SemaDecl.cpp revision e9bc433d82d11956c68e57678f4b05cd67d3cfdd
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        if (!IIDecl ||
89            (*Res)->getLocation().getRawEncoding() <
90              IIDecl->getLocation().getRawEncoding())
91          IIDecl = *Res;
92      }
93    }
94
95    if (!IIDecl) {
96      // None of the entities we found is a type, so there is no way
97      // to even assume that the result is a type. In this case, don't
98      // complain about the ambiguity. The parser will either try to
99      // perform this lookup again (e.g., as an object name), which
100      // will produce the ambiguity, or will complain that it expected
101      // a type name.
102      Result.Destroy();
103      return 0;
104    }
105
106    // We found a type within the ambiguous lookup; diagnose the
107    // ambiguity and then return that type. This might be the right
108    // answer, or it might not be, but it suppresses any attempt to
109    // perform the name lookup again.
110    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
111    break;
112  }
113
114  case LookupResult::Found:
115    IIDecl = Result.getAsDecl();
116    break;
117  }
118
119  if (IIDecl) {
120    QualType T;
121
122    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
123      // Check whether we can use this type
124      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
125
126      T = Context.getTypeDeclType(TD);
127    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
128      // Check whether we can use this interface.
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      T = Context.getObjCInterfaceType(IDecl);
132    } else
133      return 0;
134
135    if (SS)
136      T = getQualifiedNameType(*SS, T);
137
138    return T.getAsOpaquePtr();
139  }
140
141  return 0;
142}
143
144/// isTagName() - This method is called *for error recovery purposes only*
145/// to determine if the specified name is a valid tag name ("struct foo").  If
146/// so, this returns the TST for the tag corresponding to it (TST_enum,
147/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
148/// where the user forgot to specify the tag.
149DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
150  // Do a tag name lookup in this scope.
151  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
152  if (R.getKind() == LookupResult::Found)
153    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
154      switch (TD->getTagKind()) {
155      case TagDecl::TK_struct: return DeclSpec::TST_struct;
156      case TagDecl::TK_union:  return DeclSpec::TST_union;
157      case TagDecl::TK_class:  return DeclSpec::TST_class;
158      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
159      }
160    }
161
162  return DeclSpec::TST_unspecified;
163}
164
165
166
167DeclContext *Sema::getContainingDC(DeclContext *DC) {
168  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
169    // A C++ out-of-line method will return to the file declaration context.
170    if (MD->isOutOfLineDefinition())
171      return MD->getLexicalDeclContext();
172
173    // A C++ inline method is parsed *after* the topmost class it was declared
174    // in is fully parsed (it's "complete").
175    // The parsing of a C++ inline method happens at the declaration context of
176    // the topmost (non-nested) class it is lexically declared in.
177    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
178    DC = MD->getParent();
179    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
180      DC = RD;
181
182    // Return the declaration context of the topmost class the inline method is
183    // declared in.
184    return DC;
185  }
186
187  if (isa<ObjCMethodDecl>(DC))
188    return Context.getTranslationUnitDecl();
189
190  return DC->getLexicalParent();
191}
192
193void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
194  assert(getContainingDC(DC) == CurContext &&
195      "The next DeclContext should be lexically contained in the current one.");
196  CurContext = DC;
197  S->setEntity(DC);
198}
199
200void Sema::PopDeclContext() {
201  assert(CurContext && "DeclContext imbalance!");
202
203  CurContext = getContainingDC(CurContext);
204}
205
206/// \brief Determine whether we allow overloading of the function
207/// PrevDecl with another declaration.
208///
209/// This routine determines whether overloading is possible, not
210/// whether some new function is actually an overload. It will return
211/// true in C++ (where we can always provide overloads) or, as an
212/// extension, in C when the previous function is already an
213/// overloaded function declaration or has the "overloadable"
214/// attribute.
215static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
216  if (Context.getLangOptions().CPlusPlus)
217    return true;
218
219  if (isa<OverloadedFunctionDecl>(PrevDecl))
220    return true;
221
222  return PrevDecl->getAttr<OverloadableAttr>() != 0;
223}
224
225/// Add this decl to the scope shadowed decl chains.
226void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
227  // Move up the scope chain until we find the nearest enclosing
228  // non-transparent context. The declaration will be introduced into this
229  // scope.
230  while (S->getEntity() &&
231         ((DeclContext *)S->getEntity())->isTransparentContext())
232    S = S->getParent();
233
234  S->AddDecl(DeclPtrTy::make(D));
235
236  // Add scoped declarations into their context, so that they can be
237  // found later. Declarations without a context won't be inserted
238  // into any context.
239  CurContext->addDecl(Context, D);
240
241  // C++ [basic.scope]p4:
242  //   -- exactly one declaration shall declare a class name or
243  //   enumeration name that is not a typedef name and the other
244  //   declarations shall all refer to the same object or
245  //   enumerator, or all refer to functions and function templates;
246  //   in this case the class name or enumeration name is hidden.
247  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
248    // We are pushing the name of a tag (enum or class).
249    if (CurContext->getLookupContext()
250          == TD->getDeclContext()->getLookupContext()) {
251      // We're pushing the tag into the current context, which might
252      // require some reshuffling in the identifier resolver.
253      IdentifierResolver::iterator
254        I = IdResolver.begin(TD->getDeclName()),
255        IEnd = IdResolver.end();
256      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
257        NamedDecl *PrevDecl = *I;
258        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
259             PrevDecl = *I, ++I) {
260          if (TD->declarationReplaces(*I)) {
261            // This is a redeclaration. Remove it from the chain and
262            // break out, so that we'll add in the shadowed
263            // declaration.
264            S->RemoveDecl(DeclPtrTy::make(*I));
265            if (PrevDecl == *I) {
266              IdResolver.RemoveDecl(*I);
267              IdResolver.AddDecl(TD);
268              return;
269            } else {
270              IdResolver.RemoveDecl(*I);
271              break;
272            }
273          }
274        }
275
276        // There is already a declaration with the same name in the same
277        // scope, which is not a tag declaration. It must be found
278        // before we find the new declaration, so insert the new
279        // declaration at the end of the chain.
280        IdResolver.AddShadowedDecl(TD, PrevDecl);
281
282        return;
283      }
284    }
285  } else if (isa<FunctionDecl>(D) &&
286             AllowOverloadingOfFunction(D, Context)) {
287    // We are pushing the name of a function, which might be an
288    // overloaded name.
289    FunctionDecl *FD = cast<FunctionDecl>(D);
290    IdentifierResolver::iterator Redecl
291      = std::find_if(IdResolver.begin(FD->getDeclName()),
292                     IdResolver.end(),
293                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
294                                  FD));
295    if (Redecl != IdResolver.end() &&
296        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
297      // There is already a declaration of a function on our
298      // IdResolver chain. Replace it with this declaration.
299      S->RemoveDecl(DeclPtrTy::make(*Redecl));
300      IdResolver.RemoveDecl(*Redecl);
301    }
302  }
303
304  IdResolver.AddDecl(D);
305}
306
307void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
308  if (S->decl_empty()) return;
309  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
310	 "Scope shouldn't contain decls!");
311
312  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
313       I != E; ++I) {
314    Decl *TmpD = (*I).getAs<Decl>();
315    assert(TmpD && "This decl didn't get pushed??");
316
317    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
318    NamedDecl *D = cast<NamedDecl>(TmpD);
319
320    if (!D->getDeclName()) continue;
321
322    // Remove this name from our lexical scope.
323    IdResolver.RemoveDecl(D);
324  }
325}
326
327/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
328/// return 0 if one not found.
329ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
330  // The third "scope" argument is 0 since we aren't enabling lazy built-in
331  // creation from this context.
332  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
333
334  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
335}
336
337/// getNonFieldDeclScope - Retrieves the innermost scope, starting
338/// from S, where a non-field would be declared. This routine copes
339/// with the difference between C and C++ scoping rules in structs and
340/// unions. For example, the following code is well-formed in C but
341/// ill-formed in C++:
342/// @code
343/// struct S6 {
344///   enum { BAR } e;
345/// };
346///
347/// void test_S6() {
348///   struct S6 a;
349///   a.e = BAR;
350/// }
351/// @endcode
352/// For the declaration of BAR, this routine will return a different
353/// scope. The scope S will be the scope of the unnamed enumeration
354/// within S6. In C++, this routine will return the scope associated
355/// with S6, because the enumeration's scope is a transparent
356/// context but structures can contain non-field names. In C, this
357/// routine will return the translation unit scope, since the
358/// enumeration's scope is a transparent context and structures cannot
359/// contain non-field names.
360Scope *Sema::getNonFieldDeclScope(Scope *S) {
361  while (((S->getFlags() & Scope::DeclScope) == 0) ||
362         (S->getEntity() &&
363          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
364         (S->isClassScope() && !getLangOptions().CPlusPlus))
365    S = S->getParent();
366  return S;
367}
368
369void Sema::InitBuiltinVaListType() {
370  if (!Context.getBuiltinVaListType().isNull())
371    return;
372
373  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
374  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
375  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
376  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
377}
378
379/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
380/// file scope.  lazily create a decl for it. ForRedeclaration is true
381/// if we're creating this built-in in anticipation of redeclaring the
382/// built-in.
383NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
384                                     Scope *S, bool ForRedeclaration,
385                                     SourceLocation Loc) {
386  Builtin::ID BID = (Builtin::ID)bid;
387
388  if (Context.BuiltinInfo.hasVAListUse(BID))
389    InitBuiltinVaListType();
390
391  Builtin::Context::GetBuiltinTypeError Error;
392  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
393  switch (Error) {
394  case Builtin::Context::GE_None:
395    // Okay
396    break;
397
398  case Builtin::Context::GE_Missing_FILE:
399    if (ForRedeclaration)
400      Diag(Loc, diag::err_implicit_decl_requires_stdio)
401        << Context.BuiltinInfo.GetName(BID);
402    return 0;
403  }
404
405  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
406    Diag(Loc, diag::ext_implicit_lib_function_decl)
407      << Context.BuiltinInfo.GetName(BID)
408      << R;
409    if (Context.BuiltinInfo.getHeaderName(BID) &&
410        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
411          != diag::MAP_IGNORE)
412      Diag(Loc, diag::note_please_include_header)
413        << Context.BuiltinInfo.getHeaderName(BID)
414        << Context.BuiltinInfo.GetName(BID);
415  }
416
417  FunctionDecl *New = FunctionDecl::Create(Context,
418                                           Context.getTranslationUnitDecl(),
419                                           Loc, II, R,
420                                           FunctionDecl::Extern, false,
421                                           /*hasPrototype=*/true);
422  New->setImplicit();
423
424  // Create Decl objects for each parameter, adding them to the
425  // FunctionDecl.
426  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
427    llvm::SmallVector<ParmVarDecl*, 16> Params;
428    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
429      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
430                                           FT->getArgType(i), VarDecl::None, 0));
431    New->setParams(Context, &Params[0], Params.size());
432  }
433
434  AddKnownFunctionAttributes(New);
435
436  // TUScope is the translation-unit scope to insert this function into.
437  // FIXME: This is hideous. We need to teach PushOnScopeChains to
438  // relate Scopes to DeclContexts, and probably eliminate CurContext
439  // entirely, but we're not there yet.
440  DeclContext *SavedContext = CurContext;
441  CurContext = Context.getTranslationUnitDecl();
442  PushOnScopeChains(New, TUScope);
443  CurContext = SavedContext;
444  return New;
445}
446
447/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
448/// everything from the standard library is defined.
449NamespaceDecl *Sema::GetStdNamespace() {
450  if (!StdNamespace) {
451    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
452    DeclContext *Global = Context.getTranslationUnitDecl();
453    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
454    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
455  }
456  return StdNamespace;
457}
458
459/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
460/// same name and scope as a previous declaration 'Old'.  Figure out
461/// how to resolve this situation, merging decls or emitting
462/// diagnostics as appropriate. Returns true if there was an error,
463/// false otherwise.
464///
465bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
466  bool objc_types = false;
467  // Allow multiple definitions for ObjC built-in typedefs.
468  // FIXME: Verify the underlying types are equivalent!
469  if (getLangOptions().ObjC1) {
470    const IdentifierInfo *TypeID = New->getIdentifier();
471    switch (TypeID->getLength()) {
472    default: break;
473    case 2:
474      if (!TypeID->isStr("id"))
475        break;
476      Context.setObjCIdType(New);
477      objc_types = true;
478      break;
479    case 5:
480      if (!TypeID->isStr("Class"))
481        break;
482      Context.setObjCClassType(New);
483      objc_types = true;
484      return false;
485    case 3:
486      if (!TypeID->isStr("SEL"))
487        break;
488      Context.setObjCSelType(New);
489      objc_types = true;
490      return false;
491    case 8:
492      if (!TypeID->isStr("Protocol"))
493        break;
494      Context.setObjCProtoType(New->getUnderlyingType());
495      objc_types = true;
496      return false;
497    }
498    // Fall through - the typedef name was not a builtin type.
499  }
500  // Verify the old decl was also a type.
501  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
502  if (!Old) {
503    Diag(New->getLocation(), diag::err_redefinition_different_kind)
504      << New->getDeclName();
505    if (!objc_types)
506      Diag(OldD->getLocation(), diag::note_previous_definition);
507    return true;
508  }
509
510  // Determine the "old" type we'll use for checking and diagnostics.
511  QualType OldType;
512  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
513    OldType = OldTypedef->getUnderlyingType();
514  else
515    OldType = Context.getTypeDeclType(Old);
516
517  // If the typedef types are not identical, reject them in all languages and
518  // with any extensions enabled.
519
520  if (OldType != New->getUnderlyingType() &&
521      Context.getCanonicalType(OldType) !=
522      Context.getCanonicalType(New->getUnderlyingType())) {
523    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
524      << New->getUnderlyingType() << OldType;
525    if (!objc_types)
526      Diag(Old->getLocation(), diag::note_previous_definition);
527    return true;
528  }
529  if (objc_types) return false;
530  if (getLangOptions().Microsoft) return false;
531
532  // C++ [dcl.typedef]p2:
533  //   In a given non-class scope, a typedef specifier can be used to
534  //   redefine the name of any type declared in that scope to refer
535  //   to the type to which it already refers.
536  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
537    return false;
538
539  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
540  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
541  // *either* declaration is in a system header. The code below implements
542  // this adhoc compatibility rule. FIXME: The following code will not
543  // work properly when compiling ".i" files (containing preprocessed output).
544  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
545    SourceManager &SrcMgr = Context.getSourceManager();
546    if (SrcMgr.isInSystemHeader(Old->getLocation()))
547      return false;
548    if (SrcMgr.isInSystemHeader(New->getLocation()))
549      return false;
550  }
551
552  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
553  Diag(Old->getLocation(), diag::note_previous_definition);
554  return true;
555}
556
557/// DeclhasAttr - returns true if decl Declaration already has the target
558/// attribute.
559static bool DeclHasAttr(const Decl *decl, const Attr *target) {
560  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
561    if (attr->getKind() == target->getKind())
562      return true;
563
564  return false;
565}
566
567/// MergeAttributes - append attributes from the Old decl to the New one.
568static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
569  Attr *attr = const_cast<Attr*>(Old->getAttrs());
570
571  while (attr) {
572    Attr *tmp = attr;
573    attr = attr->getNext();
574
575    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
576      tmp->setInherited(true);
577      New->addAttr(tmp);
578    } else {
579      tmp->setNext(0);
580      tmp->Destroy(C);
581    }
582  }
583
584  Old->invalidateAttrs();
585}
586
587/// Used in MergeFunctionDecl to keep track of function parameters in
588/// C.
589struct GNUCompatibleParamWarning {
590  ParmVarDecl *OldParm;
591  ParmVarDecl *NewParm;
592  QualType PromotedType;
593};
594
595/// MergeFunctionDecl - We just parsed a function 'New' from
596/// declarator D which has the same name and scope as a previous
597/// declaration 'Old'.  Figure out how to resolve this situation,
598/// merging decls or emitting diagnostics as appropriate.
599///
600/// In C++, New and Old must be declarations that are not
601/// overloaded. Use IsOverload to determine whether New and Old are
602/// overloaded, and to select the Old declaration that New should be
603/// merged with.
604///
605/// Returns true if there was an error, false otherwise.
606bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
607  assert(!isa<OverloadedFunctionDecl>(OldD) &&
608         "Cannot merge with an overloaded function declaration");
609
610  // Verify the old decl was also a function.
611  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
612  if (!Old) {
613    Diag(New->getLocation(), diag::err_redefinition_different_kind)
614      << New->getDeclName();
615    Diag(OldD->getLocation(), diag::note_previous_definition);
616    return true;
617  }
618
619  // Determine whether the previous declaration was a definition,
620  // implicit declaration, or a declaration.
621  diag::kind PrevDiag;
622  if (Old->isThisDeclarationADefinition())
623    PrevDiag = diag::note_previous_definition;
624  else if (Old->isImplicit())
625    PrevDiag = diag::note_previous_implicit_declaration;
626  else
627    PrevDiag = diag::note_previous_declaration;
628
629  QualType OldQType = Context.getCanonicalType(Old->getType());
630  QualType NewQType = Context.getCanonicalType(New->getType());
631
632  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
633      New->getStorageClass() == FunctionDecl::Static &&
634      Old->getStorageClass() != FunctionDecl::Static) {
635    Diag(New->getLocation(), diag::err_static_non_static)
636      << New;
637    Diag(Old->getLocation(), PrevDiag);
638    return true;
639  }
640
641  if (getLangOptions().CPlusPlus) {
642    // (C++98 13.1p2):
643    //   Certain function declarations cannot be overloaded:
644    //     -- Function declarations that differ only in the return type
645    //        cannot be overloaded.
646    QualType OldReturnType
647      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
648    QualType NewReturnType
649      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
650    if (OldReturnType != NewReturnType) {
651      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
652      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
653      return true;
654    }
655
656    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
657    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
658    if (OldMethod && NewMethod &&
659        OldMethod->getLexicalDeclContext() ==
660          NewMethod->getLexicalDeclContext()) {
661      //    -- Member function declarations with the same name and the
662      //       same parameter types cannot be overloaded if any of them
663      //       is a static member function declaration.
664      if (OldMethod->isStatic() || NewMethod->isStatic()) {
665        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
666        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
667        return true;
668      }
669
670      // C++ [class.mem]p1:
671      //   [...] A member shall not be declared twice in the
672      //   member-specification, except that a nested class or member
673      //   class template can be declared and then later defined.
674      unsigned NewDiag;
675      if (isa<CXXConstructorDecl>(OldMethod))
676        NewDiag = diag::err_constructor_redeclared;
677      else if (isa<CXXDestructorDecl>(NewMethod))
678        NewDiag = diag::err_destructor_redeclared;
679      else if (isa<CXXConversionDecl>(NewMethod))
680        NewDiag = diag::err_conv_function_redeclared;
681      else
682        NewDiag = diag::err_member_redeclared;
683
684      Diag(New->getLocation(), NewDiag);
685      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
686    }
687
688    // (C++98 8.3.5p3):
689    //   All declarations for a function shall agree exactly in both the
690    //   return type and the parameter-type-list.
691    if (OldQType == NewQType)
692      return MergeCompatibleFunctionDecls(New, Old);
693
694    // Fall through for conflicting redeclarations and redefinitions.
695  }
696
697  // C: Function types need to be compatible, not identical. This handles
698  // duplicate function decls like "void f(int); void f(enum X);" properly.
699  if (!getLangOptions().CPlusPlus &&
700      Context.typesAreCompatible(OldQType, NewQType)) {
701    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
702    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
703    const FunctionProtoType *OldProto = 0;
704    if (isa<FunctionNoProtoType>(NewFuncType) &&
705        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
706      // The old declaration provided a function prototype, but the
707      // new declaration does not. Merge in the prototype.
708      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
709                                                 OldProto->arg_type_end());
710      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
711                                         &ParamTypes[0], ParamTypes.size(),
712                                         OldProto->isVariadic(),
713                                         OldProto->getTypeQuals());
714      New->setType(NewQType);
715      New->setInheritedPrototype();
716
717      // Synthesize a parameter for each argument type.
718      llvm::SmallVector<ParmVarDecl*, 16> Params;
719      for (FunctionProtoType::arg_type_iterator
720             ParamType = OldProto->arg_type_begin(),
721             ParamEnd = OldProto->arg_type_end();
722           ParamType != ParamEnd; ++ParamType) {
723        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
724                                                 SourceLocation(), 0,
725                                                 *ParamType, VarDecl::None,
726                                                 0);
727        Param->setImplicit();
728        Params.push_back(Param);
729      }
730
731      New->setParams(Context, &Params[0], Params.size());
732    }
733
734    return MergeCompatibleFunctionDecls(New, Old);
735  }
736
737  // GNU C permits a K&R definition to follow a prototype declaration
738  // if the declared types of the parameters in the K&R definition
739  // match the types in the prototype declaration, even when the
740  // promoted types of the parameters from the K&R definition differ
741  // from the types in the prototype. GCC then keeps the types from
742  // the prototype.
743  if (!getLangOptions().CPlusPlus &&
744      !getLangOptions().NoExtensions &&
745      Old->hasPrototype() && !New->hasPrototype() &&
746      New->getType()->getAsFunctionProtoType() &&
747      Old->getNumParams() == New->getNumParams()) {
748    llvm::SmallVector<QualType, 16> ArgTypes;
749    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
750    const FunctionProtoType *OldProto
751      = Old->getType()->getAsFunctionProtoType();
752    const FunctionProtoType *NewProto
753      = New->getType()->getAsFunctionProtoType();
754
755    // Determine whether this is the GNU C extension.
756    bool GNUCompatible =
757      Context.typesAreCompatible(OldProto->getResultType(),
758                                 NewProto->getResultType()) &&
759      (OldProto->isVariadic() == NewProto->isVariadic());
760    for (unsigned Idx = 0, End = Old->getNumParams();
761         GNUCompatible && Idx != End; ++Idx) {
762      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
763      ParmVarDecl *NewParm = New->getParamDecl(Idx);
764      if (Context.typesAreCompatible(OldParm->getType(),
765                                     NewProto->getArgType(Idx))) {
766        ArgTypes.push_back(NewParm->getType());
767      } else if (Context.typesAreCompatible(OldParm->getType(),
768                                            NewParm->getType())) {
769        GNUCompatibleParamWarning Warn
770          = { OldParm, NewParm, NewProto->getArgType(Idx) };
771        Warnings.push_back(Warn);
772        ArgTypes.push_back(NewParm->getType());
773      } else
774        GNUCompatible = false;
775    }
776
777    if (GNUCompatible) {
778      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
779        Diag(Warnings[Warn].NewParm->getLocation(),
780             diag::ext_param_promoted_not_compatible_with_prototype)
781          << Warnings[Warn].PromotedType
782          << Warnings[Warn].OldParm->getType();
783        Diag(Warnings[Warn].OldParm->getLocation(),
784             diag::note_previous_declaration);
785      }
786
787      New->setType(Context.getFunctionType(NewProto->getResultType(),
788                                           &ArgTypes[0], ArgTypes.size(),
789                                           NewProto->isVariadic(),
790                                           NewProto->getTypeQuals()));
791      return MergeCompatibleFunctionDecls(New, Old);
792    }
793
794    // Fall through to diagnose conflicting types.
795  }
796
797  // A function that has already been declared has been redeclared or defined
798  // with a different type- show appropriate diagnostic
799  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
800    // The user has declared a builtin function with an incompatible
801    // signature.
802    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
803      // The function the user is redeclaring is a library-defined
804      // function like 'malloc' or 'printf'. Warn about the
805      // redeclaration, then pretend that we don't know about this
806      // library built-in.
807      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
808      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
809        << Old << Old->getType();
810      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
811      Old->setInvalidDecl();
812      return false;
813    }
814
815    PrevDiag = diag::note_previous_builtin_declaration;
816  }
817
818  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
819  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
820  return true;
821}
822
823/// \brief Completes the merge of two function declarations that are
824/// known to be compatible.
825///
826/// This routine handles the merging of attributes and other
827/// properties of function declarations form the old declaration to
828/// the new declaration, once we know that New is in fact a
829/// redeclaration of Old.
830///
831/// \returns false
832bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
833  // Merge the attributes
834  MergeAttributes(New, Old, Context);
835
836  // Merge the storage class.
837  New->setStorageClass(Old->getStorageClass());
838
839  // FIXME: need to implement inline semantics
840
841  // Merge "pure" flag.
842  if (Old->isPure())
843    New->setPure();
844
845  // Merge the "deleted" flag.
846  if (Old->isDeleted())
847    New->setDeleted();
848
849  if (getLangOptions().CPlusPlus)
850    return MergeCXXFunctionDecl(New, Old);
851
852  return false;
853}
854
855/// MergeVarDecl - We just parsed a variable 'New' which has the same name
856/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
857/// situation, merging decls or emitting diagnostics as appropriate.
858///
859/// Tentative definition rules (C99 6.9.2p2) are checked by
860/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
861/// definitions here, since the initializer hasn't been attached.
862///
863bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
864  // Verify the old decl was also a variable.
865  VarDecl *Old = dyn_cast<VarDecl>(OldD);
866  if (!Old) {
867    Diag(New->getLocation(), diag::err_redefinition_different_kind)
868      << New->getDeclName();
869    Diag(OldD->getLocation(), diag::note_previous_definition);
870    return true;
871  }
872
873  MergeAttributes(New, Old, Context);
874
875  // Merge the types
876  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
877  if (MergedT.isNull()) {
878    Diag(New->getLocation(), diag::err_redefinition_different_type)
879      << New->getDeclName();
880    Diag(Old->getLocation(), diag::note_previous_definition);
881    return true;
882  }
883  New->setType(MergedT);
884
885  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
886  if (New->getStorageClass() == VarDecl::Static &&
887      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
888    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
889    Diag(Old->getLocation(), diag::note_previous_definition);
890    return true;
891  }
892  // C99 6.2.2p4:
893  //   For an identifier declared with the storage-class specifier
894  //   extern in a scope in which a prior declaration of that
895  //   identifier is visible,23) if the prior declaration specifies
896  //   internal or external linkage, the linkage of the identifier at
897  //   the later declaration is the same as the linkage specified at
898  //   the prior declaration. If no prior declaration is visible, or
899  //   if the prior declaration specifies no linkage, then the
900  //   identifier has external linkage.
901  if (New->hasExternalStorage() && Old->hasLinkage())
902    /* Okay */;
903  else if (New->getStorageClass() != VarDecl::Static &&
904           Old->getStorageClass() == VarDecl::Static) {
905    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
906    Diag(Old->getLocation(), diag::note_previous_definition);
907    return true;
908  }
909
910  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
911
912  // FIXME: The test for external storage here seems wrong? We still
913  // need to check for mismatches.
914  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
915      // Don't complain about out-of-line definitions of static members.
916      !(Old->getLexicalDeclContext()->isRecord() &&
917        !New->getLexicalDeclContext()->isRecord())) {
918    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
919    Diag(Old->getLocation(), diag::note_previous_definition);
920    return true;
921  }
922
923  // Keep a chain of previous declarations.
924  New->setPreviousDeclaration(Old);
925
926  return false;
927}
928
929/// CheckParmsForFunctionDef - Check that the parameters of the given
930/// function are appropriate for the definition of a function. This
931/// takes care of any checks that cannot be performed on the
932/// declaration itself, e.g., that the types of each of the function
933/// parameters are complete.
934bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
935  bool HasInvalidParm = false;
936  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
937    ParmVarDecl *Param = FD->getParamDecl(p);
938
939    // C99 6.7.5.3p4: the parameters in a parameter type list in a
940    // function declarator that is part of a function definition of
941    // that function shall not have incomplete type.
942    //
943    // This is also C++ [dcl.fct]p6.
944    if (!Param->isInvalidDecl() &&
945        RequireCompleteType(Param->getLocation(), Param->getType(),
946                               diag::err_typecheck_decl_incomplete_type)) {
947      Param->setInvalidDecl();
948      HasInvalidParm = true;
949    }
950
951    // C99 6.9.1p5: If the declarator includes a parameter type list, the
952    // declaration of each parameter shall include an identifier.
953    if (Param->getIdentifier() == 0 &&
954        !Param->isImplicit() &&
955        !getLangOptions().CPlusPlus)
956      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
957  }
958
959  return HasInvalidParm;
960}
961
962/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
963/// no declarator (e.g. "struct foo;") is parsed.
964Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
965  // FIXME: Error on auto/register at file scope
966  // FIXME: Error on inline/virtual/explicit
967  // FIXME: Error on invalid restrict
968  // FIXME: Warn on useless const/volatile
969  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
970  // FIXME: Warn on useless attributes
971
972  TagDecl *Tag = 0;
973  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
974      DS.getTypeSpecType() == DeclSpec::TST_struct ||
975      DS.getTypeSpecType() == DeclSpec::TST_union ||
976      DS.getTypeSpecType() == DeclSpec::TST_enum)
977    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
978
979  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
980    if (!Record->getDeclName() && Record->isDefinition() &&
981        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
982      if (getLangOptions().CPlusPlus ||
983          Record->getDeclContext()->isRecord())
984        return BuildAnonymousStructOrUnion(S, DS, Record);
985
986      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
987        << DS.getSourceRange();
988    }
989
990    // Microsoft allows unnamed struct/union fields. Don't complain
991    // about them.
992    // FIXME: Should we support Microsoft's extensions in this area?
993    if (Record->getDeclName() && getLangOptions().Microsoft)
994      return DeclPtrTy::make(Tag);
995  }
996
997  if (!DS.isMissingDeclaratorOk() &&
998      DS.getTypeSpecType() != DeclSpec::TST_error) {
999    // Warn about typedefs of enums without names, since this is an
1000    // extension in both Microsoft an GNU.
1001    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1002        Tag && isa<EnumDecl>(Tag)) {
1003      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1004        << DS.getSourceRange();
1005      return DeclPtrTy::make(Tag);
1006    }
1007
1008    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1009      << DS.getSourceRange();
1010    return DeclPtrTy();
1011  }
1012
1013  return DeclPtrTy::make(Tag);
1014}
1015
1016/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1017/// anonymous struct or union AnonRecord into the owning context Owner
1018/// and scope S. This routine will be invoked just after we realize
1019/// that an unnamed union or struct is actually an anonymous union or
1020/// struct, e.g.,
1021///
1022/// @code
1023/// union {
1024///   int i;
1025///   float f;
1026/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1027///    // f into the surrounding scope.x
1028/// @endcode
1029///
1030/// This routine is recursive, injecting the names of nested anonymous
1031/// structs/unions into the owning context and scope as well.
1032bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1033                                               RecordDecl *AnonRecord) {
1034  bool Invalid = false;
1035  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1036                               FEnd = AnonRecord->field_end(Context);
1037       F != FEnd; ++F) {
1038    if ((*F)->getDeclName()) {
1039      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1040                                                LookupOrdinaryName, true);
1041      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1042        // C++ [class.union]p2:
1043        //   The names of the members of an anonymous union shall be
1044        //   distinct from the names of any other entity in the
1045        //   scope in which the anonymous union is declared.
1046        unsigned diagKind
1047          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1048                                 : diag::err_anonymous_struct_member_redecl;
1049        Diag((*F)->getLocation(), diagKind)
1050          << (*F)->getDeclName();
1051        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1052        Invalid = true;
1053      } else {
1054        // C++ [class.union]p2:
1055        //   For the purpose of name lookup, after the anonymous union
1056        //   definition, the members of the anonymous union are
1057        //   considered to have been defined in the scope in which the
1058        //   anonymous union is declared.
1059        Owner->makeDeclVisibleInContext(Context, *F);
1060        S->AddDecl(DeclPtrTy::make(*F));
1061        IdResolver.AddDecl(*F);
1062      }
1063    } else if (const RecordType *InnerRecordType
1064                 = (*F)->getType()->getAsRecordType()) {
1065      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1066      if (InnerRecord->isAnonymousStructOrUnion())
1067        Invalid = Invalid ||
1068          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1069    }
1070  }
1071
1072  return Invalid;
1073}
1074
1075/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1076/// anonymous structure or union. Anonymous unions are a C++ feature
1077/// (C++ [class.union]) and a GNU C extension; anonymous structures
1078/// are a GNU C and GNU C++ extension.
1079Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1080                                                  RecordDecl *Record) {
1081  DeclContext *Owner = Record->getDeclContext();
1082
1083  // Diagnose whether this anonymous struct/union is an extension.
1084  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1085    Diag(Record->getLocation(), diag::ext_anonymous_union);
1086  else if (!Record->isUnion())
1087    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1088
1089  // C and C++ require different kinds of checks for anonymous
1090  // structs/unions.
1091  bool Invalid = false;
1092  if (getLangOptions().CPlusPlus) {
1093    const char* PrevSpec = 0;
1094    // C++ [class.union]p3:
1095    //   Anonymous unions declared in a named namespace or in the
1096    //   global namespace shall be declared static.
1097    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1098        (isa<TranslationUnitDecl>(Owner) ||
1099         (isa<NamespaceDecl>(Owner) &&
1100          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1101      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1102      Invalid = true;
1103
1104      // Recover by adding 'static'.
1105      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1106    }
1107    // C++ [class.union]p3:
1108    //   A storage class is not allowed in a declaration of an
1109    //   anonymous union in a class scope.
1110    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1111             isa<RecordDecl>(Owner)) {
1112      Diag(DS.getStorageClassSpecLoc(),
1113           diag::err_anonymous_union_with_storage_spec);
1114      Invalid = true;
1115
1116      // Recover by removing the storage specifier.
1117      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1118                             PrevSpec);
1119    }
1120
1121    // C++ [class.union]p2:
1122    //   The member-specification of an anonymous union shall only
1123    //   define non-static data members. [Note: nested types and
1124    //   functions cannot be declared within an anonymous union. ]
1125    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1126                                 MemEnd = Record->decls_end(Context);
1127         Mem != MemEnd; ++Mem) {
1128      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1129        // C++ [class.union]p3:
1130        //   An anonymous union shall not have private or protected
1131        //   members (clause 11).
1132        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1133          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1134            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1135          Invalid = true;
1136        }
1137      } else if ((*Mem)->isImplicit()) {
1138        // Any implicit members are fine.
1139      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1140        // This is a type that showed up in an
1141        // elaborated-type-specifier inside the anonymous struct or
1142        // union, but which actually declares a type outside of the
1143        // anonymous struct or union. It's okay.
1144      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1145        if (!MemRecord->isAnonymousStructOrUnion() &&
1146            MemRecord->getDeclName()) {
1147          // This is a nested type declaration.
1148          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1149            << (int)Record->isUnion();
1150          Invalid = true;
1151        }
1152      } else {
1153        // We have something that isn't a non-static data
1154        // member. Complain about it.
1155        unsigned DK = diag::err_anonymous_record_bad_member;
1156        if (isa<TypeDecl>(*Mem))
1157          DK = diag::err_anonymous_record_with_type;
1158        else if (isa<FunctionDecl>(*Mem))
1159          DK = diag::err_anonymous_record_with_function;
1160        else if (isa<VarDecl>(*Mem))
1161          DK = diag::err_anonymous_record_with_static;
1162        Diag((*Mem)->getLocation(), DK)
1163            << (int)Record->isUnion();
1164          Invalid = true;
1165      }
1166    }
1167  }
1168
1169  if (!Record->isUnion() && !Owner->isRecord()) {
1170    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1171      << (int)getLangOptions().CPlusPlus;
1172    Invalid = true;
1173  }
1174
1175  // Create a declaration for this anonymous struct/union.
1176  NamedDecl *Anon = 0;
1177  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1178    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1179                             /*IdentifierInfo=*/0,
1180                             Context.getTypeDeclType(Record),
1181                             /*BitWidth=*/0, /*Mutable=*/false);
1182    Anon->setAccess(AS_public);
1183    if (getLangOptions().CPlusPlus)
1184      FieldCollector->Add(cast<FieldDecl>(Anon));
1185  } else {
1186    VarDecl::StorageClass SC;
1187    switch (DS.getStorageClassSpec()) {
1188    default: assert(0 && "Unknown storage class!");
1189    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1190    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1191    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1192    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1193    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1194    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1195    case DeclSpec::SCS_mutable:
1196      // mutable can only appear on non-static class members, so it's always
1197      // an error here
1198      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1199      Invalid = true;
1200      SC = VarDecl::None;
1201      break;
1202    }
1203
1204    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1205                           /*IdentifierInfo=*/0,
1206                           Context.getTypeDeclType(Record),
1207                           SC, DS.getSourceRange().getBegin());
1208  }
1209  Anon->setImplicit();
1210
1211  // Add the anonymous struct/union object to the current
1212  // context. We'll be referencing this object when we refer to one of
1213  // its members.
1214  Owner->addDecl(Context, Anon);
1215
1216  // Inject the members of the anonymous struct/union into the owning
1217  // context and into the identifier resolver chain for name lookup
1218  // purposes.
1219  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1220    Invalid = true;
1221
1222  // Mark this as an anonymous struct/union type. Note that we do not
1223  // do this until after we have already checked and injected the
1224  // members of this anonymous struct/union type, because otherwise
1225  // the members could be injected twice: once by DeclContext when it
1226  // builds its lookup table, and once by
1227  // InjectAnonymousStructOrUnionMembers.
1228  Record->setAnonymousStructOrUnion(true);
1229
1230  if (Invalid)
1231    Anon->setInvalidDecl();
1232
1233  return DeclPtrTy::make(Anon);
1234}
1235
1236
1237/// GetNameForDeclarator - Determine the full declaration name for the
1238/// given Declarator.
1239DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1240  switch (D.getKind()) {
1241  case Declarator::DK_Abstract:
1242    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1243    return DeclarationName();
1244
1245  case Declarator::DK_Normal:
1246    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1247    return DeclarationName(D.getIdentifier());
1248
1249  case Declarator::DK_Constructor: {
1250    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1251    Ty = Context.getCanonicalType(Ty);
1252    return Context.DeclarationNames.getCXXConstructorName(Ty);
1253  }
1254
1255  case Declarator::DK_Destructor: {
1256    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1257    Ty = Context.getCanonicalType(Ty);
1258    return Context.DeclarationNames.getCXXDestructorName(Ty);
1259  }
1260
1261  case Declarator::DK_Conversion: {
1262    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1263    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1264    Ty = Context.getCanonicalType(Ty);
1265    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1266  }
1267
1268  case Declarator::DK_Operator:
1269    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1270    return Context.DeclarationNames.getCXXOperatorName(
1271                                                D.getOverloadedOperator());
1272  }
1273
1274  assert(false && "Unknown name kind");
1275  return DeclarationName();
1276}
1277
1278/// isNearlyMatchingFunction - Determine whether the C++ functions
1279/// Declaration and Definition are "nearly" matching. This heuristic
1280/// is used to improve diagnostics in the case where an out-of-line
1281/// function definition doesn't match any declaration within
1282/// the class or namespace.
1283static bool isNearlyMatchingFunction(ASTContext &Context,
1284                                     FunctionDecl *Declaration,
1285                                     FunctionDecl *Definition) {
1286  if (Declaration->param_size() != Definition->param_size())
1287    return false;
1288  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1289    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1290    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1291
1292    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1293    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1294    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1295      return false;
1296  }
1297
1298  return true;
1299}
1300
1301Sema::DeclPtrTy
1302Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1303  DeclarationName Name = GetNameForDeclarator(D);
1304
1305  // All of these full declarators require an identifier.  If it doesn't have
1306  // one, the ParsedFreeStandingDeclSpec action should be used.
1307  if (!Name) {
1308    if (!D.getInvalidType())  // Reject this if we think it is valid.
1309      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1310           diag::err_declarator_need_ident)
1311        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1312    return DeclPtrTy();
1313  }
1314
1315  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1316  // we find one that is.
1317  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1318         (S->getFlags() & Scope::TemplateParamScope) != 0)
1319    S = S->getParent();
1320
1321  DeclContext *DC;
1322  NamedDecl *PrevDecl;
1323  NamedDecl *New;
1324  bool InvalidDecl = false;
1325
1326  QualType R = GetTypeForDeclarator(D, S);
1327  if (R.isNull()) {
1328    InvalidDecl = true;
1329    R = Context.IntTy;
1330  }
1331
1332  // See if this is a redefinition of a variable in the same scope.
1333  if (D.getCXXScopeSpec().isInvalid()) {
1334    DC = CurContext;
1335    PrevDecl = 0;
1336    InvalidDecl = true;
1337  } else if (!D.getCXXScopeSpec().isSet()) {
1338    LookupNameKind NameKind = LookupOrdinaryName;
1339
1340    // If the declaration we're planning to build will be a function
1341    // or object with linkage, then look for another declaration with
1342    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1343    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1344      /* Do nothing*/;
1345    else if (R->isFunctionType()) {
1346      if (CurContext->isFunctionOrMethod())
1347        NameKind = LookupRedeclarationWithLinkage;
1348    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1349      NameKind = LookupRedeclarationWithLinkage;
1350
1351    DC = CurContext;
1352    PrevDecl = LookupName(S, Name, NameKind, true,
1353                          D.getDeclSpec().getStorageClassSpec() !=
1354                            DeclSpec::SCS_static,
1355                          D.getIdentifierLoc());
1356  } else { // Something like "int foo::x;"
1357    DC = computeDeclContext(D.getCXXScopeSpec());
1358    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1359    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1360
1361    // C++ 7.3.1.2p2:
1362    // Members (including explicit specializations of templates) of a named
1363    // namespace can also be defined outside that namespace by explicit
1364    // qualification of the name being defined, provided that the entity being
1365    // defined was already declared in the namespace and the definition appears
1366    // after the point of declaration in a namespace that encloses the
1367    // declarations namespace.
1368    //
1369    // Note that we only check the context at this point. We don't yet
1370    // have enough information to make sure that PrevDecl is actually
1371    // the declaration we want to match. For example, given:
1372    //
1373    //   class X {
1374    //     void f();
1375    //     void f(float);
1376    //   };
1377    //
1378    //   void X::f(int) { } // ill-formed
1379    //
1380    // In this case, PrevDecl will point to the overload set
1381    // containing the two f's declared in X, but neither of them
1382    // matches.
1383
1384    // First check whether we named the global scope.
1385    if (isa<TranslationUnitDecl>(DC)) {
1386      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1387        << Name << D.getCXXScopeSpec().getRange();
1388    } else if (!CurContext->Encloses(DC)) {
1389      // The qualifying scope doesn't enclose the original declaration.
1390      // Emit diagnostic based on current scope.
1391      SourceLocation L = D.getIdentifierLoc();
1392      SourceRange R = D.getCXXScopeSpec().getRange();
1393      if (isa<FunctionDecl>(CurContext))
1394        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1395      else
1396        Diag(L, diag::err_invalid_declarator_scope)
1397          << Name << cast<NamedDecl>(DC) << R;
1398      InvalidDecl = true;
1399    }
1400  }
1401
1402  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1403    // Maybe we will complain about the shadowed template parameter.
1404    InvalidDecl = InvalidDecl
1405      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1406    // Just pretend that we didn't see the previous declaration.
1407    PrevDecl = 0;
1408  }
1409
1410  // In C++, the previous declaration we find might be a tag type
1411  // (class or enum). In this case, the new declaration will hide the
1412  // tag type. Note that this does does not apply if we're declaring a
1413  // typedef (C++ [dcl.typedef]p4).
1414  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1415      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1416    PrevDecl = 0;
1417
1418  bool Redeclaration = false;
1419  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1420    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1421                                 InvalidDecl, Redeclaration);
1422  } else if (R->isFunctionType()) {
1423    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1424                                  IsFunctionDefinition, InvalidDecl,
1425                                  Redeclaration);
1426  } else {
1427    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1428                                  InvalidDecl, Redeclaration);
1429  }
1430
1431  if (New == 0)
1432    return DeclPtrTy();
1433
1434  // If this has an identifier and is not an invalid redeclaration,
1435  // add it to the scope stack.
1436  if (Name && !(Redeclaration && InvalidDecl))
1437    PushOnScopeChains(New, S);
1438  // If any semantic error occurred, mark the decl as invalid.
1439  if (D.getInvalidType() || InvalidDecl)
1440    New->setInvalidDecl();
1441
1442  return DeclPtrTy::make(New);
1443}
1444
1445/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1446/// types into constant array types in certain situations which would otherwise
1447/// be errors (for GCC compatibility).
1448static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1449                                                    ASTContext &Context,
1450                                                    bool &SizeIsNegative) {
1451  // This method tries to turn a variable array into a constant
1452  // array even when the size isn't an ICE.  This is necessary
1453  // for compatibility with code that depends on gcc's buggy
1454  // constant expression folding, like struct {char x[(int)(char*)2];}
1455  SizeIsNegative = false;
1456
1457  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1458    QualType Pointee = PTy->getPointeeType();
1459    QualType FixedType =
1460        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1461    if (FixedType.isNull()) return FixedType;
1462    FixedType = Context.getPointerType(FixedType);
1463    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1464    return FixedType;
1465  }
1466
1467  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1468  if (!VLATy)
1469    return QualType();
1470  // FIXME: We should probably handle this case
1471  if (VLATy->getElementType()->isVariablyModifiedType())
1472    return QualType();
1473
1474  Expr::EvalResult EvalResult;
1475  if (!VLATy->getSizeExpr() ||
1476      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1477      !EvalResult.Val.isInt())
1478    return QualType();
1479
1480  llvm::APSInt &Res = EvalResult.Val.getInt();
1481  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1482    return Context.getConstantArrayType(VLATy->getElementType(),
1483                                        Res, ArrayType::Normal, 0);
1484
1485  SizeIsNegative = true;
1486  return QualType();
1487}
1488
1489/// \brief Register the given locally-scoped external C declaration so
1490/// that it can be found later for redeclarations
1491void
1492Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1493                                       Scope *S) {
1494  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1495         "Decl is not a locally-scoped decl!");
1496  // Note that we have a locally-scoped external with this name.
1497  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1498
1499  if (!PrevDecl)
1500    return;
1501
1502  // If there was a previous declaration of this variable, it may be
1503  // in our identifier chain. Update the identifier chain with the new
1504  // declaration.
1505  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1506    // The previous declaration was found on the identifer resolver
1507    // chain, so remove it from its scope.
1508    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1509      S = S->getParent();
1510
1511    if (S)
1512      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1513  }
1514}
1515
1516/// \brief Diagnose function specifiers on a declaration of an identifier that
1517/// does not identify a function.
1518void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1519  // FIXME: We should probably indicate the identifier in question to avoid
1520  // confusion for constructs like "inline int a(), b;"
1521  if (D.getDeclSpec().isInlineSpecified())
1522    Diag(D.getDeclSpec().getInlineSpecLoc(),
1523         diag::err_inline_non_function);
1524
1525  if (D.getDeclSpec().isVirtualSpecified())
1526    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1527         diag::err_virtual_non_function);
1528
1529  if (D.getDeclSpec().isExplicitSpecified())
1530    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1531         diag::err_explicit_non_function);
1532}
1533
1534NamedDecl*
1535Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1536                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1537                             bool &Redeclaration) {
1538  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1539  if (D.getCXXScopeSpec().isSet()) {
1540    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1541      << D.getCXXScopeSpec().getRange();
1542    InvalidDecl = true;
1543    // Pretend we didn't see the scope specifier.
1544    DC = 0;
1545  }
1546
1547  if (getLangOptions().CPlusPlus) {
1548    // Check that there are no default arguments (C++ only).
1549    CheckExtraCXXDefaultArguments(D);
1550  }
1551
1552  DiagnoseFunctionSpecifiers(D);
1553
1554  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1555  if (!NewTD) return 0;
1556
1557  // Handle attributes prior to checking for duplicates in MergeVarDecl
1558  ProcessDeclAttributes(NewTD, D);
1559  // Merge the decl with the existing one if appropriate. If the decl is
1560  // in an outer scope, it isn't the same thing.
1561  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1562    Redeclaration = true;
1563    if (MergeTypeDefDecl(NewTD, PrevDecl))
1564      InvalidDecl = true;
1565  }
1566
1567  if (S->getFnParent() == 0) {
1568    QualType T = NewTD->getUnderlyingType();
1569    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1570    // then it shall have block scope.
1571    if (T->isVariablyModifiedType()) {
1572      bool SizeIsNegative;
1573      QualType FixedTy =
1574          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1575      if (!FixedTy.isNull()) {
1576        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1577        NewTD->setUnderlyingType(FixedTy);
1578      } else {
1579        if (SizeIsNegative)
1580          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1581        else if (T->isVariableArrayType())
1582          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1583        else
1584          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1585        InvalidDecl = true;
1586      }
1587    }
1588  }
1589  return NewTD;
1590}
1591
1592/// \brief Determines whether the given declaration is an out-of-scope
1593/// previous declaration.
1594///
1595/// This routine should be invoked when name lookup has found a
1596/// previous declaration (PrevDecl) that is not in the scope where a
1597/// new declaration by the same name is being introduced. If the new
1598/// declaration occurs in a local scope, previous declarations with
1599/// linkage may still be considered previous declarations (C99
1600/// 6.2.2p4-5, C++ [basic.link]p6).
1601///
1602/// \param PrevDecl the previous declaration found by name
1603/// lookup
1604///
1605/// \param DC the context in which the new declaration is being
1606/// declared.
1607///
1608/// \returns true if PrevDecl is an out-of-scope previous declaration
1609/// for a new delcaration with the same name.
1610static bool
1611isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1612                                ASTContext &Context) {
1613  if (!PrevDecl)
1614    return 0;
1615
1616  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1617  // case we need to check each of the overloaded functions.
1618  if (!PrevDecl->hasLinkage())
1619    return false;
1620
1621  if (Context.getLangOptions().CPlusPlus) {
1622    // C++ [basic.link]p6:
1623    //   If there is a visible declaration of an entity with linkage
1624    //   having the same name and type, ignoring entities declared
1625    //   outside the innermost enclosing namespace scope, the block
1626    //   scope declaration declares that same entity and receives the
1627    //   linkage of the previous declaration.
1628    DeclContext *OuterContext = DC->getLookupContext();
1629    if (!OuterContext->isFunctionOrMethod())
1630      // This rule only applies to block-scope declarations.
1631      return false;
1632    else {
1633      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1634      if (PrevOuterContext->isRecord())
1635        // We found a member function: ignore it.
1636        return false;
1637      else {
1638        // Find the innermost enclosing namespace for the new and
1639        // previous declarations.
1640        while (!OuterContext->isFileContext())
1641          OuterContext = OuterContext->getParent();
1642        while (!PrevOuterContext->isFileContext())
1643          PrevOuterContext = PrevOuterContext->getParent();
1644
1645        // The previous declaration is in a different namespace, so it
1646        // isn't the same function.
1647        if (OuterContext->getPrimaryContext() !=
1648            PrevOuterContext->getPrimaryContext())
1649          return false;
1650      }
1651    }
1652  }
1653
1654  return true;
1655}
1656
1657NamedDecl*
1658Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1659                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1660                              bool &Redeclaration) {
1661  DeclarationName Name = GetNameForDeclarator(D);
1662
1663  // Check that there are no default arguments (C++ only).
1664  if (getLangOptions().CPlusPlus)
1665    CheckExtraCXXDefaultArguments(D);
1666
1667  VarDecl *NewVD;
1668  VarDecl::StorageClass SC;
1669  switch (D.getDeclSpec().getStorageClassSpec()) {
1670  default: assert(0 && "Unknown storage class!");
1671  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1672  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1673  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1674  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1675  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1676  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1677  case DeclSpec::SCS_mutable:
1678    // mutable can only appear on non-static class members, so it's always
1679    // an error here
1680    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1681    InvalidDecl = true;
1682    SC = VarDecl::None;
1683    break;
1684  }
1685
1686  IdentifierInfo *II = Name.getAsIdentifierInfo();
1687  if (!II) {
1688    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1689      << Name.getAsString();
1690    return 0;
1691  }
1692
1693  DiagnoseFunctionSpecifiers(D);
1694
1695  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1696  if (!DC->isRecord() && S->getFnParent() == 0) {
1697    // C99 6.9p2: The storage-class specifiers auto and register shall not
1698    // appear in the declaration specifiers in an external declaration.
1699    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1700      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1701      InvalidDecl = true;
1702    }
1703  }
1704  if (DC->isRecord() && !CurContext->isRecord()) {
1705    // This is an out-of-line definition of a static data member.
1706    if (SC == VarDecl::Static) {
1707      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1708           diag::err_static_out_of_line)
1709        << CodeModificationHint::CreateRemoval(
1710                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1711    } else if (SC == VarDecl::None)
1712      SC = VarDecl::Static;
1713  }
1714
1715  // The variable can not
1716  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1717                          II, R, SC,
1718                          // FIXME: Move to DeclGroup...
1719                          D.getDeclSpec().getSourceRange().getBegin());
1720  NewVD->setThreadSpecified(ThreadSpecified);
1721
1722  // Set the lexical context. If the declarator has a C++ scope specifier, the
1723  // lexical context will be different from the semantic context.
1724  NewVD->setLexicalDeclContext(CurContext);
1725
1726  // Handle attributes prior to checking for duplicates in MergeVarDecl
1727  ProcessDeclAttributes(NewVD, D);
1728
1729  // Handle GNU asm-label extension (encoded as an attribute).
1730  if (Expr *E = (Expr*) D.getAsmLabel()) {
1731    // The parser guarantees this is a string.
1732    StringLiteral *SE = cast<StringLiteral>(E);
1733    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1734                                                        SE->getByteLength())));
1735  }
1736
1737  // If name lookup finds a previous declaration that is not in the
1738  // same scope as the new declaration, this may still be an
1739  // acceptable redeclaration.
1740  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1741      !(NewVD->hasLinkage() &&
1742        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1743    PrevDecl = 0;
1744
1745  // Merge the decl with the existing one if appropriate.
1746  if (PrevDecl) {
1747    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1748      // The user tried to define a non-static data member
1749      // out-of-line (C++ [dcl.meaning]p1).
1750      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1751        << D.getCXXScopeSpec().getRange();
1752      PrevDecl = 0;
1753      InvalidDecl = true;
1754    }
1755  } else if (D.getCXXScopeSpec().isSet()) {
1756    // No previous declaration in the qualifying scope.
1757    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1758      << Name << D.getCXXScopeSpec().getRange();
1759    InvalidDecl = true;
1760  }
1761
1762  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1763    InvalidDecl = true;
1764
1765  // If this is a locally-scoped extern C variable, update the map of
1766  // such variables.
1767  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1768      !InvalidDecl)
1769    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1770
1771  return NewVD;
1772}
1773
1774/// \brief Perform semantic checking on a newly-created variable
1775/// declaration.
1776///
1777/// This routine performs all of the type-checking required for a
1778/// variable declaration once it has been build. It is used both to
1779/// check variables after they have been parsed and their declarators
1780/// have been translated into a declaration, and to check
1781///
1782/// \returns true if an error was encountered, false otherwise.
1783bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1784                                    bool &Redeclaration) {
1785  bool Invalid = false;
1786
1787  QualType T = NewVD->getType();
1788
1789  if (T->isObjCInterfaceType()) {
1790    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1791    Invalid = true;
1792  }
1793
1794  // The variable can not have an abstract class type.
1795  if (RequireNonAbstractType(NewVD->getLocation(), T,
1796                             diag::err_abstract_type_in_decl,
1797                             AbstractVariableType))
1798    Invalid = true;
1799
1800  // Emit an error if an address space was applied to decl with local storage.
1801  // This includes arrays of objects with address space qualifiers, but not
1802  // automatic variables that point to other address spaces.
1803  // ISO/IEC TR 18037 S5.1.2
1804  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1805    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1806    Invalid = true;
1807  }
1808
1809  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1810      && !NewVD->hasAttr<BlocksAttr>())
1811    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1812
1813  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1814  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1815  if (isIllegalVLA || isIllegalVM) {
1816    bool SizeIsNegative;
1817    QualType FixedTy =
1818        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1819    if (!FixedTy.isNull()) {
1820      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1821      NewVD->setType(FixedTy);
1822    } else if (T->isVariableArrayType()) {
1823      Invalid = true;
1824
1825      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1826      // FIXME: This won't give the correct result for
1827      // int a[10][n];
1828      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1829
1830      if (NewVD->isFileVarDecl())
1831        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1832          << SizeRange;
1833      else if (NewVD->getStorageClass() == VarDecl::Static)
1834        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1835          << SizeRange;
1836      else
1837        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1838            << SizeRange;
1839    } else {
1840      Invalid = true;
1841
1842      if (NewVD->isFileVarDecl())
1843        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1844      else
1845        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1846    }
1847  }
1848
1849  if (!PrevDecl && NewVD->isExternC(Context)) {
1850    // Since we did not find anything by this name and we're declaring
1851    // an extern "C" variable, look for a non-visible extern "C"
1852    // declaration with the same name.
1853    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1854      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1855    if (Pos != LocallyScopedExternalDecls.end())
1856      PrevDecl = Pos->second;
1857  }
1858
1859  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1860    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1861      << T;
1862    Invalid = true;
1863  }
1864
1865  if (PrevDecl) {
1866    Redeclaration = true;
1867    if (MergeVarDecl(NewVD, PrevDecl))
1868      Invalid = true;
1869  }
1870
1871  return NewVD->isInvalidDecl() || Invalid;
1872}
1873
1874NamedDecl*
1875Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1876                              QualType R, NamedDecl* PrevDecl,
1877                              bool IsFunctionDefinition,
1878                              bool& InvalidDecl, bool &Redeclaration) {
1879  assert(R.getTypePtr()->isFunctionType());
1880
1881  DeclarationName Name = GetNameForDeclarator(D);
1882  FunctionDecl::StorageClass SC = FunctionDecl::None;
1883  switch (D.getDeclSpec().getStorageClassSpec()) {
1884  default: assert(0 && "Unknown storage class!");
1885  case DeclSpec::SCS_auto:
1886  case DeclSpec::SCS_register:
1887  case DeclSpec::SCS_mutable:
1888    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1889         diag::err_typecheck_sclass_func);
1890    InvalidDecl = true;
1891    break;
1892  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1893  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1894  case DeclSpec::SCS_static: {
1895    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1896      // C99 6.7.1p5:
1897      //   The declaration of an identifier for a function that has
1898      //   block scope shall have no explicit storage-class specifier
1899      //   other than extern
1900      // See also (C++ [dcl.stc]p4).
1901      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1902           diag::err_static_block_func);
1903      SC = FunctionDecl::None;
1904    } else
1905      SC = FunctionDecl::Static;
1906    break;
1907  }
1908  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1909  }
1910
1911  bool isInline = D.getDeclSpec().isInlineSpecified();
1912  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1913  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1914
1915  // Check that the return type is not an abstract class type.
1916  // For record types, this is done by the AbstractClassUsageDiagnoser once
1917  // the class has been completely parsed.
1918  if (!DC->isRecord() &&
1919      RequireNonAbstractType(D.getIdentifierLoc(),
1920                             R->getAsFunctionType()->getResultType(),
1921                             diag::err_abstract_type_in_decl,
1922                             AbstractReturnType))
1923    InvalidDecl = true;
1924
1925  // Do not allow returning a objc interface by-value.
1926  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1927    Diag(D.getIdentifierLoc(),
1928         diag::err_object_cannot_be_passed_returned_by_value) << 0
1929      << R->getAsFunctionType()->getResultType();
1930    InvalidDecl = true;
1931  }
1932
1933  bool isVirtualOkay = false;
1934  FunctionDecl *NewFD;
1935  if (D.getKind() == Declarator::DK_Constructor) {
1936    // This is a C++ constructor declaration.
1937    assert(DC->isRecord() &&
1938           "Constructors can only be declared in a member context");
1939
1940    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1941
1942    // Create the new declaration
1943    NewFD = CXXConstructorDecl::Create(Context,
1944                                       cast<CXXRecordDecl>(DC),
1945                                       D.getIdentifierLoc(), Name, R,
1946                                       isExplicit, isInline,
1947                                       /*isImplicitlyDeclared=*/false);
1948
1949    if (InvalidDecl)
1950      NewFD->setInvalidDecl();
1951  } else if (D.getKind() == Declarator::DK_Destructor) {
1952    // This is a C++ destructor declaration.
1953    if (DC->isRecord()) {
1954      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1955
1956      NewFD = CXXDestructorDecl::Create(Context,
1957                                        cast<CXXRecordDecl>(DC),
1958                                        D.getIdentifierLoc(), Name, R,
1959                                        isInline,
1960                                        /*isImplicitlyDeclared=*/false);
1961
1962      if (InvalidDecl)
1963        NewFD->setInvalidDecl();
1964
1965      isVirtualOkay = true;
1966    } else {
1967      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1968
1969      // Create a FunctionDecl to satisfy the function definition parsing
1970      // code path.
1971      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1972                                   Name, R, SC, isInline,
1973                                   /*hasPrototype=*/true,
1974                                   // FIXME: Move to DeclGroup...
1975                                   D.getDeclSpec().getSourceRange().getBegin());
1976      InvalidDecl = true;
1977      NewFD->setInvalidDecl();
1978    }
1979  } else if (D.getKind() == Declarator::DK_Conversion) {
1980    if (!DC->isRecord()) {
1981      Diag(D.getIdentifierLoc(),
1982           diag::err_conv_function_not_member);
1983      return 0;
1984    } else {
1985      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1986
1987      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1988                                        D.getIdentifierLoc(), Name, R,
1989                                        isInline, isExplicit);
1990
1991      if (InvalidDecl)
1992        NewFD->setInvalidDecl();
1993
1994      isVirtualOkay = true;
1995    }
1996  } else if (DC->isRecord()) {
1997    // This is a C++ method declaration.
1998    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1999                                  D.getIdentifierLoc(), Name, R,
2000                                  (SC == FunctionDecl::Static), isInline);
2001
2002    isVirtualOkay = (SC != FunctionDecl::Static);
2003  } else {
2004    // Determine whether the function was written with a
2005    // prototype. This true when:
2006    //   - we're in C++ (where every function has a prototype),
2007    //   - there is a prototype in the declarator, or
2008    //   - the type R of the function is some kind of typedef or other reference
2009    //     to a type name (which eventually refers to a function type).
2010    bool HasPrototype =
2011       getLangOptions().CPlusPlus ||
2012       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2013       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2014
2015    NewFD = FunctionDecl::Create(Context, DC,
2016                                 D.getIdentifierLoc(),
2017                                 Name, R, SC, isInline, HasPrototype,
2018                                 // FIXME: Move to DeclGroup...
2019                                 D.getDeclSpec().getSourceRange().getBegin());
2020  }
2021
2022  // Set the lexical context. If the declarator has a C++
2023  // scope specifier, the lexical context will be different
2024  // from the semantic context.
2025  NewFD->setLexicalDeclContext(CurContext);
2026
2027  // C++ [dcl.fct.spec]p5:
2028  //   The virtual specifier shall only be used in declarations of
2029  //   nonstatic class member functions that appear within a
2030  //   member-specification of a class declaration; see 10.3.
2031  //
2032  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2033  // function is also virtual if it overrides an already virtual
2034  // function. This is important to do here because it's part of the
2035  // declaration.
2036  if (isVirtual && !InvalidDecl) {
2037    if (!isVirtualOkay) {
2038       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2039           diag::err_virtual_non_function);
2040    } else if (!CurContext->isRecord()) {
2041      // 'virtual' was specified outside of the class.
2042      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2043        << CodeModificationHint::CreateRemoval(
2044                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2045    } else {
2046      // Okay: Add virtual to the method.
2047      cast<CXXMethodDecl>(NewFD)->setVirtual();
2048      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2049      CurClass->setAggregate(false);
2050      CurClass->setPOD(false);
2051      CurClass->setPolymorphic(true);
2052    }
2053  }
2054
2055  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2056      !CurContext->isRecord()) {
2057    // C++ [class.static]p1:
2058    //   A data or function member of a class may be declared static
2059    //   in a class definition, in which case it is a static member of
2060    //   the class.
2061
2062    // Complain about the 'static' specifier if it's on an out-of-line
2063    // member function definition.
2064    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2065         diag::err_static_out_of_line)
2066      << CodeModificationHint::CreateRemoval(
2067                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2068  }
2069
2070  // Handle GNU asm-label extension (encoded as an attribute).
2071  if (Expr *E = (Expr*) D.getAsmLabel()) {
2072    // The parser guarantees this is a string.
2073    StringLiteral *SE = cast<StringLiteral>(E);
2074    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2075                                                        SE->getByteLength())));
2076  }
2077
2078  // Copy the parameter declarations from the declarator D to
2079  // the function declaration NewFD, if they are available.
2080  if (D.getNumTypeObjects() > 0) {
2081    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2082
2083    // Create Decl objects for each parameter, adding them to the
2084    // FunctionDecl.
2085    llvm::SmallVector<ParmVarDecl*, 16> Params;
2086
2087    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2088    // function that takes no arguments, not a function that takes a
2089    // single void argument.
2090    // We let through "const void" here because Sema::GetTypeForDeclarator
2091    // already checks for that case.
2092    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2093        FTI.ArgInfo[0].Param &&
2094        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2095      // empty arg list, don't push any params.
2096      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2097
2098      // In C++, the empty parameter-type-list must be spelled "void"; a
2099      // typedef of void is not permitted.
2100      if (getLangOptions().CPlusPlus &&
2101          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2102        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2103      }
2104    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2105      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2106        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2107    }
2108
2109    NewFD->setParams(Context, &Params[0], Params.size());
2110  } else if (R->getAsTypedefType()) {
2111    // When we're declaring a function with a typedef, as in the
2112    // following example, we'll need to synthesize (unnamed)
2113    // parameters for use in the declaration.
2114    //
2115    // @code
2116    // typedef void fn(int);
2117    // fn f;
2118    // @endcode
2119    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2120    if (!FT) {
2121      // This is a typedef of a function with no prototype, so we
2122      // don't need to do anything.
2123    } else if ((FT->getNumArgs() == 0) ||
2124               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2125                FT->getArgType(0)->isVoidType())) {
2126      // This is a zero-argument function. We don't need to do anything.
2127    } else {
2128      // Synthesize a parameter for each argument type.
2129      llvm::SmallVector<ParmVarDecl*, 16> Params;
2130      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2131           ArgType != FT->arg_type_end(); ++ArgType) {
2132        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2133                                                 SourceLocation(), 0,
2134                                                 *ArgType, VarDecl::None,
2135                                                 0);
2136        Param->setImplicit();
2137        Params.push_back(Param);
2138      }
2139
2140      NewFD->setParams(Context, &Params[0], Params.size());
2141    }
2142  }
2143
2144  // If name lookup finds a previous declaration that is not in the
2145  // same scope as the new declaration, this may still be an
2146  // acceptable redeclaration.
2147  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2148      !(NewFD->hasLinkage() &&
2149        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2150    PrevDecl = 0;
2151
2152  // Perform semantic checking on the function declaration.
2153  bool OverloadableAttrRequired = false; // FIXME: HACK!
2154  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2155                               /*FIXME:*/OverloadableAttrRequired))
2156    InvalidDecl = true;
2157
2158  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2159    // An out-of-line member function declaration must also be a
2160    // definition (C++ [dcl.meaning]p1).
2161    if (!IsFunctionDefinition) {
2162      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2163        << D.getCXXScopeSpec().getRange();
2164      InvalidDecl = true;
2165    } else if (!Redeclaration) {
2166      // The user tried to provide an out-of-line definition for a
2167      // function that is a member of a class or namespace, but there
2168      // was no such member function declared (C++ [class.mfct]p2,
2169      // C++ [namespace.memdef]p2). For example:
2170      //
2171      // class X {
2172      //   void f() const;
2173      // };
2174      //
2175      // void X::f() { } // ill-formed
2176      //
2177      // Complain about this problem, and attempt to suggest close
2178      // matches (e.g., those that differ only in cv-qualifiers and
2179      // whether the parameter types are references).
2180      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2181        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2182      InvalidDecl = true;
2183
2184      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2185                                              true);
2186      assert(!Prev.isAmbiguous() &&
2187             "Cannot have an ambiguity in previous-declaration lookup");
2188      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2189           Func != FuncEnd; ++Func) {
2190        if (isa<FunctionDecl>(*Func) &&
2191            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2192          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2193      }
2194
2195      PrevDecl = 0;
2196    }
2197  }
2198
2199  // Handle attributes. We need to have merged decls when handling attributes
2200  // (for example to check for conflicts, etc).
2201  // FIXME: This needs to happen before we merge declarations. Then,
2202  // let attribute merging cope with attribute conflicts.
2203  ProcessDeclAttributes(NewFD, D);
2204  AddKnownFunctionAttributes(NewFD);
2205
2206  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2207    // If a function name is overloadable in C, then every function
2208    // with that name must be marked "overloadable".
2209    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2210      << Redeclaration << NewFD;
2211    if (PrevDecl)
2212      Diag(PrevDecl->getLocation(),
2213           diag::note_attribute_overloadable_prev_overload);
2214    NewFD->addAttr(::new (Context) OverloadableAttr());
2215  }
2216
2217  // If this is a locally-scoped extern C function, update the
2218  // map of such names.
2219  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2220      && !InvalidDecl)
2221    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2222
2223  return NewFD;
2224}
2225
2226/// \brief Perform semantic checking of a new function declaration.
2227///
2228/// Performs semantic analysis of the new function declaration
2229/// NewFD. This routine performs all semantic checking that does not
2230/// require the actual declarator involved in the declaration, and is
2231/// used both for the declaration of functions as they are parsed
2232/// (called via ActOnDeclarator) and for the declaration of functions
2233/// that have been instantiated via C++ template instantiation (called
2234/// via InstantiateDecl).
2235///
2236/// \returns true if there was an error, false otherwise.
2237bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2238                                    bool &Redeclaration,
2239                                    bool &OverloadableAttrRequired) {
2240  bool InvalidDecl = false;
2241
2242  // Semantic checking for this function declaration (in isolation).
2243  if (getLangOptions().CPlusPlus) {
2244    // C++-specific checks.
2245    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2246      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2247    else if (isa<CXXDestructorDecl>(NewFD)) {
2248      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2249      Record->setUserDeclaredDestructor(true);
2250      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2251      // user-defined destructor.
2252      Record->setPOD(false);
2253    } else if (CXXConversionDecl *Conversion
2254               = dyn_cast<CXXConversionDecl>(NewFD))
2255      ActOnConversionDeclarator(Conversion);
2256
2257    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2258    if (NewFD->isOverloadedOperator() &&
2259        CheckOverloadedOperatorDeclaration(NewFD))
2260      InvalidDecl = true;
2261  }
2262
2263  // Check for a previous declaration of this name.
2264  if (!PrevDecl && NewFD->isExternC(Context)) {
2265    // Since we did not find anything by this name and we're declaring
2266    // an extern "C" function, look for a non-visible extern "C"
2267    // declaration with the same name.
2268    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2269      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2270    if (Pos != LocallyScopedExternalDecls.end())
2271      PrevDecl = Pos->second;
2272  }
2273
2274  // Merge or overload the declaration with an existing declaration of
2275  // the same name, if appropriate.
2276  if (PrevDecl) {
2277    // Determine whether NewFD is an overload of PrevDecl or
2278    // a declaration that requires merging. If it's an overload,
2279    // there's no more work to do here; we'll just add the new
2280    // function to the scope.
2281    OverloadedFunctionDecl::function_iterator MatchedDecl;
2282
2283    if (!getLangOptions().CPlusPlus &&
2284        AllowOverloadingOfFunction(PrevDecl, Context)) {
2285      OverloadableAttrRequired = true;
2286
2287      // Functions marked "overloadable" must have a prototype (that
2288      // we can't get through declaration merging).
2289      if (!NewFD->getType()->getAsFunctionProtoType()) {
2290        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2291          << NewFD;
2292        InvalidDecl = true;
2293        Redeclaration = true;
2294
2295        // Turn this into a variadic function with no parameters.
2296        QualType R = Context.getFunctionType(
2297                       NewFD->getType()->getAsFunctionType()->getResultType(),
2298                       0, 0, true, 0);
2299        NewFD->setType(R);
2300      }
2301    }
2302
2303    if (PrevDecl &&
2304        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2305         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2306      Redeclaration = true;
2307      Decl *OldDecl = PrevDecl;
2308
2309      // If PrevDecl was an overloaded function, extract the
2310      // FunctionDecl that matched.
2311      if (isa<OverloadedFunctionDecl>(PrevDecl))
2312        OldDecl = *MatchedDecl;
2313
2314      // NewFD and OldDecl represent declarations that need to be
2315      // merged.
2316      if (MergeFunctionDecl(NewFD, OldDecl))
2317        InvalidDecl = true;
2318
2319      if (!InvalidDecl)
2320        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2321    }
2322  }
2323
2324  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2325    // In C++, check default arguments now that we have merged decls. Unless
2326    // the lexical context is the class, because in this case this is done
2327    // during delayed parsing anyway.
2328    CheckCXXDefaultArguments(NewFD);
2329  }
2330
2331  return InvalidDecl || NewFD->isInvalidDecl();
2332}
2333
2334bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2335  // FIXME: Need strict checking.  In C89, we need to check for
2336  // any assignment, increment, decrement, function-calls, or
2337  // commas outside of a sizeof.  In C99, it's the same list,
2338  // except that the aforementioned are allowed in unevaluated
2339  // expressions.  Everything else falls under the
2340  // "may accept other forms of constant expressions" exception.
2341  // (We never end up here for C++, so the constant expression
2342  // rules there don't matter.)
2343  if (Init->isConstantInitializer(Context))
2344    return false;
2345  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2346    << Init->getSourceRange();
2347  return true;
2348}
2349
2350void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2351  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2352}
2353
2354/// AddInitializerToDecl - Adds the initializer Init to the
2355/// declaration dcl. If DirectInit is true, this is C++ direct
2356/// initialization rather than copy initialization.
2357void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2358  Decl *RealDecl = dcl.getAs<Decl>();
2359  // If there is no declaration, there was an error parsing it.  Just ignore
2360  // the initializer.
2361  if (RealDecl == 0)
2362    return;
2363
2364  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2365    // With declarators parsed the way they are, the parser cannot
2366    // distinguish between a normal initializer and a pure-specifier.
2367    // Thus this grotesque test.
2368    IntegerLiteral *IL;
2369    Expr *Init = static_cast<Expr *>(init.get());
2370    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2371        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2372      if (Method->isVirtual()) {
2373        Method->setPure();
2374
2375        // A class is abstract if at least one function is pure virtual.
2376        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2377      } else if (!Method->isInvalidDecl()) {
2378        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2379          << Method->getDeclName() << Init->getSourceRange();
2380        Method->setInvalidDecl();
2381      }
2382    } else {
2383      Diag(Method->getLocation(), diag::err_member_function_initialization)
2384        << Method->getDeclName() << Init->getSourceRange();
2385      Method->setInvalidDecl();
2386    }
2387    return;
2388  }
2389
2390  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2391  if (!VDecl) {
2392    if (getLangOptions().CPlusPlus &&
2393        RealDecl->getLexicalDeclContext()->isRecord() &&
2394        isa<NamedDecl>(RealDecl))
2395      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2396        << cast<NamedDecl>(RealDecl)->getDeclName();
2397    else
2398      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2399    RealDecl->setInvalidDecl();
2400    return;
2401  }
2402
2403  if (!VDecl->getType()->isArrayType() &&
2404      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2405                          diag::err_typecheck_decl_incomplete_type)) {
2406    RealDecl->setInvalidDecl();
2407    return;
2408  }
2409
2410  const VarDecl *Def = 0;
2411  if (VDecl->getDefinition(Def)) {
2412    Diag(VDecl->getLocation(), diag::err_redefinition)
2413      << VDecl->getDeclName();
2414    Diag(Def->getLocation(), diag::note_previous_definition);
2415    VDecl->setInvalidDecl();
2416    return;
2417  }
2418
2419  // Take ownership of the expression, now that we're sure we have somewhere
2420  // to put it.
2421  Expr *Init = static_cast<Expr *>(init.release());
2422  assert(Init && "missing initializer");
2423
2424  // Get the decls type and save a reference for later, since
2425  // CheckInitializerTypes may change it.
2426  QualType DclT = VDecl->getType(), SavT = DclT;
2427  if (VDecl->isBlockVarDecl()) {
2428    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2429      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2430      VDecl->setInvalidDecl();
2431    } else if (!VDecl->isInvalidDecl()) {
2432      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2433                                VDecl->getDeclName(), DirectInit))
2434        VDecl->setInvalidDecl();
2435
2436      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2437      // Don't check invalid declarations to avoid emitting useless diagnostics.
2438      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2439        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2440          CheckForConstantInitializer(Init, DclT);
2441      }
2442    }
2443  } else if (VDecl->isStaticDataMember() &&
2444             VDecl->getLexicalDeclContext()->isRecord()) {
2445    // This is an in-class initialization for a static data member, e.g.,
2446    //
2447    // struct S {
2448    //   static const int value = 17;
2449    // };
2450
2451    // Attach the initializer
2452    VDecl->setInit(Init);
2453
2454    // C++ [class.mem]p4:
2455    //   A member-declarator can contain a constant-initializer only
2456    //   if it declares a static member (9.4) of const integral or
2457    //   const enumeration type, see 9.4.2.
2458    QualType T = VDecl->getType();
2459    if (!T->isDependentType() &&
2460        (!Context.getCanonicalType(T).isConstQualified() ||
2461         !T->isIntegralType())) {
2462      Diag(VDecl->getLocation(), diag::err_member_initialization)
2463        << VDecl->getDeclName() << Init->getSourceRange();
2464      VDecl->setInvalidDecl();
2465    } else {
2466      // C++ [class.static.data]p4:
2467      //   If a static data member is of const integral or const
2468      //   enumeration type, its declaration in the class definition
2469      //   can specify a constant-initializer which shall be an
2470      //   integral constant expression (5.19).
2471      if (!Init->isTypeDependent() &&
2472          !Init->getType()->isIntegralType()) {
2473        // We have a non-dependent, non-integral or enumeration type.
2474        Diag(Init->getSourceRange().getBegin(),
2475             diag::err_in_class_initializer_non_integral_type)
2476          << Init->getType() << Init->getSourceRange();
2477        VDecl->setInvalidDecl();
2478      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2479        // Check whether the expression is a constant expression.
2480        llvm::APSInt Value;
2481        SourceLocation Loc;
2482        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2483          Diag(Loc, diag::err_in_class_initializer_non_constant)
2484            << Init->getSourceRange();
2485          VDecl->setInvalidDecl();
2486        } else if (!VDecl->getType()->isDependentType())
2487          ImpCastExprToType(Init, VDecl->getType());
2488      }
2489    }
2490  } else if (VDecl->isFileVarDecl()) {
2491    if (VDecl->hasExternalStorage())
2492      Diag(VDecl->getLocation(), diag::warn_extern_init);
2493    if (!VDecl->isInvalidDecl())
2494      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2495                                VDecl->getDeclName(), DirectInit))
2496        VDecl->setInvalidDecl();
2497
2498    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2499    // Don't check invalid declarations to avoid emitting useless diagnostics.
2500    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2501      // C99 6.7.8p4. All file scoped initializers need to be constant.
2502      CheckForConstantInitializer(Init, DclT);
2503    }
2504  }
2505  // If the type changed, it means we had an incomplete type that was
2506  // completed by the initializer. For example:
2507  //   int ary[] = { 1, 3, 5 };
2508  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2509  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2510    VDecl->setType(DclT);
2511    Init->setType(DclT);
2512  }
2513
2514  // Attach the initializer to the decl.
2515  VDecl->setInit(Init);
2516  return;
2517}
2518
2519void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2520  Decl *RealDecl = dcl.getAs<Decl>();
2521
2522  // If there is no declaration, there was an error parsing it. Just ignore it.
2523  if (RealDecl == 0)
2524    return;
2525
2526  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2527    QualType Type = Var->getType();
2528    // C++ [dcl.init.ref]p3:
2529    //   The initializer can be omitted for a reference only in a
2530    //   parameter declaration (8.3.5), in the declaration of a
2531    //   function return type, in the declaration of a class member
2532    //   within its class declaration (9.2), and where the extern
2533    //   specifier is explicitly used.
2534    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2535      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2536        << Var->getDeclName()
2537        << SourceRange(Var->getLocation(), Var->getLocation());
2538      Var->setInvalidDecl();
2539      return;
2540    }
2541
2542    // C++ [dcl.init]p9:
2543    //
2544    //   If no initializer is specified for an object, and the object
2545    //   is of (possibly cv-qualified) non-POD class type (or array
2546    //   thereof), the object shall be default-initialized; if the
2547    //   object is of const-qualified type, the underlying class type
2548    //   shall have a user-declared default constructor.
2549    if (getLangOptions().CPlusPlus) {
2550      QualType InitType = Type;
2551      if (const ArrayType *Array = Context.getAsArrayType(Type))
2552        InitType = Array->getElementType();
2553      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2554        const CXXConstructorDecl *Constructor = 0;
2555        if (!RequireCompleteType(Var->getLocation(), InitType,
2556                                    diag::err_invalid_incomplete_type_use))
2557          Constructor
2558            = PerformInitializationByConstructor(InitType, 0, 0,
2559                                                 Var->getLocation(),
2560                                               SourceRange(Var->getLocation(),
2561                                                           Var->getLocation()),
2562                                                 Var->getDeclName(),
2563                                                 IK_Default);
2564        if (!Constructor)
2565          Var->setInvalidDecl();
2566      }
2567    }
2568
2569#if 0
2570    // FIXME: Temporarily disabled because we are not properly parsing
2571    // linkage specifications on declarations, e.g.,
2572    //
2573    //   extern "C" const CGPoint CGPointerZero;
2574    //
2575    // C++ [dcl.init]p9:
2576    //
2577    //     If no initializer is specified for an object, and the
2578    //     object is of (possibly cv-qualified) non-POD class type (or
2579    //     array thereof), the object shall be default-initialized; if
2580    //     the object is of const-qualified type, the underlying class
2581    //     type shall have a user-declared default
2582    //     constructor. Otherwise, if no initializer is specified for
2583    //     an object, the object and its subobjects, if any, have an
2584    //     indeterminate initial value; if the object or any of its
2585    //     subobjects are of const-qualified type, the program is
2586    //     ill-formed.
2587    //
2588    // This isn't technically an error in C, so we don't diagnose it.
2589    //
2590    // FIXME: Actually perform the POD/user-defined default
2591    // constructor check.
2592    if (getLangOptions().CPlusPlus &&
2593        Context.getCanonicalType(Type).isConstQualified() &&
2594        !Var->hasExternalStorage())
2595      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2596        << Var->getName()
2597        << SourceRange(Var->getLocation(), Var->getLocation());
2598#endif
2599  }
2600}
2601
2602Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2603                                                   unsigned NumDecls) {
2604  llvm::SmallVector<Decl*, 8> Decls;
2605
2606  for (unsigned i = 0; i != NumDecls; ++i)
2607    if (Decl *D = Group[i].getAs<Decl>())
2608      Decls.push_back(D);
2609
2610  // Perform semantic analysis that depends on having fully processed both
2611  // the declarator and initializer.
2612  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2613    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2614    if (!IDecl)
2615      continue;
2616    QualType T = IDecl->getType();
2617
2618    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2619    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2620    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2621      if (!IDecl->isInvalidDecl() &&
2622          RequireCompleteType(IDecl->getLocation(), T,
2623                              diag::err_typecheck_decl_incomplete_type))
2624        IDecl->setInvalidDecl();
2625    }
2626    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2627    // object that has file scope without an initializer, and without a
2628    // storage-class specifier or with the storage-class specifier "static",
2629    // constitutes a tentative definition. Note: A tentative definition with
2630    // external linkage is valid (C99 6.2.2p5).
2631    if (IDecl->isTentativeDefinition(Context)) {
2632      QualType CheckType = T;
2633      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2634
2635      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2636      if (ArrayT) {
2637        CheckType = ArrayT->getElementType();
2638        DiagID = diag::err_illegal_decl_array_incomplete_type;
2639      }
2640
2641      if (IDecl->isInvalidDecl()) {
2642        // Do nothing with invalid declarations
2643      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2644                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2645        // C99 6.9.2p3: If the declaration of an identifier for an object is
2646        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2647        // declared type shall not be an incomplete type.
2648        IDecl->setInvalidDecl();
2649      }
2650    }
2651  }
2652  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2653                                                   &Decls[0], Decls.size()));
2654}
2655
2656
2657/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2658/// to introduce parameters into function prototype scope.
2659Sema::DeclPtrTy
2660Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2661  const DeclSpec &DS = D.getDeclSpec();
2662
2663  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2664  VarDecl::StorageClass StorageClass = VarDecl::None;
2665  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2666    StorageClass = VarDecl::Register;
2667  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2668    Diag(DS.getStorageClassSpecLoc(),
2669         diag::err_invalid_storage_class_in_func_decl);
2670    D.getMutableDeclSpec().ClearStorageClassSpecs();
2671  }
2672  if (DS.isThreadSpecified()) {
2673    Diag(DS.getThreadSpecLoc(),
2674         diag::err_invalid_storage_class_in_func_decl);
2675    D.getMutableDeclSpec().ClearStorageClassSpecs();
2676  }
2677  DiagnoseFunctionSpecifiers(D);
2678
2679  // Check that there are no default arguments inside the type of this
2680  // parameter (C++ only).
2681  if (getLangOptions().CPlusPlus)
2682    CheckExtraCXXDefaultArguments(D);
2683
2684  // In this context, we *do not* check D.getInvalidType(). If the declarator
2685  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2686  // though it will not reflect the user specified type.
2687  QualType parmDeclType = GetTypeForDeclarator(D, S);
2688  if (parmDeclType.isNull()) {
2689    D.setInvalidType(true);
2690    parmDeclType = Context.IntTy;
2691  }
2692
2693  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2694  // Can this happen for params?  We already checked that they don't conflict
2695  // among each other.  Here they can only shadow globals, which is ok.
2696  IdentifierInfo *II = D.getIdentifier();
2697  if (II) {
2698    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2699      if (PrevDecl->isTemplateParameter()) {
2700        // Maybe we will complain about the shadowed template parameter.
2701        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2702        // Just pretend that we didn't see the previous declaration.
2703        PrevDecl = 0;
2704      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2705        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2706
2707        // Recover by removing the name
2708        II = 0;
2709        D.SetIdentifier(0, D.getIdentifierLoc());
2710      }
2711    }
2712  }
2713
2714  // Parameters can not be abstract class types.
2715  // For record types, this is done by the AbstractClassUsageDiagnoser once
2716  // the class has been completely parsed.
2717  if (!CurContext->isRecord() &&
2718      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2719                             diag::err_abstract_type_in_decl,
2720                             AbstractParamType))
2721    D.setInvalidType(true);
2722
2723  QualType T = adjustParameterType(parmDeclType);
2724
2725  ParmVarDecl *New;
2726  if (T == parmDeclType) // parameter type did not need adjustment
2727    New = ParmVarDecl::Create(Context, CurContext,
2728                              D.getIdentifierLoc(), II,
2729                              parmDeclType, StorageClass,
2730                              0);
2731  else // keep track of both the adjusted and unadjusted types
2732    New = OriginalParmVarDecl::Create(Context, CurContext,
2733                                      D.getIdentifierLoc(), II, T,
2734                                      parmDeclType, StorageClass, 0);
2735
2736  if (D.getInvalidType())
2737    New->setInvalidDecl();
2738
2739  // Parameter declarators cannot be interface types. All ObjC objects are
2740  // passed by reference.
2741  if (T->isObjCInterfaceType()) {
2742    Diag(D.getIdentifierLoc(),
2743         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2744    New->setInvalidDecl();
2745  }
2746
2747  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2748  if (D.getCXXScopeSpec().isSet()) {
2749    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2750      << D.getCXXScopeSpec().getRange();
2751    New->setInvalidDecl();
2752  }
2753
2754  // Add the parameter declaration into this scope.
2755  S->AddDecl(DeclPtrTy::make(New));
2756  if (II)
2757    IdResolver.AddDecl(New);
2758
2759  ProcessDeclAttributes(New, D);
2760  return DeclPtrTy::make(New);
2761}
2762
2763void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2764                                           SourceLocation LocAfterDecls) {
2765  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2766         "Not a function declarator!");
2767  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2768
2769  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2770  // for a K&R function.
2771  if (!FTI.hasPrototype) {
2772    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2773      --i;
2774      if (FTI.ArgInfo[i].Param == 0) {
2775        std::string Code = "  int ";
2776        Code += FTI.ArgInfo[i].Ident->getName();
2777        Code += ";\n";
2778        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2779          << FTI.ArgInfo[i].Ident
2780          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2781
2782        // Implicitly declare the argument as type 'int' for lack of a better
2783        // type.
2784        DeclSpec DS;
2785        const char* PrevSpec; // unused
2786        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2787                           PrevSpec);
2788        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2789        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2790        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2791      }
2792    }
2793  }
2794}
2795
2796Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2797                                              Declarator &D) {
2798  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2799  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2800         "Not a function declarator!");
2801  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2802
2803  if (FTI.hasPrototype) {
2804    // FIXME: Diagnose arguments without names in C.
2805  }
2806
2807  Scope *ParentScope = FnBodyScope->getParent();
2808
2809  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2810  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2811}
2812
2813Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2814  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2815
2816  // See if this is a redefinition.
2817  const FunctionDecl *Definition;
2818  if (FD->getBody(Definition)) {
2819    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2820    Diag(Definition->getLocation(), diag::note_previous_definition);
2821  }
2822
2823  // Builtin functions cannot be defined.
2824  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2825    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2826      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2827      FD->setInvalidDecl();
2828    }
2829  }
2830
2831  // The return type of a function definition must be complete
2832  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2833  QualType ResultType = FD->getResultType();
2834  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2835      RequireCompleteType(FD->getLocation(), ResultType,
2836                          diag::err_func_def_incomplete_result))
2837    FD->setInvalidDecl();
2838
2839  // GNU warning -Wmissing-prototypes:
2840  //   Warn if a global function is defined without a previous
2841  //   prototype declaration. This warning is issued even if the
2842  //   definition itself provides a prototype. The aim is to detect
2843  //   global functions that fail to be declared in header files.
2844  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2845      !FD->isMain()) {
2846    bool MissingPrototype = true;
2847    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2848         Prev; Prev = Prev->getPreviousDeclaration()) {
2849      // Ignore any declarations that occur in function or method
2850      // scope, because they aren't visible from the header.
2851      if (Prev->getDeclContext()->isFunctionOrMethod())
2852        continue;
2853
2854      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2855      break;
2856    }
2857
2858    if (MissingPrototype)
2859      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2860  }
2861
2862  PushDeclContext(FnBodyScope, FD);
2863
2864  // Check the validity of our function parameters
2865  CheckParmsForFunctionDef(FD);
2866
2867  // Introduce our parameters into the function scope
2868  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2869    ParmVarDecl *Param = FD->getParamDecl(p);
2870    Param->setOwningFunction(FD);
2871
2872    // If this has an identifier, add it to the scope stack.
2873    if (Param->getIdentifier())
2874      PushOnScopeChains(Param, FnBodyScope);
2875  }
2876
2877  // Checking attributes of current function definition
2878  // dllimport attribute.
2879  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2880    // dllimport attribute cannot be applied to definition.
2881    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2882      Diag(FD->getLocation(),
2883           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2884        << "dllimport";
2885      FD->setInvalidDecl();
2886      return DeclPtrTy::make(FD);
2887    } else {
2888      // If a symbol previously declared dllimport is later defined, the
2889      // attribute is ignored in subsequent references, and a warning is
2890      // emitted.
2891      Diag(FD->getLocation(),
2892           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2893        << FD->getNameAsCString() << "dllimport";
2894    }
2895  }
2896  return DeclPtrTy::make(FD);
2897}
2898
2899static bool StatementCreatesScope(Stmt* S) {
2900  DeclStmt *DS = dyn_cast<DeclStmt>(S);
2901  if (DS == 0) return false;
2902
2903  for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
2904       I != E; ++I) {
2905    if (VarDecl *D = dyn_cast<VarDecl>(*I)) {
2906      if (D->getType()->isVariablyModifiedType() ||
2907          D->hasAttr<CleanupAttr>())
2908        return true;
2909    } else if (TypedefDecl *D = dyn_cast<TypedefDecl>(*I)) {
2910      if (D->getUnderlyingType()->isVariablyModifiedType())
2911        return true;
2912    }
2913  }
2914
2915  return false;
2916}
2917
2918
2919void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2920                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2921                                    std::vector<void*>& ScopeStack,
2922                                    Stmt* CurStmt,
2923                                    Stmt* ParentCompoundStmt) {
2924  for (Stmt::child_iterator i = CurStmt->child_begin();
2925       i != CurStmt->child_end(); ++i) {
2926    if (!*i) continue;
2927    if (StatementCreatesScope(*i))  {
2928      ScopeStack.push_back(*i);
2929      PopScopeMap[*i] = ParentCompoundStmt;
2930    } else if (isa<LabelStmt>(CurStmt)) {
2931      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2932    }
2933    if (isa<DeclStmt>(*i)) continue;
2934    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2935    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2936                             *i, CurCompound);
2937  }
2938
2939  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2940    ScopeStack.pop_back();
2941  }
2942}
2943
2944void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2945                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2946                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2947                                   std::vector<void*>& ScopeStack,
2948                                   Stmt* CurStmt) {
2949  for (Stmt::child_iterator i = CurStmt->child_begin();
2950       i != CurStmt->child_end(); ++i) {
2951    if (!*i) continue;
2952    if (StatementCreatesScope(*i))  {
2953      ScopeStack.push_back(*i);
2954    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2955      void* LScope = LabelScopeMap[GS->getLabel()];
2956      if (LScope) {
2957        bool foundScopeInStack = false;
2958        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2959          if (LScope == ScopeStack[i-1]) {
2960            foundScopeInStack = true;
2961            break;
2962          }
2963        }
2964        if (!foundScopeInStack) {
2965          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2966        }
2967      }
2968    }
2969    if (isa<DeclStmt>(*i)) continue;
2970    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2971                            ScopeStack, *i);
2972  }
2973
2974  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2975    ScopeStack.pop_back();
2976  }
2977}
2978
2979Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2980  Decl *dcl = D.getAs<Decl>();
2981  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2982  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2983    FD->setBody(cast<CompoundStmt>(Body));
2984    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2985  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2986    assert(MD == getCurMethodDecl() && "Method parsing confused");
2987    MD->setBody(cast<CompoundStmt>(Body));
2988  } else {
2989    Body->Destroy(Context);
2990    return DeclPtrTy();
2991  }
2992  PopDeclContext();
2993  // Verify and clean out per-function state.
2994
2995  bool HaveLabels = !LabelMap.empty();
2996  // Check goto/label use.
2997  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2998       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2999    // Verify that we have no forward references left.  If so, there was a goto
3000    // or address of a label taken, but no definition of it.  Label fwd
3001    // definitions are indicated with a null substmt.
3002    if (I->second->getSubStmt() == 0) {
3003      LabelStmt *L = I->second;
3004      // Emit error.
3005      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3006
3007      // At this point, we have gotos that use the bogus label.  Stitch it into
3008      // the function body so that they aren't leaked and that the AST is well
3009      // formed.
3010      if (Body) {
3011#if 0
3012        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
3013        // and the AST is malformed anyway.  We should just blow away 'L'.
3014        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3015        cast<CompoundStmt>(Body)->push_back(L);
3016#else
3017        L->Destroy(Context);
3018#endif
3019      } else {
3020        // The whole function wasn't parsed correctly, just delete this.
3021        L->Destroy(Context);
3022      }
3023    }
3024  }
3025  LabelMap.clear();
3026
3027  if (!Body) return D;
3028
3029  if (HaveLabels) {
3030    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
3031    llvm::DenseMap<void*, Stmt*> PopScopeMap;
3032    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
3033    std::vector<void*> ScopeStack;
3034    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
3035    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
3036  }
3037
3038  return D;
3039}
3040
3041/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3042/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3043NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3044                                          IdentifierInfo &II, Scope *S) {
3045  // Before we produce a declaration for an implicitly defined
3046  // function, see whether there was a locally-scoped declaration of
3047  // this name as a function or variable. If so, use that
3048  // (non-visible) declaration, and complain about it.
3049  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3050    = LocallyScopedExternalDecls.find(&II);
3051  if (Pos != LocallyScopedExternalDecls.end()) {
3052    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3053    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3054    return Pos->second;
3055  }
3056
3057  // Extension in C99.  Legal in C90, but warn about it.
3058  if (getLangOptions().C99)
3059    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3060  else
3061    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3062
3063  // FIXME: handle stuff like:
3064  // void foo() { extern float X(); }
3065  // void bar() { X(); }  <-- implicit decl for X in another scope.
3066
3067  // Set a Declarator for the implicit definition: int foo();
3068  const char *Dummy;
3069  DeclSpec DS;
3070  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3071  Error = Error; // Silence warning.
3072  assert(!Error && "Error setting up implicit decl!");
3073  Declarator D(DS, Declarator::BlockContext);
3074  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3075                                             0, 0, 0, Loc, D),
3076                SourceLocation());
3077  D.SetIdentifier(&II, Loc);
3078
3079  // Insert this function into translation-unit scope.
3080
3081  DeclContext *PrevDC = CurContext;
3082  CurContext = Context.getTranslationUnitDecl();
3083
3084  FunctionDecl *FD =
3085 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3086  FD->setImplicit();
3087
3088  CurContext = PrevDC;
3089
3090  AddKnownFunctionAttributes(FD);
3091
3092  return FD;
3093}
3094
3095/// \brief Adds any function attributes that we know a priori based on
3096/// the declaration of this function.
3097///
3098/// These attributes can apply both to implicitly-declared builtins
3099/// (like __builtin___printf_chk) or to library-declared functions
3100/// like NSLog or printf.
3101void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3102  if (FD->isInvalidDecl())
3103    return;
3104
3105  // If this is a built-in function, map its builtin attributes to
3106  // actual attributes.
3107  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3108    // Handle printf-formatting attributes.
3109    unsigned FormatIdx;
3110    bool HasVAListArg;
3111    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3112      if (!FD->getAttr<FormatAttr>())
3113        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3114                                               FormatIdx + 2));
3115    }
3116
3117    // Mark const if we don't care about errno and that is the only
3118    // thing preventing the function from being const. This allows
3119    // IRgen to use LLVM intrinsics for such functions.
3120    if (!getLangOptions().MathErrno &&
3121        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3122      if (!FD->getAttr<ConstAttr>())
3123        FD->addAttr(::new (Context) ConstAttr());
3124    }
3125  }
3126
3127  IdentifierInfo *Name = FD->getIdentifier();
3128  if (!Name)
3129    return;
3130  if ((!getLangOptions().CPlusPlus &&
3131       FD->getDeclContext()->isTranslationUnit()) ||
3132      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3133       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3134       LinkageSpecDecl::lang_c)) {
3135    // Okay: this could be a libc/libm/Objective-C function we know
3136    // about.
3137  } else
3138    return;
3139
3140  unsigned KnownID;
3141  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3142    if (KnownFunctionIDs[KnownID] == Name)
3143      break;
3144
3145  switch (KnownID) {
3146  case id_NSLog:
3147  case id_NSLogv:
3148    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3149      // FIXME: We known better than our headers.
3150      const_cast<FormatAttr *>(Format)->setType("printf");
3151    } else
3152      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3153    break;
3154
3155  case id_asprintf:
3156  case id_vasprintf:
3157    if (!FD->getAttr<FormatAttr>())
3158      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3159    break;
3160
3161  default:
3162    // Unknown function or known function without any attributes to
3163    // add. Do nothing.
3164    break;
3165  }
3166}
3167
3168TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3169  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3170  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3171
3172  // Scope manipulation handled by caller.
3173  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3174                                           D.getIdentifierLoc(),
3175                                           D.getIdentifier(),
3176                                           T);
3177
3178  if (TagType *TT = dyn_cast<TagType>(T)) {
3179    TagDecl *TD = TT->getDecl();
3180
3181    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3182    // keep track of the TypedefDecl.
3183    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3184      TD->setTypedefForAnonDecl(NewTD);
3185  }
3186
3187  if (D.getInvalidType())
3188    NewTD->setInvalidDecl();
3189  return NewTD;
3190}
3191
3192/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3193/// former case, Name will be non-null.  In the later case, Name will be null.
3194/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3195/// reference/declaration/definition of a tag.
3196Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3197                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3198                               IdentifierInfo *Name, SourceLocation NameLoc,
3199                               AttributeList *Attr, AccessSpecifier AS) {
3200  // If this is not a definition, it must have a name.
3201  assert((Name != 0 || TK == TK_Definition) &&
3202         "Nameless record must be a definition!");
3203
3204  TagDecl::TagKind Kind;
3205  switch (TagSpec) {
3206  default: assert(0 && "Unknown tag type!");
3207  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3208  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3209  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3210  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3211  }
3212
3213  DeclContext *SearchDC = CurContext;
3214  DeclContext *DC = CurContext;
3215  NamedDecl *PrevDecl = 0;
3216
3217  bool Invalid = false;
3218
3219  if (Name && SS.isNotEmpty()) {
3220    // We have a nested-name tag ('struct foo::bar').
3221
3222    // Check for invalid 'foo::'.
3223    if (SS.isInvalid()) {
3224      Name = 0;
3225      goto CreateNewDecl;
3226    }
3227
3228    // FIXME: RequireCompleteDeclContext(SS)?
3229    DC = computeDeclContext(SS);
3230    SearchDC = DC;
3231    // Look-up name inside 'foo::'.
3232    PrevDecl = dyn_cast_or_null<TagDecl>(
3233                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3234
3235    // A tag 'foo::bar' must already exist.
3236    if (PrevDecl == 0) {
3237      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3238      Name = 0;
3239      goto CreateNewDecl;
3240    }
3241  } else if (Name) {
3242    // If this is a named struct, check to see if there was a previous forward
3243    // declaration or definition.
3244    // FIXME: We're looking into outer scopes here, even when we
3245    // shouldn't be. Doing so can result in ambiguities that we
3246    // shouldn't be diagnosing.
3247    LookupResult R = LookupName(S, Name, LookupTagName,
3248                                /*RedeclarationOnly=*/(TK != TK_Reference));
3249    if (R.isAmbiguous()) {
3250      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3251      // FIXME: This is not best way to recover from case like:
3252      //
3253      // struct S s;
3254      //
3255      // causes needless "incomplete type" error later.
3256      Name = 0;
3257      PrevDecl = 0;
3258      Invalid = true;
3259    }
3260    else
3261      PrevDecl = R;
3262
3263    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3264      // FIXME: This makes sure that we ignore the contexts associated
3265      // with C structs, unions, and enums when looking for a matching
3266      // tag declaration or definition. See the similar lookup tweak
3267      // in Sema::LookupName; is there a better way to deal with this?
3268      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3269        SearchDC = SearchDC->getParent();
3270    }
3271  }
3272
3273  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3274    // Maybe we will complain about the shadowed template parameter.
3275    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3276    // Just pretend that we didn't see the previous declaration.
3277    PrevDecl = 0;
3278  }
3279
3280  if (PrevDecl) {
3281    // Check whether the previous declaration is usable.
3282    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3283
3284    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3285      // If this is a use of a previous tag, or if the tag is already declared
3286      // in the same scope (so that the definition/declaration completes or
3287      // rementions the tag), reuse the decl.
3288      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3289        // Make sure that this wasn't declared as an enum and now used as a
3290        // struct or something similar.
3291        if (PrevTagDecl->getTagKind() != Kind) {
3292          bool SafeToContinue
3293            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3294               Kind != TagDecl::TK_enum);
3295          if (SafeToContinue)
3296            Diag(KWLoc, diag::err_use_with_wrong_tag)
3297              << Name
3298              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3299                                                  PrevTagDecl->getKindName());
3300          else
3301            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3302          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3303
3304          if (SafeToContinue)
3305            Kind = PrevTagDecl->getTagKind();
3306          else {
3307            // Recover by making this an anonymous redefinition.
3308            Name = 0;
3309            PrevDecl = 0;
3310            Invalid = true;
3311          }
3312        }
3313
3314        if (!Invalid) {
3315          // If this is a use, just return the declaration we found.
3316
3317          // FIXME: In the future, return a variant or some other clue
3318          // for the consumer of this Decl to know it doesn't own it.
3319          // For our current ASTs this shouldn't be a problem, but will
3320          // need to be changed with DeclGroups.
3321          if (TK == TK_Reference)
3322            return DeclPtrTy::make(PrevDecl);
3323
3324          // Diagnose attempts to redefine a tag.
3325          if (TK == TK_Definition) {
3326            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3327              Diag(NameLoc, diag::err_redefinition) << Name;
3328              Diag(Def->getLocation(), diag::note_previous_definition);
3329              // If this is a redefinition, recover by making this
3330              // struct be anonymous, which will make any later
3331              // references get the previous definition.
3332              Name = 0;
3333              PrevDecl = 0;
3334              Invalid = true;
3335            } else {
3336              // If the type is currently being defined, complain
3337              // about a nested redefinition.
3338              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3339              if (Tag->isBeingDefined()) {
3340                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3341                Diag(PrevTagDecl->getLocation(),
3342                     diag::note_previous_definition);
3343                Name = 0;
3344                PrevDecl = 0;
3345                Invalid = true;
3346              }
3347            }
3348
3349            // Okay, this is definition of a previously declared or referenced
3350            // tag PrevDecl. We're going to create a new Decl for it.
3351          }
3352        }
3353        // If we get here we have (another) forward declaration or we
3354        // have a definition.  Just create a new decl.
3355      } else {
3356        // If we get here, this is a definition of a new tag type in a nested
3357        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3358        // new decl/type.  We set PrevDecl to NULL so that the entities
3359        // have distinct types.
3360        PrevDecl = 0;
3361      }
3362      // If we get here, we're going to create a new Decl. If PrevDecl
3363      // is non-NULL, it's a definition of the tag declared by
3364      // PrevDecl. If it's NULL, we have a new definition.
3365    } else {
3366      // PrevDecl is a namespace, template, or anything else
3367      // that lives in the IDNS_Tag identifier namespace.
3368      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3369        // The tag name clashes with a namespace name, issue an error and
3370        // recover by making this tag be anonymous.
3371        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3372        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3373        Name = 0;
3374        PrevDecl = 0;
3375        Invalid = true;
3376      } else {
3377        // The existing declaration isn't relevant to us; we're in a
3378        // new scope, so clear out the previous declaration.
3379        PrevDecl = 0;
3380      }
3381    }
3382  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3383             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3384    // C.scope.pdecl]p5:
3385    //   -- for an elaborated-type-specifier of the form
3386    //
3387    //          class-key identifier
3388    //
3389    //      if the elaborated-type-specifier is used in the
3390    //      decl-specifier-seq or parameter-declaration-clause of a
3391    //      function defined in namespace scope, the identifier is
3392    //      declared as a class-name in the namespace that contains
3393    //      the declaration; otherwise, except as a friend
3394    //      declaration, the identifier is declared in the smallest
3395    //      non-class, non-function-prototype scope that contains the
3396    //      declaration.
3397    //
3398    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3399    // C structs and unions.
3400    //
3401    // GNU C also supports this behavior as part of its incomplete
3402    // enum types extension, while GNU C++ does not.
3403    //
3404    // Find the context where we'll be declaring the tag.
3405    // FIXME: We would like to maintain the current DeclContext as the
3406    // lexical context,
3407    while (SearchDC->isRecord())
3408      SearchDC = SearchDC->getParent();
3409
3410    // Find the scope where we'll be declaring the tag.
3411    while (S->isClassScope() ||
3412           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3413           ((S->getFlags() & Scope::DeclScope) == 0) ||
3414           (S->getEntity() &&
3415            ((DeclContext *)S->getEntity())->isTransparentContext()))
3416      S = S->getParent();
3417  }
3418
3419CreateNewDecl:
3420
3421  // If there is an identifier, use the location of the identifier as the
3422  // location of the decl, otherwise use the location of the struct/union
3423  // keyword.
3424  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3425
3426  // Otherwise, create a new declaration. If there is a previous
3427  // declaration of the same entity, the two will be linked via
3428  // PrevDecl.
3429  TagDecl *New;
3430
3431  if (Kind == TagDecl::TK_enum) {
3432    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3433    // enum X { A, B, C } D;    D should chain to X.
3434    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3435                           cast_or_null<EnumDecl>(PrevDecl));
3436    // If this is an undefined enum, warn.
3437    if (TK != TK_Definition && !Invalid)  {
3438      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3439                                              : diag::ext_forward_ref_enum;
3440      Diag(Loc, DK);
3441    }
3442  } else {
3443    // struct/union/class
3444
3445    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3446    // struct X { int A; } D;    D should chain to X.
3447    if (getLangOptions().CPlusPlus)
3448      // FIXME: Look for a way to use RecordDecl for simple structs.
3449      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3450                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3451    else
3452      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3453                               cast_or_null<RecordDecl>(PrevDecl));
3454  }
3455
3456  if (Kind != TagDecl::TK_enum) {
3457    // Handle #pragma pack: if the #pragma pack stack has non-default
3458    // alignment, make up a packed attribute for this decl. These
3459    // attributes are checked when the ASTContext lays out the
3460    // structure.
3461    //
3462    // It is important for implementing the correct semantics that this
3463    // happen here (in act on tag decl). The #pragma pack stack is
3464    // maintained as a result of parser callbacks which can occur at
3465    // many points during the parsing of a struct declaration (because
3466    // the #pragma tokens are effectively skipped over during the
3467    // parsing of the struct).
3468    if (unsigned Alignment = getPragmaPackAlignment())
3469      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3470  }
3471
3472  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3473    // C++ [dcl.typedef]p3:
3474    //   [...] Similarly, in a given scope, a class or enumeration
3475    //   shall not be declared with the same name as a typedef-name
3476    //   that is declared in that scope and refers to a type other
3477    //   than the class or enumeration itself.
3478    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3479    TypedefDecl *PrevTypedef = 0;
3480    if (Lookup.getKind() == LookupResult::Found)
3481      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3482
3483    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3484        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3485          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3486      Diag(Loc, diag::err_tag_definition_of_typedef)
3487        << Context.getTypeDeclType(New)
3488        << PrevTypedef->getUnderlyingType();
3489      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3490      Invalid = true;
3491    }
3492  }
3493
3494  if (Invalid)
3495    New->setInvalidDecl();
3496
3497  if (Attr)
3498    ProcessDeclAttributeList(New, Attr);
3499
3500  // If we're declaring or defining a tag in function prototype scope
3501  // in C, note that this type can only be used within the function.
3502  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3503    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3504
3505  // Set the lexical context. If the tag has a C++ scope specifier, the
3506  // lexical context will be different from the semantic context.
3507  New->setLexicalDeclContext(CurContext);
3508
3509  // Set the access specifier.
3510  SetMemberAccessSpecifier(New, PrevDecl, AS);
3511
3512  if (TK == TK_Definition)
3513    New->startDefinition();
3514
3515  // If this has an identifier, add it to the scope stack.
3516  if (Name) {
3517    S = getNonFieldDeclScope(S);
3518    PushOnScopeChains(New, S);
3519  } else {
3520    CurContext->addDecl(Context, New);
3521  }
3522
3523  return DeclPtrTy::make(New);
3524}
3525
3526void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3527  AdjustDeclIfTemplate(TagD);
3528  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3529
3530  // Enter the tag context.
3531  PushDeclContext(S, Tag);
3532
3533  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3534    FieldCollector->StartClass();
3535
3536    if (Record->getIdentifier()) {
3537      // C++ [class]p2:
3538      //   [...] The class-name is also inserted into the scope of the
3539      //   class itself; this is known as the injected-class-name. For
3540      //   purposes of access checking, the injected-class-name is treated
3541      //   as if it were a public member name.
3542      CXXRecordDecl *InjectedClassName
3543        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3544                                CurContext, Record->getLocation(),
3545                                Record->getIdentifier(), Record);
3546      InjectedClassName->setImplicit();
3547      InjectedClassName->setAccess(AS_public);
3548      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3549        InjectedClassName->setDescribedClassTemplate(Template);
3550      PushOnScopeChains(InjectedClassName, S);
3551      assert(InjectedClassName->isInjectedClassName() &&
3552             "Broken injected-class-name");
3553    }
3554  }
3555}
3556
3557void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3558  AdjustDeclIfTemplate(TagD);
3559  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3560
3561  if (isa<CXXRecordDecl>(Tag))
3562    FieldCollector->FinishClass();
3563
3564  // Exit this scope of this tag's definition.
3565  PopDeclContext();
3566
3567  // Notify the consumer that we've defined a tag.
3568  Consumer.HandleTagDeclDefinition(Tag);
3569}
3570
3571bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3572                          QualType FieldTy, const Expr *BitWidth) {
3573  // C99 6.7.2.1p4 - verify the field type.
3574  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3575  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3576    // Handle incomplete types with specific error.
3577    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3578      return true;
3579    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3580      << FieldName << FieldTy << BitWidth->getSourceRange();
3581  }
3582
3583  // If the bit-width is type- or value-dependent, don't try to check
3584  // it now.
3585  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3586    return false;
3587
3588  llvm::APSInt Value;
3589  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3590    return true;
3591
3592  // Zero-width bitfield is ok for anonymous field.
3593  if (Value == 0 && FieldName)
3594    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3595
3596  if (Value.isSigned() && Value.isNegative())
3597    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3598             << FieldName << Value.toString(10);
3599
3600  if (!FieldTy->isDependentType()) {
3601    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3602    // FIXME: We won't need the 0 size once we check that the field type is valid.
3603    if (TypeSize && Value.getZExtValue() > TypeSize)
3604      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3605        << FieldName << (unsigned)TypeSize;
3606  }
3607
3608  return false;
3609}
3610
3611/// ActOnField - Each field of a struct/union/class is passed into this in order
3612/// to create a FieldDecl object for it.
3613Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3614                                 SourceLocation DeclStart,
3615                                 Declarator &D, ExprTy *BitfieldWidth) {
3616  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3617                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3618                               AS_public);
3619  return DeclPtrTy::make(Res);
3620}
3621
3622/// HandleField - Analyze a field of a C struct or a C++ data member.
3623///
3624FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3625                             SourceLocation DeclStart,
3626                             Declarator &D, Expr *BitWidth,
3627                             AccessSpecifier AS) {
3628  IdentifierInfo *II = D.getIdentifier();
3629  SourceLocation Loc = DeclStart;
3630  if (II) Loc = D.getIdentifierLoc();
3631
3632  QualType T = GetTypeForDeclarator(D, S);
3633  if (getLangOptions().CPlusPlus)
3634    CheckExtraCXXDefaultArguments(D);
3635
3636  DiagnoseFunctionSpecifiers(D);
3637
3638  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3639  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3640    PrevDecl = 0;
3641
3642  FieldDecl *NewFD
3643    = CheckFieldDecl(II, T, Record, Loc,
3644               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3645                     BitWidth, AS, PrevDecl, &D);
3646  if (NewFD->isInvalidDecl() && PrevDecl) {
3647    // Don't introduce NewFD into scope; there's already something
3648    // with the same name in the same scope.
3649  } else if (II) {
3650    PushOnScopeChains(NewFD, S);
3651  } else
3652    Record->addDecl(Context, NewFD);
3653
3654  return NewFD;
3655}
3656
3657/// \brief Build a new FieldDecl and check its well-formedness.
3658///
3659/// This routine builds a new FieldDecl given the fields name, type,
3660/// record, etc. \p PrevDecl should refer to any previous declaration
3661/// with the same name and in the same scope as the field to be
3662/// created.
3663///
3664/// \returns a new FieldDecl.
3665///
3666/// \todo The Declarator argument is a hack. It will be removed once
3667FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3668                                RecordDecl *Record, SourceLocation Loc,
3669                                bool Mutable, Expr *BitWidth,
3670                                AccessSpecifier AS, NamedDecl *PrevDecl,
3671                                Declarator *D) {
3672  IdentifierInfo *II = Name.getAsIdentifierInfo();
3673  bool InvalidDecl = false;
3674
3675  // If we receive a broken type, recover by assuming 'int' and
3676  // marking this declaration as invalid.
3677  if (T.isNull()) {
3678    InvalidDecl = true;
3679    T = Context.IntTy;
3680  }
3681
3682  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3683  // than a variably modified type.
3684  if (T->isVariablyModifiedType()) {
3685    bool SizeIsNegative;
3686    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3687                                                           SizeIsNegative);
3688    if (!FixedTy.isNull()) {
3689      Diag(Loc, diag::warn_illegal_constant_array_size);
3690      T = FixedTy;
3691    } else {
3692      if (SizeIsNegative)
3693        Diag(Loc, diag::err_typecheck_negative_array_size);
3694      else
3695        Diag(Loc, diag::err_typecheck_field_variable_size);
3696      T = Context.IntTy;
3697      InvalidDecl = true;
3698    }
3699  }
3700
3701  // Fields can not have abstract class types
3702  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3703                             AbstractFieldType))
3704    InvalidDecl = true;
3705
3706  // If this is declared as a bit-field, check the bit-field.
3707  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3708    InvalidDecl = true;
3709    DeleteExpr(BitWidth);
3710    BitWidth = 0;
3711  }
3712
3713  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3714                                       Mutable);
3715
3716  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3717    Diag(Loc, diag::err_duplicate_member) << II;
3718    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3719    NewFD->setInvalidDecl();
3720    Record->setInvalidDecl();
3721  }
3722
3723  if (getLangOptions().CPlusPlus && !T->isPODType())
3724    cast<CXXRecordDecl>(Record)->setPOD(false);
3725
3726  // FIXME: We need to pass in the attributes given an AST
3727  // representation, not a parser representation.
3728  if (D)
3729    ProcessDeclAttributes(NewFD, *D);
3730
3731  if (T.isObjCGCWeak())
3732    Diag(Loc, diag::warn_attribute_weak_on_field);
3733
3734  if (InvalidDecl)
3735    NewFD->setInvalidDecl();
3736
3737  NewFD->setAccess(AS);
3738
3739  // C++ [dcl.init.aggr]p1:
3740  //   An aggregate is an array or a class (clause 9) with [...] no
3741  //   private or protected non-static data members (clause 11).
3742  // A POD must be an aggregate.
3743  if (getLangOptions().CPlusPlus &&
3744      (AS == AS_private || AS == AS_protected)) {
3745    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3746    CXXRecord->setAggregate(false);
3747    CXXRecord->setPOD(false);
3748  }
3749
3750  return NewFD;
3751}
3752
3753/// TranslateIvarVisibility - Translate visibility from a token ID to an
3754///  AST enum value.
3755static ObjCIvarDecl::AccessControl
3756TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3757  switch (ivarVisibility) {
3758  default: assert(0 && "Unknown visitibility kind");
3759  case tok::objc_private: return ObjCIvarDecl::Private;
3760  case tok::objc_public: return ObjCIvarDecl::Public;
3761  case tok::objc_protected: return ObjCIvarDecl::Protected;
3762  case tok::objc_package: return ObjCIvarDecl::Package;
3763  }
3764}
3765
3766/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3767/// in order to create an IvarDecl object for it.
3768Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3769                                SourceLocation DeclStart,
3770                                Declarator &D, ExprTy *BitfieldWidth,
3771                                tok::ObjCKeywordKind Visibility) {
3772
3773  IdentifierInfo *II = D.getIdentifier();
3774  Expr *BitWidth = (Expr*)BitfieldWidth;
3775  SourceLocation Loc = DeclStart;
3776  if (II) Loc = D.getIdentifierLoc();
3777
3778  // FIXME: Unnamed fields can be handled in various different ways, for
3779  // example, unnamed unions inject all members into the struct namespace!
3780
3781  QualType T = GetTypeForDeclarator(D, S);
3782  bool InvalidDecl = false;
3783  if (T.isNull()) {
3784    InvalidDecl = true;
3785    T = Context.IntTy;
3786  }
3787
3788  if (BitWidth) {
3789    // 6.7.2.1p3, 6.7.2.1p4
3790    if (VerifyBitField(Loc, II, T, BitWidth)) {
3791      InvalidDecl = true;
3792      DeleteExpr(BitWidth);
3793      BitWidth = 0;
3794    }
3795  } else {
3796    // Not a bitfield.
3797
3798    // validate II.
3799
3800  }
3801
3802  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3803  // than a variably modified type.
3804  if (T->isVariablyModifiedType()) {
3805    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3806    InvalidDecl = true;
3807  }
3808
3809  // Get the visibility (access control) for this ivar.
3810  ObjCIvarDecl::AccessControl ac =
3811    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3812                                        : ObjCIvarDecl::None;
3813
3814  // Construct the decl.
3815  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3816                                             (Expr *)BitfieldWidth);
3817
3818  if (II) {
3819    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3820    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3821        && !isa<TagDecl>(PrevDecl)) {
3822      Diag(Loc, diag::err_duplicate_member) << II;
3823      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3824      NewID->setInvalidDecl();
3825    }
3826  }
3827
3828  // Process attributes attached to the ivar.
3829  ProcessDeclAttributes(NewID, D);
3830
3831  if (D.getInvalidType() || InvalidDecl)
3832    NewID->setInvalidDecl();
3833
3834  if (II) {
3835    // FIXME: When interfaces are DeclContexts, we'll need to add
3836    // these to the interface.
3837    S->AddDecl(DeclPtrTy::make(NewID));
3838    IdResolver.AddDecl(NewID);
3839  }
3840
3841  return DeclPtrTy::make(NewID);
3842}
3843
3844void Sema::ActOnFields(Scope* S,
3845                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3846                       DeclPtrTy *Fields, unsigned NumFields,
3847                       SourceLocation LBrac, SourceLocation RBrac,
3848                       AttributeList *Attr) {
3849  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3850  assert(EnclosingDecl && "missing record or interface decl");
3851
3852  // If the decl this is being inserted into is invalid, then it may be a
3853  // redeclaration or some other bogus case.  Don't try to add fields to it.
3854  if (EnclosingDecl->isInvalidDecl()) {
3855    // FIXME: Deallocate fields?
3856    return;
3857  }
3858
3859
3860  // Verify that all the fields are okay.
3861  unsigned NumNamedMembers = 0;
3862  llvm::SmallVector<FieldDecl*, 32> RecFields;
3863
3864  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3865  for (unsigned i = 0; i != NumFields; ++i) {
3866    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3867
3868    // Get the type for the field.
3869    Type *FDTy = FD->getType().getTypePtr();
3870
3871    if (!FD->isAnonymousStructOrUnion()) {
3872      // Remember all fields written by the user.
3873      RecFields.push_back(FD);
3874    }
3875
3876    // If the field is already invalid for some reason, don't emit more
3877    // diagnostics about it.
3878    if (FD->isInvalidDecl())
3879      continue;
3880
3881    // C99 6.7.2.1p2:
3882    //   A structure or union shall not contain a member with
3883    //   incomplete or function type (hence, a structure shall not
3884    //   contain an instance of itself, but may contain a pointer to
3885    //   an instance of itself), except that the last member of a
3886    //   structure with more than one named member may have incomplete
3887    //   array type; such a structure (and any union containing,
3888    //   possibly recursively, a member that is such a structure)
3889    //   shall not be a member of a structure or an element of an
3890    //   array.
3891    if (FDTy->isFunctionType()) {
3892      // Field declared as a function.
3893      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3894        << FD->getDeclName();
3895      FD->setInvalidDecl();
3896      EnclosingDecl->setInvalidDecl();
3897      continue;
3898    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3899               Record && Record->isStruct()) {
3900      // Flexible array member.
3901      if (NumNamedMembers < 1) {
3902        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3903          << FD->getDeclName();
3904        FD->setInvalidDecl();
3905        EnclosingDecl->setInvalidDecl();
3906        continue;
3907      }
3908      // Okay, we have a legal flexible array member at the end of the struct.
3909      if (Record)
3910        Record->setHasFlexibleArrayMember(true);
3911    } else if (!FDTy->isDependentType() &&
3912               RequireCompleteType(FD->getLocation(), FD->getType(),
3913                                   diag::err_field_incomplete)) {
3914      // Incomplete type
3915      FD->setInvalidDecl();
3916      EnclosingDecl->setInvalidDecl();
3917      continue;
3918    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3919      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3920        // If this is a member of a union, then entire union becomes "flexible".
3921        if (Record && Record->isUnion()) {
3922          Record->setHasFlexibleArrayMember(true);
3923        } else {
3924          // If this is a struct/class and this is not the last element, reject
3925          // it.  Note that GCC supports variable sized arrays in the middle of
3926          // structures.
3927          if (i != NumFields-1)
3928            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3929              << FD->getDeclName();
3930          else {
3931            // We support flexible arrays at the end of structs in
3932            // other structs as an extension.
3933            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3934              << FD->getDeclName();
3935            if (Record)
3936              Record->setHasFlexibleArrayMember(true);
3937          }
3938        }
3939      }
3940    } else if (FDTy->isObjCInterfaceType()) {
3941      /// A field cannot be an Objective-c object
3942      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3943      FD->setInvalidDecl();
3944      EnclosingDecl->setInvalidDecl();
3945      continue;
3946    }
3947    // Keep track of the number of named members.
3948    if (FD->getIdentifier())
3949      ++NumNamedMembers;
3950  }
3951
3952  // Okay, we successfully defined 'Record'.
3953  if (Record) {
3954    Record->completeDefinition(Context);
3955  } else {
3956    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3957    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3958      ID->setIVarList(ClsFields, RecFields.size(), Context);
3959      ID->setLocEnd(RBrac);
3960
3961      // Must enforce the rule that ivars in the base classes may not be
3962      // duplicates.
3963      if (ID->getSuperClass()) {
3964        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3965             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3966          ObjCIvarDecl* Ivar = (*IVI);
3967          IdentifierInfo *II = Ivar->getIdentifier();
3968          ObjCIvarDecl* prevIvar =
3969            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3970          if (prevIvar) {
3971            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3972            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3973          }
3974        }
3975      }
3976    } else if (ObjCImplementationDecl *IMPDecl =
3977                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3978      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3979      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3980      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3981    }
3982  }
3983
3984  if (Attr)
3985    ProcessDeclAttributeList(Record, Attr);
3986}
3987
3988EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3989                                          EnumConstantDecl *LastEnumConst,
3990                                          SourceLocation IdLoc,
3991                                          IdentifierInfo *Id,
3992                                          ExprArg val) {
3993  Expr *Val = (Expr *)val.get();
3994
3995  llvm::APSInt EnumVal(32);
3996  QualType EltTy;
3997  if (Val && !Val->isTypeDependent()) {
3998    // Make sure to promote the operand type to int.
3999    UsualUnaryConversions(Val);
4000    if (Val != val.get()) {
4001      val.release();
4002      val = Val;
4003    }
4004
4005    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4006    SourceLocation ExpLoc;
4007    if (!Val->isValueDependent() &&
4008        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4009      Val = 0;
4010    } else {
4011      EltTy = Val->getType();
4012    }
4013  }
4014
4015  if (!Val) {
4016    if (LastEnumConst) {
4017      // Assign the last value + 1.
4018      EnumVal = LastEnumConst->getInitVal();
4019      ++EnumVal;
4020
4021      // Check for overflow on increment.
4022      if (EnumVal < LastEnumConst->getInitVal())
4023        Diag(IdLoc, diag::warn_enum_value_overflow);
4024
4025      EltTy = LastEnumConst->getType();
4026    } else {
4027      // First value, set to zero.
4028      EltTy = Context.IntTy;
4029      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4030    }
4031  }
4032
4033  val.release();
4034  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4035                                  Val, EnumVal);
4036}
4037
4038
4039Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4040                                        DeclPtrTy lastEnumConst,
4041                                        SourceLocation IdLoc,
4042                                        IdentifierInfo *Id,
4043                                        SourceLocation EqualLoc, ExprTy *val) {
4044  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4045  EnumConstantDecl *LastEnumConst =
4046    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4047  Expr *Val = static_cast<Expr*>(val);
4048
4049  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4050  // we find one that is.
4051  S = getNonFieldDeclScope(S);
4052
4053  // Verify that there isn't already something declared with this name in this
4054  // scope.
4055  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4056  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4057    // Maybe we will complain about the shadowed template parameter.
4058    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4059    // Just pretend that we didn't see the previous declaration.
4060    PrevDecl = 0;
4061  }
4062
4063  if (PrevDecl) {
4064    // When in C++, we may get a TagDecl with the same name; in this case the
4065    // enum constant will 'hide' the tag.
4066    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4067           "Received TagDecl when not in C++!");
4068    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4069      if (isa<EnumConstantDecl>(PrevDecl))
4070        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4071      else
4072        Diag(IdLoc, diag::err_redefinition) << Id;
4073      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4074      if (Val) Val->Destroy(Context);
4075      return DeclPtrTy();
4076    }
4077  }
4078
4079  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4080                                            IdLoc, Id, Owned(Val));
4081
4082  // Register this decl in the current scope stack.
4083  if (New)
4084    PushOnScopeChains(New, S);
4085
4086  return DeclPtrTy::make(New);
4087}
4088
4089// FIXME: For consistency with ActOnFields(), we should have the parser
4090// pass in the source location for the left/right braces.
4091void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4092                         DeclPtrTy *Elements, unsigned NumElements) {
4093  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4094  QualType EnumType = Context.getTypeDeclType(Enum);
4095
4096  // TODO: If the result value doesn't fit in an int, it must be a long or long
4097  // long value.  ISO C does not support this, but GCC does as an extension,
4098  // emit a warning.
4099  unsigned IntWidth = Context.Target.getIntWidth();
4100
4101  // Verify that all the values are okay, compute the size of the values, and
4102  // reverse the list.
4103  unsigned NumNegativeBits = 0;
4104  unsigned NumPositiveBits = 0;
4105
4106  // Keep track of whether all elements have type int.
4107  bool AllElementsInt = true;
4108
4109  for (unsigned i = 0; i != NumElements; ++i) {
4110    EnumConstantDecl *ECD =
4111      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4112    if (!ECD) continue;  // Already issued a diagnostic.
4113
4114    // If the enum value doesn't fit in an int, emit an extension warning.
4115    const llvm::APSInt &InitVal = ECD->getInitVal();
4116    assert(InitVal.getBitWidth() >= IntWidth &&
4117           "Should have promoted value to int");
4118    if (InitVal.getBitWidth() > IntWidth) {
4119      llvm::APSInt V(InitVal);
4120      V.trunc(IntWidth);
4121      V.extend(InitVal.getBitWidth());
4122      if (V != InitVal)
4123        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4124          << InitVal.toString(10);
4125    }
4126
4127    // Keep track of the size of positive and negative values.
4128    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4129      NumPositiveBits = std::max(NumPositiveBits,
4130                                 (unsigned)InitVal.getActiveBits());
4131    else
4132      NumNegativeBits = std::max(NumNegativeBits,
4133                                 (unsigned)InitVal.getMinSignedBits());
4134
4135    // Keep track of whether every enum element has type int (very commmon).
4136    if (AllElementsInt)
4137      AllElementsInt = ECD->getType() == Context.IntTy;
4138  }
4139
4140  // Figure out the type that should be used for this enum.
4141  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4142  QualType BestType;
4143  unsigned BestWidth;
4144
4145  if (NumNegativeBits) {
4146    // If there is a negative value, figure out the smallest integer type (of
4147    // int/long/longlong) that fits.
4148    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4149      BestType = Context.IntTy;
4150      BestWidth = IntWidth;
4151    } else {
4152      BestWidth = Context.Target.getLongWidth();
4153
4154      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4155        BestType = Context.LongTy;
4156      else {
4157        BestWidth = Context.Target.getLongLongWidth();
4158
4159        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4160          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4161        BestType = Context.LongLongTy;
4162      }
4163    }
4164  } else {
4165    // If there is no negative value, figure out which of uint, ulong, ulonglong
4166    // fits.
4167    if (NumPositiveBits <= IntWidth) {
4168      BestType = Context.UnsignedIntTy;
4169      BestWidth = IntWidth;
4170    } else if (NumPositiveBits <=
4171               (BestWidth = Context.Target.getLongWidth())) {
4172      BestType = Context.UnsignedLongTy;
4173    } else {
4174      BestWidth = Context.Target.getLongLongWidth();
4175      assert(NumPositiveBits <= BestWidth &&
4176             "How could an initializer get larger than ULL?");
4177      BestType = Context.UnsignedLongLongTy;
4178    }
4179  }
4180
4181  // Loop over all of the enumerator constants, changing their types to match
4182  // the type of the enum if needed.
4183  for (unsigned i = 0; i != NumElements; ++i) {
4184    EnumConstantDecl *ECD =
4185      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4186    if (!ECD) continue;  // Already issued a diagnostic.
4187
4188    // Standard C says the enumerators have int type, but we allow, as an
4189    // extension, the enumerators to be larger than int size.  If each
4190    // enumerator value fits in an int, type it as an int, otherwise type it the
4191    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4192    // that X has type 'int', not 'unsigned'.
4193    if (ECD->getType() == Context.IntTy) {
4194      // Make sure the init value is signed.
4195      llvm::APSInt IV = ECD->getInitVal();
4196      IV.setIsSigned(true);
4197      ECD->setInitVal(IV);
4198
4199      if (getLangOptions().CPlusPlus)
4200        // C++ [dcl.enum]p4: Following the closing brace of an
4201        // enum-specifier, each enumerator has the type of its
4202        // enumeration.
4203        ECD->setType(EnumType);
4204      continue;  // Already int type.
4205    }
4206
4207    // Determine whether the value fits into an int.
4208    llvm::APSInt InitVal = ECD->getInitVal();
4209    bool FitsInInt;
4210    if (InitVal.isUnsigned() || !InitVal.isNegative())
4211      FitsInInt = InitVal.getActiveBits() < IntWidth;
4212    else
4213      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4214
4215    // If it fits into an integer type, force it.  Otherwise force it to match
4216    // the enum decl type.
4217    QualType NewTy;
4218    unsigned NewWidth;
4219    bool NewSign;
4220    if (FitsInInt) {
4221      NewTy = Context.IntTy;
4222      NewWidth = IntWidth;
4223      NewSign = true;
4224    } else if (ECD->getType() == BestType) {
4225      // Already the right type!
4226      if (getLangOptions().CPlusPlus)
4227        // C++ [dcl.enum]p4: Following the closing brace of an
4228        // enum-specifier, each enumerator has the type of its
4229        // enumeration.
4230        ECD->setType(EnumType);
4231      continue;
4232    } else {
4233      NewTy = BestType;
4234      NewWidth = BestWidth;
4235      NewSign = BestType->isSignedIntegerType();
4236    }
4237
4238    // Adjust the APSInt value.
4239    InitVal.extOrTrunc(NewWidth);
4240    InitVal.setIsSigned(NewSign);
4241    ECD->setInitVal(InitVal);
4242
4243    // Adjust the Expr initializer and type.
4244    if (ECD->getInitExpr())
4245      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4246                                                      /*isLvalue=*/false));
4247    if (getLangOptions().CPlusPlus)
4248      // C++ [dcl.enum]p4: Following the closing brace of an
4249      // enum-specifier, each enumerator has the type of its
4250      // enumeration.
4251      ECD->setType(EnumType);
4252    else
4253      ECD->setType(NewTy);
4254  }
4255
4256  Enum->completeDefinition(Context, BestType);
4257}
4258
4259Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4260                                            ExprArg expr) {
4261  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4262
4263  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4264                                                  Loc, AsmString));
4265}
4266
4267