that have function-try-blocks can't have return
6345    // statements in the handlers of that block. (C++ [except.handle]p14)
6346    // Verify this.
6347    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6348      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6349
6350    // Verify that that gotos and switch cases don't jump into scopes illegally.
6351    // Verify that that gotos and switch cases don't jump into scopes illegally.
6352    if (getCurFunction()->NeedsScopeChecking() &&
6353        !dcl->isInvalidDecl() &&
6354        !hasAnyErrorsInThisFunction())
6355      DiagnoseInvalidJumps(Body);
6356
6357    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6358      if (!Destructor->getParent()->isDependentType())
6359        CheckDestructor(Destructor);
6360
6361      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6362                                             Destructor->getParent());
6363    }
6364
6365    // If any errors have occurred, clear out any temporaries that may have
6366    // been leftover. This ensures that these temporaries won't be picked up for
6367    // deletion in some later function.
6368    if (PP.getDiagnostics().hasErrorOccurred() ||
6369        PP.getDiagnostics().getSuppressAllDiagnostics())
6370      ExprTemporaries.clear();
6371    else if (!isa<FunctionTemplateDecl>(dcl)) {
6372      // Since the body is valid, issue any analysis-based warnings that are
6373      // enabled.
6374      ActivePolicy = &WP;
6375    }
6376
6377    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6378  }
6379
6380  if (!IsInstantiation)
6381    PopDeclContext();
6382
6383  PopFunctionOrBlockScope(ActivePolicy, dcl);
6384
6385  // If any errors have occurred, clear out any temporaries that may have
6386  // been leftover. This ensures that these temporaries won't be picked up for
6387  // deletion in some later function.
6388  if (getDiagnostics().hasErrorOccurred())
6389    ExprTemporaries.clear();
6390
6391  return dcl;
6392}
6393
6394/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6395/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6396NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6397                                          IdentifierInfo &II, Scope *S) {
6398  // Before we produce a declaration for an implicitly defined
6399  // function, see whether there was a locally-scoped declaration of
6400  // this name as a function or variable. If so, use that
6401  // (non-visible) declaration, and complain about it.
6402  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6403    = LocallyScopedExternalDecls.find(&II);
6404  if (Pos != LocallyScopedExternalDecls.end()) {
6405    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6406    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6407    return Pos->second;
6408  }
6409
6410  // Extension in C99.  Legal in C90, but warn about it.
6411  if (II.getName().startswith("__builtin_"))
6412    Diag(Loc, diag::warn_builtin_unknown) << &II;
6413  else if (getLangOptions().C99)
6414    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6415  else
6416    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6417
6418  // Set a Declarator for the implicit definition: int foo();
6419  const char *Dummy;
6420  AttributeFactory attrFactory;
6421  DeclSpec DS(attrFactory);
6422  unsigned DiagID;
6423  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6424  (void)Error; // Silence warning.
6425  assert(!Error && "Error setting up implicit decl!");
6426  Declarator D(DS, Declarator::BlockContext);
6427  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6428                                             0, 0, true, SourceLocation(),
6429                                             EST_None, SourceLocation(),
6430                                             0, 0, 0, 0, Loc, Loc, D),
6431                DS.getAttributes(),
6432                SourceLocation());
6433  D.SetIdentifier(&II, Loc);
6434
6435  // Insert this function into translation-unit scope.
6436
6437  DeclContext *PrevDC = CurContext;
6438  CurContext = Context.getTranslationUnitDecl();
6439
6440  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6441  FD->setImplicit();
6442
6443  CurContext = PrevDC;
6444
6445  AddKnownFunctionAttributes(FD);
6446
6447  return FD;
6448}
6449
6450/// \brief Adds any function attributes that we know a priori based on
6451/// the declaration of this function.
6452///
6453/// These attributes can apply both to implicitly-declared builtins
6454/// (like __builtin___printf_chk) or to library-declared functions
6455/// like NSLog or printf.
6456void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6457  if (FD->isInvalidDecl())
6458    return;
6459
6460  // If this is a built-in function, map its builtin attributes to
6461  // actual attributes.
6462  if (unsigned BuiltinID = FD->getBuiltinID()) {
6463    // Handle printf-formatting attributes.
6464    unsigned FormatIdx;
6465    bool HasVAListArg;
6466    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6467      if (!FD->getAttr<FormatAttr>())
6468        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6469                                                "printf", FormatIdx+1,
6470                                               HasVAListArg ? 0 : FormatIdx+2));
6471    }
6472    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6473                                             HasVAListArg)) {
6474     if (!FD->getAttr<FormatAttr>())
6475       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6476                                              "scanf", FormatIdx+1,
6477                                              HasVAListArg ? 0 : FormatIdx+2));
6478    }
6479
6480    // Mark const if we don't care about errno and that is the only
6481    // thing preventing the function from being const. This allows
6482    // IRgen to use LLVM intrinsics for such functions.
6483    if (!getLangOptions().MathErrno &&
6484        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6485      if (!FD->getAttr<ConstAttr>())
6486        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6487    }
6488
6489    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6490      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6491    if (Context.BuiltinInfo.isConst(BuiltinID))
6492      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6493  }
6494
6495  IdentifierInfo *Name = FD->getIdentifier();
6496  if (!Name)
6497    return;
6498  if ((!getLangOptions().CPlusPlus &&
6499       FD->getDeclContext()->isTranslationUnit()) ||
6500      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6501       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6502       LinkageSpecDecl::lang_c)) {
6503    // Okay: this could be a libc/libm/Objective-C function we know
6504    // about.
6505  } else
6506    return;
6507
6508  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6509    // FIXME: NSLog and NSLogv should be target specific
6510    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6511      // FIXME: We known better than our headers.
6512      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6513    } else
6514      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6515                                             "printf", 1,
6516                                             Name->isStr("NSLogv") ? 0 : 2));
6517  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6518    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6519    // target-specific builtins, perhaps?
6520    if (!FD->getAttr<FormatAttr>())
6521      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6522                                             "printf", 2,
6523                                             Name->isStr("vasprintf") ? 0 : 3));
6524  }
6525}
6526
6527TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6528                                    TypeSourceInfo *TInfo) {
6529  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6530  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6531
6532  if (!TInfo) {
6533    assert(D.isInvalidType() && "no declarator info for valid type");
6534    TInfo = Context.getTrivialTypeSourceInfo(T);
6535  }
6536
6537  // Scope manipulation handled by caller.
6538  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6539                                           D.getSourceRange().getBegin(),
6540                                           D.getIdentifierLoc(),
6541                                           D.getIdentifier(),
6542                                           TInfo);
6543
6544  // Bail out immediately if we have an invalid declaration.
6545  if (D.isInvalidType()) {
6546    NewTD->setInvalidDecl();
6547    return NewTD;
6548  }
6549
6550  // C++ [dcl.typedef]p8:
6551  //   If the typedef declaration defines an unnamed class (or
6552  //   enum), the first typedef-name declared by the declaration
6553  //   to be that class type (or enum type) is used to denote the
6554  //   class type (or enum type) for linkage purposes only.
6555  // We need to check whether the type was declared in the declaration.
6556  switch (D.getDeclSpec().getTypeSpecType()) {
6557  case TST_enum:
6558  case TST_struct:
6559  case TST_union:
6560  case TST_class: {
6561    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6562
6563    // Do nothing if the tag is not anonymous or already has an
6564    // associated typedef (from an earlier typedef in this decl group).
6565    if (tagFromDeclSpec->getIdentifier()) break;
6566    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6567
6568    // A well-formed anonymous tag must always be a TUK_Definition.
6569    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6570
6571    // The type must match the tag exactly;  no qualifiers allowed.
6572    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6573      break;
6574
6575    // Otherwise, set this is the anon-decl typedef for the tag.
6576    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6577    break;
6578  }
6579
6580  default:
6581    break;
6582  }
6583
6584  return NewTD;
6585}
6586
6587
6588/// \brief Determine whether a tag with a given kind is acceptable
6589/// as a redeclaration of the given tag declaration.
6590///
6591/// \returns true if the new tag kind is acceptable, false otherwise.
6592bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6593                                        TagTypeKind NewTag,
6594                                        SourceLocation NewTagLoc,
6595                                        const IdentifierInfo &Name) {
6596  // C++ [dcl.type.elab]p3:
6597  //   The class-key or enum keyword present in the
6598  //   elaborated-type-specifier shall agree in kind with the
6599  //   declaration to which the name in the elaborated-type-specifier
6600  //   refers. This rule also applies to the form of
6601  //   elaborated-type-specifier that declares a class-name or
6602  //   friend class since it can be construed as referring to the
6603  //   definition of the class. Thus, in any
6604  //   elaborated-type-specifier, the enum keyword shall be used to
6605  //   refer to an enumeration (7.2), the union class-key shall be
6606  //   used to refer to a union (clause 9), and either the class or
6607  //   struct class-key shall be used to refer to a class (clause 9)
6608  //   declared using the class or struct class-key.
6609  TagTypeKind OldTag = Previous->getTagKind();
6610  if (OldTag == NewTag)
6611    return true;
6612
6613  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6614      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6615    // Warn about the struct/class tag mismatch.
6616    bool isTemplate = false;
6617    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6618      isTemplate = Record->getDescribedClassTemplate();
6619
6620    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6621      << (NewTag == TTK_Class)
6622      << isTemplate << &Name
6623      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6624                              OldTag == TTK_Class? "class" : "struct");
6625    Diag(Previous->getLocation(), diag::note_previous_use);
6626    return true;
6627  }
6628  return false;
6629}
6630
6631/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6632/// former case, Name will be non-null.  In the later case, Name will be null.
6633/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6634/// reference/declaration/definition of a tag.
6635Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6636                     SourceLocation KWLoc, CXXScopeSpec &SS,
6637                     IdentifierInfo *Name, SourceLocation NameLoc,
6638                     AttributeList *Attr, AccessSpecifier AS,
6639                     MultiTemplateParamsArg TemplateParameterLists,
6640                     bool &OwnedDecl, bool &IsDependent,
6641                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6642                     TypeResult UnderlyingType) {
6643  // If this is not a definition, it must have a name.
6644  assert((Name != 0 || TUK == TUK_Definition) &&
6645         "Nameless record must be a definition!");
6646  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6647
6648  OwnedDecl = false;
6649  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6650
6651  // FIXME: Check explicit specializations more carefully.
6652  bool isExplicitSpecialization = false;
6653  bool Invalid = false;
6654
6655  // We only need to do this matching if we have template parameters
6656  // or a scope specifier, which also conveniently avoids this work
6657  // for non-C++ cases.
6658  if (TemplateParameterLists.size() > 0 ||
6659      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6660    if (TemplateParameterList *TemplateParams
6661          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6662                                                TemplateParameterLists.get(),
6663                                                TemplateParameterLists.size(),
6664                                                    TUK == TUK_Friend,
6665                                                    isExplicitSpecialization,
6666                                                    Invalid)) {
6667      if (TemplateParams->size() > 0) {
6668        // This is a declaration or definition of a class template (which may
6669        // be a member of another template).
6670
6671        if (Invalid)
6672          return 0;
6673
6674        OwnedDecl = false;
6675        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6676                                               SS, Name, NameLoc, Attr,
6677                                               TemplateParams, AS,
6678                                           TemplateParameterLists.size() - 1,
6679                 (TemplateParameterList**) TemplateParameterLists.release());
6680        return Result.get();
6681      } else {
6682        // The "template<>" header is extraneous.
6683        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6684          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6685        isExplicitSpecialization = true;
6686      }
6687    }
6688  }
6689
6690  // Figure out the underlying type if this a enum declaration. We need to do
6691  // this early, because it's needed to detect if this is an incompatible
6692  // redeclaration.
6693  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6694
6695  if (Kind == TTK_Enum) {
6696    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6697      // No underlying type explicitly specified, or we failed to parse the
6698      // type, default to int.
6699      EnumUnderlying = Context.IntTy.getTypePtr();
6700    else if (UnderlyingType.get()) {
6701      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6702      // integral type; any cv-qualification is ignored.
6703      TypeSourceInfo *TI = 0;
6704      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6705      EnumUnderlying = TI;
6706
6707      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6708
6709      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6710        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6711          << T;
6712        // Recover by falling back to int.
6713        EnumUnderlying = Context.IntTy.getTypePtr();
6714      }
6715
6716      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6717                                          UPPC_FixedUnderlyingType))
6718        EnumUnderlying = Context.IntTy.getTypePtr();
6719
6720    } else if (getLangOptions().Microsoft)
6721      // Microsoft enums are always of int type.
6722      EnumUnderlying = Context.IntTy.getTypePtr();
6723  }
6724
6725  DeclContext *SearchDC = CurContext;
6726  DeclContext *DC = CurContext;
6727  bool isStdBadAlloc = false;
6728
6729  RedeclarationKind Redecl = ForRedeclaration;
6730  if (TUK == TUK_Friend || TUK == TUK_Reference)
6731    Redecl = NotForRedeclaration;
6732
6733  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6734
6735  if (Name && SS.isNotEmpty()) {
6736    // We have a nested-name tag ('struct foo::bar').
6737
6738    // Check for invalid 'foo::'.
6739    if (SS.isInvalid()) {
6740      Name = 0;
6741      goto CreateNewDecl;
6742    }
6743
6744    // If this is a friend or a reference to a class in a dependent
6745    // context, don't try to make a decl for it.
6746    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6747      DC = computeDeclContext(SS, false);
6748      if (!DC) {
6749        IsDependent = true;
6750        return 0;
6751      }
6752    } else {
6753      DC = computeDeclContext(SS, true);
6754      if (!DC) {
6755        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6756          << SS.getRange();
6757        return 0;
6758      }
6759    }
6760
6761    if (RequireCompleteDeclContext(SS, DC))
6762      return 0;
6763
6764    SearchDC = DC;
6765    // Look-up name inside 'foo::'.
6766    LookupQualifiedName(Previous, DC);
6767
6768    if (Previous.isAmbiguous())
6769      return 0;
6770
6771    if (Previous.empty()) {
6772      // Name lookup did not find anything. However, if the
6773      // nested-name-specifier refers to the current instantiation,
6774      // and that current instantiation has any dependent base
6775      // classes, we might find something at instantiation time: treat
6776      // this as a dependent elaborated-type-specifier.
6777      // But this only makes any sense for reference-like lookups.
6778      if (Previous.wasNotFoundInCurrentInstantiation() &&
6779          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6780        IsDependent = true;
6781        return 0;
6782      }
6783
6784      // A tag 'foo::bar' must already exist.
6785      Diag(NameLoc, diag::err_not_tag_in_scope)
6786        << Kind << Name << DC << SS.getRange();
6787      Name = 0;
6788      Invalid = true;
6789      goto CreateNewDecl;
6790    }
6791  } else if (Name) {
6792    // If this is a named struct, check to see if there was a previous forward
6793    // declaration or definition.
6794    // FIXME: We're looking into outer scopes here, even when we
6795    // shouldn't be. Doing so can result in ambiguities that we
6796    // shouldn't be diagnosing.
6797    LookupName(Previous, S);
6798
6799    if (Previous.isAmbiguous() &&
6800        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6801      LookupResult::Filter F = Previous.makeFilter();
6802      while (F.hasNext()) {
6803        NamedDecl *ND = F.next();
6804        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6805          F.erase();
6806      }
6807      F.done();
6808    }
6809
6810    // Note:  there used to be some attempt at recovery here.
6811    if (Previous.isAmbiguous())
6812      return 0;
6813
6814    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6815      // FIXME: This makes sure that we ignore the contexts associated
6816      // with C structs, unions, and enums when looking for a matching
6817      // tag declaration or definition. See the similar lookup tweak
6818      // in Sema::LookupName; is there a better way to deal with this?
6819      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6820        SearchDC = SearchDC->getParent();
6821    }
6822  } else if (S->isFunctionPrototypeScope()) {
6823    // If this is an enum declaration in function prototype scope, set its
6824    // initial context to the translation unit.
6825    SearchDC = Context.getTranslationUnitDecl();
6826  }
6827
6828  if (Previous.isSingleResult() &&
6829      Previous.getFoundDecl()->isTemplateParameter()) {
6830    // Maybe we will complain about the shadowed template parameter.
6831    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6832    // Just pretend that we didn't see the previous declaration.
6833    Previous.clear();
6834  }
6835
6836  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6837      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6838    // This is a declaration of or a reference to "std::bad_alloc".
6839    isStdBadAlloc = true;
6840
6841    if (Previous.empty() && StdBadAlloc) {
6842      // std::bad_alloc has been implicitly declared (but made invisible to
6843      // name lookup). Fill in this implicit declaration as the previous
6844      // declaration, so that the declarations get chained appropriately.
6845      Previous.addDecl(getStdBadAlloc());
6846    }
6847  }
6848
6849  // If we didn't find a previous declaration, and this is a reference
6850  // (or friend reference), move to the correct scope.  In C++, we
6851  // also need to do a redeclaration lookup there, just in case
6852  // there's a shadow friend decl.
6853  if (Name && Previous.empty() &&
6854      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6855    if (Invalid) goto CreateNewDecl;
6856    assert(SS.isEmpty());
6857
6858    if (TUK == TUK_Reference) {
6859      // C++ [basic.scope.pdecl]p5:
6860      //   -- for an elaborated-type-specifier of the form
6861      //
6862      //          class-key identifier
6863      //
6864      //      if the elaborated-type-specifier is used in the
6865      //      decl-specifier-seq or parameter-declaration-clause of a
6866      //      function defined in namespace scope, the identifier is
6867      //      declared as a class-name in the namespace that contains
6868      //      the declaration; otherwise, except as a friend
6869      //      declaration, the identifier is declared in the smallest
6870      //      non-class, non-function-prototype scope that contains the
6871      //      declaration.
6872      //
6873      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6874      // C structs and unions.
6875      //
6876      // It is an error in C++ to declare (rather than define) an enum
6877      // type, including via an elaborated type specifier.  We'll
6878      // diagnose that later; for now, declare the enum in the same
6879      // scope as we would have picked for any other tag type.
6880      //
6881      // GNU C also supports this behavior as part of its incomplete
6882      // enum types extension, while GNU C++ does not.
6883      //
6884      // Find the context where we'll be declaring the tag.
6885      // FIXME: We would like to maintain the current DeclContext as the
6886      // lexical context,
6887      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6888        SearchDC = SearchDC->getParent();
6889
6890      // Find the scope where we'll be declaring the tag.
6891      while (S->isClassScope() ||
6892             (getLangOptions().CPlusPlus &&
6893              S->isFunctionPrototypeScope()) ||
6894             ((S->getFlags() & Scope::DeclScope) == 0) ||
6895             (S->getEntity() &&
6896              ((DeclContext *)S->getEntity())->isTransparentContext()))
6897        S = S->getParent();
6898    } else {
6899      assert(TUK == TUK_Friend);
6900      // C++ [namespace.memdef]p3:
6901      //   If a friend declaration in a non-local class first declares a
6902      //   class or function, the friend class or function is a member of
6903      //   the innermost enclosing namespace.
6904      SearchDC = SearchDC->getEnclosingNamespaceContext();
6905    }
6906
6907    // In C++, we need to do a redeclaration lookup to properly
6908    // diagnose some problems.
6909    if (getLangOptions().CPlusPlus) {
6910      Previous.setRedeclarationKind(ForRedeclaration);
6911      LookupQualifiedName(Previous, SearchDC);
6912    }
6913  }
6914
6915  if (!Previous.empty()) {
6916    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6917
6918    // It's okay to have a tag decl in the same scope as a typedef
6919    // which hides a tag decl in the same scope.  Finding this
6920    // insanity with a redeclaration lookup can only actually happen
6921    // in C++.
6922    //
6923    // This is also okay for elaborated-type-specifiers, which is
6924    // technically forbidden by the current standard but which is
6925    // okay according to the likely resolution of an open issue;
6926    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6927    if (getLangOptions().CPlusPlus) {
6928      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6929        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6930          TagDecl *Tag = TT->getDecl();
6931          if (Tag->getDeclName() == Name &&
6932              Tag->getDeclContext()->getRedeclContext()
6933                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6934            PrevDecl = Tag;
6935            Previous.clear();
6936            Previous.addDecl(Tag);
6937            Previous.resolveKind();
6938          }
6939        }
6940      }
6941    }
6942
6943    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6944      // If this is a use of a previous tag, or if the tag is already declared
6945      // in the same scope (so that the definition/declaration completes or
6946      // rementions the tag), reuse the decl.
6947      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6948          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6949        // Make sure that this wasn't declared as an enum and now used as a
6950        // struct or something similar.
6951        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6952          bool SafeToContinue
6953            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6954               Kind != TTK_Enum);
6955          if (SafeToContinue)
6956            Diag(KWLoc, diag::err_use_with_wrong_tag)
6957              << Name
6958              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6959                                              PrevTagDecl->getKindName());
6960          else
6961            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6962          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6963
6964          if (SafeToContinue)
6965            Kind = PrevTagDecl->getTagKind();
6966          else {
6967            // Recover by making this an anonymous redefinition.
6968            Name = 0;
6969            Previous.clear();
6970            Invalid = true;
6971          }
6972        }
6973
6974        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6975          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6976
6977          // All conflicts with previous declarations are recovered by
6978          // returning the previous declaration.
6979          if (ScopedEnum != PrevEnum->isScoped()) {
6980            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6981              << PrevEnum->isScoped();
6982            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6983            return PrevTagDecl;
6984          }
6985          else if (EnumUnderlying && PrevEnum->isFixed()) {
6986            QualType T;
6987            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6988                T = TI->getType();
6989            else
6990                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6991
6992            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6993              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6994                   diag::err_enum_redeclare_type_mismatch)
6995                << T
6996                << PrevEnum->getIntegerType();
6997              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6998              return PrevTagDecl;
6999            }
7000          }
7001          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7002            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7003              << PrevEnum->isFixed();
7004            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7005            return PrevTagDecl;
7006          }
7007        }
7008
7009        if (!Invalid) {
7010          // If this is a use, just return the declaration we found.
7011
7012          // FIXME: In the future, return a variant or some other clue
7013          // for the consumer of this Decl to know it doesn't own it.
7014          // For our current ASTs this shouldn't be a problem, but will
7015          // need to be changed with DeclGroups.
7016          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
7017              TUK == TUK_Friend)
7018            return PrevTagDecl;
7019
7020          // Diagnose attempts to redefine a tag.
7021          if (TUK == TUK_Definition) {
7022            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7023              // If we're defining a specialization and the previous definition
7024              // is from an implicit instantiation, don't emit an error
7025              // here; we'll catch this in the general case below.
7026              if (!isExplicitSpecialization ||
7027                  !isa<CXXRecordDecl>(Def) ||
7028                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7029                                               == TSK_ExplicitSpecialization) {
7030                Diag(NameLoc, diag::err_redefinition) << Name;
7031                Diag(Def->getLocation(), diag::note_previous_definition);
7032                // If this is a redefinition, recover by making this
7033                // struct be anonymous, which will make any later
7034                // references get the previous definition.
7035                Name = 0;
7036                Previous.clear();
7037                Invalid = true;
7038              }
7039            } else {
7040              // If the type is currently being defined, complain
7041              // about a nested redefinition.
7042              const TagType *Tag
7043                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7044              if (Tag->isBeingDefined()) {
7045                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7046                Diag(PrevTagDecl->getLocation(),
7047                     diag::note_previous_definition);
7048                Name = 0;
7049                Previous.clear();
7050                Invalid = true;
7051              }
7052            }
7053
7054            // Okay, this is definition of a previously declared or referenced
7055            // tag PrevDecl. We're going to create a new Decl for it.
7056          }
7057        }
7058        // If we get here we have (another) forward declaration or we
7059        // have a definition.  Just create a new decl.
7060
7061      } else {
7062        // If we get here, this is a definition of a new tag type in a nested
7063        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7064        // new decl/type.  We set PrevDecl to NULL so that the entities
7065        // have distinct types.
7066        Previous.clear();
7067      }
7068      // If we get here, we're going to create a new Decl. If PrevDecl
7069      // is non-NULL, it's a definition of the tag declared by
7070      // PrevDecl. If it's NULL, we have a new definition.
7071
7072
7073    // Otherwise, PrevDecl is not a tag, but was found with tag
7074    // lookup.  This is only actually possible in C++, where a few
7075    // things like templates still live in the tag namespace.
7076    } else {
7077      assert(getLangOptions().CPlusPlus);
7078
7079      // Use a better diagnostic if an elaborated-type-specifier
7080      // found the wrong kind of type on the first
7081      // (non-redeclaration) lookup.
7082      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7083          !Previous.isForRedeclaration()) {
7084        unsigned Kind = 0;
7085        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7086        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7087        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7088        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7089        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7090        Invalid = true;
7091
7092      // Otherwise, only diagnose if the declaration is in scope.
7093      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7094                                isExplicitSpecialization)) {
7095        // do nothing
7096
7097      // Diagnose implicit declarations introduced by elaborated types.
7098      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7099        unsigned Kind = 0;
7100        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7101        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7102        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7103        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7104        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7105        Invalid = true;
7106
7107      // Otherwise it's a declaration.  Call out a particularly common
7108      // case here.
7109      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7110        unsigned Kind = 0;
7111        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7112        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7113          << Name << Kind << TND->getUnderlyingType();
7114        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7115        Invalid = true;
7116
7117      // Otherwise, diagnose.
7118      } else {
7119        // The tag name clashes with something else in the target scope,
7120        // issue an error and recover by making this tag be anonymous.
7121        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7122        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7123        Name = 0;
7124        Invalid = true;
7125      }
7126
7127      // The existing declaration isn't relevant to us; we're in a
7128      // new scope, so clear out the previous declaration.
7129      Previous.clear();
7130    }
7131  }
7132
7133CreateNewDecl:
7134
7135  TagDecl *PrevDecl = 0;
7136  if (Previous.isSingleResult())
7137    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7138
7139  // If there is an identifier, use the location of the identifier as the
7140  // location of the decl, otherwise use the location of the struct/union
7141  // keyword.
7142  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7143
7144  // Otherwise, create a new declaration. If there is a previous
7145  // declaration of the same entity, the two will be linked via
7146  // PrevDecl.
7147  TagDecl *New;
7148
7149  bool IsForwardReference = false;
7150  if (Kind == TTK_Enum) {
7151    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7152    // enum X { A, B, C } D;    D should chain to X.
7153    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7154                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7155                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7156    // If this is an undefined enum, warn.
7157    if (TUK != TUK_Definition && !Invalid) {
7158      TagDecl *Def;
7159      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7160        // C++0x: 7.2p2: opaque-enum-declaration.
7161        // Conflicts are diagnosed above. Do nothing.
7162      }
7163      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7164        Diag(Loc, diag::ext_forward_ref_enum_def)
7165          << New;
7166        Diag(Def->getLocation(), diag::note_previous_definition);
7167      } else {
7168        unsigned DiagID = diag::ext_forward_ref_enum;
7169        if (getLangOptions().Microsoft)
7170          DiagID = diag::ext_ms_forward_ref_enum;
7171        else if (getLangOptions().CPlusPlus)
7172          DiagID = diag::err_forward_ref_enum;
7173        Diag(Loc, DiagID);
7174
7175        // If this is a forward-declared reference to an enumeration, make a
7176        // note of it; we won't actually be introducing the declaration into
7177        // the declaration context.
7178        if (TUK == TUK_Reference)
7179          IsForwardReference = true;
7180      }
7181    }
7182
7183    if (EnumUnderlying) {
7184      EnumDecl *ED = cast<EnumDecl>(New);
7185      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7186        ED->setIntegerTypeSourceInfo(TI);
7187      else
7188        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7189      ED->setPromotionType(ED->getIntegerType());
7190    }
7191
7192  } else {
7193    // struct/union/class
7194
7195    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7196    // struct X { int A; } D;    D should chain to X.
7197    if (getLangOptions().CPlusPlus) {
7198      // FIXME: Look for a way to use RecordDecl for simple structs.
7199      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7200                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7201
7202      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7203        StdBadAlloc = cast<CXXRecordDecl>(New);
7204    } else
7205      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7206                               cast_or_null<RecordDecl>(PrevDecl));
7207  }
7208
7209  // Maybe add qualifier info.
7210  if (SS.isNotEmpty()) {
7211    if (SS.isSet()) {
7212      New->setQualifierInfo(SS.getWithLocInContext(Context));
7213      if (TemplateParameterLists.size() > 0) {
7214        New->setTemplateParameterListsInfo(Context,
7215                                           TemplateParameterLists.size(),
7216                    (TemplateParameterList**) TemplateParameterLists.release());
7217      }
7218    }
7219    else
7220      Invalid = true;
7221  }
7222
7223  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7224    // Add alignment attributes if necessary; these attributes are checked when
7225    // the ASTContext lays out the structure.
7226    //
7227    // It is important for implementing the correct semantics that this
7228    // happen here (in act on tag decl). The #pragma pack stack is
7229    // maintained as a result of parser callbacks which can occur at
7230    // many points during the parsing of a struct declaration (because
7231    // the #pragma tokens are effectively skipped over during the
7232    // parsing of the struct).
7233    AddAlignmentAttributesForRecord(RD);
7234
7235    AddMsStructLayoutForRecord(RD);
7236  }
7237
7238  // If this is a specialization of a member class (of a class template),
7239  // check the specialization.
7240  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7241    Invalid = true;
7242
7243  if (Invalid)
7244    New->setInvalidDecl();
7245
7246  if (Attr)
7247    ProcessDeclAttributeList(S, New, Attr);
7248
7249  // If we're declaring or defining a tag in function prototype scope
7250  // in C, note that this type can only be used within the function.
7251  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7252    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7253
7254  // Set the lexical context. If the tag has a C++ scope specifier, the
7255  // lexical context will be different from the semantic context.
7256  New->setLexicalDeclContext(CurContext);
7257
7258  // Mark this as a friend decl if applicable.
7259  if (TUK == TUK_Friend)
7260    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7261
7262  // Set the access specifier.
7263  if (!Invalid && SearchDC->isRecord())
7264    SetMemberAccessSpecifier(New, PrevDecl, AS);
7265
7266  if (TUK == TUK_Definition)
7267    New->startDefinition();
7268
7269  // If this has an identifier, add it to the scope stack.
7270  if (TUK == TUK_Friend) {
7271    // We might be replacing an existing declaration in the lookup tables;
7272    // if so, borrow its access specifier.
7273    if (PrevDecl)
7274      New->setAccess(PrevDecl->getAccess());
7275
7276    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7277    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7278    if (Name) // can be null along some error paths
7279      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7280        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7281  } else if (Name) {
7282    S = getNonFieldDeclScope(S);
7283    PushOnScopeChains(New, S, !IsForwardReference);
7284    if (IsForwardReference)
7285      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7286
7287  } else {
7288    CurContext->addDecl(New);
7289  }
7290
7291  // If this is the C FILE type, notify the AST context.
7292  if (IdentifierInfo *II = New->getIdentifier())
7293    if (!New->isInvalidDecl() &&
7294        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7295        II->isStr("FILE"))
7296      Context.setFILEDecl(New);
7297
7298  OwnedDecl = true;
7299  return New;
7300}
7301
7302void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7303  AdjustDeclIfTemplate(TagD);
7304  TagDecl *Tag = cast<TagDecl>(TagD);
7305
7306  // Enter the tag context.
7307  PushDeclContext(S, Tag);
7308}
7309
7310void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7311                                           SourceLocation FinalLoc,
7312                                           SourceLocation LBraceLoc) {
7313  AdjustDeclIfTemplate(TagD);
7314  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7315
7316  FieldCollector->StartClass();
7317
7318  if (!Record->getIdentifier())
7319    return;
7320
7321  if (FinalLoc.isValid())
7322    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7323
7324  // C++ [class]p2:
7325  //   [...] The class-name is also inserted into the scope of the
7326  //   class itself; this is known as the injected-class-name. For
7327  //   purposes of access checking, the injected-class-name is treated
7328  //   as if it were a public member name.
7329  CXXRecordDecl *InjectedClassName
7330    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7331                            Record->getLocStart(), Record->getLocation(),
7332                            Record->getIdentifier(),
7333                            /*PrevDecl=*/0,
7334                            /*DelayTypeCreation=*/true);
7335  Context.getTypeDeclType(InjectedClassName, Record);
7336  InjectedClassName->setImplicit();
7337  InjectedClassName->setAccess(AS_public);
7338  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7339      InjectedClassName->setDescribedClassTemplate(Template);
7340  PushOnScopeChains(InjectedClassName, S);
7341  assert(InjectedClassName->isInjectedClassName() &&
7342         "Broken injected-class-name");
7343}
7344
7345void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7346                                    SourceLocation RBraceLoc) {
7347  AdjustDeclIfTemplate(TagD);
7348  TagDecl *Tag = cast<TagDecl>(TagD);
7349  Tag->setRBraceLoc(RBraceLoc);
7350
7351  if (isa<CXXRecordDecl>(Tag))
7352    FieldCollector->FinishClass();
7353
7354  // Exit this scope of this tag's definition.
7355  PopDeclContext();
7356
7357  // Notify the consumer that we've defined a tag.
7358  Consumer.HandleTagDeclDefinition(Tag);
7359}
7360
7361void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7362  AdjustDeclIfTemplate(TagD);
7363  TagDecl *Tag = cast<TagDecl>(TagD);
7364  Tag->setInvalidDecl();
7365
7366  // We're undoing ActOnTagStartDefinition here, not
7367  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7368  // the FieldCollector.
7369
7370  PopDeclContext();
7371}
7372
7373// Note that FieldName may be null for anonymous bitfields.
7374bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7375                          QualType FieldTy, const Expr *BitWidth,
7376                          bool *ZeroWidth) {
7377  // Default to true; that shouldn't confuse checks for emptiness
7378  if (ZeroWidth)
7379    *ZeroWidth = true;
7380
7381  // C99 6.7.2.1p4 - verify the field type.
7382  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7383  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7384    // Handle incomplete types with specific error.
7385    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7386      return true;
7387    if (FieldName)
7388      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7389        << FieldName << FieldTy << BitWidth->getSourceRange();
7390    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7391      << FieldTy << BitWidth->getSourceRange();
7392  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7393                                             UPPC_BitFieldWidth))
7394    return true;
7395
7396  // If the bit-width is type- or value-dependent, don't try to check
7397  // it now.
7398  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7399    return false;
7400
7401  llvm::APSInt Value;
7402  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7403    return true;
7404
7405  if (Value != 0 && ZeroWidth)
7406    *ZeroWidth = false;
7407
7408  // Zero-width bitfield is ok for anonymous field.
7409  if (Value == 0 && FieldName)
7410    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7411
7412  if (Value.isSigned() && Value.isNegative()) {
7413    if (FieldName)
7414      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7415               << FieldName << Value.toString(10);
7416    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7417      << Value.toString(10);
7418  }
7419
7420  if (!FieldTy->isDependentType()) {
7421    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7422    if (Value.getZExtValue() > TypeSize) {
7423      if (!getLangOptions().CPlusPlus) {
7424        if (FieldName)
7425          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7426            << FieldName << (unsigned)Value.getZExtValue()
7427            << (unsigned)TypeSize;
7428
7429        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7430          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7431      }
7432
7433      if (FieldName)
7434        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7435          << FieldName << (unsigned)Value.getZExtValue()
7436          << (unsigned)TypeSize;
7437      else
7438        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7439          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7440    }
7441  }
7442
7443  return false;
7444}
7445
7446/// ActOnField - Each field of a struct/union/class is passed into this in order
7447/// to create a FieldDecl object for it.
7448Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7449                                 SourceLocation DeclStart,
7450                                 Declarator &D, ExprTy *BitfieldWidth) {
7451  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7452                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7453                               AS_public);
7454  return Res;
7455}
7456
7457/// HandleField - Analyze a field of a C struct or a C++ data member.
7458///
7459FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7460                             SourceLocation DeclStart,
7461                             Declarator &D, Expr *BitWidth,
7462                             AccessSpecifier AS) {
7463  IdentifierInfo *II = D.getIdentifier();
7464  SourceLocation Loc = DeclStart;
7465  if (II) Loc = D.getIdentifierLoc();
7466
7467  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7468  QualType T = TInfo->getType();
7469  if (getLangOptions().CPlusPlus) {
7470    CheckExtraCXXDefaultArguments(D);
7471
7472    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7473                                        UPPC_DataMemberType)) {
7474      D.setInvalidType();
7475      T = Context.IntTy;
7476      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7477    }
7478  }
7479
7480  DiagnoseFunctionSpecifiers(D);
7481
7482  if (D.getDeclSpec().isThreadSpecified())
7483    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7484
7485  // Check to see if this name was declared as a member previously
7486  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7487  LookupName(Previous, S);
7488  assert((Previous.empty() || Previous.isOverloadedResult() ||
7489          Previous.isSingleResult())
7490    && "Lookup of member name should be either overloaded, single or null");
7491
7492  // If the name is overloaded then get any declaration else get the single result
7493  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7494    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7495
7496  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7497    // Maybe we will complain about the shadowed template parameter.
7498    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7499    // Just pretend that we didn't see the previous declaration.
7500    PrevDecl = 0;
7501  }
7502
7503  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7504    PrevDecl = 0;
7505
7506  bool Mutable
7507    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7508  SourceLocation TSSL = D.getSourceRange().getBegin();
7509  FieldDecl *NewFD
7510    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7511                     AS, PrevDecl, &D);
7512
7513  if (NewFD->isInvalidDecl())
7514    Record->setInvalidDecl();
7515
7516  if (NewFD->isInvalidDecl() && PrevDecl) {
7517    // Don't introduce NewFD into scope; there's already something
7518    // with the same name in the same scope.
7519  } else if (II) {
7520    PushOnScopeChains(NewFD, S);
7521  } else
7522    Record->addDecl(NewFD);
7523
7524  return NewFD;
7525}
7526
7527/// \brief Build a new FieldDecl and check its well-formedness.
7528///
7529/// This routine builds a new FieldDecl given the fields name, type,
7530/// record, etc. \p PrevDecl should refer to any previous declaration
7531/// with the same name and in the same scope as the field to be
7532/// created.
7533///
7534/// \returns a new FieldDecl.
7535///
7536/// \todo The Declarator argument is a hack. It will be removed once
7537FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7538                                TypeSourceInfo *TInfo,
7539                                RecordDecl *Record, SourceLocation Loc,
7540                                bool Mutable, Expr *BitWidth,
7541                                SourceLocation TSSL,
7542                                AccessSpecifier AS, NamedDecl *PrevDecl,
7543                                Declarator *D) {
7544  IdentifierInfo *II = Name.getAsIdentifierInfo();
7545  bool InvalidDecl = false;
7546  if (D) InvalidDecl = D->isInvalidType();
7547
7548  // If we receive a broken type, recover by assuming 'int' and
7549  // marking this declaration as invalid.
7550  if (T.isNull()) {
7551    InvalidDecl = true;
7552    T = Context.IntTy;
7553  }
7554
7555  QualType EltTy = Context.getBaseElementType(T);
7556  if (!EltTy->isDependentType() &&
7557      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7558    // Fields of incomplete type force their record to be invalid.
7559    Record->setInvalidDecl();
7560    InvalidDecl = true;
7561  }
7562
7563  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7564  // than a variably modified type.
7565  if (!InvalidDecl && T->isVariablyModifiedType()) {
7566    bool SizeIsNegative;
7567    llvm::APSInt Oversized;
7568    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7569                                                           SizeIsNegative,
7570                                                           Oversized);
7571    if (!FixedTy.isNull()) {
7572      Diag(Loc, diag::warn_illegal_constant_array_size);
7573      T = FixedTy;
7574    } else {
7575      if (SizeIsNegative)
7576        Diag(Loc, diag::err_typecheck_negative_array_size);
7577      else if (Oversized.getBoolValue())
7578        Diag(Loc, diag::err_array_too_large)
7579          << Oversized.toString(10);
7580      else
7581        Diag(Loc, diag::err_typecheck_field_variable_size);
7582      InvalidDecl = true;
7583    }
7584  }
7585
7586  // Fields can not have abstract class types
7587  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7588                                             diag::err_abstract_type_in_decl,
7589                                             AbstractFieldType))
7590    InvalidDecl = true;
7591
7592  bool ZeroWidth = false;
7593  // If this is declared as a bit-field, check the bit-field.
7594  if (!InvalidDecl && BitWidth &&
7595      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7596    InvalidDecl = true;
7597    BitWidth = 0;
7598    ZeroWidth = false;
7599  }
7600
7601  // Check that 'mutable' is consistent with the type of the declaration.
7602  if (!InvalidDecl && Mutable) {
7603    unsigned DiagID = 0;
7604    if (T->isReferenceType())
7605      DiagID = diag::err_mutable_reference;
7606    else if (T.isConstQualified())
7607      DiagID = diag::err_mutable_const;
7608
7609    if (DiagID) {
7610      SourceLocation ErrLoc = Loc;
7611      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7612        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7613      Diag(ErrLoc, DiagID);
7614      Mutable = false;
7615      InvalidDecl = true;
7616    }
7617  }
7618
7619  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7620                                       BitWidth, Mutable);
7621  if (InvalidDecl)
7622    NewFD->setInvalidDecl();
7623
7624  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7625    Diag(Loc, diag::err_duplicate_member) << II;
7626    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7627    NewFD->setInvalidDecl();
7628  }
7629
7630  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7631    if (Record->isUnion()) {
7632      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7633        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7634        if (RDecl->getDefinition()) {
7635          // C++ [class.union]p1: An object of a class with a non-trivial
7636          // constructor, a non-trivial copy constructor, a non-trivial
7637          // destructor, or a non-trivial copy assignment operator
7638          // cannot be a member of a union, nor can an array of such
7639          // objects.
7640          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7641            NewFD->setInvalidDecl();
7642        }
7643      }
7644
7645      // C++ [class.union]p1: If a union contains a member of reference type,
7646      // the program is ill-formed.
7647      if (EltTy->isReferenceType()) {
7648        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7649          << NewFD->getDeclName() << EltTy;
7650        NewFD->setInvalidDecl();
7651      }
7652    }
7653  }
7654
7655  // FIXME: We need to pass in the attributes given an AST
7656  // representation, not a parser representation.
7657  if (D)
7658    // FIXME: What to pass instead of TUScope?
7659    ProcessDeclAttributes(TUScope, NewFD, *D);
7660
7661  if (T.isObjCGCWeak())
7662    Diag(Loc, diag::warn_attribute_weak_on_field);
7663
7664  NewFD->setAccess(AS);
7665  return NewFD;
7666}
7667
7668bool Sema::CheckNontrivialField(FieldDecl *FD) {
7669  assert(FD);
7670  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7671
7672  if (FD->isInvalidDecl())
7673    return true;
7674
7675  QualType EltTy = Context.getBaseElementType(FD->getType());
7676  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7677    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7678    if (RDecl->getDefinition()) {
7679      // We check for copy constructors before constructors
7680      // because otherwise we'll never get complaints about
7681      // copy constructors.
7682
7683      CXXSpecialMember member = CXXInvalid;
7684      if (!RDecl->hasTrivialCopyConstructor())
7685        member = CXXCopyConstructor;
7686      else if (!RDecl->hasTrivialDefaultConstructor())
7687        member = CXXDefaultConstructor;
7688      else if (!RDecl->hasTrivialCopyAssignment())
7689        member = CXXCopyAssignment;
7690      else if (!RDecl->hasTrivialDestructor())
7691        member = CXXDestructor;
7692
7693      if (member != CXXInvalid) {
7694        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7695              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7696        DiagnoseNontrivial(RT, member);
7697        return true;
7698      }
7699    }
7700  }
7701
7702  return false;
7703}
7704
7705/// DiagnoseNontrivial - Given that a class has a non-trivial
7706/// special member, figure out why.
7707void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7708  QualType QT(T, 0U);
7709  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7710
7711  // Check whether the member was user-declared.
7712  switch (member) {
7713  case CXXInvalid:
7714    break;
7715
7716  case CXXDefaultConstructor:
7717    if (RD->hasUserDeclaredConstructor()) {
7718      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7719      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7720        const FunctionDecl *body = 0;
7721        ci->hasBody(body);
7722        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7723          SourceLocation CtorLoc = ci->getLocation();
7724          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7725          return;
7726        }
7727      }
7728
7729      assert(0 && "found no user-declared constructors");
7730      return;
7731    }
7732    break;
7733
7734  case CXXCopyConstructor:
7735    if (RD->hasUserDeclaredCopyConstructor()) {
7736      SourceLocation CtorLoc =
7737        RD->getCopyConstructor(Context, 0)->getLocation();
7738      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7739      return;
7740    }
7741    break;
7742
7743  case CXXCopyAssignment:
7744    if (RD->hasUserDeclaredCopyAssignment()) {
7745      // FIXME: this should use the location of the copy
7746      // assignment, not the type.
7747      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7748      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7749      return;
7750    }
7751    break;
7752
7753  case CXXDestructor:
7754    if (RD->hasUserDeclaredDestructor()) {
7755      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7756      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7757      return;
7758    }
7759    break;
7760  }
7761
7762  typedef CXXRecordDecl::base_class_iterator base_iter;
7763
7764  // Virtual bases and members inhibit trivial copying/construction,
7765  // but not trivial destruction.
7766  if (member != CXXDestructor) {
7767    // Check for virtual bases.  vbases includes indirect virtual bases,
7768    // so we just iterate through the direct bases.
7769    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7770      if (bi->isVirtual()) {
7771        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7772        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7773        return;
7774      }
7775
7776    // Check for virtual methods.
7777    typedef CXXRecordDecl::method_iterator meth_iter;
7778    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7779         ++mi) {
7780      if (mi->isVirtual()) {
7781        SourceLocation MLoc = mi->getSourceRange().getBegin();
7782        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7783        return;
7784      }
7785    }
7786  }
7787
7788  bool (CXXRecordDecl::*hasTrivial)() const;
7789  switch (member) {
7790  case CXXDefaultConstructor:
7791    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7792  case CXXCopyConstructor:
7793    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7794  case CXXCopyAssignment:
7795    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7796  case CXXDestructor:
7797    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7798  default:
7799    assert(0 && "unexpected special member"); return;
7800  }
7801
7802  // Check for nontrivial bases (and recurse).
7803  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7804    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7805    assert(BaseRT && "Don't know how to handle dependent bases");
7806    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7807    if (!(BaseRecTy->*hasTrivial)()) {
7808      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7809      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7810      DiagnoseNontrivial(BaseRT, member);
7811      return;
7812    }
7813  }
7814
7815  // Check for nontrivial members (and recurse).
7816  typedef RecordDecl::field_iterator field_iter;
7817  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7818       ++fi) {
7819    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7820    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7821      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7822
7823      if (!(EltRD->*hasTrivial)()) {
7824        SourceLocation FLoc = (*fi)->getLocation();
7825        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7826        DiagnoseNontrivial(EltRT, member);
7827        return;
7828      }
7829    }
7830  }
7831
7832  assert(0 && "found no explanation for non-trivial member");
7833}
7834
7835/// TranslateIvarVisibility - Translate visibility from a token ID to an
7836///  AST enum value.
7837static ObjCIvarDecl::AccessControl
7838TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7839  switch (ivarVisibility) {
7840  default: assert(0 && "Unknown visitibility kind");
7841  case tok::objc_private: return ObjCIvarDecl::Private;
7842  case tok::objc_public: return ObjCIvarDecl::Public;
7843  case tok::objc_protected: return ObjCIvarDecl::Protected;
7844  case tok::objc_package: return ObjCIvarDecl::Package;
7845  }
7846}
7847
7848/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7849/// in order to create an IvarDecl object for it.
7850Decl *Sema::ActOnIvar(Scope *S,
7851                                SourceLocation DeclStart,
7852                                Decl *IntfDecl,
7853                                Declarator &D, ExprTy *BitfieldWidth,
7854                                tok::ObjCKeywordKind Visibility) {
7855
7856  IdentifierInfo *II = D.getIdentifier();
7857  Expr *BitWidth = (Expr*)BitfieldWidth;
7858  SourceLocation Loc = DeclStart;
7859  if (II) Loc = D.getIdentifierLoc();
7860
7861  // FIXME: Unnamed fields can be handled in various different ways, for
7862  // example, unnamed unions inject all members into the struct namespace!
7863
7864  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7865  QualType T = TInfo->getType();
7866
7867  if (BitWidth) {
7868    // 6.7.2.1p3, 6.7.2.1p4
7869    if (VerifyBitField(Loc, II, T, BitWidth)) {
7870      D.setInvalidType();
7871      BitWidth = 0;
7872    }
7873  } else {
7874    // Not a bitfield.
7875
7876    // validate II.
7877
7878  }
7879  if (T->isReferenceType()) {
7880    Diag(Loc, diag::err_ivar_reference_type);
7881    D.setInvalidType();
7882  }
7883  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7884  // than a variably modified type.
7885  else if (T->isVariablyModifiedType()) {
7886    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7887    D.setInvalidType();
7888  }
7889
7890  // Get the visibility (access control) for this ivar.
7891  ObjCIvarDecl::AccessControl ac =
7892    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7893                                        : ObjCIvarDecl::None;
7894  // Must set ivar's DeclContext to its enclosing interface.
7895  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7896  ObjCContainerDecl *EnclosingContext;
7897  if (ObjCImplementationDecl *IMPDecl =
7898      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7899    if (!LangOpts.ObjCNonFragileABI2) {
7900    // Case of ivar declared in an implementation. Context is that of its class.
7901      EnclosingContext = IMPDecl->getClassInterface();
7902      assert(EnclosingContext && "Implementation has no class interface!");
7903    }
7904    else
7905      EnclosingContext = EnclosingDecl;
7906  } else {
7907    if (ObjCCategoryDecl *CDecl =
7908        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7909      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7910        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7911        return 0;
7912      }
7913    }
7914    EnclosingContext = EnclosingDecl;
7915  }
7916
7917  // Construct the decl.
7918  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7919                                             DeclStart, Loc, II, T,
7920                                             TInfo, ac, (Expr *)BitfieldWidth);
7921
7922  if (II) {
7923    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7924                                           ForRedeclaration);
7925    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7926        && !isa<TagDecl>(PrevDecl)) {
7927      Diag(Loc, diag::err_duplicate_member) << II;
7928      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7929      NewID->setInvalidDecl();
7930    }
7931  }
7932
7933  // Process attributes attached to the ivar.
7934  ProcessDeclAttributes(S, NewID, D);
7935
7936  if (D.isInvalidType())
7937    NewID->setInvalidDecl();
7938
7939  if (II) {
7940    // FIXME: When interfaces are DeclContexts, we'll need to add
7941    // these to the interface.
7942    S->AddDecl(NewID);
7943    IdResolver.AddDecl(NewID);
7944  }
7945
7946  return NewID;
7947}
7948
7949/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7950/// class and class extensions. For every class @interface and class
7951/// extension @interface, if the last ivar is a bitfield of any type,
7952/// then add an implicit `char :0` ivar to the end of that interface.
7953void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7954                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7955  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7956    return;
7957
7958  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7959  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7960
7961  if (!Ivar->isBitField())
7962    return;
7963  uint64_t BitFieldSize =
7964    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7965  if (BitFieldSize == 0)
7966    return;
7967  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7968  if (!ID) {
7969    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7970      if (!CD->IsClassExtension())
7971        return;
7972    }
7973    // No need to add this to end of @implementation.
7974    else
7975      return;
7976  }
7977  // All conditions are met. Add a new bitfield to the tail end of ivars.
7978  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7979  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7980
7981  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7982                              DeclLoc, DeclLoc, 0,
7983                              Context.CharTy,
7984                              Context.CreateTypeSourceInfo(Context.CharTy),
7985                              ObjCIvarDecl::Private, BW,
7986                              true);
7987  AllIvarDecls.push_back(Ivar);
7988}
7989
7990void Sema::ActOnFields(Scope* S,
7991                       SourceLocation RecLoc, Decl *EnclosingDecl,
7992                       Decl **Fields, unsigned NumFields,
7993                       SourceLocation LBrac, SourceLocation RBrac,
7994                       AttributeList *Attr) {
7995  assert(EnclosingDecl && "missing record or interface decl");
7996
7997  // If the decl this is being inserted into is invalid, then it may be a
7998  // redeclaration or some other bogus case.  Don't try to add fields to it.
7999  if (EnclosingDecl->isInvalidDecl()) {
8000    // FIXME: Deallocate fields?
8001    return;
8002  }
8003
8004
8005  // Verify that all the fields are okay.
8006  unsigned NumNamedMembers = 0;
8007  llvm::SmallVector<FieldDecl*, 32> RecFields;
8008
8009  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8010  for (unsigned i = 0; i != NumFields; ++i) {
8011    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8012
8013    // Get the type for the field.
8014    const Type *FDTy = FD->getType().getTypePtr();
8015
8016    if (!FD->isAnonymousStructOrUnion()) {
8017      // Remember all fields written by the user.
8018      RecFields.push_back(FD);
8019    }
8020
8021    // If the field is already invalid for some reason, don't emit more
8022    // diagnostics about it.
8023    if (FD->isInvalidDecl()) {
8024      EnclosingDecl->setInvalidDecl();
8025      continue;
8026    }
8027
8028    // C99 6.7.2.1p2:
8029    //   A structure or union shall not contain a member with
8030    //   incomplete or function type (hence, a structure shall not
8031    //   contain an instance of itself, but may contain a pointer to
8032    //   an instance of itself), except that the last member of a
8033    //   structure with more than one named member may have incomplete
8034    //   array type; such a structure (and any union containing,
8035    //   possibly recursively, a member that is such a structure)
8036    //   shall not be a member of a structure or an element of an
8037    //   array.
8038    if (FDTy->isFunctionType()) {
8039      // Field declared as a function.
8040      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8041        << FD->getDeclName();
8042      FD->setInvalidDecl();
8043      EnclosingDecl->setInvalidDecl();
8044      continue;
8045    } else if (FDTy->isIncompleteArrayType() && Record &&
8046               ((i == NumFields - 1 && !Record->isUnion()) ||
8047                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8048                 (i == NumFields - 1 || Record->isUnion())))) {
8049      // Flexible array member.
8050      // Microsoft and g++ is more permissive regarding flexible array.
8051      // It will accept flexible array in union and also
8052      // as the sole element of a struct/class.
8053      if (getLangOptions().Microsoft) {
8054        if (Record->isUnion())
8055          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8056            << FD->getDeclName();
8057        else if (NumFields == 1)
8058          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8059            << FD->getDeclName() << Record->getTagKind();
8060      } else if (getLangOptions().CPlusPlus) {
8061        if (Record->isUnion())
8062          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8063            << FD->getDeclName();
8064        else if (NumFields == 1)
8065          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8066            << FD->getDeclName() << Record->getTagKind();
8067      } else if (NumNamedMembers < 1) {
8068        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8069          << FD->getDeclName();
8070        FD->setInvalidDecl();
8071        EnclosingDecl->setInvalidDecl();
8072        continue;
8073      }
8074      if (!FD->getType()->isDependentType() &&
8075          !Context.getBaseElementType(FD->getType())->isPODType()) {
8076        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8077          << FD->getDeclName() << FD->getType();
8078        FD->setInvalidDecl();
8079        EnclosingDecl->setInvalidDecl();
8080        continue;
8081      }
8082      // Okay, we have a legal flexible array member at the end of the struct.
8083      if (Record)
8084        Record->setHasFlexibleArrayMember(true);
8085    } else if (!FDTy->isDependentType() &&
8086               RequireCompleteType(FD->getLocation(), FD->getType(),
8087                                   diag::err_field_incomplete)) {
8088      // Incomplete type
8089      FD->setInvalidDecl();
8090      EnclosingDecl->setInvalidDecl();
8091      continue;
8092    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8093      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8094        // If this is a member of a union, then entire union becomes "flexible".
8095        if (Record && Record->isUnion()) {
8096          Record->setHasFlexibleArrayMember(true);
8097        } else {
8098          // If this is a struct/class and this is not the last element, reject
8099          // it.  Note that GCC supports variable sized arrays in the middle of
8100          // structures.
8101          if (i != NumFields-1)
8102            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8103              << FD->getDeclName() << FD->getType();
8104          else {
8105            // We support flexible arrays at the end of structs in
8106            // other structs as an extension.
8107            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8108              << FD->getDeclName();
8109            if (Record)
8110              Record->setHasFlexibleArrayMember(true);
8111          }
8112        }
8113      }
8114      if (Record && FDTTy->getDecl()->hasObjectMember())
8115        Record->setHasObjectMember(true);
8116    } else if (FDTy->isObjCObjectType()) {
8117      /// A field cannot be an Objective-c object
8118      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8119      FD->setInvalidDecl();
8120      EnclosingDecl->setInvalidDecl();
8121      continue;
8122    } else if (getLangOptions().ObjC1 &&
8123               getLangOptions().getGCMode() != LangOptions::NonGC &&
8124               Record &&
8125               (FD->getType()->isObjCObjectPointerType() ||
8126                FD->getType().isObjCGCStrong()))
8127      Record->setHasObjectMember(true);
8128    else if (Context.getAsArrayType(FD->getType())) {
8129      QualType BaseType = Context.getBaseElementType(FD->getType());
8130      if (Record && BaseType->isRecordType() &&
8131          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8132        Record->setHasObjectMember(true);
8133    }
8134    // Keep track of the number of named members.
8135    if (FD->getIdentifier())
8136      ++NumNamedMembers;
8137  }
8138
8139  // Okay, we successfully defined 'Record'.
8140  if (Record) {
8141    bool Completed = false;
8142    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8143      if (!CXXRecord->isInvalidDecl()) {
8144        // Set access bits correctly on the directly-declared conversions.
8145        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8146        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8147             I != E; ++I)
8148          Convs->setAccess(I, (*I)->getAccess());
8149
8150        if (!CXXRecord->isDependentType()) {
8151          // Adjust user-defined destructor exception spec.
8152          if (getLangOptions().CPlusPlus0x &&
8153              CXXRecord->hasUserDeclaredDestructor())
8154            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8155
8156          // Add any implicitly-declared members to this class.
8157          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8158
8159          // If we have virtual base classes, we may end up finding multiple
8160          // final overriders for a given virtual function. Check for this
8161          // problem now.
8162          if (CXXRecord->getNumVBases()) {
8163            CXXFinalOverriderMap FinalOverriders;
8164            CXXRecord->getFinalOverriders(FinalOverriders);
8165
8166            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8167                                             MEnd = FinalOverriders.end();
8168                 M != MEnd; ++M) {
8169              for (OverridingMethods::iterator SO = M->second.begin(),
8170                                            SOEnd = M->second.end();
8171                   SO != SOEnd; ++SO) {
8172                assert(SO->second.size() > 0 &&
8173                       "Virtual function without overridding functions?");
8174                if (SO->second.size() == 1)
8175                  continue;
8176
8177                // C++ [class.virtual]p2:
8178                //   In a derived class, if a virtual member function of a base
8179                //   class subobject has more than one final overrider the
8180                //   program is ill-formed.
8181                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8182                  << (NamedDecl *)M->first << Record;
8183                Diag(M->first->getLocation(),
8184                     diag::note_overridden_virtual_function);
8185                for (OverridingMethods::overriding_iterator
8186                          OM = SO->second.begin(),
8187                       OMEnd = SO->second.end();
8188                     OM != OMEnd; ++OM)
8189                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8190                    << (NamedDecl *)M->first << OM->Method->getParent();
8191
8192                Record->setInvalidDecl();
8193              }
8194            }
8195            CXXRecord->completeDefinition(&FinalOverriders);
8196            Completed = true;
8197          }
8198        }
8199      }
8200    }
8201
8202    if (!Completed)
8203      Record->completeDefinition();
8204
8205    // Now that the record is complete, do any delayed exception spec checks
8206    // we were missing.
8207    if (!DelayedDestructorExceptionSpecChecks.empty()) {
8208      const CXXDestructorDecl *Dtor =
8209              DelayedDestructorExceptionSpecChecks.back().first;
8210      if (Dtor->getParent() == Record) {
8211        assert(!Dtor->getParent()->isDependentType() &&
8212            "Should not ever add destructors of templates into the list.");
8213        CheckOverridingFunctionExceptionSpec(Dtor,
8214            DelayedDestructorExceptionSpecChecks.back().second);
8215        DelayedDestructorExceptionSpecChecks.pop_back();
8216      }
8217    }
8218
8219  } else {
8220    ObjCIvarDecl **ClsFields =
8221      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8222    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8223      ID->setLocEnd(RBrac);
8224      // Add ivar's to class's DeclContext.
8225      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8226        ClsFields[i]->setLexicalDeclContext(ID);
8227        ID->addDecl(ClsFields[i]);
8228      }
8229      // Must enforce the rule that ivars in the base classes may not be
8230      // duplicates.
8231      if (ID->getSuperClass())
8232        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8233    } else if (ObjCImplementationDecl *IMPDecl =
8234                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8235      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8236      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8237        // Ivar declared in @implementation never belongs to the implementation.
8238        // Only it is in implementation's lexical context.
8239        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8240      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8241    } else if (ObjCCategoryDecl *CDecl =
8242                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8243      // case of ivars in class extension; all other cases have been
8244      // reported as errors elsewhere.
8245      // FIXME. Class extension does not have a LocEnd field.
8246      // CDecl->setLocEnd(RBrac);
8247      // Add ivar's to class extension's DeclContext.
8248      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8249        ClsFields[i]->setLexicalDeclContext(CDecl);
8250        CDecl->addDecl(ClsFields[i]);
8251      }
8252    }
8253  }
8254
8255  if (Attr)
8256    ProcessDeclAttributeList(S, Record, Attr);
8257
8258  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8259  // set the visibility of this record.
8260  if (Record && !Record->getDeclContext()->isRecord())
8261    AddPushedVisibilityAttribute(Record);
8262}
8263
8264/// \brief Determine whether the given integral value is representable within
8265/// the given type T.
8266static bool isRepresentableIntegerValue(ASTContext &Context,
8267                                        llvm::APSInt &Value,
8268                                        QualType T) {
8269  assert(T->isIntegralType(Context) && "Integral type required!");
8270  unsigned BitWidth = Context.getIntWidth(T);
8271
8272  if (Value.isUnsigned() || Value.isNonNegative()) {
8273    if (T->isSignedIntegerOrEnumerationType())
8274      --BitWidth;
8275    return Value.getActiveBits() <= BitWidth;
8276  }
8277  return Value.getMinSignedBits() <= BitWidth;
8278}
8279
8280// \brief Given an integral type, return the next larger integral type
8281// (or a NULL type of no such type exists).
8282static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8283  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8284  // enum checking below.
8285  assert(T->isIntegralType(Context) && "Integral type required!");
8286  const unsigned NumTypes = 4;
8287  QualType SignedIntegralTypes[NumTypes] = {
8288    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8289  };
8290  QualType UnsignedIntegralTypes[NumTypes] = {
8291    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8292    Context.UnsignedLongLongTy
8293  };
8294
8295  unsigned BitWidth = Context.getTypeSize(T);
8296  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8297                                                        : UnsignedIntegralTypes;
8298  for (unsigned I = 0; I != NumTypes; ++I)
8299    if (Context.getTypeSize(Types[I]) > BitWidth)
8300      return Types[I];
8301
8302  return QualType();
8303}
8304
8305EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8306                                          EnumConstantDecl *LastEnumConst,
8307                                          SourceLocation IdLoc,
8308                                          IdentifierInfo *Id,
8309                                          Expr *Val) {
8310  unsigned IntWidth = Context.Target.getIntWidth();
8311  llvm::APSInt EnumVal(IntWidth);
8312  QualType EltTy;
8313
8314  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8315    Val = 0;
8316
8317  if (Val) {
8318    if (Enum->isDependentType() || Val->isTypeDependent())
8319      EltTy = Context.DependentTy;
8320    else {
8321      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8322      SourceLocation ExpLoc;
8323      if (!Val->isValueDependent() &&
8324          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8325        Val = 0;
8326      } else {
8327        if (!getLangOptions().CPlusPlus) {
8328          // C99 6.7.2.2p2:
8329          //   The expression that defines the value of an enumeration constant
8330          //   shall be an integer constant expression that has a value
8331          //   representable as an int.
8332
8333          // Complain if the value is not representable in an int.
8334          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8335            Diag(IdLoc, diag::ext_enum_value_not_int)
8336              << EnumVal.toString(10) << Val->getSourceRange()
8337              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8338          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8339            // Force the type of the expression to 'int'.
8340            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8341          }
8342        }
8343
8344        if (Enum->isFixed()) {
8345          EltTy = Enum->getIntegerType();
8346
8347          // C++0x [dcl.enum]p5:
8348          //   ... if the initializing value of an enumerator cannot be
8349          //   represented by the underlying type, the program is ill-formed.
8350          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8351            if (getLangOptions().Microsoft) {
8352              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8353              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8354            } else
8355              Diag(IdLoc, diag::err_enumerator_too_large)
8356                << EltTy;
8357          } else
8358            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8359        }
8360        else {
8361          // C++0x [dcl.enum]p5:
8362          //   If the underlying type is not fixed, the type of each enumerator
8363          //   is the type of its initializing value:
8364          //     - If an initializer is specified for an enumerator, the
8365          //       initializing value has the same type as the expression.
8366          EltTy = Val->getType();
8367        }
8368      }
8369    }
8370  }
8371
8372  if (!Val) {
8373    if (Enum->isDependentType())
8374      EltTy = Context.DependentTy;
8375    else if (!LastEnumConst) {
8376      // C++0x [dcl.enum]p5:
8377      //   If the underlying type is not fixed, the type of each enumerator
8378      //   is the type of its initializing value:
8379      //     - If no initializer is specified for the first enumerator, the
8380      //       initializing value has an unspecified integral type.
8381      //
8382      // GCC uses 'int' for its unspecified integral type, as does
8383      // C99 6.7.2.2p3.
8384      if (Enum->isFixed()) {
8385        EltTy = Enum->getIntegerType();
8386      }
8387      else {
8388        EltTy = Context.IntTy;
8389      }
8390    } else {
8391      // Assign the last value + 1.
8392      EnumVal = LastEnumConst->getInitVal();
8393      ++EnumVal;
8394      EltTy = LastEnumConst->getType();
8395
8396      // Check for overflow on increment.
8397      if (EnumVal < LastEnumConst->getInitVal()) {
8398        // C++0x [dcl.enum]p5:
8399        //   If the underlying type is not fixed, the type of each enumerator
8400        //   is the type of its initializing value:
8401        //
8402        //     - Otherwise the type of the initializing value is the same as
8403        //       the type of the initializing value of the preceding enumerator
8404        //       unless the incremented value is not representable in that type,
8405        //       in which case the type is an unspecified integral type
8406        //       sufficient to contain the incremented value. If no such type
8407        //       exists, the program is ill-formed.
8408        QualType T = getNextLargerIntegralType(Context, EltTy);
8409        if (T.isNull() || Enum->isFixed()) {
8410          // There is no integral type larger enough to represent this
8411          // value. Complain, then allow the value to wrap around.
8412          EnumVal = LastEnumConst->getInitVal();
8413          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8414          ++EnumVal;
8415          if (Enum->isFixed())
8416            // When the underlying type is fixed, this is ill-formed.
8417            Diag(IdLoc, diag::err_enumerator_wrapped)
8418              << EnumVal.toString(10)
8419              << EltTy;
8420          else
8421            Diag(IdLoc, diag::warn_enumerator_too_large)
8422              << EnumVal.toString(10);
8423        } else {
8424          EltTy = T;
8425        }
8426
8427        // Retrieve the last enumerator's value, extent that type to the
8428        // type that is supposed to be large enough to represent the incremented
8429        // value, then increment.
8430        EnumVal = LastEnumConst->getInitVal();
8431        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8432        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8433        ++EnumVal;
8434
8435        // If we're not in C++, diagnose the overflow of enumerator values,
8436        // which in C99 means that the enumerator value is not representable in
8437        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8438        // permits enumerator values that are representable in some larger
8439        // integral type.
8440        if (!getLangOptions().CPlusPlus && !T.isNull())
8441          Diag(IdLoc, diag::warn_enum_value_overflow);
8442      } else if (!getLangOptions().CPlusPlus &&
8443                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8444        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8445        Diag(IdLoc, diag::ext_enum_value_not_int)
8446          << EnumVal.toString(10) << 1;
8447      }
8448    }
8449  }
8450
8451  if (!EltTy->isDependentType()) {
8452    // Make the enumerator value match the signedness and size of the
8453    // enumerator's type.
8454    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8455    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8456  }
8457
8458  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8459                                  Val, EnumVal);
8460}
8461
8462
8463Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8464                              SourceLocation IdLoc, IdentifierInfo *Id,
8465                              AttributeList *Attr,
8466                              SourceLocation EqualLoc, ExprTy *val) {
8467  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8468  EnumConstantDecl *LastEnumConst =
8469    cast_or_null<EnumConstantDecl>(lastEnumConst);
8470  Expr *Val = static_cast<Expr*>(val);
8471
8472  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8473  // we find one that is.
8474  S = getNonFieldDeclScope(S);
8475
8476  // Verify that there isn't already something declared with this name in this
8477  // scope.
8478  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8479                                         ForRedeclaration);
8480  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8481    // Maybe we will complain about the shadowed template parameter.
8482    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8483    // Just pretend that we didn't see the previous declaration.
8484    PrevDecl = 0;
8485  }
8486
8487  if (PrevDecl) {
8488    // When in C++, we may get a TagDecl with the same name; in this case the
8489    // enum constant will 'hide' the tag.
8490    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8491           "Received TagDecl when not in C++!");
8492    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8493      if (isa<EnumConstantDecl>(PrevDecl))
8494        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8495      else
8496        Diag(IdLoc, diag::err_redefinition) << Id;
8497      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8498      return 0;
8499    }
8500  }
8501
8502  // C++ [class.mem]p13:
8503  //   If T is the name of a class, then each of the following shall have a
8504  //   name different from T:
8505  //     - every enumerator of every member of class T that is an enumerated
8506  //       type
8507  if (CXXRecordDecl *Record
8508                      = dyn_cast<CXXRecordDecl>(
8509                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8510    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8511      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8512
8513  EnumConstantDecl *New =
8514    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8515
8516  if (New) {
8517    // Process attributes.
8518    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8519
8520    // Register this decl in the current scope stack.
8521    New->setAccess(TheEnumDecl->getAccess());
8522    PushOnScopeChains(New, S);
8523  }
8524
8525  return New;
8526}
8527
8528void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8529                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8530                         Decl **Elements, unsigned NumElements,
8531                         Scope *S, AttributeList *Attr) {
8532  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8533  QualType EnumType = Context.getTypeDeclType(Enum);
8534
8535  if (Attr)
8536    ProcessDeclAttributeList(S, Enum, Attr);
8537
8538  if (Enum->isDependentType()) {
8539    for (unsigned i = 0; i != NumElements; ++i) {
8540      EnumConstantDecl *ECD =
8541        cast_or_null<EnumConstantDecl>(Elements[i]);
8542      if (!ECD) continue;
8543
8544      ECD->setType(EnumType);
8545    }
8546
8547    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8548    return;
8549  }
8550
8551  // TODO: If the result value doesn't fit in an int, it must be a long or long
8552  // long value.  ISO C does not support this, but GCC does as an extension,
8553  // emit a warning.
8554  unsigned IntWidth = Context.Target.getIntWidth();
8555  unsigned CharWidth = Context.Target.getCharWidth();
8556  unsigned ShortWidth = Context.Target.getShortWidth();
8557
8558  // Verify that all the values are okay, compute the size of the values, and
8559  // reverse the list.
8560  unsigned NumNegativeBits = 0;
8561  unsigned NumPositiveBits = 0;
8562
8563  // Keep track of whether all elements have type int.
8564  bool AllElementsInt = true;
8565
8566  for (unsigned i = 0; i != NumElements; ++i) {
8567    EnumConstantDecl *ECD =
8568      cast_or_null<EnumConstantDecl>(Elements[i]);
8569    if (!ECD) continue;  // Already issued a diagnostic.
8570
8571    const llvm::APSInt &InitVal = ECD->getInitVal();
8572
8573    // Keep track of the size of positive and negative values.
8574    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8575      NumPositiveBits = std::max(NumPositiveBits,
8576                                 (unsigned)InitVal.getActiveBits());
8577    else
8578      NumNegativeBits = std::max(NumNegativeBits,
8579                                 (unsigned)InitVal.getMinSignedBits());
8580
8581    // Keep track of whether every enum element has type int (very commmon).
8582    if (AllElementsInt)
8583      AllElementsInt = ECD->getType() == Context.IntTy;
8584  }
8585
8586  // Figure out the type that should be used for this enum.
8587  QualType BestType;
8588  unsigned BestWidth;
8589
8590  // C++0x N3000 [conv.prom]p3:
8591  //   An rvalue of an unscoped enumeration type whose underlying
8592  //   type is not fixed can be converted to an rvalue of the first
8593  //   of the following types that can represent all the values of
8594  //   the enumeration: int, unsigned int, long int, unsigned long
8595  //   int, long long int, or unsigned long long int.
8596  // C99 6.4.4.3p2:
8597  //   An identifier declared as an enumeration constant has type int.
8598  // The C99 rule is modified by a gcc extension
8599  QualType BestPromotionType;
8600
8601  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8602  // -fshort-enums is the equivalent to specifying the packed attribute on all
8603  // enum definitions.
8604  if (LangOpts.ShortEnums)
8605    Packed = true;
8606
8607  if (Enum->isFixed()) {
8608    BestType = BestPromotionType = Enum->getIntegerType();
8609    // We don't need to set BestWidth, because BestType is going to be the type
8610    // of the enumerators, but we do anyway because otherwise some compilers
8611    // warn that it might be used uninitialized.
8612    BestWidth = CharWidth;
8613  }
8614  else if (NumNegativeBits) {
8615    // If there is a negative value, figure out the smallest integer type (of
8616    // int/long/longlong) that fits.
8617    // If it's packed, check also if it fits a char or a short.
8618    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8619      BestType = Context.SignedCharTy;
8620      BestWidth = CharWidth;
8621    } else if (Packed && NumNegativeBits <= ShortWidth &&
8622               NumPositiveBits < ShortWidth) {
8623      BestType = Context.ShortTy;
8624      BestWidth = ShortWidth;
8625    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8626      BestType = Context.IntTy;
8627      BestWidth = IntWidth;
8628    } else {
8629      BestWidth = Context.Target.getLongWidth();
8630
8631      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8632        BestType = Context.LongTy;
8633      } else {
8634        BestWidth = Context.Target.getLongLongWidth();
8635
8636        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8637          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8638        BestType = Context.LongLongTy;
8639      }
8640    }
8641    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8642  } else {
8643    // If there is no negative value, figure out the smallest type that fits
8644    // all of the enumerator values.
8645    // If it's packed, check also if it fits a char or a short.
8646    if (Packed && NumPositiveBits <= CharWidth) {
8647      BestType = Context.UnsignedCharTy;
8648      BestPromotionType = Context.IntTy;
8649      BestWidth = CharWidth;
8650    } else if (Packed && NumPositiveBits <= ShortWidth) {
8651      BestType = Context.UnsignedShortTy;
8652      BestPromotionType = Context.IntTy;
8653      BestWidth = ShortWidth;
8654    } else if (NumPositiveBits <= IntWidth) {
8655      BestType = Context.UnsignedIntTy;
8656      BestWidth = IntWidth;
8657      BestPromotionType
8658        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8659                           ? Context.UnsignedIntTy : Context.IntTy;
8660    } else if (NumPositiveBits <=
8661               (BestWidth = Context.Target.getLongWidth())) {
8662      BestType = Context.UnsignedLongTy;
8663      BestPromotionType
8664        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8665                           ? Context.UnsignedLongTy : Context.LongTy;
8666    } else {
8667      BestWidth = Context.Target.getLongLongWidth();
8668      assert(NumPositiveBits <= BestWidth &&
8669             "How could an initializer get larger than ULL?");
8670      BestType = Context.UnsignedLongLongTy;
8671      BestPromotionType
8672        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8673                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8674    }
8675  }
8676
8677  // Loop over all of the enumerator constants, changing their types to match
8678  // the type of the enum if needed.
8679  for (unsigned i = 0; i != NumElements; ++i) {
8680    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8681    if (!ECD) continue;  // Already issued a diagnostic.
8682
8683    // Standard C says the enumerators have int type, but we allow, as an
8684    // extension, the enumerators to be larger than int size.  If each
8685    // enumerator value fits in an int, type it as an int, otherwise type it the
8686    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8687    // that X has type 'int', not 'unsigned'.
8688
8689    // Determine whether the value fits into an int.
8690    llvm::APSInt InitVal = ECD->getInitVal();
8691
8692    // If it fits into an integer type, force it.  Otherwise force it to match
8693    // the enum decl type.
8694    QualType NewTy;
8695    unsigned NewWidth;
8696    bool NewSign;
8697    if (!getLangOptions().CPlusPlus &&
8698        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8699      NewTy = Context.IntTy;
8700      NewWidth = IntWidth;
8701      NewSign = true;
8702    } else if (ECD->getType() == BestType) {
8703      // Already the right type!
8704      if (getLangOptions().CPlusPlus)
8705        // C++ [dcl.enum]p4: Following the closing brace of an
8706        // enum-specifier, each enumerator has the type of its
8707        // enumeration.
8708        ECD->setType(EnumType);
8709      continue;
8710    } else {
8711      NewTy = BestType;
8712      NewWidth = BestWidth;
8713      NewSign = BestType->isSignedIntegerOrEnumerationType();
8714    }
8715
8716    // Adjust the APSInt value.
8717    InitVal = InitVal.extOrTrunc(NewWidth);
8718    InitVal.setIsSigned(NewSign);
8719    ECD->setInitVal(InitVal);
8720
8721    // Adjust the Expr initializer and type.
8722    if (ECD->getInitExpr() &&
8723	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8724      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8725                                                CK_IntegralCast,
8726                                                ECD->getInitExpr(),
8727                                                /*base paths*/ 0,
8728                                                VK_RValue));
8729    if (getLangOptions().CPlusPlus)
8730      // C++ [dcl.enum]p4: Following the closing brace of an
8731      // enum-specifier, each enumerator has the type of its
8732      // enumeration.
8733      ECD->setType(EnumType);
8734    else
8735      ECD->setType(NewTy);
8736  }
8737
8738  Enum->completeDefinition(BestType, BestPromotionType,
8739                           NumPositiveBits, NumNegativeBits);
8740}
8741
8742Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8743                                  SourceLocation StartLoc,
8744                                  SourceLocation EndLoc) {
8745  StringLiteral *AsmString = cast<StringLiteral>(expr);
8746
8747  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8748                                                   AsmString, StartLoc,
8749                                                   EndLoc);
8750  CurContext->addDecl(New);
8751  return New;
8752}
8753
8754void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8755                             SourceLocation PragmaLoc,
8756                             SourceLocation NameLoc) {
8757  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8758
8759  if (PrevDecl) {
8760    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8761  } else {
8762    (void)WeakUndeclaredIdentifiers.insert(
8763      std::pair<IdentifierInfo*,WeakInfo>
8764        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8765  }
8766}
8767
8768void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8769                                IdentifierInfo* AliasName,
8770                                SourceLocation PragmaLoc,
8771                                SourceLocation NameLoc,
8772                                SourceLocation AliasNameLoc) {
8773  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8774                                    LookupOrdinaryName);
8775  WeakInfo W = WeakInfo(Name, NameLoc);
8776
8777  if (PrevDecl) {
8778    if (!PrevDecl->hasAttr<AliasAttr>())
8779      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8780        DeclApplyPragmaWeak(TUScope, ND, W);
8781  } else {
8782    (void)WeakUndeclaredIdentifiers.insert(
8783      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8784  }
8785}
8786