SemaDecl.cpp revision ea07186725fb2890baf27d35130d838267f303f6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37#include <queue>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName) {
67  // C++ [temp.res]p3:
68  //   A qualified-id that refers to a type and in which the
69  //   nested-name-specifier depends on a template-parameter (14.6.2)
70  //   shall be prefixed by the keyword typename to indicate that the
71  //   qualified-id denotes a type, forming an
72  //   elaborated-type-specifier (7.1.5.3).
73  //
74  // We therefore do not perform any name lookup if the result would
75  // refer to a member of an unknown specialization.
76  if (SS && isUnknownSpecialization(*SS)) {
77    if (!isClassName)
78      return 0;
79
80    // We know from the grammar that this name refers to a type, so build a
81    // TypenameType node to describe the type.
82    // FIXME: Record somewhere that this TypenameType node has no "typename"
83    // keyword associated with it.
84    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
85                             II, SS->getRange()).getAsOpaquePtr();
86  }
87
88  LookupResult Result
89    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
90
91  NamedDecl *IIDecl = 0;
92  switch (Result.getKind()) {
93  case LookupResult::NotFound:
94  case LookupResult::FoundOverloaded:
95    return 0;
96
97  case LookupResult::AmbiguousBaseSubobjectTypes:
98  case LookupResult::AmbiguousBaseSubobjects:
99  case LookupResult::AmbiguousReference: {
100    // Look to see if we have a type anywhere in the list of results.
101    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
102         Res != ResEnd; ++Res) {
103      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
104        if (!IIDecl ||
105            (*Res)->getLocation().getRawEncoding() <
106              IIDecl->getLocation().getRawEncoding())
107          IIDecl = *Res;
108      }
109    }
110
111    if (!IIDecl) {
112      // None of the entities we found is a type, so there is no way
113      // to even assume that the result is a type. In this case, don't
114      // complain about the ambiguity. The parser will either try to
115      // perform this lookup again (e.g., as an object name), which
116      // will produce the ambiguity, or will complain that it expected
117      // a type name.
118      Result.Destroy();
119      return 0;
120    }
121
122    // We found a type within the ambiguous lookup; diagnose the
123    // ambiguity and then return that type. This might be the right
124    // answer, or it might not be, but it suppresses any attempt to
125    // perform the name lookup again.
126    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
127    break;
128  }
129
130  case LookupResult::Found:
131    IIDecl = Result.getAsDecl();
132    break;
133  }
134
135  if (IIDecl) {
136    QualType T;
137
138    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
139      // Check whether we can use this type
140      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
141
142      if (getLangOptions().CPlusPlus) {
143        // C++ [temp.local]p2:
144        //   Within the scope of a class template specialization or
145        //   partial specialization, when the injected-class-name is
146        //   not followed by a <, it is equivalent to the
147        //   injected-class-name followed by the template-argument s
148        //   of the class template specialization or partial
149        //   specialization enclosed in <>.
150        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
151          if (RD->isInjectedClassName())
152            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
153              T = Template->getInjectedClassNameType(Context);
154      }
155
156      if (T.isNull())
157        T = Context.getTypeDeclType(TD);
158    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
159      // Check whether we can use this interface.
160      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
161
162      T = Context.getObjCInterfaceType(IDecl);
163    } else
164      return 0;
165
166    if (SS)
167      T = getQualifiedNameType(*SS, T);
168
169    return T.getAsOpaquePtr();
170  }
171
172  return 0;
173}
174
175/// isTagName() - This method is called *for error recovery purposes only*
176/// to determine if the specified name is a valid tag name ("struct foo").  If
177/// so, this returns the TST for the tag corresponding to it (TST_enum,
178/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
179/// where the user forgot to specify the tag.
180DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
181  // Do a tag name lookup in this scope.
182  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
183  if (R.getKind() == LookupResult::Found)
184    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
185      switch (TD->getTagKind()) {
186      case TagDecl::TK_struct: return DeclSpec::TST_struct;
187      case TagDecl::TK_union:  return DeclSpec::TST_union;
188      case TagDecl::TK_class:  return DeclSpec::TST_class;
189      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
190      }
191    }
192
193  return DeclSpec::TST_unspecified;
194}
195
196
197// Determines the context to return to after temporarily entering a
198// context.  This depends in an unnecessarily complicated way on the
199// exact ordering of callbacks from the parser.
200DeclContext *Sema::getContainingDC(DeclContext *DC) {
201
202  // Functions defined inline within classes aren't parsed until we've
203  // finished parsing the top-level class, so the top-level class is
204  // the context we'll need to return to.
205  if (isa<FunctionDecl>(DC)) {
206    DC = DC->getLexicalParent();
207
208    // A function not defined within a class will always return to its
209    // lexical context.
210    if (!isa<CXXRecordDecl>(DC))
211      return DC;
212
213    // A C++ inline method/friend is parsed *after* the topmost class
214    // it was declared in is fully parsed ("complete");  the topmost
215    // class is the context we need to return to.
216    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
217      DC = RD;
218
219    // Return the declaration context of the topmost class the inline method is
220    // declared in.
221    return DC;
222  }
223
224  if (isa<ObjCMethodDecl>(DC))
225    return Context.getTranslationUnitDecl();
226
227  return DC->getLexicalParent();
228}
229
230void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
231  assert(getContainingDC(DC) == CurContext &&
232      "The next DeclContext should be lexically contained in the current one.");
233  CurContext = DC;
234  S->setEntity(DC);
235}
236
237void Sema::PopDeclContext() {
238  assert(CurContext && "DeclContext imbalance!");
239
240  CurContext = getContainingDC(CurContext);
241}
242
243/// EnterDeclaratorContext - Used when we must lookup names in the context
244/// of a declarator's nested name specifier.
245void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
246  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
247  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
248  CurContext = DC;
249  assert(CurContext && "No context?");
250  S->setEntity(CurContext);
251}
252
253void Sema::ExitDeclaratorContext(Scope *S) {
254  S->setEntity(PreDeclaratorDC);
255  PreDeclaratorDC = 0;
256
257  // Reset CurContext to the nearest enclosing context.
258  while (!S->getEntity() && S->getParent())
259    S = S->getParent();
260  CurContext = static_cast<DeclContext*>(S->getEntity());
261  assert(CurContext && "No context?");
262}
263
264/// \brief Determine whether we allow overloading of the function
265/// PrevDecl with another declaration.
266///
267/// This routine determines whether overloading is possible, not
268/// whether some new function is actually an overload. It will return
269/// true in C++ (where we can always provide overloads) or, as an
270/// extension, in C when the previous function is already an
271/// overloaded function declaration or has the "overloadable"
272/// attribute.
273static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
274  if (Context.getLangOptions().CPlusPlus)
275    return true;
276
277  if (isa<OverloadedFunctionDecl>(PrevDecl))
278    return true;
279
280  return PrevDecl->getAttr<OverloadableAttr>() != 0;
281}
282
283/// Add this decl to the scope shadowed decl chains.
284void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
285  // Move up the scope chain until we find the nearest enclosing
286  // non-transparent context. The declaration will be introduced into this
287  // scope.
288  while (S->getEntity() &&
289         ((DeclContext *)S->getEntity())->isTransparentContext())
290    S = S->getParent();
291
292  // Add scoped declarations into their context, so that they can be
293  // found later. Declarations without a context won't be inserted
294  // into any context.
295  if (AddToContext)
296    CurContext->addDecl(D);
297
298  // Out-of-line function and variable definitions should not be pushed into
299  // scope.
300  if ((isa<FunctionTemplateDecl>(D) &&
301       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
302      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
303      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
304    return;
305
306  S->AddDecl(DeclPtrTy::make(D));
307
308  // C++ [basic.scope]p4:
309  //   -- exactly one declaration shall declare a class name or
310  //   enumeration name that is not a typedef name and the other
311  //   declarations shall all refer to the same object or
312  //   enumerator, or all refer to functions and function templates;
313  //   in this case the class name or enumeration name is hidden.
314  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
315    // We are pushing the name of a tag (enum or class).
316    if (CurContext->getLookupContext()
317          == TD->getDeclContext()->getLookupContext()) {
318      // We're pushing the tag into the current context, which might
319      // require some reshuffling in the identifier resolver.
320      IdentifierResolver::iterator
321        I = IdResolver.begin(TD->getDeclName()),
322        IEnd = IdResolver.end();
323      NamedDecl *ID = *I;
324      if (I != IEnd && isDeclInScope(ID, CurContext, S)) {
325        NamedDecl *PrevDecl = *I;
326        for (; I != IEnd && isDeclInScope(ID, CurContext, S);
327             PrevDecl = *I, ++I) {
328          if (TD->declarationReplaces(*I)) {
329            // This is a redeclaration. Remove it from the chain and
330            // break out, so that we'll add in the shadowed
331            // declaration.
332            S->RemoveDecl(DeclPtrTy::make(*I));
333            if (PrevDecl == *I) {
334              IdResolver.RemoveDecl(*I);
335              IdResolver.AddDecl(TD);
336              return;
337            } else {
338              IdResolver.RemoveDecl(*I);
339              break;
340            }
341          }
342        }
343
344        // There is already a declaration with the same name in the same
345        // scope, which is not a tag declaration. It must be found
346        // before we find the new declaration, so insert the new
347        // declaration at the end of the chain.
348        IdResolver.AddShadowedDecl(TD, PrevDecl);
349
350        return;
351      }
352    }
353  } else if ((isa<FunctionDecl>(D) &&
354              AllowOverloadingOfFunction(D, Context)) ||
355             isa<FunctionTemplateDecl>(D)) {
356    // We are pushing the name of a function or function template,
357    // which might be an overloaded name.
358    IdentifierResolver::iterator Redecl
359      = std::find_if(IdResolver.begin(D->getDeclName()),
360                     IdResolver.end(),
361                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
362                                  D));
363    if (Redecl != IdResolver.end() &&
364        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
365      // There is already a declaration of a function on our
366      // IdResolver chain. Replace it with this declaration.
367      S->RemoveDecl(DeclPtrTy::make(*Redecl));
368      IdResolver.RemoveDecl(*Redecl);
369    }
370  } else if (isa<ObjCInterfaceDecl>(D)) {
371    // We're pushing an Objective-C interface into the current
372    // context. If there is already an alias declaration, remove it first.
373    for (IdentifierResolver::iterator
374           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
375         I != IEnd; ++I) {
376      if (isa<ObjCCompatibleAliasDecl>(*I)) {
377        S->RemoveDecl(DeclPtrTy::make(*I));
378        IdResolver.RemoveDecl(*I);
379        break;
380      }
381    }
382  }
383
384  IdResolver.AddDecl(D);
385}
386
387bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
388  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
389    // Look inside the overload set to determine if any of the declarations
390    // are in scope. (Possibly) build a new overload set containing only
391    // those declarations that are in scope.
392    OverloadedFunctionDecl *NewOvl = 0;
393    bool FoundInScope = false;
394    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
395         FEnd = Ovl->function_end();
396         F != FEnd; ++F) {
397      NamedDecl *FD = F->get();
398      if (!isDeclInScope(FD, Ctx, S)) {
399        if (!NewOvl && F != Ovl->function_begin()) {
400          NewOvl = OverloadedFunctionDecl::Create(Context,
401                                                  F->get()->getDeclContext(),
402                                                  F->get()->getDeclName());
403          D = NewOvl;
404          for (OverloadedFunctionDecl::function_iterator
405               First = Ovl->function_begin();
406               First != F; ++First)
407            NewOvl->addOverload(*First);
408        }
409      } else {
410        FoundInScope = true;
411        if (NewOvl)
412          NewOvl->addOverload(*F);
413      }
414    }
415
416    return FoundInScope;
417  }
418
419  return IdResolver.isDeclInScope(D, Ctx, Context, S);
420}
421
422void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
423  if (S->decl_empty()) return;
424  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
425         "Scope shouldn't contain decls!");
426
427  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
428       I != E; ++I) {
429    Decl *TmpD = (*I).getAs<Decl>();
430    assert(TmpD && "This decl didn't get pushed??");
431
432    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
433    NamedDecl *D = cast<NamedDecl>(TmpD);
434
435    if (!D->getDeclName()) continue;
436
437    // Remove this name from our lexical scope.
438    IdResolver.RemoveDecl(D);
439  }
440}
441
442/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
443/// return 0 if one not found.
444ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
445  // The third "scope" argument is 0 since we aren't enabling lazy built-in
446  // creation from this context.
447  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
448
449  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
450}
451
452/// getNonFieldDeclScope - Retrieves the innermost scope, starting
453/// from S, where a non-field would be declared. This routine copes
454/// with the difference between C and C++ scoping rules in structs and
455/// unions. For example, the following code is well-formed in C but
456/// ill-formed in C++:
457/// @code
458/// struct S6 {
459///   enum { BAR } e;
460/// };
461///
462/// void test_S6() {
463///   struct S6 a;
464///   a.e = BAR;
465/// }
466/// @endcode
467/// For the declaration of BAR, this routine will return a different
468/// scope. The scope S will be the scope of the unnamed enumeration
469/// within S6. In C++, this routine will return the scope associated
470/// with S6, because the enumeration's scope is a transparent
471/// context but structures can contain non-field names. In C, this
472/// routine will return the translation unit scope, since the
473/// enumeration's scope is a transparent context and structures cannot
474/// contain non-field names.
475Scope *Sema::getNonFieldDeclScope(Scope *S) {
476  while (((S->getFlags() & Scope::DeclScope) == 0) ||
477         (S->getEntity() &&
478          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
479         (S->isClassScope() && !getLangOptions().CPlusPlus))
480    S = S->getParent();
481  return S;
482}
483
484void Sema::InitBuiltinVaListType() {
485  if (!Context.getBuiltinVaListType().isNull())
486    return;
487
488  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
489  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
490  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
491  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
492}
493
494/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
495/// file scope.  lazily create a decl for it. ForRedeclaration is true
496/// if we're creating this built-in in anticipation of redeclaring the
497/// built-in.
498NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
499                                     Scope *S, bool ForRedeclaration,
500                                     SourceLocation Loc) {
501  Builtin::ID BID = (Builtin::ID)bid;
502
503  if (Context.BuiltinInfo.hasVAListUse(BID))
504    InitBuiltinVaListType();
505
506  ASTContext::GetBuiltinTypeError Error;
507  QualType R = Context.GetBuiltinType(BID, Error);
508  switch (Error) {
509  case ASTContext::GE_None:
510    // Okay
511    break;
512
513  case ASTContext::GE_Missing_stdio:
514    if (ForRedeclaration)
515      Diag(Loc, diag::err_implicit_decl_requires_stdio)
516        << Context.BuiltinInfo.GetName(BID);
517    return 0;
518
519  case ASTContext::GE_Missing_setjmp:
520    if (ForRedeclaration)
521      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
522        << Context.BuiltinInfo.GetName(BID);
523    return 0;
524  }
525
526  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
527    Diag(Loc, diag::ext_implicit_lib_function_decl)
528      << Context.BuiltinInfo.GetName(BID)
529      << R;
530    if (Context.BuiltinInfo.getHeaderName(BID) &&
531        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
532          != Diagnostic::Ignored)
533      Diag(Loc, diag::note_please_include_header)
534        << Context.BuiltinInfo.getHeaderName(BID)
535        << Context.BuiltinInfo.GetName(BID);
536  }
537
538  FunctionDecl *New = FunctionDecl::Create(Context,
539                                           Context.getTranslationUnitDecl(),
540                                           Loc, II, R, /*DInfo=*/0,
541                                           FunctionDecl::Extern, false,
542                                           /*hasPrototype=*/true);
543  New->setImplicit();
544
545  // Create Decl objects for each parameter, adding them to the
546  // FunctionDecl.
547  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
548    llvm::SmallVector<ParmVarDecl*, 16> Params;
549    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
550      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
551                                           FT->getArgType(i), /*DInfo=*/0,
552                                           VarDecl::None, 0));
553    New->setParams(Context, Params.data(), Params.size());
554  }
555
556  AddKnownFunctionAttributes(New);
557
558  // TUScope is the translation-unit scope to insert this function into.
559  // FIXME: This is hideous. We need to teach PushOnScopeChains to
560  // relate Scopes to DeclContexts, and probably eliminate CurContext
561  // entirely, but we're not there yet.
562  DeclContext *SavedContext = CurContext;
563  CurContext = Context.getTranslationUnitDecl();
564  PushOnScopeChains(New, TUScope);
565  CurContext = SavedContext;
566  return New;
567}
568
569/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
570/// same name and scope as a previous declaration 'Old'.  Figure out
571/// how to resolve this situation, merging decls or emitting
572/// diagnostics as appropriate. If there was an error, set New to be invalid.
573///
574void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
575  // If either decl is known invalid already, set the new one to be invalid and
576  // don't bother doing any merging checks.
577  if (New->isInvalidDecl() || OldD->isInvalidDecl())
578    return New->setInvalidDecl();
579
580  // Allow multiple definitions for ObjC built-in typedefs.
581  // FIXME: Verify the underlying types are equivalent!
582  if (getLangOptions().ObjC1) {
583    const IdentifierInfo *TypeID = New->getIdentifier();
584    switch (TypeID->getLength()) {
585    default: break;
586    case 2:
587      if (!TypeID->isStr("id"))
588        break;
589      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
590      // Install the built-in type for 'id', ignoring the current definition.
591      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
592      return;
593    case 5:
594      if (!TypeID->isStr("Class"))
595        break;
596      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
597      // Install the built-in type for 'Class', ignoring the current definition.
598      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
599      return;
600    case 3:
601      if (!TypeID->isStr("SEL"))
602        break;
603      Context.setObjCSelType(Context.getTypeDeclType(New));
604      return;
605    case 8:
606      if (!TypeID->isStr("Protocol"))
607        break;
608      Context.setObjCProtoType(New->getUnderlyingType());
609      return;
610    }
611    // Fall through - the typedef name was not a builtin type.
612  }
613  // Verify the old decl was also a type.
614  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
615  if (!Old) {
616    Diag(New->getLocation(), diag::err_redefinition_different_kind)
617      << New->getDeclName();
618    if (OldD->getLocation().isValid())
619      Diag(OldD->getLocation(), diag::note_previous_definition);
620    return New->setInvalidDecl();
621  }
622
623  // Determine the "old" type we'll use for checking and diagnostics.
624  QualType OldType;
625  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
626    OldType = OldTypedef->getUnderlyingType();
627  else
628    OldType = Context.getTypeDeclType(Old);
629
630  // If the typedef types are not identical, reject them in all languages and
631  // with any extensions enabled.
632
633  if (OldType != New->getUnderlyingType() &&
634      Context.getCanonicalType(OldType) !=
635      Context.getCanonicalType(New->getUnderlyingType())) {
636    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
637      << New->getUnderlyingType() << OldType;
638    if (Old->getLocation().isValid())
639      Diag(Old->getLocation(), diag::note_previous_definition);
640    return New->setInvalidDecl();
641  }
642
643  if (getLangOptions().Microsoft)
644    return;
645
646  // C++ [dcl.typedef]p2:
647  //   In a given non-class scope, a typedef specifier can be used to
648  //   redefine the name of any type declared in that scope to refer
649  //   to the type to which it already refers.
650  if (getLangOptions().CPlusPlus) {
651    if (!isa<CXXRecordDecl>(CurContext))
652      return;
653    Diag(New->getLocation(), diag::err_redefinition)
654      << New->getDeclName();
655    Diag(Old->getLocation(), diag::note_previous_definition);
656    return New->setInvalidDecl();
657  }
658
659  // If we have a redefinition of a typedef in C, emit a warning.  This warning
660  // is normally mapped to an error, but can be controlled with
661  // -Wtypedef-redefinition.  If either the original or the redefinition is
662  // in a system header, don't emit this for compatibility with GCC.
663  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
664      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
665       Context.getSourceManager().isInSystemHeader(New->getLocation())))
666    return;
667
668  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
669    << New->getDeclName();
670  Diag(Old->getLocation(), diag::note_previous_definition);
671  return;
672}
673
674/// DeclhasAttr - returns true if decl Declaration already has the target
675/// attribute.
676static bool
677DeclHasAttr(const Decl *decl, const Attr *target) {
678  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
679    if (attr->getKind() == target->getKind())
680      return true;
681
682  return false;
683}
684
685/// MergeAttributes - append attributes from the Old decl to the New one.
686static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
687  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
688    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
689      Attr *NewAttr = attr->clone(C);
690      NewAttr->setInherited(true);
691      New->addAttr(NewAttr);
692    }
693  }
694}
695
696/// Used in MergeFunctionDecl to keep track of function parameters in
697/// C.
698struct GNUCompatibleParamWarning {
699  ParmVarDecl *OldParm;
700  ParmVarDecl *NewParm;
701  QualType PromotedType;
702};
703
704/// MergeFunctionDecl - We just parsed a function 'New' from
705/// declarator D which has the same name and scope as a previous
706/// declaration 'Old'.  Figure out how to resolve this situation,
707/// merging decls or emitting diagnostics as appropriate.
708///
709/// In C++, New and Old must be declarations that are not
710/// overloaded. Use IsOverload to determine whether New and Old are
711/// overloaded, and to select the Old declaration that New should be
712/// merged with.
713///
714/// Returns true if there was an error, false otherwise.
715bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
716  assert(!isa<OverloadedFunctionDecl>(OldD) &&
717         "Cannot merge with an overloaded function declaration");
718
719  // Verify the old decl was also a function.
720  FunctionDecl *Old = 0;
721  if (FunctionTemplateDecl *OldFunctionTemplate
722        = dyn_cast<FunctionTemplateDecl>(OldD))
723    Old = OldFunctionTemplate->getTemplatedDecl();
724  else
725    Old = dyn_cast<FunctionDecl>(OldD);
726  if (!Old) {
727    Diag(New->getLocation(), diag::err_redefinition_different_kind)
728      << New->getDeclName();
729    Diag(OldD->getLocation(), diag::note_previous_definition);
730    return true;
731  }
732
733  // Determine whether the previous declaration was a definition,
734  // implicit declaration, or a declaration.
735  diag::kind PrevDiag;
736  if (Old->isThisDeclarationADefinition())
737    PrevDiag = diag::note_previous_definition;
738  else if (Old->isImplicit())
739    PrevDiag = diag::note_previous_implicit_declaration;
740  else
741    PrevDiag = diag::note_previous_declaration;
742
743  QualType OldQType = Context.getCanonicalType(Old->getType());
744  QualType NewQType = Context.getCanonicalType(New->getType());
745
746  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
747      New->getStorageClass() == FunctionDecl::Static &&
748      Old->getStorageClass() != FunctionDecl::Static) {
749    Diag(New->getLocation(), diag::err_static_non_static)
750      << New;
751    Diag(Old->getLocation(), PrevDiag);
752    return true;
753  }
754
755  if (getLangOptions().CPlusPlus) {
756    // (C++98 13.1p2):
757    //   Certain function declarations cannot be overloaded:
758    //     -- Function declarations that differ only in the return type
759    //        cannot be overloaded.
760    QualType OldReturnType
761      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
762    QualType NewReturnType
763      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
764    if (OldReturnType != NewReturnType) {
765      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
766      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
767      return true;
768    }
769
770    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
771    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
772    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
773        NewMethod->getLexicalDeclContext()->isRecord()) {
774      //    -- Member function declarations with the same name and the
775      //       same parameter types cannot be overloaded if any of them
776      //       is a static member function declaration.
777      if (OldMethod->isStatic() || NewMethod->isStatic()) {
778        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
779        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
780        return true;
781      }
782
783      // C++ [class.mem]p1:
784      //   [...] A member shall not be declared twice in the
785      //   member-specification, except that a nested class or member
786      //   class template can be declared and then later defined.
787      unsigned NewDiag;
788      if (isa<CXXConstructorDecl>(OldMethod))
789        NewDiag = diag::err_constructor_redeclared;
790      else if (isa<CXXDestructorDecl>(NewMethod))
791        NewDiag = diag::err_destructor_redeclared;
792      else if (isa<CXXConversionDecl>(NewMethod))
793        NewDiag = diag::err_conv_function_redeclared;
794      else
795        NewDiag = diag::err_member_redeclared;
796
797      Diag(New->getLocation(), NewDiag);
798      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
799    }
800
801    // (C++98 8.3.5p3):
802    //   All declarations for a function shall agree exactly in both the
803    //   return type and the parameter-type-list.
804    if (OldQType == NewQType)
805      return MergeCompatibleFunctionDecls(New, Old);
806
807    // Fall through for conflicting redeclarations and redefinitions.
808  }
809
810  // C: Function types need to be compatible, not identical. This handles
811  // duplicate function decls like "void f(int); void f(enum X);" properly.
812  if (!getLangOptions().CPlusPlus &&
813      Context.typesAreCompatible(OldQType, NewQType)) {
814    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
815    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
816    const FunctionProtoType *OldProto = 0;
817    if (isa<FunctionNoProtoType>(NewFuncType) &&
818        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
819      // The old declaration provided a function prototype, but the
820      // new declaration does not. Merge in the prototype.
821      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
822      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
823                                                 OldProto->arg_type_end());
824      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
825                                         ParamTypes.data(), ParamTypes.size(),
826                                         OldProto->isVariadic(),
827                                         OldProto->getTypeQuals());
828      New->setType(NewQType);
829      New->setHasInheritedPrototype();
830
831      // Synthesize a parameter for each argument type.
832      llvm::SmallVector<ParmVarDecl*, 16> Params;
833      for (FunctionProtoType::arg_type_iterator
834             ParamType = OldProto->arg_type_begin(),
835             ParamEnd = OldProto->arg_type_end();
836           ParamType != ParamEnd; ++ParamType) {
837        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
838                                                 SourceLocation(), 0,
839                                                 *ParamType, /*DInfo=*/0,
840                                                 VarDecl::None, 0);
841        Param->setImplicit();
842        Params.push_back(Param);
843      }
844
845      New->setParams(Context, Params.data(), Params.size());
846    }
847
848    return MergeCompatibleFunctionDecls(New, Old);
849  }
850
851  // GNU C permits a K&R definition to follow a prototype declaration
852  // if the declared types of the parameters in the K&R definition
853  // match the types in the prototype declaration, even when the
854  // promoted types of the parameters from the K&R definition differ
855  // from the types in the prototype. GCC then keeps the types from
856  // the prototype.
857  //
858  // If a variadic prototype is followed by a non-variadic K&R definition,
859  // the K&R definition becomes variadic.  This is sort of an edge case, but
860  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
861  // C99 6.9.1p8.
862  if (!getLangOptions().CPlusPlus &&
863      Old->hasPrototype() && !New->hasPrototype() &&
864      New->getType()->getAs<FunctionProtoType>() &&
865      Old->getNumParams() == New->getNumParams()) {
866    llvm::SmallVector<QualType, 16> ArgTypes;
867    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
868    const FunctionProtoType *OldProto
869      = Old->getType()->getAs<FunctionProtoType>();
870    const FunctionProtoType *NewProto
871      = New->getType()->getAs<FunctionProtoType>();
872
873    // Determine whether this is the GNU C extension.
874    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
875                                               NewProto->getResultType());
876    bool LooseCompatible = !MergedReturn.isNull();
877    for (unsigned Idx = 0, End = Old->getNumParams();
878         LooseCompatible && Idx != End; ++Idx) {
879      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
880      ParmVarDecl *NewParm = New->getParamDecl(Idx);
881      if (Context.typesAreCompatible(OldParm->getType(),
882                                     NewProto->getArgType(Idx))) {
883        ArgTypes.push_back(NewParm->getType());
884      } else if (Context.typesAreCompatible(OldParm->getType(),
885                                            NewParm->getType())) {
886        GNUCompatibleParamWarning Warn
887          = { OldParm, NewParm, NewProto->getArgType(Idx) };
888        Warnings.push_back(Warn);
889        ArgTypes.push_back(NewParm->getType());
890      } else
891        LooseCompatible = false;
892    }
893
894    if (LooseCompatible) {
895      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
896        Diag(Warnings[Warn].NewParm->getLocation(),
897             diag::ext_param_promoted_not_compatible_with_prototype)
898          << Warnings[Warn].PromotedType
899          << Warnings[Warn].OldParm->getType();
900        Diag(Warnings[Warn].OldParm->getLocation(),
901             diag::note_previous_declaration);
902      }
903
904      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
905                                           ArgTypes.size(),
906                                           OldProto->isVariadic(), 0));
907      return MergeCompatibleFunctionDecls(New, Old);
908    }
909
910    // Fall through to diagnose conflicting types.
911  }
912
913  // A function that has already been declared has been redeclared or defined
914  // with a different type- show appropriate diagnostic
915  if (unsigned BuiltinID = Old->getBuiltinID()) {
916    // The user has declared a builtin function with an incompatible
917    // signature.
918    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
919      // The function the user is redeclaring is a library-defined
920      // function like 'malloc' or 'printf'. Warn about the
921      // redeclaration, then pretend that we don't know about this
922      // library built-in.
923      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
924      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
925        << Old << Old->getType();
926      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
927      Old->setInvalidDecl();
928      return false;
929    }
930
931    PrevDiag = diag::note_previous_builtin_declaration;
932  }
933
934  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
935  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
936  return true;
937}
938
939/// \brief Completes the merge of two function declarations that are
940/// known to be compatible.
941///
942/// This routine handles the merging of attributes and other
943/// properties of function declarations form the old declaration to
944/// the new declaration, once we know that New is in fact a
945/// redeclaration of Old.
946///
947/// \returns false
948bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
949  // Merge the attributes
950  MergeAttributes(New, Old, Context);
951
952  // Merge the storage class.
953  if (Old->getStorageClass() != FunctionDecl::Extern &&
954      Old->getStorageClass() != FunctionDecl::None)
955    New->setStorageClass(Old->getStorageClass());
956
957  // Merge "pure" flag.
958  if (Old->isPure())
959    New->setPure();
960
961  // Merge the "deleted" flag.
962  if (Old->isDeleted())
963    New->setDeleted();
964
965  if (getLangOptions().CPlusPlus)
966    return MergeCXXFunctionDecl(New, Old);
967
968  return false;
969}
970
971/// MergeVarDecl - We just parsed a variable 'New' which has the same name
972/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
973/// situation, merging decls or emitting diagnostics as appropriate.
974///
975/// Tentative definition rules (C99 6.9.2p2) are checked by
976/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
977/// definitions here, since the initializer hasn't been attached.
978///
979void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
980  // If either decl is invalid, make sure the new one is marked invalid and
981  // don't do any other checking.
982  if (New->isInvalidDecl() || OldD->isInvalidDecl())
983    return New->setInvalidDecl();
984
985  // Verify the old decl was also a variable.
986  VarDecl *Old = dyn_cast<VarDecl>(OldD);
987  if (!Old) {
988    Diag(New->getLocation(), diag::err_redefinition_different_kind)
989      << New->getDeclName();
990    Diag(OldD->getLocation(), diag::note_previous_definition);
991    return New->setInvalidDecl();
992  }
993
994  MergeAttributes(New, Old, Context);
995
996  // Merge the types
997  QualType MergedT;
998  if (getLangOptions().CPlusPlus) {
999    if (Context.hasSameType(New->getType(), Old->getType()))
1000      MergedT = New->getType();
1001    // C++ [basic.types]p7:
1002    //   [...] The declared type of an array object might be an array of
1003    //   unknown size and therefore be incomplete at one point in a
1004    //   translation unit and complete later on; [...]
1005    else if (Old->getType()->isIncompleteArrayType() &&
1006             New->getType()->isArrayType()) {
1007      CanQual<ArrayType> OldArray
1008        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1009      CanQual<ArrayType> NewArray
1010        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1011      if (OldArray->getElementType() == NewArray->getElementType())
1012        MergedT = New->getType();
1013    }
1014  } else {
1015    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1016  }
1017  if (MergedT.isNull()) {
1018    Diag(New->getLocation(), diag::err_redefinition_different_type)
1019      << New->getDeclName();
1020    Diag(Old->getLocation(), diag::note_previous_definition);
1021    return New->setInvalidDecl();
1022  }
1023  New->setType(MergedT);
1024
1025  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1026  if (New->getStorageClass() == VarDecl::Static &&
1027      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1028    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1029    Diag(Old->getLocation(), diag::note_previous_definition);
1030    return New->setInvalidDecl();
1031  }
1032  // C99 6.2.2p4:
1033  //   For an identifier declared with the storage-class specifier
1034  //   extern in a scope in which a prior declaration of that
1035  //   identifier is visible,23) if the prior declaration specifies
1036  //   internal or external linkage, the linkage of the identifier at
1037  //   the later declaration is the same as the linkage specified at
1038  //   the prior declaration. If no prior declaration is visible, or
1039  //   if the prior declaration specifies no linkage, then the
1040  //   identifier has external linkage.
1041  if (New->hasExternalStorage() && Old->hasLinkage())
1042    /* Okay */;
1043  else if (New->getStorageClass() != VarDecl::Static &&
1044           Old->getStorageClass() == VarDecl::Static) {
1045    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1046    Diag(Old->getLocation(), diag::note_previous_definition);
1047    return New->setInvalidDecl();
1048  }
1049
1050  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1051
1052  // FIXME: The test for external storage here seems wrong? We still
1053  // need to check for mismatches.
1054  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1055      // Don't complain about out-of-line definitions of static members.
1056      !(Old->getLexicalDeclContext()->isRecord() &&
1057        !New->getLexicalDeclContext()->isRecord())) {
1058    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1059    Diag(Old->getLocation(), diag::note_previous_definition);
1060    return New->setInvalidDecl();
1061  }
1062
1063  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1064    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1065    Diag(Old->getLocation(), diag::note_previous_definition);
1066  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1067    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1068    Diag(Old->getLocation(), diag::note_previous_definition);
1069  }
1070
1071  // Keep a chain of previous declarations.
1072  New->setPreviousDeclaration(Old);
1073}
1074
1075/// CheckFallThrough - Check that we don't fall off the end of a
1076/// Statement that should return a value.
1077///
1078/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1079/// MaybeFallThrough iff we might or might not fall off the end and
1080/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1081/// that functions not marked noreturn will return.
1082Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1083  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1084
1085  // FIXME: They should never return 0, fix that, delete this code.
1086  if (cfg == 0)
1087    return NeverFallThrough;
1088  // The CFG leaves in dead things, and we don't want to dead code paths to
1089  // confuse us, so we mark all live things first.
1090  std::queue<CFGBlock*> workq;
1091  llvm::BitVector live(cfg->getNumBlockIDs());
1092  // Prep work queue
1093  workq.push(&cfg->getEntry());
1094  // Solve
1095  while (!workq.empty()) {
1096    CFGBlock *item = workq.front();
1097    workq.pop();
1098    live.set(item->getBlockID());
1099    for (CFGBlock::succ_iterator I=item->succ_begin(),
1100           E=item->succ_end();
1101         I != E;
1102         ++I) {
1103      if ((*I) && !live[(*I)->getBlockID()]) {
1104        live.set((*I)->getBlockID());
1105        workq.push(*I);
1106      }
1107    }
1108  }
1109
1110  // Now we know what is live, we check the live precessors of the exit block
1111  // and look for fall through paths, being careful to ignore normal returns,
1112  // and exceptional paths.
1113  bool HasLiveReturn = false;
1114  bool HasFakeEdge = false;
1115  bool HasPlainEdge = false;
1116  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1117         E = cfg->getExit().pred_end();
1118       I != E;
1119       ++I) {
1120    CFGBlock& B = **I;
1121    if (!live[B.getBlockID()])
1122      continue;
1123    if (B.size() == 0) {
1124      // A labeled empty statement, or the entry block...
1125      HasPlainEdge = true;
1126      continue;
1127    }
1128    Stmt *S = B[B.size()-1];
1129    if (isa<ReturnStmt>(S)) {
1130      HasLiveReturn = true;
1131      continue;
1132    }
1133    if (isa<ObjCAtThrowStmt>(S)) {
1134      HasFakeEdge = true;
1135      continue;
1136    }
1137    if (isa<CXXThrowExpr>(S)) {
1138      HasFakeEdge = true;
1139      continue;
1140    }
1141    bool NoReturnEdge = false;
1142    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1143      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1144      if (CEE->getType().getNoReturnAttr()) {
1145        NoReturnEdge = true;
1146        HasFakeEdge = true;
1147      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1148        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1149          if (FD->hasAttr<NoReturnAttr>()) {
1150            NoReturnEdge = true;
1151            HasFakeEdge = true;
1152          }
1153        }
1154      }
1155    }
1156    // FIXME: Add noreturn message sends.
1157    if (NoReturnEdge == false)
1158      HasPlainEdge = true;
1159  }
1160  if (!HasPlainEdge)
1161    return NeverFallThrough;
1162  if (HasFakeEdge || HasLiveReturn)
1163    return MaybeFallThrough;
1164  // This says AlwaysFallThrough for calls to functions that are not marked
1165  // noreturn, that don't return.  If people would like this warning to be more
1166  // accurate, such functions should be marked as noreturn.
1167  return AlwaysFallThrough;
1168}
1169
1170/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1171/// function that should return a value.  Check that we don't fall off the end
1172/// of a noreturn function.  We assume that functions and blocks not marked
1173/// noreturn will return.
1174void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1175  // FIXME: Would be nice if we had a better way to control cascading errors,
1176  // but for now, avoid them.  The problem is that when Parse sees:
1177  //   int foo() { return a; }
1178  // The return is eaten and the Sema code sees just:
1179  //   int foo() { }
1180  // which this code would then warn about.
1181  if (getDiagnostics().hasErrorOccurred())
1182    return;
1183  bool ReturnsVoid = false;
1184  bool HasNoReturn = false;
1185  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1186    // If the result type of the function is a dependent type, we don't know
1187    // whether it will be void or not, so don't
1188    if (FD->getResultType()->isDependentType())
1189      return;
1190    if (FD->getResultType()->isVoidType())
1191      ReturnsVoid = true;
1192    if (FD->hasAttr<NoReturnAttr>())
1193      HasNoReturn = true;
1194  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1195    if (MD->getResultType()->isVoidType())
1196      ReturnsVoid = true;
1197    if (MD->hasAttr<NoReturnAttr>())
1198      HasNoReturn = true;
1199  }
1200
1201  // Short circuit for compilation speed.
1202  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1203       == Diagnostic::Ignored || ReturnsVoid)
1204      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1205          == Diagnostic::Ignored || !HasNoReturn)
1206      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1207          == Diagnostic::Ignored || !ReturnsVoid))
1208    return;
1209  // FIXME: Function try block
1210  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1211    switch (CheckFallThrough(Body)) {
1212    case MaybeFallThrough:
1213      if (HasNoReturn)
1214        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1215      else if (!ReturnsVoid)
1216        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1217      break;
1218    case AlwaysFallThrough:
1219      if (HasNoReturn)
1220        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1221      else if (!ReturnsVoid)
1222        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1223      break;
1224    case NeverFallThrough:
1225      if (ReturnsVoid)
1226        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1227      break;
1228    }
1229  }
1230}
1231
1232/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1233/// that should return a value.  Check that we don't fall off the end of a
1234/// noreturn block.  We assume that functions and blocks not marked noreturn
1235/// will return.
1236void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1237  // FIXME: Would be nice if we had a better way to control cascading errors,
1238  // but for now, avoid them.  The problem is that when Parse sees:
1239  //   int foo() { return a; }
1240  // The return is eaten and the Sema code sees just:
1241  //   int foo() { }
1242  // which this code would then warn about.
1243  if (getDiagnostics().hasErrorOccurred())
1244    return;
1245  bool ReturnsVoid = false;
1246  bool HasNoReturn = false;
1247  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1248    if (FT->getResultType()->isVoidType())
1249      ReturnsVoid = true;
1250    if (FT->getNoReturnAttr())
1251      HasNoReturn = true;
1252  }
1253
1254  // Short circuit for compilation speed.
1255  if (ReturnsVoid
1256      && !HasNoReturn
1257      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1258          == Diagnostic::Ignored || !ReturnsVoid))
1259    return;
1260  // FIXME: Funtion try block
1261  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1262    switch (CheckFallThrough(Body)) {
1263    case MaybeFallThrough:
1264      if (HasNoReturn)
1265        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1266      else if (!ReturnsVoid)
1267        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1268      break;
1269    case AlwaysFallThrough:
1270      if (HasNoReturn)
1271        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1272      else if (!ReturnsVoid)
1273        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1274      break;
1275    case NeverFallThrough:
1276      if (ReturnsVoid)
1277        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1278      break;
1279    }
1280  }
1281}
1282
1283/// CheckParmsForFunctionDef - Check that the parameters of the given
1284/// function are appropriate for the definition of a function. This
1285/// takes care of any checks that cannot be performed on the
1286/// declaration itself, e.g., that the types of each of the function
1287/// parameters are complete.
1288bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1289  bool HasInvalidParm = false;
1290  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1291    ParmVarDecl *Param = FD->getParamDecl(p);
1292
1293    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1294    // function declarator that is part of a function definition of
1295    // that function shall not have incomplete type.
1296    //
1297    // This is also C++ [dcl.fct]p6.
1298    if (!Param->isInvalidDecl() &&
1299        RequireCompleteType(Param->getLocation(), Param->getType(),
1300                               diag::err_typecheck_decl_incomplete_type)) {
1301      Param->setInvalidDecl();
1302      HasInvalidParm = true;
1303    }
1304
1305    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1306    // declaration of each parameter shall include an identifier.
1307    if (Param->getIdentifier() == 0 &&
1308        !Param->isImplicit() &&
1309        !getLangOptions().CPlusPlus)
1310      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1311  }
1312
1313  return HasInvalidParm;
1314}
1315
1316/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1317/// no declarator (e.g. "struct foo;") is parsed.
1318Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1319  // FIXME: Error on auto/register at file scope
1320  // FIXME: Error on inline/virtual/explicit
1321  // FIXME: Error on invalid restrict
1322  // FIXME: Warn on useless __thread
1323  // FIXME: Warn on useless const/volatile
1324  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1325  // FIXME: Warn on useless attributes
1326  Decl *TagD = 0;
1327  TagDecl *Tag = 0;
1328  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1329      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1330      DS.getTypeSpecType() == DeclSpec::TST_union ||
1331      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1332    TagD = static_cast<Decl *>(DS.getTypeRep());
1333
1334    if (!TagD) // We probably had an error
1335      return DeclPtrTy();
1336
1337    // Note that the above type specs guarantee that the
1338    // type rep is a Decl, whereas in many of the others
1339    // it's a Type.
1340    Tag = dyn_cast<TagDecl>(TagD);
1341  }
1342
1343  if (DS.isFriendSpecified()) {
1344    // If we're dealing with a class template decl, assume that the
1345    // template routines are handling it.
1346    if (TagD && isa<ClassTemplateDecl>(TagD))
1347      return DeclPtrTy();
1348    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1349  }
1350
1351  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1352    if (!Record->getDeclName() && Record->isDefinition() &&
1353        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1354      if (getLangOptions().CPlusPlus ||
1355          Record->getDeclContext()->isRecord())
1356        return BuildAnonymousStructOrUnion(S, DS, Record);
1357
1358      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1359        << DS.getSourceRange();
1360    }
1361
1362    // Microsoft allows unnamed struct/union fields. Don't complain
1363    // about them.
1364    // FIXME: Should we support Microsoft's extensions in this area?
1365    if (Record->getDeclName() && getLangOptions().Microsoft)
1366      return DeclPtrTy::make(Tag);
1367  }
1368
1369  if (!DS.isMissingDeclaratorOk() &&
1370      DS.getTypeSpecType() != DeclSpec::TST_error) {
1371    // Warn about typedefs of enums without names, since this is an
1372    // extension in both Microsoft an GNU.
1373    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1374        Tag && isa<EnumDecl>(Tag)) {
1375      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1376        << DS.getSourceRange();
1377      return DeclPtrTy::make(Tag);
1378    }
1379
1380    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1381      << DS.getSourceRange();
1382    return DeclPtrTy();
1383  }
1384
1385  return DeclPtrTy::make(Tag);
1386}
1387
1388/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1389/// anonymous struct or union AnonRecord into the owning context Owner
1390/// and scope S. This routine will be invoked just after we realize
1391/// that an unnamed union or struct is actually an anonymous union or
1392/// struct, e.g.,
1393///
1394/// @code
1395/// union {
1396///   int i;
1397///   float f;
1398/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1399///    // f into the surrounding scope.x
1400/// @endcode
1401///
1402/// This routine is recursive, injecting the names of nested anonymous
1403/// structs/unions into the owning context and scope as well.
1404bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1405                                               RecordDecl *AnonRecord) {
1406  bool Invalid = false;
1407  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1408                               FEnd = AnonRecord->field_end();
1409       F != FEnd; ++F) {
1410    if ((*F)->getDeclName()) {
1411      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1412                                                LookupOrdinaryName, true);
1413      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1414        // C++ [class.union]p2:
1415        //   The names of the members of an anonymous union shall be
1416        //   distinct from the names of any other entity in the
1417        //   scope in which the anonymous union is declared.
1418        unsigned diagKind
1419          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1420                                 : diag::err_anonymous_struct_member_redecl;
1421        Diag((*F)->getLocation(), diagKind)
1422          << (*F)->getDeclName();
1423        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1424        Invalid = true;
1425      } else {
1426        // C++ [class.union]p2:
1427        //   For the purpose of name lookup, after the anonymous union
1428        //   definition, the members of the anonymous union are
1429        //   considered to have been defined in the scope in which the
1430        //   anonymous union is declared.
1431        Owner->makeDeclVisibleInContext(*F);
1432        S->AddDecl(DeclPtrTy::make(*F));
1433        IdResolver.AddDecl(*F);
1434      }
1435    } else if (const RecordType *InnerRecordType
1436                 = (*F)->getType()->getAs<RecordType>()) {
1437      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1438      if (InnerRecord->isAnonymousStructOrUnion())
1439        Invalid = Invalid ||
1440          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1441    }
1442  }
1443
1444  return Invalid;
1445}
1446
1447/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1448/// anonymous structure or union. Anonymous unions are a C++ feature
1449/// (C++ [class.union]) and a GNU C extension; anonymous structures
1450/// are a GNU C and GNU C++ extension.
1451Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1452                                                  RecordDecl *Record) {
1453  DeclContext *Owner = Record->getDeclContext();
1454
1455  // Diagnose whether this anonymous struct/union is an extension.
1456  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1457    Diag(Record->getLocation(), diag::ext_anonymous_union);
1458  else if (!Record->isUnion())
1459    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1460
1461  // C and C++ require different kinds of checks for anonymous
1462  // structs/unions.
1463  bool Invalid = false;
1464  if (getLangOptions().CPlusPlus) {
1465    const char* PrevSpec = 0;
1466    unsigned DiagID;
1467    // C++ [class.union]p3:
1468    //   Anonymous unions declared in a named namespace or in the
1469    //   global namespace shall be declared static.
1470    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1471        (isa<TranslationUnitDecl>(Owner) ||
1472         (isa<NamespaceDecl>(Owner) &&
1473          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1474      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1475      Invalid = true;
1476
1477      // Recover by adding 'static'.
1478      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1479                             PrevSpec, DiagID);
1480    }
1481    // C++ [class.union]p3:
1482    //   A storage class is not allowed in a declaration of an
1483    //   anonymous union in a class scope.
1484    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1485             isa<RecordDecl>(Owner)) {
1486      Diag(DS.getStorageClassSpecLoc(),
1487           diag::err_anonymous_union_with_storage_spec);
1488      Invalid = true;
1489
1490      // Recover by removing the storage specifier.
1491      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1492                             PrevSpec, DiagID);
1493    }
1494
1495    // C++ [class.union]p2:
1496    //   The member-specification of an anonymous union shall only
1497    //   define non-static data members. [Note: nested types and
1498    //   functions cannot be declared within an anonymous union. ]
1499    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1500                                 MemEnd = Record->decls_end();
1501         Mem != MemEnd; ++Mem) {
1502      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1503        // C++ [class.union]p3:
1504        //   An anonymous union shall not have private or protected
1505        //   members (clause 11).
1506        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1507          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1508            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1509          Invalid = true;
1510        }
1511      } else if ((*Mem)->isImplicit()) {
1512        // Any implicit members are fine.
1513      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1514        // This is a type that showed up in an
1515        // elaborated-type-specifier inside the anonymous struct or
1516        // union, but which actually declares a type outside of the
1517        // anonymous struct or union. It's okay.
1518      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1519        if (!MemRecord->isAnonymousStructOrUnion() &&
1520            MemRecord->getDeclName()) {
1521          // This is a nested type declaration.
1522          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1523            << (int)Record->isUnion();
1524          Invalid = true;
1525        }
1526      } else {
1527        // We have something that isn't a non-static data
1528        // member. Complain about it.
1529        unsigned DK = diag::err_anonymous_record_bad_member;
1530        if (isa<TypeDecl>(*Mem))
1531          DK = diag::err_anonymous_record_with_type;
1532        else if (isa<FunctionDecl>(*Mem))
1533          DK = diag::err_anonymous_record_with_function;
1534        else if (isa<VarDecl>(*Mem))
1535          DK = diag::err_anonymous_record_with_static;
1536        Diag((*Mem)->getLocation(), DK)
1537            << (int)Record->isUnion();
1538          Invalid = true;
1539      }
1540    }
1541  }
1542
1543  if (!Record->isUnion() && !Owner->isRecord()) {
1544    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1545      << (int)getLangOptions().CPlusPlus;
1546    Invalid = true;
1547  }
1548
1549  // Create a declaration for this anonymous struct/union.
1550  NamedDecl *Anon = 0;
1551  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1552    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1553                             /*IdentifierInfo=*/0,
1554                             Context.getTypeDeclType(Record),
1555                             // FIXME: Type source info.
1556                             /*DInfo=*/0,
1557                             /*BitWidth=*/0, /*Mutable=*/false);
1558    Anon->setAccess(AS_public);
1559    if (getLangOptions().CPlusPlus)
1560      FieldCollector->Add(cast<FieldDecl>(Anon));
1561  } else {
1562    VarDecl::StorageClass SC;
1563    switch (DS.getStorageClassSpec()) {
1564    default: assert(0 && "Unknown storage class!");
1565    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1566    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1567    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1568    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1569    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1570    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1571    case DeclSpec::SCS_mutable:
1572      // mutable can only appear on non-static class members, so it's always
1573      // an error here
1574      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1575      Invalid = true;
1576      SC = VarDecl::None;
1577      break;
1578    }
1579
1580    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1581                           /*IdentifierInfo=*/0,
1582                           Context.getTypeDeclType(Record),
1583                           // FIXME: Type source info.
1584                           /*DInfo=*/0,
1585                           SC);
1586  }
1587  Anon->setImplicit();
1588
1589  // Add the anonymous struct/union object to the current
1590  // context. We'll be referencing this object when we refer to one of
1591  // its members.
1592  Owner->addDecl(Anon);
1593
1594  // Inject the members of the anonymous struct/union into the owning
1595  // context and into the identifier resolver chain for name lookup
1596  // purposes.
1597  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1598    Invalid = true;
1599
1600  // Mark this as an anonymous struct/union type. Note that we do not
1601  // do this until after we have already checked and injected the
1602  // members of this anonymous struct/union type, because otherwise
1603  // the members could be injected twice: once by DeclContext when it
1604  // builds its lookup table, and once by
1605  // InjectAnonymousStructOrUnionMembers.
1606  Record->setAnonymousStructOrUnion(true);
1607
1608  if (Invalid)
1609    Anon->setInvalidDecl();
1610
1611  return DeclPtrTy::make(Anon);
1612}
1613
1614
1615/// GetNameForDeclarator - Determine the full declaration name for the
1616/// given Declarator.
1617DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1618  switch (D.getKind()) {
1619  case Declarator::DK_Abstract:
1620    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1621    return DeclarationName();
1622
1623  case Declarator::DK_Normal:
1624    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1625    return DeclarationName(D.getIdentifier());
1626
1627  case Declarator::DK_Constructor: {
1628    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1629    return Context.DeclarationNames.getCXXConstructorName(
1630                                                Context.getCanonicalType(Ty));
1631  }
1632
1633  case Declarator::DK_Destructor: {
1634    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1635    return Context.DeclarationNames.getCXXDestructorName(
1636                                                Context.getCanonicalType(Ty));
1637  }
1638
1639  case Declarator::DK_Conversion: {
1640    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1641    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1642    return Context.DeclarationNames.getCXXConversionFunctionName(
1643                                                Context.getCanonicalType(Ty));
1644  }
1645
1646  case Declarator::DK_Operator:
1647    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1648    return Context.DeclarationNames.getCXXOperatorName(
1649                                                D.getOverloadedOperator());
1650
1651  case Declarator::DK_TemplateId: {
1652    TemplateName Name
1653      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1654    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1655      return Template->getDeclName();
1656    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1657      return Ovl->getDeclName();
1658
1659    return DeclarationName();
1660  }
1661  }
1662
1663  assert(false && "Unknown name kind");
1664  return DeclarationName();
1665}
1666
1667/// isNearlyMatchingFunction - Determine whether the C++ functions
1668/// Declaration and Definition are "nearly" matching. This heuristic
1669/// is used to improve diagnostics in the case where an out-of-line
1670/// function definition doesn't match any declaration within
1671/// the class or namespace.
1672static bool isNearlyMatchingFunction(ASTContext &Context,
1673                                     FunctionDecl *Declaration,
1674                                     FunctionDecl *Definition) {
1675  if (Declaration->param_size() != Definition->param_size())
1676    return false;
1677  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1678    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1679    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1680
1681    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1682    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1683    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1684      return false;
1685  }
1686
1687  return true;
1688}
1689
1690Sema::DeclPtrTy
1691Sema::HandleDeclarator(Scope *S, Declarator &D,
1692                       MultiTemplateParamsArg TemplateParamLists,
1693                       bool IsFunctionDefinition) {
1694  DeclarationName Name = GetNameForDeclarator(D);
1695
1696  // All of these full declarators require an identifier.  If it doesn't have
1697  // one, the ParsedFreeStandingDeclSpec action should be used.
1698  if (!Name) {
1699    if (!D.isInvalidType())  // Reject this if we think it is valid.
1700      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1701           diag::err_declarator_need_ident)
1702        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1703    return DeclPtrTy();
1704  }
1705
1706  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1707  // we find one that is.
1708  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1709         (S->getFlags() & Scope::TemplateParamScope) != 0)
1710    S = S->getParent();
1711
1712  // If this is an out-of-line definition of a member of a class template
1713  // or class template partial specialization, we may need to rebuild the
1714  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1715  // for more information.
1716  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1717  // handle expressions properly.
1718  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1719  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1720      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1721      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1722       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1723       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1724       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1725    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1726      // FIXME: Preserve type source info.
1727      QualType T = GetTypeFromParser(DS.getTypeRep());
1728      EnterDeclaratorContext(S, DC);
1729      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1730      ExitDeclaratorContext(S);
1731      if (T.isNull())
1732        return DeclPtrTy();
1733      DS.UpdateTypeRep(T.getAsOpaquePtr());
1734    }
1735  }
1736
1737  DeclContext *DC;
1738  NamedDecl *PrevDecl;
1739  NamedDecl *New;
1740
1741  DeclaratorInfo *DInfo = 0;
1742  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1743
1744  // See if this is a redefinition of a variable in the same scope.
1745  if (D.getCXXScopeSpec().isInvalid()) {
1746    DC = CurContext;
1747    PrevDecl = 0;
1748    D.setInvalidType();
1749  } else if (!D.getCXXScopeSpec().isSet()) {
1750    LookupNameKind NameKind = LookupOrdinaryName;
1751
1752    // If the declaration we're planning to build will be a function
1753    // or object with linkage, then look for another declaration with
1754    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1755    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1756      /* Do nothing*/;
1757    else if (R->isFunctionType()) {
1758      if (CurContext->isFunctionOrMethod() ||
1759          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1760        NameKind = LookupRedeclarationWithLinkage;
1761    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1762      NameKind = LookupRedeclarationWithLinkage;
1763    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1764             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1765      NameKind = LookupRedeclarationWithLinkage;
1766
1767    DC = CurContext;
1768    PrevDecl = LookupName(S, Name, NameKind, true,
1769                          NameKind == LookupRedeclarationWithLinkage,
1770                          D.getIdentifierLoc());
1771  } else { // Something like "int foo::x;"
1772    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1773
1774    if (!DC) {
1775      // If we could not compute the declaration context, it's because the
1776      // declaration context is dependent but does not refer to a class,
1777      // class template, or class template partial specialization. Complain
1778      // and return early, to avoid the coming semantic disaster.
1779      Diag(D.getIdentifierLoc(),
1780           diag::err_template_qualified_declarator_no_match)
1781        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1782        << D.getCXXScopeSpec().getRange();
1783      return DeclPtrTy();
1784    }
1785
1786    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1787
1788    // C++ 7.3.1.2p2:
1789    // Members (including explicit specializations of templates) of a named
1790    // namespace can also be defined outside that namespace by explicit
1791    // qualification of the name being defined, provided that the entity being
1792    // defined was already declared in the namespace and the definition appears
1793    // after the point of declaration in a namespace that encloses the
1794    // declarations namespace.
1795    //
1796    // Note that we only check the context at this point. We don't yet
1797    // have enough information to make sure that PrevDecl is actually
1798    // the declaration we want to match. For example, given:
1799    //
1800    //   class X {
1801    //     void f();
1802    //     void f(float);
1803    //   };
1804    //
1805    //   void X::f(int) { } // ill-formed
1806    //
1807    // In this case, PrevDecl will point to the overload set
1808    // containing the two f's declared in X, but neither of them
1809    // matches.
1810
1811    // First check whether we named the global scope.
1812    if (isa<TranslationUnitDecl>(DC)) {
1813      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1814        << Name << D.getCXXScopeSpec().getRange();
1815    } else if (!CurContext->Encloses(DC)) {
1816      // The qualifying scope doesn't enclose the original declaration.
1817      // Emit diagnostic based on current scope.
1818      SourceLocation L = D.getIdentifierLoc();
1819      SourceRange R = D.getCXXScopeSpec().getRange();
1820      if (isa<FunctionDecl>(CurContext))
1821        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1822      else
1823        Diag(L, diag::err_invalid_declarator_scope)
1824          << Name << cast<NamedDecl>(DC) << R;
1825      D.setInvalidType();
1826    }
1827  }
1828
1829  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1830    // Maybe we will complain about the shadowed template parameter.
1831    if (!D.isInvalidType())
1832      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1833        D.setInvalidType();
1834
1835    // Just pretend that we didn't see the previous declaration.
1836    PrevDecl = 0;
1837  }
1838
1839  // In C++, the previous declaration we find might be a tag type
1840  // (class or enum). In this case, the new declaration will hide the
1841  // tag type. Note that this does does not apply if we're declaring a
1842  // typedef (C++ [dcl.typedef]p4).
1843  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1844      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1845    PrevDecl = 0;
1846
1847  bool Redeclaration = false;
1848  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1849    if (TemplateParamLists.size()) {
1850      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1851      return DeclPtrTy();
1852    }
1853
1854    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1855  } else if (R->isFunctionType()) {
1856    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1857                                  move(TemplateParamLists),
1858                                  IsFunctionDefinition, Redeclaration);
1859  } else {
1860    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1861                                  move(TemplateParamLists),
1862                                  Redeclaration);
1863  }
1864
1865  if (New == 0)
1866    return DeclPtrTy();
1867
1868  // If this has an identifier and is not an invalid redeclaration or
1869  // function template specialization, add it to the scope stack.
1870  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1871      !(isa<FunctionDecl>(New) &&
1872        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1873    PushOnScopeChains(New, S);
1874
1875  return DeclPtrTy::make(New);
1876}
1877
1878/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1879/// types into constant array types in certain situations which would otherwise
1880/// be errors (for GCC compatibility).
1881static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1882                                                    ASTContext &Context,
1883                                                    bool &SizeIsNegative) {
1884  // This method tries to turn a variable array into a constant
1885  // array even when the size isn't an ICE.  This is necessary
1886  // for compatibility with code that depends on gcc's buggy
1887  // constant expression folding, like struct {char x[(int)(char*)2];}
1888  SizeIsNegative = false;
1889
1890  QualifierCollector Qs;
1891  const Type *Ty = Qs.strip(T);
1892
1893  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1894    QualType Pointee = PTy->getPointeeType();
1895    QualType FixedType =
1896        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1897    if (FixedType.isNull()) return FixedType;
1898    FixedType = Context.getPointerType(FixedType);
1899    return Qs.apply(FixedType);
1900  }
1901
1902  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1903  if (!VLATy)
1904    return QualType();
1905  // FIXME: We should probably handle this case
1906  if (VLATy->getElementType()->isVariablyModifiedType())
1907    return QualType();
1908
1909  Expr::EvalResult EvalResult;
1910  if (!VLATy->getSizeExpr() ||
1911      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1912      !EvalResult.Val.isInt())
1913    return QualType();
1914
1915  llvm::APSInt &Res = EvalResult.Val.getInt();
1916  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1917    Expr* ArySizeExpr = VLATy->getSizeExpr();
1918    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1919    // so as to transfer ownership to the ConstantArrayWithExpr.
1920    // Alternatively, we could "clone" it (how?).
1921    // Since we don't know how to do things above, we just use the
1922    // very same Expr*.
1923    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1924                                                Res, ArySizeExpr,
1925                                                ArrayType::Normal, 0,
1926                                                VLATy->getBracketsRange());
1927  }
1928
1929  SizeIsNegative = true;
1930  return QualType();
1931}
1932
1933/// \brief Register the given locally-scoped external C declaration so
1934/// that it can be found later for redeclarations
1935void
1936Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1937                                       Scope *S) {
1938  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1939         "Decl is not a locally-scoped decl!");
1940  // Note that we have a locally-scoped external with this name.
1941  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1942
1943  if (!PrevDecl)
1944    return;
1945
1946  // If there was a previous declaration of this variable, it may be
1947  // in our identifier chain. Update the identifier chain with the new
1948  // declaration.
1949  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1950    // The previous declaration was found on the identifer resolver
1951    // chain, so remove it from its scope.
1952    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1953      S = S->getParent();
1954
1955    if (S)
1956      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1957  }
1958}
1959
1960/// \brief Diagnose function specifiers on a declaration of an identifier that
1961/// does not identify a function.
1962void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1963  // FIXME: We should probably indicate the identifier in question to avoid
1964  // confusion for constructs like "inline int a(), b;"
1965  if (D.getDeclSpec().isInlineSpecified())
1966    Diag(D.getDeclSpec().getInlineSpecLoc(),
1967         diag::err_inline_non_function);
1968
1969  if (D.getDeclSpec().isVirtualSpecified())
1970    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1971         diag::err_virtual_non_function);
1972
1973  if (D.getDeclSpec().isExplicitSpecified())
1974    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1975         diag::err_explicit_non_function);
1976}
1977
1978NamedDecl*
1979Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1980                             QualType R,  DeclaratorInfo *DInfo,
1981                             NamedDecl* PrevDecl, bool &Redeclaration) {
1982  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1983  if (D.getCXXScopeSpec().isSet()) {
1984    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1985      << D.getCXXScopeSpec().getRange();
1986    D.setInvalidType();
1987    // Pretend we didn't see the scope specifier.
1988    DC = 0;
1989  }
1990
1991  if (getLangOptions().CPlusPlus) {
1992    // Check that there are no default arguments (C++ only).
1993    CheckExtraCXXDefaultArguments(D);
1994  }
1995
1996  DiagnoseFunctionSpecifiers(D);
1997
1998  if (D.getDeclSpec().isThreadSpecified())
1999    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2000
2001  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
2002  if (!NewTD) return 0;
2003
2004  if (D.isInvalidType())
2005    NewTD->setInvalidDecl();
2006
2007  // Handle attributes prior to checking for duplicates in MergeVarDecl
2008  ProcessDeclAttributes(S, NewTD, D);
2009  // Merge the decl with the existing one if appropriate. If the decl is
2010  // in an outer scope, it isn't the same thing.
2011  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2012    Redeclaration = true;
2013    MergeTypeDefDecl(NewTD, PrevDecl);
2014  }
2015
2016  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2017  // then it shall have block scope.
2018  QualType T = NewTD->getUnderlyingType();
2019  if (T->isVariablyModifiedType()) {
2020    CurFunctionNeedsScopeChecking = true;
2021
2022    if (S->getFnParent() == 0) {
2023      bool SizeIsNegative;
2024      QualType FixedTy =
2025          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2026      if (!FixedTy.isNull()) {
2027        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2028        NewTD->setUnderlyingType(FixedTy);
2029      } else {
2030        if (SizeIsNegative)
2031          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2032        else if (T->isVariableArrayType())
2033          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2034        else
2035          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2036        NewTD->setInvalidDecl();
2037      }
2038    }
2039  }
2040
2041  // If this is the C FILE type, notify the AST context.
2042  if (IdentifierInfo *II = NewTD->getIdentifier())
2043    if (!NewTD->isInvalidDecl() &&
2044        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2045      if (II->isStr("FILE"))
2046        Context.setFILEDecl(NewTD);
2047      else if (II->isStr("jmp_buf"))
2048        Context.setjmp_bufDecl(NewTD);
2049      else if (II->isStr("sigjmp_buf"))
2050        Context.setsigjmp_bufDecl(NewTD);
2051    }
2052
2053  return NewTD;
2054}
2055
2056/// \brief Determines whether the given declaration is an out-of-scope
2057/// previous declaration.
2058///
2059/// This routine should be invoked when name lookup has found a
2060/// previous declaration (PrevDecl) that is not in the scope where a
2061/// new declaration by the same name is being introduced. If the new
2062/// declaration occurs in a local scope, previous declarations with
2063/// linkage may still be considered previous declarations (C99
2064/// 6.2.2p4-5, C++ [basic.link]p6).
2065///
2066/// \param PrevDecl the previous declaration found by name
2067/// lookup
2068///
2069/// \param DC the context in which the new declaration is being
2070/// declared.
2071///
2072/// \returns true if PrevDecl is an out-of-scope previous declaration
2073/// for a new delcaration with the same name.
2074static bool
2075isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2076                                ASTContext &Context) {
2077  if (!PrevDecl)
2078    return 0;
2079
2080  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2081  // case we need to check each of the overloaded functions.
2082  if (!PrevDecl->hasLinkage())
2083    return false;
2084
2085  if (Context.getLangOptions().CPlusPlus) {
2086    // C++ [basic.link]p6:
2087    //   If there is a visible declaration of an entity with linkage
2088    //   having the same name and type, ignoring entities declared
2089    //   outside the innermost enclosing namespace scope, the block
2090    //   scope declaration declares that same entity and receives the
2091    //   linkage of the previous declaration.
2092    DeclContext *OuterContext = DC->getLookupContext();
2093    if (!OuterContext->isFunctionOrMethod())
2094      // This rule only applies to block-scope declarations.
2095      return false;
2096    else {
2097      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2098      if (PrevOuterContext->isRecord())
2099        // We found a member function: ignore it.
2100        return false;
2101      else {
2102        // Find the innermost enclosing namespace for the new and
2103        // previous declarations.
2104        while (!OuterContext->isFileContext())
2105          OuterContext = OuterContext->getParent();
2106        while (!PrevOuterContext->isFileContext())
2107          PrevOuterContext = PrevOuterContext->getParent();
2108
2109        // The previous declaration is in a different namespace, so it
2110        // isn't the same function.
2111        if (OuterContext->getPrimaryContext() !=
2112            PrevOuterContext->getPrimaryContext())
2113          return false;
2114      }
2115    }
2116  }
2117
2118  return true;
2119}
2120
2121NamedDecl*
2122Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2123                              QualType R, DeclaratorInfo *DInfo,
2124                              NamedDecl* PrevDecl,
2125                              MultiTemplateParamsArg TemplateParamLists,
2126                              bool &Redeclaration) {
2127  DeclarationName Name = GetNameForDeclarator(D);
2128
2129  // Check that there are no default arguments (C++ only).
2130  if (getLangOptions().CPlusPlus)
2131    CheckExtraCXXDefaultArguments(D);
2132
2133  VarDecl *NewVD;
2134  VarDecl::StorageClass SC;
2135  switch (D.getDeclSpec().getStorageClassSpec()) {
2136  default: assert(0 && "Unknown storage class!");
2137  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2138  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2139  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2140  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2141  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2142  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2143  case DeclSpec::SCS_mutable:
2144    // mutable can only appear on non-static class members, so it's always
2145    // an error here
2146    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2147    D.setInvalidType();
2148    SC = VarDecl::None;
2149    break;
2150  }
2151
2152  IdentifierInfo *II = Name.getAsIdentifierInfo();
2153  if (!II) {
2154    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2155      << Name.getAsString();
2156    return 0;
2157  }
2158
2159  DiagnoseFunctionSpecifiers(D);
2160
2161  if (!DC->isRecord() && S->getFnParent() == 0) {
2162    // C99 6.9p2: The storage-class specifiers auto and register shall not
2163    // appear in the declaration specifiers in an external declaration.
2164    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2165
2166      // If this is a register variable with an asm label specified, then this
2167      // is a GNU extension.
2168      if (SC == VarDecl::Register && D.getAsmLabel())
2169        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2170      else
2171        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2172      D.setInvalidType();
2173    }
2174  }
2175  if (DC->isRecord() && !CurContext->isRecord()) {
2176    // This is an out-of-line definition of a static data member.
2177    if (SC == VarDecl::Static) {
2178      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2179           diag::err_static_out_of_line)
2180        << CodeModificationHint::CreateRemoval(
2181                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2182    } else if (SC == VarDecl::None)
2183      SC = VarDecl::Static;
2184  }
2185  if (SC == VarDecl::Static) {
2186    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2187      if (RD->isLocalClass())
2188        Diag(D.getIdentifierLoc(),
2189             diag::err_static_data_member_not_allowed_in_local_class)
2190          << Name << RD->getDeclName();
2191    }
2192  }
2193
2194  // Match up the template parameter lists with the scope specifier, then
2195  // determine whether we have a template or a template specialization.
2196  bool isExplicitSpecialization = false;
2197  if (TemplateParameterList *TemplateParams
2198        = MatchTemplateParametersToScopeSpecifier(
2199                                  D.getDeclSpec().getSourceRange().getBegin(),
2200                                                  D.getCXXScopeSpec(),
2201                        (TemplateParameterList**)TemplateParamLists.get(),
2202                                                   TemplateParamLists.size(),
2203                                                  isExplicitSpecialization)) {
2204    if (TemplateParams->size() > 0) {
2205      // There is no such thing as a variable template.
2206      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2207        << II
2208        << SourceRange(TemplateParams->getTemplateLoc(),
2209                       TemplateParams->getRAngleLoc());
2210      return 0;
2211    } else {
2212      // There is an extraneous 'template<>' for this variable. Complain
2213      // about it, but allow the declaration of the variable.
2214      Diag(TemplateParams->getTemplateLoc(),
2215           diag::err_template_variable_noparams)
2216        << II
2217        << SourceRange(TemplateParams->getTemplateLoc(),
2218                       TemplateParams->getRAngleLoc());
2219
2220      isExplicitSpecialization = true;
2221    }
2222  }
2223
2224  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2225                          II, R, DInfo, SC);
2226
2227  if (D.isInvalidType())
2228    NewVD->setInvalidDecl();
2229
2230  if (D.getDeclSpec().isThreadSpecified()) {
2231    if (NewVD->hasLocalStorage())
2232      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2233    else if (!Context.Target.isTLSSupported())
2234      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2235    else
2236      NewVD->setThreadSpecified(true);
2237  }
2238
2239  // Set the lexical context. If the declarator has a C++ scope specifier, the
2240  // lexical context will be different from the semantic context.
2241  NewVD->setLexicalDeclContext(CurContext);
2242
2243  // Handle attributes prior to checking for duplicates in MergeVarDecl
2244  ProcessDeclAttributes(S, NewVD, D);
2245
2246  // Handle GNU asm-label extension (encoded as an attribute).
2247  if (Expr *E = (Expr*) D.getAsmLabel()) {
2248    // The parser guarantees this is a string.
2249    StringLiteral *SE = cast<StringLiteral>(E);
2250    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2251                                                        SE->getByteLength())));
2252  }
2253
2254  // If name lookup finds a previous declaration that is not in the
2255  // same scope as the new declaration, this may still be an
2256  // acceptable redeclaration.
2257  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2258      !(NewVD->hasLinkage() &&
2259        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2260    PrevDecl = 0;
2261
2262  // Merge the decl with the existing one if appropriate.
2263  if (PrevDecl) {
2264    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2265      // The user tried to define a non-static data member
2266      // out-of-line (C++ [dcl.meaning]p1).
2267      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2268        << D.getCXXScopeSpec().getRange();
2269      PrevDecl = 0;
2270      NewVD->setInvalidDecl();
2271    }
2272  } else if (D.getCXXScopeSpec().isSet()) {
2273    // No previous declaration in the qualifying scope.
2274    NestedNameSpecifier *NNS =
2275      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2276    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2277                          D.getCXXScopeSpec().getRange());
2278    NewVD->setInvalidDecl();
2279  }
2280
2281  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2282
2283  // This is an explicit specialization of a static data member. Check it.
2284  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2285      CheckMemberSpecialization(NewVD, PrevDecl))
2286    NewVD->setInvalidDecl();
2287
2288  // attributes declared post-definition are currently ignored
2289  if (PrevDecl) {
2290    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2291    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2292      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2293      Diag(Def->getLocation(), diag::note_previous_definition);
2294    }
2295  }
2296
2297  // If this is a locally-scoped extern C variable, update the map of
2298  // such variables.
2299  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2300      !NewVD->isInvalidDecl())
2301    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2302
2303  return NewVD;
2304}
2305
2306/// \brief Perform semantic checking on a newly-created variable
2307/// declaration.
2308///
2309/// This routine performs all of the type-checking required for a
2310/// variable declaration once it has been built. It is used both to
2311/// check variables after they have been parsed and their declarators
2312/// have been translated into a declaration, and to check variables
2313/// that have been instantiated from a template.
2314///
2315/// Sets NewVD->isInvalidDecl() if an error was encountered.
2316void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2317                                    bool &Redeclaration) {
2318  // If the decl is already known invalid, don't check it.
2319  if (NewVD->isInvalidDecl())
2320    return;
2321
2322  QualType T = NewVD->getType();
2323
2324  if (T->isObjCInterfaceType()) {
2325    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2326    return NewVD->setInvalidDecl();
2327  }
2328
2329  // The variable can not have an abstract class type.
2330  if (RequireNonAbstractType(NewVD->getLocation(), T,
2331                             diag::err_abstract_type_in_decl,
2332                             AbstractVariableType))
2333    return NewVD->setInvalidDecl();
2334
2335  // Emit an error if an address space was applied to decl with local storage.
2336  // This includes arrays of objects with address space qualifiers, but not
2337  // automatic variables that point to other address spaces.
2338  // ISO/IEC TR 18037 S5.1.2
2339  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2340    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2341    return NewVD->setInvalidDecl();
2342  }
2343
2344  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2345      && !NewVD->hasAttr<BlocksAttr>())
2346    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2347
2348  bool isVM = T->isVariablyModifiedType();
2349  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2350      NewVD->hasAttr<BlocksAttr>())
2351    CurFunctionNeedsScopeChecking = true;
2352
2353  if ((isVM && NewVD->hasLinkage()) ||
2354      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2355    bool SizeIsNegative;
2356    QualType FixedTy =
2357        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2358
2359    if (FixedTy.isNull() && T->isVariableArrayType()) {
2360      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2361      // FIXME: This won't give the correct result for
2362      // int a[10][n];
2363      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2364
2365      if (NewVD->isFileVarDecl())
2366        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2367        << SizeRange;
2368      else if (NewVD->getStorageClass() == VarDecl::Static)
2369        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2370        << SizeRange;
2371      else
2372        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2373        << SizeRange;
2374      return NewVD->setInvalidDecl();
2375    }
2376
2377    if (FixedTy.isNull()) {
2378      if (NewVD->isFileVarDecl())
2379        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2380      else
2381        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2382      return NewVD->setInvalidDecl();
2383    }
2384
2385    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2386    NewVD->setType(FixedTy);
2387  }
2388
2389  if (!PrevDecl && NewVD->isExternC()) {
2390    // Since we did not find anything by this name and we're declaring
2391    // an extern "C" variable, look for a non-visible extern "C"
2392    // declaration with the same name.
2393    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2394      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2395    if (Pos != LocallyScopedExternalDecls.end())
2396      PrevDecl = Pos->second;
2397  }
2398
2399  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2400    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2401      << T;
2402    return NewVD->setInvalidDecl();
2403  }
2404
2405  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2406    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2407    return NewVD->setInvalidDecl();
2408  }
2409
2410  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2411    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2412    return NewVD->setInvalidDecl();
2413  }
2414
2415  if (PrevDecl) {
2416    Redeclaration = true;
2417    MergeVarDecl(NewVD, PrevDecl);
2418  }
2419}
2420
2421static bool isUsingDecl(Decl *D) {
2422  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2423}
2424
2425/// \brief Data used with FindOverriddenMethod
2426struct FindOverriddenMethodData {
2427  Sema *S;
2428  CXXMethodDecl *Method;
2429};
2430
2431/// \brief Member lookup function that determines whether a given C++
2432/// method overrides a method in a base class, to be used with
2433/// CXXRecordDecl::lookupInBases().
2434static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2435                                 CXXBasePath &Path,
2436                                 void *UserData) {
2437  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2438
2439  FindOverriddenMethodData *Data
2440    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2441  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2442       Path.Decls.first != Path.Decls.second;
2443       ++Path.Decls.first) {
2444    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2445      OverloadedFunctionDecl::function_iterator MatchedDecl;
2446      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2447        return true;
2448    }
2449  }
2450
2451  return false;
2452}
2453
2454NamedDecl*
2455Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2456                              QualType R, DeclaratorInfo *DInfo,
2457                              NamedDecl* PrevDecl,
2458                              MultiTemplateParamsArg TemplateParamLists,
2459                              bool IsFunctionDefinition, bool &Redeclaration) {
2460  assert(R.getTypePtr()->isFunctionType());
2461
2462  DeclarationName Name = GetNameForDeclarator(D);
2463  FunctionDecl::StorageClass SC = FunctionDecl::None;
2464  switch (D.getDeclSpec().getStorageClassSpec()) {
2465  default: assert(0 && "Unknown storage class!");
2466  case DeclSpec::SCS_auto:
2467  case DeclSpec::SCS_register:
2468  case DeclSpec::SCS_mutable:
2469    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2470         diag::err_typecheck_sclass_func);
2471    D.setInvalidType();
2472    break;
2473  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2474  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2475  case DeclSpec::SCS_static: {
2476    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2477      // C99 6.7.1p5:
2478      //   The declaration of an identifier for a function that has
2479      //   block scope shall have no explicit storage-class specifier
2480      //   other than extern
2481      // See also (C++ [dcl.stc]p4).
2482      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2483           diag::err_static_block_func);
2484      SC = FunctionDecl::None;
2485    } else
2486      SC = FunctionDecl::Static;
2487    break;
2488  }
2489  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2490  }
2491
2492  if (D.getDeclSpec().isThreadSpecified())
2493    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2494
2495  bool isFriend = D.getDeclSpec().isFriendSpecified();
2496  bool isInline = D.getDeclSpec().isInlineSpecified();
2497  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2498  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2499
2500  // Check that the return type is not an abstract class type.
2501  // For record types, this is done by the AbstractClassUsageDiagnoser once
2502  // the class has been completely parsed.
2503  if (!DC->isRecord() &&
2504      RequireNonAbstractType(D.getIdentifierLoc(),
2505                             R->getAs<FunctionType>()->getResultType(),
2506                             diag::err_abstract_type_in_decl,
2507                             AbstractReturnType))
2508    D.setInvalidType();
2509
2510  // Do not allow returning a objc interface by-value.
2511  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2512    Diag(D.getIdentifierLoc(),
2513         diag::err_object_cannot_be_passed_returned_by_value) << 0
2514      << R->getAs<FunctionType>()->getResultType();
2515    D.setInvalidType();
2516  }
2517
2518  bool isVirtualOkay = false;
2519  FunctionDecl *NewFD;
2520
2521  if (isFriend) {
2522    // DC is the namespace in which the function is being declared.
2523    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2524           "friend function being created in a non-namespace context");
2525
2526    // C++ [class.friend]p5
2527    //   A function can be defined in a friend declaration of a
2528    //   class . . . . Such a function is implicitly inline.
2529    isInline |= IsFunctionDefinition;
2530  }
2531
2532  if (D.getKind() == Declarator::DK_Constructor) {
2533    // This is a C++ constructor declaration.
2534    assert(DC->isRecord() &&
2535           "Constructors can only be declared in a member context");
2536
2537    R = CheckConstructorDeclarator(D, R, SC);
2538
2539    // Create the new declaration
2540    NewFD = CXXConstructorDecl::Create(Context,
2541                                       cast<CXXRecordDecl>(DC),
2542                                       D.getIdentifierLoc(), Name, R, DInfo,
2543                                       isExplicit, isInline,
2544                                       /*isImplicitlyDeclared=*/false);
2545  } else if (D.getKind() == Declarator::DK_Destructor) {
2546    // This is a C++ destructor declaration.
2547    if (DC->isRecord()) {
2548      R = CheckDestructorDeclarator(D, SC);
2549
2550      NewFD = CXXDestructorDecl::Create(Context,
2551                                        cast<CXXRecordDecl>(DC),
2552                                        D.getIdentifierLoc(), Name, R,
2553                                        isInline,
2554                                        /*isImplicitlyDeclared=*/false);
2555
2556      isVirtualOkay = true;
2557    } else {
2558      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2559
2560      // Create a FunctionDecl to satisfy the function definition parsing
2561      // code path.
2562      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2563                                   Name, R, DInfo, SC, isInline,
2564                                   /*hasPrototype=*/true);
2565      D.setInvalidType();
2566    }
2567  } else if (D.getKind() == Declarator::DK_Conversion) {
2568    if (!DC->isRecord()) {
2569      Diag(D.getIdentifierLoc(),
2570           diag::err_conv_function_not_member);
2571      return 0;
2572    }
2573
2574    CheckConversionDeclarator(D, R, SC);
2575    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2576                                      D.getIdentifierLoc(), Name, R, DInfo,
2577                                      isInline, isExplicit);
2578
2579    isVirtualOkay = true;
2580  } else if (DC->isRecord()) {
2581    // If the of the function is the same as the name of the record, then this
2582    // must be an invalid constructor that has a return type.
2583    // (The parser checks for a return type and makes the declarator a
2584    // constructor if it has no return type).
2585    // must have an invalid constructor that has a return type
2586    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2587      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2588        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2589        << SourceRange(D.getIdentifierLoc());
2590      return 0;
2591    }
2592
2593    // This is a C++ method declaration.
2594    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2595                                  D.getIdentifierLoc(), Name, R, DInfo,
2596                                  (SC == FunctionDecl::Static), isInline);
2597
2598    isVirtualOkay = (SC != FunctionDecl::Static);
2599  } else {
2600    // Determine whether the function was written with a
2601    // prototype. This true when:
2602    //   - we're in C++ (where every function has a prototype),
2603    //   - there is a prototype in the declarator, or
2604    //   - the type R of the function is some kind of typedef or other reference
2605    //     to a type name (which eventually refers to a function type).
2606    bool HasPrototype =
2607       getLangOptions().CPlusPlus ||
2608       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2609       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2610
2611    NewFD = FunctionDecl::Create(Context, DC,
2612                                 D.getIdentifierLoc(),
2613                                 Name, R, DInfo, SC, isInline, HasPrototype);
2614  }
2615
2616  if (D.isInvalidType())
2617    NewFD->setInvalidDecl();
2618
2619  // Set the lexical context. If the declarator has a C++
2620  // scope specifier, or is the object of a friend declaration, the
2621  // lexical context will be different from the semantic context.
2622  NewFD->setLexicalDeclContext(CurContext);
2623
2624  if (isFriend)
2625    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2626
2627  // Match up the template parameter lists with the scope specifier, then
2628  // determine whether we have a template or a template specialization.
2629  FunctionTemplateDecl *FunctionTemplate = 0;
2630  bool isExplicitSpecialization = false;
2631  bool isFunctionTemplateSpecialization = false;
2632  if (TemplateParameterList *TemplateParams
2633        = MatchTemplateParametersToScopeSpecifier(
2634                                  D.getDeclSpec().getSourceRange().getBegin(),
2635                                  D.getCXXScopeSpec(),
2636                           (TemplateParameterList**)TemplateParamLists.get(),
2637                                                  TemplateParamLists.size(),
2638                                                  isExplicitSpecialization)) {
2639    if (TemplateParams->size() > 0) {
2640      // This is a function template
2641
2642      // Check that we can declare a template here.
2643      if (CheckTemplateDeclScope(S, TemplateParams))
2644        return 0;
2645
2646      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2647                                                      NewFD->getLocation(),
2648                                                      Name, TemplateParams,
2649                                                      NewFD);
2650      FunctionTemplate->setLexicalDeclContext(CurContext);
2651      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2652    } else {
2653      // This is a function template specialization.
2654      isFunctionTemplateSpecialization = true;
2655    }
2656
2657    // FIXME: Free this memory properly.
2658    TemplateParamLists.release();
2659  }
2660
2661  // C++ [dcl.fct.spec]p5:
2662  //   The virtual specifier shall only be used in declarations of
2663  //   nonstatic class member functions that appear within a
2664  //   member-specification of a class declaration; see 10.3.
2665  //
2666  if (isVirtual && !NewFD->isInvalidDecl()) {
2667    if (!isVirtualOkay) {
2668       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2669           diag::err_virtual_non_function);
2670    } else if (!CurContext->isRecord()) {
2671      // 'virtual' was specified outside of the class.
2672      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2673        << CodeModificationHint::CreateRemoval(
2674                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2675    } else {
2676      // Okay: Add virtual to the method.
2677      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2678      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2679      CurClass->setAggregate(false);
2680      CurClass->setPOD(false);
2681      CurClass->setEmpty(false);
2682      CurClass->setPolymorphic(true);
2683      CurClass->setHasTrivialConstructor(false);
2684      CurClass->setHasTrivialCopyConstructor(false);
2685      CurClass->setHasTrivialCopyAssignment(false);
2686    }
2687  }
2688
2689  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2690    // Look for virtual methods in base classes that this method might override.
2691    CXXBasePaths Paths;
2692    FindOverriddenMethodData Data;
2693    Data.Method = NewMD;
2694    Data.S = this;
2695    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2696                                                Paths)) {
2697      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2698           E = Paths.found_decls_end(); I != E; ++I) {
2699        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2700          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2701              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2702            NewMD->addOverriddenMethod(OldMD);
2703        }
2704      }
2705    }
2706  }
2707
2708  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2709      !CurContext->isRecord()) {
2710    // C++ [class.static]p1:
2711    //   A data or function member of a class may be declared static
2712    //   in a class definition, in which case it is a static member of
2713    //   the class.
2714
2715    // Complain about the 'static' specifier if it's on an out-of-line
2716    // member function definition.
2717    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2718         diag::err_static_out_of_line)
2719      << CodeModificationHint::CreateRemoval(
2720                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2721  }
2722
2723  // Handle GNU asm-label extension (encoded as an attribute).
2724  if (Expr *E = (Expr*) D.getAsmLabel()) {
2725    // The parser guarantees this is a string.
2726    StringLiteral *SE = cast<StringLiteral>(E);
2727    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2728                                                        SE->getByteLength())));
2729  }
2730
2731  // Copy the parameter declarations from the declarator D to the function
2732  // declaration NewFD, if they are available.  First scavenge them into Params.
2733  llvm::SmallVector<ParmVarDecl*, 16> Params;
2734  if (D.getNumTypeObjects() > 0) {
2735    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2736
2737    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2738    // function that takes no arguments, not a function that takes a
2739    // single void argument.
2740    // We let through "const void" here because Sema::GetTypeForDeclarator
2741    // already checks for that case.
2742    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2743        FTI.ArgInfo[0].Param &&
2744        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2745      // Empty arg list, don't push any params.
2746      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2747
2748      // In C++, the empty parameter-type-list must be spelled "void"; a
2749      // typedef of void is not permitted.
2750      if (getLangOptions().CPlusPlus &&
2751          Param->getType().getUnqualifiedType() != Context.VoidTy)
2752        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2753      // FIXME: Leaks decl?
2754    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2755      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2756        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2757        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2758        Param->setDeclContext(NewFD);
2759        Params.push_back(Param);
2760      }
2761    }
2762
2763  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2764    // When we're declaring a function with a typedef, typeof, etc as in the
2765    // following example, we'll need to synthesize (unnamed)
2766    // parameters for use in the declaration.
2767    //
2768    // @code
2769    // typedef void fn(int);
2770    // fn f;
2771    // @endcode
2772
2773    // Synthesize a parameter for each argument type.
2774    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2775         AE = FT->arg_type_end(); AI != AE; ++AI) {
2776      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2777                                               SourceLocation(), 0,
2778                                               *AI, /*DInfo=*/0,
2779                                               VarDecl::None, 0);
2780      Param->setImplicit();
2781      Params.push_back(Param);
2782    }
2783  } else {
2784    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2785           "Should not need args for typedef of non-prototype fn");
2786  }
2787  // Finally, we know we have the right number of parameters, install them.
2788  NewFD->setParams(Context, Params.data(), Params.size());
2789
2790  // If name lookup finds a previous declaration that is not in the
2791  // same scope as the new declaration, this may still be an
2792  // acceptable redeclaration.
2793  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2794      !(NewFD->hasLinkage() &&
2795        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2796    PrevDecl = 0;
2797
2798  // If the declarator is a template-id, translate the parser's template
2799  // argument list into our AST format.
2800  bool HasExplicitTemplateArgs = false;
2801  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2802  SourceLocation LAngleLoc, RAngleLoc;
2803  if (D.getKind() == Declarator::DK_TemplateId) {
2804    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2805    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2806                                       TemplateId->getTemplateArgs(),
2807                                       TemplateId->getTemplateArgIsType(),
2808                                       TemplateId->NumArgs);
2809    translateTemplateArguments(TemplateArgsPtr,
2810                               TemplateId->getTemplateArgLocations(),
2811                               TemplateArgs);
2812    TemplateArgsPtr.release();
2813
2814    HasExplicitTemplateArgs = true;
2815    LAngleLoc = TemplateId->LAngleLoc;
2816    RAngleLoc = TemplateId->RAngleLoc;
2817
2818    if (FunctionTemplate) {
2819      // FIXME: Diagnose function template with explicit template
2820      // arguments.
2821      HasExplicitTemplateArgs = false;
2822    } else if (!isFunctionTemplateSpecialization &&
2823               !D.getDeclSpec().isFriendSpecified()) {
2824      // We have encountered something that the user meant to be a
2825      // specialization (because it has explicitly-specified template
2826      // arguments) but that was not introduced with a "template<>" (or had
2827      // too few of them).
2828      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2829        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2830        << CodeModificationHint::CreateInsertion(
2831                                   D.getDeclSpec().getSourceRange().getBegin(),
2832                                                 "template<> ");
2833      isFunctionTemplateSpecialization = true;
2834    }
2835  }
2836
2837  if (isFunctionTemplateSpecialization) {
2838      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2839                                              LAngleLoc, TemplateArgs.data(),
2840                                              TemplateArgs.size(), RAngleLoc,
2841                                              PrevDecl))
2842        NewFD->setInvalidDecl();
2843  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2844             CheckMemberSpecialization(NewFD, PrevDecl))
2845    NewFD->setInvalidDecl();
2846
2847  // Perform semantic checking on the function declaration.
2848  bool OverloadableAttrRequired = false; // FIXME: HACK!
2849  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2850                           /*FIXME:*/OverloadableAttrRequired);
2851
2852  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2853    // An out-of-line member function declaration must also be a
2854    // definition (C++ [dcl.meaning]p1).
2855    // Note that this is not the case for explicit specializations of
2856    // function templates or member functions of class templates, per
2857    // C++ [temp.expl.spec]p2.
2858    if (!IsFunctionDefinition && !isFriend &&
2859        NewFD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
2860      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2861        << D.getCXXScopeSpec().getRange();
2862      NewFD->setInvalidDecl();
2863    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2864      // The user tried to provide an out-of-line definition for a
2865      // function that is a member of a class or namespace, but there
2866      // was no such member function declared (C++ [class.mfct]p2,
2867      // C++ [namespace.memdef]p2). For example:
2868      //
2869      // class X {
2870      //   void f() const;
2871      // };
2872      //
2873      // void X::f() { } // ill-formed
2874      //
2875      // Complain about this problem, and attempt to suggest close
2876      // matches (e.g., those that differ only in cv-qualifiers and
2877      // whether the parameter types are references).
2878      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2879        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2880      NewFD->setInvalidDecl();
2881
2882      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2883                                              true);
2884      assert(!Prev.isAmbiguous() &&
2885             "Cannot have an ambiguity in previous-declaration lookup");
2886      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2887           Func != FuncEnd; ++Func) {
2888        if (isa<FunctionDecl>(*Func) &&
2889            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2890          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2891      }
2892
2893      PrevDecl = 0;
2894    }
2895  }
2896
2897  // Handle attributes. We need to have merged decls when handling attributes
2898  // (for example to check for conflicts, etc).
2899  // FIXME: This needs to happen before we merge declarations. Then,
2900  // let attribute merging cope with attribute conflicts.
2901  ProcessDeclAttributes(S, NewFD, D);
2902
2903  // attributes declared post-definition are currently ignored
2904  if (Redeclaration && PrevDecl) {
2905    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2906    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2907      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2908      Diag(Def->getLocation(), diag::note_previous_definition);
2909    }
2910  }
2911
2912  AddKnownFunctionAttributes(NewFD);
2913
2914  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2915    // If a function name is overloadable in C, then every function
2916    // with that name must be marked "overloadable".
2917    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2918      << Redeclaration << NewFD;
2919    if (PrevDecl)
2920      Diag(PrevDecl->getLocation(),
2921           diag::note_attribute_overloadable_prev_overload);
2922    NewFD->addAttr(::new (Context) OverloadableAttr());
2923  }
2924
2925  // If this is a locally-scoped extern C function, update the
2926  // map of such names.
2927  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2928      && !NewFD->isInvalidDecl())
2929    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2930
2931  // Set this FunctionDecl's range up to the right paren.
2932  NewFD->setLocEnd(D.getSourceRange().getEnd());
2933
2934  if (FunctionTemplate && NewFD->isInvalidDecl())
2935    FunctionTemplate->setInvalidDecl();
2936
2937  if (FunctionTemplate)
2938    return FunctionTemplate;
2939
2940  return NewFD;
2941}
2942
2943/// \brief Perform semantic checking of a new function declaration.
2944///
2945/// Performs semantic analysis of the new function declaration
2946/// NewFD. This routine performs all semantic checking that does not
2947/// require the actual declarator involved in the declaration, and is
2948/// used both for the declaration of functions as they are parsed
2949/// (called via ActOnDeclarator) and for the declaration of functions
2950/// that have been instantiated via C++ template instantiation (called
2951/// via InstantiateDecl).
2952///
2953/// This sets NewFD->isInvalidDecl() to true if there was an error.
2954void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2955                                    bool &Redeclaration,
2956                                    bool &OverloadableAttrRequired) {
2957  // If NewFD is already known erroneous, don't do any of this checking.
2958  if (NewFD->isInvalidDecl())
2959    return;
2960
2961  if (NewFD->getResultType()->isVariablyModifiedType()) {
2962    // Functions returning a variably modified type violate C99 6.7.5.2p2
2963    // because all functions have linkage.
2964    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2965    return NewFD->setInvalidDecl();
2966  }
2967
2968  if (NewFD->isMain())
2969    CheckMain(NewFD);
2970
2971  // Check for a previous declaration of this name.
2972  if (!PrevDecl && NewFD->isExternC()) {
2973    // Since we did not find anything by this name and we're declaring
2974    // an extern "C" function, look for a non-visible extern "C"
2975    // declaration with the same name.
2976    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2977      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2978    if (Pos != LocallyScopedExternalDecls.end())
2979      PrevDecl = Pos->second;
2980  }
2981
2982  // Merge or overload the declaration with an existing declaration of
2983  // the same name, if appropriate.
2984  if (PrevDecl) {
2985    // Determine whether NewFD is an overload of PrevDecl or
2986    // a declaration that requires merging. If it's an overload,
2987    // there's no more work to do here; we'll just add the new
2988    // function to the scope.
2989    OverloadedFunctionDecl::function_iterator MatchedDecl;
2990
2991    if (!getLangOptions().CPlusPlus &&
2992        AllowOverloadingOfFunction(PrevDecl, Context)) {
2993      OverloadableAttrRequired = true;
2994
2995      // Functions marked "overloadable" must have a prototype (that
2996      // we can't get through declaration merging).
2997      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2998        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2999          << NewFD;
3000        Redeclaration = true;
3001
3002        // Turn this into a variadic function with no parameters.
3003        QualType R = Context.getFunctionType(
3004                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3005                       0, 0, true, 0);
3006        NewFD->setType(R);
3007        return NewFD->setInvalidDecl();
3008      }
3009    }
3010
3011    if (PrevDecl &&
3012        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3013         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3014      Redeclaration = true;
3015      Decl *OldDecl = PrevDecl;
3016
3017      // If PrevDecl was an overloaded function, extract the
3018      // FunctionDecl that matched.
3019      if (isa<OverloadedFunctionDecl>(PrevDecl))
3020        OldDecl = *MatchedDecl;
3021
3022      // NewFD and OldDecl represent declarations that need to be
3023      // merged.
3024      if (MergeFunctionDecl(NewFD, OldDecl))
3025        return NewFD->setInvalidDecl();
3026
3027      if (FunctionTemplateDecl *OldTemplateDecl
3028            = dyn_cast<FunctionTemplateDecl>(OldDecl))
3029        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3030      else {
3031        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3032          NewFD->setAccess(OldDecl->getAccess());
3033        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3034      }
3035    }
3036  }
3037
3038  // Semantic checking for this function declaration (in isolation).
3039  if (getLangOptions().CPlusPlus) {
3040    // C++-specific checks.
3041    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3042      CheckConstructor(Constructor);
3043    } else if (isa<CXXDestructorDecl>(NewFD)) {
3044      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3045      QualType ClassType = Context.getTypeDeclType(Record);
3046      if (!ClassType->isDependentType()) {
3047        DeclarationName Name
3048          = Context.DeclarationNames.getCXXDestructorName(
3049                                        Context.getCanonicalType(ClassType));
3050        if (NewFD->getDeclName() != Name) {
3051          Diag(NewFD->getLocation(), diag::err_destructor_name);
3052          return NewFD->setInvalidDecl();
3053        }
3054      }
3055      Record->setUserDeclaredDestructor(true);
3056      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3057      // user-defined destructor.
3058      Record->setPOD(false);
3059
3060      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3061      // declared destructor.
3062      // FIXME: C++0x: don't do this for "= default" destructors
3063      Record->setHasTrivialDestructor(false);
3064    } else if (CXXConversionDecl *Conversion
3065               = dyn_cast<CXXConversionDecl>(NewFD))
3066      ActOnConversionDeclarator(Conversion);
3067
3068    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3069    if (NewFD->isOverloadedOperator() &&
3070        CheckOverloadedOperatorDeclaration(NewFD))
3071      return NewFD->setInvalidDecl();
3072
3073    // In C++, check default arguments now that we have merged decls. Unless
3074    // the lexical context is the class, because in this case this is done
3075    // during delayed parsing anyway.
3076    if (!CurContext->isRecord())
3077      CheckCXXDefaultArguments(NewFD);
3078  }
3079}
3080
3081void Sema::CheckMain(FunctionDecl* FD) {
3082  // C++ [basic.start.main]p3:  A program that declares main to be inline
3083  //   or static is ill-formed.
3084  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3085  //   shall not appear in a declaration of main.
3086  // static main is not an error under C99, but we should warn about it.
3087  bool isInline = FD->isInline();
3088  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3089  if (isInline || isStatic) {
3090    unsigned diagID = diag::warn_unusual_main_decl;
3091    if (isInline || getLangOptions().CPlusPlus)
3092      diagID = diag::err_unusual_main_decl;
3093
3094    int which = isStatic + (isInline << 1) - 1;
3095    Diag(FD->getLocation(), diagID) << which;
3096  }
3097
3098  QualType T = FD->getType();
3099  assert(T->isFunctionType() && "function decl is not of function type");
3100  const FunctionType* FT = T->getAs<FunctionType>();
3101
3102  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3103    // TODO: add a replacement fixit to turn the return type into 'int'.
3104    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3105    FD->setInvalidDecl(true);
3106  }
3107
3108  // Treat protoless main() as nullary.
3109  if (isa<FunctionNoProtoType>(FT)) return;
3110
3111  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3112  unsigned nparams = FTP->getNumArgs();
3113  assert(FD->getNumParams() == nparams);
3114
3115  if (nparams > 3) {
3116    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3117    FD->setInvalidDecl(true);
3118    nparams = 3;
3119  }
3120
3121  // FIXME: a lot of the following diagnostics would be improved
3122  // if we had some location information about types.
3123
3124  QualType CharPP =
3125    Context.getPointerType(Context.getPointerType(Context.CharTy));
3126  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3127
3128  for (unsigned i = 0; i < nparams; ++i) {
3129    QualType AT = FTP->getArgType(i);
3130
3131    bool mismatch = true;
3132
3133    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3134      mismatch = false;
3135    else if (Expected[i] == CharPP) {
3136      // As an extension, the following forms are okay:
3137      //   char const **
3138      //   char const * const *
3139      //   char * const *
3140
3141      QualifierCollector qs;
3142      const PointerType* PT;
3143      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3144          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3145          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3146        qs.removeConst();
3147        mismatch = !qs.empty();
3148      }
3149    }
3150
3151    if (mismatch) {
3152      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3153      // TODO: suggest replacing given type with expected type
3154      FD->setInvalidDecl(true);
3155    }
3156  }
3157
3158  if (nparams == 1 && !FD->isInvalidDecl()) {
3159    Diag(FD->getLocation(), diag::warn_main_one_arg);
3160  }
3161}
3162
3163bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3164  // FIXME: Need strict checking.  In C89, we need to check for
3165  // any assignment, increment, decrement, function-calls, or
3166  // commas outside of a sizeof.  In C99, it's the same list,
3167  // except that the aforementioned are allowed in unevaluated
3168  // expressions.  Everything else falls under the
3169  // "may accept other forms of constant expressions" exception.
3170  // (We never end up here for C++, so the constant expression
3171  // rules there don't matter.)
3172  if (Init->isConstantInitializer(Context))
3173    return false;
3174  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3175    << Init->getSourceRange();
3176  return true;
3177}
3178
3179void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3180  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3181}
3182
3183/// AddInitializerToDecl - Adds the initializer Init to the
3184/// declaration dcl. If DirectInit is true, this is C++ direct
3185/// initialization rather than copy initialization.
3186void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3187  Decl *RealDecl = dcl.getAs<Decl>();
3188  // If there is no declaration, there was an error parsing it.  Just ignore
3189  // the initializer.
3190  if (RealDecl == 0)
3191    return;
3192
3193  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3194    // With declarators parsed the way they are, the parser cannot
3195    // distinguish between a normal initializer and a pure-specifier.
3196    // Thus this grotesque test.
3197    IntegerLiteral *IL;
3198    Expr *Init = static_cast<Expr *>(init.get());
3199    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3200        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3201      if (Method->isVirtualAsWritten()) {
3202        Method->setPure();
3203
3204        // A class is abstract if at least one function is pure virtual.
3205        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3206      } else if (!Method->isInvalidDecl()) {
3207        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3208          << Method->getDeclName() << Init->getSourceRange();
3209        Method->setInvalidDecl();
3210      }
3211    } else {
3212      Diag(Method->getLocation(), diag::err_member_function_initialization)
3213        << Method->getDeclName() << Init->getSourceRange();
3214      Method->setInvalidDecl();
3215    }
3216    return;
3217  }
3218
3219  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3220  if (!VDecl) {
3221    if (getLangOptions().CPlusPlus &&
3222        RealDecl->getLexicalDeclContext()->isRecord() &&
3223        isa<NamedDecl>(RealDecl))
3224      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3225        << cast<NamedDecl>(RealDecl)->getDeclName();
3226    else
3227      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3228    RealDecl->setInvalidDecl();
3229    return;
3230  }
3231
3232  if (!VDecl->getType()->isArrayType() &&
3233      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3234                          diag::err_typecheck_decl_incomplete_type)) {
3235    RealDecl->setInvalidDecl();
3236    return;
3237  }
3238
3239  const VarDecl *Def = 0;
3240  if (VDecl->getDefinition(Def)) {
3241    Diag(VDecl->getLocation(), diag::err_redefinition)
3242      << VDecl->getDeclName();
3243    Diag(Def->getLocation(), diag::note_previous_definition);
3244    VDecl->setInvalidDecl();
3245    return;
3246  }
3247
3248  // Take ownership of the expression, now that we're sure we have somewhere
3249  // to put it.
3250  Expr *Init = init.takeAs<Expr>();
3251  assert(Init && "missing initializer");
3252
3253  // Get the decls type and save a reference for later, since
3254  // CheckInitializerTypes may change it.
3255  QualType DclT = VDecl->getType(), SavT = DclT;
3256  if (VDecl->isBlockVarDecl()) {
3257    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3258      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3259      VDecl->setInvalidDecl();
3260    } else if (!VDecl->isInvalidDecl()) {
3261      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3262                                VDecl->getDeclName(), DirectInit))
3263        VDecl->setInvalidDecl();
3264
3265      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3266      // Don't check invalid declarations to avoid emitting useless diagnostics.
3267      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3268        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3269          CheckForConstantInitializer(Init, DclT);
3270      }
3271    }
3272  } else if (VDecl->isStaticDataMember() &&
3273             VDecl->getLexicalDeclContext()->isRecord()) {
3274    // This is an in-class initialization for a static data member, e.g.,
3275    //
3276    // struct S {
3277    //   static const int value = 17;
3278    // };
3279
3280    // Attach the initializer
3281    VDecl->setInit(Context, Init);
3282
3283    // C++ [class.mem]p4:
3284    //   A member-declarator can contain a constant-initializer only
3285    //   if it declares a static member (9.4) of const integral or
3286    //   const enumeration type, see 9.4.2.
3287    QualType T = VDecl->getType();
3288    if (!T->isDependentType() &&
3289        (!Context.getCanonicalType(T).isConstQualified() ||
3290         !T->isIntegralType())) {
3291      Diag(VDecl->getLocation(), diag::err_member_initialization)
3292        << VDecl->getDeclName() << Init->getSourceRange();
3293      VDecl->setInvalidDecl();
3294    } else {
3295      // C++ [class.static.data]p4:
3296      //   If a static data member is of const integral or const
3297      //   enumeration type, its declaration in the class definition
3298      //   can specify a constant-initializer which shall be an
3299      //   integral constant expression (5.19).
3300      if (!Init->isTypeDependent() &&
3301          !Init->getType()->isIntegralType()) {
3302        // We have a non-dependent, non-integral or enumeration type.
3303        Diag(Init->getSourceRange().getBegin(),
3304             diag::err_in_class_initializer_non_integral_type)
3305          << Init->getType() << Init->getSourceRange();
3306        VDecl->setInvalidDecl();
3307      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3308        // Check whether the expression is a constant expression.
3309        llvm::APSInt Value;
3310        SourceLocation Loc;
3311        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3312          Diag(Loc, diag::err_in_class_initializer_non_constant)
3313            << Init->getSourceRange();
3314          VDecl->setInvalidDecl();
3315        } else if (!VDecl->getType()->isDependentType())
3316          ImpCastExprToType(Init, VDecl->getType());
3317      }
3318    }
3319  } else if (VDecl->isFileVarDecl()) {
3320    if (VDecl->getStorageClass() == VarDecl::Extern)
3321      Diag(VDecl->getLocation(), diag::warn_extern_init);
3322    if (!VDecl->isInvalidDecl())
3323      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3324                                VDecl->getDeclName(), DirectInit))
3325        VDecl->setInvalidDecl();
3326
3327    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3328    // Don't check invalid declarations to avoid emitting useless diagnostics.
3329    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3330      // C99 6.7.8p4. All file scoped initializers need to be constant.
3331      CheckForConstantInitializer(Init, DclT);
3332    }
3333  }
3334  // If the type changed, it means we had an incomplete type that was
3335  // completed by the initializer. For example:
3336  //   int ary[] = { 1, 3, 5 };
3337  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3338  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3339    VDecl->setType(DclT);
3340    Init->setType(DclT);
3341  }
3342
3343  Init = MaybeCreateCXXExprWithTemporaries(Init,
3344                                           /*ShouldDestroyTemporaries=*/true);
3345  // Attach the initializer to the decl.
3346  VDecl->setInit(Context, Init);
3347
3348  // If the previous declaration of VDecl was a tentative definition,
3349  // remove it from the set of tentative definitions.
3350  if (VDecl->getPreviousDeclaration() &&
3351      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3352    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3353    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3354  }
3355
3356  return;
3357}
3358
3359void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3360                                  bool TypeContainsUndeducedAuto) {
3361  Decl *RealDecl = dcl.getAs<Decl>();
3362
3363  // If there is no declaration, there was an error parsing it. Just ignore it.
3364  if (RealDecl == 0)
3365    return;
3366
3367  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3368    QualType Type = Var->getType();
3369
3370    // Record tentative definitions.
3371    if (Var->isTentativeDefinition(Context)) {
3372      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3373        InsertPair =
3374           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3375
3376      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3377      // want the second one in the map.
3378      InsertPair.first->second = Var;
3379
3380      // However, for the list, we don't care about the order, just make sure
3381      // that there are no dupes for a given declaration name.
3382      if (InsertPair.second)
3383        TentativeDefinitionList.push_back(Var->getDeclName());
3384    }
3385
3386    // C++ [dcl.init.ref]p3:
3387    //   The initializer can be omitted for a reference only in a
3388    //   parameter declaration (8.3.5), in the declaration of a
3389    //   function return type, in the declaration of a class member
3390    //   within its class declaration (9.2), and where the extern
3391    //   specifier is explicitly used.
3392    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3393      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3394        << Var->getDeclName()
3395        << SourceRange(Var->getLocation(), Var->getLocation());
3396      Var->setInvalidDecl();
3397      return;
3398    }
3399
3400    // C++0x [dcl.spec.auto]p3
3401    if (TypeContainsUndeducedAuto) {
3402      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3403        << Var->getDeclName() << Type;
3404      Var->setInvalidDecl();
3405      return;
3406    }
3407
3408    // C++ [temp.expl.spec]p15:
3409    //   An explicit specialization of a static data member of a template is a
3410    //   definition if the declaration includes an initializer; otherwise, it
3411    //   is a declaration.
3412    if (Var->isStaticDataMember() &&
3413        Var->getInstantiatedFromStaticDataMember() &&
3414        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3415      return;
3416
3417    // C++ [dcl.init]p9:
3418    //   If no initializer is specified for an object, and the object
3419    //   is of (possibly cv-qualified) non-POD class type (or array
3420    //   thereof), the object shall be default-initialized; if the
3421    //   object is of const-qualified type, the underlying class type
3422    //   shall have a user-declared default constructor.
3423    //
3424    // FIXME: Diagnose the "user-declared default constructor" bit.
3425    if (getLangOptions().CPlusPlus) {
3426      QualType InitType = Type;
3427      if (const ArrayType *Array = Context.getAsArrayType(Type))
3428        InitType = Array->getElementType();
3429      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3430          InitType->isRecordType() && !InitType->isDependentType()) {
3431        if (!RequireCompleteType(Var->getLocation(), InitType,
3432                                 diag::err_invalid_incomplete_type_use)) {
3433          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3434
3435          CXXConstructorDecl *Constructor
3436            = PerformInitializationByConstructor(InitType,
3437                                                 MultiExprArg(*this, 0, 0),
3438                                                 Var->getLocation(),
3439                                               SourceRange(Var->getLocation(),
3440                                                           Var->getLocation()),
3441                                                 Var->getDeclName(),
3442                                                 IK_Default,
3443                                                 ConstructorArgs);
3444
3445          // FIXME: Location info for the variable initialization?
3446          if (!Constructor)
3447            Var->setInvalidDecl();
3448          else {
3449            // FIXME: Cope with initialization of arrays
3450            if (!Constructor->isTrivial() &&
3451                InitializeVarWithConstructor(Var, Constructor, InitType,
3452                                             move_arg(ConstructorArgs)))
3453              Var->setInvalidDecl();
3454
3455            FinalizeVarWithDestructor(Var, InitType);
3456          }
3457        } else {
3458          Var->setInvalidDecl();
3459        }
3460      }
3461    }
3462
3463#if 0
3464    // FIXME: Temporarily disabled because we are not properly parsing
3465    // linkage specifications on declarations, e.g.,
3466    //
3467    //   extern "C" const CGPoint CGPointerZero;
3468    //
3469    // C++ [dcl.init]p9:
3470    //
3471    //     If no initializer is specified for an object, and the
3472    //     object is of (possibly cv-qualified) non-POD class type (or
3473    //     array thereof), the object shall be default-initialized; if
3474    //     the object is of const-qualified type, the underlying class
3475    //     type shall have a user-declared default
3476    //     constructor. Otherwise, if no initializer is specified for
3477    //     an object, the object and its subobjects, if any, have an
3478    //     indeterminate initial value; if the object or any of its
3479    //     subobjects are of const-qualified type, the program is
3480    //     ill-formed.
3481    //
3482    // This isn't technically an error in C, so we don't diagnose it.
3483    //
3484    // FIXME: Actually perform the POD/user-defined default
3485    // constructor check.
3486    if (getLangOptions().CPlusPlus &&
3487        Context.getCanonicalType(Type).isConstQualified() &&
3488        !Var->hasExternalStorage())
3489      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3490        << Var->getName()
3491        << SourceRange(Var->getLocation(), Var->getLocation());
3492#endif
3493  }
3494}
3495
3496Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3497                                                   DeclPtrTy *Group,
3498                                                   unsigned NumDecls) {
3499  llvm::SmallVector<Decl*, 8> Decls;
3500
3501  if (DS.isTypeSpecOwned())
3502    Decls.push_back((Decl*)DS.getTypeRep());
3503
3504  for (unsigned i = 0; i != NumDecls; ++i)
3505    if (Decl *D = Group[i].getAs<Decl>())
3506      Decls.push_back(D);
3507
3508  // Perform semantic analysis that depends on having fully processed both
3509  // the declarator and initializer.
3510  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3511    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3512    if (!IDecl)
3513      continue;
3514    QualType T = IDecl->getType();
3515
3516    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3517    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3518    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3519      if (!IDecl->isInvalidDecl() &&
3520          RequireCompleteType(IDecl->getLocation(), T,
3521                              diag::err_typecheck_decl_incomplete_type))
3522        IDecl->setInvalidDecl();
3523    }
3524    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3525    // object that has file scope without an initializer, and without a
3526    // storage-class specifier or with the storage-class specifier "static",
3527    // constitutes a tentative definition. Note: A tentative definition with
3528    // external linkage is valid (C99 6.2.2p5).
3529    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3530      if (const IncompleteArrayType *ArrayT
3531          = Context.getAsIncompleteArrayType(T)) {
3532        if (RequireCompleteType(IDecl->getLocation(),
3533                                ArrayT->getElementType(),
3534                                diag::err_illegal_decl_array_incomplete_type))
3535          IDecl->setInvalidDecl();
3536      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3537        // C99 6.9.2p3: If the declaration of an identifier for an object is
3538        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3539        // declared type shall not be an incomplete type.
3540        // NOTE: code such as the following
3541        //     static struct s;
3542        //     struct s { int a; };
3543        // is accepted by gcc. Hence here we issue a warning instead of
3544        // an error and we do not invalidate the static declaration.
3545        // NOTE: to avoid multiple warnings, only check the first declaration.
3546        if (IDecl->getPreviousDeclaration() == 0)
3547          RequireCompleteType(IDecl->getLocation(), T,
3548                              diag::ext_typecheck_decl_incomplete_type);
3549      }
3550    }
3551  }
3552  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3553                                                   Decls.data(), Decls.size()));
3554}
3555
3556
3557/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3558/// to introduce parameters into function prototype scope.
3559Sema::DeclPtrTy
3560Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3561  const DeclSpec &DS = D.getDeclSpec();
3562
3563  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3564  VarDecl::StorageClass StorageClass = VarDecl::None;
3565  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3566    StorageClass = VarDecl::Register;
3567  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3568    Diag(DS.getStorageClassSpecLoc(),
3569         diag::err_invalid_storage_class_in_func_decl);
3570    D.getMutableDeclSpec().ClearStorageClassSpecs();
3571  }
3572
3573  if (D.getDeclSpec().isThreadSpecified())
3574    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3575
3576  DiagnoseFunctionSpecifiers(D);
3577
3578  // Check that there are no default arguments inside the type of this
3579  // parameter (C++ only).
3580  if (getLangOptions().CPlusPlus)
3581    CheckExtraCXXDefaultArguments(D);
3582
3583  DeclaratorInfo *DInfo = 0;
3584  TagDecl *OwnedDecl = 0;
3585  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3586                                               &OwnedDecl);
3587
3588  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3589    // C++ [dcl.fct]p6:
3590    //   Types shall not be defined in return or parameter types.
3591    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3592      << Context.getTypeDeclType(OwnedDecl);
3593  }
3594
3595  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3596  // Can this happen for params?  We already checked that they don't conflict
3597  // among each other.  Here they can only shadow globals, which is ok.
3598  IdentifierInfo *II = D.getIdentifier();
3599  if (II) {
3600    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3601      if (PrevDecl->isTemplateParameter()) {
3602        // Maybe we will complain about the shadowed template parameter.
3603        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3604        // Just pretend that we didn't see the previous declaration.
3605        PrevDecl = 0;
3606      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3607        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3608
3609        // Recover by removing the name
3610        II = 0;
3611        D.SetIdentifier(0, D.getIdentifierLoc());
3612      }
3613    }
3614  }
3615
3616  // Parameters can not be abstract class types.
3617  // For record types, this is done by the AbstractClassUsageDiagnoser once
3618  // the class has been completely parsed.
3619  if (!CurContext->isRecord() &&
3620      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3621                             diag::err_abstract_type_in_decl,
3622                             AbstractParamType))
3623    D.setInvalidType(true);
3624
3625  QualType T = adjustParameterType(parmDeclType);
3626
3627  ParmVarDecl *New;
3628  if (T == parmDeclType) // parameter type did not need adjustment
3629    New = ParmVarDecl::Create(Context, CurContext,
3630                              D.getIdentifierLoc(), II,
3631                              parmDeclType, DInfo, StorageClass,
3632                              0);
3633  else // keep track of both the adjusted and unadjusted types
3634    New = OriginalParmVarDecl::Create(Context, CurContext,
3635                                      D.getIdentifierLoc(), II, T, DInfo,
3636                                      parmDeclType, StorageClass, 0);
3637
3638  if (D.isInvalidType())
3639    New->setInvalidDecl();
3640
3641  // Parameter declarators cannot be interface types. All ObjC objects are
3642  // passed by reference.
3643  if (T->isObjCInterfaceType()) {
3644    Diag(D.getIdentifierLoc(),
3645         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3646    New->setInvalidDecl();
3647  }
3648
3649  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3650  if (D.getCXXScopeSpec().isSet()) {
3651    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3652      << D.getCXXScopeSpec().getRange();
3653    New->setInvalidDecl();
3654  }
3655
3656  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3657  // duration shall not be qualified by an address-space qualifier."
3658  // Since all parameters have automatic store duration, they can not have
3659  // an address space.
3660  if (T.getAddressSpace() != 0) {
3661    Diag(D.getIdentifierLoc(),
3662         diag::err_arg_with_address_space);
3663    New->setInvalidDecl();
3664  }
3665
3666
3667  // Add the parameter declaration into this scope.
3668  S->AddDecl(DeclPtrTy::make(New));
3669  if (II)
3670    IdResolver.AddDecl(New);
3671
3672  ProcessDeclAttributes(S, New, D);
3673
3674  if (New->hasAttr<BlocksAttr>()) {
3675    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3676  }
3677  return DeclPtrTy::make(New);
3678}
3679
3680void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3681                                           SourceLocation LocAfterDecls) {
3682  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3683         "Not a function declarator!");
3684  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3685
3686  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3687  // for a K&R function.
3688  if (!FTI.hasPrototype) {
3689    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3690      --i;
3691      if (FTI.ArgInfo[i].Param == 0) {
3692        std::string Code = "  int ";
3693        Code += FTI.ArgInfo[i].Ident->getName();
3694        Code += ";\n";
3695        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3696          << FTI.ArgInfo[i].Ident
3697          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3698
3699        // Implicitly declare the argument as type 'int' for lack of a better
3700        // type.
3701        DeclSpec DS;
3702        const char* PrevSpec; // unused
3703        unsigned DiagID; // unused
3704        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3705                           PrevSpec, DiagID);
3706        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3707        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3708        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3709      }
3710    }
3711  }
3712}
3713
3714Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3715                                              Declarator &D) {
3716  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3717  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3718         "Not a function declarator!");
3719  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3720
3721  if (FTI.hasPrototype) {
3722    // FIXME: Diagnose arguments without names in C.
3723  }
3724
3725  Scope *ParentScope = FnBodyScope->getParent();
3726
3727  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3728                                  MultiTemplateParamsArg(*this),
3729                                  /*IsFunctionDefinition=*/true);
3730  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3731}
3732
3733Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3734  if (!D)
3735    return D;
3736  FunctionDecl *FD = 0;
3737
3738  if (FunctionTemplateDecl *FunTmpl
3739        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3740    FD = FunTmpl->getTemplatedDecl();
3741  else
3742    FD = cast<FunctionDecl>(D.getAs<Decl>());
3743
3744  CurFunctionNeedsScopeChecking = false;
3745
3746  // See if this is a redefinition.
3747  const FunctionDecl *Definition;
3748  if (FD->getBody(Definition)) {
3749    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3750    Diag(Definition->getLocation(), diag::note_previous_definition);
3751  }
3752
3753  // Builtin functions cannot be defined.
3754  if (unsigned BuiltinID = FD->getBuiltinID()) {
3755    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3756      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3757      FD->setInvalidDecl();
3758    }
3759  }
3760
3761  // The return type of a function definition must be complete
3762  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3763  QualType ResultType = FD->getResultType();
3764  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3765      !FD->isInvalidDecl() &&
3766      RequireCompleteType(FD->getLocation(), ResultType,
3767                          diag::err_func_def_incomplete_result))
3768    FD->setInvalidDecl();
3769
3770  // GNU warning -Wmissing-prototypes:
3771  //   Warn if a global function is defined without a previous
3772  //   prototype declaration. This warning is issued even if the
3773  //   definition itself provides a prototype. The aim is to detect
3774  //   global functions that fail to be declared in header files.
3775  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3776      !FD->isMain()) {
3777    bool MissingPrototype = true;
3778    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3779         Prev; Prev = Prev->getPreviousDeclaration()) {
3780      // Ignore any declarations that occur in function or method
3781      // scope, because they aren't visible from the header.
3782      if (Prev->getDeclContext()->isFunctionOrMethod())
3783        continue;
3784
3785      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3786      break;
3787    }
3788
3789    if (MissingPrototype)
3790      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3791  }
3792
3793  if (FnBodyScope)
3794    PushDeclContext(FnBodyScope, FD);
3795
3796  // Check the validity of our function parameters
3797  CheckParmsForFunctionDef(FD);
3798
3799  // Introduce our parameters into the function scope
3800  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3801    ParmVarDecl *Param = FD->getParamDecl(p);
3802    Param->setOwningFunction(FD);
3803
3804    // If this has an identifier, add it to the scope stack.
3805    if (Param->getIdentifier() && FnBodyScope)
3806      PushOnScopeChains(Param, FnBodyScope);
3807  }
3808
3809  // Checking attributes of current function definition
3810  // dllimport attribute.
3811  if (FD->getAttr<DLLImportAttr>() &&
3812      (!FD->getAttr<DLLExportAttr>())) {
3813    // dllimport attribute cannot be applied to definition.
3814    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3815      Diag(FD->getLocation(),
3816           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3817        << "dllimport";
3818      FD->setInvalidDecl();
3819      return DeclPtrTy::make(FD);
3820    } else {
3821      // If a symbol previously declared dllimport is later defined, the
3822      // attribute is ignored in subsequent references, and a warning is
3823      // emitted.
3824      Diag(FD->getLocation(),
3825           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3826        << FD->getNameAsCString() << "dllimport";
3827    }
3828  }
3829  return DeclPtrTy::make(FD);
3830}
3831
3832Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3833  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3834}
3835
3836Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3837                                              bool IsInstantiation) {
3838  Decl *dcl = D.getAs<Decl>();
3839  Stmt *Body = BodyArg.takeAs<Stmt>();
3840
3841  FunctionDecl *FD = 0;
3842  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3843  if (FunTmpl)
3844    FD = FunTmpl->getTemplatedDecl();
3845  else
3846    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3847
3848  if (FD) {
3849    FD->setBody(Body);
3850    if (FD->isMain())
3851      // C and C++ allow for main to automagically return 0.
3852      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3853      FD->setHasImplicitReturnZero(true);
3854    else
3855      CheckFallThroughForFunctionDef(FD, Body);
3856
3857    if (!FD->isInvalidDecl())
3858      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3859
3860    // C++ [basic.def.odr]p2:
3861    //   [...] A virtual member function is used if it is not pure. [...]
3862    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3863      if (Method->isVirtual() && !Method->isPure())
3864        MarkDeclarationReferenced(Method->getLocation(), Method);
3865
3866    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3867  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3868    assert(MD == getCurMethodDecl() && "Method parsing confused");
3869    MD->setBody(Body);
3870    CheckFallThroughForFunctionDef(MD, Body);
3871    MD->setEndLoc(Body->getLocEnd());
3872
3873    if (!MD->isInvalidDecl())
3874      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3875  } else {
3876    Body->Destroy(Context);
3877    return DeclPtrTy();
3878  }
3879  if (!IsInstantiation)
3880    PopDeclContext();
3881
3882  // Verify and clean out per-function state.
3883
3884  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3885
3886  // Check goto/label use.
3887  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3888       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3889    LabelStmt *L = I->second;
3890
3891    // Verify that we have no forward references left.  If so, there was a goto
3892    // or address of a label taken, but no definition of it.  Label fwd
3893    // definitions are indicated with a null substmt.
3894    if (L->getSubStmt() != 0)
3895      continue;
3896
3897    // Emit error.
3898    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3899
3900    // At this point, we have gotos that use the bogus label.  Stitch it into
3901    // the function body so that they aren't leaked and that the AST is well
3902    // formed.
3903    if (Body == 0) {
3904      // The whole function wasn't parsed correctly, just delete this.
3905      L->Destroy(Context);
3906      continue;
3907    }
3908
3909    // Otherwise, the body is valid: we want to stitch the label decl into the
3910    // function somewhere so that it is properly owned and so that the goto
3911    // has a valid target.  Do this by creating a new compound stmt with the
3912    // label in it.
3913
3914    // Give the label a sub-statement.
3915    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3916
3917    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3918                               cast<CXXTryStmt>(Body)->getTryBlock() :
3919                               cast<CompoundStmt>(Body);
3920    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3921    Elements.push_back(L);
3922    Compound->setStmts(Context, &Elements[0], Elements.size());
3923  }
3924  FunctionLabelMap.clear();
3925
3926  if (!Body) return D;
3927
3928  // Verify that that gotos and switch cases don't jump into scopes illegally.
3929  if (CurFunctionNeedsScopeChecking)
3930    DiagnoseInvalidJumps(Body);
3931
3932  // C++ constructors that have function-try-blocks can't have return
3933  // statements in the handlers of that block. (C++ [except.handle]p14)
3934  // Verify this.
3935  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3936    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3937
3938  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3939    computeBaseOrMembersToDestroy(Destructor);
3940  return D;
3941}
3942
3943/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3944/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3945NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3946                                          IdentifierInfo &II, Scope *S) {
3947  // Before we produce a declaration for an implicitly defined
3948  // function, see whether there was a locally-scoped declaration of
3949  // this name as a function or variable. If so, use that
3950  // (non-visible) declaration, and complain about it.
3951  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3952    = LocallyScopedExternalDecls.find(&II);
3953  if (Pos != LocallyScopedExternalDecls.end()) {
3954    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3955    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3956    return Pos->second;
3957  }
3958
3959  // Extension in C99.  Legal in C90, but warn about it.
3960  static const unsigned int BuiltinLen = strlen("__builtin_");
3961  if (II.getLength() > BuiltinLen &&
3962      std::equal(II.getName(), II.getName() + BuiltinLen, "__builtin_"))
3963    Diag(Loc, diag::warn_builtin_unknown) << &II;
3964  else if (getLangOptions().C99)
3965    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3966  else
3967    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3968
3969  // Set a Declarator for the implicit definition: int foo();
3970  const char *Dummy;
3971  DeclSpec DS;
3972  unsigned DiagID;
3973  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3974  Error = Error; // Silence warning.
3975  assert(!Error && "Error setting up implicit decl!");
3976  Declarator D(DS, Declarator::BlockContext);
3977  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3978                                             0, 0, false, SourceLocation(),
3979                                             false, 0,0,0, Loc, Loc, D),
3980                SourceLocation());
3981  D.SetIdentifier(&II, Loc);
3982
3983  // Insert this function into translation-unit scope.
3984
3985  DeclContext *PrevDC = CurContext;
3986  CurContext = Context.getTranslationUnitDecl();
3987
3988  FunctionDecl *FD =
3989 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3990  FD->setImplicit();
3991
3992  CurContext = PrevDC;
3993
3994  AddKnownFunctionAttributes(FD);
3995
3996  return FD;
3997}
3998
3999/// \brief Adds any function attributes that we know a priori based on
4000/// the declaration of this function.
4001///
4002/// These attributes can apply both to implicitly-declared builtins
4003/// (like __builtin___printf_chk) or to library-declared functions
4004/// like NSLog or printf.
4005void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4006  if (FD->isInvalidDecl())
4007    return;
4008
4009  // If this is a built-in function, map its builtin attributes to
4010  // actual attributes.
4011  if (unsigned BuiltinID = FD->getBuiltinID()) {
4012    // Handle printf-formatting attributes.
4013    unsigned FormatIdx;
4014    bool HasVAListArg;
4015    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4016      if (!FD->getAttr<FormatAttr>())
4017        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4018                                             HasVAListArg ? 0 : FormatIdx + 2));
4019    }
4020
4021    // Mark const if we don't care about errno and that is the only
4022    // thing preventing the function from being const. This allows
4023    // IRgen to use LLVM intrinsics for such functions.
4024    if (!getLangOptions().MathErrno &&
4025        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4026      if (!FD->getAttr<ConstAttr>())
4027        FD->addAttr(::new (Context) ConstAttr());
4028    }
4029
4030    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4031      FD->addAttr(::new (Context) NoReturnAttr());
4032  }
4033
4034  IdentifierInfo *Name = FD->getIdentifier();
4035  if (!Name)
4036    return;
4037  if ((!getLangOptions().CPlusPlus &&
4038       FD->getDeclContext()->isTranslationUnit()) ||
4039      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4040       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4041       LinkageSpecDecl::lang_c)) {
4042    // Okay: this could be a libc/libm/Objective-C function we know
4043    // about.
4044  } else
4045    return;
4046
4047  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4048    // FIXME: NSLog and NSLogv should be target specific
4049    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4050      // FIXME: We known better than our headers.
4051      const_cast<FormatAttr *>(Format)->setType("printf");
4052    } else
4053      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4054                                             Name->isStr("NSLogv") ? 0 : 2));
4055  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4056    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4057    // target-specific builtins, perhaps?
4058    if (!FD->getAttr<FormatAttr>())
4059      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4060                                             Name->isStr("vasprintf") ? 0 : 3));
4061  }
4062}
4063
4064TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4065  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4066  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4067
4068  // Scope manipulation handled by caller.
4069  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4070                                           D.getIdentifierLoc(),
4071                                           D.getIdentifier(),
4072                                           T);
4073
4074  if (const TagType *TT = T->getAs<TagType>()) {
4075    TagDecl *TD = TT->getDecl();
4076
4077    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4078    // keep track of the TypedefDecl.
4079    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4080      TD->setTypedefForAnonDecl(NewTD);
4081  }
4082
4083  if (D.isInvalidType())
4084    NewTD->setInvalidDecl();
4085  return NewTD;
4086}
4087
4088
4089/// \brief Determine whether a tag with a given kind is acceptable
4090/// as a redeclaration of the given tag declaration.
4091///
4092/// \returns true if the new tag kind is acceptable, false otherwise.
4093bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4094                                        TagDecl::TagKind NewTag,
4095                                        SourceLocation NewTagLoc,
4096                                        const IdentifierInfo &Name) {
4097  // C++ [dcl.type.elab]p3:
4098  //   The class-key or enum keyword present in the
4099  //   elaborated-type-specifier shall agree in kind with the
4100  //   declaration to which the name in theelaborated-type-specifier
4101  //   refers. This rule also applies to the form of
4102  //   elaborated-type-specifier that declares a class-name or
4103  //   friend class since it can be construed as referring to the
4104  //   definition of the class. Thus, in any
4105  //   elaborated-type-specifier, the enum keyword shall be used to
4106  //   refer to an enumeration (7.2), the union class-keyshall be
4107  //   used to refer to a union (clause 9), and either the class or
4108  //   struct class-key shall be used to refer to a class (clause 9)
4109  //   declared using the class or struct class-key.
4110  TagDecl::TagKind OldTag = Previous->getTagKind();
4111  if (OldTag == NewTag)
4112    return true;
4113
4114  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4115      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4116    // Warn about the struct/class tag mismatch.
4117    bool isTemplate = false;
4118    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4119      isTemplate = Record->getDescribedClassTemplate();
4120
4121    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4122      << (NewTag == TagDecl::TK_class)
4123      << isTemplate << &Name
4124      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4125                              OldTag == TagDecl::TK_class? "class" : "struct");
4126    Diag(Previous->getLocation(), diag::note_previous_use);
4127    return true;
4128  }
4129  return false;
4130}
4131
4132/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4133/// former case, Name will be non-null.  In the later case, Name will be null.
4134/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4135/// reference/declaration/definition of a tag.
4136Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4137                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4138                               IdentifierInfo *Name, SourceLocation NameLoc,
4139                               AttributeList *Attr, AccessSpecifier AS,
4140                               MultiTemplateParamsArg TemplateParameterLists,
4141                               bool &OwnedDecl, bool &IsDependent) {
4142  // If this is not a definition, it must have a name.
4143  assert((Name != 0 || TUK == TUK_Definition) &&
4144         "Nameless record must be a definition!");
4145
4146  OwnedDecl = false;
4147  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4148
4149  // FIXME: Check explicit specializations more carefully.
4150  bool isExplicitSpecialization = false;
4151  if (TUK != TUK_Reference) {
4152    if (TemplateParameterList *TemplateParams
4153          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4154                        (TemplateParameterList**)TemplateParameterLists.get(),
4155                                              TemplateParameterLists.size(),
4156                                                    isExplicitSpecialization)) {
4157      if (TemplateParams->size() > 0) {
4158        // This is a declaration or definition of a class template (which may
4159        // be a member of another template).
4160        OwnedDecl = false;
4161        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4162                                               SS, Name, NameLoc, Attr,
4163                                               TemplateParams,
4164                                               AS);
4165        TemplateParameterLists.release();
4166        return Result.get();
4167      } else {
4168        // The "template<>" header is extraneous.
4169        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4170          << ElaboratedType::getNameForTagKind(Kind) << Name;
4171        isExplicitSpecialization = true;
4172      }
4173    }
4174
4175    TemplateParameterLists.release();
4176  }
4177
4178  DeclContext *SearchDC = CurContext;
4179  DeclContext *DC = CurContext;
4180  NamedDecl *PrevDecl = 0;
4181  bool isStdBadAlloc = false;
4182  bool Invalid = false;
4183
4184  if (Name && SS.isNotEmpty()) {
4185    // We have a nested-name tag ('struct foo::bar').
4186
4187    // Check for invalid 'foo::'.
4188    if (SS.isInvalid()) {
4189      Name = 0;
4190      goto CreateNewDecl;
4191    }
4192
4193    // If this is a friend or a reference to a class in a dependent
4194    // context, don't try to make a decl for it.
4195    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4196      DC = computeDeclContext(SS, false);
4197      if (!DC) {
4198        IsDependent = true;
4199        return DeclPtrTy();
4200      }
4201    }
4202
4203    if (RequireCompleteDeclContext(SS))
4204      return DeclPtrTy::make((Decl *)0);
4205
4206    DC = computeDeclContext(SS, true);
4207    SearchDC = DC;
4208    // Look-up name inside 'foo::'.
4209    PrevDecl
4210      = dyn_cast_or_null<TagDecl>(
4211               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4212
4213    // A tag 'foo::bar' must already exist.
4214    if (PrevDecl == 0) {
4215      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4216      Name = 0;
4217      Invalid = true;
4218      goto CreateNewDecl;
4219    }
4220  } else if (Name) {
4221    // If this is a named struct, check to see if there was a previous forward
4222    // declaration or definition.
4223    // FIXME: We're looking into outer scopes here, even when we
4224    // shouldn't be. Doing so can result in ambiguities that we
4225    // shouldn't be diagnosing.
4226    LookupResult R = LookupName(S, Name, LookupTagName,
4227                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4228    if (R.isAmbiguous()) {
4229      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4230      // FIXME: This is not best way to recover from case like:
4231      //
4232      // struct S s;
4233      //
4234      // causes needless "incomplete type" error later.
4235      Name = 0;
4236      PrevDecl = 0;
4237      Invalid = true;
4238    } else
4239      PrevDecl = R;
4240
4241    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4242      // FIXME: This makes sure that we ignore the contexts associated
4243      // with C structs, unions, and enums when looking for a matching
4244      // tag declaration or definition. See the similar lookup tweak
4245      // in Sema::LookupName; is there a better way to deal with this?
4246      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4247        SearchDC = SearchDC->getParent();
4248    }
4249  }
4250
4251  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4252    // Maybe we will complain about the shadowed template parameter.
4253    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4254    // Just pretend that we didn't see the previous declaration.
4255    PrevDecl = 0;
4256  }
4257
4258  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4259      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4260    // This is a declaration of or a reference to "std::bad_alloc".
4261    isStdBadAlloc = true;
4262
4263    if (!PrevDecl && StdBadAlloc) {
4264      // std::bad_alloc has been implicitly declared (but made invisible to
4265      // name lookup). Fill in this implicit declaration as the previous
4266      // declaration, so that the declarations get chained appropriately.
4267      PrevDecl = StdBadAlloc;
4268    }
4269  }
4270
4271  if (PrevDecl) {
4272    // Check whether the previous declaration is usable.
4273    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4274
4275    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4276      // If this is a use of a previous tag, or if the tag is already declared
4277      // in the same scope (so that the definition/declaration completes or
4278      // rementions the tag), reuse the decl.
4279      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4280          isDeclInScope(PrevDecl, SearchDC, S)) {
4281        // Make sure that this wasn't declared as an enum and now used as a
4282        // struct or something similar.
4283        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4284          bool SafeToContinue
4285            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4286               Kind != TagDecl::TK_enum);
4287          if (SafeToContinue)
4288            Diag(KWLoc, diag::err_use_with_wrong_tag)
4289              << Name
4290              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4291                                                  PrevTagDecl->getKindName());
4292          else
4293            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4294          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4295
4296          if (SafeToContinue)
4297            Kind = PrevTagDecl->getTagKind();
4298          else {
4299            // Recover by making this an anonymous redefinition.
4300            Name = 0;
4301            PrevDecl = 0;
4302            Invalid = true;
4303          }
4304        }
4305
4306        if (!Invalid) {
4307          // If this is a use, just return the declaration we found.
4308
4309          // FIXME: In the future, return a variant or some other clue
4310          // for the consumer of this Decl to know it doesn't own it.
4311          // For our current ASTs this shouldn't be a problem, but will
4312          // need to be changed with DeclGroups.
4313          if (TUK == TUK_Reference || TUK == TUK_Friend)
4314            return DeclPtrTy::make(PrevDecl);
4315
4316          // Diagnose attempts to redefine a tag.
4317          if (TUK == TUK_Definition) {
4318            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4319              Diag(NameLoc, diag::err_redefinition) << Name;
4320              Diag(Def->getLocation(), diag::note_previous_definition);
4321              // If this is a redefinition, recover by making this
4322              // struct be anonymous, which will make any later
4323              // references get the previous definition.
4324              Name = 0;
4325              PrevDecl = 0;
4326              Invalid = true;
4327            } else {
4328              // If the type is currently being defined, complain
4329              // about a nested redefinition.
4330              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4331              if (Tag->isBeingDefined()) {
4332                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4333                Diag(PrevTagDecl->getLocation(),
4334                     diag::note_previous_definition);
4335                Name = 0;
4336                PrevDecl = 0;
4337                Invalid = true;
4338              }
4339            }
4340
4341            // Okay, this is definition of a previously declared or referenced
4342            // tag PrevDecl. We're going to create a new Decl for it.
4343          }
4344        }
4345        // If we get here we have (another) forward declaration or we
4346        // have a definition.  Just create a new decl.
4347
4348      } else {
4349        // If we get here, this is a definition of a new tag type in a nested
4350        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4351        // new decl/type.  We set PrevDecl to NULL so that the entities
4352        // have distinct types.
4353        PrevDecl = 0;
4354      }
4355      // If we get here, we're going to create a new Decl. If PrevDecl
4356      // is non-NULL, it's a definition of the tag declared by
4357      // PrevDecl. If it's NULL, we have a new definition.
4358    } else {
4359      // PrevDecl is a namespace, template, or anything else
4360      // that lives in the IDNS_Tag identifier namespace.
4361      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4362        // The tag name clashes with a namespace name, issue an error and
4363        // recover by making this tag be anonymous.
4364        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4365        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4366        Name = 0;
4367        PrevDecl = 0;
4368        Invalid = true;
4369      } else {
4370        // The existing declaration isn't relevant to us; we're in a
4371        // new scope, so clear out the previous declaration.
4372        PrevDecl = 0;
4373      }
4374    }
4375  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4376             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4377    // C++ [basic.scope.pdecl]p5:
4378    //   -- for an elaborated-type-specifier of the form
4379    //
4380    //          class-key identifier
4381    //
4382    //      if the elaborated-type-specifier is used in the
4383    //      decl-specifier-seq or parameter-declaration-clause of a
4384    //      function defined in namespace scope, the identifier is
4385    //      declared as a class-name in the namespace that contains
4386    //      the declaration; otherwise, except as a friend
4387    //      declaration, the identifier is declared in the smallest
4388    //      non-class, non-function-prototype scope that contains the
4389    //      declaration.
4390    //
4391    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4392    // C structs and unions.
4393    //
4394    // GNU C also supports this behavior as part of its incomplete
4395    // enum types extension, while GNU C++ does not.
4396    //
4397    // Find the context where we'll be declaring the tag.
4398    // FIXME: We would like to maintain the current DeclContext as the
4399    // lexical context,
4400    while (SearchDC->isRecord())
4401      SearchDC = SearchDC->getParent();
4402
4403    // Find the scope where we'll be declaring the tag.
4404    while (S->isClassScope() ||
4405           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4406           ((S->getFlags() & Scope::DeclScope) == 0) ||
4407           (S->getEntity() &&
4408            ((DeclContext *)S->getEntity())->isTransparentContext()))
4409      S = S->getParent();
4410
4411  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4412    // C++ [namespace.memdef]p3:
4413    //   If a friend declaration in a non-local class first declares a
4414    //   class or function, the friend class or function is a member of
4415    //   the innermost enclosing namespace.
4416    while (!SearchDC->isFileContext())
4417      SearchDC = SearchDC->getParent();
4418
4419    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4420    while (S->getEntity() != SearchDC)
4421      S = S->getParent();
4422  }
4423
4424CreateNewDecl:
4425
4426  // If there is an identifier, use the location of the identifier as the
4427  // location of the decl, otherwise use the location of the struct/union
4428  // keyword.
4429  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4430
4431  // Otherwise, create a new declaration. If there is a previous
4432  // declaration of the same entity, the two will be linked via
4433  // PrevDecl.
4434  TagDecl *New;
4435
4436  if (Kind == TagDecl::TK_enum) {
4437    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4438    // enum X { A, B, C } D;    D should chain to X.
4439    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4440                           cast_or_null<EnumDecl>(PrevDecl));
4441    // If this is an undefined enum, warn.
4442    if (TUK != TUK_Definition && !Invalid)  {
4443      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4444                                              : diag::ext_forward_ref_enum;
4445      Diag(Loc, DK);
4446    }
4447  } else {
4448    // struct/union/class
4449
4450    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4451    // struct X { int A; } D;    D should chain to X.
4452    if (getLangOptions().CPlusPlus) {
4453      // FIXME: Look for a way to use RecordDecl for simple structs.
4454      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4455                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4456
4457      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4458        StdBadAlloc = cast<CXXRecordDecl>(New);
4459    } else
4460      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4461                               cast_or_null<RecordDecl>(PrevDecl));
4462  }
4463
4464  if (Kind != TagDecl::TK_enum) {
4465    // Handle #pragma pack: if the #pragma pack stack has non-default
4466    // alignment, make up a packed attribute for this decl. These
4467    // attributes are checked when the ASTContext lays out the
4468    // structure.
4469    //
4470    // It is important for implementing the correct semantics that this
4471    // happen here (in act on tag decl). The #pragma pack stack is
4472    // maintained as a result of parser callbacks which can occur at
4473    // many points during the parsing of a struct declaration (because
4474    // the #pragma tokens are effectively skipped over during the
4475    // parsing of the struct).
4476    if (unsigned Alignment = getPragmaPackAlignment())
4477      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4478  }
4479
4480  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4481    // C++ [dcl.typedef]p3:
4482    //   [...] Similarly, in a given scope, a class or enumeration
4483    //   shall not be declared with the same name as a typedef-name
4484    //   that is declared in that scope and refers to a type other
4485    //   than the class or enumeration itself.
4486    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4487    TypedefDecl *PrevTypedef = 0;
4488    if (Lookup.getKind() == LookupResult::Found)
4489      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4490
4491    NamedDecl *PrevTypedefNamed = PrevTypedef;
4492    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4493        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4494          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4495      Diag(Loc, diag::err_tag_definition_of_typedef)
4496        << Context.getTypeDeclType(New)
4497        << PrevTypedef->getUnderlyingType();
4498      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4499      Invalid = true;
4500    }
4501  }
4502
4503  // If this is a specialization of a member class (of a class template),
4504  // check the specialization.
4505  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4506    Invalid = true;
4507
4508  if (Invalid)
4509    New->setInvalidDecl();
4510
4511  if (Attr)
4512    ProcessDeclAttributeList(S, New, Attr);
4513
4514  // If we're declaring or defining a tag in function prototype scope
4515  // in C, note that this type can only be used within the function.
4516  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4517    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4518
4519  // Set the lexical context. If the tag has a C++ scope specifier, the
4520  // lexical context will be different from the semantic context.
4521  New->setLexicalDeclContext(CurContext);
4522
4523  // Mark this as a friend decl if applicable.
4524  if (TUK == TUK_Friend)
4525    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4526
4527  // Set the access specifier.
4528  if (!Invalid && TUK != TUK_Friend)
4529    SetMemberAccessSpecifier(New, PrevDecl, AS);
4530
4531  if (TUK == TUK_Definition)
4532    New->startDefinition();
4533
4534  // If this has an identifier, add it to the scope stack.
4535  if (TUK == TUK_Friend) {
4536    // We might be replacing an existing declaration in the lookup tables;
4537    // if so, borrow its access specifier.
4538    if (PrevDecl)
4539      New->setAccess(PrevDecl->getAccess());
4540
4541    // Friend tag decls are visible in fairly strange ways.
4542    if (!CurContext->isDependentContext()) {
4543      DeclContext *DC = New->getDeclContext()->getLookupContext();
4544      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4545      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4546        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4547    }
4548  } else if (Name) {
4549    S = getNonFieldDeclScope(S);
4550    PushOnScopeChains(New, S);
4551  } else {
4552    CurContext->addDecl(New);
4553  }
4554
4555  // If this is the C FILE type, notify the AST context.
4556  if (IdentifierInfo *II = New->getIdentifier())
4557    if (!New->isInvalidDecl() &&
4558        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4559        II->isStr("FILE"))
4560      Context.setFILEDecl(New);
4561
4562  OwnedDecl = true;
4563  return DeclPtrTy::make(New);
4564}
4565
4566void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4567  AdjustDeclIfTemplate(TagD);
4568  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4569
4570  // Enter the tag context.
4571  PushDeclContext(S, Tag);
4572
4573  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4574    FieldCollector->StartClass();
4575
4576    if (Record->getIdentifier()) {
4577      // C++ [class]p2:
4578      //   [...] The class-name is also inserted into the scope of the
4579      //   class itself; this is known as the injected-class-name. For
4580      //   purposes of access checking, the injected-class-name is treated
4581      //   as if it were a public member name.
4582      CXXRecordDecl *InjectedClassName
4583        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4584                                CurContext, Record->getLocation(),
4585                                Record->getIdentifier(),
4586                                Record->getTagKeywordLoc(),
4587                                Record);
4588      InjectedClassName->setImplicit();
4589      InjectedClassName->setAccess(AS_public);
4590      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4591        InjectedClassName->setDescribedClassTemplate(Template);
4592      PushOnScopeChains(InjectedClassName, S);
4593      assert(InjectedClassName->isInjectedClassName() &&
4594             "Broken injected-class-name");
4595    }
4596  }
4597}
4598
4599void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4600                                    SourceLocation RBraceLoc) {
4601  AdjustDeclIfTemplate(TagD);
4602  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4603  Tag->setRBraceLoc(RBraceLoc);
4604
4605  if (isa<CXXRecordDecl>(Tag))
4606    FieldCollector->FinishClass();
4607
4608  // Exit this scope of this tag's definition.
4609  PopDeclContext();
4610
4611  // Notify the consumer that we've defined a tag.
4612  Consumer.HandleTagDeclDefinition(Tag);
4613}
4614
4615// Note that FieldName may be null for anonymous bitfields.
4616bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4617                          QualType FieldTy, const Expr *BitWidth,
4618                          bool *ZeroWidth) {
4619  // Default to true; that shouldn't confuse checks for emptiness
4620  if (ZeroWidth)
4621    *ZeroWidth = true;
4622
4623  // C99 6.7.2.1p4 - verify the field type.
4624  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4625  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4626    // Handle incomplete types with specific error.
4627    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4628      return true;
4629    if (FieldName)
4630      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4631        << FieldName << FieldTy << BitWidth->getSourceRange();
4632    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4633      << FieldTy << BitWidth->getSourceRange();
4634  }
4635
4636  // If the bit-width is type- or value-dependent, don't try to check
4637  // it now.
4638  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4639    return false;
4640
4641  llvm::APSInt Value;
4642  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4643    return true;
4644
4645  if (Value != 0 && ZeroWidth)
4646    *ZeroWidth = false;
4647
4648  // Zero-width bitfield is ok for anonymous field.
4649  if (Value == 0 && FieldName)
4650    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4651
4652  if (Value.isSigned() && Value.isNegative()) {
4653    if (FieldName)
4654      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4655               << FieldName << Value.toString(10);
4656    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4657      << Value.toString(10);
4658  }
4659
4660  if (!FieldTy->isDependentType()) {
4661    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4662    if (Value.getZExtValue() > TypeSize) {
4663      if (FieldName)
4664        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4665          << FieldName << (unsigned)TypeSize;
4666      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4667        << (unsigned)TypeSize;
4668    }
4669  }
4670
4671  return false;
4672}
4673
4674/// ActOnField - Each field of a struct/union/class is passed into this in order
4675/// to create a FieldDecl object for it.
4676Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4677                                 SourceLocation DeclStart,
4678                                 Declarator &D, ExprTy *BitfieldWidth) {
4679  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4680                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4681                               AS_public);
4682  return DeclPtrTy::make(Res);
4683}
4684
4685/// HandleField - Analyze a field of a C struct or a C++ data member.
4686///
4687FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4688                             SourceLocation DeclStart,
4689                             Declarator &D, Expr *BitWidth,
4690                             AccessSpecifier AS) {
4691  IdentifierInfo *II = D.getIdentifier();
4692  SourceLocation Loc = DeclStart;
4693  if (II) Loc = D.getIdentifierLoc();
4694
4695  DeclaratorInfo *DInfo = 0;
4696  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4697  if (getLangOptions().CPlusPlus)
4698    CheckExtraCXXDefaultArguments(D);
4699
4700  DiagnoseFunctionSpecifiers(D);
4701
4702  if (D.getDeclSpec().isThreadSpecified())
4703    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4704
4705  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4706
4707  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4708    // Maybe we will complain about the shadowed template parameter.
4709    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4710    // Just pretend that we didn't see the previous declaration.
4711    PrevDecl = 0;
4712  }
4713
4714  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4715    PrevDecl = 0;
4716
4717  bool Mutable
4718    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4719  SourceLocation TSSL = D.getSourceRange().getBegin();
4720  FieldDecl *NewFD
4721    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4722                     AS, PrevDecl, &D);
4723  if (NewFD->isInvalidDecl() && PrevDecl) {
4724    // Don't introduce NewFD into scope; there's already something
4725    // with the same name in the same scope.
4726  } else if (II) {
4727    PushOnScopeChains(NewFD, S);
4728  } else
4729    Record->addDecl(NewFD);
4730
4731  return NewFD;
4732}
4733
4734/// \brief Build a new FieldDecl and check its well-formedness.
4735///
4736/// This routine builds a new FieldDecl given the fields name, type,
4737/// record, etc. \p PrevDecl should refer to any previous declaration
4738/// with the same name and in the same scope as the field to be
4739/// created.
4740///
4741/// \returns a new FieldDecl.
4742///
4743/// \todo The Declarator argument is a hack. It will be removed once
4744FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4745                                DeclaratorInfo *DInfo,
4746                                RecordDecl *Record, SourceLocation Loc,
4747                                bool Mutable, Expr *BitWidth,
4748                                SourceLocation TSSL,
4749                                AccessSpecifier AS, NamedDecl *PrevDecl,
4750                                Declarator *D) {
4751  IdentifierInfo *II = Name.getAsIdentifierInfo();
4752  bool InvalidDecl = false;
4753  if (D) InvalidDecl = D->isInvalidType();
4754
4755  // If we receive a broken type, recover by assuming 'int' and
4756  // marking this declaration as invalid.
4757  if (T.isNull()) {
4758    InvalidDecl = true;
4759    T = Context.IntTy;
4760  }
4761
4762  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4763  // than a variably modified type.
4764  if (T->isVariablyModifiedType()) {
4765    bool SizeIsNegative;
4766    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4767                                                           SizeIsNegative);
4768    if (!FixedTy.isNull()) {
4769      Diag(Loc, diag::warn_illegal_constant_array_size);
4770      T = FixedTy;
4771    } else {
4772      if (SizeIsNegative)
4773        Diag(Loc, diag::err_typecheck_negative_array_size);
4774      else
4775        Diag(Loc, diag::err_typecheck_field_variable_size);
4776      InvalidDecl = true;
4777    }
4778  }
4779
4780  // Fields can not have abstract class types
4781  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4782                             AbstractFieldType))
4783    InvalidDecl = true;
4784
4785  bool ZeroWidth = false;
4786  // If this is declared as a bit-field, check the bit-field.
4787  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4788    InvalidDecl = true;
4789    DeleteExpr(BitWidth);
4790    BitWidth = 0;
4791    ZeroWidth = false;
4792  }
4793
4794  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4795                                       BitWidth, Mutable);
4796  if (InvalidDecl)
4797    NewFD->setInvalidDecl();
4798
4799  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4800    Diag(Loc, diag::err_duplicate_member) << II;
4801    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4802    NewFD->setInvalidDecl();
4803  }
4804
4805  if (getLangOptions().CPlusPlus) {
4806    QualType EltTy = Context.getBaseElementType(T);
4807
4808    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4809
4810    if (!T->isPODType())
4811      CXXRecord->setPOD(false);
4812    if (!ZeroWidth)
4813      CXXRecord->setEmpty(false);
4814
4815    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4816      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4817
4818      if (!RDecl->hasTrivialConstructor())
4819        CXXRecord->setHasTrivialConstructor(false);
4820      if (!RDecl->hasTrivialCopyConstructor())
4821        CXXRecord->setHasTrivialCopyConstructor(false);
4822      if (!RDecl->hasTrivialCopyAssignment())
4823        CXXRecord->setHasTrivialCopyAssignment(false);
4824      if (!RDecl->hasTrivialDestructor())
4825        CXXRecord->setHasTrivialDestructor(false);
4826
4827      // C++ 9.5p1: An object of a class with a non-trivial
4828      // constructor, a non-trivial copy constructor, a non-trivial
4829      // destructor, or a non-trivial copy assignment operator
4830      // cannot be a member of a union, nor can an array of such
4831      // objects.
4832      // TODO: C++0x alters this restriction significantly.
4833      if (Record->isUnion()) {
4834        // We check for copy constructors before constructors
4835        // because otherwise we'll never get complaints about
4836        // copy constructors.
4837
4838        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4839
4840        CXXSpecialMember member;
4841        if (!RDecl->hasTrivialCopyConstructor())
4842          member = CXXCopyConstructor;
4843        else if (!RDecl->hasTrivialConstructor())
4844          member = CXXDefaultConstructor;
4845        else if (!RDecl->hasTrivialCopyAssignment())
4846          member = CXXCopyAssignment;
4847        else if (!RDecl->hasTrivialDestructor())
4848          member = CXXDestructor;
4849        else
4850          member = invalid;
4851
4852        if (member != invalid) {
4853          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4854          DiagnoseNontrivial(RT, member);
4855          NewFD->setInvalidDecl();
4856        }
4857      }
4858    }
4859  }
4860
4861  // FIXME: We need to pass in the attributes given an AST
4862  // representation, not a parser representation.
4863  if (D)
4864    // FIXME: What to pass instead of TUScope?
4865    ProcessDeclAttributes(TUScope, NewFD, *D);
4866
4867  if (T.isObjCGCWeak())
4868    Diag(Loc, diag::warn_attribute_weak_on_field);
4869
4870  NewFD->setAccess(AS);
4871
4872  // C++ [dcl.init.aggr]p1:
4873  //   An aggregate is an array or a class (clause 9) with [...] no
4874  //   private or protected non-static data members (clause 11).
4875  // A POD must be an aggregate.
4876  if (getLangOptions().CPlusPlus &&
4877      (AS == AS_private || AS == AS_protected)) {
4878    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4879    CXXRecord->setAggregate(false);
4880    CXXRecord->setPOD(false);
4881  }
4882
4883  return NewFD;
4884}
4885
4886/// DiagnoseNontrivial - Given that a class has a non-trivial
4887/// special member, figure out why.
4888void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4889  QualType QT(T, 0U);
4890  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4891
4892  // Check whether the member was user-declared.
4893  switch (member) {
4894  case CXXDefaultConstructor:
4895    if (RD->hasUserDeclaredConstructor()) {
4896      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4897      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4898        if (!ci->isImplicitlyDefined(Context)) {
4899          SourceLocation CtorLoc = ci->getLocation();
4900          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4901          return;
4902        }
4903
4904      assert(0 && "found no user-declared constructors");
4905      return;
4906    }
4907    break;
4908
4909  case CXXCopyConstructor:
4910    if (RD->hasUserDeclaredCopyConstructor()) {
4911      SourceLocation CtorLoc =
4912        RD->getCopyConstructor(Context, 0)->getLocation();
4913      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4914      return;
4915    }
4916    break;
4917
4918  case CXXCopyAssignment:
4919    if (RD->hasUserDeclaredCopyAssignment()) {
4920      // FIXME: this should use the location of the copy
4921      // assignment, not the type.
4922      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4923      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4924      return;
4925    }
4926    break;
4927
4928  case CXXDestructor:
4929    if (RD->hasUserDeclaredDestructor()) {
4930      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4931      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4932      return;
4933    }
4934    break;
4935  }
4936
4937  typedef CXXRecordDecl::base_class_iterator base_iter;
4938
4939  // Virtual bases and members inhibit trivial copying/construction,
4940  // but not trivial destruction.
4941  if (member != CXXDestructor) {
4942    // Check for virtual bases.  vbases includes indirect virtual bases,
4943    // so we just iterate through the direct bases.
4944    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4945      if (bi->isVirtual()) {
4946        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4947        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4948        return;
4949      }
4950
4951    // Check for virtual methods.
4952    typedef CXXRecordDecl::method_iterator meth_iter;
4953    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4954         ++mi) {
4955      if (mi->isVirtual()) {
4956        SourceLocation MLoc = mi->getSourceRange().getBegin();
4957        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4958        return;
4959      }
4960    }
4961  }
4962
4963  bool (CXXRecordDecl::*hasTrivial)() const;
4964  switch (member) {
4965  case CXXDefaultConstructor:
4966    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4967  case CXXCopyConstructor:
4968    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4969  case CXXCopyAssignment:
4970    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4971  case CXXDestructor:
4972    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4973  default:
4974    assert(0 && "unexpected special member"); return;
4975  }
4976
4977  // Check for nontrivial bases (and recurse).
4978  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4979    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4980    assert(BaseRT);
4981    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4982    if (!(BaseRecTy->*hasTrivial)()) {
4983      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4984      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4985      DiagnoseNontrivial(BaseRT, member);
4986      return;
4987    }
4988  }
4989
4990  // Check for nontrivial members (and recurse).
4991  typedef RecordDecl::field_iterator field_iter;
4992  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4993       ++fi) {
4994    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4995    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4996      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4997
4998      if (!(EltRD->*hasTrivial)()) {
4999        SourceLocation FLoc = (*fi)->getLocation();
5000        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5001        DiagnoseNontrivial(EltRT, member);
5002        return;
5003      }
5004    }
5005  }
5006
5007  assert(0 && "found no explanation for non-trivial member");
5008}
5009
5010/// TranslateIvarVisibility - Translate visibility from a token ID to an
5011///  AST enum value.
5012static ObjCIvarDecl::AccessControl
5013TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5014  switch (ivarVisibility) {
5015  default: assert(0 && "Unknown visitibility kind");
5016  case tok::objc_private: return ObjCIvarDecl::Private;
5017  case tok::objc_public: return ObjCIvarDecl::Public;
5018  case tok::objc_protected: return ObjCIvarDecl::Protected;
5019  case tok::objc_package: return ObjCIvarDecl::Package;
5020  }
5021}
5022
5023/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5024/// in order to create an IvarDecl object for it.
5025Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5026                                SourceLocation DeclStart,
5027                                DeclPtrTy IntfDecl,
5028                                Declarator &D, ExprTy *BitfieldWidth,
5029                                tok::ObjCKeywordKind Visibility) {
5030
5031  IdentifierInfo *II = D.getIdentifier();
5032  Expr *BitWidth = (Expr*)BitfieldWidth;
5033  SourceLocation Loc = DeclStart;
5034  if (II) Loc = D.getIdentifierLoc();
5035
5036  // FIXME: Unnamed fields can be handled in various different ways, for
5037  // example, unnamed unions inject all members into the struct namespace!
5038
5039  DeclaratorInfo *DInfo = 0;
5040  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5041
5042  if (BitWidth) {
5043    // 6.7.2.1p3, 6.7.2.1p4
5044    if (VerifyBitField(Loc, II, T, BitWidth)) {
5045      D.setInvalidType();
5046      DeleteExpr(BitWidth);
5047      BitWidth = 0;
5048    }
5049  } else {
5050    // Not a bitfield.
5051
5052    // validate II.
5053
5054  }
5055
5056  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5057  // than a variably modified type.
5058  if (T->isVariablyModifiedType()) {
5059    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5060    D.setInvalidType();
5061  }
5062
5063  // Get the visibility (access control) for this ivar.
5064  ObjCIvarDecl::AccessControl ac =
5065    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5066                                        : ObjCIvarDecl::None;
5067  // Must set ivar's DeclContext to its enclosing interface.
5068  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5069  DeclContext *EnclosingContext;
5070  if (ObjCImplementationDecl *IMPDecl =
5071      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5072    // Case of ivar declared in an implementation. Context is that of its class.
5073    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5074    assert(IDecl && "No class- ActOnIvar");
5075    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5076  } else
5077    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5078  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5079
5080  // Construct the decl.
5081  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5082                                             EnclosingContext, Loc, II, T,
5083                                             DInfo, ac, (Expr *)BitfieldWidth);
5084
5085  if (II) {
5086    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
5087    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5088        && !isa<TagDecl>(PrevDecl)) {
5089      Diag(Loc, diag::err_duplicate_member) << II;
5090      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5091      NewID->setInvalidDecl();
5092    }
5093  }
5094
5095  // Process attributes attached to the ivar.
5096  ProcessDeclAttributes(S, NewID, D);
5097
5098  if (D.isInvalidType())
5099    NewID->setInvalidDecl();
5100
5101  if (II) {
5102    // FIXME: When interfaces are DeclContexts, we'll need to add
5103    // these to the interface.
5104    S->AddDecl(DeclPtrTy::make(NewID));
5105    IdResolver.AddDecl(NewID);
5106  }
5107
5108  return DeclPtrTy::make(NewID);
5109}
5110
5111void Sema::ActOnFields(Scope* S,
5112                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5113                       DeclPtrTy *Fields, unsigned NumFields,
5114                       SourceLocation LBrac, SourceLocation RBrac,
5115                       AttributeList *Attr) {
5116  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5117  assert(EnclosingDecl && "missing record or interface decl");
5118
5119  // If the decl this is being inserted into is invalid, then it may be a
5120  // redeclaration or some other bogus case.  Don't try to add fields to it.
5121  if (EnclosingDecl->isInvalidDecl()) {
5122    // FIXME: Deallocate fields?
5123    return;
5124  }
5125
5126
5127  // Verify that all the fields are okay.
5128  unsigned NumNamedMembers = 0;
5129  llvm::SmallVector<FieldDecl*, 32> RecFields;
5130
5131  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5132  for (unsigned i = 0; i != NumFields; ++i) {
5133    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5134
5135    // Get the type for the field.
5136    Type *FDTy = FD->getType().getTypePtr();
5137
5138    if (!FD->isAnonymousStructOrUnion()) {
5139      // Remember all fields written by the user.
5140      RecFields.push_back(FD);
5141    }
5142
5143    // If the field is already invalid for some reason, don't emit more
5144    // diagnostics about it.
5145    if (FD->isInvalidDecl())
5146      continue;
5147
5148    // C99 6.7.2.1p2:
5149    //   A structure or union shall not contain a member with
5150    //   incomplete or function type (hence, a structure shall not
5151    //   contain an instance of itself, but may contain a pointer to
5152    //   an instance of itself), except that the last member of a
5153    //   structure with more than one named member may have incomplete
5154    //   array type; such a structure (and any union containing,
5155    //   possibly recursively, a member that is such a structure)
5156    //   shall not be a member of a structure or an element of an
5157    //   array.
5158    if (FDTy->isFunctionType()) {
5159      // Field declared as a function.
5160      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5161        << FD->getDeclName();
5162      FD->setInvalidDecl();
5163      EnclosingDecl->setInvalidDecl();
5164      continue;
5165    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5166               Record && Record->isStruct()) {
5167      // Flexible array member.
5168      if (NumNamedMembers < 1) {
5169        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5170          << FD->getDeclName();
5171        FD->setInvalidDecl();
5172        EnclosingDecl->setInvalidDecl();
5173        continue;
5174      }
5175      // Okay, we have a legal flexible array member at the end of the struct.
5176      if (Record)
5177        Record->setHasFlexibleArrayMember(true);
5178    } else if (!FDTy->isDependentType() &&
5179               RequireCompleteType(FD->getLocation(), FD->getType(),
5180                                   diag::err_field_incomplete)) {
5181      // Incomplete type
5182      FD->setInvalidDecl();
5183      EnclosingDecl->setInvalidDecl();
5184      continue;
5185    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5186      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5187        // If this is a member of a union, then entire union becomes "flexible".
5188        if (Record && Record->isUnion()) {
5189          Record->setHasFlexibleArrayMember(true);
5190        } else {
5191          // If this is a struct/class and this is not the last element, reject
5192          // it.  Note that GCC supports variable sized arrays in the middle of
5193          // structures.
5194          if (i != NumFields-1)
5195            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5196              << FD->getDeclName() << FD->getType();
5197          else {
5198            // We support flexible arrays at the end of structs in
5199            // other structs as an extension.
5200            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5201              << FD->getDeclName();
5202            if (Record)
5203              Record->setHasFlexibleArrayMember(true);
5204          }
5205        }
5206      }
5207      if (Record && FDTTy->getDecl()->hasObjectMember())
5208        Record->setHasObjectMember(true);
5209    } else if (FDTy->isObjCInterfaceType()) {
5210      /// A field cannot be an Objective-c object
5211      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5212      FD->setInvalidDecl();
5213      EnclosingDecl->setInvalidDecl();
5214      continue;
5215    } else if (getLangOptions().ObjC1 &&
5216               getLangOptions().getGCMode() != LangOptions::NonGC &&
5217               Record &&
5218               (FD->getType()->isObjCObjectPointerType() ||
5219                FD->getType().isObjCGCStrong()))
5220      Record->setHasObjectMember(true);
5221    // Keep track of the number of named members.
5222    if (FD->getIdentifier())
5223      ++NumNamedMembers;
5224  }
5225
5226  // Okay, we successfully defined 'Record'.
5227  if (Record) {
5228    Record->completeDefinition(Context);
5229  } else {
5230    ObjCIvarDecl **ClsFields =
5231      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5232    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5233      ID->setIVarList(ClsFields, RecFields.size(), Context);
5234      ID->setLocEnd(RBrac);
5235      // Add ivar's to class's DeclContext.
5236      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5237        ClsFields[i]->setLexicalDeclContext(ID);
5238        ID->addDecl(ClsFields[i]);
5239      }
5240      // Must enforce the rule that ivars in the base classes may not be
5241      // duplicates.
5242      if (ID->getSuperClass()) {
5243        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5244             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5245          ObjCIvarDecl* Ivar = (*IVI);
5246
5247          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5248            ObjCIvarDecl* prevIvar =
5249              ID->getSuperClass()->lookupInstanceVariable(II);
5250            if (prevIvar) {
5251              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5252              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5253            }
5254          }
5255        }
5256      }
5257    } else if (ObjCImplementationDecl *IMPDecl =
5258                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5259      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5260      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5261        // Ivar declared in @implementation never belongs to the implementation.
5262        // Only it is in implementation's lexical context.
5263        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5264      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5265    }
5266  }
5267
5268  if (Attr)
5269    ProcessDeclAttributeList(S, Record, Attr);
5270}
5271
5272EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5273                                          EnumConstantDecl *LastEnumConst,
5274                                          SourceLocation IdLoc,
5275                                          IdentifierInfo *Id,
5276                                          ExprArg val) {
5277  Expr *Val = (Expr *)val.get();
5278
5279  llvm::APSInt EnumVal(32);
5280  QualType EltTy;
5281  if (Val && !Val->isTypeDependent()) {
5282    // Make sure to promote the operand type to int.
5283    UsualUnaryConversions(Val);
5284    if (Val != val.get()) {
5285      val.release();
5286      val = Val;
5287    }
5288
5289    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5290    SourceLocation ExpLoc;
5291    if (!Val->isValueDependent() &&
5292        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5293      Val = 0;
5294    } else {
5295      EltTy = Val->getType();
5296    }
5297  }
5298
5299  if (!Val) {
5300    if (LastEnumConst) {
5301      // Assign the last value + 1.
5302      EnumVal = LastEnumConst->getInitVal();
5303      ++EnumVal;
5304
5305      // Check for overflow on increment.
5306      if (EnumVal < LastEnumConst->getInitVal())
5307        Diag(IdLoc, diag::warn_enum_value_overflow);
5308
5309      EltTy = LastEnumConst->getType();
5310    } else {
5311      // First value, set to zero.
5312      EltTy = Context.IntTy;
5313      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5314    }
5315  }
5316
5317  val.release();
5318  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5319                                  Val, EnumVal);
5320}
5321
5322
5323Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5324                                        DeclPtrTy lastEnumConst,
5325                                        SourceLocation IdLoc,
5326                                        IdentifierInfo *Id,
5327                                        SourceLocation EqualLoc, ExprTy *val) {
5328  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5329  EnumConstantDecl *LastEnumConst =
5330    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5331  Expr *Val = static_cast<Expr*>(val);
5332
5333  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5334  // we find one that is.
5335  S = getNonFieldDeclScope(S);
5336
5337  // Verify that there isn't already something declared with this name in this
5338  // scope.
5339  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5340  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5341    // Maybe we will complain about the shadowed template parameter.
5342    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5343    // Just pretend that we didn't see the previous declaration.
5344    PrevDecl = 0;
5345  }
5346
5347  if (PrevDecl) {
5348    // When in C++, we may get a TagDecl with the same name; in this case the
5349    // enum constant will 'hide' the tag.
5350    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5351           "Received TagDecl when not in C++!");
5352    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5353      if (isa<EnumConstantDecl>(PrevDecl))
5354        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5355      else
5356        Diag(IdLoc, diag::err_redefinition) << Id;
5357      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5358      if (Val) Val->Destroy(Context);
5359      return DeclPtrTy();
5360    }
5361  }
5362
5363  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5364                                            IdLoc, Id, Owned(Val));
5365
5366  // Register this decl in the current scope stack.
5367  if (New)
5368    PushOnScopeChains(New, S);
5369
5370  return DeclPtrTy::make(New);
5371}
5372
5373void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5374                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5375                         DeclPtrTy *Elements, unsigned NumElements,
5376                         Scope *S, AttributeList *Attr) {
5377  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5378  QualType EnumType = Context.getTypeDeclType(Enum);
5379
5380  if (Attr)
5381    ProcessDeclAttributeList(S, Enum, Attr);
5382
5383  // TODO: If the result value doesn't fit in an int, it must be a long or long
5384  // long value.  ISO C does not support this, but GCC does as an extension,
5385  // emit a warning.
5386  unsigned IntWidth = Context.Target.getIntWidth();
5387  unsigned CharWidth = Context.Target.getCharWidth();
5388  unsigned ShortWidth = Context.Target.getShortWidth();
5389
5390  // Verify that all the values are okay, compute the size of the values, and
5391  // reverse the list.
5392  unsigned NumNegativeBits = 0;
5393  unsigned NumPositiveBits = 0;
5394
5395  // Keep track of whether all elements have type int.
5396  bool AllElementsInt = true;
5397
5398  for (unsigned i = 0; i != NumElements; ++i) {
5399    EnumConstantDecl *ECD =
5400      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5401    if (!ECD) continue;  // Already issued a diagnostic.
5402
5403    // If the enum value doesn't fit in an int, emit an extension warning.
5404    const llvm::APSInt &InitVal = ECD->getInitVal();
5405    assert(InitVal.getBitWidth() >= IntWidth &&
5406           "Should have promoted value to int");
5407    if (InitVal.getBitWidth() > IntWidth) {
5408      llvm::APSInt V(InitVal);
5409      V.trunc(IntWidth);
5410      V.extend(InitVal.getBitWidth());
5411      if (V != InitVal)
5412        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5413          << InitVal.toString(10);
5414    }
5415
5416    // Keep track of the size of positive and negative values.
5417    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5418      NumPositiveBits = std::max(NumPositiveBits,
5419                                 (unsigned)InitVal.getActiveBits());
5420    else
5421      NumNegativeBits = std::max(NumNegativeBits,
5422                                 (unsigned)InitVal.getMinSignedBits());
5423
5424    // Keep track of whether every enum element has type int (very commmon).
5425    if (AllElementsInt)
5426      AllElementsInt = ECD->getType() == Context.IntTy;
5427  }
5428
5429  // Figure out the type that should be used for this enum.
5430  // FIXME: Support -fshort-enums.
5431  QualType BestType;
5432  unsigned BestWidth;
5433
5434  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5435
5436  if (NumNegativeBits) {
5437    // If there is a negative value, figure out the smallest integer type (of
5438    // int/long/longlong) that fits.
5439    // If it's packed, check also if it fits a char or a short.
5440    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5441        BestType = Context.SignedCharTy;
5442        BestWidth = CharWidth;
5443    } else if (Packed && NumNegativeBits <= ShortWidth &&
5444               NumPositiveBits < ShortWidth) {
5445        BestType = Context.ShortTy;
5446        BestWidth = ShortWidth;
5447    }
5448    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5449      BestType = Context.IntTy;
5450      BestWidth = IntWidth;
5451    } else {
5452      BestWidth = Context.Target.getLongWidth();
5453
5454      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5455        BestType = Context.LongTy;
5456      else {
5457        BestWidth = Context.Target.getLongLongWidth();
5458
5459        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5460          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5461        BestType = Context.LongLongTy;
5462      }
5463    }
5464  } else {
5465    // If there is no negative value, figure out which of uint, ulong, ulonglong
5466    // fits.
5467    // If it's packed, check also if it fits a char or a short.
5468    if (Packed && NumPositiveBits <= CharWidth) {
5469        BestType = Context.UnsignedCharTy;
5470        BestWidth = CharWidth;
5471    } else if (Packed && NumPositiveBits <= ShortWidth) {
5472        BestType = Context.UnsignedShortTy;
5473        BestWidth = ShortWidth;
5474    }
5475    else if (NumPositiveBits <= IntWidth) {
5476      BestType = Context.UnsignedIntTy;
5477      BestWidth = IntWidth;
5478    } else if (NumPositiveBits <=
5479               (BestWidth = Context.Target.getLongWidth())) {
5480      BestType = Context.UnsignedLongTy;
5481    } else {
5482      BestWidth = Context.Target.getLongLongWidth();
5483      assert(NumPositiveBits <= BestWidth &&
5484             "How could an initializer get larger than ULL?");
5485      BestType = Context.UnsignedLongLongTy;
5486    }
5487  }
5488
5489  // Loop over all of the enumerator constants, changing their types to match
5490  // the type of the enum if needed.
5491  for (unsigned i = 0; i != NumElements; ++i) {
5492    EnumConstantDecl *ECD =
5493      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5494    if (!ECD) continue;  // Already issued a diagnostic.
5495
5496    // Standard C says the enumerators have int type, but we allow, as an
5497    // extension, the enumerators to be larger than int size.  If each
5498    // enumerator value fits in an int, type it as an int, otherwise type it the
5499    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5500    // that X has type 'int', not 'unsigned'.
5501    if (ECD->getType() == Context.IntTy) {
5502      // Make sure the init value is signed.
5503      llvm::APSInt IV = ECD->getInitVal();
5504      IV.setIsSigned(true);
5505      ECD->setInitVal(IV);
5506
5507      if (getLangOptions().CPlusPlus)
5508        // C++ [dcl.enum]p4: Following the closing brace of an
5509        // enum-specifier, each enumerator has the type of its
5510        // enumeration.
5511        ECD->setType(EnumType);
5512      continue;  // Already int type.
5513    }
5514
5515    // Determine whether the value fits into an int.
5516    llvm::APSInt InitVal = ECD->getInitVal();
5517    bool FitsInInt;
5518    if (InitVal.isUnsigned() || !InitVal.isNegative())
5519      FitsInInt = InitVal.getActiveBits() < IntWidth;
5520    else
5521      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5522
5523    // If it fits into an integer type, force it.  Otherwise force it to match
5524    // the enum decl type.
5525    QualType NewTy;
5526    unsigned NewWidth;
5527    bool NewSign;
5528    if (FitsInInt) {
5529      NewTy = Context.IntTy;
5530      NewWidth = IntWidth;
5531      NewSign = true;
5532    } else if (ECD->getType() == BestType) {
5533      // Already the right type!
5534      if (getLangOptions().CPlusPlus)
5535        // C++ [dcl.enum]p4: Following the closing brace of an
5536        // enum-specifier, each enumerator has the type of its
5537        // enumeration.
5538        ECD->setType(EnumType);
5539      continue;
5540    } else {
5541      NewTy = BestType;
5542      NewWidth = BestWidth;
5543      NewSign = BestType->isSignedIntegerType();
5544    }
5545
5546    // Adjust the APSInt value.
5547    InitVal.extOrTrunc(NewWidth);
5548    InitVal.setIsSigned(NewSign);
5549    ECD->setInitVal(InitVal);
5550
5551    // Adjust the Expr initializer and type.
5552    if (ECD->getInitExpr())
5553      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5554                                                      CastExpr::CK_Unknown,
5555                                                      ECD->getInitExpr(),
5556                                                      /*isLvalue=*/false));
5557    if (getLangOptions().CPlusPlus)
5558      // C++ [dcl.enum]p4: Following the closing brace of an
5559      // enum-specifier, each enumerator has the type of its
5560      // enumeration.
5561      ECD->setType(EnumType);
5562    else
5563      ECD->setType(NewTy);
5564  }
5565
5566  Enum->completeDefinition(Context, BestType);
5567}
5568
5569Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5570                                            ExprArg expr) {
5571  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5572
5573  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5574                                                   Loc, AsmString);
5575  CurContext->addDecl(New);
5576  return DeclPtrTy::make(New);
5577}
5578
5579void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5580                             SourceLocation PragmaLoc,
5581                             SourceLocation NameLoc) {
5582  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5583
5584  if (PrevDecl) {
5585    PrevDecl->addAttr(::new (Context) WeakAttr());
5586  } else {
5587    (void)WeakUndeclaredIdentifiers.insert(
5588      std::pair<IdentifierInfo*,WeakInfo>
5589        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5590  }
5591}
5592
5593void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5594                                IdentifierInfo* AliasName,
5595                                SourceLocation PragmaLoc,
5596                                SourceLocation NameLoc,
5597                                SourceLocation AliasNameLoc) {
5598  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5599  WeakInfo W = WeakInfo(Name, NameLoc);
5600
5601  if (PrevDecl) {
5602    if (!PrevDecl->hasAttr<AliasAttr>())
5603      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5604        DeclApplyPragmaWeak(TUScope, ND, W);
5605  } else {
5606    (void)WeakUndeclaredIdentifiers.insert(
5607      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5608  }
5609}
5610