SemaDecl.cpp revision e8e4492eaea4328dfd968b28e73e2211ca649299
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Basic/SourceManager.h"
25// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Lex/HeaderSearch.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include <algorithm>
31#include <functional>
32using namespace clang;
33
34/// getDeclName - Return a pretty name for the specified decl if possible, or
35/// an empty string if not.  This is used for pretty crash reporting.
36std::string Sema::getDeclName(DeclPtrTy d) {
37  Decl *D = d.getAs<Decl>();
38  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
39    return DN->getQualifiedNameAsString();
40  return "";
41}
42
43Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
44  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
45}
46
47/// \brief If the identifier refers to a type name within this scope,
48/// return the declaration of that type.
49///
50/// This routine performs ordinary name lookup of the identifier II
51/// within the given scope, with optional C++ scope specifier SS, to
52/// determine whether the name refers to a type. If so, returns an
53/// opaque pointer (actually a QualType) corresponding to that
54/// type. Otherwise, returns NULL.
55///
56/// If name lookup results in an ambiguity, this routine will complain
57/// and then return NULL.
58Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
59                                Scope *S, const CXXScopeSpec *SS) {
60  // C++ [temp.res]p3:
61  //   A qualified-id that refers to a type and in which the
62  //   nested-name-specifier depends on a template-parameter (14.6.2)
63  //   shall be prefixed by the keyword typename to indicate that the
64  //   qualified-id denotes a type, forming an
65  //   elaborated-type-specifier (7.1.5.3).
66  //
67  // We therefore do not perform any name lookup up SS is a dependent
68  // scope name. FIXME: we will need to perform a special kind of
69  // lookup if the scope specifier names a member of the current
70  // instantiation.
71  if (SS && isDependentScopeSpecifier(*SS))
72    return 0;
73
74  NamedDecl *IIDecl = 0;
75  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
76                                         false, false);
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      T = Context.getTypeDeclType(TD);
128    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
129      // Check whether we can use this interface.
130      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
131
132      T = Context.getObjCInterfaceType(IDecl);
133    } else
134      return 0;
135
136    if (SS)
137      T = getQualifiedNameType(*SS, T);
138
139    return T.getAsOpaquePtr();
140  }
141
142  return 0;
143}
144
145/// isTagName() - This method is called *for error recovery purposes only*
146/// to determine if the specified name is a valid tag name ("struct foo").  If
147/// so, this returns the TST for the tag corresponding to it (TST_enum,
148/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
149/// where the user forgot to specify the tag.
150DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
151  // Do a tag name lookup in this scope.
152  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
153  if (R.getKind() == LookupResult::Found)
154    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
155      switch (TD->getTagKind()) {
156      case TagDecl::TK_struct: return DeclSpec::TST_struct;
157      case TagDecl::TK_union:  return DeclSpec::TST_union;
158      case TagDecl::TK_class:  return DeclSpec::TST_class;
159      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
160      }
161    }
162
163  return DeclSpec::TST_unspecified;
164}
165
166
167
168DeclContext *Sema::getContainingDC(DeclContext *DC) {
169  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
170    // A C++ out-of-line method will return to the file declaration context.
171    if (MD->isOutOfLineDefinition())
172      return MD->getLexicalDeclContext();
173
174    // A C++ inline method is parsed *after* the topmost class it was declared
175    // in is fully parsed (it's "complete").
176    // The parsing of a C++ inline method happens at the declaration context of
177    // the topmost (non-nested) class it is lexically declared in.
178    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
179    DC = MD->getParent();
180    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
181      DC = RD;
182
183    // Return the declaration context of the topmost class the inline method is
184    // declared in.
185    return DC;
186  }
187
188  if (isa<ObjCMethodDecl>(DC))
189    return Context.getTranslationUnitDecl();
190
191  return DC->getLexicalParent();
192}
193
194void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
195  assert(getContainingDC(DC) == CurContext &&
196      "The next DeclContext should be lexically contained in the current one.");
197  CurContext = DC;
198  S->setEntity(DC);
199}
200
201void Sema::PopDeclContext() {
202  assert(CurContext && "DeclContext imbalance!");
203
204  CurContext = getContainingDC(CurContext);
205}
206
207/// \brief Determine whether we allow overloading of the function
208/// PrevDecl with another declaration.
209///
210/// This routine determines whether overloading is possible, not
211/// whether some new function is actually an overload. It will return
212/// true in C++ (where we can always provide overloads) or, as an
213/// extension, in C when the previous function is already an
214/// overloaded function declaration or has the "overloadable"
215/// attribute.
216static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
217  if (Context.getLangOptions().CPlusPlus)
218    return true;
219
220  if (isa<OverloadedFunctionDecl>(PrevDecl))
221    return true;
222
223  return PrevDecl->getAttr<OverloadableAttr>() != 0;
224}
225
226/// Add this decl to the scope shadowed decl chains.
227void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
228  // Move up the scope chain until we find the nearest enclosing
229  // non-transparent context. The declaration will be introduced into this
230  // scope.
231  while (S->getEntity() &&
232         ((DeclContext *)S->getEntity())->isTransparentContext())
233    S = S->getParent();
234
235  S->AddDecl(DeclPtrTy::make(D));
236
237  // Add scoped declarations into their context, so that they can be
238  // found later. Declarations without a context won't be inserted
239  // into any context.
240  CurContext->addDecl(Context, D);
241
242  // C++ [basic.scope]p4:
243  //   -- exactly one declaration shall declare a class name or
244  //   enumeration name that is not a typedef name and the other
245  //   declarations shall all refer to the same object or
246  //   enumerator, or all refer to functions and function templates;
247  //   in this case the class name or enumeration name is hidden.
248  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
249    // We are pushing the name of a tag (enum or class).
250    if (CurContext->getLookupContext()
251          == TD->getDeclContext()->getLookupContext()) {
252      // We're pushing the tag into the current context, which might
253      // require some reshuffling in the identifier resolver.
254      IdentifierResolver::iterator
255        I = IdResolver.begin(TD->getDeclName()),
256        IEnd = IdResolver.end();
257      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
258        NamedDecl *PrevDecl = *I;
259        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
260             PrevDecl = *I, ++I) {
261          if (TD->declarationReplaces(*I)) {
262            // This is a redeclaration. Remove it from the chain and
263            // break out, so that we'll add in the shadowed
264            // declaration.
265            S->RemoveDecl(DeclPtrTy::make(*I));
266            if (PrevDecl == *I) {
267              IdResolver.RemoveDecl(*I);
268              IdResolver.AddDecl(TD);
269              return;
270            } else {
271              IdResolver.RemoveDecl(*I);
272              break;
273            }
274          }
275        }
276
277        // There is already a declaration with the same name in the same
278        // scope, which is not a tag declaration. It must be found
279        // before we find the new declaration, so insert the new
280        // declaration at the end of the chain.
281        IdResolver.AddShadowedDecl(TD, PrevDecl);
282
283        return;
284      }
285    }
286  } else if (isa<FunctionDecl>(D) &&
287             AllowOverloadingOfFunction(D, Context)) {
288    // We are pushing the name of a function, which might be an
289    // overloaded name.
290    FunctionDecl *FD = cast<FunctionDecl>(D);
291    IdentifierResolver::iterator Redecl
292      = std::find_if(IdResolver.begin(FD->getDeclName()),
293                     IdResolver.end(),
294                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
295                                  FD));
296    if (Redecl != IdResolver.end() &&
297        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
298      // There is already a declaration of a function on our
299      // IdResolver chain. Replace it with this declaration.
300      S->RemoveDecl(DeclPtrTy::make(*Redecl));
301      IdResolver.RemoveDecl(*Redecl);
302    }
303  } else if (isa<ObjCInterfaceDecl>(D)) {
304    // We're pushing an Objective-C interface into the current
305    // context. If there is already an alias declaration, remove it first.
306    for (IdentifierResolver::iterator
307           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
308         I != IEnd; ++I) {
309      if (isa<ObjCCompatibleAliasDecl>(*I)) {
310        S->RemoveDecl(DeclPtrTy::make(*I));
311        IdResolver.RemoveDecl(*I);
312        break;
313      }
314    }
315  }
316
317  IdResolver.AddDecl(D);
318}
319
320void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
321  if (S->decl_empty()) return;
322  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
323	 "Scope shouldn't contain decls!");
324
325  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
326       I != E; ++I) {
327    Decl *TmpD = (*I).getAs<Decl>();
328    assert(TmpD && "This decl didn't get pushed??");
329
330    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
331    NamedDecl *D = cast<NamedDecl>(TmpD);
332
333    if (!D->getDeclName()) continue;
334
335    // Remove this name from our lexical scope.
336    IdResolver.RemoveDecl(D);
337  }
338}
339
340/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
341/// return 0 if one not found.
342ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
343  // The third "scope" argument is 0 since we aren't enabling lazy built-in
344  // creation from this context.
345  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
346
347  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
348}
349
350/// getNonFieldDeclScope - Retrieves the innermost scope, starting
351/// from S, where a non-field would be declared. This routine copes
352/// with the difference between C and C++ scoping rules in structs and
353/// unions. For example, the following code is well-formed in C but
354/// ill-formed in C++:
355/// @code
356/// struct S6 {
357///   enum { BAR } e;
358/// };
359///
360/// void test_S6() {
361///   struct S6 a;
362///   a.e = BAR;
363/// }
364/// @endcode
365/// For the declaration of BAR, this routine will return a different
366/// scope. The scope S will be the scope of the unnamed enumeration
367/// within S6. In C++, this routine will return the scope associated
368/// with S6, because the enumeration's scope is a transparent
369/// context but structures can contain non-field names. In C, this
370/// routine will return the translation unit scope, since the
371/// enumeration's scope is a transparent context and structures cannot
372/// contain non-field names.
373Scope *Sema::getNonFieldDeclScope(Scope *S) {
374  while (((S->getFlags() & Scope::DeclScope) == 0) ||
375         (S->getEntity() &&
376          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
377         (S->isClassScope() && !getLangOptions().CPlusPlus))
378    S = S->getParent();
379  return S;
380}
381
382void Sema::InitBuiltinVaListType() {
383  if (!Context.getBuiltinVaListType().isNull())
384    return;
385
386  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
387  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
388  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
389  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
390}
391
392/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
393/// file scope.  lazily create a decl for it. ForRedeclaration is true
394/// if we're creating this built-in in anticipation of redeclaring the
395/// built-in.
396NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
397                                     Scope *S, bool ForRedeclaration,
398                                     SourceLocation Loc) {
399  Builtin::ID BID = (Builtin::ID)bid;
400
401  if (Context.BuiltinInfo.hasVAListUse(BID))
402    InitBuiltinVaListType();
403
404  Builtin::Context::GetBuiltinTypeError Error;
405  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
406  switch (Error) {
407  case Builtin::Context::GE_None:
408    // Okay
409    break;
410
411  case Builtin::Context::GE_Missing_FILE:
412    if (ForRedeclaration)
413      Diag(Loc, diag::err_implicit_decl_requires_stdio)
414        << Context.BuiltinInfo.GetName(BID);
415    return 0;
416  }
417
418  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
419    Diag(Loc, diag::ext_implicit_lib_function_decl)
420      << Context.BuiltinInfo.GetName(BID)
421      << R;
422    if (Context.BuiltinInfo.getHeaderName(BID) &&
423        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
424          != Diagnostic::Ignored)
425      Diag(Loc, diag::note_please_include_header)
426        << Context.BuiltinInfo.getHeaderName(BID)
427        << Context.BuiltinInfo.GetName(BID);
428  }
429
430  FunctionDecl *New = FunctionDecl::Create(Context,
431                                           Context.getTranslationUnitDecl(),
432                                           Loc, II, R,
433                                           FunctionDecl::Extern, false,
434                                           /*hasPrototype=*/true);
435  New->setImplicit();
436
437  // Create Decl objects for each parameter, adding them to the
438  // FunctionDecl.
439  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
440    llvm::SmallVector<ParmVarDecl*, 16> Params;
441    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
442      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
443                                           FT->getArgType(i), VarDecl::None, 0));
444    New->setParams(Context, &Params[0], Params.size());
445  }
446
447  AddKnownFunctionAttributes(New);
448
449  // TUScope is the translation-unit scope to insert this function into.
450  // FIXME: This is hideous. We need to teach PushOnScopeChains to
451  // relate Scopes to DeclContexts, and probably eliminate CurContext
452  // entirely, but we're not there yet.
453  DeclContext *SavedContext = CurContext;
454  CurContext = Context.getTranslationUnitDecl();
455  PushOnScopeChains(New, TUScope);
456  CurContext = SavedContext;
457  return New;
458}
459
460/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
461/// everything from the standard library is defined.
462NamespaceDecl *Sema::GetStdNamespace() {
463  if (!StdNamespace) {
464    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
465    DeclContext *Global = Context.getTranslationUnitDecl();
466    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
467    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
468  }
469  return StdNamespace;
470}
471
472/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
473/// same name and scope as a previous declaration 'Old'.  Figure out
474/// how to resolve this situation, merging decls or emitting
475/// diagnostics as appropriate. If there was an error, set New to be invalid.
476///
477void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
478  // If either decl is known invalid already, set the new one to be invalid and
479  // don't bother doing any merging checks.
480  if (New->isInvalidDecl() || OldD->isInvalidDecl())
481    return New->setInvalidDecl();
482
483  bool objc_types = false;
484
485  // Allow multiple definitions for ObjC built-in typedefs.
486  // FIXME: Verify the underlying types are equivalent!
487  if (getLangOptions().ObjC1) {
488    const IdentifierInfo *TypeID = New->getIdentifier();
489    switch (TypeID->getLength()) {
490    default: break;
491    case 2:
492      if (!TypeID->isStr("id"))
493        break;
494      Context.setObjCIdType(Context.getTypeDeclType(New));
495      objc_types = true;
496      break;
497    case 5:
498      if (!TypeID->isStr("Class"))
499        break;
500      Context.setObjCClassType(Context.getTypeDeclType(New));
501      return;
502    case 3:
503      if (!TypeID->isStr("SEL"))
504        break;
505      Context.setObjCSelType(Context.getTypeDeclType(New));
506      return;
507    case 8:
508      if (!TypeID->isStr("Protocol"))
509        break;
510      Context.setObjCProtoType(New->getUnderlyingType());
511      return;
512    }
513    // Fall through - the typedef name was not a builtin type.
514  }
515  // Verify the old decl was also a type.
516  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
517  if (!Old) {
518    Diag(New->getLocation(), diag::err_redefinition_different_kind)
519      << New->getDeclName();
520    if (OldD->getLocation().isValid())
521      Diag(OldD->getLocation(), diag::note_previous_definition);
522    return New->setInvalidDecl();
523  }
524
525  // Determine the "old" type we'll use for checking and diagnostics.
526  QualType OldType;
527  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
528    OldType = OldTypedef->getUnderlyingType();
529  else
530    OldType = Context.getTypeDeclType(Old);
531
532  // If the typedef types are not identical, reject them in all languages and
533  // with any extensions enabled.
534
535  if (OldType != New->getUnderlyingType() &&
536      Context.getCanonicalType(OldType) !=
537      Context.getCanonicalType(New->getUnderlyingType())) {
538    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
539      << New->getUnderlyingType() << OldType;
540    if (Old->getLocation().isValid())
541      Diag(Old->getLocation(), diag::note_previous_definition);
542    return New->setInvalidDecl();
543  }
544
545  if (objc_types || getLangOptions().Microsoft)
546    return;
547
548  // C++ [dcl.typedef]p2:
549  //   In a given non-class scope, a typedef specifier can be used to
550  //   redefine the name of any type declared in that scope to refer
551  //   to the type to which it already refers.
552  if (getLangOptions().CPlusPlus) {
553    if (!isa<CXXRecordDecl>(CurContext))
554      return;
555    Diag(New->getLocation(), diag::err_redefinition)
556      << New->getDeclName();
557    Diag(Old->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // If we have a redefinition of a typedef in C, emit a warning.  This warning
562  // is normally mapped to an error, but can be controlled with
563  // -Wtypedef-redefinition.  If either the original was in a system header,
564  // don't emit this for compatibility with GCC.
565  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
566      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
567    return;
568
569  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
570    << New->getDeclName();
571  Diag(Old->getLocation(), diag::note_previous_definition);
572  return;
573}
574
575/// DeclhasAttr - returns true if decl Declaration already has the target
576/// attribute.
577static bool DeclHasAttr(const Decl *decl, const Attr *target) {
578  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
579    if (attr->getKind() == target->getKind())
580      return true;
581
582  return false;
583}
584
585/// MergeAttributes - append attributes from the Old decl to the New one.
586static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
587  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
588    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
589      Attr *NewAttr = attr->clone(C);
590      NewAttr->setInherited(true);
591      New->addAttr(NewAttr);
592    }
593  }
594}
595
596/// Used in MergeFunctionDecl to keep track of function parameters in
597/// C.
598struct GNUCompatibleParamWarning {
599  ParmVarDecl *OldParm;
600  ParmVarDecl *NewParm;
601  QualType PromotedType;
602};
603
604/// MergeFunctionDecl - We just parsed a function 'New' from
605/// declarator D which has the same name and scope as a previous
606/// declaration 'Old'.  Figure out how to resolve this situation,
607/// merging decls or emitting diagnostics as appropriate.
608///
609/// In C++, New and Old must be declarations that are not
610/// overloaded. Use IsOverload to determine whether New and Old are
611/// overloaded, and to select the Old declaration that New should be
612/// merged with.
613///
614/// Returns true if there was an error, false otherwise.
615bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
616  assert(!isa<OverloadedFunctionDecl>(OldD) &&
617         "Cannot merge with an overloaded function declaration");
618
619  // Verify the old decl was also a function.
620  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
621  if (!Old) {
622    Diag(New->getLocation(), diag::err_redefinition_different_kind)
623      << New->getDeclName();
624    Diag(OldD->getLocation(), diag::note_previous_definition);
625    return true;
626  }
627
628  // Determine whether the previous declaration was a definition,
629  // implicit declaration, or a declaration.
630  diag::kind PrevDiag;
631  if (Old->isThisDeclarationADefinition())
632    PrevDiag = diag::note_previous_definition;
633  else if (Old->isImplicit())
634    PrevDiag = diag::note_previous_implicit_declaration;
635  else
636    PrevDiag = diag::note_previous_declaration;
637
638  QualType OldQType = Context.getCanonicalType(Old->getType());
639  QualType NewQType = Context.getCanonicalType(New->getType());
640
641  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
642      New->getStorageClass() == FunctionDecl::Static &&
643      Old->getStorageClass() != FunctionDecl::Static) {
644    Diag(New->getLocation(), diag::err_static_non_static)
645      << New;
646    Diag(Old->getLocation(), PrevDiag);
647    return true;
648  }
649
650  if (getLangOptions().CPlusPlus) {
651    // (C++98 13.1p2):
652    //   Certain function declarations cannot be overloaded:
653    //     -- Function declarations that differ only in the return type
654    //        cannot be overloaded.
655    QualType OldReturnType
656      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
657    QualType NewReturnType
658      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
659    if (OldReturnType != NewReturnType) {
660      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
661      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
662      return true;
663    }
664
665    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
666    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
667    if (OldMethod && NewMethod &&
668        OldMethod->getLexicalDeclContext() ==
669          NewMethod->getLexicalDeclContext()) {
670      //    -- Member function declarations with the same name and the
671      //       same parameter types cannot be overloaded if any of them
672      //       is a static member function declaration.
673      if (OldMethod->isStatic() || NewMethod->isStatic()) {
674        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
675        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
676        return true;
677      }
678
679      // C++ [class.mem]p1:
680      //   [...] A member shall not be declared twice in the
681      //   member-specification, except that a nested class or member
682      //   class template can be declared and then later defined.
683      unsigned NewDiag;
684      if (isa<CXXConstructorDecl>(OldMethod))
685        NewDiag = diag::err_constructor_redeclared;
686      else if (isa<CXXDestructorDecl>(NewMethod))
687        NewDiag = diag::err_destructor_redeclared;
688      else if (isa<CXXConversionDecl>(NewMethod))
689        NewDiag = diag::err_conv_function_redeclared;
690      else
691        NewDiag = diag::err_member_redeclared;
692
693      Diag(New->getLocation(), NewDiag);
694      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
695    }
696
697    // (C++98 8.3.5p3):
698    //   All declarations for a function shall agree exactly in both the
699    //   return type and the parameter-type-list.
700    if (OldQType == NewQType)
701      return MergeCompatibleFunctionDecls(New, Old);
702
703    // Fall through for conflicting redeclarations and redefinitions.
704  }
705
706  // C: Function types need to be compatible, not identical. This handles
707  // duplicate function decls like "void f(int); void f(enum X);" properly.
708  if (!getLangOptions().CPlusPlus &&
709      Context.typesAreCompatible(OldQType, NewQType)) {
710    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
711    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
712    const FunctionProtoType *OldProto = 0;
713    if (isa<FunctionNoProtoType>(NewFuncType) &&
714        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
715      // The old declaration provided a function prototype, but the
716      // new declaration does not. Merge in the prototype.
717      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
718      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
719                                                 OldProto->arg_type_end());
720      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
721                                         &ParamTypes[0], ParamTypes.size(),
722                                         OldProto->isVariadic(),
723                                         OldProto->getTypeQuals());
724      New->setType(NewQType);
725      New->setInheritedPrototype();
726
727      // Synthesize a parameter for each argument type.
728      llvm::SmallVector<ParmVarDecl*, 16> Params;
729      for (FunctionProtoType::arg_type_iterator
730             ParamType = OldProto->arg_type_begin(),
731             ParamEnd = OldProto->arg_type_end();
732           ParamType != ParamEnd; ++ParamType) {
733        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
734                                                 SourceLocation(), 0,
735                                                 *ParamType, VarDecl::None,
736                                                 0);
737        Param->setImplicit();
738        Params.push_back(Param);
739      }
740
741      New->setParams(Context, &Params[0], Params.size());
742    }
743
744    return MergeCompatibleFunctionDecls(New, Old);
745  }
746
747  // GNU C permits a K&R definition to follow a prototype declaration
748  // if the declared types of the parameters in the K&R definition
749  // match the types in the prototype declaration, even when the
750  // promoted types of the parameters from the K&R definition differ
751  // from the types in the prototype. GCC then keeps the types from
752  // the prototype.
753  if (!getLangOptions().CPlusPlus &&
754      Old->hasPrototype() && !New->hasPrototype() &&
755      New->getType()->getAsFunctionProtoType() &&
756      Old->getNumParams() == New->getNumParams()) {
757    llvm::SmallVector<QualType, 16> ArgTypes;
758    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
759    const FunctionProtoType *OldProto
760      = Old->getType()->getAsFunctionProtoType();
761    const FunctionProtoType *NewProto
762      = New->getType()->getAsFunctionProtoType();
763
764    // Determine whether this is the GNU C extension.
765    bool GNUCompatible =
766      Context.typesAreCompatible(OldProto->getResultType(),
767                                 NewProto->getResultType()) &&
768      (OldProto->isVariadic() == NewProto->isVariadic());
769    for (unsigned Idx = 0, End = Old->getNumParams();
770         GNUCompatible && Idx != End; ++Idx) {
771      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
772      ParmVarDecl *NewParm = New->getParamDecl(Idx);
773      if (Context.typesAreCompatible(OldParm->getType(),
774                                     NewProto->getArgType(Idx))) {
775        ArgTypes.push_back(NewParm->getType());
776      } else if (Context.typesAreCompatible(OldParm->getType(),
777                                            NewParm->getType())) {
778        GNUCompatibleParamWarning Warn
779          = { OldParm, NewParm, NewProto->getArgType(Idx) };
780        Warnings.push_back(Warn);
781        ArgTypes.push_back(NewParm->getType());
782      } else
783        GNUCompatible = false;
784    }
785
786    if (GNUCompatible) {
787      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
788        Diag(Warnings[Warn].NewParm->getLocation(),
789             diag::ext_param_promoted_not_compatible_with_prototype)
790          << Warnings[Warn].PromotedType
791          << Warnings[Warn].OldParm->getType();
792        Diag(Warnings[Warn].OldParm->getLocation(),
793             diag::note_previous_declaration);
794      }
795
796      New->setType(Context.getFunctionType(NewProto->getResultType(),
797                                           &ArgTypes[0], ArgTypes.size(),
798                                           NewProto->isVariadic(),
799                                           NewProto->getTypeQuals()));
800      return MergeCompatibleFunctionDecls(New, Old);
801    }
802
803    // Fall through to diagnose conflicting types.
804  }
805
806  // A function that has already been declared has been redeclared or defined
807  // with a different type- show appropriate diagnostic
808  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
809    // The user has declared a builtin function with an incompatible
810    // signature.
811    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
812      // The function the user is redeclaring is a library-defined
813      // function like 'malloc' or 'printf'. Warn about the
814      // redeclaration, then pretend that we don't know about this
815      // library built-in.
816      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
817      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
818        << Old << Old->getType();
819      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
820      Old->setInvalidDecl();
821      return false;
822    }
823
824    PrevDiag = diag::note_previous_builtin_declaration;
825  }
826
827  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
828  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
829  return true;
830}
831
832/// \brief Completes the merge of two function declarations that are
833/// known to be compatible.
834///
835/// This routine handles the merging of attributes and other
836/// properties of function declarations form the old declaration to
837/// the new declaration, once we know that New is in fact a
838/// redeclaration of Old.
839///
840/// \returns false
841bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
842  // Merge the attributes
843  MergeAttributes(New, Old, Context);
844
845  // Merge the storage class.
846  if (Old->getStorageClass() != FunctionDecl::Extern)
847    New->setStorageClass(Old->getStorageClass());
848
849  // Merge "inline"
850  if (Old->isInline())
851    New->setInline(true);
852
853  // If this function declaration by itself qualifies as a C99 inline
854  // definition (C99 6.7.4p6), but the previous definition did not,
855  // then the function is not a C99 inline definition.
856  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
857    New->setC99InlineDefinition(false);
858  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
859    // Mark all preceding definitions as not being C99 inline definitions.
860    for (const FunctionDecl *Prev = Old; Prev;
861         Prev = Prev->getPreviousDeclaration())
862      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
863  }
864
865  // Merge "pure" flag.
866  if (Old->isPure())
867    New->setPure();
868
869  // Merge the "deleted" flag.
870  if (Old->isDeleted())
871    New->setDeleted();
872
873  if (getLangOptions().CPlusPlus)
874    return MergeCXXFunctionDecl(New, Old);
875
876  return false;
877}
878
879/// MergeVarDecl - We just parsed a variable 'New' which has the same name
880/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
881/// situation, merging decls or emitting diagnostics as appropriate.
882///
883/// Tentative definition rules (C99 6.9.2p2) are checked by
884/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
885/// definitions here, since the initializer hasn't been attached.
886///
887void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
888  // If either decl is invalid, make sure the new one is marked invalid and
889  // don't do any other checking.
890  if (New->isInvalidDecl() || OldD->isInvalidDecl())
891    return New->setInvalidDecl();
892
893  // Verify the old decl was also a variable.
894  VarDecl *Old = dyn_cast<VarDecl>(OldD);
895  if (!Old) {
896    Diag(New->getLocation(), diag::err_redefinition_different_kind)
897      << New->getDeclName();
898    Diag(OldD->getLocation(), diag::note_previous_definition);
899    return New->setInvalidDecl();
900  }
901
902  MergeAttributes(New, Old, Context);
903
904  // Merge the types
905  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
906  if (MergedT.isNull()) {
907    Diag(New->getLocation(), diag::err_redefinition_different_type)
908      << New->getDeclName();
909    Diag(Old->getLocation(), diag::note_previous_definition);
910    return New->setInvalidDecl();
911  }
912  New->setType(MergedT);
913
914  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
915  if (New->getStorageClass() == VarDecl::Static &&
916      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
917    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
918    Diag(Old->getLocation(), diag::note_previous_definition);
919    return New->setInvalidDecl();
920  }
921  // C99 6.2.2p4:
922  //   For an identifier declared with the storage-class specifier
923  //   extern in a scope in which a prior declaration of that
924  //   identifier is visible,23) if the prior declaration specifies
925  //   internal or external linkage, the linkage of the identifier at
926  //   the later declaration is the same as the linkage specified at
927  //   the prior declaration. If no prior declaration is visible, or
928  //   if the prior declaration specifies no linkage, then the
929  //   identifier has external linkage.
930  if (New->hasExternalStorage() && Old->hasLinkage())
931    /* Okay */;
932  else if (New->getStorageClass() != VarDecl::Static &&
933           Old->getStorageClass() == VarDecl::Static) {
934    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
935    Diag(Old->getLocation(), diag::note_previous_definition);
936    return New->setInvalidDecl();
937  }
938
939  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
940
941  // FIXME: The test for external storage here seems wrong? We still
942  // need to check for mismatches.
943  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
944      // Don't complain about out-of-line definitions of static members.
945      !(Old->getLexicalDeclContext()->isRecord() &&
946        !New->getLexicalDeclContext()->isRecord())) {
947    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
948    Diag(Old->getLocation(), diag::note_previous_definition);
949    return New->setInvalidDecl();
950  }
951
952  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
953    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
954    Diag(Old->getLocation(), diag::note_previous_definition);
955  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
956    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
957    Diag(Old->getLocation(), diag::note_previous_definition);
958  }
959
960  // Keep a chain of previous declarations.
961  New->setPreviousDeclaration(Old);
962}
963
964/// CheckParmsForFunctionDef - Check that the parameters of the given
965/// function are appropriate for the definition of a function. This
966/// takes care of any checks that cannot be performed on the
967/// declaration itself, e.g., that the types of each of the function
968/// parameters are complete.
969bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
970  bool HasInvalidParm = false;
971  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
972    ParmVarDecl *Param = FD->getParamDecl(p);
973
974    // C99 6.7.5.3p4: the parameters in a parameter type list in a
975    // function declarator that is part of a function definition of
976    // that function shall not have incomplete type.
977    //
978    // This is also C++ [dcl.fct]p6.
979    if (!Param->isInvalidDecl() &&
980        RequireCompleteType(Param->getLocation(), Param->getType(),
981                               diag::err_typecheck_decl_incomplete_type)) {
982      Param->setInvalidDecl();
983      HasInvalidParm = true;
984    }
985
986    // C99 6.9.1p5: If the declarator includes a parameter type list, the
987    // declaration of each parameter shall include an identifier.
988    if (Param->getIdentifier() == 0 &&
989        !Param->isImplicit() &&
990        !getLangOptions().CPlusPlus)
991      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
992  }
993
994  return HasInvalidParm;
995}
996
997/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
998/// no declarator (e.g. "struct foo;") is parsed.
999Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1000  // FIXME: Error on auto/register at file scope
1001  // FIXME: Error on inline/virtual/explicit
1002  // FIXME: Error on invalid restrict
1003  // FIXME: Warn on useless __thread
1004  // FIXME: Warn on useless const/volatile
1005  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1006  // FIXME: Warn on useless attributes
1007
1008  TagDecl *Tag = 0;
1009  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1010      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1011      DS.getTypeSpecType() == DeclSpec::TST_union ||
1012      DS.getTypeSpecType() == DeclSpec::TST_enum)
1013    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1014
1015  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1016    if (!Record->getDeclName() && Record->isDefinition() &&
1017        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1018      if (getLangOptions().CPlusPlus ||
1019          Record->getDeclContext()->isRecord())
1020        return BuildAnonymousStructOrUnion(S, DS, Record);
1021
1022      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1023        << DS.getSourceRange();
1024    }
1025
1026    // Microsoft allows unnamed struct/union fields. Don't complain
1027    // about them.
1028    // FIXME: Should we support Microsoft's extensions in this area?
1029    if (Record->getDeclName() && getLangOptions().Microsoft)
1030      return DeclPtrTy::make(Tag);
1031  }
1032
1033  if (!DS.isMissingDeclaratorOk() &&
1034      DS.getTypeSpecType() != DeclSpec::TST_error) {
1035    // Warn about typedefs of enums without names, since this is an
1036    // extension in both Microsoft an GNU.
1037    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1038        Tag && isa<EnumDecl>(Tag)) {
1039      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1040        << DS.getSourceRange();
1041      return DeclPtrTy::make(Tag);
1042    }
1043
1044    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1045      << DS.getSourceRange();
1046    return DeclPtrTy();
1047  }
1048
1049  return DeclPtrTy::make(Tag);
1050}
1051
1052/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1053/// anonymous struct or union AnonRecord into the owning context Owner
1054/// and scope S. This routine will be invoked just after we realize
1055/// that an unnamed union or struct is actually an anonymous union or
1056/// struct, e.g.,
1057///
1058/// @code
1059/// union {
1060///   int i;
1061///   float f;
1062/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1063///    // f into the surrounding scope.x
1064/// @endcode
1065///
1066/// This routine is recursive, injecting the names of nested anonymous
1067/// structs/unions into the owning context and scope as well.
1068bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1069                                               RecordDecl *AnonRecord) {
1070  bool Invalid = false;
1071  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1072                               FEnd = AnonRecord->field_end(Context);
1073       F != FEnd; ++F) {
1074    if ((*F)->getDeclName()) {
1075      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1076                                                LookupOrdinaryName, true);
1077      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1078        // C++ [class.union]p2:
1079        //   The names of the members of an anonymous union shall be
1080        //   distinct from the names of any other entity in the
1081        //   scope in which the anonymous union is declared.
1082        unsigned diagKind
1083          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1084                                 : diag::err_anonymous_struct_member_redecl;
1085        Diag((*F)->getLocation(), diagKind)
1086          << (*F)->getDeclName();
1087        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1088        Invalid = true;
1089      } else {
1090        // C++ [class.union]p2:
1091        //   For the purpose of name lookup, after the anonymous union
1092        //   definition, the members of the anonymous union are
1093        //   considered to have been defined in the scope in which the
1094        //   anonymous union is declared.
1095        Owner->makeDeclVisibleInContext(Context, *F);
1096        S->AddDecl(DeclPtrTy::make(*F));
1097        IdResolver.AddDecl(*F);
1098      }
1099    } else if (const RecordType *InnerRecordType
1100                 = (*F)->getType()->getAsRecordType()) {
1101      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1102      if (InnerRecord->isAnonymousStructOrUnion())
1103        Invalid = Invalid ||
1104          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1105    }
1106  }
1107
1108  return Invalid;
1109}
1110
1111/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1112/// anonymous structure or union. Anonymous unions are a C++ feature
1113/// (C++ [class.union]) and a GNU C extension; anonymous structures
1114/// are a GNU C and GNU C++ extension.
1115Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1116                                                  RecordDecl *Record) {
1117  DeclContext *Owner = Record->getDeclContext();
1118
1119  // Diagnose whether this anonymous struct/union is an extension.
1120  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1121    Diag(Record->getLocation(), diag::ext_anonymous_union);
1122  else if (!Record->isUnion())
1123    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1124
1125  // C and C++ require different kinds of checks for anonymous
1126  // structs/unions.
1127  bool Invalid = false;
1128  if (getLangOptions().CPlusPlus) {
1129    const char* PrevSpec = 0;
1130    // C++ [class.union]p3:
1131    //   Anonymous unions declared in a named namespace or in the
1132    //   global namespace shall be declared static.
1133    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1134        (isa<TranslationUnitDecl>(Owner) ||
1135         (isa<NamespaceDecl>(Owner) &&
1136          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1137      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1138      Invalid = true;
1139
1140      // Recover by adding 'static'.
1141      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1142    }
1143    // C++ [class.union]p3:
1144    //   A storage class is not allowed in a declaration of an
1145    //   anonymous union in a class scope.
1146    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1147             isa<RecordDecl>(Owner)) {
1148      Diag(DS.getStorageClassSpecLoc(),
1149           diag::err_anonymous_union_with_storage_spec);
1150      Invalid = true;
1151
1152      // Recover by removing the storage specifier.
1153      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1154                             PrevSpec);
1155    }
1156
1157    // C++ [class.union]p2:
1158    //   The member-specification of an anonymous union shall only
1159    //   define non-static data members. [Note: nested types and
1160    //   functions cannot be declared within an anonymous union. ]
1161    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1162                                 MemEnd = Record->decls_end(Context);
1163         Mem != MemEnd; ++Mem) {
1164      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1165        // C++ [class.union]p3:
1166        //   An anonymous union shall not have private or protected
1167        //   members (clause 11).
1168        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1169          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1170            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1171          Invalid = true;
1172        }
1173      } else if ((*Mem)->isImplicit()) {
1174        // Any implicit members are fine.
1175      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1176        // This is a type that showed up in an
1177        // elaborated-type-specifier inside the anonymous struct or
1178        // union, but which actually declares a type outside of the
1179        // anonymous struct or union. It's okay.
1180      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1181        if (!MemRecord->isAnonymousStructOrUnion() &&
1182            MemRecord->getDeclName()) {
1183          // This is a nested type declaration.
1184          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1185            << (int)Record->isUnion();
1186          Invalid = true;
1187        }
1188      } else {
1189        // We have something that isn't a non-static data
1190        // member. Complain about it.
1191        unsigned DK = diag::err_anonymous_record_bad_member;
1192        if (isa<TypeDecl>(*Mem))
1193          DK = diag::err_anonymous_record_with_type;
1194        else if (isa<FunctionDecl>(*Mem))
1195          DK = diag::err_anonymous_record_with_function;
1196        else if (isa<VarDecl>(*Mem))
1197          DK = diag::err_anonymous_record_with_static;
1198        Diag((*Mem)->getLocation(), DK)
1199            << (int)Record->isUnion();
1200          Invalid = true;
1201      }
1202    }
1203  }
1204
1205  if (!Record->isUnion() && !Owner->isRecord()) {
1206    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1207      << (int)getLangOptions().CPlusPlus;
1208    Invalid = true;
1209  }
1210
1211  // Create a declaration for this anonymous struct/union.
1212  NamedDecl *Anon = 0;
1213  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1214    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1215                             /*IdentifierInfo=*/0,
1216                             Context.getTypeDeclType(Record),
1217                             /*BitWidth=*/0, /*Mutable=*/false);
1218    Anon->setAccess(AS_public);
1219    if (getLangOptions().CPlusPlus)
1220      FieldCollector->Add(cast<FieldDecl>(Anon));
1221  } else {
1222    VarDecl::StorageClass SC;
1223    switch (DS.getStorageClassSpec()) {
1224    default: assert(0 && "Unknown storage class!");
1225    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1226    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1227    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1228    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1229    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1230    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1231    case DeclSpec::SCS_mutable:
1232      // mutable can only appear on non-static class members, so it's always
1233      // an error here
1234      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1235      Invalid = true;
1236      SC = VarDecl::None;
1237      break;
1238    }
1239
1240    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1241                           /*IdentifierInfo=*/0,
1242                           Context.getTypeDeclType(Record),
1243                           SC, DS.getSourceRange().getBegin());
1244  }
1245  Anon->setImplicit();
1246
1247  // Add the anonymous struct/union object to the current
1248  // context. We'll be referencing this object when we refer to one of
1249  // its members.
1250  Owner->addDecl(Context, Anon);
1251
1252  // Inject the members of the anonymous struct/union into the owning
1253  // context and into the identifier resolver chain for name lookup
1254  // purposes.
1255  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1256    Invalid = true;
1257
1258  // Mark this as an anonymous struct/union type. Note that we do not
1259  // do this until after we have already checked and injected the
1260  // members of this anonymous struct/union type, because otherwise
1261  // the members could be injected twice: once by DeclContext when it
1262  // builds its lookup table, and once by
1263  // InjectAnonymousStructOrUnionMembers.
1264  Record->setAnonymousStructOrUnion(true);
1265
1266  if (Invalid)
1267    Anon->setInvalidDecl();
1268
1269  return DeclPtrTy::make(Anon);
1270}
1271
1272
1273/// GetNameForDeclarator - Determine the full declaration name for the
1274/// given Declarator.
1275DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1276  switch (D.getKind()) {
1277  case Declarator::DK_Abstract:
1278    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1279    return DeclarationName();
1280
1281  case Declarator::DK_Normal:
1282    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1283    return DeclarationName(D.getIdentifier());
1284
1285  case Declarator::DK_Constructor: {
1286    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1287    Ty = Context.getCanonicalType(Ty);
1288    return Context.DeclarationNames.getCXXConstructorName(Ty);
1289  }
1290
1291  case Declarator::DK_Destructor: {
1292    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1293    Ty = Context.getCanonicalType(Ty);
1294    return Context.DeclarationNames.getCXXDestructorName(Ty);
1295  }
1296
1297  case Declarator::DK_Conversion: {
1298    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1299    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1300    Ty = Context.getCanonicalType(Ty);
1301    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1302  }
1303
1304  case Declarator::DK_Operator:
1305    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1306    return Context.DeclarationNames.getCXXOperatorName(
1307                                                D.getOverloadedOperator());
1308  }
1309
1310  assert(false && "Unknown name kind");
1311  return DeclarationName();
1312}
1313
1314/// isNearlyMatchingFunction - Determine whether the C++ functions
1315/// Declaration and Definition are "nearly" matching. This heuristic
1316/// is used to improve diagnostics in the case where an out-of-line
1317/// function definition doesn't match any declaration within
1318/// the class or namespace.
1319static bool isNearlyMatchingFunction(ASTContext &Context,
1320                                     FunctionDecl *Declaration,
1321                                     FunctionDecl *Definition) {
1322  if (Declaration->param_size() != Definition->param_size())
1323    return false;
1324  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1325    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1326    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1327
1328    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1329    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1330    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1331      return false;
1332  }
1333
1334  return true;
1335}
1336
1337Sema::DeclPtrTy
1338Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1339  DeclarationName Name = GetNameForDeclarator(D);
1340
1341  // All of these full declarators require an identifier.  If it doesn't have
1342  // one, the ParsedFreeStandingDeclSpec action should be used.
1343  if (!Name) {
1344    if (!D.isInvalidType())  // Reject this if we think it is valid.
1345      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1346           diag::err_declarator_need_ident)
1347        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1348    return DeclPtrTy();
1349  }
1350
1351  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1352  // we find one that is.
1353  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1354         (S->getFlags() & Scope::TemplateParamScope) != 0)
1355    S = S->getParent();
1356
1357  DeclContext *DC;
1358  NamedDecl *PrevDecl;
1359  NamedDecl *New;
1360
1361  QualType R = GetTypeForDeclarator(D, S);
1362
1363  // See if this is a redefinition of a variable in the same scope.
1364  if (D.getCXXScopeSpec().isInvalid()) {
1365    DC = CurContext;
1366    PrevDecl = 0;
1367    D.setInvalidType();
1368  } else if (!D.getCXXScopeSpec().isSet()) {
1369    LookupNameKind NameKind = LookupOrdinaryName;
1370
1371    // If the declaration we're planning to build will be a function
1372    // or object with linkage, then look for another declaration with
1373    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1374    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1375      /* Do nothing*/;
1376    else if (R->isFunctionType()) {
1377      if (CurContext->isFunctionOrMethod())
1378        NameKind = LookupRedeclarationWithLinkage;
1379    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1380      NameKind = LookupRedeclarationWithLinkage;
1381
1382    DC = CurContext;
1383    PrevDecl = LookupName(S, Name, NameKind, true,
1384                          D.getDeclSpec().getStorageClassSpec() !=
1385                            DeclSpec::SCS_static,
1386                          D.getIdentifierLoc());
1387  } else { // Something like "int foo::x;"
1388    DC = computeDeclContext(D.getCXXScopeSpec());
1389    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1390    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1391
1392    // C++ 7.3.1.2p2:
1393    // Members (including explicit specializations of templates) of a named
1394    // namespace can also be defined outside that namespace by explicit
1395    // qualification of the name being defined, provided that the entity being
1396    // defined was already declared in the namespace and the definition appears
1397    // after the point of declaration in a namespace that encloses the
1398    // declarations namespace.
1399    //
1400    // Note that we only check the context at this point. We don't yet
1401    // have enough information to make sure that PrevDecl is actually
1402    // the declaration we want to match. For example, given:
1403    //
1404    //   class X {
1405    //     void f();
1406    //     void f(float);
1407    //   };
1408    //
1409    //   void X::f(int) { } // ill-formed
1410    //
1411    // In this case, PrevDecl will point to the overload set
1412    // containing the two f's declared in X, but neither of them
1413    // matches.
1414
1415    // First check whether we named the global scope.
1416    if (isa<TranslationUnitDecl>(DC)) {
1417      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1418        << Name << D.getCXXScopeSpec().getRange();
1419    } else if (!CurContext->Encloses(DC)) {
1420      // The qualifying scope doesn't enclose the original declaration.
1421      // Emit diagnostic based on current scope.
1422      SourceLocation L = D.getIdentifierLoc();
1423      SourceRange R = D.getCXXScopeSpec().getRange();
1424      if (isa<FunctionDecl>(CurContext))
1425        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1426      else
1427        Diag(L, diag::err_invalid_declarator_scope)
1428          << Name << cast<NamedDecl>(DC) << R;
1429      D.setInvalidType();
1430    }
1431  }
1432
1433  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1434    // Maybe we will complain about the shadowed template parameter.
1435    if (!D.isInvalidType())
1436      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1437        D.setInvalidType();
1438
1439    // Just pretend that we didn't see the previous declaration.
1440    PrevDecl = 0;
1441  }
1442
1443  // In C++, the previous declaration we find might be a tag type
1444  // (class or enum). In this case, the new declaration will hide the
1445  // tag type. Note that this does does not apply if we're declaring a
1446  // typedef (C++ [dcl.typedef]p4).
1447  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1448      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1449    PrevDecl = 0;
1450
1451  bool Redeclaration = false;
1452  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1453    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1454  } else if (R->isFunctionType()) {
1455    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1456                                  IsFunctionDefinition, Redeclaration);
1457  } else {
1458    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1459  }
1460
1461  if (New == 0)
1462    return DeclPtrTy();
1463
1464  // If this has an identifier and is not an invalid redeclaration,
1465  // add it to the scope stack.
1466  if (Name && !(Redeclaration && New->isInvalidDecl()))
1467    PushOnScopeChains(New, S);
1468
1469  return DeclPtrTy::make(New);
1470}
1471
1472/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1473/// types into constant array types in certain situations which would otherwise
1474/// be errors (for GCC compatibility).
1475static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1476                                                    ASTContext &Context,
1477                                                    bool &SizeIsNegative) {
1478  // This method tries to turn a variable array into a constant
1479  // array even when the size isn't an ICE.  This is necessary
1480  // for compatibility with code that depends on gcc's buggy
1481  // constant expression folding, like struct {char x[(int)(char*)2];}
1482  SizeIsNegative = false;
1483
1484  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1485    QualType Pointee = PTy->getPointeeType();
1486    QualType FixedType =
1487        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1488    if (FixedType.isNull()) return FixedType;
1489    FixedType = Context.getPointerType(FixedType);
1490    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1491    return FixedType;
1492  }
1493
1494  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1495  if (!VLATy)
1496    return QualType();
1497  // FIXME: We should probably handle this case
1498  if (VLATy->getElementType()->isVariablyModifiedType())
1499    return QualType();
1500
1501  Expr::EvalResult EvalResult;
1502  if (!VLATy->getSizeExpr() ||
1503      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1504      !EvalResult.Val.isInt())
1505    return QualType();
1506
1507  llvm::APSInt &Res = EvalResult.Val.getInt();
1508  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1509    return Context.getConstantArrayType(VLATy->getElementType(),
1510                                        Res, ArrayType::Normal, 0);
1511
1512  SizeIsNegative = true;
1513  return QualType();
1514}
1515
1516/// \brief Register the given locally-scoped external C declaration so
1517/// that it can be found later for redeclarations
1518void
1519Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1520                                       Scope *S) {
1521  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1522         "Decl is not a locally-scoped decl!");
1523  // Note that we have a locally-scoped external with this name.
1524  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1525
1526  if (!PrevDecl)
1527    return;
1528
1529  // If there was a previous declaration of this variable, it may be
1530  // in our identifier chain. Update the identifier chain with the new
1531  // declaration.
1532  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1533    // The previous declaration was found on the identifer resolver
1534    // chain, so remove it from its scope.
1535    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1536      S = S->getParent();
1537
1538    if (S)
1539      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1540  }
1541}
1542
1543/// \brief Diagnose function specifiers on a declaration of an identifier that
1544/// does not identify a function.
1545void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1546  // FIXME: We should probably indicate the identifier in question to avoid
1547  // confusion for constructs like "inline int a(), b;"
1548  if (D.getDeclSpec().isInlineSpecified())
1549    Diag(D.getDeclSpec().getInlineSpecLoc(),
1550         diag::err_inline_non_function);
1551
1552  if (D.getDeclSpec().isVirtualSpecified())
1553    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1554         diag::err_virtual_non_function);
1555
1556  if (D.getDeclSpec().isExplicitSpecified())
1557    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1558         diag::err_explicit_non_function);
1559}
1560
1561NamedDecl*
1562Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1563                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1564  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1565  if (D.getCXXScopeSpec().isSet()) {
1566    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1567      << D.getCXXScopeSpec().getRange();
1568    D.setInvalidType();
1569    // Pretend we didn't see the scope specifier.
1570    DC = 0;
1571  }
1572
1573  if (getLangOptions().CPlusPlus) {
1574    // Check that there are no default arguments (C++ only).
1575    CheckExtraCXXDefaultArguments(D);
1576  }
1577
1578  DiagnoseFunctionSpecifiers(D);
1579
1580  if (D.getDeclSpec().isThreadSpecified())
1581    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1582
1583  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1584  if (!NewTD) return 0;
1585
1586  if (D.isInvalidType())
1587    NewTD->setInvalidDecl();
1588
1589  // Handle attributes prior to checking for duplicates in MergeVarDecl
1590  ProcessDeclAttributes(NewTD, D);
1591  // Merge the decl with the existing one if appropriate. If the decl is
1592  // in an outer scope, it isn't the same thing.
1593  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1594    Redeclaration = true;
1595    MergeTypeDefDecl(NewTD, PrevDecl);
1596  }
1597
1598  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1599  // then it shall have block scope.
1600  QualType T = NewTD->getUnderlyingType();
1601  if (T->isVariablyModifiedType()) {
1602    CurFunctionNeedsScopeChecking = true;
1603
1604    if (S->getFnParent() == 0) {
1605      bool SizeIsNegative;
1606      QualType FixedTy =
1607          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1608      if (!FixedTy.isNull()) {
1609        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1610        NewTD->setUnderlyingType(FixedTy);
1611      } else {
1612        if (SizeIsNegative)
1613          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1614        else if (T->isVariableArrayType())
1615          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1616        else
1617          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1618        NewTD->setInvalidDecl();
1619      }
1620    }
1621  }
1622  return NewTD;
1623}
1624
1625/// \brief Determines whether the given declaration is an out-of-scope
1626/// previous declaration.
1627///
1628/// This routine should be invoked when name lookup has found a
1629/// previous declaration (PrevDecl) that is not in the scope where a
1630/// new declaration by the same name is being introduced. If the new
1631/// declaration occurs in a local scope, previous declarations with
1632/// linkage may still be considered previous declarations (C99
1633/// 6.2.2p4-5, C++ [basic.link]p6).
1634///
1635/// \param PrevDecl the previous declaration found by name
1636/// lookup
1637///
1638/// \param DC the context in which the new declaration is being
1639/// declared.
1640///
1641/// \returns true if PrevDecl is an out-of-scope previous declaration
1642/// for a new delcaration with the same name.
1643static bool
1644isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1645                                ASTContext &Context) {
1646  if (!PrevDecl)
1647    return 0;
1648
1649  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1650  // case we need to check each of the overloaded functions.
1651  if (!PrevDecl->hasLinkage())
1652    return false;
1653
1654  if (Context.getLangOptions().CPlusPlus) {
1655    // C++ [basic.link]p6:
1656    //   If there is a visible declaration of an entity with linkage
1657    //   having the same name and type, ignoring entities declared
1658    //   outside the innermost enclosing namespace scope, the block
1659    //   scope declaration declares that same entity and receives the
1660    //   linkage of the previous declaration.
1661    DeclContext *OuterContext = DC->getLookupContext();
1662    if (!OuterContext->isFunctionOrMethod())
1663      // This rule only applies to block-scope declarations.
1664      return false;
1665    else {
1666      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1667      if (PrevOuterContext->isRecord())
1668        // We found a member function: ignore it.
1669        return false;
1670      else {
1671        // Find the innermost enclosing namespace for the new and
1672        // previous declarations.
1673        while (!OuterContext->isFileContext())
1674          OuterContext = OuterContext->getParent();
1675        while (!PrevOuterContext->isFileContext())
1676          PrevOuterContext = PrevOuterContext->getParent();
1677
1678        // The previous declaration is in a different namespace, so it
1679        // isn't the same function.
1680        if (OuterContext->getPrimaryContext() !=
1681            PrevOuterContext->getPrimaryContext())
1682          return false;
1683      }
1684    }
1685  }
1686
1687  return true;
1688}
1689
1690NamedDecl*
1691Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1692                              QualType R,NamedDecl* PrevDecl,
1693                              bool &Redeclaration) {
1694  DeclarationName Name = GetNameForDeclarator(D);
1695
1696  // Check that there are no default arguments (C++ only).
1697  if (getLangOptions().CPlusPlus)
1698    CheckExtraCXXDefaultArguments(D);
1699
1700  VarDecl *NewVD;
1701  VarDecl::StorageClass SC;
1702  switch (D.getDeclSpec().getStorageClassSpec()) {
1703  default: assert(0 && "Unknown storage class!");
1704  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1705  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1706  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1707  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1708  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1709  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1710  case DeclSpec::SCS_mutable:
1711    // mutable can only appear on non-static class members, so it's always
1712    // an error here
1713    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1714    D.setInvalidType();
1715    SC = VarDecl::None;
1716    break;
1717  }
1718
1719  IdentifierInfo *II = Name.getAsIdentifierInfo();
1720  if (!II) {
1721    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1722      << Name.getAsString();
1723    return 0;
1724  }
1725
1726  DiagnoseFunctionSpecifiers(D);
1727
1728  if (!DC->isRecord() && S->getFnParent() == 0) {
1729    // C99 6.9p2: The storage-class specifiers auto and register shall not
1730    // appear in the declaration specifiers in an external declaration.
1731    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1732      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1733      D.setInvalidType();
1734    }
1735  }
1736  if (DC->isRecord() && !CurContext->isRecord()) {
1737    // This is an out-of-line definition of a static data member.
1738    if (SC == VarDecl::Static) {
1739      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1740           diag::err_static_out_of_line)
1741        << CodeModificationHint::CreateRemoval(
1742                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1743    } else if (SC == VarDecl::None)
1744      SC = VarDecl::Static;
1745  }
1746
1747  // The variable can not
1748  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1749                          II, R, SC,
1750                          // FIXME: Move to DeclGroup...
1751                          D.getDeclSpec().getSourceRange().getBegin());
1752
1753  if (D.isInvalidType())
1754    NewVD->setInvalidDecl();
1755
1756  if (D.getDeclSpec().isThreadSpecified()) {
1757    if (NewVD->hasLocalStorage())
1758      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1759    else if (!Context.Target.isTLSSupported())
1760      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1761    else
1762      NewVD->setThreadSpecified(true);
1763  }
1764
1765  // Set the lexical context. If the declarator has a C++ scope specifier, the
1766  // lexical context will be different from the semantic context.
1767  NewVD->setLexicalDeclContext(CurContext);
1768
1769  // Handle attributes prior to checking for duplicates in MergeVarDecl
1770  ProcessDeclAttributes(NewVD, D);
1771
1772  // Handle GNU asm-label extension (encoded as an attribute).
1773  if (Expr *E = (Expr*) D.getAsmLabel()) {
1774    // The parser guarantees this is a string.
1775    StringLiteral *SE = cast<StringLiteral>(E);
1776    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1777                                                        SE->getByteLength())));
1778  }
1779
1780  // If name lookup finds a previous declaration that is not in the
1781  // same scope as the new declaration, this may still be an
1782  // acceptable redeclaration.
1783  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1784      !(NewVD->hasLinkage() &&
1785        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1786    PrevDecl = 0;
1787
1788  // Merge the decl with the existing one if appropriate.
1789  if (PrevDecl) {
1790    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1791      // The user tried to define a non-static data member
1792      // out-of-line (C++ [dcl.meaning]p1).
1793      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1794        << D.getCXXScopeSpec().getRange();
1795      PrevDecl = 0;
1796      NewVD->setInvalidDecl();
1797    }
1798  } else if (D.getCXXScopeSpec().isSet()) {
1799    // No previous declaration in the qualifying scope.
1800    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1801      << Name << D.getCXXScopeSpec().getRange();
1802    NewVD->setInvalidDecl();
1803  }
1804
1805  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1806
1807  // If this is a locally-scoped extern C variable, update the map of
1808  // such variables.
1809  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1810      !NewVD->isInvalidDecl())
1811    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1812
1813  return NewVD;
1814}
1815
1816/// \brief Perform semantic checking on a newly-created variable
1817/// declaration.
1818///
1819/// This routine performs all of the type-checking required for a
1820/// variable declaration once it has been built. It is used both to
1821/// check variables after they have been parsed and their declarators
1822/// have been translated into a declaration, and to check variables
1823/// that have been instantiated from a template.
1824///
1825/// Sets NewVD->isInvalidDecl() if an error was encountered.
1826void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1827                                    bool &Redeclaration) {
1828  // If the decl is already known invalid, don't check it.
1829  if (NewVD->isInvalidDecl())
1830    return;
1831
1832  QualType T = NewVD->getType();
1833
1834  if (T->isObjCInterfaceType()) {
1835    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1836    return NewVD->setInvalidDecl();
1837  }
1838
1839  // The variable can not have an abstract class type.
1840  if (RequireNonAbstractType(NewVD->getLocation(), T,
1841                             diag::err_abstract_type_in_decl,
1842                             AbstractVariableType))
1843    return NewVD->setInvalidDecl();
1844
1845  // Emit an error if an address space was applied to decl with local storage.
1846  // This includes arrays of objects with address space qualifiers, but not
1847  // automatic variables that point to other address spaces.
1848  // ISO/IEC TR 18037 S5.1.2
1849  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1850    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1851    return NewVD->setInvalidDecl();
1852  }
1853
1854  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1855      && !NewVD->hasAttr<BlocksAttr>())
1856    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1857
1858  bool isVM = T->isVariablyModifiedType();
1859  if (isVM || NewVD->hasAttr<CleanupAttr>())
1860    CurFunctionNeedsScopeChecking = true;
1861
1862  if ((isVM && NewVD->hasLinkage()) ||
1863      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1864    bool SizeIsNegative;
1865    QualType FixedTy =
1866        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1867
1868    if (FixedTy.isNull() && T->isVariableArrayType()) {
1869      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1870      // FIXME: This won't give the correct result for
1871      // int a[10][n];
1872      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1873
1874      if (NewVD->isFileVarDecl())
1875        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1876        << SizeRange;
1877      else if (NewVD->getStorageClass() == VarDecl::Static)
1878        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1879        << SizeRange;
1880      else
1881        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1882        << SizeRange;
1883      return NewVD->setInvalidDecl();
1884    }
1885
1886    if (FixedTy.isNull()) {
1887      if (NewVD->isFileVarDecl())
1888        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1889      else
1890        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1891      return NewVD->setInvalidDecl();
1892    }
1893
1894    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1895    NewVD->setType(FixedTy);
1896  }
1897
1898  if (!PrevDecl && NewVD->isExternC(Context)) {
1899    // Since we did not find anything by this name and we're declaring
1900    // an extern "C" variable, look for a non-visible extern "C"
1901    // declaration with the same name.
1902    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1903      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1904    if (Pos != LocallyScopedExternalDecls.end())
1905      PrevDecl = Pos->second;
1906  }
1907
1908  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1909    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1910      << T;
1911    return NewVD->setInvalidDecl();
1912  }
1913
1914  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1915    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1916    return NewVD->setInvalidDecl();
1917  }
1918
1919  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1920    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1921    return NewVD->setInvalidDecl();
1922  }
1923
1924  if (PrevDecl) {
1925    Redeclaration = true;
1926    MergeVarDecl(NewVD, PrevDecl);
1927  }
1928}
1929
1930NamedDecl*
1931Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1932                              QualType R, NamedDecl* PrevDecl,
1933                              bool IsFunctionDefinition, bool &Redeclaration) {
1934  assert(R.getTypePtr()->isFunctionType());
1935
1936  DeclarationName Name = GetNameForDeclarator(D);
1937  FunctionDecl::StorageClass SC = FunctionDecl::None;
1938  switch (D.getDeclSpec().getStorageClassSpec()) {
1939  default: assert(0 && "Unknown storage class!");
1940  case DeclSpec::SCS_auto:
1941  case DeclSpec::SCS_register:
1942  case DeclSpec::SCS_mutable:
1943    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1944         diag::err_typecheck_sclass_func);
1945    D.setInvalidType();
1946    break;
1947  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1948  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1949  case DeclSpec::SCS_static: {
1950    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1951      // C99 6.7.1p5:
1952      //   The declaration of an identifier for a function that has
1953      //   block scope shall have no explicit storage-class specifier
1954      //   other than extern
1955      // See also (C++ [dcl.stc]p4).
1956      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1957           diag::err_static_block_func);
1958      SC = FunctionDecl::None;
1959    } else
1960      SC = FunctionDecl::Static;
1961    break;
1962  }
1963  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1964  }
1965
1966  if (D.getDeclSpec().isThreadSpecified())
1967    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1968
1969  bool isInline = D.getDeclSpec().isInlineSpecified();
1970  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1971  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1972
1973  // Check that the return type is not an abstract class type.
1974  // For record types, this is done by the AbstractClassUsageDiagnoser once
1975  // the class has been completely parsed.
1976  if (!DC->isRecord() &&
1977      RequireNonAbstractType(D.getIdentifierLoc(),
1978                             R->getAsFunctionType()->getResultType(),
1979                             diag::err_abstract_type_in_decl,
1980                             AbstractReturnType))
1981    D.setInvalidType();
1982
1983  // Do not allow returning a objc interface by-value.
1984  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1985    Diag(D.getIdentifierLoc(),
1986         diag::err_object_cannot_be_passed_returned_by_value) << 0
1987      << R->getAsFunctionType()->getResultType();
1988    D.setInvalidType();
1989  }
1990
1991  bool isVirtualOkay = false;
1992  FunctionDecl *NewFD;
1993  if (D.getKind() == Declarator::DK_Constructor) {
1994    // This is a C++ constructor declaration.
1995    assert(DC->isRecord() &&
1996           "Constructors can only be declared in a member context");
1997
1998    R = CheckConstructorDeclarator(D, R, SC);
1999
2000    // Create the new declaration
2001    NewFD = CXXConstructorDecl::Create(Context,
2002                                       cast<CXXRecordDecl>(DC),
2003                                       D.getIdentifierLoc(), Name, R,
2004                                       isExplicit, isInline,
2005                                       /*isImplicitlyDeclared=*/false);
2006  } else if (D.getKind() == Declarator::DK_Destructor) {
2007    // This is a C++ destructor declaration.
2008    if (DC->isRecord()) {
2009      R = CheckDestructorDeclarator(D, SC);
2010
2011      NewFD = CXXDestructorDecl::Create(Context,
2012                                        cast<CXXRecordDecl>(DC),
2013                                        D.getIdentifierLoc(), Name, R,
2014                                        isInline,
2015                                        /*isImplicitlyDeclared=*/false);
2016
2017      isVirtualOkay = true;
2018    } else {
2019      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2020
2021      // Create a FunctionDecl to satisfy the function definition parsing
2022      // code path.
2023      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2024                                   Name, R, SC, isInline,
2025                                   /*hasPrototype=*/true,
2026                                   // FIXME: Move to DeclGroup...
2027                                   D.getDeclSpec().getSourceRange().getBegin());
2028      D.setInvalidType();
2029    }
2030  } else if (D.getKind() == Declarator::DK_Conversion) {
2031    if (!DC->isRecord()) {
2032      Diag(D.getIdentifierLoc(),
2033           diag::err_conv_function_not_member);
2034      return 0;
2035    }
2036
2037    CheckConversionDeclarator(D, R, SC);
2038    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2039                                      D.getIdentifierLoc(), Name, R,
2040                                      isInline, isExplicit);
2041
2042    isVirtualOkay = true;
2043  } else if (DC->isRecord()) {
2044    // If the of the function is the same as the name of the record, then this
2045    // must be an invalid constructor that has a return type.
2046    // (The parser checks for a return type and makes the declarator a
2047    // constructor if it has no return type).
2048    // must have an invalid constructor that has a return type
2049    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2050      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2051        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2052        << SourceRange(D.getIdentifierLoc());
2053      return 0;
2054    }
2055
2056    // This is a C++ method declaration.
2057    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2058                                  D.getIdentifierLoc(), Name, R,
2059                                  (SC == FunctionDecl::Static), isInline);
2060
2061    isVirtualOkay = (SC != FunctionDecl::Static);
2062  } else {
2063    // Determine whether the function was written with a
2064    // prototype. This true when:
2065    //   - we're in C++ (where every function has a prototype),
2066    //   - there is a prototype in the declarator, or
2067    //   - the type R of the function is some kind of typedef or other reference
2068    //     to a type name (which eventually refers to a function type).
2069    bool HasPrototype =
2070       getLangOptions().CPlusPlus ||
2071       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2072       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2073
2074    NewFD = FunctionDecl::Create(Context, DC,
2075                                 D.getIdentifierLoc(),
2076                                 Name, R, SC, isInline, HasPrototype,
2077                                 // FIXME: Move to DeclGroup...
2078                                 D.getDeclSpec().getSourceRange().getBegin());
2079  }
2080
2081  if (D.isInvalidType())
2082    NewFD->setInvalidDecl();
2083
2084  // Set the lexical context. If the declarator has a C++
2085  // scope specifier, the lexical context will be different
2086  // from the semantic context.
2087  NewFD->setLexicalDeclContext(CurContext);
2088
2089  // C++ [dcl.fct.spec]p5:
2090  //   The virtual specifier shall only be used in declarations of
2091  //   nonstatic class member functions that appear within a
2092  //   member-specification of a class declaration; see 10.3.
2093  //
2094  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2095  // function is also virtual if it overrides an already virtual
2096  // function. This is important to do here because it's part of the
2097  // declaration.
2098  if (isVirtual && !NewFD->isInvalidDecl()) {
2099    if (!isVirtualOkay) {
2100       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2101           diag::err_virtual_non_function);
2102    } else if (!CurContext->isRecord()) {
2103      // 'virtual' was specified outside of the class.
2104      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2105        << CodeModificationHint::CreateRemoval(
2106                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2107    } else {
2108      // Okay: Add virtual to the method.
2109      cast<CXXMethodDecl>(NewFD)->setVirtual();
2110      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2111      CurClass->setAggregate(false);
2112      CurClass->setPOD(false);
2113      CurClass->setPolymorphic(true);
2114      CurClass->setHasTrivialConstructor(false);
2115    }
2116  }
2117
2118  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2119      !CurContext->isRecord()) {
2120    // C++ [class.static]p1:
2121    //   A data or function member of a class may be declared static
2122    //   in a class definition, in which case it is a static member of
2123    //   the class.
2124
2125    // Complain about the 'static' specifier if it's on an out-of-line
2126    // member function definition.
2127    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2128         diag::err_static_out_of_line)
2129      << CodeModificationHint::CreateRemoval(
2130                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2131  }
2132
2133  // Handle GNU asm-label extension (encoded as an attribute).
2134  if (Expr *E = (Expr*) D.getAsmLabel()) {
2135    // The parser guarantees this is a string.
2136    StringLiteral *SE = cast<StringLiteral>(E);
2137    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2138                                                        SE->getByteLength())));
2139  }
2140
2141  // Copy the parameter declarations from the declarator D to the function
2142  // declaration NewFD, if they are available.  First scavenge them into Params.
2143  llvm::SmallVector<ParmVarDecl*, 16> Params;
2144  if (D.getNumTypeObjects() > 0) {
2145    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2146
2147    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2148    // function that takes no arguments, not a function that takes a
2149    // single void argument.
2150    // We let through "const void" here because Sema::GetTypeForDeclarator
2151    // already checks for that case.
2152    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2153        FTI.ArgInfo[0].Param &&
2154        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2155      // Empty arg list, don't push any params.
2156      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2157
2158      // In C++, the empty parameter-type-list must be spelled "void"; a
2159      // typedef of void is not permitted.
2160      if (getLangOptions().CPlusPlus &&
2161          Param->getType().getUnqualifiedType() != Context.VoidTy)
2162        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2163      // FIXME: Leaks decl?
2164    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2165      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2166        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2167    }
2168
2169  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2170    // When we're declaring a function with a typedef, typeof, etc as in the
2171    // following example, we'll need to synthesize (unnamed)
2172    // parameters for use in the declaration.
2173    //
2174    // @code
2175    // typedef void fn(int);
2176    // fn f;
2177    // @endcode
2178
2179    // Synthesize a parameter for each argument type.
2180    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2181         AE = FT->arg_type_end(); AI != AE; ++AI) {
2182      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2183                                               SourceLocation(), 0,
2184                                               *AI, VarDecl::None, 0);
2185      Param->setImplicit();
2186      Params.push_back(Param);
2187    }
2188  } else {
2189    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2190           "Should not need args for typedef of non-prototype fn");
2191  }
2192  // Finally, we know we have the right number of parameters, install them.
2193  NewFD->setParams(Context, &Params[0], Params.size());
2194
2195
2196
2197  // If name lookup finds a previous declaration that is not in the
2198  // same scope as the new declaration, this may still be an
2199  // acceptable redeclaration.
2200  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2201      !(NewFD->hasLinkage() &&
2202        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2203    PrevDecl = 0;
2204
2205  // Perform semantic checking on the function declaration.
2206  bool OverloadableAttrRequired = false; // FIXME: HACK!
2207  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2208                           /*FIXME:*/OverloadableAttrRequired);
2209
2210  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2211    // An out-of-line member function declaration must also be a
2212    // definition (C++ [dcl.meaning]p1).
2213    if (!IsFunctionDefinition) {
2214      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2215        << D.getCXXScopeSpec().getRange();
2216      NewFD->setInvalidDecl();
2217    } else if (!Redeclaration) {
2218      // The user tried to provide an out-of-line definition for a
2219      // function that is a member of a class or namespace, but there
2220      // was no such member function declared (C++ [class.mfct]p2,
2221      // C++ [namespace.memdef]p2). For example:
2222      //
2223      // class X {
2224      //   void f() const;
2225      // };
2226      //
2227      // void X::f() { } // ill-formed
2228      //
2229      // Complain about this problem, and attempt to suggest close
2230      // matches (e.g., those that differ only in cv-qualifiers and
2231      // whether the parameter types are references).
2232      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2233        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2234      NewFD->setInvalidDecl();
2235
2236      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2237                                              true);
2238      assert(!Prev.isAmbiguous() &&
2239             "Cannot have an ambiguity in previous-declaration lookup");
2240      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2241           Func != FuncEnd; ++Func) {
2242        if (isa<FunctionDecl>(*Func) &&
2243            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2244          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2245      }
2246
2247      PrevDecl = 0;
2248    }
2249  }
2250
2251  // Handle attributes. We need to have merged decls when handling attributes
2252  // (for example to check for conflicts, etc).
2253  // FIXME: This needs to happen before we merge declarations. Then,
2254  // let attribute merging cope with attribute conflicts.
2255  ProcessDeclAttributes(NewFD, D);
2256  AddKnownFunctionAttributes(NewFD);
2257
2258  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2259    // If a function name is overloadable in C, then every function
2260    // with that name must be marked "overloadable".
2261    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2262      << Redeclaration << NewFD;
2263    if (PrevDecl)
2264      Diag(PrevDecl->getLocation(),
2265           diag::note_attribute_overloadable_prev_overload);
2266    NewFD->addAttr(::new (Context) OverloadableAttr());
2267  }
2268
2269  // If this is a locally-scoped extern C function, update the
2270  // map of such names.
2271  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2272      && !NewFD->isInvalidDecl())
2273    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2274
2275  return NewFD;
2276}
2277
2278/// \brief Perform semantic checking of a new function declaration.
2279///
2280/// Performs semantic analysis of the new function declaration
2281/// NewFD. This routine performs all semantic checking that does not
2282/// require the actual declarator involved in the declaration, and is
2283/// used both for the declaration of functions as they are parsed
2284/// (called via ActOnDeclarator) and for the declaration of functions
2285/// that have been instantiated via C++ template instantiation (called
2286/// via InstantiateDecl).
2287///
2288/// This sets NewFD->isInvalidDecl() to true if there was an error.
2289void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2290                                    bool &Redeclaration,
2291                                    bool &OverloadableAttrRequired) {
2292  // If NewFD is already known erroneous, don't do any of this checking.
2293  if (NewFD->isInvalidDecl())
2294    return;
2295
2296  // Semantic checking for this function declaration (in isolation).
2297  if (getLangOptions().CPlusPlus) {
2298    // C++-specific checks.
2299    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2300      CheckConstructor(Constructor);
2301    } else if (isa<CXXDestructorDecl>(NewFD)) {
2302      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2303      Record->setUserDeclaredDestructor(true);
2304      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2305      // user-defined destructor.
2306      Record->setPOD(false);
2307
2308      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2309      // declared destructor.
2310      Record->setHasTrivialDestructor(false);
2311    } else if (CXXConversionDecl *Conversion
2312               = dyn_cast<CXXConversionDecl>(NewFD))
2313      ActOnConversionDeclarator(Conversion);
2314
2315    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2316    if (NewFD->isOverloadedOperator() &&
2317        CheckOverloadedOperatorDeclaration(NewFD))
2318      return NewFD->setInvalidDecl();
2319  }
2320
2321  // C99 6.7.4p6:
2322  //   [... ] For a function with external linkage, the following
2323  //   restrictions apply: [...] If all of the file scope declarations
2324  //   for a function in a translation unit include the inline
2325  //   function specifier without extern, then the definition in that
2326  //   translation unit is an inline definition. An inline definition
2327  //   does not provide an external definition for the function, and
2328  //   does not forbid an external definition in another translation
2329  //   unit.
2330  //
2331  // Here we determine whether this function, in isolation, would be a
2332  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2333  // previous declarations.
2334  if (NewFD->isInline() && getLangOptions().C99 &&
2335      NewFD->getStorageClass() == FunctionDecl::None &&
2336      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2337    NewFD->setC99InlineDefinition(true);
2338
2339  // Check for a previous declaration of this name.
2340  if (!PrevDecl && NewFD->isExternC(Context)) {
2341    // Since we did not find anything by this name and we're declaring
2342    // an extern "C" function, look for a non-visible extern "C"
2343    // declaration with the same name.
2344    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2345      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2346    if (Pos != LocallyScopedExternalDecls.end())
2347      PrevDecl = Pos->second;
2348  }
2349
2350  // Merge or overload the declaration with an existing declaration of
2351  // the same name, if appropriate.
2352  if (PrevDecl) {
2353    // Determine whether NewFD is an overload of PrevDecl or
2354    // a declaration that requires merging. If it's an overload,
2355    // there's no more work to do here; we'll just add the new
2356    // function to the scope.
2357    OverloadedFunctionDecl::function_iterator MatchedDecl;
2358
2359    if (!getLangOptions().CPlusPlus &&
2360        AllowOverloadingOfFunction(PrevDecl, Context)) {
2361      OverloadableAttrRequired = true;
2362
2363      // Functions marked "overloadable" must have a prototype (that
2364      // we can't get through declaration merging).
2365      if (!NewFD->getType()->getAsFunctionProtoType()) {
2366        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2367          << NewFD;
2368        Redeclaration = true;
2369
2370        // Turn this into a variadic function with no parameters.
2371        QualType R = Context.getFunctionType(
2372                       NewFD->getType()->getAsFunctionType()->getResultType(),
2373                       0, 0, true, 0);
2374        NewFD->setType(R);
2375        return NewFD->setInvalidDecl();
2376      }
2377    }
2378
2379    if (PrevDecl &&
2380        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2381         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2382      Redeclaration = true;
2383      Decl *OldDecl = PrevDecl;
2384
2385      // If PrevDecl was an overloaded function, extract the
2386      // FunctionDecl that matched.
2387      if (isa<OverloadedFunctionDecl>(PrevDecl))
2388        OldDecl = *MatchedDecl;
2389
2390      // NewFD and OldDecl represent declarations that need to be
2391      // merged.
2392      if (MergeFunctionDecl(NewFD, OldDecl))
2393        return NewFD->setInvalidDecl();
2394
2395      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2396    }
2397  }
2398
2399  // In C++, check default arguments now that we have merged decls. Unless
2400  // the lexical context is the class, because in this case this is done
2401  // during delayed parsing anyway.
2402  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2403    CheckCXXDefaultArguments(NewFD);
2404}
2405
2406bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2407  // FIXME: Need strict checking.  In C89, we need to check for
2408  // any assignment, increment, decrement, function-calls, or
2409  // commas outside of a sizeof.  In C99, it's the same list,
2410  // except that the aforementioned are allowed in unevaluated
2411  // expressions.  Everything else falls under the
2412  // "may accept other forms of constant expressions" exception.
2413  // (We never end up here for C++, so the constant expression
2414  // rules there don't matter.)
2415  if (Init->isConstantInitializer(Context))
2416    return false;
2417  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2418    << Init->getSourceRange();
2419  return true;
2420}
2421
2422void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2423  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2424}
2425
2426/// AddInitializerToDecl - Adds the initializer Init to the
2427/// declaration dcl. If DirectInit is true, this is C++ direct
2428/// initialization rather than copy initialization.
2429void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2430  Decl *RealDecl = dcl.getAs<Decl>();
2431  // If there is no declaration, there was an error parsing it.  Just ignore
2432  // the initializer.
2433  if (RealDecl == 0)
2434    return;
2435
2436  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2437    // With declarators parsed the way they are, the parser cannot
2438    // distinguish between a normal initializer and a pure-specifier.
2439    // Thus this grotesque test.
2440    IntegerLiteral *IL;
2441    Expr *Init = static_cast<Expr *>(init.get());
2442    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2443        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2444      if (Method->isVirtual()) {
2445        Method->setPure();
2446
2447        // A class is abstract if at least one function is pure virtual.
2448        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2449      } else if (!Method->isInvalidDecl()) {
2450        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2451          << Method->getDeclName() << Init->getSourceRange();
2452        Method->setInvalidDecl();
2453      }
2454    } else {
2455      Diag(Method->getLocation(), diag::err_member_function_initialization)
2456        << Method->getDeclName() << Init->getSourceRange();
2457      Method->setInvalidDecl();
2458    }
2459    return;
2460  }
2461
2462  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2463  if (!VDecl) {
2464    if (getLangOptions().CPlusPlus &&
2465        RealDecl->getLexicalDeclContext()->isRecord() &&
2466        isa<NamedDecl>(RealDecl))
2467      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2468        << cast<NamedDecl>(RealDecl)->getDeclName();
2469    else
2470      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2471    RealDecl->setInvalidDecl();
2472    return;
2473  }
2474
2475  if (!VDecl->getType()->isArrayType() &&
2476      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2477                          diag::err_typecheck_decl_incomplete_type)) {
2478    RealDecl->setInvalidDecl();
2479    return;
2480  }
2481
2482  const VarDecl *Def = 0;
2483  if (VDecl->getDefinition(Def)) {
2484    Diag(VDecl->getLocation(), diag::err_redefinition)
2485      << VDecl->getDeclName();
2486    Diag(Def->getLocation(), diag::note_previous_definition);
2487    VDecl->setInvalidDecl();
2488    return;
2489  }
2490
2491  // Take ownership of the expression, now that we're sure we have somewhere
2492  // to put it.
2493  Expr *Init = init.takeAs<Expr>();
2494  assert(Init && "missing initializer");
2495
2496  // Get the decls type and save a reference for later, since
2497  // CheckInitializerTypes may change it.
2498  QualType DclT = VDecl->getType(), SavT = DclT;
2499  if (VDecl->isBlockVarDecl()) {
2500    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2501      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2502      VDecl->setInvalidDecl();
2503    } else if (!VDecl->isInvalidDecl()) {
2504      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2505                                VDecl->getDeclName(), DirectInit))
2506        VDecl->setInvalidDecl();
2507
2508      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2509      // Don't check invalid declarations to avoid emitting useless diagnostics.
2510      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2511        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2512          CheckForConstantInitializer(Init, DclT);
2513      }
2514    }
2515  } else if (VDecl->isStaticDataMember() &&
2516             VDecl->getLexicalDeclContext()->isRecord()) {
2517    // This is an in-class initialization for a static data member, e.g.,
2518    //
2519    // struct S {
2520    //   static const int value = 17;
2521    // };
2522
2523    // Attach the initializer
2524    VDecl->setInit(Init);
2525
2526    // C++ [class.mem]p4:
2527    //   A member-declarator can contain a constant-initializer only
2528    //   if it declares a static member (9.4) of const integral or
2529    //   const enumeration type, see 9.4.2.
2530    QualType T = VDecl->getType();
2531    if (!T->isDependentType() &&
2532        (!Context.getCanonicalType(T).isConstQualified() ||
2533         !T->isIntegralType())) {
2534      Diag(VDecl->getLocation(), diag::err_member_initialization)
2535        << VDecl->getDeclName() << Init->getSourceRange();
2536      VDecl->setInvalidDecl();
2537    } else {
2538      // C++ [class.static.data]p4:
2539      //   If a static data member is of const integral or const
2540      //   enumeration type, its declaration in the class definition
2541      //   can specify a constant-initializer which shall be an
2542      //   integral constant expression (5.19).
2543      if (!Init->isTypeDependent() &&
2544          !Init->getType()->isIntegralType()) {
2545        // We have a non-dependent, non-integral or enumeration type.
2546        Diag(Init->getSourceRange().getBegin(),
2547             diag::err_in_class_initializer_non_integral_type)
2548          << Init->getType() << Init->getSourceRange();
2549        VDecl->setInvalidDecl();
2550      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2551        // Check whether the expression is a constant expression.
2552        llvm::APSInt Value;
2553        SourceLocation Loc;
2554        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2555          Diag(Loc, diag::err_in_class_initializer_non_constant)
2556            << Init->getSourceRange();
2557          VDecl->setInvalidDecl();
2558        } else if (!VDecl->getType()->isDependentType())
2559          ImpCastExprToType(Init, VDecl->getType());
2560      }
2561    }
2562  } else if (VDecl->isFileVarDecl()) {
2563    if (VDecl->getStorageClass() == VarDecl::Extern)
2564      Diag(VDecl->getLocation(), diag::warn_extern_init);
2565    if (!VDecl->isInvalidDecl())
2566      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2567                                VDecl->getDeclName(), DirectInit))
2568        VDecl->setInvalidDecl();
2569
2570    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2571    // Don't check invalid declarations to avoid emitting useless diagnostics.
2572    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2573      // C99 6.7.8p4. All file scoped initializers need to be constant.
2574      CheckForConstantInitializer(Init, DclT);
2575    }
2576  }
2577  // If the type changed, it means we had an incomplete type that was
2578  // completed by the initializer. For example:
2579  //   int ary[] = { 1, 3, 5 };
2580  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2581  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2582    VDecl->setType(DclT);
2583    Init->setType(DclT);
2584  }
2585
2586  // Attach the initializer to the decl.
2587  VDecl->setInit(Init);
2588
2589  // If the previous declaration of VDecl was a tentative definition,
2590  // remove it from the set of tentative definitions.
2591  if (VDecl->getPreviousDeclaration() &&
2592      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2593    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2594      = TentativeDefinitions.find(VDecl->getDeclName());
2595    assert(Pos != TentativeDefinitions.end() &&
2596           "Unrecorded tentative definition?");
2597    TentativeDefinitions.erase(Pos);
2598  }
2599
2600  return;
2601}
2602
2603void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2604  Decl *RealDecl = dcl.getAs<Decl>();
2605
2606  // If there is no declaration, there was an error parsing it. Just ignore it.
2607  if (RealDecl == 0)
2608    return;
2609
2610  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2611    QualType Type = Var->getType();
2612
2613    // Record tentative definitions.
2614    if (Var->isTentativeDefinition(Context))
2615      TentativeDefinitions[Var->getDeclName()] = Var;
2616
2617    // C++ [dcl.init.ref]p3:
2618    //   The initializer can be omitted for a reference only in a
2619    //   parameter declaration (8.3.5), in the declaration of a
2620    //   function return type, in the declaration of a class member
2621    //   within its class declaration (9.2), and where the extern
2622    //   specifier is explicitly used.
2623    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2624      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2625        << Var->getDeclName()
2626        << SourceRange(Var->getLocation(), Var->getLocation());
2627      Var->setInvalidDecl();
2628      return;
2629    }
2630
2631    // C++ [dcl.init]p9:
2632    //
2633    //   If no initializer is specified for an object, and the object
2634    //   is of (possibly cv-qualified) non-POD class type (or array
2635    //   thereof), the object shall be default-initialized; if the
2636    //   object is of const-qualified type, the underlying class type
2637    //   shall have a user-declared default constructor.
2638    if (getLangOptions().CPlusPlus) {
2639      QualType InitType = Type;
2640      if (const ArrayType *Array = Context.getAsArrayType(Type))
2641        InitType = Array->getElementType();
2642      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2643        CXXRecordDecl *RD =
2644          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2645        CXXConstructorDecl *Constructor = 0;
2646        if (!RequireCompleteType(Var->getLocation(), InitType,
2647                                    diag::err_invalid_incomplete_type_use))
2648          Constructor
2649            = PerformInitializationByConstructor(InitType, 0, 0,
2650                                                 Var->getLocation(),
2651                                               SourceRange(Var->getLocation(),
2652                                                           Var->getLocation()),
2653                                                 Var->getDeclName(),
2654                                                 IK_Default);
2655        if (!Constructor)
2656          Var->setInvalidDecl();
2657        else if (!RD->hasTrivialConstructor())
2658          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2659      }
2660    }
2661
2662#if 0
2663    // FIXME: Temporarily disabled because we are not properly parsing
2664    // linkage specifications on declarations, e.g.,
2665    //
2666    //   extern "C" const CGPoint CGPointerZero;
2667    //
2668    // C++ [dcl.init]p9:
2669    //
2670    //     If no initializer is specified for an object, and the
2671    //     object is of (possibly cv-qualified) non-POD class type (or
2672    //     array thereof), the object shall be default-initialized; if
2673    //     the object is of const-qualified type, the underlying class
2674    //     type shall have a user-declared default
2675    //     constructor. Otherwise, if no initializer is specified for
2676    //     an object, the object and its subobjects, if any, have an
2677    //     indeterminate initial value; if the object or any of its
2678    //     subobjects are of const-qualified type, the program is
2679    //     ill-formed.
2680    //
2681    // This isn't technically an error in C, so we don't diagnose it.
2682    //
2683    // FIXME: Actually perform the POD/user-defined default
2684    // constructor check.
2685    if (getLangOptions().CPlusPlus &&
2686        Context.getCanonicalType(Type).isConstQualified() &&
2687        !Var->hasExternalStorage())
2688      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2689        << Var->getName()
2690        << SourceRange(Var->getLocation(), Var->getLocation());
2691#endif
2692  }
2693}
2694
2695Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2696                                                   unsigned NumDecls) {
2697  llvm::SmallVector<Decl*, 8> Decls;
2698
2699  for (unsigned i = 0; i != NumDecls; ++i)
2700    if (Decl *D = Group[i].getAs<Decl>())
2701      Decls.push_back(D);
2702
2703  // Perform semantic analysis that depends on having fully processed both
2704  // the declarator and initializer.
2705  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2706    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2707    if (!IDecl)
2708      continue;
2709    QualType T = IDecl->getType();
2710
2711    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2712    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2713    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2714      if (!IDecl->isInvalidDecl() &&
2715          RequireCompleteType(IDecl->getLocation(), T,
2716                              diag::err_typecheck_decl_incomplete_type))
2717        IDecl->setInvalidDecl();
2718    }
2719    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2720    // object that has file scope without an initializer, and without a
2721    // storage-class specifier or with the storage-class specifier "static",
2722    // constitutes a tentative definition. Note: A tentative definition with
2723    // external linkage is valid (C99 6.2.2p5).
2724    if (IDecl->isTentativeDefinition(Context)) {
2725      QualType CheckType = T;
2726      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2727
2728      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2729      if (ArrayT) {
2730        CheckType = ArrayT->getElementType();
2731        DiagID = diag::err_illegal_decl_array_incomplete_type;
2732      }
2733
2734      if (IDecl->isInvalidDecl()) {
2735        // Do nothing with invalid declarations
2736      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2737                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2738        // C99 6.9.2p3: If the declaration of an identifier for an object is
2739        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2740        // declared type shall not be an incomplete type.
2741        IDecl->setInvalidDecl();
2742      }
2743    }
2744  }
2745  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2746                                                   &Decls[0], Decls.size()));
2747}
2748
2749
2750/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2751/// to introduce parameters into function prototype scope.
2752Sema::DeclPtrTy
2753Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2754  const DeclSpec &DS = D.getDeclSpec();
2755
2756  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2757  VarDecl::StorageClass StorageClass = VarDecl::None;
2758  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2759    StorageClass = VarDecl::Register;
2760  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2761    Diag(DS.getStorageClassSpecLoc(),
2762         diag::err_invalid_storage_class_in_func_decl);
2763    D.getMutableDeclSpec().ClearStorageClassSpecs();
2764  }
2765
2766  if (D.getDeclSpec().isThreadSpecified())
2767    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2768
2769  DiagnoseFunctionSpecifiers(D);
2770
2771  // Check that there are no default arguments inside the type of this
2772  // parameter (C++ only).
2773  if (getLangOptions().CPlusPlus)
2774    CheckExtraCXXDefaultArguments(D);
2775
2776  QualType parmDeclType = GetTypeForDeclarator(D, S);
2777
2778  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2779  // Can this happen for params?  We already checked that they don't conflict
2780  // among each other.  Here they can only shadow globals, which is ok.
2781  IdentifierInfo *II = D.getIdentifier();
2782  if (II) {
2783    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2784      if (PrevDecl->isTemplateParameter()) {
2785        // Maybe we will complain about the shadowed template parameter.
2786        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2787        // Just pretend that we didn't see the previous declaration.
2788        PrevDecl = 0;
2789      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2790        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2791
2792        // Recover by removing the name
2793        II = 0;
2794        D.SetIdentifier(0, D.getIdentifierLoc());
2795      }
2796    }
2797  }
2798
2799  // Parameters can not be abstract class types.
2800  // For record types, this is done by the AbstractClassUsageDiagnoser once
2801  // the class has been completely parsed.
2802  if (!CurContext->isRecord() &&
2803      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2804                             diag::err_abstract_type_in_decl,
2805                             AbstractParamType))
2806    D.setInvalidType(true);
2807
2808  QualType T = adjustParameterType(parmDeclType);
2809
2810  ParmVarDecl *New;
2811  if (T == parmDeclType) // parameter type did not need adjustment
2812    New = ParmVarDecl::Create(Context, CurContext,
2813                              D.getIdentifierLoc(), II,
2814                              parmDeclType, StorageClass,
2815                              0);
2816  else // keep track of both the adjusted and unadjusted types
2817    New = OriginalParmVarDecl::Create(Context, CurContext,
2818                                      D.getIdentifierLoc(), II, T,
2819                                      parmDeclType, StorageClass, 0);
2820
2821  if (D.isInvalidType())
2822    New->setInvalidDecl();
2823
2824  // Parameter declarators cannot be interface types. All ObjC objects are
2825  // passed by reference.
2826  if (T->isObjCInterfaceType()) {
2827    Diag(D.getIdentifierLoc(),
2828         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2829    New->setInvalidDecl();
2830  }
2831
2832  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2833  if (D.getCXXScopeSpec().isSet()) {
2834    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2835      << D.getCXXScopeSpec().getRange();
2836    New->setInvalidDecl();
2837  }
2838
2839  // Add the parameter declaration into this scope.
2840  S->AddDecl(DeclPtrTy::make(New));
2841  if (II)
2842    IdResolver.AddDecl(New);
2843
2844  ProcessDeclAttributes(New, D);
2845
2846  if (New->hasAttr<BlocksAttr>()) {
2847    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2848  }
2849  return DeclPtrTy::make(New);
2850}
2851
2852void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2853                                           SourceLocation LocAfterDecls) {
2854  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2855         "Not a function declarator!");
2856  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2857
2858  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2859  // for a K&R function.
2860  if (!FTI.hasPrototype) {
2861    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2862      --i;
2863      if (FTI.ArgInfo[i].Param == 0) {
2864        std::string Code = "  int ";
2865        Code += FTI.ArgInfo[i].Ident->getName();
2866        Code += ";\n";
2867        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2868          << FTI.ArgInfo[i].Ident
2869          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2870
2871        // Implicitly declare the argument as type 'int' for lack of a better
2872        // type.
2873        DeclSpec DS;
2874        const char* PrevSpec; // unused
2875        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2876                           PrevSpec);
2877        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2878        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2879        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2880      }
2881    }
2882  }
2883}
2884
2885Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2886                                              Declarator &D) {
2887  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2888  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2889         "Not a function declarator!");
2890  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2891
2892  if (FTI.hasPrototype) {
2893    // FIXME: Diagnose arguments without names in C.
2894  }
2895
2896  Scope *ParentScope = FnBodyScope->getParent();
2897
2898  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2899  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2900}
2901
2902Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2903  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2904
2905  CurFunctionNeedsScopeChecking = false;
2906
2907  // See if this is a redefinition.
2908  const FunctionDecl *Definition;
2909  if (FD->getBody(Context, Definition)) {
2910    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2911    Diag(Definition->getLocation(), diag::note_previous_definition);
2912  }
2913
2914  // Builtin functions cannot be defined.
2915  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2916    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2917      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2918      FD->setInvalidDecl();
2919    }
2920  }
2921
2922  // The return type of a function definition must be complete
2923  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2924  QualType ResultType = FD->getResultType();
2925  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2926      !FD->isInvalidDecl() &&
2927      RequireCompleteType(FD->getLocation(), ResultType,
2928                          diag::err_func_def_incomplete_result))
2929    FD->setInvalidDecl();
2930
2931  // GNU warning -Wmissing-prototypes:
2932  //   Warn if a global function is defined without a previous
2933  //   prototype declaration. This warning is issued even if the
2934  //   definition itself provides a prototype. The aim is to detect
2935  //   global functions that fail to be declared in header files.
2936  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2937      !FD->isMain()) {
2938    bool MissingPrototype = true;
2939    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2940         Prev; Prev = Prev->getPreviousDeclaration()) {
2941      // Ignore any declarations that occur in function or method
2942      // scope, because they aren't visible from the header.
2943      if (Prev->getDeclContext()->isFunctionOrMethod())
2944        continue;
2945
2946      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2947      break;
2948    }
2949
2950    if (MissingPrototype)
2951      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2952  }
2953
2954  PushDeclContext(FnBodyScope, FD);
2955
2956  // Check the validity of our function parameters
2957  CheckParmsForFunctionDef(FD);
2958
2959  // Introduce our parameters into the function scope
2960  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2961    ParmVarDecl *Param = FD->getParamDecl(p);
2962    Param->setOwningFunction(FD);
2963
2964    // If this has an identifier, add it to the scope stack.
2965    if (Param->getIdentifier())
2966      PushOnScopeChains(Param, FnBodyScope);
2967  }
2968
2969  // Checking attributes of current function definition
2970  // dllimport attribute.
2971  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2972    // dllimport attribute cannot be applied to definition.
2973    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2974      Diag(FD->getLocation(),
2975           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2976        << "dllimport";
2977      FD->setInvalidDecl();
2978      return DeclPtrTy::make(FD);
2979    } else {
2980      // If a symbol previously declared dllimport is later defined, the
2981      // attribute is ignored in subsequent references, and a warning is
2982      // emitted.
2983      Diag(FD->getLocation(),
2984           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2985        << FD->getNameAsCString() << "dllimport";
2986    }
2987  }
2988  return DeclPtrTy::make(FD);
2989}
2990
2991
2992Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2993  Decl *dcl = D.getAs<Decl>();
2994  Stmt *Body = BodyArg.takeAs<Stmt>();
2995  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2996    FD->setBody(Body);
2997    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2998  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2999    assert(MD == getCurMethodDecl() && "Method parsing confused");
3000    MD->setBody(Body);
3001  } else {
3002    Body->Destroy(Context);
3003    return DeclPtrTy();
3004  }
3005  PopDeclContext();
3006  // Verify and clean out per-function state.
3007
3008  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3009
3010  // Check goto/label use.
3011  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3012       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3013    LabelStmt *L = I->second;
3014
3015    // Verify that we have no forward references left.  If so, there was a goto
3016    // or address of a label taken, but no definition of it.  Label fwd
3017    // definitions are indicated with a null substmt.
3018    if (L->getSubStmt() != 0)
3019      continue;
3020
3021    // Emit error.
3022    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3023
3024    // At this point, we have gotos that use the bogus label.  Stitch it into
3025    // the function body so that they aren't leaked and that the AST is well
3026    // formed.
3027    if (Body == 0) {
3028      // The whole function wasn't parsed correctly, just delete this.
3029      L->Destroy(Context);
3030      continue;
3031    }
3032
3033    // Otherwise, the body is valid: we want to stitch the label decl into the
3034    // function somewhere so that it is properly owned and so that the goto
3035    // has a valid target.  Do this by creating a new compound stmt with the
3036    // label in it.
3037
3038    // Give the label a sub-statement.
3039    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3040
3041    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3042                               cast<CXXTryStmt>(Body)->getTryBlock() :
3043                               cast<CompoundStmt>(Body);
3044    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3045    Elements.push_back(L);
3046    Compound->setStmts(Context, &Elements[0], Elements.size());
3047  }
3048  FunctionLabelMap.clear();
3049
3050  if (!Body) return D;
3051
3052  // Verify that that gotos and switch cases don't jump into scopes illegally.
3053  if (CurFunctionNeedsScopeChecking)
3054    DiagnoseInvalidJumps(Body);
3055
3056  // C++ constructors that have function-try-blocks can't have return statements
3057  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3058  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3059    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3060
3061  return D;
3062}
3063
3064/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3065/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3066NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3067                                          IdentifierInfo &II, Scope *S) {
3068  // Before we produce a declaration for an implicitly defined
3069  // function, see whether there was a locally-scoped declaration of
3070  // this name as a function or variable. If so, use that
3071  // (non-visible) declaration, and complain about it.
3072  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3073    = LocallyScopedExternalDecls.find(&II);
3074  if (Pos != LocallyScopedExternalDecls.end()) {
3075    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3076    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3077    return Pos->second;
3078  }
3079
3080  // Extension in C99.  Legal in C90, but warn about it.
3081  if (getLangOptions().C99)
3082    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3083  else
3084    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3085
3086  // FIXME: handle stuff like:
3087  // void foo() { extern float X(); }
3088  // void bar() { X(); }  <-- implicit decl for X in another scope.
3089
3090  // Set a Declarator for the implicit definition: int foo();
3091  const char *Dummy;
3092  DeclSpec DS;
3093  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3094  Error = Error; // Silence warning.
3095  assert(!Error && "Error setting up implicit decl!");
3096  Declarator D(DS, Declarator::BlockContext);
3097  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3098                                             0, 0, false, false, 0, 0, Loc, D),
3099                SourceLocation());
3100  D.SetIdentifier(&II, Loc);
3101
3102  // Insert this function into translation-unit scope.
3103
3104  DeclContext *PrevDC = CurContext;
3105  CurContext = Context.getTranslationUnitDecl();
3106
3107  FunctionDecl *FD =
3108 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3109  FD->setImplicit();
3110
3111  CurContext = PrevDC;
3112
3113  AddKnownFunctionAttributes(FD);
3114
3115  return FD;
3116}
3117
3118/// \brief Adds any function attributes that we know a priori based on
3119/// the declaration of this function.
3120///
3121/// These attributes can apply both to implicitly-declared builtins
3122/// (like __builtin___printf_chk) or to library-declared functions
3123/// like NSLog or printf.
3124void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3125  if (FD->isInvalidDecl())
3126    return;
3127
3128  // If this is a built-in function, map its builtin attributes to
3129  // actual attributes.
3130  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3131    // Handle printf-formatting attributes.
3132    unsigned FormatIdx;
3133    bool HasVAListArg;
3134    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3135      if (!FD->getAttr<FormatAttr>())
3136        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3137                                               FormatIdx + 2));
3138    }
3139
3140    // Mark const if we don't care about errno and that is the only
3141    // thing preventing the function from being const. This allows
3142    // IRgen to use LLVM intrinsics for such functions.
3143    if (!getLangOptions().MathErrno &&
3144        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3145      if (!FD->getAttr<ConstAttr>())
3146        FD->addAttr(::new (Context) ConstAttr());
3147    }
3148  }
3149
3150  IdentifierInfo *Name = FD->getIdentifier();
3151  if (!Name)
3152    return;
3153  if ((!getLangOptions().CPlusPlus &&
3154       FD->getDeclContext()->isTranslationUnit()) ||
3155      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3156       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3157       LinkageSpecDecl::lang_c)) {
3158    // Okay: this could be a libc/libm/Objective-C function we know
3159    // about.
3160  } else
3161    return;
3162
3163  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3164    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3165      // FIXME: We known better than our headers.
3166      const_cast<FormatAttr *>(Format)->setType("printf");
3167    } else
3168      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3169  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3170    if (!FD->getAttr<FormatAttr>())
3171      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3172  }
3173}
3174
3175TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3176  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3177  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3178
3179  // Scope manipulation handled by caller.
3180  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3181                                           D.getIdentifierLoc(),
3182                                           D.getIdentifier(),
3183                                           T);
3184
3185  if (TagType *TT = dyn_cast<TagType>(T)) {
3186    TagDecl *TD = TT->getDecl();
3187
3188    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3189    // keep track of the TypedefDecl.
3190    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3191      TD->setTypedefForAnonDecl(NewTD);
3192  }
3193
3194  if (D.isInvalidType())
3195    NewTD->setInvalidDecl();
3196  return NewTD;
3197}
3198
3199/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3200/// former case, Name will be non-null.  In the later case, Name will be null.
3201/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3202/// reference/declaration/definition of a tag.
3203Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3204                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3205                               IdentifierInfo *Name, SourceLocation NameLoc,
3206                               AttributeList *Attr, AccessSpecifier AS) {
3207  // If this is not a definition, it must have a name.
3208  assert((Name != 0 || TK == TK_Definition) &&
3209         "Nameless record must be a definition!");
3210
3211  TagDecl::TagKind Kind;
3212  switch (TagSpec) {
3213  default: assert(0 && "Unknown tag type!");
3214  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3215  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3216  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3217  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3218  }
3219
3220  DeclContext *SearchDC = CurContext;
3221  DeclContext *DC = CurContext;
3222  NamedDecl *PrevDecl = 0;
3223
3224  bool Invalid = false;
3225
3226  if (Name && SS.isNotEmpty()) {
3227    // We have a nested-name tag ('struct foo::bar').
3228
3229    // Check for invalid 'foo::'.
3230    if (SS.isInvalid()) {
3231      Name = 0;
3232      goto CreateNewDecl;
3233    }
3234
3235    // FIXME: RequireCompleteDeclContext(SS)?
3236    DC = computeDeclContext(SS);
3237    SearchDC = DC;
3238    // Look-up name inside 'foo::'.
3239    PrevDecl = dyn_cast_or_null<TagDecl>(
3240                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3241
3242    // A tag 'foo::bar' must already exist.
3243    if (PrevDecl == 0) {
3244      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3245      Name = 0;
3246      goto CreateNewDecl;
3247    }
3248  } else if (Name) {
3249    // If this is a named struct, check to see if there was a previous forward
3250    // declaration or definition.
3251    // FIXME: We're looking into outer scopes here, even when we
3252    // shouldn't be. Doing so can result in ambiguities that we
3253    // shouldn't be diagnosing.
3254    LookupResult R = LookupName(S, Name, LookupTagName,
3255                                /*RedeclarationOnly=*/(TK != TK_Reference));
3256    if (R.isAmbiguous()) {
3257      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3258      // FIXME: This is not best way to recover from case like:
3259      //
3260      // struct S s;
3261      //
3262      // causes needless "incomplete type" error later.
3263      Name = 0;
3264      PrevDecl = 0;
3265      Invalid = true;
3266    }
3267    else
3268      PrevDecl = R;
3269
3270    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3271      // FIXME: This makes sure that we ignore the contexts associated
3272      // with C structs, unions, and enums when looking for a matching
3273      // tag declaration or definition. See the similar lookup tweak
3274      // in Sema::LookupName; is there a better way to deal with this?
3275      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3276        SearchDC = SearchDC->getParent();
3277    }
3278  }
3279
3280  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3281    // Maybe we will complain about the shadowed template parameter.
3282    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3283    // Just pretend that we didn't see the previous declaration.
3284    PrevDecl = 0;
3285  }
3286
3287  if (PrevDecl) {
3288    // Check whether the previous declaration is usable.
3289    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3290
3291    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3292      // If this is a use of a previous tag, or if the tag is already declared
3293      // in the same scope (so that the definition/declaration completes or
3294      // rementions the tag), reuse the decl.
3295      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3296        // Make sure that this wasn't declared as an enum and now used as a
3297        // struct or something similar.
3298        if (PrevTagDecl->getTagKind() != Kind) {
3299          bool SafeToContinue
3300            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3301               Kind != TagDecl::TK_enum);
3302          if (SafeToContinue)
3303            Diag(KWLoc, diag::err_use_with_wrong_tag)
3304              << Name
3305              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3306                                                  PrevTagDecl->getKindName());
3307          else
3308            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3309          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3310
3311          if (SafeToContinue)
3312            Kind = PrevTagDecl->getTagKind();
3313          else {
3314            // Recover by making this an anonymous redefinition.
3315            Name = 0;
3316            PrevDecl = 0;
3317            Invalid = true;
3318          }
3319        }
3320
3321        if (!Invalid) {
3322          // If this is a use, just return the declaration we found.
3323
3324          // FIXME: In the future, return a variant or some other clue
3325          // for the consumer of this Decl to know it doesn't own it.
3326          // For our current ASTs this shouldn't be a problem, but will
3327          // need to be changed with DeclGroups.
3328          if (TK == TK_Reference)
3329            return DeclPtrTy::make(PrevDecl);
3330
3331          // Diagnose attempts to redefine a tag.
3332          if (TK == TK_Definition) {
3333            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3334              Diag(NameLoc, diag::err_redefinition) << Name;
3335              Diag(Def->getLocation(), diag::note_previous_definition);
3336              // If this is a redefinition, recover by making this
3337              // struct be anonymous, which will make any later
3338              // references get the previous definition.
3339              Name = 0;
3340              PrevDecl = 0;
3341              Invalid = true;
3342            } else {
3343              // If the type is currently being defined, complain
3344              // about a nested redefinition.
3345              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3346              if (Tag->isBeingDefined()) {
3347                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3348                Diag(PrevTagDecl->getLocation(),
3349                     diag::note_previous_definition);
3350                Name = 0;
3351                PrevDecl = 0;
3352                Invalid = true;
3353              }
3354            }
3355
3356            // Okay, this is definition of a previously declared or referenced
3357            // tag PrevDecl. We're going to create a new Decl for it.
3358          }
3359        }
3360        // If we get here we have (another) forward declaration or we
3361        // have a definition.  Just create a new decl.
3362      } else {
3363        // If we get here, this is a definition of a new tag type in a nested
3364        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3365        // new decl/type.  We set PrevDecl to NULL so that the entities
3366        // have distinct types.
3367        PrevDecl = 0;
3368      }
3369      // If we get here, we're going to create a new Decl. If PrevDecl
3370      // is non-NULL, it's a definition of the tag declared by
3371      // PrevDecl. If it's NULL, we have a new definition.
3372    } else {
3373      // PrevDecl is a namespace, template, or anything else
3374      // that lives in the IDNS_Tag identifier namespace.
3375      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3376        // The tag name clashes with a namespace name, issue an error and
3377        // recover by making this tag be anonymous.
3378        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3379        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3380        Name = 0;
3381        PrevDecl = 0;
3382        Invalid = true;
3383      } else {
3384        // The existing declaration isn't relevant to us; we're in a
3385        // new scope, so clear out the previous declaration.
3386        PrevDecl = 0;
3387      }
3388    }
3389  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3390             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3391    // C.scope.pdecl]p5:
3392    //   -- for an elaborated-type-specifier of the form
3393    //
3394    //          class-key identifier
3395    //
3396    //      if the elaborated-type-specifier is used in the
3397    //      decl-specifier-seq or parameter-declaration-clause of a
3398    //      function defined in namespace scope, the identifier is
3399    //      declared as a class-name in the namespace that contains
3400    //      the declaration; otherwise, except as a friend
3401    //      declaration, the identifier is declared in the smallest
3402    //      non-class, non-function-prototype scope that contains the
3403    //      declaration.
3404    //
3405    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3406    // C structs and unions.
3407    //
3408    // GNU C also supports this behavior as part of its incomplete
3409    // enum types extension, while GNU C++ does not.
3410    //
3411    // Find the context where we'll be declaring the tag.
3412    // FIXME: We would like to maintain the current DeclContext as the
3413    // lexical context,
3414    while (SearchDC->isRecord())
3415      SearchDC = SearchDC->getParent();
3416
3417    // Find the scope where we'll be declaring the tag.
3418    while (S->isClassScope() ||
3419           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3420           ((S->getFlags() & Scope::DeclScope) == 0) ||
3421           (S->getEntity() &&
3422            ((DeclContext *)S->getEntity())->isTransparentContext()))
3423      S = S->getParent();
3424  }
3425
3426CreateNewDecl:
3427
3428  // If there is an identifier, use the location of the identifier as the
3429  // location of the decl, otherwise use the location of the struct/union
3430  // keyword.
3431  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3432
3433  // Otherwise, create a new declaration. If there is a previous
3434  // declaration of the same entity, the two will be linked via
3435  // PrevDecl.
3436  TagDecl *New;
3437
3438  if (Kind == TagDecl::TK_enum) {
3439    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3440    // enum X { A, B, C } D;    D should chain to X.
3441    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3442                           cast_or_null<EnumDecl>(PrevDecl));
3443    // If this is an undefined enum, warn.
3444    if (TK != TK_Definition && !Invalid)  {
3445      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3446                                              : diag::ext_forward_ref_enum;
3447      Diag(Loc, DK);
3448    }
3449  } else {
3450    // struct/union/class
3451
3452    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3453    // struct X { int A; } D;    D should chain to X.
3454    if (getLangOptions().CPlusPlus)
3455      // FIXME: Look for a way to use RecordDecl for simple structs.
3456      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3457                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3458    else
3459      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3460                               cast_or_null<RecordDecl>(PrevDecl));
3461  }
3462
3463  if (Kind != TagDecl::TK_enum) {
3464    // Handle #pragma pack: if the #pragma pack stack has non-default
3465    // alignment, make up a packed attribute for this decl. These
3466    // attributes are checked when the ASTContext lays out the
3467    // structure.
3468    //
3469    // It is important for implementing the correct semantics that this
3470    // happen here (in act on tag decl). The #pragma pack stack is
3471    // maintained as a result of parser callbacks which can occur at
3472    // many points during the parsing of a struct declaration (because
3473    // the #pragma tokens are effectively skipped over during the
3474    // parsing of the struct).
3475    if (unsigned Alignment = getPragmaPackAlignment())
3476      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3477  }
3478
3479  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3480    // C++ [dcl.typedef]p3:
3481    //   [...] Similarly, in a given scope, a class or enumeration
3482    //   shall not be declared with the same name as a typedef-name
3483    //   that is declared in that scope and refers to a type other
3484    //   than the class or enumeration itself.
3485    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3486    TypedefDecl *PrevTypedef = 0;
3487    if (Lookup.getKind() == LookupResult::Found)
3488      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3489
3490    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3491        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3492          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3493      Diag(Loc, diag::err_tag_definition_of_typedef)
3494        << Context.getTypeDeclType(New)
3495        << PrevTypedef->getUnderlyingType();
3496      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3497      Invalid = true;
3498    }
3499  }
3500
3501  if (Invalid)
3502    New->setInvalidDecl();
3503
3504  if (Attr)
3505    ProcessDeclAttributeList(New, Attr);
3506
3507  // If we're declaring or defining a tag in function prototype scope
3508  // in C, note that this type can only be used within the function.
3509  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3510    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3511
3512  // Set the lexical context. If the tag has a C++ scope specifier, the
3513  // lexical context will be different from the semantic context.
3514  New->setLexicalDeclContext(CurContext);
3515
3516  // Set the access specifier.
3517  SetMemberAccessSpecifier(New, PrevDecl, AS);
3518
3519  if (TK == TK_Definition)
3520    New->startDefinition();
3521
3522  // If this has an identifier, add it to the scope stack.
3523  if (Name) {
3524    S = getNonFieldDeclScope(S);
3525    PushOnScopeChains(New, S);
3526  } else {
3527    CurContext->addDecl(Context, New);
3528  }
3529
3530  return DeclPtrTy::make(New);
3531}
3532
3533void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3534  AdjustDeclIfTemplate(TagD);
3535  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3536
3537  // Enter the tag context.
3538  PushDeclContext(S, Tag);
3539
3540  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3541    FieldCollector->StartClass();
3542
3543    if (Record->getIdentifier()) {
3544      // C++ [class]p2:
3545      //   [...] The class-name is also inserted into the scope of the
3546      //   class itself; this is known as the injected-class-name. For
3547      //   purposes of access checking, the injected-class-name is treated
3548      //   as if it were a public member name.
3549      CXXRecordDecl *InjectedClassName
3550        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3551                                CurContext, Record->getLocation(),
3552                                Record->getIdentifier(), Record);
3553      InjectedClassName->setImplicit();
3554      InjectedClassName->setAccess(AS_public);
3555      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3556        InjectedClassName->setDescribedClassTemplate(Template);
3557      PushOnScopeChains(InjectedClassName, S);
3558      assert(InjectedClassName->isInjectedClassName() &&
3559             "Broken injected-class-name");
3560    }
3561  }
3562}
3563
3564void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3565  AdjustDeclIfTemplate(TagD);
3566  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3567
3568  if (isa<CXXRecordDecl>(Tag))
3569    FieldCollector->FinishClass();
3570
3571  // Exit this scope of this tag's definition.
3572  PopDeclContext();
3573
3574  // Notify the consumer that we've defined a tag.
3575  Consumer.HandleTagDeclDefinition(Tag);
3576}
3577
3578// Note that FieldName may be null for anonymous bitfields.
3579bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3580                          QualType FieldTy, const Expr *BitWidth) {
3581
3582  // C99 6.7.2.1p4 - verify the field type.
3583  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3584  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3585    // Handle incomplete types with specific error.
3586    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3587      return true;
3588    if (FieldName)
3589      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3590        << FieldName << FieldTy << BitWidth->getSourceRange();
3591    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3592      << FieldTy << BitWidth->getSourceRange();
3593  }
3594
3595  // If the bit-width is type- or value-dependent, don't try to check
3596  // it now.
3597  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3598    return false;
3599
3600  llvm::APSInt Value;
3601  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3602    return true;
3603
3604  // Zero-width bitfield is ok for anonymous field.
3605  if (Value == 0 && FieldName)
3606    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3607
3608  if (Value.isSigned() && Value.isNegative()) {
3609    if (FieldName)
3610      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3611               << FieldName << Value.toString(10);
3612    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3613      << Value.toString(10);
3614  }
3615
3616  if (!FieldTy->isDependentType()) {
3617    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3618    if (Value.getZExtValue() > TypeSize) {
3619      if (FieldName)
3620        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3621          << FieldName << (unsigned)TypeSize;
3622      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3623        << (unsigned)TypeSize;
3624    }
3625  }
3626
3627  return false;
3628}
3629
3630/// ActOnField - Each field of a struct/union/class is passed into this in order
3631/// to create a FieldDecl object for it.
3632Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3633                                 SourceLocation DeclStart,
3634                                 Declarator &D, ExprTy *BitfieldWidth) {
3635  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3636                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3637                               AS_public);
3638  return DeclPtrTy::make(Res);
3639}
3640
3641/// HandleField - Analyze a field of a C struct or a C++ data member.
3642///
3643FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3644                             SourceLocation DeclStart,
3645                             Declarator &D, Expr *BitWidth,
3646                             AccessSpecifier AS) {
3647  IdentifierInfo *II = D.getIdentifier();
3648  SourceLocation Loc = DeclStart;
3649  if (II) Loc = D.getIdentifierLoc();
3650
3651  QualType T = GetTypeForDeclarator(D, S);
3652  if (getLangOptions().CPlusPlus)
3653    CheckExtraCXXDefaultArguments(D);
3654
3655  DiagnoseFunctionSpecifiers(D);
3656
3657  if (D.getDeclSpec().isThreadSpecified())
3658    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3659
3660  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3661  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3662    PrevDecl = 0;
3663
3664  FieldDecl *NewFD
3665    = CheckFieldDecl(II, T, Record, Loc,
3666               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3667                     BitWidth, AS, PrevDecl, &D);
3668  if (NewFD->isInvalidDecl() && PrevDecl) {
3669    // Don't introduce NewFD into scope; there's already something
3670    // with the same name in the same scope.
3671  } else if (II) {
3672    PushOnScopeChains(NewFD, S);
3673  } else
3674    Record->addDecl(Context, NewFD);
3675
3676  return NewFD;
3677}
3678
3679/// \brief Build a new FieldDecl and check its well-formedness.
3680///
3681/// This routine builds a new FieldDecl given the fields name, type,
3682/// record, etc. \p PrevDecl should refer to any previous declaration
3683/// with the same name and in the same scope as the field to be
3684/// created.
3685///
3686/// \returns a new FieldDecl.
3687///
3688/// \todo The Declarator argument is a hack. It will be removed once
3689FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3690                                RecordDecl *Record, SourceLocation Loc,
3691                                bool Mutable, Expr *BitWidth,
3692                                AccessSpecifier AS, NamedDecl *PrevDecl,
3693                                Declarator *D) {
3694  IdentifierInfo *II = Name.getAsIdentifierInfo();
3695  bool InvalidDecl = false;
3696  if (D) InvalidDecl = D->isInvalidType();
3697
3698  // If we receive a broken type, recover by assuming 'int' and
3699  // marking this declaration as invalid.
3700  if (T.isNull()) {
3701    InvalidDecl = true;
3702    T = Context.IntTy;
3703  }
3704
3705  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3706  // than a variably modified type.
3707  if (T->isVariablyModifiedType()) {
3708    bool SizeIsNegative;
3709    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3710                                                           SizeIsNegative);
3711    if (!FixedTy.isNull()) {
3712      Diag(Loc, diag::warn_illegal_constant_array_size);
3713      T = FixedTy;
3714    } else {
3715      if (SizeIsNegative)
3716        Diag(Loc, diag::err_typecheck_negative_array_size);
3717      else
3718        Diag(Loc, diag::err_typecheck_field_variable_size);
3719      T = Context.IntTy;
3720      InvalidDecl = true;
3721    }
3722  }
3723
3724  // Fields can not have abstract class types
3725  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3726                             AbstractFieldType))
3727    InvalidDecl = true;
3728
3729  // If this is declared as a bit-field, check the bit-field.
3730  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3731    InvalidDecl = true;
3732    DeleteExpr(BitWidth);
3733    BitWidth = 0;
3734  }
3735
3736  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3737                                       Mutable);
3738  if (InvalidDecl)
3739    NewFD->setInvalidDecl();
3740
3741  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3742    Diag(Loc, diag::err_duplicate_member) << II;
3743    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3744    NewFD->setInvalidDecl();
3745  }
3746
3747  if (getLangOptions().CPlusPlus && !T->isPODType())
3748    cast<CXXRecordDecl>(Record)->setPOD(false);
3749
3750  // FIXME: We need to pass in the attributes given an AST
3751  // representation, not a parser representation.
3752  if (D)
3753    ProcessDeclAttributes(NewFD, *D);
3754
3755  if (T.isObjCGCWeak())
3756    Diag(Loc, diag::warn_attribute_weak_on_field);
3757
3758  NewFD->setAccess(AS);
3759
3760  // C++ [dcl.init.aggr]p1:
3761  //   An aggregate is an array or a class (clause 9) with [...] no
3762  //   private or protected non-static data members (clause 11).
3763  // A POD must be an aggregate.
3764  if (getLangOptions().CPlusPlus &&
3765      (AS == AS_private || AS == AS_protected)) {
3766    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3767    CXXRecord->setAggregate(false);
3768    CXXRecord->setPOD(false);
3769  }
3770
3771  return NewFD;
3772}
3773
3774/// TranslateIvarVisibility - Translate visibility from a token ID to an
3775///  AST enum value.
3776static ObjCIvarDecl::AccessControl
3777TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3778  switch (ivarVisibility) {
3779  default: assert(0 && "Unknown visitibility kind");
3780  case tok::objc_private: return ObjCIvarDecl::Private;
3781  case tok::objc_public: return ObjCIvarDecl::Public;
3782  case tok::objc_protected: return ObjCIvarDecl::Protected;
3783  case tok::objc_package: return ObjCIvarDecl::Package;
3784  }
3785}
3786
3787/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3788/// in order to create an IvarDecl object for it.
3789Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3790                                SourceLocation DeclStart,
3791                                Declarator &D, ExprTy *BitfieldWidth,
3792                                tok::ObjCKeywordKind Visibility) {
3793
3794  IdentifierInfo *II = D.getIdentifier();
3795  Expr *BitWidth = (Expr*)BitfieldWidth;
3796  SourceLocation Loc = DeclStart;
3797  if (II) Loc = D.getIdentifierLoc();
3798
3799  // FIXME: Unnamed fields can be handled in various different ways, for
3800  // example, unnamed unions inject all members into the struct namespace!
3801
3802  QualType T = GetTypeForDeclarator(D, S);
3803
3804  if (BitWidth) {
3805    // 6.7.2.1p3, 6.7.2.1p4
3806    if (VerifyBitField(Loc, II, T, BitWidth)) {
3807      D.setInvalidType();
3808      DeleteExpr(BitWidth);
3809      BitWidth = 0;
3810    }
3811  } else {
3812    // Not a bitfield.
3813
3814    // validate II.
3815
3816  }
3817
3818  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3819  // than a variably modified type.
3820  if (T->isVariablyModifiedType()) {
3821    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3822    D.setInvalidType();
3823  }
3824
3825  // Get the visibility (access control) for this ivar.
3826  ObjCIvarDecl::AccessControl ac =
3827    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3828                                        : ObjCIvarDecl::None;
3829
3830  // Construct the decl.
3831  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3832                                             (Expr *)BitfieldWidth);
3833
3834  if (II) {
3835    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3836    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3837        && !isa<TagDecl>(PrevDecl)) {
3838      Diag(Loc, diag::err_duplicate_member) << II;
3839      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3840      NewID->setInvalidDecl();
3841    }
3842  }
3843
3844  // Process attributes attached to the ivar.
3845  ProcessDeclAttributes(NewID, D);
3846
3847  if (D.isInvalidType())
3848    NewID->setInvalidDecl();
3849
3850  if (II) {
3851    // FIXME: When interfaces are DeclContexts, we'll need to add
3852    // these to the interface.
3853    S->AddDecl(DeclPtrTy::make(NewID));
3854    IdResolver.AddDecl(NewID);
3855  }
3856
3857  return DeclPtrTy::make(NewID);
3858}
3859
3860void Sema::ActOnFields(Scope* S,
3861                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3862                       DeclPtrTy *Fields, unsigned NumFields,
3863                       SourceLocation LBrac, SourceLocation RBrac,
3864                       AttributeList *Attr) {
3865  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3866  assert(EnclosingDecl && "missing record or interface decl");
3867
3868  // If the decl this is being inserted into is invalid, then it may be a
3869  // redeclaration or some other bogus case.  Don't try to add fields to it.
3870  if (EnclosingDecl->isInvalidDecl()) {
3871    // FIXME: Deallocate fields?
3872    return;
3873  }
3874
3875
3876  // Verify that all the fields are okay.
3877  unsigned NumNamedMembers = 0;
3878  llvm::SmallVector<FieldDecl*, 32> RecFields;
3879
3880  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3881  for (unsigned i = 0; i != NumFields; ++i) {
3882    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3883
3884    // Get the type for the field.
3885    Type *FDTy = FD->getType().getTypePtr();
3886
3887    if (!FD->isAnonymousStructOrUnion()) {
3888      // Remember all fields written by the user.
3889      RecFields.push_back(FD);
3890    }
3891
3892    // If the field is already invalid for some reason, don't emit more
3893    // diagnostics about it.
3894    if (FD->isInvalidDecl())
3895      continue;
3896
3897    // C99 6.7.2.1p2:
3898    //   A structure or union shall not contain a member with
3899    //   incomplete or function type (hence, a structure shall not
3900    //   contain an instance of itself, but may contain a pointer to
3901    //   an instance of itself), except that the last member of a
3902    //   structure with more than one named member may have incomplete
3903    //   array type; such a structure (and any union containing,
3904    //   possibly recursively, a member that is such a structure)
3905    //   shall not be a member of a structure or an element of an
3906    //   array.
3907    if (FDTy->isFunctionType()) {
3908      // Field declared as a function.
3909      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3910        << FD->getDeclName();
3911      FD->setInvalidDecl();
3912      EnclosingDecl->setInvalidDecl();
3913      continue;
3914    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3915               Record && Record->isStruct()) {
3916      // Flexible array member.
3917      if (NumNamedMembers < 1) {
3918        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3919          << FD->getDeclName();
3920        FD->setInvalidDecl();
3921        EnclosingDecl->setInvalidDecl();
3922        continue;
3923      }
3924      // Okay, we have a legal flexible array member at the end of the struct.
3925      if (Record)
3926        Record->setHasFlexibleArrayMember(true);
3927    } else if (!FDTy->isDependentType() &&
3928               RequireCompleteType(FD->getLocation(), FD->getType(),
3929                                   diag::err_field_incomplete)) {
3930      // Incomplete type
3931      FD->setInvalidDecl();
3932      EnclosingDecl->setInvalidDecl();
3933      continue;
3934    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3935      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3936        // If this is a member of a union, then entire union becomes "flexible".
3937        if (Record && Record->isUnion()) {
3938          Record->setHasFlexibleArrayMember(true);
3939        } else {
3940          // If this is a struct/class and this is not the last element, reject
3941          // it.  Note that GCC supports variable sized arrays in the middle of
3942          // structures.
3943          if (i != NumFields-1)
3944            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3945              << FD->getDeclName() << FD->getType();
3946          else {
3947            // We support flexible arrays at the end of structs in
3948            // other structs as an extension.
3949            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3950              << FD->getDeclName();
3951            if (Record)
3952              Record->setHasFlexibleArrayMember(true);
3953          }
3954        }
3955      }
3956    } else if (FDTy->isObjCInterfaceType()) {
3957      /// A field cannot be an Objective-c object
3958      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3959      FD->setInvalidDecl();
3960      EnclosingDecl->setInvalidDecl();
3961      continue;
3962    }
3963    // Keep track of the number of named members.
3964    if (FD->getIdentifier())
3965      ++NumNamedMembers;
3966  }
3967
3968  // Okay, we successfully defined 'Record'.
3969  if (Record) {
3970    Record->completeDefinition(Context);
3971  } else {
3972    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3973    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3974      ID->setIVarList(ClsFields, RecFields.size(), Context);
3975      ID->setLocEnd(RBrac);
3976
3977      // Must enforce the rule that ivars in the base classes may not be
3978      // duplicates.
3979      if (ID->getSuperClass()) {
3980        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3981             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3982          ObjCIvarDecl* Ivar = (*IVI);
3983
3984          if (IdentifierInfo *II = Ivar->getIdentifier()) {
3985            ObjCIvarDecl* prevIvar =
3986              ID->getSuperClass()->lookupInstanceVariable(Context, II);
3987            if (prevIvar) {
3988              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3989              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3990            }
3991          }
3992        }
3993      }
3994    } else if (ObjCImplementationDecl *IMPDecl =
3995                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3996      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3997      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
3998        // FIXME: Set the DeclContext correctly when we build the
3999        // declarations.
4000        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4001        IMPDecl->addDecl(Context, ClsFields[I]);
4002      }
4003      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4004    }
4005  }
4006
4007  if (Attr)
4008    ProcessDeclAttributeList(Record, Attr);
4009}
4010
4011EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4012                                          EnumConstantDecl *LastEnumConst,
4013                                          SourceLocation IdLoc,
4014                                          IdentifierInfo *Id,
4015                                          ExprArg val) {
4016  Expr *Val = (Expr *)val.get();
4017
4018  llvm::APSInt EnumVal(32);
4019  QualType EltTy;
4020  if (Val && !Val->isTypeDependent()) {
4021    // Make sure to promote the operand type to int.
4022    UsualUnaryConversions(Val);
4023    if (Val != val.get()) {
4024      val.release();
4025      val = Val;
4026    }
4027
4028    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4029    SourceLocation ExpLoc;
4030    if (!Val->isValueDependent() &&
4031        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4032      Val = 0;
4033    } else {
4034      EltTy = Val->getType();
4035    }
4036  }
4037
4038  if (!Val) {
4039    if (LastEnumConst) {
4040      // Assign the last value + 1.
4041      EnumVal = LastEnumConst->getInitVal();
4042      ++EnumVal;
4043
4044      // Check for overflow on increment.
4045      if (EnumVal < LastEnumConst->getInitVal())
4046        Diag(IdLoc, diag::warn_enum_value_overflow);
4047
4048      EltTy = LastEnumConst->getType();
4049    } else {
4050      // First value, set to zero.
4051      EltTy = Context.IntTy;
4052      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4053    }
4054  }
4055
4056  val.release();
4057  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4058                                  Val, EnumVal);
4059}
4060
4061
4062Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4063                                        DeclPtrTy lastEnumConst,
4064                                        SourceLocation IdLoc,
4065                                        IdentifierInfo *Id,
4066                                        SourceLocation EqualLoc, ExprTy *val) {
4067  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4068  EnumConstantDecl *LastEnumConst =
4069    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4070  Expr *Val = static_cast<Expr*>(val);
4071
4072  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4073  // we find one that is.
4074  S = getNonFieldDeclScope(S);
4075
4076  // Verify that there isn't already something declared with this name in this
4077  // scope.
4078  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4079  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4080    // Maybe we will complain about the shadowed template parameter.
4081    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4082    // Just pretend that we didn't see the previous declaration.
4083    PrevDecl = 0;
4084  }
4085
4086  if (PrevDecl) {
4087    // When in C++, we may get a TagDecl with the same name; in this case the
4088    // enum constant will 'hide' the tag.
4089    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4090           "Received TagDecl when not in C++!");
4091    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4092      if (isa<EnumConstantDecl>(PrevDecl))
4093        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4094      else
4095        Diag(IdLoc, diag::err_redefinition) << Id;
4096      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4097      if (Val) Val->Destroy(Context);
4098      return DeclPtrTy();
4099    }
4100  }
4101
4102  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4103                                            IdLoc, Id, Owned(Val));
4104
4105  // Register this decl in the current scope stack.
4106  if (New)
4107    PushOnScopeChains(New, S);
4108
4109  return DeclPtrTy::make(New);
4110}
4111
4112// FIXME: For consistency with ActOnFields(), we should have the parser
4113// pass in the source location for the left/right braces.
4114void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4115                         DeclPtrTy *Elements, unsigned NumElements) {
4116  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4117  QualType EnumType = Context.getTypeDeclType(Enum);
4118
4119  // TODO: If the result value doesn't fit in an int, it must be a long or long
4120  // long value.  ISO C does not support this, but GCC does as an extension,
4121  // emit a warning.
4122  unsigned IntWidth = Context.Target.getIntWidth();
4123
4124  // Verify that all the values are okay, compute the size of the values, and
4125  // reverse the list.
4126  unsigned NumNegativeBits = 0;
4127  unsigned NumPositiveBits = 0;
4128
4129  // Keep track of whether all elements have type int.
4130  bool AllElementsInt = true;
4131
4132  for (unsigned i = 0; i != NumElements; ++i) {
4133    EnumConstantDecl *ECD =
4134      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4135    if (!ECD) continue;  // Already issued a diagnostic.
4136
4137    // If the enum value doesn't fit in an int, emit an extension warning.
4138    const llvm::APSInt &InitVal = ECD->getInitVal();
4139    assert(InitVal.getBitWidth() >= IntWidth &&
4140           "Should have promoted value to int");
4141    if (InitVal.getBitWidth() > IntWidth) {
4142      llvm::APSInt V(InitVal);
4143      V.trunc(IntWidth);
4144      V.extend(InitVal.getBitWidth());
4145      if (V != InitVal)
4146        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4147          << InitVal.toString(10);
4148    }
4149
4150    // Keep track of the size of positive and negative values.
4151    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4152      NumPositiveBits = std::max(NumPositiveBits,
4153                                 (unsigned)InitVal.getActiveBits());
4154    else
4155      NumNegativeBits = std::max(NumNegativeBits,
4156                                 (unsigned)InitVal.getMinSignedBits());
4157
4158    // Keep track of whether every enum element has type int (very commmon).
4159    if (AllElementsInt)
4160      AllElementsInt = ECD->getType() == Context.IntTy;
4161  }
4162
4163  // Figure out the type that should be used for this enum.
4164  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4165  QualType BestType;
4166  unsigned BestWidth;
4167
4168  if (NumNegativeBits) {
4169    // If there is a negative value, figure out the smallest integer type (of
4170    // int/long/longlong) that fits.
4171    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4172      BestType = Context.IntTy;
4173      BestWidth = IntWidth;
4174    } else {
4175      BestWidth = Context.Target.getLongWidth();
4176
4177      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4178        BestType = Context.LongTy;
4179      else {
4180        BestWidth = Context.Target.getLongLongWidth();
4181
4182        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4183          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4184        BestType = Context.LongLongTy;
4185      }
4186    }
4187  } else {
4188    // If there is no negative value, figure out which of uint, ulong, ulonglong
4189    // fits.
4190    if (NumPositiveBits <= IntWidth) {
4191      BestType = Context.UnsignedIntTy;
4192      BestWidth = IntWidth;
4193    } else if (NumPositiveBits <=
4194               (BestWidth = Context.Target.getLongWidth())) {
4195      BestType = Context.UnsignedLongTy;
4196    } else {
4197      BestWidth = Context.Target.getLongLongWidth();
4198      assert(NumPositiveBits <= BestWidth &&
4199             "How could an initializer get larger than ULL?");
4200      BestType = Context.UnsignedLongLongTy;
4201    }
4202  }
4203
4204  // Loop over all of the enumerator constants, changing their types to match
4205  // the type of the enum if needed.
4206  for (unsigned i = 0; i != NumElements; ++i) {
4207    EnumConstantDecl *ECD =
4208      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4209    if (!ECD) continue;  // Already issued a diagnostic.
4210
4211    // Standard C says the enumerators have int type, but we allow, as an
4212    // extension, the enumerators to be larger than int size.  If each
4213    // enumerator value fits in an int, type it as an int, otherwise type it the
4214    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4215    // that X has type 'int', not 'unsigned'.
4216    if (ECD->getType() == Context.IntTy) {
4217      // Make sure the init value is signed.
4218      llvm::APSInt IV = ECD->getInitVal();
4219      IV.setIsSigned(true);
4220      ECD->setInitVal(IV);
4221
4222      if (getLangOptions().CPlusPlus)
4223        // C++ [dcl.enum]p4: Following the closing brace of an
4224        // enum-specifier, each enumerator has the type of its
4225        // enumeration.
4226        ECD->setType(EnumType);
4227      continue;  // Already int type.
4228    }
4229
4230    // Determine whether the value fits into an int.
4231    llvm::APSInt InitVal = ECD->getInitVal();
4232    bool FitsInInt;
4233    if (InitVal.isUnsigned() || !InitVal.isNegative())
4234      FitsInInt = InitVal.getActiveBits() < IntWidth;
4235    else
4236      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4237
4238    // If it fits into an integer type, force it.  Otherwise force it to match
4239    // the enum decl type.
4240    QualType NewTy;
4241    unsigned NewWidth;
4242    bool NewSign;
4243    if (FitsInInt) {
4244      NewTy = Context.IntTy;
4245      NewWidth = IntWidth;
4246      NewSign = true;
4247    } else if (ECD->getType() == BestType) {
4248      // Already the right type!
4249      if (getLangOptions().CPlusPlus)
4250        // C++ [dcl.enum]p4: Following the closing brace of an
4251        // enum-specifier, each enumerator has the type of its
4252        // enumeration.
4253        ECD->setType(EnumType);
4254      continue;
4255    } else {
4256      NewTy = BestType;
4257      NewWidth = BestWidth;
4258      NewSign = BestType->isSignedIntegerType();
4259    }
4260
4261    // Adjust the APSInt value.
4262    InitVal.extOrTrunc(NewWidth);
4263    InitVal.setIsSigned(NewSign);
4264    ECD->setInitVal(InitVal);
4265
4266    // Adjust the Expr initializer and type.
4267    if (ECD->getInitExpr())
4268      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4269                                                      /*isLvalue=*/false));
4270    if (getLangOptions().CPlusPlus)
4271      // C++ [dcl.enum]p4: Following the closing brace of an
4272      // enum-specifier, each enumerator has the type of its
4273      // enumeration.
4274      ECD->setType(EnumType);
4275    else
4276      ECD->setType(NewTy);
4277  }
4278
4279  Enum->completeDefinition(Context, BestType);
4280}
4281
4282Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4283                                            ExprArg expr) {
4284  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4285
4286  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4287                                                  Loc, AsmString));
4288}
4289