SemaDecl.cpp revision ea4b1113cea2190e4ac1d07f99102a1c0fd3eddd
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177// We need this to handle
1178//
1179// typedef struct {
1180//   void *foo() { return 0; }
1181// } A;
1182//
1183// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1184// for example. If 'A', foo will have external linkage. If we have '*A',
1185// foo will have no linkage. Since we can't know untill we get to the end
1186// of the typedef, this function finds out if D might have non external linkage.
1187// Callers should verify at the end of the TU if it D has external linkage or
1188// not.
1189bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1190  const DeclContext *DC = D->getDeclContext();
1191  while (!DC->isTranslationUnit()) {
1192    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1193      if (!RD->hasNameForLinkage())
1194        return true;
1195    }
1196    DC = DC->getParent();
1197  }
1198
1199  return !D->hasExternalLinkage();
1200}
1201
1202bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1203  assert(D);
1204
1205  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1206    return false;
1207
1208  // Ignore class templates.
1209  if (D->getDeclContext()->isDependentContext() ||
1210      D->getLexicalDeclContext()->isDependentContext())
1211    return false;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1215      return false;
1216
1217    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1218      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1219        return false;
1220    } else {
1221      // 'static inline' functions are used in headers; don't warn.
1222      if (FD->getStorageClass() == SC_Static &&
1223          FD->isInlineSpecified())
1224        return false;
1225    }
1226
1227    if (FD->doesThisDeclarationHaveABody() &&
1228        Context.DeclMustBeEmitted(FD))
1229      return false;
1230  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1231    // Don't warn on variables of const-qualified or reference type, since their
1232    // values can be used even if though they're not odr-used, and because const
1233    // qualified variables can appear in headers in contexts where they're not
1234    // intended to be used.
1235    // FIXME: Use more principled rules for these exemptions.
1236    if (!VD->isFileVarDecl() ||
1237        VD->getType().isConstQualified() ||
1238        VD->getType()->isReferenceType() ||
1239        Context.DeclMustBeEmitted(VD))
1240      return false;
1241
1242    if (VD->isStaticDataMember() &&
1243        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1244      return false;
1245
1246  } else {
1247    return false;
1248  }
1249
1250  // Only warn for unused decls internal to the translation unit.
1251  return mightHaveNonExternalLinkage(D);
1252}
1253
1254void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1255  if (!D)
1256    return;
1257
1258  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1259    const FunctionDecl *First = FD->getFirstDeclaration();
1260    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1261      return; // First should already be in the vector.
1262  }
1263
1264  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1265    const VarDecl *First = VD->getFirstDeclaration();
1266    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1267      return; // First should already be in the vector.
1268  }
1269
1270  if (ShouldWarnIfUnusedFileScopedDecl(D))
1271    UnusedFileScopedDecls.push_back(D);
1272}
1273
1274static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1275  if (D->isInvalidDecl())
1276    return false;
1277
1278  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1279    return false;
1280
1281  if (isa<LabelDecl>(D))
1282    return true;
1283
1284  // White-list anything that isn't a local variable.
1285  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1286      !D->getDeclContext()->isFunctionOrMethod())
1287    return false;
1288
1289  // Types of valid local variables should be complete, so this should succeed.
1290  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1291
1292    // White-list anything with an __attribute__((unused)) type.
1293    QualType Ty = VD->getType();
1294
1295    // Only look at the outermost level of typedef.
1296    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1297      if (TT->getDecl()->hasAttr<UnusedAttr>())
1298        return false;
1299    }
1300
1301    // If we failed to complete the type for some reason, or if the type is
1302    // dependent, don't diagnose the variable.
1303    if (Ty->isIncompleteType() || Ty->isDependentType())
1304      return false;
1305
1306    if (const TagType *TT = Ty->getAs<TagType>()) {
1307      const TagDecl *Tag = TT->getDecl();
1308      if (Tag->hasAttr<UnusedAttr>())
1309        return false;
1310
1311      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1312        if (!RD->hasTrivialDestructor())
1313          return false;
1314
1315        if (const Expr *Init = VD->getInit()) {
1316          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1317            Init = Cleanups->getSubExpr();
1318          const CXXConstructExpr *Construct =
1319            dyn_cast<CXXConstructExpr>(Init);
1320          if (Construct && !Construct->isElidable()) {
1321            CXXConstructorDecl *CD = Construct->getConstructor();
1322            if (!CD->isTrivial())
1323              return false;
1324          }
1325        }
1326      }
1327    }
1328
1329    // TODO: __attribute__((unused)) templates?
1330  }
1331
1332  return true;
1333}
1334
1335static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1336                                     FixItHint &Hint) {
1337  if (isa<LabelDecl>(D)) {
1338    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1339                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1340    if (AfterColon.isInvalid())
1341      return;
1342    Hint = FixItHint::CreateRemoval(CharSourceRange::
1343                                    getCharRange(D->getLocStart(), AfterColon));
1344  }
1345  return;
1346}
1347
1348/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1349/// unless they are marked attr(unused).
1350void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1351  FixItHint Hint;
1352  if (!ShouldDiagnoseUnusedDecl(D))
1353    return;
1354
1355  GenerateFixForUnusedDecl(D, Context, Hint);
1356
1357  unsigned DiagID;
1358  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1359    DiagID = diag::warn_unused_exception_param;
1360  else if (isa<LabelDecl>(D))
1361    DiagID = diag::warn_unused_label;
1362  else
1363    DiagID = diag::warn_unused_variable;
1364
1365  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1366}
1367
1368static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1369  // Verify that we have no forward references left.  If so, there was a goto
1370  // or address of a label taken, but no definition of it.  Label fwd
1371  // definitions are indicated with a null substmt.
1372  if (L->getStmt() == 0)
1373    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1374}
1375
1376void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1377  if (S->decl_empty()) return;
1378  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1379         "Scope shouldn't contain decls!");
1380
1381  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1382       I != E; ++I) {
1383    Decl *TmpD = (*I);
1384    assert(TmpD && "This decl didn't get pushed??");
1385
1386    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1387    NamedDecl *D = cast<NamedDecl>(TmpD);
1388
1389    if (!D->getDeclName()) continue;
1390
1391    // Diagnose unused variables in this scope.
1392    if (!S->hasUnrecoverableErrorOccurred())
1393      DiagnoseUnusedDecl(D);
1394
1395    // If this was a forward reference to a label, verify it was defined.
1396    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1397      CheckPoppedLabel(LD, *this);
1398
1399    // Remove this name from our lexical scope.
1400    IdResolver.RemoveDecl(D);
1401  }
1402}
1403
1404void Sema::ActOnStartFunctionDeclarator() {
1405  ++InFunctionDeclarator;
1406}
1407
1408void Sema::ActOnEndFunctionDeclarator() {
1409  assert(InFunctionDeclarator);
1410  --InFunctionDeclarator;
1411}
1412
1413/// \brief Look for an Objective-C class in the translation unit.
1414///
1415/// \param Id The name of the Objective-C class we're looking for. If
1416/// typo-correction fixes this name, the Id will be updated
1417/// to the fixed name.
1418///
1419/// \param IdLoc The location of the name in the translation unit.
1420///
1421/// \param DoTypoCorrection If true, this routine will attempt typo correction
1422/// if there is no class with the given name.
1423///
1424/// \returns The declaration of the named Objective-C class, or NULL if the
1425/// class could not be found.
1426ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1427                                              SourceLocation IdLoc,
1428                                              bool DoTypoCorrection) {
1429  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1430  // creation from this context.
1431  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1432
1433  if (!IDecl && DoTypoCorrection) {
1434    // Perform typo correction at the given location, but only if we
1435    // find an Objective-C class name.
1436    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1437    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1438                                       LookupOrdinaryName, TUScope, NULL,
1439                                       Validator)) {
1440      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1441      Diag(IdLoc, diag::err_undef_interface_suggest)
1442        << Id << IDecl->getDeclName()
1443        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1444      Diag(IDecl->getLocation(), diag::note_previous_decl)
1445        << IDecl->getDeclName();
1446
1447      Id = IDecl->getIdentifier();
1448    }
1449  }
1450  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1451  // This routine must always return a class definition, if any.
1452  if (Def && Def->getDefinition())
1453      Def = Def->getDefinition();
1454  return Def;
1455}
1456
1457/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1458/// from S, where a non-field would be declared. This routine copes
1459/// with the difference between C and C++ scoping rules in structs and
1460/// unions. For example, the following code is well-formed in C but
1461/// ill-formed in C++:
1462/// @code
1463/// struct S6 {
1464///   enum { BAR } e;
1465/// };
1466///
1467/// void test_S6() {
1468///   struct S6 a;
1469///   a.e = BAR;
1470/// }
1471/// @endcode
1472/// For the declaration of BAR, this routine will return a different
1473/// scope. The scope S will be the scope of the unnamed enumeration
1474/// within S6. In C++, this routine will return the scope associated
1475/// with S6, because the enumeration's scope is a transparent
1476/// context but structures can contain non-field names. In C, this
1477/// routine will return the translation unit scope, since the
1478/// enumeration's scope is a transparent context and structures cannot
1479/// contain non-field names.
1480Scope *Sema::getNonFieldDeclScope(Scope *S) {
1481  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1482         (S->getEntity() &&
1483          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1484         (S->isClassScope() && !getLangOpts().CPlusPlus))
1485    S = S->getParent();
1486  return S;
1487}
1488
1489/// \brief Looks up the declaration of "struct objc_super" and
1490/// saves it for later use in building builtin declaration of
1491/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1492/// pre-existing declaration exists no action takes place.
1493static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1494                                        IdentifierInfo *II) {
1495  if (!II->isStr("objc_msgSendSuper"))
1496    return;
1497  ASTContext &Context = ThisSema.Context;
1498
1499  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1500                      SourceLocation(), Sema::LookupTagName);
1501  ThisSema.LookupName(Result, S);
1502  if (Result.getResultKind() == LookupResult::Found)
1503    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1504      Context.setObjCSuperType(Context.getTagDeclType(TD));
1505}
1506
1507/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1508/// file scope.  lazily create a decl for it. ForRedeclaration is true
1509/// if we're creating this built-in in anticipation of redeclaring the
1510/// built-in.
1511NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1512                                     Scope *S, bool ForRedeclaration,
1513                                     SourceLocation Loc) {
1514  LookupPredefedObjCSuperType(*this, S, II);
1515
1516  Builtin::ID BID = (Builtin::ID)bid;
1517
1518  ASTContext::GetBuiltinTypeError Error;
1519  QualType R = Context.GetBuiltinType(BID, Error);
1520  switch (Error) {
1521  case ASTContext::GE_None:
1522    // Okay
1523    break;
1524
1525  case ASTContext::GE_Missing_stdio:
1526    if (ForRedeclaration)
1527      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1528        << Context.BuiltinInfo.GetName(BID);
1529    return 0;
1530
1531  case ASTContext::GE_Missing_setjmp:
1532    if (ForRedeclaration)
1533      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1534        << Context.BuiltinInfo.GetName(BID);
1535    return 0;
1536
1537  case ASTContext::GE_Missing_ucontext:
1538    if (ForRedeclaration)
1539      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1540        << Context.BuiltinInfo.GetName(BID);
1541    return 0;
1542  }
1543
1544  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1545    Diag(Loc, diag::ext_implicit_lib_function_decl)
1546      << Context.BuiltinInfo.GetName(BID)
1547      << R;
1548    if (Context.BuiltinInfo.getHeaderName(BID) &&
1549        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1550          != DiagnosticsEngine::Ignored)
1551      Diag(Loc, diag::note_please_include_header)
1552        << Context.BuiltinInfo.getHeaderName(BID)
1553        << Context.BuiltinInfo.GetName(BID);
1554  }
1555
1556  FunctionDecl *New = FunctionDecl::Create(Context,
1557                                           Context.getTranslationUnitDecl(),
1558                                           Loc, Loc, II, R, /*TInfo=*/0,
1559                                           SC_Extern,
1560                                           false,
1561                                           /*hasPrototype=*/true);
1562  New->setImplicit();
1563
1564  // Create Decl objects for each parameter, adding them to the
1565  // FunctionDecl.
1566  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1567    SmallVector<ParmVarDecl*, 16> Params;
1568    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1569      ParmVarDecl *parm =
1570        ParmVarDecl::Create(Context, New, SourceLocation(),
1571                            SourceLocation(), 0,
1572                            FT->getArgType(i), /*TInfo=*/0,
1573                            SC_None, 0);
1574      parm->setScopeInfo(0, i);
1575      Params.push_back(parm);
1576    }
1577    New->setParams(Params);
1578  }
1579
1580  AddKnownFunctionAttributes(New);
1581
1582  // TUScope is the translation-unit scope to insert this function into.
1583  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1584  // relate Scopes to DeclContexts, and probably eliminate CurContext
1585  // entirely, but we're not there yet.
1586  DeclContext *SavedContext = CurContext;
1587  CurContext = Context.getTranslationUnitDecl();
1588  PushOnScopeChains(New, TUScope);
1589  CurContext = SavedContext;
1590  return New;
1591}
1592
1593/// \brief Filter out any previous declarations that the given declaration
1594/// should not consider because they are not permitted to conflict, e.g.,
1595/// because they come from hidden sub-modules and do not refer to the same
1596/// entity.
1597static void filterNonConflictingPreviousDecls(ASTContext &context,
1598                                              NamedDecl *decl,
1599                                              LookupResult &previous){
1600  // This is only interesting when modules are enabled.
1601  if (!context.getLangOpts().Modules)
1602    return;
1603
1604  // Empty sets are uninteresting.
1605  if (previous.empty())
1606    return;
1607
1608  LookupResult::Filter filter = previous.makeFilter();
1609  while (filter.hasNext()) {
1610    NamedDecl *old = filter.next();
1611
1612    // Non-hidden declarations are never ignored.
1613    if (!old->isHidden())
1614      continue;
1615
1616    // If either has no-external linkage, ignore the old declaration.
1617    // If this declaration would have external linkage if it were the first
1618    // declaration of this name, then it may in fact be a redeclaration of
1619    // some hidden declaration, so include those too. We don't need to worry
1620    // about some previous visible declaration giving this declaration external
1621    // linkage, because in that case, we'll mark this declaration as a redecl
1622    // of the visible decl, and that decl will already be a redecl of the
1623    // hidden declaration if that's appropriate.
1624    //
1625    // Don't cache this linkage computation, because it's not yet correct: we
1626    // may later give this declaration a previous declaration which changes
1627    // its linkage.
1628    if (old->getLinkage() != ExternalLinkage ||
1629        !decl->hasExternalLinkageUncached())
1630      filter.erase();
1631  }
1632
1633  filter.done();
1634}
1635
1636bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1637  QualType OldType;
1638  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1639    OldType = OldTypedef->getUnderlyingType();
1640  else
1641    OldType = Context.getTypeDeclType(Old);
1642  QualType NewType = New->getUnderlyingType();
1643
1644  if (NewType->isVariablyModifiedType()) {
1645    // Must not redefine a typedef with a variably-modified type.
1646    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1647    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1648      << Kind << NewType;
1649    if (Old->getLocation().isValid())
1650      Diag(Old->getLocation(), diag::note_previous_definition);
1651    New->setInvalidDecl();
1652    return true;
1653  }
1654
1655  if (OldType != NewType &&
1656      !OldType->isDependentType() &&
1657      !NewType->isDependentType() &&
1658      !Context.hasSameType(OldType, NewType)) {
1659    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1660    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1661      << Kind << NewType << OldType;
1662    if (Old->getLocation().isValid())
1663      Diag(Old->getLocation(), diag::note_previous_definition);
1664    New->setInvalidDecl();
1665    return true;
1666  }
1667  return false;
1668}
1669
1670/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1671/// same name and scope as a previous declaration 'Old'.  Figure out
1672/// how to resolve this situation, merging decls or emitting
1673/// diagnostics as appropriate. If there was an error, set New to be invalid.
1674///
1675void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1676  // If the new decl is known invalid already, don't bother doing any
1677  // merging checks.
1678  if (New->isInvalidDecl()) return;
1679
1680  // Allow multiple definitions for ObjC built-in typedefs.
1681  // FIXME: Verify the underlying types are equivalent!
1682  if (getLangOpts().ObjC1) {
1683    const IdentifierInfo *TypeID = New->getIdentifier();
1684    switch (TypeID->getLength()) {
1685    default: break;
1686    case 2:
1687      {
1688        if (!TypeID->isStr("id"))
1689          break;
1690        QualType T = New->getUnderlyingType();
1691        if (!T->isPointerType())
1692          break;
1693        if (!T->isVoidPointerType()) {
1694          QualType PT = T->getAs<PointerType>()->getPointeeType();
1695          if (!PT->isStructureType())
1696            break;
1697        }
1698        Context.setObjCIdRedefinitionType(T);
1699        // Install the built-in type for 'id', ignoring the current definition.
1700        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1701        return;
1702      }
1703    case 5:
1704      if (!TypeID->isStr("Class"))
1705        break;
1706      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1707      // Install the built-in type for 'Class', ignoring the current definition.
1708      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1709      return;
1710    case 3:
1711      if (!TypeID->isStr("SEL"))
1712        break;
1713      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1714      // Install the built-in type for 'SEL', ignoring the current definition.
1715      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1716      return;
1717    }
1718    // Fall through - the typedef name was not a builtin type.
1719  }
1720
1721  // Verify the old decl was also a type.
1722  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1723  if (!Old) {
1724    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1725      << New->getDeclName();
1726
1727    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1728    if (OldD->getLocation().isValid())
1729      Diag(OldD->getLocation(), diag::note_previous_definition);
1730
1731    return New->setInvalidDecl();
1732  }
1733
1734  // If the old declaration is invalid, just give up here.
1735  if (Old->isInvalidDecl())
1736    return New->setInvalidDecl();
1737
1738  // If the typedef types are not identical, reject them in all languages and
1739  // with any extensions enabled.
1740  if (isIncompatibleTypedef(Old, New))
1741    return;
1742
1743  // The types match.  Link up the redeclaration chain if the old
1744  // declaration was a typedef.
1745  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1746    New->setPreviousDeclaration(Typedef);
1747
1748  if (getLangOpts().MicrosoftExt)
1749    return;
1750
1751  if (getLangOpts().CPlusPlus) {
1752    // C++ [dcl.typedef]p2:
1753    //   In a given non-class scope, a typedef specifier can be used to
1754    //   redefine the name of any type declared in that scope to refer
1755    //   to the type to which it already refers.
1756    if (!isa<CXXRecordDecl>(CurContext))
1757      return;
1758
1759    // C++0x [dcl.typedef]p4:
1760    //   In a given class scope, a typedef specifier can be used to redefine
1761    //   any class-name declared in that scope that is not also a typedef-name
1762    //   to refer to the type to which it already refers.
1763    //
1764    // This wording came in via DR424, which was a correction to the
1765    // wording in DR56, which accidentally banned code like:
1766    //
1767    //   struct S {
1768    //     typedef struct A { } A;
1769    //   };
1770    //
1771    // in the C++03 standard. We implement the C++0x semantics, which
1772    // allow the above but disallow
1773    //
1774    //   struct S {
1775    //     typedef int I;
1776    //     typedef int I;
1777    //   };
1778    //
1779    // since that was the intent of DR56.
1780    if (!isa<TypedefNameDecl>(Old))
1781      return;
1782
1783    Diag(New->getLocation(), diag::err_redefinition)
1784      << New->getDeclName();
1785    Diag(Old->getLocation(), diag::note_previous_definition);
1786    return New->setInvalidDecl();
1787  }
1788
1789  // Modules always permit redefinition of typedefs, as does C11.
1790  if (getLangOpts().Modules || getLangOpts().C11)
1791    return;
1792
1793  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1794  // is normally mapped to an error, but can be controlled with
1795  // -Wtypedef-redefinition.  If either the original or the redefinition is
1796  // in a system header, don't emit this for compatibility with GCC.
1797  if (getDiagnostics().getSuppressSystemWarnings() &&
1798      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1799       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1800    return;
1801
1802  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1803    << New->getDeclName();
1804  Diag(Old->getLocation(), diag::note_previous_definition);
1805  return;
1806}
1807
1808/// DeclhasAttr - returns true if decl Declaration already has the target
1809/// attribute.
1810static bool
1811DeclHasAttr(const Decl *D, const Attr *A) {
1812  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1813  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1814  // responsible for making sure they are consistent.
1815  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1816  if (AA)
1817    return false;
1818
1819  // The following thread safety attributes can also be duplicated.
1820  switch (A->getKind()) {
1821    case attr::ExclusiveLocksRequired:
1822    case attr::SharedLocksRequired:
1823    case attr::LocksExcluded:
1824    case attr::ExclusiveLockFunction:
1825    case attr::SharedLockFunction:
1826    case attr::UnlockFunction:
1827    case attr::ExclusiveTrylockFunction:
1828    case attr::SharedTrylockFunction:
1829    case attr::GuardedBy:
1830    case attr::PtGuardedBy:
1831    case attr::AcquiredBefore:
1832    case attr::AcquiredAfter:
1833      return false;
1834    default:
1835      ;
1836  }
1837
1838  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1839  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1840  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1841    if ((*i)->getKind() == A->getKind()) {
1842      if (Ann) {
1843        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1844          return true;
1845        continue;
1846      }
1847      // FIXME: Don't hardcode this check
1848      if (OA && isa<OwnershipAttr>(*i))
1849        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1850      return true;
1851    }
1852
1853  return false;
1854}
1855
1856static bool isAttributeTargetADefinition(Decl *D) {
1857  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1858    return VD->isThisDeclarationADefinition();
1859  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1860    return TD->isCompleteDefinition() || TD->isBeingDefined();
1861  return true;
1862}
1863
1864/// Merge alignment attributes from \p Old to \p New, taking into account the
1865/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1866///
1867/// \return \c true if any attributes were added to \p New.
1868static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1869  // Look for alignas attributes on Old, and pick out whichever attribute
1870  // specifies the strictest alignment requirement.
1871  AlignedAttr *OldAlignasAttr = 0;
1872  AlignedAttr *OldStrictestAlignAttr = 0;
1873  unsigned OldAlign = 0;
1874  for (specific_attr_iterator<AlignedAttr>
1875         I = Old->specific_attr_begin<AlignedAttr>(),
1876         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1877    // FIXME: We have no way of representing inherited dependent alignments
1878    // in a case like:
1879    //   template<int A, int B> struct alignas(A) X;
1880    //   template<int A, int B> struct alignas(B) X {};
1881    // For now, we just ignore any alignas attributes which are not on the
1882    // definition in such a case.
1883    if (I->isAlignmentDependent())
1884      return false;
1885
1886    if (I->isAlignas())
1887      OldAlignasAttr = *I;
1888
1889    unsigned Align = I->getAlignment(S.Context);
1890    if (Align > OldAlign) {
1891      OldAlign = Align;
1892      OldStrictestAlignAttr = *I;
1893    }
1894  }
1895
1896  // Look for alignas attributes on New.
1897  AlignedAttr *NewAlignasAttr = 0;
1898  unsigned NewAlign = 0;
1899  for (specific_attr_iterator<AlignedAttr>
1900         I = New->specific_attr_begin<AlignedAttr>(),
1901         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1902    if (I->isAlignmentDependent())
1903      return false;
1904
1905    if (I->isAlignas())
1906      NewAlignasAttr = *I;
1907
1908    unsigned Align = I->getAlignment(S.Context);
1909    if (Align > NewAlign)
1910      NewAlign = Align;
1911  }
1912
1913  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1914    // Both declarations have 'alignas' attributes. We require them to match.
1915    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1916    // fall short. (If two declarations both have alignas, they must both match
1917    // every definition, and so must match each other if there is a definition.)
1918
1919    // If either declaration only contains 'alignas(0)' specifiers, then it
1920    // specifies the natural alignment for the type.
1921    if (OldAlign == 0 || NewAlign == 0) {
1922      QualType Ty;
1923      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1924        Ty = VD->getType();
1925      else
1926        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1927
1928      if (OldAlign == 0)
1929        OldAlign = S.Context.getTypeAlign(Ty);
1930      if (NewAlign == 0)
1931        NewAlign = S.Context.getTypeAlign(Ty);
1932    }
1933
1934    if (OldAlign != NewAlign) {
1935      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1936        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1937        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1938      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1939    }
1940  }
1941
1942  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1943    // C++11 [dcl.align]p6:
1944    //   if any declaration of an entity has an alignment-specifier,
1945    //   every defining declaration of that entity shall specify an
1946    //   equivalent alignment.
1947    // C11 6.7.5/7:
1948    //   If the definition of an object does not have an alignment
1949    //   specifier, any other declaration of that object shall also
1950    //   have no alignment specifier.
1951    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1952      << OldAlignasAttr->isC11();
1953    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1954      << OldAlignasAttr->isC11();
1955  }
1956
1957  bool AnyAdded = false;
1958
1959  // Ensure we have an attribute representing the strictest alignment.
1960  if (OldAlign > NewAlign) {
1961    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1962    Clone->setInherited(true);
1963    New->addAttr(Clone);
1964    AnyAdded = true;
1965  }
1966
1967  // Ensure we have an alignas attribute if the old declaration had one.
1968  if (OldAlignasAttr && !NewAlignasAttr &&
1969      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1970    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1971    Clone->setInherited(true);
1972    New->addAttr(Clone);
1973    AnyAdded = true;
1974  }
1975
1976  return AnyAdded;
1977}
1978
1979static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1980                               bool Override) {
1981  InheritableAttr *NewAttr = NULL;
1982  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1983  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1984    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1985                                      AA->getIntroduced(), AA->getDeprecated(),
1986                                      AA->getObsoleted(), AA->getUnavailable(),
1987                                      AA->getMessage(), Override,
1988                                      AttrSpellingListIndex);
1989  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1990    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1991                                    AttrSpellingListIndex);
1992  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1993    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1994                                        AttrSpellingListIndex);
1995  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1996    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1997                                   AttrSpellingListIndex);
1998  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1999    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2000                                   AttrSpellingListIndex);
2001  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
2002    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2003                                FA->getFormatIdx(), FA->getFirstArg(),
2004                                AttrSpellingListIndex);
2005  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
2006    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2007                                 AttrSpellingListIndex);
2008  else if (isa<AlignedAttr>(Attr))
2009    // AlignedAttrs are handled separately, because we need to handle all
2010    // such attributes on a declaration at the same time.
2011    NewAttr = 0;
2012  else if (!DeclHasAttr(D, Attr))
2013    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2014
2015  if (NewAttr) {
2016    NewAttr->setInherited(true);
2017    D->addAttr(NewAttr);
2018    return true;
2019  }
2020
2021  return false;
2022}
2023
2024static const Decl *getDefinition(const Decl *D) {
2025  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2026    return TD->getDefinition();
2027  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2028    return VD->getDefinition();
2029  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2030    const FunctionDecl* Def;
2031    if (FD->hasBody(Def))
2032      return Def;
2033  }
2034  return NULL;
2035}
2036
2037static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2038  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2039       I != E; ++I) {
2040    Attr *Attribute = *I;
2041    if (Attribute->getKind() == Kind)
2042      return true;
2043  }
2044  return false;
2045}
2046
2047/// checkNewAttributesAfterDef - If we already have a definition, check that
2048/// there are no new attributes in this declaration.
2049static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2050  if (!New->hasAttrs())
2051    return;
2052
2053  const Decl *Def = getDefinition(Old);
2054  if (!Def || Def == New)
2055    return;
2056
2057  AttrVec &NewAttributes = New->getAttrs();
2058  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2059    const Attr *NewAttribute = NewAttributes[I];
2060    if (hasAttribute(Def, NewAttribute->getKind())) {
2061      ++I;
2062      continue; // regular attr merging will take care of validating this.
2063    }
2064
2065    if (isa<C11NoReturnAttr>(NewAttribute)) {
2066      // C's _Noreturn is allowed to be added to a function after it is defined.
2067      ++I;
2068      continue;
2069    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2070      if (AA->isAlignas()) {
2071        // C++11 [dcl.align]p6:
2072        //   if any declaration of an entity has an alignment-specifier,
2073        //   every defining declaration of that entity shall specify an
2074        //   equivalent alignment.
2075        // C11 6.7.5/7:
2076        //   If the definition of an object does not have an alignment
2077        //   specifier, any other declaration of that object shall also
2078        //   have no alignment specifier.
2079        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2080          << AA->isC11();
2081        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2082          << AA->isC11();
2083        NewAttributes.erase(NewAttributes.begin() + I);
2084        --E;
2085        continue;
2086      }
2087    }
2088
2089    S.Diag(NewAttribute->getLocation(),
2090           diag::warn_attribute_precede_definition);
2091    S.Diag(Def->getLocation(), diag::note_previous_definition);
2092    NewAttributes.erase(NewAttributes.begin() + I);
2093    --E;
2094  }
2095}
2096
2097/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2098void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2099                               AvailabilityMergeKind AMK) {
2100  if (!Old->hasAttrs() && !New->hasAttrs())
2101    return;
2102
2103  // attributes declared post-definition are currently ignored
2104  checkNewAttributesAfterDef(*this, New, Old);
2105
2106  if (!Old->hasAttrs())
2107    return;
2108
2109  bool foundAny = New->hasAttrs();
2110
2111  // Ensure that any moving of objects within the allocated map is done before
2112  // we process them.
2113  if (!foundAny) New->setAttrs(AttrVec());
2114
2115  for (specific_attr_iterator<InheritableAttr>
2116         i = Old->specific_attr_begin<InheritableAttr>(),
2117         e = Old->specific_attr_end<InheritableAttr>();
2118       i != e; ++i) {
2119    bool Override = false;
2120    // Ignore deprecated/unavailable/availability attributes if requested.
2121    if (isa<DeprecatedAttr>(*i) ||
2122        isa<UnavailableAttr>(*i) ||
2123        isa<AvailabilityAttr>(*i)) {
2124      switch (AMK) {
2125      case AMK_None:
2126        continue;
2127
2128      case AMK_Redeclaration:
2129        break;
2130
2131      case AMK_Override:
2132        Override = true;
2133        break;
2134      }
2135    }
2136
2137    if (mergeDeclAttribute(*this, New, *i, Override))
2138      foundAny = true;
2139  }
2140
2141  if (mergeAlignedAttrs(*this, New, Old))
2142    foundAny = true;
2143
2144  if (!foundAny) New->dropAttrs();
2145}
2146
2147/// mergeParamDeclAttributes - Copy attributes from the old parameter
2148/// to the new one.
2149static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2150                                     const ParmVarDecl *oldDecl,
2151                                     Sema &S) {
2152  // C++11 [dcl.attr.depend]p2:
2153  //   The first declaration of a function shall specify the
2154  //   carries_dependency attribute for its declarator-id if any declaration
2155  //   of the function specifies the carries_dependency attribute.
2156  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2157      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2158    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2159           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2160    // Find the first declaration of the parameter.
2161    // FIXME: Should we build redeclaration chains for function parameters?
2162    const FunctionDecl *FirstFD =
2163      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2164    const ParmVarDecl *FirstVD =
2165      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2166    S.Diag(FirstVD->getLocation(),
2167           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2168  }
2169
2170  if (!oldDecl->hasAttrs())
2171    return;
2172
2173  bool foundAny = newDecl->hasAttrs();
2174
2175  // Ensure that any moving of objects within the allocated map is
2176  // done before we process them.
2177  if (!foundAny) newDecl->setAttrs(AttrVec());
2178
2179  for (specific_attr_iterator<InheritableParamAttr>
2180       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2181       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2182    if (!DeclHasAttr(newDecl, *i)) {
2183      InheritableAttr *newAttr =
2184        cast<InheritableParamAttr>((*i)->clone(S.Context));
2185      newAttr->setInherited(true);
2186      newDecl->addAttr(newAttr);
2187      foundAny = true;
2188    }
2189  }
2190
2191  if (!foundAny) newDecl->dropAttrs();
2192}
2193
2194namespace {
2195
2196/// Used in MergeFunctionDecl to keep track of function parameters in
2197/// C.
2198struct GNUCompatibleParamWarning {
2199  ParmVarDecl *OldParm;
2200  ParmVarDecl *NewParm;
2201  QualType PromotedType;
2202};
2203
2204}
2205
2206/// getSpecialMember - get the special member enum for a method.
2207Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2208  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2209    if (Ctor->isDefaultConstructor())
2210      return Sema::CXXDefaultConstructor;
2211
2212    if (Ctor->isCopyConstructor())
2213      return Sema::CXXCopyConstructor;
2214
2215    if (Ctor->isMoveConstructor())
2216      return Sema::CXXMoveConstructor;
2217  } else if (isa<CXXDestructorDecl>(MD)) {
2218    return Sema::CXXDestructor;
2219  } else if (MD->isCopyAssignmentOperator()) {
2220    return Sema::CXXCopyAssignment;
2221  } else if (MD->isMoveAssignmentOperator()) {
2222    return Sema::CXXMoveAssignment;
2223  }
2224
2225  return Sema::CXXInvalid;
2226}
2227
2228/// canRedefineFunction - checks if a function can be redefined. Currently,
2229/// only extern inline functions can be redefined, and even then only in
2230/// GNU89 mode.
2231static bool canRedefineFunction(const FunctionDecl *FD,
2232                                const LangOptions& LangOpts) {
2233  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2234          !LangOpts.CPlusPlus &&
2235          FD->isInlineSpecified() &&
2236          FD->getStorageClass() == SC_Extern);
2237}
2238
2239/// Is the given calling convention the ABI default for the given
2240/// declaration?
2241static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2242  CallingConv ABIDefaultCC;
2243  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2244    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2245  } else {
2246    // Free C function or a static method.
2247    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2248  }
2249  return ABIDefaultCC == CC;
2250}
2251
2252template <typename T>
2253static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2254  const DeclContext *DC = Old->getDeclContext();
2255  if (DC->isRecord())
2256    return false;
2257
2258  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2259  if (OldLinkage == CXXLanguageLinkage &&
2260      New->getDeclContext()->isExternCContext())
2261    return true;
2262  if (OldLinkage == CLanguageLinkage &&
2263      New->getDeclContext()->isExternCXXContext())
2264    return true;
2265  return false;
2266}
2267
2268/// MergeFunctionDecl - We just parsed a function 'New' from
2269/// declarator D which has the same name and scope as a previous
2270/// declaration 'Old'.  Figure out how to resolve this situation,
2271/// merging decls or emitting diagnostics as appropriate.
2272///
2273/// In C++, New and Old must be declarations that are not
2274/// overloaded. Use IsOverload to determine whether New and Old are
2275/// overloaded, and to select the Old declaration that New should be
2276/// merged with.
2277///
2278/// Returns true if there was an error, false otherwise.
2279bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2280  // Verify the old decl was also a function.
2281  FunctionDecl *Old = 0;
2282  if (FunctionTemplateDecl *OldFunctionTemplate
2283        = dyn_cast<FunctionTemplateDecl>(OldD))
2284    Old = OldFunctionTemplate->getTemplatedDecl();
2285  else
2286    Old = dyn_cast<FunctionDecl>(OldD);
2287  if (!Old) {
2288    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2289      if (New->getFriendObjectKind()) {
2290        Diag(New->getLocation(), diag::err_using_decl_friend);
2291        Diag(Shadow->getTargetDecl()->getLocation(),
2292             diag::note_using_decl_target);
2293        Diag(Shadow->getUsingDecl()->getLocation(),
2294             diag::note_using_decl) << 0;
2295        return true;
2296      }
2297
2298      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2299      Diag(Shadow->getTargetDecl()->getLocation(),
2300           diag::note_using_decl_target);
2301      Diag(Shadow->getUsingDecl()->getLocation(),
2302           diag::note_using_decl) << 0;
2303      return true;
2304    }
2305
2306    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2307      << New->getDeclName();
2308    Diag(OldD->getLocation(), diag::note_previous_definition);
2309    return true;
2310  }
2311
2312  // Determine whether the previous declaration was a definition,
2313  // implicit declaration, or a declaration.
2314  diag::kind PrevDiag;
2315  if (Old->isThisDeclarationADefinition())
2316    PrevDiag = diag::note_previous_definition;
2317  else if (Old->isImplicit())
2318    PrevDiag = diag::note_previous_implicit_declaration;
2319  else
2320    PrevDiag = diag::note_previous_declaration;
2321
2322  QualType OldQType = Context.getCanonicalType(Old->getType());
2323  QualType NewQType = Context.getCanonicalType(New->getType());
2324
2325  // Don't complain about this if we're in GNU89 mode and the old function
2326  // is an extern inline function.
2327  // Don't complain about specializations. They are not supposed to have
2328  // storage classes.
2329  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2330      New->getStorageClass() == SC_Static &&
2331      isExternalLinkage(Old->getLinkage()) &&
2332      !New->getTemplateSpecializationInfo() &&
2333      !canRedefineFunction(Old, getLangOpts())) {
2334    if (getLangOpts().MicrosoftExt) {
2335      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2336      Diag(Old->getLocation(), PrevDiag);
2337    } else {
2338      Diag(New->getLocation(), diag::err_static_non_static) << New;
2339      Diag(Old->getLocation(), PrevDiag);
2340      return true;
2341    }
2342  }
2343
2344  // If a function is first declared with a calling convention, but is
2345  // later declared or defined without one, the second decl assumes the
2346  // calling convention of the first.
2347  //
2348  // It's OK if a function is first declared without a calling convention,
2349  // but is later declared or defined with the default calling convention.
2350  //
2351  // For the new decl, we have to look at the NON-canonical type to tell the
2352  // difference between a function that really doesn't have a calling
2353  // convention and one that is declared cdecl. That's because in
2354  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2355  // because it is the default calling convention.
2356  //
2357  // Note also that we DO NOT return at this point, because we still have
2358  // other tests to run.
2359  const FunctionType *OldType = cast<FunctionType>(OldQType);
2360  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2361  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2362  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2363  bool RequiresAdjustment = false;
2364  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2365    // Fast path: nothing to do.
2366
2367  // Inherit the CC from the previous declaration if it was specified
2368  // there but not here.
2369  } else if (NewTypeInfo.getCC() == CC_Default) {
2370    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2371    RequiresAdjustment = true;
2372
2373  // Don't complain about mismatches when the default CC is
2374  // effectively the same as the explict one. Only Old decl contains correct
2375  // information about storage class of CXXMethod.
2376  } else if (OldTypeInfo.getCC() == CC_Default &&
2377             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2378    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2379    RequiresAdjustment = true;
2380
2381  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2382                                     NewTypeInfo.getCC())) {
2383    // Calling conventions really aren't compatible, so complain.
2384    Diag(New->getLocation(), diag::err_cconv_change)
2385      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2386      << (OldTypeInfo.getCC() == CC_Default)
2387      << (OldTypeInfo.getCC() == CC_Default ? "" :
2388          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2389    Diag(Old->getLocation(), diag::note_previous_declaration);
2390    return true;
2391  }
2392
2393  // FIXME: diagnose the other way around?
2394  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2395    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2396    RequiresAdjustment = true;
2397  }
2398
2399  // Merge regparm attribute.
2400  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2401      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2402    if (NewTypeInfo.getHasRegParm()) {
2403      Diag(New->getLocation(), diag::err_regparm_mismatch)
2404        << NewType->getRegParmType()
2405        << OldType->getRegParmType();
2406      Diag(Old->getLocation(), diag::note_previous_declaration);
2407      return true;
2408    }
2409
2410    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2411    RequiresAdjustment = true;
2412  }
2413
2414  // Merge ns_returns_retained attribute.
2415  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2416    if (NewTypeInfo.getProducesResult()) {
2417      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2418      Diag(Old->getLocation(), diag::note_previous_declaration);
2419      return true;
2420    }
2421
2422    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2423    RequiresAdjustment = true;
2424  }
2425
2426  if (RequiresAdjustment) {
2427    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2428    New->setType(QualType(NewType, 0));
2429    NewQType = Context.getCanonicalType(New->getType());
2430  }
2431
2432  // If this redeclaration makes the function inline, we may need to add it to
2433  // UndefinedButUsed.
2434  if (!Old->isInlined() && New->isInlined() &&
2435      !New->hasAttr<GNUInlineAttr>() &&
2436      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2437      Old->isUsed(false) &&
2438      !Old->isDefined() && !New->isThisDeclarationADefinition())
2439    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2440                                           SourceLocation()));
2441
2442  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2443  // about it.
2444  if (New->hasAttr<GNUInlineAttr>() &&
2445      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2446    UndefinedButUsed.erase(Old->getCanonicalDecl());
2447  }
2448
2449  if (getLangOpts().CPlusPlus) {
2450    // (C++98 13.1p2):
2451    //   Certain function declarations cannot be overloaded:
2452    //     -- Function declarations that differ only in the return type
2453    //        cannot be overloaded.
2454    QualType OldReturnType = OldType->getResultType();
2455    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2456    QualType ResQT;
2457    if (OldReturnType != NewReturnType) {
2458      if (NewReturnType->isObjCObjectPointerType()
2459          && OldReturnType->isObjCObjectPointerType())
2460        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2461      if (ResQT.isNull()) {
2462        if (New->isCXXClassMember() && New->isOutOfLine())
2463          Diag(New->getLocation(),
2464               diag::err_member_def_does_not_match_ret_type) << New;
2465        else
2466          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2467        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2468        return true;
2469      }
2470      else
2471        NewQType = ResQT;
2472    }
2473
2474    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2475    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2476    if (OldMethod && NewMethod) {
2477      // Preserve triviality.
2478      NewMethod->setTrivial(OldMethod->isTrivial());
2479
2480      // MSVC allows explicit template specialization at class scope:
2481      // 2 CXMethodDecls referring to the same function will be injected.
2482      // We don't want a redeclartion error.
2483      bool IsClassScopeExplicitSpecialization =
2484                              OldMethod->isFunctionTemplateSpecialization() &&
2485                              NewMethod->isFunctionTemplateSpecialization();
2486      bool isFriend = NewMethod->getFriendObjectKind();
2487
2488      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2489          !IsClassScopeExplicitSpecialization) {
2490        //    -- Member function declarations with the same name and the
2491        //       same parameter types cannot be overloaded if any of them
2492        //       is a static member function declaration.
2493        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2494          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2495          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2496          return true;
2497        }
2498
2499        // C++ [class.mem]p1:
2500        //   [...] A member shall not be declared twice in the
2501        //   member-specification, except that a nested class or member
2502        //   class template can be declared and then later defined.
2503        if (ActiveTemplateInstantiations.empty()) {
2504          unsigned NewDiag;
2505          if (isa<CXXConstructorDecl>(OldMethod))
2506            NewDiag = diag::err_constructor_redeclared;
2507          else if (isa<CXXDestructorDecl>(NewMethod))
2508            NewDiag = diag::err_destructor_redeclared;
2509          else if (isa<CXXConversionDecl>(NewMethod))
2510            NewDiag = diag::err_conv_function_redeclared;
2511          else
2512            NewDiag = diag::err_member_redeclared;
2513
2514          Diag(New->getLocation(), NewDiag);
2515        } else {
2516          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2517            << New << New->getType();
2518        }
2519        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2520
2521      // Complain if this is an explicit declaration of a special
2522      // member that was initially declared implicitly.
2523      //
2524      // As an exception, it's okay to befriend such methods in order
2525      // to permit the implicit constructor/destructor/operator calls.
2526      } else if (OldMethod->isImplicit()) {
2527        if (isFriend) {
2528          NewMethod->setImplicit();
2529        } else {
2530          Diag(NewMethod->getLocation(),
2531               diag::err_definition_of_implicitly_declared_member)
2532            << New << getSpecialMember(OldMethod);
2533          return true;
2534        }
2535      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2536        Diag(NewMethod->getLocation(),
2537             diag::err_definition_of_explicitly_defaulted_member)
2538          << getSpecialMember(OldMethod);
2539        return true;
2540      }
2541    }
2542
2543    // C++11 [dcl.attr.noreturn]p1:
2544    //   The first declaration of a function shall specify the noreturn
2545    //   attribute if any declaration of that function specifies the noreturn
2546    //   attribute.
2547    if (New->hasAttr<CXX11NoReturnAttr>() &&
2548        !Old->hasAttr<CXX11NoReturnAttr>()) {
2549      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2550           diag::err_noreturn_missing_on_first_decl);
2551      Diag(Old->getFirstDeclaration()->getLocation(),
2552           diag::note_noreturn_missing_first_decl);
2553    }
2554
2555    // C++11 [dcl.attr.depend]p2:
2556    //   The first declaration of a function shall specify the
2557    //   carries_dependency attribute for its declarator-id if any declaration
2558    //   of the function specifies the carries_dependency attribute.
2559    if (New->hasAttr<CarriesDependencyAttr>() &&
2560        !Old->hasAttr<CarriesDependencyAttr>()) {
2561      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2562           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2563      Diag(Old->getFirstDeclaration()->getLocation(),
2564           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2565    }
2566
2567    // (C++98 8.3.5p3):
2568    //   All declarations for a function shall agree exactly in both the
2569    //   return type and the parameter-type-list.
2570    // We also want to respect all the extended bits except noreturn.
2571
2572    // noreturn should now match unless the old type info didn't have it.
2573    QualType OldQTypeForComparison = OldQType;
2574    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2575      assert(OldQType == QualType(OldType, 0));
2576      const FunctionType *OldTypeForComparison
2577        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2578      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2579      assert(OldQTypeForComparison.isCanonical());
2580    }
2581
2582    if (haveIncompatibleLanguageLinkages(Old, New)) {
2583      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2584      Diag(Old->getLocation(), PrevDiag);
2585      return true;
2586    }
2587
2588    if (OldQTypeForComparison == NewQType)
2589      return MergeCompatibleFunctionDecls(New, Old, S);
2590
2591    // Fall through for conflicting redeclarations and redefinitions.
2592  }
2593
2594  // C: Function types need to be compatible, not identical. This handles
2595  // duplicate function decls like "void f(int); void f(enum X);" properly.
2596  if (!getLangOpts().CPlusPlus &&
2597      Context.typesAreCompatible(OldQType, NewQType)) {
2598    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2599    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2600    const FunctionProtoType *OldProto = 0;
2601    if (isa<FunctionNoProtoType>(NewFuncType) &&
2602        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2603      // The old declaration provided a function prototype, but the
2604      // new declaration does not. Merge in the prototype.
2605      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2606      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2607                                                 OldProto->arg_type_end());
2608      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2609                                         ParamTypes,
2610                                         OldProto->getExtProtoInfo());
2611      New->setType(NewQType);
2612      New->setHasInheritedPrototype();
2613
2614      // Synthesize a parameter for each argument type.
2615      SmallVector<ParmVarDecl*, 16> Params;
2616      for (FunctionProtoType::arg_type_iterator
2617             ParamType = OldProto->arg_type_begin(),
2618             ParamEnd = OldProto->arg_type_end();
2619           ParamType != ParamEnd; ++ParamType) {
2620        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2621                                                 SourceLocation(),
2622                                                 SourceLocation(), 0,
2623                                                 *ParamType, /*TInfo=*/0,
2624                                                 SC_None,
2625                                                 0);
2626        Param->setScopeInfo(0, Params.size());
2627        Param->setImplicit();
2628        Params.push_back(Param);
2629      }
2630
2631      New->setParams(Params);
2632    }
2633
2634    return MergeCompatibleFunctionDecls(New, Old, S);
2635  }
2636
2637  // GNU C permits a K&R definition to follow a prototype declaration
2638  // if the declared types of the parameters in the K&R definition
2639  // match the types in the prototype declaration, even when the
2640  // promoted types of the parameters from the K&R definition differ
2641  // from the types in the prototype. GCC then keeps the types from
2642  // the prototype.
2643  //
2644  // If a variadic prototype is followed by a non-variadic K&R definition,
2645  // the K&R definition becomes variadic.  This is sort of an edge case, but
2646  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2647  // C99 6.9.1p8.
2648  if (!getLangOpts().CPlusPlus &&
2649      Old->hasPrototype() && !New->hasPrototype() &&
2650      New->getType()->getAs<FunctionProtoType>() &&
2651      Old->getNumParams() == New->getNumParams()) {
2652    SmallVector<QualType, 16> ArgTypes;
2653    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2654    const FunctionProtoType *OldProto
2655      = Old->getType()->getAs<FunctionProtoType>();
2656    const FunctionProtoType *NewProto
2657      = New->getType()->getAs<FunctionProtoType>();
2658
2659    // Determine whether this is the GNU C extension.
2660    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2661                                               NewProto->getResultType());
2662    bool LooseCompatible = !MergedReturn.isNull();
2663    for (unsigned Idx = 0, End = Old->getNumParams();
2664         LooseCompatible && Idx != End; ++Idx) {
2665      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2666      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2667      if (Context.typesAreCompatible(OldParm->getType(),
2668                                     NewProto->getArgType(Idx))) {
2669        ArgTypes.push_back(NewParm->getType());
2670      } else if (Context.typesAreCompatible(OldParm->getType(),
2671                                            NewParm->getType(),
2672                                            /*CompareUnqualified=*/true)) {
2673        GNUCompatibleParamWarning Warn
2674          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2675        Warnings.push_back(Warn);
2676        ArgTypes.push_back(NewParm->getType());
2677      } else
2678        LooseCompatible = false;
2679    }
2680
2681    if (LooseCompatible) {
2682      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2683        Diag(Warnings[Warn].NewParm->getLocation(),
2684             diag::ext_param_promoted_not_compatible_with_prototype)
2685          << Warnings[Warn].PromotedType
2686          << Warnings[Warn].OldParm->getType();
2687        if (Warnings[Warn].OldParm->getLocation().isValid())
2688          Diag(Warnings[Warn].OldParm->getLocation(),
2689               diag::note_previous_declaration);
2690      }
2691
2692      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2693                                           OldProto->getExtProtoInfo()));
2694      return MergeCompatibleFunctionDecls(New, Old, S);
2695    }
2696
2697    // Fall through to diagnose conflicting types.
2698  }
2699
2700  // A function that has already been declared has been redeclared or defined
2701  // with a different type- show appropriate diagnostic
2702  if (unsigned BuiltinID = Old->getBuiltinID()) {
2703    // The user has declared a builtin function with an incompatible
2704    // signature.
2705    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2706      // The function the user is redeclaring is a library-defined
2707      // function like 'malloc' or 'printf'. Warn about the
2708      // redeclaration, then pretend that we don't know about this
2709      // library built-in.
2710      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2711      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2712        << Old << Old->getType();
2713      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2714      Old->setInvalidDecl();
2715      return false;
2716    }
2717
2718    PrevDiag = diag::note_previous_builtin_declaration;
2719  }
2720
2721  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2722  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2723  return true;
2724}
2725
2726/// \brief Completes the merge of two function declarations that are
2727/// known to be compatible.
2728///
2729/// This routine handles the merging of attributes and other
2730/// properties of function declarations form the old declaration to
2731/// the new declaration, once we know that New is in fact a
2732/// redeclaration of Old.
2733///
2734/// \returns false
2735bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2736                                        Scope *S) {
2737  // Merge the attributes
2738  mergeDeclAttributes(New, Old);
2739
2740  // Merge "pure" flag.
2741  if (Old->isPure())
2742    New->setPure();
2743
2744  // Merge "used" flag.
2745  if (Old->isUsed(false))
2746    New->setUsed();
2747
2748  // Merge attributes from the parameters.  These can mismatch with K&R
2749  // declarations.
2750  if (New->getNumParams() == Old->getNumParams())
2751    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2752      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2753                               *this);
2754
2755  if (getLangOpts().CPlusPlus)
2756    return MergeCXXFunctionDecl(New, Old, S);
2757
2758  // Merge the function types so the we get the composite types for the return
2759  // and argument types.
2760  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2761  if (!Merged.isNull())
2762    New->setType(Merged);
2763
2764  return false;
2765}
2766
2767
2768void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2769                                ObjCMethodDecl *oldMethod) {
2770
2771  // Merge the attributes, including deprecated/unavailable
2772  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2773
2774  // Merge attributes from the parameters.
2775  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2776                                       oe = oldMethod->param_end();
2777  for (ObjCMethodDecl::param_iterator
2778         ni = newMethod->param_begin(), ne = newMethod->param_end();
2779       ni != ne && oi != oe; ++ni, ++oi)
2780    mergeParamDeclAttributes(*ni, *oi, *this);
2781
2782  CheckObjCMethodOverride(newMethod, oldMethod);
2783}
2784
2785/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2786/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2787/// emitting diagnostics as appropriate.
2788///
2789/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2790/// to here in AddInitializerToDecl. We can't check them before the initializer
2791/// is attached.
2792void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2793  if (New->isInvalidDecl() || Old->isInvalidDecl())
2794    return;
2795
2796  QualType MergedT;
2797  if (getLangOpts().CPlusPlus) {
2798    AutoType *AT = New->getType()->getContainedAutoType();
2799    if (AT && !AT->isDeduced()) {
2800      // We don't know what the new type is until the initializer is attached.
2801      return;
2802    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2803      // These could still be something that needs exception specs checked.
2804      return MergeVarDeclExceptionSpecs(New, Old);
2805    }
2806    // C++ [basic.link]p10:
2807    //   [...] the types specified by all declarations referring to a given
2808    //   object or function shall be identical, except that declarations for an
2809    //   array object can specify array types that differ by the presence or
2810    //   absence of a major array bound (8.3.4).
2811    else if (Old->getType()->isIncompleteArrayType() &&
2812             New->getType()->isArrayType()) {
2813      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2814      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2815      if (Context.hasSameType(OldArray->getElementType(),
2816                              NewArray->getElementType()))
2817        MergedT = New->getType();
2818    } else if (Old->getType()->isArrayType() &&
2819             New->getType()->isIncompleteArrayType()) {
2820      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2821      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2822      if (Context.hasSameType(OldArray->getElementType(),
2823                              NewArray->getElementType()))
2824        MergedT = Old->getType();
2825    } else if (New->getType()->isObjCObjectPointerType()
2826               && Old->getType()->isObjCObjectPointerType()) {
2827        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2828                                                        Old->getType());
2829    }
2830  } else {
2831    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2832  }
2833  if (MergedT.isNull()) {
2834    Diag(New->getLocation(), diag::err_redefinition_different_type)
2835      << New->getDeclName() << New->getType() << Old->getType();
2836    Diag(Old->getLocation(), diag::note_previous_definition);
2837    return New->setInvalidDecl();
2838  }
2839
2840  // Don't actually update the type on the new declaration if the old
2841  // declaration was a extern declaration in a different scope.
2842  if (!OldWasHidden)
2843    New->setType(MergedT);
2844}
2845
2846/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2847/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2848/// situation, merging decls or emitting diagnostics as appropriate.
2849///
2850/// Tentative definition rules (C99 6.9.2p2) are checked by
2851/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2852/// definitions here, since the initializer hasn't been attached.
2853///
2854void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2855                        bool PreviousWasHidden) {
2856  // If the new decl is already invalid, don't do any other checking.
2857  if (New->isInvalidDecl())
2858    return;
2859
2860  // Verify the old decl was also a variable.
2861  VarDecl *Old = 0;
2862  if (!Previous.isSingleResult() ||
2863      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2864    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2865      << New->getDeclName();
2866    Diag(Previous.getRepresentativeDecl()->getLocation(),
2867         diag::note_previous_definition);
2868    return New->setInvalidDecl();
2869  }
2870
2871  // C++ [class.mem]p1:
2872  //   A member shall not be declared twice in the member-specification [...]
2873  //
2874  // Here, we need only consider static data members.
2875  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2876    Diag(New->getLocation(), diag::err_duplicate_member)
2877      << New->getIdentifier();
2878    Diag(Old->getLocation(), diag::note_previous_declaration);
2879    New->setInvalidDecl();
2880  }
2881
2882  mergeDeclAttributes(New, Old);
2883  // Warn if an already-declared variable is made a weak_import in a subsequent
2884  // declaration
2885  if (New->getAttr<WeakImportAttr>() &&
2886      Old->getStorageClass() == SC_None &&
2887      !Old->getAttr<WeakImportAttr>()) {
2888    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2889    Diag(Old->getLocation(), diag::note_previous_definition);
2890    // Remove weak_import attribute on new declaration.
2891    New->dropAttr<WeakImportAttr>();
2892  }
2893
2894  // Merge the types.
2895  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2896  if (New->isInvalidDecl())
2897    return;
2898
2899  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2900  if (New->getStorageClass() == SC_Static &&
2901      !New->isStaticDataMember() &&
2902      isExternalLinkage(Old->getLinkage())) {
2903    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2904    Diag(Old->getLocation(), diag::note_previous_definition);
2905    return New->setInvalidDecl();
2906  }
2907  // C99 6.2.2p4:
2908  //   For an identifier declared with the storage-class specifier
2909  //   extern in a scope in which a prior declaration of that
2910  //   identifier is visible,23) if the prior declaration specifies
2911  //   internal or external linkage, the linkage of the identifier at
2912  //   the later declaration is the same as the linkage specified at
2913  //   the prior declaration. If no prior declaration is visible, or
2914  //   if the prior declaration specifies no linkage, then the
2915  //   identifier has external linkage.
2916  if (New->hasExternalStorage() && Old->hasLinkage())
2917    /* Okay */;
2918  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2919           !New->isStaticDataMember() &&
2920           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2921    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2922    Diag(Old->getLocation(), diag::note_previous_definition);
2923    return New->setInvalidDecl();
2924  }
2925
2926  // Check if extern is followed by non-extern and vice-versa.
2927  if (New->hasExternalStorage() &&
2928      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2929    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2930    Diag(Old->getLocation(), diag::note_previous_definition);
2931    return New->setInvalidDecl();
2932  }
2933  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2934      !New->hasExternalStorage()) {
2935    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2936    Diag(Old->getLocation(), diag::note_previous_definition);
2937    return New->setInvalidDecl();
2938  }
2939
2940  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2941
2942  // FIXME: The test for external storage here seems wrong? We still
2943  // need to check for mismatches.
2944  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2945      // Don't complain about out-of-line definitions of static members.
2946      !(Old->getLexicalDeclContext()->isRecord() &&
2947        !New->getLexicalDeclContext()->isRecord())) {
2948    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2949    Diag(Old->getLocation(), diag::note_previous_definition);
2950    return New->setInvalidDecl();
2951  }
2952
2953  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2954    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2955    Diag(Old->getLocation(), diag::note_previous_definition);
2956  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2957    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2958    Diag(Old->getLocation(), diag::note_previous_definition);
2959  }
2960
2961  // C++ doesn't have tentative definitions, so go right ahead and check here.
2962  const VarDecl *Def;
2963  if (getLangOpts().CPlusPlus &&
2964      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2965      (Def = Old->getDefinition())) {
2966    Diag(New->getLocation(), diag::err_redefinition)
2967      << New->getDeclName();
2968    Diag(Def->getLocation(), diag::note_previous_definition);
2969    New->setInvalidDecl();
2970    return;
2971  }
2972
2973  if (haveIncompatibleLanguageLinkages(Old, New)) {
2974    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2975    Diag(Old->getLocation(), diag::note_previous_definition);
2976    New->setInvalidDecl();
2977    return;
2978  }
2979
2980  // Merge "used" flag.
2981  if (Old->isUsed(false))
2982    New->setUsed();
2983
2984  // Keep a chain of previous declarations.
2985  New->setPreviousDeclaration(Old);
2986
2987  // Inherit access appropriately.
2988  New->setAccess(Old->getAccess());
2989}
2990
2991/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2992/// no declarator (e.g. "struct foo;") is parsed.
2993Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2994                                       DeclSpec &DS) {
2995  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2996}
2997
2998/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2999/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3000/// parameters to cope with template friend declarations.
3001Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3002                                       DeclSpec &DS,
3003                                       MultiTemplateParamsArg TemplateParams,
3004                                       bool IsExplicitInstantiation) {
3005  Decl *TagD = 0;
3006  TagDecl *Tag = 0;
3007  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3008      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3009      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3010      DS.getTypeSpecType() == DeclSpec::TST_union ||
3011      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3012    TagD = DS.getRepAsDecl();
3013
3014    if (!TagD) // We probably had an error
3015      return 0;
3016
3017    // Note that the above type specs guarantee that the
3018    // type rep is a Decl, whereas in many of the others
3019    // it's a Type.
3020    if (isa<TagDecl>(TagD))
3021      Tag = cast<TagDecl>(TagD);
3022    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3023      Tag = CTD->getTemplatedDecl();
3024  }
3025
3026  if (Tag) {
3027    getASTContext().addUnnamedTag(Tag);
3028    Tag->setFreeStanding();
3029    if (Tag->isInvalidDecl())
3030      return Tag;
3031  }
3032
3033  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3034    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3035    // or incomplete types shall not be restrict-qualified."
3036    if (TypeQuals & DeclSpec::TQ_restrict)
3037      Diag(DS.getRestrictSpecLoc(),
3038           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3039           << DS.getSourceRange();
3040  }
3041
3042  if (DS.isConstexprSpecified()) {
3043    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3044    // and definitions of functions and variables.
3045    if (Tag)
3046      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3047        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3048            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3049            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3050            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3051    else
3052      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3053    // Don't emit warnings after this error.
3054    return TagD;
3055  }
3056
3057  DiagnoseFunctionSpecifiers(DS);
3058
3059  if (DS.isFriendSpecified()) {
3060    // If we're dealing with a decl but not a TagDecl, assume that
3061    // whatever routines created it handled the friendship aspect.
3062    if (TagD && !Tag)
3063      return 0;
3064    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3065  }
3066
3067  CXXScopeSpec &SS = DS.getTypeSpecScope();
3068  bool IsExplicitSpecialization =
3069    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3070  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3071      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3072    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3073    // nested-name-specifier unless it is an explicit instantiation
3074    // or an explicit specialization.
3075    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3076    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3077      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3078          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3079          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3080          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3081      << SS.getRange();
3082    return 0;
3083  }
3084
3085  // Track whether this decl-specifier declares anything.
3086  bool DeclaresAnything = true;
3087
3088  // Handle anonymous struct definitions.
3089  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3090    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3091        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3092      if (getLangOpts().CPlusPlus ||
3093          Record->getDeclContext()->isRecord())
3094        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3095
3096      DeclaresAnything = false;
3097    }
3098  }
3099
3100  // Check for Microsoft C extension: anonymous struct member.
3101  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3102      CurContext->isRecord() &&
3103      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3104    // Handle 2 kinds of anonymous struct:
3105    //   struct STRUCT;
3106    // and
3107    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3108    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3109    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3110        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3111         DS.getRepAsType().get()->isStructureType())) {
3112      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3113        << DS.getSourceRange();
3114      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3115    }
3116  }
3117
3118  // Skip all the checks below if we have a type error.
3119  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3120      (TagD && TagD->isInvalidDecl()))
3121    return TagD;
3122
3123  if (getLangOpts().CPlusPlus &&
3124      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3125    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3126      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3127          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3128        DeclaresAnything = false;
3129
3130  if (!DS.isMissingDeclaratorOk()) {
3131    // Customize diagnostic for a typedef missing a name.
3132    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3133      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3134        << DS.getSourceRange();
3135    else
3136      DeclaresAnything = false;
3137  }
3138
3139  if (DS.isModulePrivateSpecified() &&
3140      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3141    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3142      << Tag->getTagKind()
3143      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3144
3145  ActOnDocumentableDecl(TagD);
3146
3147  // C 6.7/2:
3148  //   A declaration [...] shall declare at least a declarator [...], a tag,
3149  //   or the members of an enumeration.
3150  // C++ [dcl.dcl]p3:
3151  //   [If there are no declarators], and except for the declaration of an
3152  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3153  //   names into the program, or shall redeclare a name introduced by a
3154  //   previous declaration.
3155  if (!DeclaresAnything) {
3156    // In C, we allow this as a (popular) extension / bug. Don't bother
3157    // producing further diagnostics for redundant qualifiers after this.
3158    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3159    return TagD;
3160  }
3161
3162  // C++ [dcl.stc]p1:
3163  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3164  //   init-declarator-list of the declaration shall not be empty.
3165  // C++ [dcl.fct.spec]p1:
3166  //   If a cv-qualifier appears in a decl-specifier-seq, the
3167  //   init-declarator-list of the declaration shall not be empty.
3168  //
3169  // Spurious qualifiers here appear to be valid in C.
3170  unsigned DiagID = diag::warn_standalone_specifier;
3171  if (getLangOpts().CPlusPlus)
3172    DiagID = diag::ext_standalone_specifier;
3173
3174  // Note that a linkage-specification sets a storage class, but
3175  // 'extern "C" struct foo;' is actually valid and not theoretically
3176  // useless.
3177  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3178    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3179      Diag(DS.getStorageClassSpecLoc(), DiagID)
3180        << DeclSpec::getSpecifierName(SCS);
3181
3182  if (DS.isThreadSpecified())
3183    Diag(DS.getThreadSpecLoc(), DiagID) << "__thread";
3184  if (DS.getTypeQualifiers()) {
3185    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3186      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3187    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3188      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3189    // Restrict is covered above.
3190    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3191      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3192  }
3193
3194  // Warn about ignored type attributes, for example:
3195  // __attribute__((aligned)) struct A;
3196  // Attributes should be placed after tag to apply to type declaration.
3197  if (!DS.getAttributes().empty()) {
3198    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3199    if (TypeSpecType == DeclSpec::TST_class ||
3200        TypeSpecType == DeclSpec::TST_struct ||
3201        TypeSpecType == DeclSpec::TST_interface ||
3202        TypeSpecType == DeclSpec::TST_union ||
3203        TypeSpecType == DeclSpec::TST_enum) {
3204      AttributeList* attrs = DS.getAttributes().getList();
3205      while (attrs) {
3206        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3207        << attrs->getName()
3208        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3209            TypeSpecType == DeclSpec::TST_struct ? 1 :
3210            TypeSpecType == DeclSpec::TST_union ? 2 :
3211            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3212        attrs = attrs->getNext();
3213      }
3214    }
3215  }
3216
3217  return TagD;
3218}
3219
3220/// We are trying to inject an anonymous member into the given scope;
3221/// check if there's an existing declaration that can't be overloaded.
3222///
3223/// \return true if this is a forbidden redeclaration
3224static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3225                                         Scope *S,
3226                                         DeclContext *Owner,
3227                                         DeclarationName Name,
3228                                         SourceLocation NameLoc,
3229                                         unsigned diagnostic) {
3230  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3231                 Sema::ForRedeclaration);
3232  if (!SemaRef.LookupName(R, S)) return false;
3233
3234  if (R.getAsSingle<TagDecl>())
3235    return false;
3236
3237  // Pick a representative declaration.
3238  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3239  assert(PrevDecl && "Expected a non-null Decl");
3240
3241  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3242    return false;
3243
3244  SemaRef.Diag(NameLoc, diagnostic) << Name;
3245  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3246
3247  return true;
3248}
3249
3250/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3251/// anonymous struct or union AnonRecord into the owning context Owner
3252/// and scope S. This routine will be invoked just after we realize
3253/// that an unnamed union or struct is actually an anonymous union or
3254/// struct, e.g.,
3255///
3256/// @code
3257/// union {
3258///   int i;
3259///   float f;
3260/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3261///    // f into the surrounding scope.x
3262/// @endcode
3263///
3264/// This routine is recursive, injecting the names of nested anonymous
3265/// structs/unions into the owning context and scope as well.
3266static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3267                                                DeclContext *Owner,
3268                                                RecordDecl *AnonRecord,
3269                                                AccessSpecifier AS,
3270                              SmallVector<NamedDecl*, 2> &Chaining,
3271                                                      bool MSAnonStruct) {
3272  unsigned diagKind
3273    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3274                            : diag::err_anonymous_struct_member_redecl;
3275
3276  bool Invalid = false;
3277
3278  // Look every FieldDecl and IndirectFieldDecl with a name.
3279  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3280                               DEnd = AnonRecord->decls_end();
3281       D != DEnd; ++D) {
3282    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3283        cast<NamedDecl>(*D)->getDeclName()) {
3284      ValueDecl *VD = cast<ValueDecl>(*D);
3285      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3286                                       VD->getLocation(), diagKind)) {
3287        // C++ [class.union]p2:
3288        //   The names of the members of an anonymous union shall be
3289        //   distinct from the names of any other entity in the
3290        //   scope in which the anonymous union is declared.
3291        Invalid = true;
3292      } else {
3293        // C++ [class.union]p2:
3294        //   For the purpose of name lookup, after the anonymous union
3295        //   definition, the members of the anonymous union are
3296        //   considered to have been defined in the scope in which the
3297        //   anonymous union is declared.
3298        unsigned OldChainingSize = Chaining.size();
3299        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3300          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3301               PE = IF->chain_end(); PI != PE; ++PI)
3302            Chaining.push_back(*PI);
3303        else
3304          Chaining.push_back(VD);
3305
3306        assert(Chaining.size() >= 2);
3307        NamedDecl **NamedChain =
3308          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3309        for (unsigned i = 0; i < Chaining.size(); i++)
3310          NamedChain[i] = Chaining[i];
3311
3312        IndirectFieldDecl* IndirectField =
3313          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3314                                    VD->getIdentifier(), VD->getType(),
3315                                    NamedChain, Chaining.size());
3316
3317        IndirectField->setAccess(AS);
3318        IndirectField->setImplicit();
3319        SemaRef.PushOnScopeChains(IndirectField, S);
3320
3321        // That includes picking up the appropriate access specifier.
3322        if (AS != AS_none) IndirectField->setAccess(AS);
3323
3324        Chaining.resize(OldChainingSize);
3325      }
3326    }
3327  }
3328
3329  return Invalid;
3330}
3331
3332/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3333/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3334/// illegal input values are mapped to SC_None.
3335static StorageClass
3336StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3337  switch (StorageClassSpec) {
3338  case DeclSpec::SCS_unspecified:    return SC_None;
3339  case DeclSpec::SCS_extern:         return SC_Extern;
3340  case DeclSpec::SCS_static:         return SC_Static;
3341  case DeclSpec::SCS_auto:           return SC_Auto;
3342  case DeclSpec::SCS_register:       return SC_Register;
3343  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3344    // Illegal SCSs map to None: error reporting is up to the caller.
3345  case DeclSpec::SCS_mutable:        // Fall through.
3346  case DeclSpec::SCS_typedef:        return SC_None;
3347  }
3348  llvm_unreachable("unknown storage class specifier");
3349}
3350
3351/// BuildAnonymousStructOrUnion - Handle the declaration of an
3352/// anonymous structure or union. Anonymous unions are a C++ feature
3353/// (C++ [class.union]) and a C11 feature; anonymous structures
3354/// are a C11 feature and GNU C++ extension.
3355Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3356                                             AccessSpecifier AS,
3357                                             RecordDecl *Record) {
3358  DeclContext *Owner = Record->getDeclContext();
3359
3360  // Diagnose whether this anonymous struct/union is an extension.
3361  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3362    Diag(Record->getLocation(), diag::ext_anonymous_union);
3363  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3364    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3365  else if (!Record->isUnion() && !getLangOpts().C11)
3366    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3367
3368  // C and C++ require different kinds of checks for anonymous
3369  // structs/unions.
3370  bool Invalid = false;
3371  if (getLangOpts().CPlusPlus) {
3372    const char* PrevSpec = 0;
3373    unsigned DiagID;
3374    if (Record->isUnion()) {
3375      // C++ [class.union]p6:
3376      //   Anonymous unions declared in a named namespace or in the
3377      //   global namespace shall be declared static.
3378      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3379          (isa<TranslationUnitDecl>(Owner) ||
3380           (isa<NamespaceDecl>(Owner) &&
3381            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3382        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3383          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3384
3385        // Recover by adding 'static'.
3386        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3387                               PrevSpec, DiagID);
3388      }
3389      // C++ [class.union]p6:
3390      //   A storage class is not allowed in a declaration of an
3391      //   anonymous union in a class scope.
3392      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3393               isa<RecordDecl>(Owner)) {
3394        Diag(DS.getStorageClassSpecLoc(),
3395             diag::err_anonymous_union_with_storage_spec)
3396          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3397
3398        // Recover by removing the storage specifier.
3399        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3400                               SourceLocation(),
3401                               PrevSpec, DiagID);
3402      }
3403    }
3404
3405    // Ignore const/volatile/restrict qualifiers.
3406    if (DS.getTypeQualifiers()) {
3407      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3408        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3409          << Record->isUnion() << "const"
3410          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3411      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3412        Diag(DS.getVolatileSpecLoc(),
3413             diag::ext_anonymous_struct_union_qualified)
3414          << Record->isUnion() << "volatile"
3415          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3416      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3417        Diag(DS.getRestrictSpecLoc(),
3418             diag::ext_anonymous_struct_union_qualified)
3419          << Record->isUnion() << "restrict"
3420          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3421      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3422        Diag(DS.getAtomicSpecLoc(),
3423             diag::ext_anonymous_struct_union_qualified)
3424          << Record->isUnion() << "_Atomic"
3425          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3426
3427      DS.ClearTypeQualifiers();
3428    }
3429
3430    // C++ [class.union]p2:
3431    //   The member-specification of an anonymous union shall only
3432    //   define non-static data members. [Note: nested types and
3433    //   functions cannot be declared within an anonymous union. ]
3434    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3435                                 MemEnd = Record->decls_end();
3436         Mem != MemEnd; ++Mem) {
3437      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3438        // C++ [class.union]p3:
3439        //   An anonymous union shall not have private or protected
3440        //   members (clause 11).
3441        assert(FD->getAccess() != AS_none);
3442        if (FD->getAccess() != AS_public) {
3443          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3444            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3445          Invalid = true;
3446        }
3447
3448        // C++ [class.union]p1
3449        //   An object of a class with a non-trivial constructor, a non-trivial
3450        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3451        //   assignment operator cannot be a member of a union, nor can an
3452        //   array of such objects.
3453        if (CheckNontrivialField(FD))
3454          Invalid = true;
3455      } else if ((*Mem)->isImplicit()) {
3456        // Any implicit members are fine.
3457      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3458        // This is a type that showed up in an
3459        // elaborated-type-specifier inside the anonymous struct or
3460        // union, but which actually declares a type outside of the
3461        // anonymous struct or union. It's okay.
3462      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3463        if (!MemRecord->isAnonymousStructOrUnion() &&
3464            MemRecord->getDeclName()) {
3465          // Visual C++ allows type definition in anonymous struct or union.
3466          if (getLangOpts().MicrosoftExt)
3467            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3468              << (int)Record->isUnion();
3469          else {
3470            // This is a nested type declaration.
3471            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3472              << (int)Record->isUnion();
3473            Invalid = true;
3474          }
3475        } else {
3476          // This is an anonymous type definition within another anonymous type.
3477          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3478          // not part of standard C++.
3479          Diag(MemRecord->getLocation(),
3480               diag::ext_anonymous_record_with_anonymous_type)
3481            << (int)Record->isUnion();
3482        }
3483      } else if (isa<AccessSpecDecl>(*Mem)) {
3484        // Any access specifier is fine.
3485      } else {
3486        // We have something that isn't a non-static data
3487        // member. Complain about it.
3488        unsigned DK = diag::err_anonymous_record_bad_member;
3489        if (isa<TypeDecl>(*Mem))
3490          DK = diag::err_anonymous_record_with_type;
3491        else if (isa<FunctionDecl>(*Mem))
3492          DK = diag::err_anonymous_record_with_function;
3493        else if (isa<VarDecl>(*Mem))
3494          DK = diag::err_anonymous_record_with_static;
3495
3496        // Visual C++ allows type definition in anonymous struct or union.
3497        if (getLangOpts().MicrosoftExt &&
3498            DK == diag::err_anonymous_record_with_type)
3499          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3500            << (int)Record->isUnion();
3501        else {
3502          Diag((*Mem)->getLocation(), DK)
3503              << (int)Record->isUnion();
3504          Invalid = true;
3505        }
3506      }
3507    }
3508  }
3509
3510  if (!Record->isUnion() && !Owner->isRecord()) {
3511    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3512      << (int)getLangOpts().CPlusPlus;
3513    Invalid = true;
3514  }
3515
3516  // Mock up a declarator.
3517  Declarator Dc(DS, Declarator::MemberContext);
3518  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3519  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3520
3521  // Create a declaration for this anonymous struct/union.
3522  NamedDecl *Anon = 0;
3523  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3524    Anon = FieldDecl::Create(Context, OwningClass,
3525                             DS.getLocStart(),
3526                             Record->getLocation(),
3527                             /*IdentifierInfo=*/0,
3528                             Context.getTypeDeclType(Record),
3529                             TInfo,
3530                             /*BitWidth=*/0, /*Mutable=*/false,
3531                             /*InitStyle=*/ICIS_NoInit);
3532    Anon->setAccess(AS);
3533    if (getLangOpts().CPlusPlus)
3534      FieldCollector->Add(cast<FieldDecl>(Anon));
3535  } else {
3536    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3537    assert(SCSpec != DeclSpec::SCS_typedef &&
3538           "Parser allowed 'typedef' as storage class VarDecl.");
3539    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3540    if (SCSpec == DeclSpec::SCS_mutable) {
3541      // mutable can only appear on non-static class members, so it's always
3542      // an error here
3543      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3544      Invalid = true;
3545      SC = SC_None;
3546    }
3547
3548    Anon = VarDecl::Create(Context, Owner,
3549                           DS.getLocStart(),
3550                           Record->getLocation(), /*IdentifierInfo=*/0,
3551                           Context.getTypeDeclType(Record),
3552                           TInfo, SC);
3553
3554    // Default-initialize the implicit variable. This initialization will be
3555    // trivial in almost all cases, except if a union member has an in-class
3556    // initializer:
3557    //   union { int n = 0; };
3558    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3559  }
3560  Anon->setImplicit();
3561
3562  // Add the anonymous struct/union object to the current
3563  // context. We'll be referencing this object when we refer to one of
3564  // its members.
3565  Owner->addDecl(Anon);
3566
3567  // Inject the members of the anonymous struct/union into the owning
3568  // context and into the identifier resolver chain for name lookup
3569  // purposes.
3570  SmallVector<NamedDecl*, 2> Chain;
3571  Chain.push_back(Anon);
3572
3573  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3574                                          Chain, false))
3575    Invalid = true;
3576
3577  // Mark this as an anonymous struct/union type. Note that we do not
3578  // do this until after we have already checked and injected the
3579  // members of this anonymous struct/union type, because otherwise
3580  // the members could be injected twice: once by DeclContext when it
3581  // builds its lookup table, and once by
3582  // InjectAnonymousStructOrUnionMembers.
3583  Record->setAnonymousStructOrUnion(true);
3584
3585  if (Invalid)
3586    Anon->setInvalidDecl();
3587
3588  return Anon;
3589}
3590
3591/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3592/// Microsoft C anonymous structure.
3593/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3594/// Example:
3595///
3596/// struct A { int a; };
3597/// struct B { struct A; int b; };
3598///
3599/// void foo() {
3600///   B var;
3601///   var.a = 3;
3602/// }
3603///
3604Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3605                                           RecordDecl *Record) {
3606
3607  // If there is no Record, get the record via the typedef.
3608  if (!Record)
3609    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3610
3611  // Mock up a declarator.
3612  Declarator Dc(DS, Declarator::TypeNameContext);
3613  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3614  assert(TInfo && "couldn't build declarator info for anonymous struct");
3615
3616  // Create a declaration for this anonymous struct.
3617  NamedDecl* Anon = FieldDecl::Create(Context,
3618                             cast<RecordDecl>(CurContext),
3619                             DS.getLocStart(),
3620                             DS.getLocStart(),
3621                             /*IdentifierInfo=*/0,
3622                             Context.getTypeDeclType(Record),
3623                             TInfo,
3624                             /*BitWidth=*/0, /*Mutable=*/false,
3625                             /*InitStyle=*/ICIS_NoInit);
3626  Anon->setImplicit();
3627
3628  // Add the anonymous struct object to the current context.
3629  CurContext->addDecl(Anon);
3630
3631  // Inject the members of the anonymous struct into the current
3632  // context and into the identifier resolver chain for name lookup
3633  // purposes.
3634  SmallVector<NamedDecl*, 2> Chain;
3635  Chain.push_back(Anon);
3636
3637  RecordDecl *RecordDef = Record->getDefinition();
3638  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3639                                                        RecordDef, AS_none,
3640                                                        Chain, true))
3641    Anon->setInvalidDecl();
3642
3643  return Anon;
3644}
3645
3646/// GetNameForDeclarator - Determine the full declaration name for the
3647/// given Declarator.
3648DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3649  return GetNameFromUnqualifiedId(D.getName());
3650}
3651
3652/// \brief Retrieves the declaration name from a parsed unqualified-id.
3653DeclarationNameInfo
3654Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3655  DeclarationNameInfo NameInfo;
3656  NameInfo.setLoc(Name.StartLocation);
3657
3658  switch (Name.getKind()) {
3659
3660  case UnqualifiedId::IK_ImplicitSelfParam:
3661  case UnqualifiedId::IK_Identifier:
3662    NameInfo.setName(Name.Identifier);
3663    NameInfo.setLoc(Name.StartLocation);
3664    return NameInfo;
3665
3666  case UnqualifiedId::IK_OperatorFunctionId:
3667    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3668                                           Name.OperatorFunctionId.Operator));
3669    NameInfo.setLoc(Name.StartLocation);
3670    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3671      = Name.OperatorFunctionId.SymbolLocations[0];
3672    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3673      = Name.EndLocation.getRawEncoding();
3674    return NameInfo;
3675
3676  case UnqualifiedId::IK_LiteralOperatorId:
3677    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3678                                                           Name.Identifier));
3679    NameInfo.setLoc(Name.StartLocation);
3680    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3681    return NameInfo;
3682
3683  case UnqualifiedId::IK_ConversionFunctionId: {
3684    TypeSourceInfo *TInfo;
3685    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3686    if (Ty.isNull())
3687      return DeclarationNameInfo();
3688    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3689                                               Context.getCanonicalType(Ty)));
3690    NameInfo.setLoc(Name.StartLocation);
3691    NameInfo.setNamedTypeInfo(TInfo);
3692    return NameInfo;
3693  }
3694
3695  case UnqualifiedId::IK_ConstructorName: {
3696    TypeSourceInfo *TInfo;
3697    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3698    if (Ty.isNull())
3699      return DeclarationNameInfo();
3700    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3701                                              Context.getCanonicalType(Ty)));
3702    NameInfo.setLoc(Name.StartLocation);
3703    NameInfo.setNamedTypeInfo(TInfo);
3704    return NameInfo;
3705  }
3706
3707  case UnqualifiedId::IK_ConstructorTemplateId: {
3708    // In well-formed code, we can only have a constructor
3709    // template-id that refers to the current context, so go there
3710    // to find the actual type being constructed.
3711    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3712    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3713      return DeclarationNameInfo();
3714
3715    // Determine the type of the class being constructed.
3716    QualType CurClassType = Context.getTypeDeclType(CurClass);
3717
3718    // FIXME: Check two things: that the template-id names the same type as
3719    // CurClassType, and that the template-id does not occur when the name
3720    // was qualified.
3721
3722    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3723                                    Context.getCanonicalType(CurClassType)));
3724    NameInfo.setLoc(Name.StartLocation);
3725    // FIXME: should we retrieve TypeSourceInfo?
3726    NameInfo.setNamedTypeInfo(0);
3727    return NameInfo;
3728  }
3729
3730  case UnqualifiedId::IK_DestructorName: {
3731    TypeSourceInfo *TInfo;
3732    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3733    if (Ty.isNull())
3734      return DeclarationNameInfo();
3735    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3736                                              Context.getCanonicalType(Ty)));
3737    NameInfo.setLoc(Name.StartLocation);
3738    NameInfo.setNamedTypeInfo(TInfo);
3739    return NameInfo;
3740  }
3741
3742  case UnqualifiedId::IK_TemplateId: {
3743    TemplateName TName = Name.TemplateId->Template.get();
3744    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3745    return Context.getNameForTemplate(TName, TNameLoc);
3746  }
3747
3748  } // switch (Name.getKind())
3749
3750  llvm_unreachable("Unknown name kind");
3751}
3752
3753static QualType getCoreType(QualType Ty) {
3754  do {
3755    if (Ty->isPointerType() || Ty->isReferenceType())
3756      Ty = Ty->getPointeeType();
3757    else if (Ty->isArrayType())
3758      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3759    else
3760      return Ty.withoutLocalFastQualifiers();
3761  } while (true);
3762}
3763
3764/// hasSimilarParameters - Determine whether the C++ functions Declaration
3765/// and Definition have "nearly" matching parameters. This heuristic is
3766/// used to improve diagnostics in the case where an out-of-line function
3767/// definition doesn't match any declaration within the class or namespace.
3768/// Also sets Params to the list of indices to the parameters that differ
3769/// between the declaration and the definition. If hasSimilarParameters
3770/// returns true and Params is empty, then all of the parameters match.
3771static bool hasSimilarParameters(ASTContext &Context,
3772                                     FunctionDecl *Declaration,
3773                                     FunctionDecl *Definition,
3774                                     SmallVectorImpl<unsigned> &Params) {
3775  Params.clear();
3776  if (Declaration->param_size() != Definition->param_size())
3777    return false;
3778  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3779    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3780    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3781
3782    // The parameter types are identical
3783    if (Context.hasSameType(DefParamTy, DeclParamTy))
3784      continue;
3785
3786    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3787    QualType DefParamBaseTy = getCoreType(DefParamTy);
3788    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3789    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3790
3791    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3792        (DeclTyName && DeclTyName == DefTyName))
3793      Params.push_back(Idx);
3794    else  // The two parameters aren't even close
3795      return false;
3796  }
3797
3798  return true;
3799}
3800
3801/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3802/// declarator needs to be rebuilt in the current instantiation.
3803/// Any bits of declarator which appear before the name are valid for
3804/// consideration here.  That's specifically the type in the decl spec
3805/// and the base type in any member-pointer chunks.
3806static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3807                                                    DeclarationName Name) {
3808  // The types we specifically need to rebuild are:
3809  //   - typenames, typeofs, and decltypes
3810  //   - types which will become injected class names
3811  // Of course, we also need to rebuild any type referencing such a
3812  // type.  It's safest to just say "dependent", but we call out a
3813  // few cases here.
3814
3815  DeclSpec &DS = D.getMutableDeclSpec();
3816  switch (DS.getTypeSpecType()) {
3817  case DeclSpec::TST_typename:
3818  case DeclSpec::TST_typeofType:
3819  case DeclSpec::TST_underlyingType:
3820  case DeclSpec::TST_atomic: {
3821    // Grab the type from the parser.
3822    TypeSourceInfo *TSI = 0;
3823    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3824    if (T.isNull() || !T->isDependentType()) break;
3825
3826    // Make sure there's a type source info.  This isn't really much
3827    // of a waste; most dependent types should have type source info
3828    // attached already.
3829    if (!TSI)
3830      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3831
3832    // Rebuild the type in the current instantiation.
3833    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3834    if (!TSI) return true;
3835
3836    // Store the new type back in the decl spec.
3837    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3838    DS.UpdateTypeRep(LocType);
3839    break;
3840  }
3841
3842  case DeclSpec::TST_decltype:
3843  case DeclSpec::TST_typeofExpr: {
3844    Expr *E = DS.getRepAsExpr();
3845    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3846    if (Result.isInvalid()) return true;
3847    DS.UpdateExprRep(Result.get());
3848    break;
3849  }
3850
3851  default:
3852    // Nothing to do for these decl specs.
3853    break;
3854  }
3855
3856  // It doesn't matter what order we do this in.
3857  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3858    DeclaratorChunk &Chunk = D.getTypeObject(I);
3859
3860    // The only type information in the declarator which can come
3861    // before the declaration name is the base type of a member
3862    // pointer.
3863    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3864      continue;
3865
3866    // Rebuild the scope specifier in-place.
3867    CXXScopeSpec &SS = Chunk.Mem.Scope();
3868    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3869      return true;
3870  }
3871
3872  return false;
3873}
3874
3875Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3876  D.setFunctionDefinitionKind(FDK_Declaration);
3877  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3878
3879  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3880      Dcl && Dcl->getDeclContext()->isFileContext())
3881    Dcl->setTopLevelDeclInObjCContainer();
3882
3883  return Dcl;
3884}
3885
3886/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3887///   If T is the name of a class, then each of the following shall have a
3888///   name different from T:
3889///     - every static data member of class T;
3890///     - every member function of class T
3891///     - every member of class T that is itself a type;
3892/// \returns true if the declaration name violates these rules.
3893bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3894                                   DeclarationNameInfo NameInfo) {
3895  DeclarationName Name = NameInfo.getName();
3896
3897  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3898    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3899      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3900      return true;
3901    }
3902
3903  return false;
3904}
3905
3906/// \brief Diagnose a declaration whose declarator-id has the given
3907/// nested-name-specifier.
3908///
3909/// \param SS The nested-name-specifier of the declarator-id.
3910///
3911/// \param DC The declaration context to which the nested-name-specifier
3912/// resolves.
3913///
3914/// \param Name The name of the entity being declared.
3915///
3916/// \param Loc The location of the name of the entity being declared.
3917///
3918/// \returns true if we cannot safely recover from this error, false otherwise.
3919bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3920                                        DeclarationName Name,
3921                                      SourceLocation Loc) {
3922  DeclContext *Cur = CurContext;
3923  while (isa<LinkageSpecDecl>(Cur))
3924    Cur = Cur->getParent();
3925
3926  // C++ [dcl.meaning]p1:
3927  //   A declarator-id shall not be qualified except for the definition
3928  //   of a member function (9.3) or static data member (9.4) outside of
3929  //   its class, the definition or explicit instantiation of a function
3930  //   or variable member of a namespace outside of its namespace, or the
3931  //   definition of an explicit specialization outside of its namespace,
3932  //   or the declaration of a friend function that is a member of
3933  //   another class or namespace (11.3). [...]
3934
3935  // The user provided a superfluous scope specifier that refers back to the
3936  // class or namespaces in which the entity is already declared.
3937  //
3938  // class X {
3939  //   void X::f();
3940  // };
3941  if (Cur->Equals(DC)) {
3942    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3943                                   : diag::err_member_extra_qualification)
3944      << Name << FixItHint::CreateRemoval(SS.getRange());
3945    SS.clear();
3946    return false;
3947  }
3948
3949  // Check whether the qualifying scope encloses the scope of the original
3950  // declaration.
3951  if (!Cur->Encloses(DC)) {
3952    if (Cur->isRecord())
3953      Diag(Loc, diag::err_member_qualification)
3954        << Name << SS.getRange();
3955    else if (isa<TranslationUnitDecl>(DC))
3956      Diag(Loc, diag::err_invalid_declarator_global_scope)
3957        << Name << SS.getRange();
3958    else if (isa<FunctionDecl>(Cur))
3959      Diag(Loc, diag::err_invalid_declarator_in_function)
3960        << Name << SS.getRange();
3961    else
3962      Diag(Loc, diag::err_invalid_declarator_scope)
3963      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3964
3965    return true;
3966  }
3967
3968  if (Cur->isRecord()) {
3969    // Cannot qualify members within a class.
3970    Diag(Loc, diag::err_member_qualification)
3971      << Name << SS.getRange();
3972    SS.clear();
3973
3974    // C++ constructors and destructors with incorrect scopes can break
3975    // our AST invariants by having the wrong underlying types. If
3976    // that's the case, then drop this declaration entirely.
3977    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3978         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3979        !Context.hasSameType(Name.getCXXNameType(),
3980                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3981      return true;
3982
3983    return false;
3984  }
3985
3986  // C++11 [dcl.meaning]p1:
3987  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3988  //   not begin with a decltype-specifer"
3989  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3990  while (SpecLoc.getPrefix())
3991    SpecLoc = SpecLoc.getPrefix();
3992  if (dyn_cast_or_null<DecltypeType>(
3993        SpecLoc.getNestedNameSpecifier()->getAsType()))
3994    Diag(Loc, diag::err_decltype_in_declarator)
3995      << SpecLoc.getTypeLoc().getSourceRange();
3996
3997  return false;
3998}
3999
4000NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4001                                  MultiTemplateParamsArg TemplateParamLists) {
4002  // TODO: consider using NameInfo for diagnostic.
4003  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4004  DeclarationName Name = NameInfo.getName();
4005
4006  // All of these full declarators require an identifier.  If it doesn't have
4007  // one, the ParsedFreeStandingDeclSpec action should be used.
4008  if (!Name) {
4009    if (!D.isInvalidType())  // Reject this if we think it is valid.
4010      Diag(D.getDeclSpec().getLocStart(),
4011           diag::err_declarator_need_ident)
4012        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4013    return 0;
4014  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4015    return 0;
4016
4017  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4018  // we find one that is.
4019  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4020         (S->getFlags() & Scope::TemplateParamScope) != 0)
4021    S = S->getParent();
4022
4023  DeclContext *DC = CurContext;
4024  if (D.getCXXScopeSpec().isInvalid())
4025    D.setInvalidType();
4026  else if (D.getCXXScopeSpec().isSet()) {
4027    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4028                                        UPPC_DeclarationQualifier))
4029      return 0;
4030
4031    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4032    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4033    if (!DC) {
4034      // If we could not compute the declaration context, it's because the
4035      // declaration context is dependent but does not refer to a class,
4036      // class template, or class template partial specialization. Complain
4037      // and return early, to avoid the coming semantic disaster.
4038      Diag(D.getIdentifierLoc(),
4039           diag::err_template_qualified_declarator_no_match)
4040        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4041        << D.getCXXScopeSpec().getRange();
4042      return 0;
4043    }
4044    bool IsDependentContext = DC->isDependentContext();
4045
4046    if (!IsDependentContext &&
4047        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4048      return 0;
4049
4050    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4051      Diag(D.getIdentifierLoc(),
4052           diag::err_member_def_undefined_record)
4053        << Name << DC << D.getCXXScopeSpec().getRange();
4054      D.setInvalidType();
4055    } else if (!D.getDeclSpec().isFriendSpecified()) {
4056      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4057                                      Name, D.getIdentifierLoc())) {
4058        if (DC->isRecord())
4059          return 0;
4060
4061        D.setInvalidType();
4062      }
4063    }
4064
4065    // Check whether we need to rebuild the type of the given
4066    // declaration in the current instantiation.
4067    if (EnteringContext && IsDependentContext &&
4068        TemplateParamLists.size() != 0) {
4069      ContextRAII SavedContext(*this, DC);
4070      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4071        D.setInvalidType();
4072    }
4073  }
4074
4075  if (DiagnoseClassNameShadow(DC, NameInfo))
4076    // If this is a typedef, we'll end up spewing multiple diagnostics.
4077    // Just return early; it's safer.
4078    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4079      return 0;
4080
4081  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4082  QualType R = TInfo->getType();
4083
4084  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4085                                      UPPC_DeclarationType))
4086    D.setInvalidType();
4087
4088  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4089                        ForRedeclaration);
4090
4091  // See if this is a redefinition of a variable in the same scope.
4092  if (!D.getCXXScopeSpec().isSet()) {
4093    bool IsLinkageLookup = false;
4094
4095    // If the declaration we're planning to build will be a function
4096    // or object with linkage, then look for another declaration with
4097    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4098    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4099      /* Do nothing*/;
4100    else if (R->isFunctionType()) {
4101      if (CurContext->isFunctionOrMethod() ||
4102          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4103        IsLinkageLookup = true;
4104    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4105      IsLinkageLookup = true;
4106    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4107             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4108      IsLinkageLookup = true;
4109
4110    if (IsLinkageLookup)
4111      Previous.clear(LookupRedeclarationWithLinkage);
4112
4113    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4114  } else { // Something like "int foo::x;"
4115    LookupQualifiedName(Previous, DC);
4116
4117    // C++ [dcl.meaning]p1:
4118    //   When the declarator-id is qualified, the declaration shall refer to a
4119    //  previously declared member of the class or namespace to which the
4120    //  qualifier refers (or, in the case of a namespace, of an element of the
4121    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4122    //  thereof; [...]
4123    //
4124    // Note that we already checked the context above, and that we do not have
4125    // enough information to make sure that Previous contains the declaration
4126    // we want to match. For example, given:
4127    //
4128    //   class X {
4129    //     void f();
4130    //     void f(float);
4131    //   };
4132    //
4133    //   void X::f(int) { } // ill-formed
4134    //
4135    // In this case, Previous will point to the overload set
4136    // containing the two f's declared in X, but neither of them
4137    // matches.
4138
4139    // C++ [dcl.meaning]p1:
4140    //   [...] the member shall not merely have been introduced by a
4141    //   using-declaration in the scope of the class or namespace nominated by
4142    //   the nested-name-specifier of the declarator-id.
4143    RemoveUsingDecls(Previous);
4144  }
4145
4146  if (Previous.isSingleResult() &&
4147      Previous.getFoundDecl()->isTemplateParameter()) {
4148    // Maybe we will complain about the shadowed template parameter.
4149    if (!D.isInvalidType())
4150      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4151                                      Previous.getFoundDecl());
4152
4153    // Just pretend that we didn't see the previous declaration.
4154    Previous.clear();
4155  }
4156
4157  // In C++, the previous declaration we find might be a tag type
4158  // (class or enum). In this case, the new declaration will hide the
4159  // tag type. Note that this does does not apply if we're declaring a
4160  // typedef (C++ [dcl.typedef]p4).
4161  if (Previous.isSingleTagDecl() &&
4162      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4163    Previous.clear();
4164
4165  // Check that there are no default arguments other than in the parameters
4166  // of a function declaration (C++ only).
4167  if (getLangOpts().CPlusPlus)
4168    CheckExtraCXXDefaultArguments(D);
4169
4170  NamedDecl *New;
4171
4172  bool AddToScope = true;
4173  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4174    if (TemplateParamLists.size()) {
4175      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4176      return 0;
4177    }
4178
4179    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4180  } else if (R->isFunctionType()) {
4181    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4182                                  TemplateParamLists,
4183                                  AddToScope);
4184  } else {
4185    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4186                                  TemplateParamLists);
4187  }
4188
4189  if (New == 0)
4190    return 0;
4191
4192  // If this has an identifier and is not an invalid redeclaration or
4193  // function template specialization, add it to the scope stack.
4194  if (New->getDeclName() && AddToScope &&
4195       !(D.isRedeclaration() && New->isInvalidDecl()))
4196    PushOnScopeChains(New, S);
4197
4198  return New;
4199}
4200
4201/// Helper method to turn variable array types into constant array
4202/// types in certain situations which would otherwise be errors (for
4203/// GCC compatibility).
4204static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4205                                                    ASTContext &Context,
4206                                                    bool &SizeIsNegative,
4207                                                    llvm::APSInt &Oversized) {
4208  // This method tries to turn a variable array into a constant
4209  // array even when the size isn't an ICE.  This is necessary
4210  // for compatibility with code that depends on gcc's buggy
4211  // constant expression folding, like struct {char x[(int)(char*)2];}
4212  SizeIsNegative = false;
4213  Oversized = 0;
4214
4215  if (T->isDependentType())
4216    return QualType();
4217
4218  QualifierCollector Qs;
4219  const Type *Ty = Qs.strip(T);
4220
4221  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4222    QualType Pointee = PTy->getPointeeType();
4223    QualType FixedType =
4224        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4225                                            Oversized);
4226    if (FixedType.isNull()) return FixedType;
4227    FixedType = Context.getPointerType(FixedType);
4228    return Qs.apply(Context, FixedType);
4229  }
4230  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4231    QualType Inner = PTy->getInnerType();
4232    QualType FixedType =
4233        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4234                                            Oversized);
4235    if (FixedType.isNull()) return FixedType;
4236    FixedType = Context.getParenType(FixedType);
4237    return Qs.apply(Context, FixedType);
4238  }
4239
4240  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4241  if (!VLATy)
4242    return QualType();
4243  // FIXME: We should probably handle this case
4244  if (VLATy->getElementType()->isVariablyModifiedType())
4245    return QualType();
4246
4247  llvm::APSInt Res;
4248  if (!VLATy->getSizeExpr() ||
4249      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4250    return QualType();
4251
4252  // Check whether the array size is negative.
4253  if (Res.isSigned() && Res.isNegative()) {
4254    SizeIsNegative = true;
4255    return QualType();
4256  }
4257
4258  // Check whether the array is too large to be addressed.
4259  unsigned ActiveSizeBits
4260    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4261                                              Res);
4262  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4263    Oversized = Res;
4264    return QualType();
4265  }
4266
4267  return Context.getConstantArrayType(VLATy->getElementType(),
4268                                      Res, ArrayType::Normal, 0);
4269}
4270
4271static void
4272FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4273  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4274    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4275    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4276                                      DstPTL.getPointeeLoc());
4277    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4278    return;
4279  }
4280  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4281    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4282    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4283                                      DstPTL.getInnerLoc());
4284    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4285    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4286    return;
4287  }
4288  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4289  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4290  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4291  TypeLoc DstElemTL = DstATL.getElementLoc();
4292  DstElemTL.initializeFullCopy(SrcElemTL);
4293  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4294  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4295  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4296}
4297
4298/// Helper method to turn variable array types into constant array
4299/// types in certain situations which would otherwise be errors (for
4300/// GCC compatibility).
4301static TypeSourceInfo*
4302TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4303                                              ASTContext &Context,
4304                                              bool &SizeIsNegative,
4305                                              llvm::APSInt &Oversized) {
4306  QualType FixedTy
4307    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4308                                          SizeIsNegative, Oversized);
4309  if (FixedTy.isNull())
4310    return 0;
4311  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4312  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4313                                    FixedTInfo->getTypeLoc());
4314  return FixedTInfo;
4315}
4316
4317/// \brief Register the given locally-scoped extern "C" declaration so
4318/// that it can be found later for redeclarations
4319void
4320Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4321                                       const LookupResult &Previous,
4322                                       Scope *S) {
4323  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4324         "Decl is not a locally-scoped decl!");
4325  // Note that we have a locally-scoped external with this name.
4326  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4327
4328  if (!Previous.isSingleResult())
4329    return;
4330
4331  NamedDecl *PrevDecl = Previous.getFoundDecl();
4332
4333  // If there was a previous declaration of this entity, it may be in
4334  // our identifier chain. Update the identifier chain with the new
4335  // declaration.
4336  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4337    // The previous declaration was found on the identifer resolver
4338    // chain, so remove it from its scope.
4339
4340    if (S->isDeclScope(PrevDecl)) {
4341      // Special case for redeclarations in the SAME scope.
4342      // Because this declaration is going to be added to the identifier chain
4343      // later, we should temporarily take it OFF the chain.
4344      IdResolver.RemoveDecl(ND);
4345
4346    } else {
4347      // Find the scope for the original declaration.
4348      while (S && !S->isDeclScope(PrevDecl))
4349        S = S->getParent();
4350    }
4351
4352    if (S)
4353      S->RemoveDecl(PrevDecl);
4354  }
4355}
4356
4357llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4358Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4359  if (ExternalSource) {
4360    // Load locally-scoped external decls from the external source.
4361    SmallVector<NamedDecl *, 4> Decls;
4362    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4363    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4364      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4365        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4366      if (Pos == LocallyScopedExternCDecls.end())
4367        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4368    }
4369  }
4370
4371  return LocallyScopedExternCDecls.find(Name);
4372}
4373
4374/// \brief Diagnose function specifiers on a declaration of an identifier that
4375/// does not identify a function.
4376void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4377  // FIXME: We should probably indicate the identifier in question to avoid
4378  // confusion for constructs like "inline int a(), b;"
4379  if (DS.isInlineSpecified())
4380    Diag(DS.getInlineSpecLoc(),
4381         diag::err_inline_non_function);
4382
4383  if (DS.isVirtualSpecified())
4384    Diag(DS.getVirtualSpecLoc(),
4385         diag::err_virtual_non_function);
4386
4387  if (DS.isExplicitSpecified())
4388    Diag(DS.getExplicitSpecLoc(),
4389         diag::err_explicit_non_function);
4390
4391  if (DS.isNoreturnSpecified())
4392    Diag(DS.getNoreturnSpecLoc(),
4393         diag::err_noreturn_non_function);
4394}
4395
4396NamedDecl*
4397Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4398                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4399  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4400  if (D.getCXXScopeSpec().isSet()) {
4401    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4402      << D.getCXXScopeSpec().getRange();
4403    D.setInvalidType();
4404    // Pretend we didn't see the scope specifier.
4405    DC = CurContext;
4406    Previous.clear();
4407  }
4408
4409  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4410
4411  if (D.getDeclSpec().isThreadSpecified())
4412    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4413  if (D.getDeclSpec().isConstexprSpecified())
4414    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4415      << 1;
4416
4417  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4418    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4419      << D.getName().getSourceRange();
4420    return 0;
4421  }
4422
4423  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4424  if (!NewTD) return 0;
4425
4426  // Handle attributes prior to checking for duplicates in MergeVarDecl
4427  ProcessDeclAttributes(S, NewTD, D);
4428
4429  CheckTypedefForVariablyModifiedType(S, NewTD);
4430
4431  bool Redeclaration = D.isRedeclaration();
4432  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4433  D.setRedeclaration(Redeclaration);
4434  return ND;
4435}
4436
4437void
4438Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4439  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4440  // then it shall have block scope.
4441  // Note that variably modified types must be fixed before merging the decl so
4442  // that redeclarations will match.
4443  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4444  QualType T = TInfo->getType();
4445  if (T->isVariablyModifiedType()) {
4446    getCurFunction()->setHasBranchProtectedScope();
4447
4448    if (S->getFnParent() == 0) {
4449      bool SizeIsNegative;
4450      llvm::APSInt Oversized;
4451      TypeSourceInfo *FixedTInfo =
4452        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4453                                                      SizeIsNegative,
4454                                                      Oversized);
4455      if (FixedTInfo) {
4456        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4457        NewTD->setTypeSourceInfo(FixedTInfo);
4458      } else {
4459        if (SizeIsNegative)
4460          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4461        else if (T->isVariableArrayType())
4462          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4463        else if (Oversized.getBoolValue())
4464          Diag(NewTD->getLocation(), diag::err_array_too_large)
4465            << Oversized.toString(10);
4466        else
4467          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4468        NewTD->setInvalidDecl();
4469      }
4470    }
4471  }
4472}
4473
4474
4475/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4476/// declares a typedef-name, either using the 'typedef' type specifier or via
4477/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4478NamedDecl*
4479Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4480                           LookupResult &Previous, bool &Redeclaration) {
4481  // Merge the decl with the existing one if appropriate. If the decl is
4482  // in an outer scope, it isn't the same thing.
4483  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4484                       /*ExplicitInstantiationOrSpecialization=*/false);
4485  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4486  if (!Previous.empty()) {
4487    Redeclaration = true;
4488    MergeTypedefNameDecl(NewTD, Previous);
4489  }
4490
4491  // If this is the C FILE type, notify the AST context.
4492  if (IdentifierInfo *II = NewTD->getIdentifier())
4493    if (!NewTD->isInvalidDecl() &&
4494        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4495      if (II->isStr("FILE"))
4496        Context.setFILEDecl(NewTD);
4497      else if (II->isStr("jmp_buf"))
4498        Context.setjmp_bufDecl(NewTD);
4499      else if (II->isStr("sigjmp_buf"))
4500        Context.setsigjmp_bufDecl(NewTD);
4501      else if (II->isStr("ucontext_t"))
4502        Context.setucontext_tDecl(NewTD);
4503    }
4504
4505  return NewTD;
4506}
4507
4508/// \brief Determines whether the given declaration is an out-of-scope
4509/// previous declaration.
4510///
4511/// This routine should be invoked when name lookup has found a
4512/// previous declaration (PrevDecl) that is not in the scope where a
4513/// new declaration by the same name is being introduced. If the new
4514/// declaration occurs in a local scope, previous declarations with
4515/// linkage may still be considered previous declarations (C99
4516/// 6.2.2p4-5, C++ [basic.link]p6).
4517///
4518/// \param PrevDecl the previous declaration found by name
4519/// lookup
4520///
4521/// \param DC the context in which the new declaration is being
4522/// declared.
4523///
4524/// \returns true if PrevDecl is an out-of-scope previous declaration
4525/// for a new delcaration with the same name.
4526static bool
4527isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4528                                ASTContext &Context) {
4529  if (!PrevDecl)
4530    return false;
4531
4532  if (!PrevDecl->hasLinkage())
4533    return false;
4534
4535  if (Context.getLangOpts().CPlusPlus) {
4536    // C++ [basic.link]p6:
4537    //   If there is a visible declaration of an entity with linkage
4538    //   having the same name and type, ignoring entities declared
4539    //   outside the innermost enclosing namespace scope, the block
4540    //   scope declaration declares that same entity and receives the
4541    //   linkage of the previous declaration.
4542    DeclContext *OuterContext = DC->getRedeclContext();
4543    if (!OuterContext->isFunctionOrMethod())
4544      // This rule only applies to block-scope declarations.
4545      return false;
4546
4547    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4548    if (PrevOuterContext->isRecord())
4549      // We found a member function: ignore it.
4550      return false;
4551
4552    // Find the innermost enclosing namespace for the new and
4553    // previous declarations.
4554    OuterContext = OuterContext->getEnclosingNamespaceContext();
4555    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4556
4557    // The previous declaration is in a different namespace, so it
4558    // isn't the same function.
4559    if (!OuterContext->Equals(PrevOuterContext))
4560      return false;
4561  }
4562
4563  return true;
4564}
4565
4566static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4567  CXXScopeSpec &SS = D.getCXXScopeSpec();
4568  if (!SS.isSet()) return;
4569  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4570}
4571
4572bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4573  QualType type = decl->getType();
4574  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4575  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4576    // Various kinds of declaration aren't allowed to be __autoreleasing.
4577    unsigned kind = -1U;
4578    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4579      if (var->hasAttr<BlocksAttr>())
4580        kind = 0; // __block
4581      else if (!var->hasLocalStorage())
4582        kind = 1; // global
4583    } else if (isa<ObjCIvarDecl>(decl)) {
4584      kind = 3; // ivar
4585    } else if (isa<FieldDecl>(decl)) {
4586      kind = 2; // field
4587    }
4588
4589    if (kind != -1U) {
4590      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4591        << kind;
4592    }
4593  } else if (lifetime == Qualifiers::OCL_None) {
4594    // Try to infer lifetime.
4595    if (!type->isObjCLifetimeType())
4596      return false;
4597
4598    lifetime = type->getObjCARCImplicitLifetime();
4599    type = Context.getLifetimeQualifiedType(type, lifetime);
4600    decl->setType(type);
4601  }
4602
4603  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4604    // Thread-local variables cannot have lifetime.
4605    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4606        var->isThreadSpecified()) {
4607      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4608        << var->getType();
4609      return true;
4610    }
4611  }
4612
4613  return false;
4614}
4615
4616static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4617  // 'weak' only applies to declarations with external linkage.
4618  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4619    if (ND.getLinkage() != ExternalLinkage) {
4620      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4621      ND.dropAttr<WeakAttr>();
4622    }
4623  }
4624  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4625    if (ND.hasExternalLinkage()) {
4626      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4627      ND.dropAttr<WeakRefAttr>();
4628    }
4629  }
4630}
4631
4632/// Given that we are within the definition of the given function,
4633/// will that definition behave like C99's 'inline', where the
4634/// definition is discarded except for optimization purposes?
4635static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4636  // Try to avoid calling GetGVALinkageForFunction.
4637
4638  // All cases of this require the 'inline' keyword.
4639  if (!FD->isInlined()) return false;
4640
4641  // This is only possible in C++ with the gnu_inline attribute.
4642  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4643    return false;
4644
4645  // Okay, go ahead and call the relatively-more-expensive function.
4646
4647#ifndef NDEBUG
4648  // AST quite reasonably asserts that it's working on a function
4649  // definition.  We don't really have a way to tell it that we're
4650  // currently defining the function, so just lie to it in +Asserts
4651  // builds.  This is an awful hack.
4652  FD->setLazyBody(1);
4653#endif
4654
4655  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4656
4657#ifndef NDEBUG
4658  FD->setLazyBody(0);
4659#endif
4660
4661  return isC99Inline;
4662}
4663
4664static bool shouldConsiderLinkage(const VarDecl *VD) {
4665  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4666  if (DC->isFunctionOrMethod())
4667    return VD->hasExternalStorage();
4668  if (DC->isFileContext())
4669    return true;
4670  if (DC->isRecord())
4671    return false;
4672  llvm_unreachable("Unexpected context");
4673}
4674
4675static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4676  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4677  if (DC->isFileContext() || DC->isFunctionOrMethod())
4678    return true;
4679  if (DC->isRecord())
4680    return false;
4681  llvm_unreachable("Unexpected context");
4682}
4683
4684NamedDecl*
4685Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4686                              TypeSourceInfo *TInfo, LookupResult &Previous,
4687                              MultiTemplateParamsArg TemplateParamLists) {
4688  QualType R = TInfo->getType();
4689  DeclarationName Name = GetNameForDeclarator(D).getName();
4690
4691  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4692  assert(SCSpec != DeclSpec::SCS_typedef &&
4693         "Parser allowed 'typedef' as storage class VarDecl.");
4694  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4695
4696  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4697  {
4698    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4699    // half array type (unless the cl_khr_fp16 extension is enabled).
4700    if (Context.getBaseElementType(R)->isHalfType()) {
4701      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4702      D.setInvalidType();
4703    }
4704  }
4705
4706  if (SCSpec == DeclSpec::SCS_mutable) {
4707    // mutable can only appear on non-static class members, so it's always
4708    // an error here
4709    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4710    D.setInvalidType();
4711    SC = SC_None;
4712  }
4713
4714  IdentifierInfo *II = Name.getAsIdentifierInfo();
4715  if (!II) {
4716    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4717      << Name;
4718    return 0;
4719  }
4720
4721  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4722
4723  if (!DC->isRecord() && S->getFnParent() == 0) {
4724    // C99 6.9p2: The storage-class specifiers auto and register shall not
4725    // appear in the declaration specifiers in an external declaration.
4726    if (SC == SC_Auto || SC == SC_Register) {
4727
4728      // If this is a register variable with an asm label specified, then this
4729      // is a GNU extension.
4730      if (SC == SC_Register && D.getAsmLabel())
4731        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4732      else
4733        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4734      D.setInvalidType();
4735    }
4736  }
4737
4738  if (getLangOpts().OpenCL) {
4739    // Set up the special work-group-local storage class for variables in the
4740    // OpenCL __local address space.
4741    if (R.getAddressSpace() == LangAS::opencl_local) {
4742      SC = SC_OpenCLWorkGroupLocal;
4743    }
4744
4745    // OpenCL v1.2 s6.9.b p4:
4746    // The sampler type cannot be used with the __local and __global address
4747    // space qualifiers.
4748    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4749      R.getAddressSpace() == LangAS::opencl_global)) {
4750      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4751    }
4752
4753    // OpenCL 1.2 spec, p6.9 r:
4754    // The event type cannot be used to declare a program scope variable.
4755    // The event type cannot be used with the __local, __constant and __global
4756    // address space qualifiers.
4757    if (R->isEventT()) {
4758      if (S->getParent() == 0) {
4759        Diag(D.getLocStart(), diag::err_event_t_global_var);
4760        D.setInvalidType();
4761      }
4762
4763      if (R.getAddressSpace()) {
4764        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4765        D.setInvalidType();
4766      }
4767    }
4768  }
4769
4770  bool isExplicitSpecialization = false;
4771  VarDecl *NewVD;
4772  if (!getLangOpts().CPlusPlus) {
4773    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4774                            D.getIdentifierLoc(), II,
4775                            R, TInfo, SC);
4776
4777    if (D.isInvalidType())
4778      NewVD->setInvalidDecl();
4779  } else {
4780    if (DC->isRecord() && !CurContext->isRecord()) {
4781      // This is an out-of-line definition of a static data member.
4782      if (SC == SC_Static) {
4783        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4784             diag::err_static_out_of_line)
4785          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4786      }
4787    }
4788    if (SC == SC_Static && CurContext->isRecord()) {
4789      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4790        if (RD->isLocalClass())
4791          Diag(D.getIdentifierLoc(),
4792               diag::err_static_data_member_not_allowed_in_local_class)
4793            << Name << RD->getDeclName();
4794
4795        // C++98 [class.union]p1: If a union contains a static data member,
4796        // the program is ill-formed. C++11 drops this restriction.
4797        if (RD->isUnion())
4798          Diag(D.getIdentifierLoc(),
4799               getLangOpts().CPlusPlus11
4800                 ? diag::warn_cxx98_compat_static_data_member_in_union
4801                 : diag::ext_static_data_member_in_union) << Name;
4802        // We conservatively disallow static data members in anonymous structs.
4803        else if (!RD->getDeclName())
4804          Diag(D.getIdentifierLoc(),
4805               diag::err_static_data_member_not_allowed_in_anon_struct)
4806            << Name << RD->isUnion();
4807      }
4808    }
4809
4810    // Match up the template parameter lists with the scope specifier, then
4811    // determine whether we have a template or a template specialization.
4812    isExplicitSpecialization = false;
4813    bool Invalid = false;
4814    if (TemplateParameterList *TemplateParams
4815        = MatchTemplateParametersToScopeSpecifier(
4816                                  D.getDeclSpec().getLocStart(),
4817                                                  D.getIdentifierLoc(),
4818                                                  D.getCXXScopeSpec(),
4819                                                  TemplateParamLists.data(),
4820                                                  TemplateParamLists.size(),
4821                                                  /*never a friend*/ false,
4822                                                  isExplicitSpecialization,
4823                                                  Invalid)) {
4824      if (TemplateParams->size() > 0) {
4825        // There is no such thing as a variable template.
4826        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4827          << II
4828          << SourceRange(TemplateParams->getTemplateLoc(),
4829                         TemplateParams->getRAngleLoc());
4830        return 0;
4831      } else {
4832        // There is an extraneous 'template<>' for this variable. Complain
4833        // about it, but allow the declaration of the variable.
4834        Diag(TemplateParams->getTemplateLoc(),
4835             diag::err_template_variable_noparams)
4836          << II
4837          << SourceRange(TemplateParams->getTemplateLoc(),
4838                         TemplateParams->getRAngleLoc());
4839      }
4840    }
4841
4842    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4843                            D.getIdentifierLoc(), II,
4844                            R, TInfo, SC);
4845
4846    // If this decl has an auto type in need of deduction, make a note of the
4847    // Decl so we can diagnose uses of it in its own initializer.
4848    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4849        R->getContainedAutoType())
4850      ParsingInitForAutoVars.insert(NewVD);
4851
4852    if (D.isInvalidType() || Invalid)
4853      NewVD->setInvalidDecl();
4854
4855    SetNestedNameSpecifier(NewVD, D);
4856
4857    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4858      NewVD->setTemplateParameterListsInfo(Context,
4859                                           TemplateParamLists.size(),
4860                                           TemplateParamLists.data());
4861    }
4862
4863    if (D.getDeclSpec().isConstexprSpecified())
4864      NewVD->setConstexpr(true);
4865  }
4866
4867  // Set the lexical context. If the declarator has a C++ scope specifier, the
4868  // lexical context will be different from the semantic context.
4869  NewVD->setLexicalDeclContext(CurContext);
4870
4871  if (D.getDeclSpec().isThreadSpecified()) {
4872    if (NewVD->hasLocalStorage())
4873      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4874    else if (!Context.getTargetInfo().isTLSSupported())
4875      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4876    else
4877      NewVD->setThreadSpecified(true);
4878  }
4879
4880  // C99 6.7.4p3
4881  //   An inline definition of a function with external linkage shall
4882  //   not contain a definition of a modifiable object with static or
4883  //   thread storage duration...
4884  // We only apply this when the function is required to be defined
4885  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4886  // that a local variable with thread storage duration still has to
4887  // be marked 'static'.  Also note that it's possible to get these
4888  // semantics in C++ using __attribute__((gnu_inline)).
4889  if (SC == SC_Static && S->getFnParent() != 0 &&
4890      !NewVD->getType().isConstQualified()) {
4891    FunctionDecl *CurFD = getCurFunctionDecl();
4892    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4893      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4894           diag::warn_static_local_in_extern_inline);
4895      MaybeSuggestAddingStaticToDecl(CurFD);
4896    }
4897  }
4898
4899  if (D.getDeclSpec().isModulePrivateSpecified()) {
4900    if (isExplicitSpecialization)
4901      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4902        << 2
4903        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4904    else if (NewVD->hasLocalStorage())
4905      Diag(NewVD->getLocation(), diag::err_module_private_local)
4906        << 0 << NewVD->getDeclName()
4907        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4908        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4909    else
4910      NewVD->setModulePrivate();
4911  }
4912
4913  // Handle attributes prior to checking for duplicates in MergeVarDecl
4914  ProcessDeclAttributes(S, NewVD, D);
4915
4916  if (NewVD->hasAttrs())
4917    CheckAlignasUnderalignment(NewVD);
4918
4919  if (getLangOpts().CUDA) {
4920    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4921    // storage [duration]."
4922    if (SC == SC_None && S->getFnParent() != 0 &&
4923        (NewVD->hasAttr<CUDASharedAttr>() ||
4924         NewVD->hasAttr<CUDAConstantAttr>())) {
4925      NewVD->setStorageClass(SC_Static);
4926    }
4927  }
4928
4929  // In auto-retain/release, infer strong retension for variables of
4930  // retainable type.
4931  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4932    NewVD->setInvalidDecl();
4933
4934  // Handle GNU asm-label extension (encoded as an attribute).
4935  if (Expr *E = (Expr*)D.getAsmLabel()) {
4936    // The parser guarantees this is a string.
4937    StringLiteral *SE = cast<StringLiteral>(E);
4938    StringRef Label = SE->getString();
4939    if (S->getFnParent() != 0) {
4940      switch (SC) {
4941      case SC_None:
4942      case SC_Auto:
4943        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4944        break;
4945      case SC_Register:
4946        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4947          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4948        break;
4949      case SC_Static:
4950      case SC_Extern:
4951      case SC_PrivateExtern:
4952      case SC_OpenCLWorkGroupLocal:
4953        break;
4954      }
4955    }
4956
4957    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4958                                                Context, Label));
4959  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4960    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4961      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4962    if (I != ExtnameUndeclaredIdentifiers.end()) {
4963      NewVD->addAttr(I->second);
4964      ExtnameUndeclaredIdentifiers.erase(I);
4965    }
4966  }
4967
4968  // Diagnose shadowed variables before filtering for scope.
4969  if (!D.getCXXScopeSpec().isSet())
4970    CheckShadow(S, NewVD, Previous);
4971
4972  // Don't consider existing declarations that are in a different
4973  // scope and are out-of-semantic-context declarations (if the new
4974  // declaration has linkage).
4975  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4976                       isExplicitSpecialization);
4977
4978  if (!getLangOpts().CPlusPlus) {
4979    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4980  } else {
4981    // Merge the decl with the existing one if appropriate.
4982    if (!Previous.empty()) {
4983      if (Previous.isSingleResult() &&
4984          isa<FieldDecl>(Previous.getFoundDecl()) &&
4985          D.getCXXScopeSpec().isSet()) {
4986        // The user tried to define a non-static data member
4987        // out-of-line (C++ [dcl.meaning]p1).
4988        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4989          << D.getCXXScopeSpec().getRange();
4990        Previous.clear();
4991        NewVD->setInvalidDecl();
4992      }
4993    } else if (D.getCXXScopeSpec().isSet()) {
4994      // No previous declaration in the qualifying scope.
4995      Diag(D.getIdentifierLoc(), diag::err_no_member)
4996        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4997        << D.getCXXScopeSpec().getRange();
4998      NewVD->setInvalidDecl();
4999    }
5000
5001    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5002
5003    // This is an explicit specialization of a static data member. Check it.
5004    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5005        CheckMemberSpecialization(NewVD, Previous))
5006      NewVD->setInvalidDecl();
5007  }
5008
5009  ProcessPragmaWeak(S, NewVD);
5010  checkAttributesAfterMerging(*this, *NewVD);
5011
5012  // If this is a locally-scoped extern C variable, update the map of
5013  // such variables.
5014  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
5015      !NewVD->isInvalidDecl())
5016    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
5017
5018  return NewVD;
5019}
5020
5021/// \brief Diagnose variable or built-in function shadowing.  Implements
5022/// -Wshadow.
5023///
5024/// This method is called whenever a VarDecl is added to a "useful"
5025/// scope.
5026///
5027/// \param S the scope in which the shadowing name is being declared
5028/// \param R the lookup of the name
5029///
5030void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5031  // Return if warning is ignored.
5032  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5033        DiagnosticsEngine::Ignored)
5034    return;
5035
5036  // Don't diagnose declarations at file scope.
5037  if (D->hasGlobalStorage())
5038    return;
5039
5040  DeclContext *NewDC = D->getDeclContext();
5041
5042  // Only diagnose if we're shadowing an unambiguous field or variable.
5043  if (R.getResultKind() != LookupResult::Found)
5044    return;
5045
5046  NamedDecl* ShadowedDecl = R.getFoundDecl();
5047  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5048    return;
5049
5050  // Fields are not shadowed by variables in C++ static methods.
5051  if (isa<FieldDecl>(ShadowedDecl))
5052    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5053      if (MD->isStatic())
5054        return;
5055
5056  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5057    if (shadowedVar->isExternC()) {
5058      // For shadowing external vars, make sure that we point to the global
5059      // declaration, not a locally scoped extern declaration.
5060      for (VarDecl::redecl_iterator
5061             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5062           I != E; ++I)
5063        if (I->isFileVarDecl()) {
5064          ShadowedDecl = *I;
5065          break;
5066        }
5067    }
5068
5069  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5070
5071  // Only warn about certain kinds of shadowing for class members.
5072  if (NewDC && NewDC->isRecord()) {
5073    // In particular, don't warn about shadowing non-class members.
5074    if (!OldDC->isRecord())
5075      return;
5076
5077    // TODO: should we warn about static data members shadowing
5078    // static data members from base classes?
5079
5080    // TODO: don't diagnose for inaccessible shadowed members.
5081    // This is hard to do perfectly because we might friend the
5082    // shadowing context, but that's just a false negative.
5083  }
5084
5085  // Determine what kind of declaration we're shadowing.
5086  unsigned Kind;
5087  if (isa<RecordDecl>(OldDC)) {
5088    if (isa<FieldDecl>(ShadowedDecl))
5089      Kind = 3; // field
5090    else
5091      Kind = 2; // static data member
5092  } else if (OldDC->isFileContext())
5093    Kind = 1; // global
5094  else
5095    Kind = 0; // local
5096
5097  DeclarationName Name = R.getLookupName();
5098
5099  // Emit warning and note.
5100  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5101  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5102}
5103
5104/// \brief Check -Wshadow without the advantage of a previous lookup.
5105void Sema::CheckShadow(Scope *S, VarDecl *D) {
5106  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5107        DiagnosticsEngine::Ignored)
5108    return;
5109
5110  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5111                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5112  LookupName(R, S);
5113  CheckShadow(S, D, R);
5114}
5115
5116template<typename T>
5117static bool mayConflictWithNonVisibleExternC(const T *ND) {
5118  const DeclContext *DC = ND->getDeclContext();
5119  if (DC->getRedeclContext()->isTranslationUnit())
5120    return true;
5121
5122  // We know that is the first decl we see, other than function local
5123  // extern C ones. If this is C++ and the decl is not in a extern C context
5124  // it cannot have C language linkage. Avoid calling isExternC in that case.
5125  // We need to this because of code like
5126  //
5127  // namespace { struct bar {}; }
5128  // auto foo = bar();
5129  //
5130  // This code runs before the init of foo is set, and therefore before
5131  // the type of foo is known. Not knowing the type we cannot know its linkage
5132  // unless it is in an extern C block.
5133  if (!DC->isExternCContext()) {
5134    const ASTContext &Context = ND->getASTContext();
5135    if (Context.getLangOpts().CPlusPlus)
5136      return false;
5137  }
5138
5139  return ND->isExternC();
5140}
5141
5142/// \brief Perform semantic checking on a newly-created variable
5143/// declaration.
5144///
5145/// This routine performs all of the type-checking required for a
5146/// variable declaration once it has been built. It is used both to
5147/// check variables after they have been parsed and their declarators
5148/// have been translated into a declaration, and to check variables
5149/// that have been instantiated from a template.
5150///
5151/// Sets NewVD->isInvalidDecl() if an error was encountered.
5152///
5153/// Returns true if the variable declaration is a redeclaration.
5154bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5155                                    LookupResult &Previous) {
5156  // If the decl is already known invalid, don't check it.
5157  if (NewVD->isInvalidDecl())
5158    return false;
5159
5160  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5161  QualType T = TInfo->getType();
5162
5163  if (T->isObjCObjectType()) {
5164    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5165      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5166    T = Context.getObjCObjectPointerType(T);
5167    NewVD->setType(T);
5168  }
5169
5170  // Emit an error if an address space was applied to decl with local storage.
5171  // This includes arrays of objects with address space qualifiers, but not
5172  // automatic variables that point to other address spaces.
5173  // ISO/IEC TR 18037 S5.1.2
5174  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5175    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5176    NewVD->setInvalidDecl();
5177    return false;
5178  }
5179
5180  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5181  // scope.
5182  if ((getLangOpts().OpenCLVersion >= 120)
5183      && NewVD->isStaticLocal()) {
5184    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5185    NewVD->setInvalidDecl();
5186    return false;
5187  }
5188
5189  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5190      && !NewVD->hasAttr<BlocksAttr>()) {
5191    if (getLangOpts().getGC() != LangOptions::NonGC)
5192      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5193    else {
5194      assert(!getLangOpts().ObjCAutoRefCount);
5195      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5196    }
5197  }
5198
5199  bool isVM = T->isVariablyModifiedType();
5200  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5201      NewVD->hasAttr<BlocksAttr>())
5202    getCurFunction()->setHasBranchProtectedScope();
5203
5204  if ((isVM && NewVD->hasLinkage()) ||
5205      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5206    bool SizeIsNegative;
5207    llvm::APSInt Oversized;
5208    TypeSourceInfo *FixedTInfo =
5209      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5210                                                    SizeIsNegative, Oversized);
5211    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5212      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5213      // FIXME: This won't give the correct result for
5214      // int a[10][n];
5215      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5216
5217      if (NewVD->isFileVarDecl())
5218        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5219        << SizeRange;
5220      else if (NewVD->getStorageClass() == SC_Static)
5221        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5222        << SizeRange;
5223      else
5224        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5225        << SizeRange;
5226      NewVD->setInvalidDecl();
5227      return false;
5228    }
5229
5230    if (FixedTInfo == 0) {
5231      if (NewVD->isFileVarDecl())
5232        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5233      else
5234        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5235      NewVD->setInvalidDecl();
5236      return false;
5237    }
5238
5239    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5240    NewVD->setType(FixedTInfo->getType());
5241    NewVD->setTypeSourceInfo(FixedTInfo);
5242  }
5243
5244  // If we did not find anything by this name, look for a non-visible
5245  // extern "C" declaration with the same name.
5246  //
5247  // Clang has a lot of problems with extern local declarations.
5248  // The actual standards text here is:
5249  //
5250  // C++11 [basic.link]p6:
5251  //   The name of a function declared in block scope and the name
5252  //   of a variable declared by a block scope extern declaration
5253  //   have linkage. If there is a visible declaration of an entity
5254  //   with linkage having the same name and type, ignoring entities
5255  //   declared outside the innermost enclosing namespace scope, the
5256  //   block scope declaration declares that same entity and
5257  //   receives the linkage of the previous declaration.
5258  //
5259  // C11 6.2.7p4:
5260  //   For an identifier with internal or external linkage declared
5261  //   in a scope in which a prior declaration of that identifier is
5262  //   visible, if the prior declaration specifies internal or
5263  //   external linkage, the type of the identifier at the later
5264  //   declaration becomes the composite type.
5265  //
5266  // The most important point here is that we're not allowed to
5267  // update our understanding of the type according to declarations
5268  // not in scope.
5269  bool PreviousWasHidden = false;
5270  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5271    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5272      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5273    if (Pos != LocallyScopedExternCDecls.end()) {
5274      Previous.addDecl(Pos->second);
5275      PreviousWasHidden = true;
5276    }
5277  }
5278
5279  // Filter out any non-conflicting previous declarations.
5280  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5281
5282  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
5283    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5284      << T;
5285    NewVD->setInvalidDecl();
5286    return false;
5287  }
5288
5289  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5290    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5291    NewVD->setInvalidDecl();
5292    return false;
5293  }
5294
5295  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5296    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5297    NewVD->setInvalidDecl();
5298    return false;
5299  }
5300
5301  if (NewVD->isConstexpr() && !T->isDependentType() &&
5302      RequireLiteralType(NewVD->getLocation(), T,
5303                         diag::err_constexpr_var_non_literal)) {
5304    NewVD->setInvalidDecl();
5305    return false;
5306  }
5307
5308  if (!Previous.empty()) {
5309    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5310    return true;
5311  }
5312  return false;
5313}
5314
5315/// \brief Data used with FindOverriddenMethod
5316struct FindOverriddenMethodData {
5317  Sema *S;
5318  CXXMethodDecl *Method;
5319};
5320
5321/// \brief Member lookup function that determines whether a given C++
5322/// method overrides a method in a base class, to be used with
5323/// CXXRecordDecl::lookupInBases().
5324static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5325                                 CXXBasePath &Path,
5326                                 void *UserData) {
5327  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5328
5329  FindOverriddenMethodData *Data
5330    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5331
5332  DeclarationName Name = Data->Method->getDeclName();
5333
5334  // FIXME: Do we care about other names here too?
5335  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5336    // We really want to find the base class destructor here.
5337    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5338    CanQualType CT = Data->S->Context.getCanonicalType(T);
5339
5340    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5341  }
5342
5343  for (Path.Decls = BaseRecord->lookup(Name);
5344       !Path.Decls.empty();
5345       Path.Decls = Path.Decls.slice(1)) {
5346    NamedDecl *D = Path.Decls.front();
5347    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5348      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5349        return true;
5350    }
5351  }
5352
5353  return false;
5354}
5355
5356namespace {
5357  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5358}
5359/// \brief Report an error regarding overriding, along with any relevant
5360/// overriden methods.
5361///
5362/// \param DiagID the primary error to report.
5363/// \param MD the overriding method.
5364/// \param OEK which overrides to include as notes.
5365static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5366                            OverrideErrorKind OEK = OEK_All) {
5367  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5368  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5369                                      E = MD->end_overridden_methods();
5370       I != E; ++I) {
5371    // This check (& the OEK parameter) could be replaced by a predicate, but
5372    // without lambdas that would be overkill. This is still nicer than writing
5373    // out the diag loop 3 times.
5374    if ((OEK == OEK_All) ||
5375        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5376        (OEK == OEK_Deleted && (*I)->isDeleted()))
5377      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5378  }
5379}
5380
5381/// AddOverriddenMethods - See if a method overrides any in the base classes,
5382/// and if so, check that it's a valid override and remember it.
5383bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5384  // Look for virtual methods in base classes that this method might override.
5385  CXXBasePaths Paths;
5386  FindOverriddenMethodData Data;
5387  Data.Method = MD;
5388  Data.S = this;
5389  bool hasDeletedOverridenMethods = false;
5390  bool hasNonDeletedOverridenMethods = false;
5391  bool AddedAny = false;
5392  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5393    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5394         E = Paths.found_decls_end(); I != E; ++I) {
5395      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5396        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5397        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5398            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5399            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5400            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5401          hasDeletedOverridenMethods |= OldMD->isDeleted();
5402          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5403          AddedAny = true;
5404        }
5405      }
5406    }
5407  }
5408
5409  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5410    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5411  }
5412  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5413    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5414  }
5415
5416  return AddedAny;
5417}
5418
5419namespace {
5420  // Struct for holding all of the extra arguments needed by
5421  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5422  struct ActOnFDArgs {
5423    Scope *S;
5424    Declarator &D;
5425    MultiTemplateParamsArg TemplateParamLists;
5426    bool AddToScope;
5427  };
5428}
5429
5430namespace {
5431
5432// Callback to only accept typo corrections that have a non-zero edit distance.
5433// Also only accept corrections that have the same parent decl.
5434class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5435 public:
5436  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5437                            CXXRecordDecl *Parent)
5438      : Context(Context), OriginalFD(TypoFD),
5439        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5440
5441  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5442    if (candidate.getEditDistance() == 0)
5443      return false;
5444
5445    SmallVector<unsigned, 1> MismatchedParams;
5446    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5447                                          CDeclEnd = candidate.end();
5448         CDecl != CDeclEnd; ++CDecl) {
5449      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5450
5451      if (FD && !FD->hasBody() &&
5452          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5453        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5454          CXXRecordDecl *Parent = MD->getParent();
5455          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5456            return true;
5457        } else if (!ExpectedParent) {
5458          return true;
5459        }
5460      }
5461    }
5462
5463    return false;
5464  }
5465
5466 private:
5467  ASTContext &Context;
5468  FunctionDecl *OriginalFD;
5469  CXXRecordDecl *ExpectedParent;
5470};
5471
5472}
5473
5474/// \brief Generate diagnostics for an invalid function redeclaration.
5475///
5476/// This routine handles generating the diagnostic messages for an invalid
5477/// function redeclaration, including finding possible similar declarations
5478/// or performing typo correction if there are no previous declarations with
5479/// the same name.
5480///
5481/// Returns a NamedDecl iff typo correction was performed and substituting in
5482/// the new declaration name does not cause new errors.
5483static NamedDecl* DiagnoseInvalidRedeclaration(
5484    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5485    ActOnFDArgs &ExtraArgs) {
5486  NamedDecl *Result = NULL;
5487  DeclarationName Name = NewFD->getDeclName();
5488  DeclContext *NewDC = NewFD->getDeclContext();
5489  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5490                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5491  SmallVector<unsigned, 1> MismatchedParams;
5492  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5493  TypoCorrection Correction;
5494  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5495                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5496  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5497                                  : diag::err_member_def_does_not_match;
5498
5499  NewFD->setInvalidDecl();
5500  SemaRef.LookupQualifiedName(Prev, NewDC);
5501  assert(!Prev.isAmbiguous() &&
5502         "Cannot have an ambiguity in previous-declaration lookup");
5503  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5504  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5505                                      MD ? MD->getParent() : 0);
5506  if (!Prev.empty()) {
5507    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5508         Func != FuncEnd; ++Func) {
5509      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5510      if (FD &&
5511          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5512        // Add 1 to the index so that 0 can mean the mismatch didn't
5513        // involve a parameter
5514        unsigned ParamNum =
5515            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5516        NearMatches.push_back(std::make_pair(FD, ParamNum));
5517      }
5518    }
5519  // If the qualified name lookup yielded nothing, try typo correction
5520  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5521                                         Prev.getLookupKind(), 0, 0,
5522                                         Validator, NewDC))) {
5523    // Trap errors.
5524    Sema::SFINAETrap Trap(SemaRef);
5525
5526    // Set up everything for the call to ActOnFunctionDeclarator
5527    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5528                              ExtraArgs.D.getIdentifierLoc());
5529    Previous.clear();
5530    Previous.setLookupName(Correction.getCorrection());
5531    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5532                                    CDeclEnd = Correction.end();
5533         CDecl != CDeclEnd; ++CDecl) {
5534      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5535      if (FD && !FD->hasBody() &&
5536          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5537        Previous.addDecl(FD);
5538      }
5539    }
5540    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5541    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5542    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5543    // eliminate the need for the parameter pack ExtraArgs.
5544    Result = SemaRef.ActOnFunctionDeclarator(
5545        ExtraArgs.S, ExtraArgs.D,
5546        Correction.getCorrectionDecl()->getDeclContext(),
5547        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5548        ExtraArgs.AddToScope);
5549    if (Trap.hasErrorOccurred()) {
5550      // Pretend the typo correction never occurred
5551      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5552                                ExtraArgs.D.getIdentifierLoc());
5553      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5554      Previous.clear();
5555      Previous.setLookupName(Name);
5556      Result = NULL;
5557    } else {
5558      for (LookupResult::iterator Func = Previous.begin(),
5559                               FuncEnd = Previous.end();
5560           Func != FuncEnd; ++Func) {
5561        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5562          NearMatches.push_back(std::make_pair(FD, 0));
5563      }
5564    }
5565    if (NearMatches.empty()) {
5566      // Ignore the correction if it didn't yield any close FunctionDecl matches
5567      Correction = TypoCorrection();
5568    } else {
5569      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5570                             : diag::err_member_def_does_not_match_suggest;
5571    }
5572  }
5573
5574  if (Correction) {
5575    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5576    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5577    // turn causes the correction to fully qualify the name. If we fix
5578    // CorrectTypo to minimally qualify then this change should be good.
5579    SourceRange FixItLoc(NewFD->getLocation());
5580    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5581    if (Correction.getCorrectionSpecifier() && SS.isValid())
5582      FixItLoc.setBegin(SS.getBeginLoc());
5583    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5584        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5585        << FixItHint::CreateReplacement(
5586            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5587  } else {
5588    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5589        << Name << NewDC << NewFD->getLocation();
5590  }
5591
5592  bool NewFDisConst = false;
5593  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5594    NewFDisConst = NewMD->isConst();
5595
5596  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5597       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5598       NearMatch != NearMatchEnd; ++NearMatch) {
5599    FunctionDecl *FD = NearMatch->first;
5600    bool FDisConst = false;
5601    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5602      FDisConst = MD->isConst();
5603
5604    if (unsigned Idx = NearMatch->second) {
5605      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5606      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5607      if (Loc.isInvalid()) Loc = FD->getLocation();
5608      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5609          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5610    } else if (Correction) {
5611      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5612          << Correction.getQuoted(SemaRef.getLangOpts());
5613    } else if (FDisConst != NewFDisConst) {
5614      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5615          << NewFDisConst << FD->getSourceRange().getEnd();
5616    } else
5617      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5618  }
5619  return Result;
5620}
5621
5622static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5623                                                          Declarator &D) {
5624  switch (D.getDeclSpec().getStorageClassSpec()) {
5625  default: llvm_unreachable("Unknown storage class!");
5626  case DeclSpec::SCS_auto:
5627  case DeclSpec::SCS_register:
5628  case DeclSpec::SCS_mutable:
5629    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5630                 diag::err_typecheck_sclass_func);
5631    D.setInvalidType();
5632    break;
5633  case DeclSpec::SCS_unspecified: break;
5634  case DeclSpec::SCS_extern: return SC_Extern;
5635  case DeclSpec::SCS_static: {
5636    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5637      // C99 6.7.1p5:
5638      //   The declaration of an identifier for a function that has
5639      //   block scope shall have no explicit storage-class specifier
5640      //   other than extern
5641      // See also (C++ [dcl.stc]p4).
5642      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5643                   diag::err_static_block_func);
5644      break;
5645    } else
5646      return SC_Static;
5647  }
5648  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5649  }
5650
5651  // No explicit storage class has already been returned
5652  return SC_None;
5653}
5654
5655static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5656                                           DeclContext *DC, QualType &R,
5657                                           TypeSourceInfo *TInfo,
5658                                           FunctionDecl::StorageClass SC,
5659                                           bool &IsVirtualOkay) {
5660  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5661  DeclarationName Name = NameInfo.getName();
5662
5663  FunctionDecl *NewFD = 0;
5664  bool isInline = D.getDeclSpec().isInlineSpecified();
5665
5666  if (!SemaRef.getLangOpts().CPlusPlus) {
5667    // Determine whether the function was written with a
5668    // prototype. This true when:
5669    //   - there is a prototype in the declarator, or
5670    //   - the type R of the function is some kind of typedef or other reference
5671    //     to a type name (which eventually refers to a function type).
5672    bool HasPrototype =
5673      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5674      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5675
5676    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5677                                 D.getLocStart(), NameInfo, R,
5678                                 TInfo, SC, isInline,
5679                                 HasPrototype, false);
5680    if (D.isInvalidType())
5681      NewFD->setInvalidDecl();
5682
5683    // Set the lexical context.
5684    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5685
5686    return NewFD;
5687  }
5688
5689  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5690  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5691
5692  // Check that the return type is not an abstract class type.
5693  // For record types, this is done by the AbstractClassUsageDiagnoser once
5694  // the class has been completely parsed.
5695  if (!DC->isRecord() &&
5696      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5697                                     R->getAs<FunctionType>()->getResultType(),
5698                                     diag::err_abstract_type_in_decl,
5699                                     SemaRef.AbstractReturnType))
5700    D.setInvalidType();
5701
5702  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5703    // This is a C++ constructor declaration.
5704    assert(DC->isRecord() &&
5705           "Constructors can only be declared in a member context");
5706
5707    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5708    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5709                                      D.getLocStart(), NameInfo,
5710                                      R, TInfo, isExplicit, isInline,
5711                                      /*isImplicitlyDeclared=*/false,
5712                                      isConstexpr);
5713
5714  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5715    // This is a C++ destructor declaration.
5716    if (DC->isRecord()) {
5717      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5718      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5719      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5720                                        SemaRef.Context, Record,
5721                                        D.getLocStart(),
5722                                        NameInfo, R, TInfo, isInline,
5723                                        /*isImplicitlyDeclared=*/false);
5724
5725      // If the class is complete, then we now create the implicit exception
5726      // specification. If the class is incomplete or dependent, we can't do
5727      // it yet.
5728      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5729          Record->getDefinition() && !Record->isBeingDefined() &&
5730          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5731        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5732      }
5733
5734      IsVirtualOkay = true;
5735      return NewDD;
5736
5737    } else {
5738      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5739      D.setInvalidType();
5740
5741      // Create a FunctionDecl to satisfy the function definition parsing
5742      // code path.
5743      return FunctionDecl::Create(SemaRef.Context, DC,
5744                                  D.getLocStart(),
5745                                  D.getIdentifierLoc(), Name, R, TInfo,
5746                                  SC, isInline,
5747                                  /*hasPrototype=*/true, isConstexpr);
5748    }
5749
5750  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5751    if (!DC->isRecord()) {
5752      SemaRef.Diag(D.getIdentifierLoc(),
5753           diag::err_conv_function_not_member);
5754      return 0;
5755    }
5756
5757    SemaRef.CheckConversionDeclarator(D, R, SC);
5758    IsVirtualOkay = true;
5759    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5760                                     D.getLocStart(), NameInfo,
5761                                     R, TInfo, isInline, isExplicit,
5762                                     isConstexpr, SourceLocation());
5763
5764  } else if (DC->isRecord()) {
5765    // If the name of the function is the same as the name of the record,
5766    // then this must be an invalid constructor that has a return type.
5767    // (The parser checks for a return type and makes the declarator a
5768    // constructor if it has no return type).
5769    if (Name.getAsIdentifierInfo() &&
5770        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5771      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5772        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5773        << SourceRange(D.getIdentifierLoc());
5774      return 0;
5775    }
5776
5777    // This is a C++ method declaration.
5778    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
5779                                               cast<CXXRecordDecl>(DC),
5780                                               D.getLocStart(), NameInfo, R,
5781                                               TInfo, SC, isInline,
5782                                               isConstexpr, SourceLocation());
5783    IsVirtualOkay = !Ret->isStatic();
5784    return Ret;
5785  } else {
5786    // Determine whether the function was written with a
5787    // prototype. This true when:
5788    //   - we're in C++ (where every function has a prototype),
5789    return FunctionDecl::Create(SemaRef.Context, DC,
5790                                D.getLocStart(),
5791                                NameInfo, R, TInfo, SC, isInline,
5792                                true/*HasPrototype*/, isConstexpr);
5793  }
5794}
5795
5796void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5797  // In C++, the empty parameter-type-list must be spelled "void"; a
5798  // typedef of void is not permitted.
5799  if (getLangOpts().CPlusPlus &&
5800      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5801    bool IsTypeAlias = false;
5802    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5803      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5804    else if (const TemplateSpecializationType *TST =
5805               Param->getType()->getAs<TemplateSpecializationType>())
5806      IsTypeAlias = TST->isTypeAlias();
5807    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5808      << IsTypeAlias;
5809  }
5810}
5811
5812NamedDecl*
5813Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5814                              TypeSourceInfo *TInfo, LookupResult &Previous,
5815                              MultiTemplateParamsArg TemplateParamLists,
5816                              bool &AddToScope) {
5817  QualType R = TInfo->getType();
5818
5819  assert(R.getTypePtr()->isFunctionType());
5820
5821  // TODO: consider using NameInfo for diagnostic.
5822  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5823  DeclarationName Name = NameInfo.getName();
5824  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5825
5826  if (D.getDeclSpec().isThreadSpecified())
5827    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5828
5829  // Do not allow returning a objc interface by-value.
5830  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5831    Diag(D.getIdentifierLoc(),
5832         diag::err_object_cannot_be_passed_returned_by_value) << 0
5833    << R->getAs<FunctionType>()->getResultType()
5834    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5835
5836    QualType T = R->getAs<FunctionType>()->getResultType();
5837    T = Context.getObjCObjectPointerType(T);
5838    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5839      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5840      R = Context.getFunctionType(T,
5841                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5842                                                     FPT->getNumArgs()),
5843                                  EPI);
5844    }
5845    else if (isa<FunctionNoProtoType>(R))
5846      R = Context.getFunctionNoProtoType(T);
5847  }
5848
5849  bool isFriend = false;
5850  FunctionTemplateDecl *FunctionTemplate = 0;
5851  bool isExplicitSpecialization = false;
5852  bool isFunctionTemplateSpecialization = false;
5853
5854  bool isDependentClassScopeExplicitSpecialization = false;
5855  bool HasExplicitTemplateArgs = false;
5856  TemplateArgumentListInfo TemplateArgs;
5857
5858  bool isVirtualOkay = false;
5859
5860  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5861                                              isVirtualOkay);
5862  if (!NewFD) return 0;
5863
5864  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5865    NewFD->setTopLevelDeclInObjCContainer();
5866
5867  if (getLangOpts().CPlusPlus) {
5868    bool isInline = D.getDeclSpec().isInlineSpecified();
5869    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5870    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5871    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5872    isFriend = D.getDeclSpec().isFriendSpecified();
5873    if (isFriend && !isInline && D.isFunctionDefinition()) {
5874      // C++ [class.friend]p5
5875      //   A function can be defined in a friend declaration of a
5876      //   class . . . . Such a function is implicitly inline.
5877      NewFD->setImplicitlyInline();
5878    }
5879
5880    // If this is a method defined in an __interface, and is not a constructor
5881    // or an overloaded operator, then set the pure flag (isVirtual will already
5882    // return true).
5883    if (const CXXRecordDecl *Parent =
5884          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5885      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5886        NewFD->setPure(true);
5887    }
5888
5889    SetNestedNameSpecifier(NewFD, D);
5890    isExplicitSpecialization = false;
5891    isFunctionTemplateSpecialization = false;
5892    if (D.isInvalidType())
5893      NewFD->setInvalidDecl();
5894
5895    // Set the lexical context. If the declarator has a C++
5896    // scope specifier, or is the object of a friend declaration, the
5897    // lexical context will be different from the semantic context.
5898    NewFD->setLexicalDeclContext(CurContext);
5899
5900    // Match up the template parameter lists with the scope specifier, then
5901    // determine whether we have a template or a template specialization.
5902    bool Invalid = false;
5903    if (TemplateParameterList *TemplateParams
5904          = MatchTemplateParametersToScopeSpecifier(
5905                                  D.getDeclSpec().getLocStart(),
5906                                  D.getIdentifierLoc(),
5907                                  D.getCXXScopeSpec(),
5908                                  TemplateParamLists.data(),
5909                                  TemplateParamLists.size(),
5910                                  isFriend,
5911                                  isExplicitSpecialization,
5912                                  Invalid)) {
5913      if (TemplateParams->size() > 0) {
5914        // This is a function template
5915
5916        // Check that we can declare a template here.
5917        if (CheckTemplateDeclScope(S, TemplateParams))
5918          return 0;
5919
5920        // A destructor cannot be a template.
5921        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5922          Diag(NewFD->getLocation(), diag::err_destructor_template);
5923          return 0;
5924        }
5925
5926        // If we're adding a template to a dependent context, we may need to
5927        // rebuilding some of the types used within the template parameter list,
5928        // now that we know what the current instantiation is.
5929        if (DC->isDependentContext()) {
5930          ContextRAII SavedContext(*this, DC);
5931          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5932            Invalid = true;
5933        }
5934
5935
5936        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5937                                                        NewFD->getLocation(),
5938                                                        Name, TemplateParams,
5939                                                        NewFD);
5940        FunctionTemplate->setLexicalDeclContext(CurContext);
5941        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5942
5943        // For source fidelity, store the other template param lists.
5944        if (TemplateParamLists.size() > 1) {
5945          NewFD->setTemplateParameterListsInfo(Context,
5946                                               TemplateParamLists.size() - 1,
5947                                               TemplateParamLists.data());
5948        }
5949      } else {
5950        // This is a function template specialization.
5951        isFunctionTemplateSpecialization = true;
5952        // For source fidelity, store all the template param lists.
5953        NewFD->setTemplateParameterListsInfo(Context,
5954                                             TemplateParamLists.size(),
5955                                             TemplateParamLists.data());
5956
5957        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5958        if (isFriend) {
5959          // We want to remove the "template<>", found here.
5960          SourceRange RemoveRange = TemplateParams->getSourceRange();
5961
5962          // If we remove the template<> and the name is not a
5963          // template-id, we're actually silently creating a problem:
5964          // the friend declaration will refer to an untemplated decl,
5965          // and clearly the user wants a template specialization.  So
5966          // we need to insert '<>' after the name.
5967          SourceLocation InsertLoc;
5968          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5969            InsertLoc = D.getName().getSourceRange().getEnd();
5970            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5971          }
5972
5973          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5974            << Name << RemoveRange
5975            << FixItHint::CreateRemoval(RemoveRange)
5976            << FixItHint::CreateInsertion(InsertLoc, "<>");
5977        }
5978      }
5979    }
5980    else {
5981      // All template param lists were matched against the scope specifier:
5982      // this is NOT (an explicit specialization of) a template.
5983      if (TemplateParamLists.size() > 0)
5984        // For source fidelity, store all the template param lists.
5985        NewFD->setTemplateParameterListsInfo(Context,
5986                                             TemplateParamLists.size(),
5987                                             TemplateParamLists.data());
5988    }
5989
5990    if (Invalid) {
5991      NewFD->setInvalidDecl();
5992      if (FunctionTemplate)
5993        FunctionTemplate->setInvalidDecl();
5994    }
5995
5996    // C++ [dcl.fct.spec]p5:
5997    //   The virtual specifier shall only be used in declarations of
5998    //   nonstatic class member functions that appear within a
5999    //   member-specification of a class declaration; see 10.3.
6000    //
6001    if (isVirtual && !NewFD->isInvalidDecl()) {
6002      if (!isVirtualOkay) {
6003        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6004             diag::err_virtual_non_function);
6005      } else if (!CurContext->isRecord()) {
6006        // 'virtual' was specified outside of the class.
6007        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6008             diag::err_virtual_out_of_class)
6009          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6010      } else if (NewFD->getDescribedFunctionTemplate()) {
6011        // C++ [temp.mem]p3:
6012        //  A member function template shall not be virtual.
6013        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6014             diag::err_virtual_member_function_template)
6015          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6016      } else {
6017        // Okay: Add virtual to the method.
6018        NewFD->setVirtualAsWritten(true);
6019      }
6020    }
6021
6022    // C++ [dcl.fct.spec]p3:
6023    //  The inline specifier shall not appear on a block scope function
6024    //  declaration.
6025    if (isInline && !NewFD->isInvalidDecl()) {
6026      if (CurContext->isFunctionOrMethod()) {
6027        // 'inline' is not allowed on block scope function declaration.
6028        Diag(D.getDeclSpec().getInlineSpecLoc(),
6029             diag::err_inline_declaration_block_scope) << Name
6030          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6031      }
6032    }
6033
6034    // C++ [dcl.fct.spec]p6:
6035    //  The explicit specifier shall be used only in the declaration of a
6036    //  constructor or conversion function within its class definition;
6037    //  see 12.3.1 and 12.3.2.
6038    if (isExplicit && !NewFD->isInvalidDecl()) {
6039      if (!CurContext->isRecord()) {
6040        // 'explicit' was specified outside of the class.
6041        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6042             diag::err_explicit_out_of_class)
6043          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6044      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6045                 !isa<CXXConversionDecl>(NewFD)) {
6046        // 'explicit' was specified on a function that wasn't a constructor
6047        // or conversion function.
6048        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6049             diag::err_explicit_non_ctor_or_conv_function)
6050          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6051      }
6052    }
6053
6054    if (isConstexpr) {
6055      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6056      // are implicitly inline.
6057      NewFD->setImplicitlyInline();
6058
6059      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6060      // be either constructors or to return a literal type. Therefore,
6061      // destructors cannot be declared constexpr.
6062      if (isa<CXXDestructorDecl>(NewFD))
6063        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6064    }
6065
6066    // If __module_private__ was specified, mark the function accordingly.
6067    if (D.getDeclSpec().isModulePrivateSpecified()) {
6068      if (isFunctionTemplateSpecialization) {
6069        SourceLocation ModulePrivateLoc
6070          = D.getDeclSpec().getModulePrivateSpecLoc();
6071        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6072          << 0
6073          << FixItHint::CreateRemoval(ModulePrivateLoc);
6074      } else {
6075        NewFD->setModulePrivate();
6076        if (FunctionTemplate)
6077          FunctionTemplate->setModulePrivate();
6078      }
6079    }
6080
6081    if (isFriend) {
6082      // For now, claim that the objects have no previous declaration.
6083      if (FunctionTemplate) {
6084        FunctionTemplate->setObjectOfFriendDecl(false);
6085        FunctionTemplate->setAccess(AS_public);
6086      }
6087      NewFD->setObjectOfFriendDecl(false);
6088      NewFD->setAccess(AS_public);
6089    }
6090
6091    // If a function is defined as defaulted or deleted, mark it as such now.
6092    switch (D.getFunctionDefinitionKind()) {
6093      case FDK_Declaration:
6094      case FDK_Definition:
6095        break;
6096
6097      case FDK_Defaulted:
6098        NewFD->setDefaulted();
6099        break;
6100
6101      case FDK_Deleted:
6102        NewFD->setDeletedAsWritten();
6103        break;
6104    }
6105
6106    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6107        D.isFunctionDefinition()) {
6108      // C++ [class.mfct]p2:
6109      //   A member function may be defined (8.4) in its class definition, in
6110      //   which case it is an inline member function (7.1.2)
6111      NewFD->setImplicitlyInline();
6112    }
6113
6114    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6115        !CurContext->isRecord()) {
6116      // C++ [class.static]p1:
6117      //   A data or function member of a class may be declared static
6118      //   in a class definition, in which case it is a static member of
6119      //   the class.
6120
6121      // Complain about the 'static' specifier if it's on an out-of-line
6122      // member function definition.
6123      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6124           diag::err_static_out_of_line)
6125        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6126    }
6127
6128    // C++11 [except.spec]p15:
6129    //   A deallocation function with no exception-specification is treated
6130    //   as if it were specified with noexcept(true).
6131    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6132    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6133         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6134        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6135      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6136      EPI.ExceptionSpecType = EST_BasicNoexcept;
6137      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6138                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6139                                                         FPT->getNumArgs()),
6140                                             EPI));
6141    }
6142  }
6143
6144  // Filter out previous declarations that don't match the scope.
6145  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6146                       isExplicitSpecialization ||
6147                       isFunctionTemplateSpecialization);
6148
6149  // Handle GNU asm-label extension (encoded as an attribute).
6150  if (Expr *E = (Expr*) D.getAsmLabel()) {
6151    // The parser guarantees this is a string.
6152    StringLiteral *SE = cast<StringLiteral>(E);
6153    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6154                                                SE->getString()));
6155  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6156    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6157      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6158    if (I != ExtnameUndeclaredIdentifiers.end()) {
6159      NewFD->addAttr(I->second);
6160      ExtnameUndeclaredIdentifiers.erase(I);
6161    }
6162  }
6163
6164  // Copy the parameter declarations from the declarator D to the function
6165  // declaration NewFD, if they are available.  First scavenge them into Params.
6166  SmallVector<ParmVarDecl*, 16> Params;
6167  if (D.isFunctionDeclarator()) {
6168    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6169
6170    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6171    // function that takes no arguments, not a function that takes a
6172    // single void argument.
6173    // We let through "const void" here because Sema::GetTypeForDeclarator
6174    // already checks for that case.
6175    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6176        FTI.ArgInfo[0].Param &&
6177        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6178      // Empty arg list, don't push any params.
6179      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6180    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6181      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6182        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6183        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6184        Param->setDeclContext(NewFD);
6185        Params.push_back(Param);
6186
6187        if (Param->isInvalidDecl())
6188          NewFD->setInvalidDecl();
6189      }
6190    }
6191
6192  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6193    // When we're declaring a function with a typedef, typeof, etc as in the
6194    // following example, we'll need to synthesize (unnamed)
6195    // parameters for use in the declaration.
6196    //
6197    // @code
6198    // typedef void fn(int);
6199    // fn f;
6200    // @endcode
6201
6202    // Synthesize a parameter for each argument type.
6203    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6204         AE = FT->arg_type_end(); AI != AE; ++AI) {
6205      ParmVarDecl *Param =
6206        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6207      Param->setScopeInfo(0, Params.size());
6208      Params.push_back(Param);
6209    }
6210  } else {
6211    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6212           "Should not need args for typedef of non-prototype fn");
6213  }
6214
6215  // Finally, we know we have the right number of parameters, install them.
6216  NewFD->setParams(Params);
6217
6218  // Find all anonymous symbols defined during the declaration of this function
6219  // and add to NewFD. This lets us track decls such 'enum Y' in:
6220  //
6221  //   void f(enum Y {AA} x) {}
6222  //
6223  // which would otherwise incorrectly end up in the translation unit scope.
6224  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6225  DeclsInPrototypeScope.clear();
6226
6227  if (D.getDeclSpec().isNoreturnSpecified())
6228    NewFD->addAttr(
6229        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6230                                       Context));
6231
6232  // Process the non-inheritable attributes on this declaration.
6233  ProcessDeclAttributes(S, NewFD, D,
6234                        /*NonInheritable=*/true, /*Inheritable=*/false);
6235
6236  // Functions returning a variably modified type violate C99 6.7.5.2p2
6237  // because all functions have linkage.
6238  if (!NewFD->isInvalidDecl() &&
6239      NewFD->getResultType()->isVariablyModifiedType()) {
6240    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6241    NewFD->setInvalidDecl();
6242  }
6243
6244  // Handle attributes.
6245  ProcessDeclAttributes(S, NewFD, D,
6246                        /*NonInheritable=*/false, /*Inheritable=*/true);
6247
6248  QualType RetType = NewFD->getResultType();
6249  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6250      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6251  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6252      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6253    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6254    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6255      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6256                                                        Context));
6257    }
6258  }
6259
6260  if (!getLangOpts().CPlusPlus) {
6261    // Perform semantic checking on the function declaration.
6262    bool isExplicitSpecialization=false;
6263    if (!NewFD->isInvalidDecl()) {
6264      if (NewFD->isMain())
6265        CheckMain(NewFD, D.getDeclSpec());
6266      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6267                                                  isExplicitSpecialization));
6268    }
6269    // Make graceful recovery from an invalid redeclaration.
6270    else if (!Previous.empty())
6271           D.setRedeclaration(true);
6272    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6273            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6274           "previous declaration set still overloaded");
6275  } else {
6276    // If the declarator is a template-id, translate the parser's template
6277    // argument list into our AST format.
6278    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6279      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6280      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6281      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6282      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6283                                         TemplateId->NumArgs);
6284      translateTemplateArguments(TemplateArgsPtr,
6285                                 TemplateArgs);
6286
6287      HasExplicitTemplateArgs = true;
6288
6289      if (NewFD->isInvalidDecl()) {
6290        HasExplicitTemplateArgs = false;
6291      } else if (FunctionTemplate) {
6292        // Function template with explicit template arguments.
6293        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6294          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6295
6296        HasExplicitTemplateArgs = false;
6297      } else if (!isFunctionTemplateSpecialization &&
6298                 !D.getDeclSpec().isFriendSpecified()) {
6299        // We have encountered something that the user meant to be a
6300        // specialization (because it has explicitly-specified template
6301        // arguments) but that was not introduced with a "template<>" (or had
6302        // too few of them).
6303        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6304          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6305          << FixItHint::CreateInsertion(
6306                                    D.getDeclSpec().getLocStart(),
6307                                        "template<> ");
6308        isFunctionTemplateSpecialization = true;
6309      } else {
6310        // "friend void foo<>(int);" is an implicit specialization decl.
6311        isFunctionTemplateSpecialization = true;
6312      }
6313    } else if (isFriend && isFunctionTemplateSpecialization) {
6314      // This combination is only possible in a recovery case;  the user
6315      // wrote something like:
6316      //   template <> friend void foo(int);
6317      // which we're recovering from as if the user had written:
6318      //   friend void foo<>(int);
6319      // Go ahead and fake up a template id.
6320      HasExplicitTemplateArgs = true;
6321        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6322      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6323    }
6324
6325    // If it's a friend (and only if it's a friend), it's possible
6326    // that either the specialized function type or the specialized
6327    // template is dependent, and therefore matching will fail.  In
6328    // this case, don't check the specialization yet.
6329    bool InstantiationDependent = false;
6330    if (isFunctionTemplateSpecialization && isFriend &&
6331        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6332         TemplateSpecializationType::anyDependentTemplateArguments(
6333            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6334            InstantiationDependent))) {
6335      assert(HasExplicitTemplateArgs &&
6336             "friend function specialization without template args");
6337      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6338                                                       Previous))
6339        NewFD->setInvalidDecl();
6340    } else if (isFunctionTemplateSpecialization) {
6341      if (CurContext->isDependentContext() && CurContext->isRecord()
6342          && !isFriend) {
6343        isDependentClassScopeExplicitSpecialization = true;
6344        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6345          diag::ext_function_specialization_in_class :
6346          diag::err_function_specialization_in_class)
6347          << NewFD->getDeclName();
6348      } else if (CheckFunctionTemplateSpecialization(NewFD,
6349                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6350                                                     Previous))
6351        NewFD->setInvalidDecl();
6352
6353      // C++ [dcl.stc]p1:
6354      //   A storage-class-specifier shall not be specified in an explicit
6355      //   specialization (14.7.3)
6356      if (SC != SC_None) {
6357        if (SC != NewFD->getTemplateSpecializationInfo()->getTemplate()->getTemplatedDecl()->getStorageClass())
6358          Diag(NewFD->getLocation(),
6359               diag::err_explicit_specialization_inconsistent_storage_class)
6360            << SC
6361            << FixItHint::CreateRemoval(
6362                                      D.getDeclSpec().getStorageClassSpecLoc());
6363
6364        else
6365          Diag(NewFD->getLocation(),
6366               diag::ext_explicit_specialization_storage_class)
6367            << FixItHint::CreateRemoval(
6368                                      D.getDeclSpec().getStorageClassSpecLoc());
6369      }
6370
6371    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6372      if (CheckMemberSpecialization(NewFD, Previous))
6373          NewFD->setInvalidDecl();
6374    }
6375
6376    // Perform semantic checking on the function declaration.
6377    if (!isDependentClassScopeExplicitSpecialization) {
6378      if (NewFD->isInvalidDecl()) {
6379        // If this is a class member, mark the class invalid immediately.
6380        // This avoids some consistency errors later.
6381        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6382          methodDecl->getParent()->setInvalidDecl();
6383      } else {
6384        if (NewFD->isMain())
6385          CheckMain(NewFD, D.getDeclSpec());
6386        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6387                                                    isExplicitSpecialization));
6388      }
6389    }
6390
6391    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6392            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6393           "previous declaration set still overloaded");
6394
6395    NamedDecl *PrincipalDecl = (FunctionTemplate
6396                                ? cast<NamedDecl>(FunctionTemplate)
6397                                : NewFD);
6398
6399    if (isFriend && D.isRedeclaration()) {
6400      AccessSpecifier Access = AS_public;
6401      if (!NewFD->isInvalidDecl())
6402        Access = NewFD->getPreviousDecl()->getAccess();
6403
6404      NewFD->setAccess(Access);
6405      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6406
6407      PrincipalDecl->setObjectOfFriendDecl(true);
6408    }
6409
6410    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6411        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6412      PrincipalDecl->setNonMemberOperator();
6413
6414    // If we have a function template, check the template parameter
6415    // list. This will check and merge default template arguments.
6416    if (FunctionTemplate) {
6417      FunctionTemplateDecl *PrevTemplate =
6418                                     FunctionTemplate->getPreviousDecl();
6419      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6420                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6421                            D.getDeclSpec().isFriendSpecified()
6422                              ? (D.isFunctionDefinition()
6423                                   ? TPC_FriendFunctionTemplateDefinition
6424                                   : TPC_FriendFunctionTemplate)
6425                              : (D.getCXXScopeSpec().isSet() &&
6426                                 DC && DC->isRecord() &&
6427                                 DC->isDependentContext())
6428                                  ? TPC_ClassTemplateMember
6429                                  : TPC_FunctionTemplate);
6430    }
6431
6432    if (NewFD->isInvalidDecl()) {
6433      // Ignore all the rest of this.
6434    } else if (!D.isRedeclaration()) {
6435      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6436                                       AddToScope };
6437      // Fake up an access specifier if it's supposed to be a class member.
6438      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6439        NewFD->setAccess(AS_public);
6440
6441      // Qualified decls generally require a previous declaration.
6442      if (D.getCXXScopeSpec().isSet()) {
6443        // ...with the major exception of templated-scope or
6444        // dependent-scope friend declarations.
6445
6446        // TODO: we currently also suppress this check in dependent
6447        // contexts because (1) the parameter depth will be off when
6448        // matching friend templates and (2) we might actually be
6449        // selecting a friend based on a dependent factor.  But there
6450        // are situations where these conditions don't apply and we
6451        // can actually do this check immediately.
6452        if (isFriend &&
6453            (TemplateParamLists.size() ||
6454             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6455             CurContext->isDependentContext())) {
6456          // ignore these
6457        } else {
6458          // The user tried to provide an out-of-line definition for a
6459          // function that is a member of a class or namespace, but there
6460          // was no such member function declared (C++ [class.mfct]p2,
6461          // C++ [namespace.memdef]p2). For example:
6462          //
6463          // class X {
6464          //   void f() const;
6465          // };
6466          //
6467          // void X::f() { } // ill-formed
6468          //
6469          // Complain about this problem, and attempt to suggest close
6470          // matches (e.g., those that differ only in cv-qualifiers and
6471          // whether the parameter types are references).
6472
6473          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6474                                                               NewFD,
6475                                                               ExtraArgs)) {
6476            AddToScope = ExtraArgs.AddToScope;
6477            return Result;
6478          }
6479        }
6480
6481        // Unqualified local friend declarations are required to resolve
6482        // to something.
6483      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6484        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6485                                                             NewFD,
6486                                                             ExtraArgs)) {
6487          AddToScope = ExtraArgs.AddToScope;
6488          return Result;
6489        }
6490      }
6491
6492    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6493               !isFriend && !isFunctionTemplateSpecialization &&
6494               !isExplicitSpecialization) {
6495      // An out-of-line member function declaration must also be a
6496      // definition (C++ [dcl.meaning]p1).
6497      // Note that this is not the case for explicit specializations of
6498      // function templates or member functions of class templates, per
6499      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6500      // extension for compatibility with old SWIG code which likes to
6501      // generate them.
6502      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6503        << D.getCXXScopeSpec().getRange();
6504    }
6505  }
6506
6507  ProcessPragmaWeak(S, NewFD);
6508  checkAttributesAfterMerging(*this, *NewFD);
6509
6510  AddKnownFunctionAttributes(NewFD);
6511
6512  if (NewFD->hasAttr<OverloadableAttr>() &&
6513      !NewFD->getType()->getAs<FunctionProtoType>()) {
6514    Diag(NewFD->getLocation(),
6515         diag::err_attribute_overloadable_no_prototype)
6516      << NewFD;
6517
6518    // Turn this into a variadic function with no parameters.
6519    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6520    FunctionProtoType::ExtProtoInfo EPI;
6521    EPI.Variadic = true;
6522    EPI.ExtInfo = FT->getExtInfo();
6523
6524    QualType R = Context.getFunctionType(FT->getResultType(),
6525                                         ArrayRef<QualType>(),
6526                                         EPI);
6527    NewFD->setType(R);
6528  }
6529
6530  // If there's a #pragma GCC visibility in scope, and this isn't a class
6531  // member, set the visibility of this function.
6532  if (!DC->isRecord() && NewFD->hasExternalLinkage())
6533    AddPushedVisibilityAttribute(NewFD);
6534
6535  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6536  // marking the function.
6537  AddCFAuditedAttribute(NewFD);
6538
6539  // If this is a locally-scoped extern C function, update the
6540  // map of such names.
6541  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6542      && !NewFD->isInvalidDecl())
6543    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6544
6545  // Set this FunctionDecl's range up to the right paren.
6546  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6547
6548  if (getLangOpts().CPlusPlus) {
6549    if (FunctionTemplate) {
6550      if (NewFD->isInvalidDecl())
6551        FunctionTemplate->setInvalidDecl();
6552      return FunctionTemplate;
6553    }
6554  }
6555
6556  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6557    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6558    if ((getLangOpts().OpenCLVersion >= 120)
6559        && (SC == SC_Static)) {
6560      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6561      D.setInvalidType();
6562    }
6563
6564    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6565    if (!NewFD->getResultType()->isVoidType()) {
6566      Diag(D.getIdentifierLoc(),
6567           diag::err_expected_kernel_void_return_type);
6568      D.setInvalidType();
6569    }
6570
6571    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6572         PE = NewFD->param_end(); PI != PE; ++PI) {
6573      ParmVarDecl *Param = *PI;
6574      QualType PT = Param->getType();
6575
6576      // OpenCL v1.2 s6.9.a:
6577      // A kernel function argument cannot be declared as a
6578      // pointer to a pointer type.
6579      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6580        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6581        D.setInvalidType();
6582      }
6583
6584      // OpenCL v1.2 s6.8 n:
6585      // A kernel function argument cannot be declared
6586      // of event_t type.
6587      if (PT->isEventT()) {
6588        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6589        D.setInvalidType();
6590      }
6591    }
6592  }
6593
6594  MarkUnusedFileScopedDecl(NewFD);
6595
6596  if (getLangOpts().CUDA)
6597    if (IdentifierInfo *II = NewFD->getIdentifier())
6598      if (!NewFD->isInvalidDecl() &&
6599          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6600        if (II->isStr("cudaConfigureCall")) {
6601          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6602            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6603
6604          Context.setcudaConfigureCallDecl(NewFD);
6605        }
6606      }
6607
6608  // Here we have an function template explicit specialization at class scope.
6609  // The actually specialization will be postponed to template instatiation
6610  // time via the ClassScopeFunctionSpecializationDecl node.
6611  if (isDependentClassScopeExplicitSpecialization) {
6612    ClassScopeFunctionSpecializationDecl *NewSpec =
6613                         ClassScopeFunctionSpecializationDecl::Create(
6614                                Context, CurContext, SourceLocation(),
6615                                cast<CXXMethodDecl>(NewFD),
6616                                HasExplicitTemplateArgs, TemplateArgs);
6617    CurContext->addDecl(NewSpec);
6618    AddToScope = false;
6619  }
6620
6621  return NewFD;
6622}
6623
6624/// \brief Perform semantic checking of a new function declaration.
6625///
6626/// Performs semantic analysis of the new function declaration
6627/// NewFD. This routine performs all semantic checking that does not
6628/// require the actual declarator involved in the declaration, and is
6629/// used both for the declaration of functions as they are parsed
6630/// (called via ActOnDeclarator) and for the declaration of functions
6631/// that have been instantiated via C++ template instantiation (called
6632/// via InstantiateDecl).
6633///
6634/// \param IsExplicitSpecialization whether this new function declaration is
6635/// an explicit specialization of the previous declaration.
6636///
6637/// This sets NewFD->isInvalidDecl() to true if there was an error.
6638///
6639/// \returns true if the function declaration is a redeclaration.
6640bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6641                                    LookupResult &Previous,
6642                                    bool IsExplicitSpecialization) {
6643  assert(!NewFD->getResultType()->isVariablyModifiedType()
6644         && "Variably modified return types are not handled here");
6645
6646  // Check for a previous declaration of this name.
6647  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6648    // Since we did not find anything by this name, look for a non-visible
6649    // extern "C" declaration with the same name.
6650    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6651      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6652    if (Pos != LocallyScopedExternCDecls.end())
6653      Previous.addDecl(Pos->second);
6654  }
6655
6656  // Filter out any non-conflicting previous declarations.
6657  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6658
6659  bool Redeclaration = false;
6660  NamedDecl *OldDecl = 0;
6661
6662  // Merge or overload the declaration with an existing declaration of
6663  // the same name, if appropriate.
6664  if (!Previous.empty()) {
6665    // Determine whether NewFD is an overload of PrevDecl or
6666    // a declaration that requires merging. If it's an overload,
6667    // there's no more work to do here; we'll just add the new
6668    // function to the scope.
6669    if (!AllowOverloadingOfFunction(Previous, Context)) {
6670      Redeclaration = true;
6671      OldDecl = Previous.getFoundDecl();
6672    } else {
6673      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6674                            /*NewIsUsingDecl*/ false)) {
6675      case Ovl_Match:
6676        Redeclaration = true;
6677        break;
6678
6679      case Ovl_NonFunction:
6680        Redeclaration = true;
6681        break;
6682
6683      case Ovl_Overload:
6684        Redeclaration = false;
6685        break;
6686      }
6687
6688      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6689        // If a function name is overloadable in C, then every function
6690        // with that name must be marked "overloadable".
6691        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6692          << Redeclaration << NewFD;
6693        NamedDecl *OverloadedDecl = 0;
6694        if (Redeclaration)
6695          OverloadedDecl = OldDecl;
6696        else if (!Previous.empty())
6697          OverloadedDecl = Previous.getRepresentativeDecl();
6698        if (OverloadedDecl)
6699          Diag(OverloadedDecl->getLocation(),
6700               diag::note_attribute_overloadable_prev_overload);
6701        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6702                                                        Context));
6703      }
6704    }
6705  }
6706
6707  // C++11 [dcl.constexpr]p8:
6708  //   A constexpr specifier for a non-static member function that is not
6709  //   a constructor declares that member function to be const.
6710  //
6711  // This needs to be delayed until we know whether this is an out-of-line
6712  // definition of a static member function.
6713  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6714  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6715      !isa<CXXConstructorDecl>(MD) &&
6716      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6717    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6718    if (FunctionTemplateDecl *OldTD =
6719          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6720      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6721    if (!OldMD || !OldMD->isStatic()) {
6722      const FunctionProtoType *FPT =
6723        MD->getType()->castAs<FunctionProtoType>();
6724      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6725      EPI.TypeQuals |= Qualifiers::Const;
6726      MD->setType(Context.getFunctionType(FPT->getResultType(),
6727                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6728                                                         FPT->getNumArgs()),
6729                                          EPI));
6730    }
6731  }
6732
6733  if (Redeclaration) {
6734    // NewFD and OldDecl represent declarations that need to be
6735    // merged.
6736    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6737      NewFD->setInvalidDecl();
6738      return Redeclaration;
6739    }
6740
6741    Previous.clear();
6742    Previous.addDecl(OldDecl);
6743
6744    if (FunctionTemplateDecl *OldTemplateDecl
6745                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6746      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6747      FunctionTemplateDecl *NewTemplateDecl
6748        = NewFD->getDescribedFunctionTemplate();
6749      assert(NewTemplateDecl && "Template/non-template mismatch");
6750      if (CXXMethodDecl *Method
6751            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6752        Method->setAccess(OldTemplateDecl->getAccess());
6753        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6754      }
6755
6756      // If this is an explicit specialization of a member that is a function
6757      // template, mark it as a member specialization.
6758      if (IsExplicitSpecialization &&
6759          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6760        NewTemplateDecl->setMemberSpecialization();
6761        assert(OldTemplateDecl->isMemberSpecialization());
6762      }
6763
6764    } else {
6765      // This needs to happen first so that 'inline' propagates.
6766      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6767
6768      if (isa<CXXMethodDecl>(NewFD)) {
6769        // A valid redeclaration of a C++ method must be out-of-line,
6770        // but (unfortunately) it's not necessarily a definition
6771        // because of templates, which means that the previous
6772        // declaration is not necessarily from the class definition.
6773
6774        // For just setting the access, that doesn't matter.
6775        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6776        NewFD->setAccess(oldMethod->getAccess());
6777
6778        // Update the key-function state if necessary for this ABI.
6779        if (NewFD->isInlined() &&
6780            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6781          // setNonKeyFunction needs to work with the original
6782          // declaration from the class definition, and isVirtual() is
6783          // just faster in that case, so map back to that now.
6784          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6785          if (oldMethod->isVirtual()) {
6786            Context.setNonKeyFunction(oldMethod);
6787          }
6788        }
6789      }
6790    }
6791  }
6792
6793  // Semantic checking for this function declaration (in isolation).
6794  if (getLangOpts().CPlusPlus) {
6795    // C++-specific checks.
6796    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6797      CheckConstructor(Constructor);
6798    } else if (CXXDestructorDecl *Destructor =
6799                dyn_cast<CXXDestructorDecl>(NewFD)) {
6800      CXXRecordDecl *Record = Destructor->getParent();
6801      QualType ClassType = Context.getTypeDeclType(Record);
6802
6803      // FIXME: Shouldn't we be able to perform this check even when the class
6804      // type is dependent? Both gcc and edg can handle that.
6805      if (!ClassType->isDependentType()) {
6806        DeclarationName Name
6807          = Context.DeclarationNames.getCXXDestructorName(
6808                                        Context.getCanonicalType(ClassType));
6809        if (NewFD->getDeclName() != Name) {
6810          Diag(NewFD->getLocation(), diag::err_destructor_name);
6811          NewFD->setInvalidDecl();
6812          return Redeclaration;
6813        }
6814      }
6815    } else if (CXXConversionDecl *Conversion
6816               = dyn_cast<CXXConversionDecl>(NewFD)) {
6817      ActOnConversionDeclarator(Conversion);
6818    }
6819
6820    // Find any virtual functions that this function overrides.
6821    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6822      if (!Method->isFunctionTemplateSpecialization() &&
6823          !Method->getDescribedFunctionTemplate() &&
6824          Method->isCanonicalDecl()) {
6825        if (AddOverriddenMethods(Method->getParent(), Method)) {
6826          // If the function was marked as "static", we have a problem.
6827          if (NewFD->getStorageClass() == SC_Static) {
6828            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6829          }
6830        }
6831      }
6832
6833      if (Method->isStatic())
6834        checkThisInStaticMemberFunctionType(Method);
6835    }
6836
6837    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6838    if (NewFD->isOverloadedOperator() &&
6839        CheckOverloadedOperatorDeclaration(NewFD)) {
6840      NewFD->setInvalidDecl();
6841      return Redeclaration;
6842    }
6843
6844    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6845    if (NewFD->getLiteralIdentifier() &&
6846        CheckLiteralOperatorDeclaration(NewFD)) {
6847      NewFD->setInvalidDecl();
6848      return Redeclaration;
6849    }
6850
6851    // In C++, check default arguments now that we have merged decls. Unless
6852    // the lexical context is the class, because in this case this is done
6853    // during delayed parsing anyway.
6854    if (!CurContext->isRecord())
6855      CheckCXXDefaultArguments(NewFD);
6856
6857    // If this function declares a builtin function, check the type of this
6858    // declaration against the expected type for the builtin.
6859    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6860      ASTContext::GetBuiltinTypeError Error;
6861      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6862      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6863      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6864        // The type of this function differs from the type of the builtin,
6865        // so forget about the builtin entirely.
6866        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6867      }
6868    }
6869
6870    // If this function is declared as being extern "C", then check to see if
6871    // the function returns a UDT (class, struct, or union type) that is not C
6872    // compatible, and if it does, warn the user.
6873    // But, issue any diagnostic on the first declaration only.
6874    if (NewFD->isExternC() && Previous.empty()) {
6875      QualType R = NewFD->getResultType();
6876      if (R->isIncompleteType() && !R->isVoidType())
6877        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6878            << NewFD << R;
6879      else if (!R.isPODType(Context) && !R->isVoidType() &&
6880               !R->isObjCObjectPointerType())
6881        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6882    }
6883  }
6884  return Redeclaration;
6885}
6886
6887static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6888  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6889  if (!TSI)
6890    return SourceRange();
6891
6892  TypeLoc TL = TSI->getTypeLoc();
6893  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6894  if (!FunctionTL)
6895    return SourceRange();
6896
6897  TypeLoc ResultTL = FunctionTL.getResultLoc();
6898  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6899    return ResultTL.getSourceRange();
6900
6901  return SourceRange();
6902}
6903
6904void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6905  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6906  //   static or constexpr is ill-formed.
6907  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6908  //   appear in a declaration of main.
6909  // static main is not an error under C99, but we should warn about it.
6910  // We accept _Noreturn main as an extension.
6911  if (FD->getStorageClass() == SC_Static)
6912    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6913         ? diag::err_static_main : diag::warn_static_main)
6914      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6915  if (FD->isInlineSpecified())
6916    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6917      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6918  if (DS.isNoreturnSpecified()) {
6919    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6920    SourceRange NoreturnRange(NoreturnLoc,
6921                              PP.getLocForEndOfToken(NoreturnLoc));
6922    Diag(NoreturnLoc, diag::ext_noreturn_main);
6923    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6924      << FixItHint::CreateRemoval(NoreturnRange);
6925  }
6926  if (FD->isConstexpr()) {
6927    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6928      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6929    FD->setConstexpr(false);
6930  }
6931
6932  QualType T = FD->getType();
6933  assert(T->isFunctionType() && "function decl is not of function type");
6934  const FunctionType* FT = T->castAs<FunctionType>();
6935
6936  // All the standards say that main() should should return 'int'.
6937  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6938    // In C and C++, main magically returns 0 if you fall off the end;
6939    // set the flag which tells us that.
6940    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6941    FD->setHasImplicitReturnZero(true);
6942
6943  // In C with GNU extensions we allow main() to have non-integer return
6944  // type, but we should warn about the extension, and we disable the
6945  // implicit-return-zero rule.
6946  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6947    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6948
6949    SourceRange ResultRange = getResultSourceRange(FD);
6950    if (ResultRange.isValid())
6951      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6952          << FixItHint::CreateReplacement(ResultRange, "int");
6953
6954  // Otherwise, this is just a flat-out error.
6955  } else {
6956    SourceRange ResultRange = getResultSourceRange(FD);
6957    if (ResultRange.isValid())
6958      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6959          << FixItHint::CreateReplacement(ResultRange, "int");
6960    else
6961      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6962
6963    FD->setInvalidDecl(true);
6964  }
6965
6966  // Treat protoless main() as nullary.
6967  if (isa<FunctionNoProtoType>(FT)) return;
6968
6969  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6970  unsigned nparams = FTP->getNumArgs();
6971  assert(FD->getNumParams() == nparams);
6972
6973  bool HasExtraParameters = (nparams > 3);
6974
6975  // Darwin passes an undocumented fourth argument of type char**.  If
6976  // other platforms start sprouting these, the logic below will start
6977  // getting shifty.
6978  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6979    HasExtraParameters = false;
6980
6981  if (HasExtraParameters) {
6982    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6983    FD->setInvalidDecl(true);
6984    nparams = 3;
6985  }
6986
6987  // FIXME: a lot of the following diagnostics would be improved
6988  // if we had some location information about types.
6989
6990  QualType CharPP =
6991    Context.getPointerType(Context.getPointerType(Context.CharTy));
6992  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6993
6994  for (unsigned i = 0; i < nparams; ++i) {
6995    QualType AT = FTP->getArgType(i);
6996
6997    bool mismatch = true;
6998
6999    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7000      mismatch = false;
7001    else if (Expected[i] == CharPP) {
7002      // As an extension, the following forms are okay:
7003      //   char const **
7004      //   char const * const *
7005      //   char * const *
7006
7007      QualifierCollector qs;
7008      const PointerType* PT;
7009      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7010          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7011          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7012                              Context.CharTy)) {
7013        qs.removeConst();
7014        mismatch = !qs.empty();
7015      }
7016    }
7017
7018    if (mismatch) {
7019      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7020      // TODO: suggest replacing given type with expected type
7021      FD->setInvalidDecl(true);
7022    }
7023  }
7024
7025  if (nparams == 1 && !FD->isInvalidDecl()) {
7026    Diag(FD->getLocation(), diag::warn_main_one_arg);
7027  }
7028
7029  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7030    Diag(FD->getLocation(), diag::err_main_template_decl);
7031    FD->setInvalidDecl();
7032  }
7033}
7034
7035bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7036  // FIXME: Need strict checking.  In C89, we need to check for
7037  // any assignment, increment, decrement, function-calls, or
7038  // commas outside of a sizeof.  In C99, it's the same list,
7039  // except that the aforementioned are allowed in unevaluated
7040  // expressions.  Everything else falls under the
7041  // "may accept other forms of constant expressions" exception.
7042  // (We never end up here for C++, so the constant expression
7043  // rules there don't matter.)
7044  if (Init->isConstantInitializer(Context, false))
7045    return false;
7046  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7047    << Init->getSourceRange();
7048  return true;
7049}
7050
7051namespace {
7052  // Visits an initialization expression to see if OrigDecl is evaluated in
7053  // its own initialization and throws a warning if it does.
7054  class SelfReferenceChecker
7055      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7056    Sema &S;
7057    Decl *OrigDecl;
7058    bool isRecordType;
7059    bool isPODType;
7060    bool isReferenceType;
7061
7062  public:
7063    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7064
7065    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7066                                                    S(S), OrigDecl(OrigDecl) {
7067      isPODType = false;
7068      isRecordType = false;
7069      isReferenceType = false;
7070      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7071        isPODType = VD->getType().isPODType(S.Context);
7072        isRecordType = VD->getType()->isRecordType();
7073        isReferenceType = VD->getType()->isReferenceType();
7074      }
7075    }
7076
7077    // For most expressions, the cast is directly above the DeclRefExpr.
7078    // For conditional operators, the cast can be outside the conditional
7079    // operator if both expressions are DeclRefExpr's.
7080    void HandleValue(Expr *E) {
7081      if (isReferenceType)
7082        return;
7083      E = E->IgnoreParenImpCasts();
7084      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7085        HandleDeclRefExpr(DRE);
7086        return;
7087      }
7088
7089      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7090        HandleValue(CO->getTrueExpr());
7091        HandleValue(CO->getFalseExpr());
7092        return;
7093      }
7094
7095      if (isa<MemberExpr>(E)) {
7096        Expr *Base = E->IgnoreParenImpCasts();
7097        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7098          // Check for static member variables and don't warn on them.
7099          if (!isa<FieldDecl>(ME->getMemberDecl()))
7100            return;
7101          Base = ME->getBase()->IgnoreParenImpCasts();
7102        }
7103        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7104          HandleDeclRefExpr(DRE);
7105        return;
7106      }
7107    }
7108
7109    // Reference types are handled here since all uses of references are
7110    // bad, not just r-value uses.
7111    void VisitDeclRefExpr(DeclRefExpr *E) {
7112      if (isReferenceType)
7113        HandleDeclRefExpr(E);
7114    }
7115
7116    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7117      if (E->getCastKind() == CK_LValueToRValue ||
7118          (isRecordType && E->getCastKind() == CK_NoOp))
7119        HandleValue(E->getSubExpr());
7120
7121      Inherited::VisitImplicitCastExpr(E);
7122    }
7123
7124    void VisitMemberExpr(MemberExpr *E) {
7125      // Don't warn on arrays since they can be treated as pointers.
7126      if (E->getType()->canDecayToPointerType()) return;
7127
7128      // Warn when a non-static method call is followed by non-static member
7129      // field accesses, which is followed by a DeclRefExpr.
7130      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7131      bool Warn = (MD && !MD->isStatic());
7132      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7133      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7134        if (!isa<FieldDecl>(ME->getMemberDecl()))
7135          Warn = false;
7136        Base = ME->getBase()->IgnoreParenImpCasts();
7137      }
7138
7139      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7140        if (Warn)
7141          HandleDeclRefExpr(DRE);
7142        return;
7143      }
7144
7145      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7146      // Visit that expression.
7147      Visit(Base);
7148    }
7149
7150    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7151      if (E->getNumArgs() > 0)
7152        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7153          HandleDeclRefExpr(DRE);
7154
7155      Inherited::VisitCXXOperatorCallExpr(E);
7156    }
7157
7158    void VisitUnaryOperator(UnaryOperator *E) {
7159      // For POD record types, addresses of its own members are well-defined.
7160      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7161          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7162        if (!isPODType)
7163          HandleValue(E->getSubExpr());
7164        return;
7165      }
7166      Inherited::VisitUnaryOperator(E);
7167    }
7168
7169    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7170
7171    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7172      Decl* ReferenceDecl = DRE->getDecl();
7173      if (OrigDecl != ReferenceDecl) return;
7174      unsigned diag;
7175      if (isReferenceType) {
7176        diag = diag::warn_uninit_self_reference_in_reference_init;
7177      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7178        diag = diag::warn_static_self_reference_in_init;
7179      } else {
7180        diag = diag::warn_uninit_self_reference_in_init;
7181      }
7182
7183      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7184                            S.PDiag(diag)
7185                              << DRE->getNameInfo().getName()
7186                              << OrigDecl->getLocation()
7187                              << DRE->getSourceRange());
7188    }
7189  };
7190
7191  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7192  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7193                                 bool DirectInit) {
7194    // Parameters arguments are occassionially constructed with itself,
7195    // for instance, in recursive functions.  Skip them.
7196    if (isa<ParmVarDecl>(OrigDecl))
7197      return;
7198
7199    E = E->IgnoreParens();
7200
7201    // Skip checking T a = a where T is not a record or reference type.
7202    // Doing so is a way to silence uninitialized warnings.
7203    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7204      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7205        if (ICE->getCastKind() == CK_LValueToRValue)
7206          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7207            if (DRE->getDecl() == OrigDecl)
7208              return;
7209
7210    SelfReferenceChecker(S, OrigDecl).Visit(E);
7211  }
7212}
7213
7214/// AddInitializerToDecl - Adds the initializer Init to the
7215/// declaration dcl. If DirectInit is true, this is C++ direct
7216/// initialization rather than copy initialization.
7217void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7218                                bool DirectInit, bool TypeMayContainAuto) {
7219  // If there is no declaration, there was an error parsing it.  Just ignore
7220  // the initializer.
7221  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7222    return;
7223
7224  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7225    // With declarators parsed the way they are, the parser cannot
7226    // distinguish between a normal initializer and a pure-specifier.
7227    // Thus this grotesque test.
7228    IntegerLiteral *IL;
7229    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7230        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7231      CheckPureMethod(Method, Init->getSourceRange());
7232    else {
7233      Diag(Method->getLocation(), diag::err_member_function_initialization)
7234        << Method->getDeclName() << Init->getSourceRange();
7235      Method->setInvalidDecl();
7236    }
7237    return;
7238  }
7239
7240  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7241  if (!VDecl) {
7242    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7243    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7244    RealDecl->setInvalidDecl();
7245    return;
7246  }
7247
7248  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7249
7250  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7251  AutoType *Auto = 0;
7252  if (TypeMayContainAuto &&
7253      (Auto = VDecl->getType()->getContainedAutoType()) &&
7254      !Auto->isDeduced()) {
7255    Expr *DeduceInit = Init;
7256    // Initializer could be a C++ direct-initializer. Deduction only works if it
7257    // contains exactly one expression.
7258    if (CXXDirectInit) {
7259      if (CXXDirectInit->getNumExprs() == 0) {
7260        // It isn't possible to write this directly, but it is possible to
7261        // end up in this situation with "auto x(some_pack...);"
7262        Diag(CXXDirectInit->getLocStart(),
7263             diag::err_auto_var_init_no_expression)
7264          << VDecl->getDeclName() << VDecl->getType()
7265          << VDecl->getSourceRange();
7266        RealDecl->setInvalidDecl();
7267        return;
7268      } else if (CXXDirectInit->getNumExprs() > 1) {
7269        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7270             diag::err_auto_var_init_multiple_expressions)
7271          << VDecl->getDeclName() << VDecl->getType()
7272          << VDecl->getSourceRange();
7273        RealDecl->setInvalidDecl();
7274        return;
7275      } else {
7276        DeduceInit = CXXDirectInit->getExpr(0);
7277      }
7278    }
7279
7280    // Expressions default to 'id' when we're in a debugger.
7281    bool DefaultedToAuto = false;
7282    if (getLangOpts().DebuggerCastResultToId &&
7283        Init->getType() == Context.UnknownAnyTy) {
7284      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7285      if (Result.isInvalid()) {
7286        VDecl->setInvalidDecl();
7287        return;
7288      }
7289      Init = Result.take();
7290      DefaultedToAuto = true;
7291    }
7292
7293    TypeSourceInfo *DeducedType = 0;
7294    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7295            DAR_Failed)
7296      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7297    if (!DeducedType) {
7298      RealDecl->setInvalidDecl();
7299      return;
7300    }
7301    VDecl->setTypeSourceInfo(DeducedType);
7302    VDecl->setType(DeducedType->getType());
7303    assert(VDecl->isLinkageValid());
7304
7305    // In ARC, infer lifetime.
7306    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7307      VDecl->setInvalidDecl();
7308
7309    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7310    // 'id' instead of a specific object type prevents most of our usual checks.
7311    // We only want to warn outside of template instantiations, though:
7312    // inside a template, the 'id' could have come from a parameter.
7313    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7314        DeducedType->getType()->isObjCIdType()) {
7315      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
7316      Diag(Loc, diag::warn_auto_var_is_id)
7317        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7318    }
7319
7320    // If this is a redeclaration, check that the type we just deduced matches
7321    // the previously declared type.
7322    if (VarDecl *Old = VDecl->getPreviousDecl())
7323      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7324  }
7325
7326  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7327    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7328    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7329    VDecl->setInvalidDecl();
7330    return;
7331  }
7332
7333  if (!VDecl->getType()->isDependentType()) {
7334    // A definition must end up with a complete type, which means it must be
7335    // complete with the restriction that an array type might be completed by
7336    // the initializer; note that later code assumes this restriction.
7337    QualType BaseDeclType = VDecl->getType();
7338    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7339      BaseDeclType = Array->getElementType();
7340    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7341                            diag::err_typecheck_decl_incomplete_type)) {
7342      RealDecl->setInvalidDecl();
7343      return;
7344    }
7345
7346    // The variable can not have an abstract class type.
7347    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7348                               diag::err_abstract_type_in_decl,
7349                               AbstractVariableType))
7350      VDecl->setInvalidDecl();
7351  }
7352
7353  const VarDecl *Def;
7354  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7355    Diag(VDecl->getLocation(), diag::err_redefinition)
7356      << VDecl->getDeclName();
7357    Diag(Def->getLocation(), diag::note_previous_definition);
7358    VDecl->setInvalidDecl();
7359    return;
7360  }
7361
7362  const VarDecl* PrevInit = 0;
7363  if (getLangOpts().CPlusPlus) {
7364    // C++ [class.static.data]p4
7365    //   If a static data member is of const integral or const
7366    //   enumeration type, its declaration in the class definition can
7367    //   specify a constant-initializer which shall be an integral
7368    //   constant expression (5.19). In that case, the member can appear
7369    //   in integral constant expressions. The member shall still be
7370    //   defined in a namespace scope if it is used in the program and the
7371    //   namespace scope definition shall not contain an initializer.
7372    //
7373    // We already performed a redefinition check above, but for static
7374    // data members we also need to check whether there was an in-class
7375    // declaration with an initializer.
7376    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7377      Diag(VDecl->getLocation(), diag::err_redefinition)
7378        << VDecl->getDeclName();
7379      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7380      return;
7381    }
7382
7383    if (VDecl->hasLocalStorage())
7384      getCurFunction()->setHasBranchProtectedScope();
7385
7386    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7387      VDecl->setInvalidDecl();
7388      return;
7389    }
7390  }
7391
7392  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7393  // a kernel function cannot be initialized."
7394  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7395    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7396    VDecl->setInvalidDecl();
7397    return;
7398  }
7399
7400  // Get the decls type and save a reference for later, since
7401  // CheckInitializerTypes may change it.
7402  QualType DclT = VDecl->getType(), SavT = DclT;
7403
7404  // Expressions default to 'id' when we're in a debugger
7405  // and we are assigning it to a variable of Objective-C pointer type.
7406  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7407      Init->getType() == Context.UnknownAnyTy) {
7408    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7409    if (Result.isInvalid()) {
7410      VDecl->setInvalidDecl();
7411      return;
7412    }
7413    Init = Result.take();
7414  }
7415
7416  // Perform the initialization.
7417  if (!VDecl->isInvalidDecl()) {
7418    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7419    InitializationKind Kind
7420      = DirectInit ?
7421          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7422                                                           Init->getLocStart(),
7423                                                           Init->getLocEnd())
7424                        : InitializationKind::CreateDirectList(
7425                                                          VDecl->getLocation())
7426                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7427                                                    Init->getLocStart());
7428
7429    Expr **Args = &Init;
7430    unsigned NumArgs = 1;
7431    if (CXXDirectInit) {
7432      Args = CXXDirectInit->getExprs();
7433      NumArgs = CXXDirectInit->getNumExprs();
7434    }
7435    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7436    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7437                                        MultiExprArg(Args, NumArgs), &DclT);
7438    if (Result.isInvalid()) {
7439      VDecl->setInvalidDecl();
7440      return;
7441    }
7442
7443    Init = Result.takeAs<Expr>();
7444  }
7445
7446  // Check for self-references within variable initializers.
7447  // Variables declared within a function/method body (except for references)
7448  // are handled by a dataflow analysis.
7449  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7450      VDecl->getType()->isReferenceType()) {
7451    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7452  }
7453
7454  // If the type changed, it means we had an incomplete type that was
7455  // completed by the initializer. For example:
7456  //   int ary[] = { 1, 3, 5 };
7457  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7458  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7459    VDecl->setType(DclT);
7460
7461  if (!VDecl->isInvalidDecl()) {
7462    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7463
7464    if (VDecl->hasAttr<BlocksAttr>())
7465      checkRetainCycles(VDecl, Init);
7466
7467    // It is safe to assign a weak reference into a strong variable.
7468    // Although this code can still have problems:
7469    //   id x = self.weakProp;
7470    //   id y = self.weakProp;
7471    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7472    // paths through the function. This should be revisited if
7473    // -Wrepeated-use-of-weak is made flow-sensitive.
7474    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7475      DiagnosticsEngine::Level Level =
7476        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7477                                 Init->getLocStart());
7478      if (Level != DiagnosticsEngine::Ignored)
7479        getCurFunction()->markSafeWeakUse(Init);
7480    }
7481  }
7482
7483  // The initialization is usually a full-expression.
7484  //
7485  // FIXME: If this is a braced initialization of an aggregate, it is not
7486  // an expression, and each individual field initializer is a separate
7487  // full-expression. For instance, in:
7488  //
7489  //   struct Temp { ~Temp(); };
7490  //   struct S { S(Temp); };
7491  //   struct T { S a, b; } t = { Temp(), Temp() }
7492  //
7493  // we should destroy the first Temp before constructing the second.
7494  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7495                                          false,
7496                                          VDecl->isConstexpr());
7497  if (Result.isInvalid()) {
7498    VDecl->setInvalidDecl();
7499    return;
7500  }
7501  Init = Result.take();
7502
7503  // Attach the initializer to the decl.
7504  VDecl->setInit(Init);
7505
7506  if (VDecl->isLocalVarDecl()) {
7507    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7508    // static storage duration shall be constant expressions or string literals.
7509    // C++ does not have this restriction.
7510    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7511        VDecl->getStorageClass() == SC_Static)
7512      CheckForConstantInitializer(Init, DclT);
7513  } else if (VDecl->isStaticDataMember() &&
7514             VDecl->getLexicalDeclContext()->isRecord()) {
7515    // This is an in-class initialization for a static data member, e.g.,
7516    //
7517    // struct S {
7518    //   static const int value = 17;
7519    // };
7520
7521    // C++ [class.mem]p4:
7522    //   A member-declarator can contain a constant-initializer only
7523    //   if it declares a static member (9.4) of const integral or
7524    //   const enumeration type, see 9.4.2.
7525    //
7526    // C++11 [class.static.data]p3:
7527    //   If a non-volatile const static data member is of integral or
7528    //   enumeration type, its declaration in the class definition can
7529    //   specify a brace-or-equal-initializer in which every initalizer-clause
7530    //   that is an assignment-expression is a constant expression. A static
7531    //   data member of literal type can be declared in the class definition
7532    //   with the constexpr specifier; if so, its declaration shall specify a
7533    //   brace-or-equal-initializer in which every initializer-clause that is
7534    //   an assignment-expression is a constant expression.
7535
7536    // Do nothing on dependent types.
7537    if (DclT->isDependentType()) {
7538
7539    // Allow any 'static constexpr' members, whether or not they are of literal
7540    // type. We separately check that every constexpr variable is of literal
7541    // type.
7542    } else if (VDecl->isConstexpr()) {
7543
7544    // Require constness.
7545    } else if (!DclT.isConstQualified()) {
7546      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7547        << Init->getSourceRange();
7548      VDecl->setInvalidDecl();
7549
7550    // We allow integer constant expressions in all cases.
7551    } else if (DclT->isIntegralOrEnumerationType()) {
7552      // Check whether the expression is a constant expression.
7553      SourceLocation Loc;
7554      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7555        // In C++11, a non-constexpr const static data member with an
7556        // in-class initializer cannot be volatile.
7557        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7558      else if (Init->isValueDependent())
7559        ; // Nothing to check.
7560      else if (Init->isIntegerConstantExpr(Context, &Loc))
7561        ; // Ok, it's an ICE!
7562      else if (Init->isEvaluatable(Context)) {
7563        // If we can constant fold the initializer through heroics, accept it,
7564        // but report this as a use of an extension for -pedantic.
7565        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7566          << Init->getSourceRange();
7567      } else {
7568        // Otherwise, this is some crazy unknown case.  Report the issue at the
7569        // location provided by the isIntegerConstantExpr failed check.
7570        Diag(Loc, diag::err_in_class_initializer_non_constant)
7571          << Init->getSourceRange();
7572        VDecl->setInvalidDecl();
7573      }
7574
7575    // We allow foldable floating-point constants as an extension.
7576    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7577      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7578      // it anyway and provide a fixit to add the 'constexpr'.
7579      if (getLangOpts().CPlusPlus11) {
7580        Diag(VDecl->getLocation(),
7581             diag::ext_in_class_initializer_float_type_cxx11)
7582            << DclT << Init->getSourceRange();
7583        Diag(VDecl->getLocStart(),
7584             diag::note_in_class_initializer_float_type_cxx11)
7585            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7586      } else {
7587        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7588          << DclT << Init->getSourceRange();
7589
7590        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7591          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7592            << Init->getSourceRange();
7593          VDecl->setInvalidDecl();
7594        }
7595      }
7596
7597    // Suggest adding 'constexpr' in C++11 for literal types.
7598    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7599      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7600        << DclT << Init->getSourceRange()
7601        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7602      VDecl->setConstexpr(true);
7603
7604    } else {
7605      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7606        << DclT << Init->getSourceRange();
7607      VDecl->setInvalidDecl();
7608    }
7609  } else if (VDecl->isFileVarDecl()) {
7610    if (VDecl->getStorageClass() == SC_Extern &&
7611        (!getLangOpts().CPlusPlus ||
7612         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7613           VDecl->isExternC())))
7614      Diag(VDecl->getLocation(), diag::warn_extern_init);
7615
7616    // C99 6.7.8p4. All file scoped initializers need to be constant.
7617    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7618      CheckForConstantInitializer(Init, DclT);
7619  }
7620
7621  // We will represent direct-initialization similarly to copy-initialization:
7622  //    int x(1);  -as-> int x = 1;
7623  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7624  //
7625  // Clients that want to distinguish between the two forms, can check for
7626  // direct initializer using VarDecl::getInitStyle().
7627  // A major benefit is that clients that don't particularly care about which
7628  // exactly form was it (like the CodeGen) can handle both cases without
7629  // special case code.
7630
7631  // C++ 8.5p11:
7632  // The form of initialization (using parentheses or '=') is generally
7633  // insignificant, but does matter when the entity being initialized has a
7634  // class type.
7635  if (CXXDirectInit) {
7636    assert(DirectInit && "Call-style initializer must be direct init.");
7637    VDecl->setInitStyle(VarDecl::CallInit);
7638  } else if (DirectInit) {
7639    // This must be list-initialization. No other way is direct-initialization.
7640    VDecl->setInitStyle(VarDecl::ListInit);
7641  }
7642
7643  CheckCompleteVariableDeclaration(VDecl);
7644}
7645
7646/// ActOnInitializerError - Given that there was an error parsing an
7647/// initializer for the given declaration, try to return to some form
7648/// of sanity.
7649void Sema::ActOnInitializerError(Decl *D) {
7650  // Our main concern here is re-establishing invariants like "a
7651  // variable's type is either dependent or complete".
7652  if (!D || D->isInvalidDecl()) return;
7653
7654  VarDecl *VD = dyn_cast<VarDecl>(D);
7655  if (!VD) return;
7656
7657  // Auto types are meaningless if we can't make sense of the initializer.
7658  if (ParsingInitForAutoVars.count(D)) {
7659    D->setInvalidDecl();
7660    return;
7661  }
7662
7663  QualType Ty = VD->getType();
7664  if (Ty->isDependentType()) return;
7665
7666  // Require a complete type.
7667  if (RequireCompleteType(VD->getLocation(),
7668                          Context.getBaseElementType(Ty),
7669                          diag::err_typecheck_decl_incomplete_type)) {
7670    VD->setInvalidDecl();
7671    return;
7672  }
7673
7674  // Require an abstract type.
7675  if (RequireNonAbstractType(VD->getLocation(), Ty,
7676                             diag::err_abstract_type_in_decl,
7677                             AbstractVariableType)) {
7678    VD->setInvalidDecl();
7679    return;
7680  }
7681
7682  // Don't bother complaining about constructors or destructors,
7683  // though.
7684}
7685
7686void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7687                                  bool TypeMayContainAuto) {
7688  // If there is no declaration, there was an error parsing it. Just ignore it.
7689  if (RealDecl == 0)
7690    return;
7691
7692  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7693    QualType Type = Var->getType();
7694
7695    // C++11 [dcl.spec.auto]p3
7696    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7697      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7698        << Var->getDeclName() << Type;
7699      Var->setInvalidDecl();
7700      return;
7701    }
7702
7703    // C++11 [class.static.data]p3: A static data member can be declared with
7704    // the constexpr specifier; if so, its declaration shall specify
7705    // a brace-or-equal-initializer.
7706    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7707    // the definition of a variable [...] or the declaration of a static data
7708    // member.
7709    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7710      if (Var->isStaticDataMember())
7711        Diag(Var->getLocation(),
7712             diag::err_constexpr_static_mem_var_requires_init)
7713          << Var->getDeclName();
7714      else
7715        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7716      Var->setInvalidDecl();
7717      return;
7718    }
7719
7720    switch (Var->isThisDeclarationADefinition()) {
7721    case VarDecl::Definition:
7722      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7723        break;
7724
7725      // We have an out-of-line definition of a static data member
7726      // that has an in-class initializer, so we type-check this like
7727      // a declaration.
7728      //
7729      // Fall through
7730
7731    case VarDecl::DeclarationOnly:
7732      // It's only a declaration.
7733
7734      // Block scope. C99 6.7p7: If an identifier for an object is
7735      // declared with no linkage (C99 6.2.2p6), the type for the
7736      // object shall be complete.
7737      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7738          !Var->getLinkage() && !Var->isInvalidDecl() &&
7739          RequireCompleteType(Var->getLocation(), Type,
7740                              diag::err_typecheck_decl_incomplete_type))
7741        Var->setInvalidDecl();
7742
7743      // Make sure that the type is not abstract.
7744      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7745          RequireNonAbstractType(Var->getLocation(), Type,
7746                                 diag::err_abstract_type_in_decl,
7747                                 AbstractVariableType))
7748        Var->setInvalidDecl();
7749      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7750          Var->getStorageClass() == SC_PrivateExtern) {
7751        Diag(Var->getLocation(), diag::warn_private_extern);
7752        Diag(Var->getLocation(), diag::note_private_extern);
7753      }
7754
7755      return;
7756
7757    case VarDecl::TentativeDefinition:
7758      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7759      // object that has file scope without an initializer, and without a
7760      // storage-class specifier or with the storage-class specifier "static",
7761      // constitutes a tentative definition. Note: A tentative definition with
7762      // external linkage is valid (C99 6.2.2p5).
7763      if (!Var->isInvalidDecl()) {
7764        if (const IncompleteArrayType *ArrayT
7765                                    = Context.getAsIncompleteArrayType(Type)) {
7766          if (RequireCompleteType(Var->getLocation(),
7767                                  ArrayT->getElementType(),
7768                                  diag::err_illegal_decl_array_incomplete_type))
7769            Var->setInvalidDecl();
7770        } else if (Var->getStorageClass() == SC_Static) {
7771          // C99 6.9.2p3: If the declaration of an identifier for an object is
7772          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7773          // declared type shall not be an incomplete type.
7774          // NOTE: code such as the following
7775          //     static struct s;
7776          //     struct s { int a; };
7777          // is accepted by gcc. Hence here we issue a warning instead of
7778          // an error and we do not invalidate the static declaration.
7779          // NOTE: to avoid multiple warnings, only check the first declaration.
7780          if (Var->getPreviousDecl() == 0)
7781            RequireCompleteType(Var->getLocation(), Type,
7782                                diag::ext_typecheck_decl_incomplete_type);
7783        }
7784      }
7785
7786      // Record the tentative definition; we're done.
7787      if (!Var->isInvalidDecl())
7788        TentativeDefinitions.push_back(Var);
7789      return;
7790    }
7791
7792    // Provide a specific diagnostic for uninitialized variable
7793    // definitions with incomplete array type.
7794    if (Type->isIncompleteArrayType()) {
7795      Diag(Var->getLocation(),
7796           diag::err_typecheck_incomplete_array_needs_initializer);
7797      Var->setInvalidDecl();
7798      return;
7799    }
7800
7801    // Provide a specific diagnostic for uninitialized variable
7802    // definitions with reference type.
7803    if (Type->isReferenceType()) {
7804      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7805        << Var->getDeclName()
7806        << SourceRange(Var->getLocation(), Var->getLocation());
7807      Var->setInvalidDecl();
7808      return;
7809    }
7810
7811    // Do not attempt to type-check the default initializer for a
7812    // variable with dependent type.
7813    if (Type->isDependentType())
7814      return;
7815
7816    if (Var->isInvalidDecl())
7817      return;
7818
7819    if (RequireCompleteType(Var->getLocation(),
7820                            Context.getBaseElementType(Type),
7821                            diag::err_typecheck_decl_incomplete_type)) {
7822      Var->setInvalidDecl();
7823      return;
7824    }
7825
7826    // The variable can not have an abstract class type.
7827    if (RequireNonAbstractType(Var->getLocation(), Type,
7828                               diag::err_abstract_type_in_decl,
7829                               AbstractVariableType)) {
7830      Var->setInvalidDecl();
7831      return;
7832    }
7833
7834    // Check for jumps past the implicit initializer.  C++0x
7835    // clarifies that this applies to a "variable with automatic
7836    // storage duration", not a "local variable".
7837    // C++11 [stmt.dcl]p3
7838    //   A program that jumps from a point where a variable with automatic
7839    //   storage duration is not in scope to a point where it is in scope is
7840    //   ill-formed unless the variable has scalar type, class type with a
7841    //   trivial default constructor and a trivial destructor, a cv-qualified
7842    //   version of one of these types, or an array of one of the preceding
7843    //   types and is declared without an initializer.
7844    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7845      if (const RecordType *Record
7846            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7847        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7848        // Mark the function for further checking even if the looser rules of
7849        // C++11 do not require such checks, so that we can diagnose
7850        // incompatibilities with C++98.
7851        if (!CXXRecord->isPOD())
7852          getCurFunction()->setHasBranchProtectedScope();
7853      }
7854    }
7855
7856    // C++03 [dcl.init]p9:
7857    //   If no initializer is specified for an object, and the
7858    //   object is of (possibly cv-qualified) non-POD class type (or
7859    //   array thereof), the object shall be default-initialized; if
7860    //   the object is of const-qualified type, the underlying class
7861    //   type shall have a user-declared default
7862    //   constructor. Otherwise, if no initializer is specified for
7863    //   a non- static object, the object and its subobjects, if
7864    //   any, have an indeterminate initial value); if the object
7865    //   or any of its subobjects are of const-qualified type, the
7866    //   program is ill-formed.
7867    // C++0x [dcl.init]p11:
7868    //   If no initializer is specified for an object, the object is
7869    //   default-initialized; [...].
7870    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7871    InitializationKind Kind
7872      = InitializationKind::CreateDefault(Var->getLocation());
7873
7874    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7875    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7876    if (Init.isInvalid())
7877      Var->setInvalidDecl();
7878    else if (Init.get()) {
7879      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7880      // This is important for template substitution.
7881      Var->setInitStyle(VarDecl::CallInit);
7882    }
7883
7884    CheckCompleteVariableDeclaration(Var);
7885  }
7886}
7887
7888void Sema::ActOnCXXForRangeDecl(Decl *D) {
7889  VarDecl *VD = dyn_cast<VarDecl>(D);
7890  if (!VD) {
7891    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7892    D->setInvalidDecl();
7893    return;
7894  }
7895
7896  VD->setCXXForRangeDecl(true);
7897
7898  // for-range-declaration cannot be given a storage class specifier.
7899  int Error = -1;
7900  switch (VD->getStorageClass()) {
7901  case SC_None:
7902    break;
7903  case SC_Extern:
7904    Error = 0;
7905    break;
7906  case SC_Static:
7907    Error = 1;
7908    break;
7909  case SC_PrivateExtern:
7910    Error = 2;
7911    break;
7912  case SC_Auto:
7913    Error = 3;
7914    break;
7915  case SC_Register:
7916    Error = 4;
7917    break;
7918  case SC_OpenCLWorkGroupLocal:
7919    llvm_unreachable("Unexpected storage class");
7920  }
7921  if (VD->isConstexpr())
7922    Error = 5;
7923  if (Error != -1) {
7924    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7925      << VD->getDeclName() << Error;
7926    D->setInvalidDecl();
7927  }
7928}
7929
7930void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7931  if (var->isInvalidDecl()) return;
7932
7933  // In ARC, don't allow jumps past the implicit initialization of a
7934  // local retaining variable.
7935  if (getLangOpts().ObjCAutoRefCount &&
7936      var->hasLocalStorage()) {
7937    switch (var->getType().getObjCLifetime()) {
7938    case Qualifiers::OCL_None:
7939    case Qualifiers::OCL_ExplicitNone:
7940    case Qualifiers::OCL_Autoreleasing:
7941      break;
7942
7943    case Qualifiers::OCL_Weak:
7944    case Qualifiers::OCL_Strong:
7945      getCurFunction()->setHasBranchProtectedScope();
7946      break;
7947    }
7948  }
7949
7950  if (var->isThisDeclarationADefinition() &&
7951      var->hasExternalLinkage() &&
7952      getDiagnostics().getDiagnosticLevel(
7953                       diag::warn_missing_variable_declarations,
7954                       var->getLocation())) {
7955    // Find a previous declaration that's not a definition.
7956    VarDecl *prev = var->getPreviousDecl();
7957    while (prev && prev->isThisDeclarationADefinition())
7958      prev = prev->getPreviousDecl();
7959
7960    if (!prev)
7961      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7962  }
7963
7964  // All the following checks are C++ only.
7965  if (!getLangOpts().CPlusPlus) return;
7966
7967  QualType type = var->getType();
7968  if (type->isDependentType()) return;
7969
7970  // __block variables might require us to capture a copy-initializer.
7971  if (var->hasAttr<BlocksAttr>()) {
7972    // It's currently invalid to ever have a __block variable with an
7973    // array type; should we diagnose that here?
7974
7975    // Regardless, we don't want to ignore array nesting when
7976    // constructing this copy.
7977    if (type->isStructureOrClassType()) {
7978      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
7979      SourceLocation poi = var->getLocation();
7980      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7981      ExprResult result
7982        = PerformMoveOrCopyInitialization(
7983            InitializedEntity::InitializeBlock(poi, type, false),
7984            var, var->getType(), varRef, /*AllowNRVO=*/true);
7985      if (!result.isInvalid()) {
7986        result = MaybeCreateExprWithCleanups(result);
7987        Expr *init = result.takeAs<Expr>();
7988        Context.setBlockVarCopyInits(var, init);
7989      }
7990    }
7991  }
7992
7993  Expr *Init = var->getInit();
7994  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7995  QualType baseType = Context.getBaseElementType(type);
7996
7997  if (!var->getDeclContext()->isDependentContext() &&
7998      Init && !Init->isValueDependent()) {
7999    if (IsGlobal && !var->isConstexpr() &&
8000        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8001                                            var->getLocation())
8002          != DiagnosticsEngine::Ignored &&
8003        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8004      Diag(var->getLocation(), diag::warn_global_constructor)
8005        << Init->getSourceRange();
8006
8007    if (var->isConstexpr()) {
8008      SmallVector<PartialDiagnosticAt, 8> Notes;
8009      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8010        SourceLocation DiagLoc = var->getLocation();
8011        // If the note doesn't add any useful information other than a source
8012        // location, fold it into the primary diagnostic.
8013        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8014              diag::note_invalid_subexpr_in_const_expr) {
8015          DiagLoc = Notes[0].first;
8016          Notes.clear();
8017        }
8018        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8019          << var << Init->getSourceRange();
8020        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8021          Diag(Notes[I].first, Notes[I].second);
8022      }
8023    } else if (var->isUsableInConstantExpressions(Context)) {
8024      // Check whether the initializer of a const variable of integral or
8025      // enumeration type is an ICE now, since we can't tell whether it was
8026      // initialized by a constant expression if we check later.
8027      var->checkInitIsICE();
8028    }
8029  }
8030
8031  // Require the destructor.
8032  if (const RecordType *recordType = baseType->getAs<RecordType>())
8033    FinalizeVarWithDestructor(var, recordType);
8034}
8035
8036/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8037/// any semantic actions necessary after any initializer has been attached.
8038void
8039Sema::FinalizeDeclaration(Decl *ThisDecl) {
8040  // Note that we are no longer parsing the initializer for this declaration.
8041  ParsingInitForAutoVars.erase(ThisDecl);
8042
8043  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8044  if (!VD)
8045    return;
8046
8047  const DeclContext *DC = VD->getDeclContext();
8048  // If there's a #pragma GCC visibility in scope, and this isn't a class
8049  // member, set the visibility of this variable.
8050  if (!DC->isRecord() && VD->hasExternalLinkage())
8051    AddPushedVisibilityAttribute(VD);
8052
8053  if (VD->isFileVarDecl())
8054    MarkUnusedFileScopedDecl(VD);
8055
8056  // Now we have parsed the initializer and can update the table of magic
8057  // tag values.
8058  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8059      !VD->getType()->isIntegralOrEnumerationType())
8060    return;
8061
8062  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8063         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8064         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8065       I != E; ++I) {
8066    const Expr *MagicValueExpr = VD->getInit();
8067    if (!MagicValueExpr) {
8068      continue;
8069    }
8070    llvm::APSInt MagicValueInt;
8071    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8072      Diag(I->getRange().getBegin(),
8073           diag::err_type_tag_for_datatype_not_ice)
8074        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8075      continue;
8076    }
8077    if (MagicValueInt.getActiveBits() > 64) {
8078      Diag(I->getRange().getBegin(),
8079           diag::err_type_tag_for_datatype_too_large)
8080        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8081      continue;
8082    }
8083    uint64_t MagicValue = MagicValueInt.getZExtValue();
8084    RegisterTypeTagForDatatype(I->getArgumentKind(),
8085                               MagicValue,
8086                               I->getMatchingCType(),
8087                               I->getLayoutCompatible(),
8088                               I->getMustBeNull());
8089  }
8090}
8091
8092Sema::DeclGroupPtrTy
8093Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8094                              Decl **Group, unsigned NumDecls) {
8095  SmallVector<Decl*, 8> Decls;
8096
8097  if (DS.isTypeSpecOwned())
8098    Decls.push_back(DS.getRepAsDecl());
8099
8100  for (unsigned i = 0; i != NumDecls; ++i)
8101    if (Decl *D = Group[i])
8102      Decls.push_back(D);
8103
8104  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8105    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8106      getASTContext().addUnnamedTag(Tag);
8107
8108  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8109                              DS.getTypeSpecType() == DeclSpec::TST_auto);
8110}
8111
8112/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8113/// group, performing any necessary semantic checking.
8114Sema::DeclGroupPtrTy
8115Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8116                           bool TypeMayContainAuto) {
8117  // C++0x [dcl.spec.auto]p7:
8118  //   If the type deduced for the template parameter U is not the same in each
8119  //   deduction, the program is ill-formed.
8120  // FIXME: When initializer-list support is added, a distinction is needed
8121  // between the deduced type U and the deduced type which 'auto' stands for.
8122  //   auto a = 0, b = { 1, 2, 3 };
8123  // is legal because the deduced type U is 'int' in both cases.
8124  if (TypeMayContainAuto && NumDecls > 1) {
8125    QualType Deduced;
8126    CanQualType DeducedCanon;
8127    VarDecl *DeducedDecl = 0;
8128    for (unsigned i = 0; i != NumDecls; ++i) {
8129      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8130        AutoType *AT = D->getType()->getContainedAutoType();
8131        // Don't reissue diagnostics when instantiating a template.
8132        if (AT && D->isInvalidDecl())
8133          break;
8134        if (AT && AT->isDeduced()) {
8135          QualType U = AT->getDeducedType();
8136          CanQualType UCanon = Context.getCanonicalType(U);
8137          if (Deduced.isNull()) {
8138            Deduced = U;
8139            DeducedCanon = UCanon;
8140            DeducedDecl = D;
8141          } else if (DeducedCanon != UCanon) {
8142            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8143                 diag::err_auto_different_deductions)
8144              << Deduced << DeducedDecl->getDeclName()
8145              << U << D->getDeclName()
8146              << DeducedDecl->getInit()->getSourceRange()
8147              << D->getInit()->getSourceRange();
8148            D->setInvalidDecl();
8149            break;
8150          }
8151        }
8152      }
8153    }
8154  }
8155
8156  ActOnDocumentableDecls(Group, NumDecls);
8157
8158  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8159}
8160
8161void Sema::ActOnDocumentableDecl(Decl *D) {
8162  ActOnDocumentableDecls(&D, 1);
8163}
8164
8165void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8166  // Don't parse the comment if Doxygen diagnostics are ignored.
8167  if (NumDecls == 0 || !Group[0])
8168   return;
8169
8170  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8171                               Group[0]->getLocation())
8172        == DiagnosticsEngine::Ignored)
8173    return;
8174
8175  if (NumDecls >= 2) {
8176    // This is a decl group.  Normally it will contain only declarations
8177    // procuded from declarator list.  But in case we have any definitions or
8178    // additional declaration references:
8179    //   'typedef struct S {} S;'
8180    //   'typedef struct S *S;'
8181    //   'struct S *pS;'
8182    // FinalizeDeclaratorGroup adds these as separate declarations.
8183    Decl *MaybeTagDecl = Group[0];
8184    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8185      Group++;
8186      NumDecls--;
8187    }
8188  }
8189
8190  // See if there are any new comments that are not attached to a decl.
8191  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8192  if (!Comments.empty() &&
8193      !Comments.back()->isAttached()) {
8194    // There is at least one comment that not attached to a decl.
8195    // Maybe it should be attached to one of these decls?
8196    //
8197    // Note that this way we pick up not only comments that precede the
8198    // declaration, but also comments that *follow* the declaration -- thanks to
8199    // the lookahead in the lexer: we've consumed the semicolon and looked
8200    // ahead through comments.
8201    for (unsigned i = 0; i != NumDecls; ++i)
8202      Context.getCommentForDecl(Group[i], &PP);
8203  }
8204}
8205
8206/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8207/// to introduce parameters into function prototype scope.
8208Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8209  const DeclSpec &DS = D.getDeclSpec();
8210
8211  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8212  // C++03 [dcl.stc]p2 also permits 'auto'.
8213  VarDecl::StorageClass StorageClass = SC_None;
8214  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8215    StorageClass = SC_Register;
8216  } else if (getLangOpts().CPlusPlus &&
8217             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8218    StorageClass = SC_Auto;
8219  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8220    Diag(DS.getStorageClassSpecLoc(),
8221         diag::err_invalid_storage_class_in_func_decl);
8222    D.getMutableDeclSpec().ClearStorageClassSpecs();
8223  }
8224
8225  if (D.getDeclSpec().isThreadSpecified())
8226    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8227  if (D.getDeclSpec().isConstexprSpecified())
8228    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8229      << 0;
8230
8231  DiagnoseFunctionSpecifiers(D.getDeclSpec());
8232
8233  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8234  QualType parmDeclType = TInfo->getType();
8235
8236  if (getLangOpts().CPlusPlus) {
8237    // Check that there are no default arguments inside the type of this
8238    // parameter.
8239    CheckExtraCXXDefaultArguments(D);
8240
8241    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8242    if (D.getCXXScopeSpec().isSet()) {
8243      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8244        << D.getCXXScopeSpec().getRange();
8245      D.getCXXScopeSpec().clear();
8246    }
8247  }
8248
8249  // Ensure we have a valid name
8250  IdentifierInfo *II = 0;
8251  if (D.hasName()) {
8252    II = D.getIdentifier();
8253    if (!II) {
8254      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8255        << GetNameForDeclarator(D).getName().getAsString();
8256      D.setInvalidType(true);
8257    }
8258  }
8259
8260  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8261  if (II) {
8262    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8263                   ForRedeclaration);
8264    LookupName(R, S);
8265    if (R.isSingleResult()) {
8266      NamedDecl *PrevDecl = R.getFoundDecl();
8267      if (PrevDecl->isTemplateParameter()) {
8268        // Maybe we will complain about the shadowed template parameter.
8269        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8270        // Just pretend that we didn't see the previous declaration.
8271        PrevDecl = 0;
8272      } else if (S->isDeclScope(PrevDecl)) {
8273        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8274        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8275
8276        // Recover by removing the name
8277        II = 0;
8278        D.SetIdentifier(0, D.getIdentifierLoc());
8279        D.setInvalidType(true);
8280      }
8281    }
8282  }
8283
8284  // Temporarily put parameter variables in the translation unit, not
8285  // the enclosing context.  This prevents them from accidentally
8286  // looking like class members in C++.
8287  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8288                                    D.getLocStart(),
8289                                    D.getIdentifierLoc(), II,
8290                                    parmDeclType, TInfo,
8291                                    StorageClass);
8292
8293  if (D.isInvalidType())
8294    New->setInvalidDecl();
8295
8296  assert(S->isFunctionPrototypeScope());
8297  assert(S->getFunctionPrototypeDepth() >= 1);
8298  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8299                    S->getNextFunctionPrototypeIndex());
8300
8301  // Add the parameter declaration into this scope.
8302  S->AddDecl(New);
8303  if (II)
8304    IdResolver.AddDecl(New);
8305
8306  ProcessDeclAttributes(S, New, D);
8307
8308  if (D.getDeclSpec().isModulePrivateSpecified())
8309    Diag(New->getLocation(), diag::err_module_private_local)
8310      << 1 << New->getDeclName()
8311      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8312      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8313
8314  if (New->hasAttr<BlocksAttr>()) {
8315    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8316  }
8317  return New;
8318}
8319
8320/// \brief Synthesizes a variable for a parameter arising from a
8321/// typedef.
8322ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8323                                              SourceLocation Loc,
8324                                              QualType T) {
8325  /* FIXME: setting StartLoc == Loc.
8326     Would it be worth to modify callers so as to provide proper source
8327     location for the unnamed parameters, embedding the parameter's type? */
8328  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8329                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8330                                           SC_None, 0);
8331  Param->setImplicit();
8332  return Param;
8333}
8334
8335void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8336                                    ParmVarDecl * const *ParamEnd) {
8337  // Don't diagnose unused-parameter errors in template instantiations; we
8338  // will already have done so in the template itself.
8339  if (!ActiveTemplateInstantiations.empty())
8340    return;
8341
8342  for (; Param != ParamEnd; ++Param) {
8343    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8344        !(*Param)->hasAttr<UnusedAttr>()) {
8345      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8346        << (*Param)->getDeclName();
8347    }
8348  }
8349}
8350
8351void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8352                                                  ParmVarDecl * const *ParamEnd,
8353                                                  QualType ReturnTy,
8354                                                  NamedDecl *D) {
8355  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8356    return;
8357
8358  // Warn if the return value is pass-by-value and larger than the specified
8359  // threshold.
8360  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8361    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8362    if (Size > LangOpts.NumLargeByValueCopy)
8363      Diag(D->getLocation(), diag::warn_return_value_size)
8364          << D->getDeclName() << Size;
8365  }
8366
8367  // Warn if any parameter is pass-by-value and larger than the specified
8368  // threshold.
8369  for (; Param != ParamEnd; ++Param) {
8370    QualType T = (*Param)->getType();
8371    if (T->isDependentType() || !T.isPODType(Context))
8372      continue;
8373    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8374    if (Size > LangOpts.NumLargeByValueCopy)
8375      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8376          << (*Param)->getDeclName() << Size;
8377  }
8378}
8379
8380ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8381                                  SourceLocation NameLoc, IdentifierInfo *Name,
8382                                  QualType T, TypeSourceInfo *TSInfo,
8383                                  VarDecl::StorageClass StorageClass) {
8384  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8385  if (getLangOpts().ObjCAutoRefCount &&
8386      T.getObjCLifetime() == Qualifiers::OCL_None &&
8387      T->isObjCLifetimeType()) {
8388
8389    Qualifiers::ObjCLifetime lifetime;
8390
8391    // Special cases for arrays:
8392    //   - if it's const, use __unsafe_unretained
8393    //   - otherwise, it's an error
8394    if (T->isArrayType()) {
8395      if (!T.isConstQualified()) {
8396        DelayedDiagnostics.add(
8397            sema::DelayedDiagnostic::makeForbiddenType(
8398            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8399      }
8400      lifetime = Qualifiers::OCL_ExplicitNone;
8401    } else {
8402      lifetime = T->getObjCARCImplicitLifetime();
8403    }
8404    T = Context.getLifetimeQualifiedType(T, lifetime);
8405  }
8406
8407  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8408                                         Context.getAdjustedParameterType(T),
8409                                         TSInfo,
8410                                         StorageClass, 0);
8411
8412  // Parameters can not be abstract class types.
8413  // For record types, this is done by the AbstractClassUsageDiagnoser once
8414  // the class has been completely parsed.
8415  if (!CurContext->isRecord() &&
8416      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8417                             AbstractParamType))
8418    New->setInvalidDecl();
8419
8420  // Parameter declarators cannot be interface types. All ObjC objects are
8421  // passed by reference.
8422  if (T->isObjCObjectType()) {
8423    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8424    Diag(NameLoc,
8425         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8426      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8427    T = Context.getObjCObjectPointerType(T);
8428    New->setType(T);
8429  }
8430
8431  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8432  // duration shall not be qualified by an address-space qualifier."
8433  // Since all parameters have automatic store duration, they can not have
8434  // an address space.
8435  if (T.getAddressSpace() != 0) {
8436    Diag(NameLoc, diag::err_arg_with_address_space);
8437    New->setInvalidDecl();
8438  }
8439
8440  return New;
8441}
8442
8443void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8444                                           SourceLocation LocAfterDecls) {
8445  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8446
8447  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8448  // for a K&R function.
8449  if (!FTI.hasPrototype) {
8450    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8451      --i;
8452      if (FTI.ArgInfo[i].Param == 0) {
8453        SmallString<256> Code;
8454        llvm::raw_svector_ostream(Code) << "  int "
8455                                        << FTI.ArgInfo[i].Ident->getName()
8456                                        << ";\n";
8457        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8458          << FTI.ArgInfo[i].Ident
8459          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8460
8461        // Implicitly declare the argument as type 'int' for lack of a better
8462        // type.
8463        AttributeFactory attrs;
8464        DeclSpec DS(attrs);
8465        const char* PrevSpec; // unused
8466        unsigned DiagID; // unused
8467        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8468                           PrevSpec, DiagID);
8469        // Use the identifier location for the type source range.
8470        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8471        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8472        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8473        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8474        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8475      }
8476    }
8477  }
8478}
8479
8480Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8481  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8482  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8483  Scope *ParentScope = FnBodyScope->getParent();
8484
8485  D.setFunctionDefinitionKind(FDK_Definition);
8486  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8487  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8488}
8489
8490static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8491                             const FunctionDecl*& PossibleZeroParamPrototype) {
8492  // Don't warn about invalid declarations.
8493  if (FD->isInvalidDecl())
8494    return false;
8495
8496  // Or declarations that aren't global.
8497  if (!FD->isGlobal())
8498    return false;
8499
8500  // Don't warn about C++ member functions.
8501  if (isa<CXXMethodDecl>(FD))
8502    return false;
8503
8504  // Don't warn about 'main'.
8505  if (FD->isMain())
8506    return false;
8507
8508  // Don't warn about inline functions.
8509  if (FD->isInlined())
8510    return false;
8511
8512  // Don't warn about function templates.
8513  if (FD->getDescribedFunctionTemplate())
8514    return false;
8515
8516  // Don't warn about function template specializations.
8517  if (FD->isFunctionTemplateSpecialization())
8518    return false;
8519
8520  // Don't warn for OpenCL kernels.
8521  if (FD->hasAttr<OpenCLKernelAttr>())
8522    return false;
8523
8524  bool MissingPrototype = true;
8525  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8526       Prev; Prev = Prev->getPreviousDecl()) {
8527    // Ignore any declarations that occur in function or method
8528    // scope, because they aren't visible from the header.
8529    if (Prev->getDeclContext()->isFunctionOrMethod())
8530      continue;
8531
8532    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8533    if (FD->getNumParams() == 0)
8534      PossibleZeroParamPrototype = Prev;
8535    break;
8536  }
8537
8538  return MissingPrototype;
8539}
8540
8541void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8542  // Don't complain if we're in GNU89 mode and the previous definition
8543  // was an extern inline function.
8544  const FunctionDecl *Definition;
8545  if (FD->isDefined(Definition) &&
8546      !canRedefineFunction(Definition, getLangOpts())) {
8547    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8548        Definition->getStorageClass() == SC_Extern)
8549      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8550        << FD->getDeclName() << getLangOpts().CPlusPlus;
8551    else
8552      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8553    Diag(Definition->getLocation(), diag::note_previous_definition);
8554    FD->setInvalidDecl();
8555  }
8556}
8557
8558Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8559  // Clear the last template instantiation error context.
8560  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8561
8562  if (!D)
8563    return D;
8564  FunctionDecl *FD = 0;
8565
8566  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8567    FD = FunTmpl->getTemplatedDecl();
8568  else
8569    FD = cast<FunctionDecl>(D);
8570
8571  // Enter a new function scope
8572  PushFunctionScope();
8573
8574  // See if this is a redefinition.
8575  if (!FD->isLateTemplateParsed())
8576    CheckForFunctionRedefinition(FD);
8577
8578  // Builtin functions cannot be defined.
8579  if (unsigned BuiltinID = FD->getBuiltinID()) {
8580    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8581      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8582      FD->setInvalidDecl();
8583    }
8584  }
8585
8586  // The return type of a function definition must be complete
8587  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8588  QualType ResultType = FD->getResultType();
8589  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8590      !FD->isInvalidDecl() &&
8591      RequireCompleteType(FD->getLocation(), ResultType,
8592                          diag::err_func_def_incomplete_result))
8593    FD->setInvalidDecl();
8594
8595  // GNU warning -Wmissing-prototypes:
8596  //   Warn if a global function is defined without a previous
8597  //   prototype declaration. This warning is issued even if the
8598  //   definition itself provides a prototype. The aim is to detect
8599  //   global functions that fail to be declared in header files.
8600  const FunctionDecl *PossibleZeroParamPrototype = 0;
8601  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8602    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8603
8604    if (PossibleZeroParamPrototype) {
8605      // We found a declaration that is not a prototype,
8606      // but that could be a zero-parameter prototype
8607      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8608      TypeLoc TL = TI->getTypeLoc();
8609      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8610        Diag(PossibleZeroParamPrototype->getLocation(),
8611             diag::note_declaration_not_a_prototype)
8612          << PossibleZeroParamPrototype
8613          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8614    }
8615  }
8616
8617  if (FnBodyScope)
8618    PushDeclContext(FnBodyScope, FD);
8619
8620  // Check the validity of our function parameters
8621  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8622                           /*CheckParameterNames=*/true);
8623
8624  // Introduce our parameters into the function scope
8625  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8626    ParmVarDecl *Param = FD->getParamDecl(p);
8627    Param->setOwningFunction(FD);
8628
8629    // If this has an identifier, add it to the scope stack.
8630    if (Param->getIdentifier() && FnBodyScope) {
8631      CheckShadow(FnBodyScope, Param);
8632
8633      PushOnScopeChains(Param, FnBodyScope);
8634    }
8635  }
8636
8637  // If we had any tags defined in the function prototype,
8638  // introduce them into the function scope.
8639  if (FnBodyScope) {
8640    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8641           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8642      NamedDecl *D = *I;
8643
8644      // Some of these decls (like enums) may have been pinned to the translation unit
8645      // for lack of a real context earlier. If so, remove from the translation unit
8646      // and reattach to the current context.
8647      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8648        // Is the decl actually in the context?
8649        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8650               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8651          if (*DI == D) {
8652            Context.getTranslationUnitDecl()->removeDecl(D);
8653            break;
8654          }
8655        }
8656        // Either way, reassign the lexical decl context to our FunctionDecl.
8657        D->setLexicalDeclContext(CurContext);
8658      }
8659
8660      // If the decl has a non-null name, make accessible in the current scope.
8661      if (!D->getName().empty())
8662        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8663
8664      // Similarly, dive into enums and fish their constants out, making them
8665      // accessible in this scope.
8666      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8667        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8668               EE = ED->enumerator_end(); EI != EE; ++EI)
8669          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8670      }
8671    }
8672  }
8673
8674  // Ensure that the function's exception specification is instantiated.
8675  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8676    ResolveExceptionSpec(D->getLocation(), FPT);
8677
8678  // Checking attributes of current function definition
8679  // dllimport attribute.
8680  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8681  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8682    // dllimport attribute cannot be directly applied to definition.
8683    // Microsoft accepts dllimport for functions defined within class scope.
8684    if (!DA->isInherited() &&
8685        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8686      Diag(FD->getLocation(),
8687           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8688        << "dllimport";
8689      FD->setInvalidDecl();
8690      return D;
8691    }
8692
8693    // Visual C++ appears to not think this is an issue, so only issue
8694    // a warning when Microsoft extensions are disabled.
8695    if (!LangOpts.MicrosoftExt) {
8696      // If a symbol previously declared dllimport is later defined, the
8697      // attribute is ignored in subsequent references, and a warning is
8698      // emitted.
8699      Diag(FD->getLocation(),
8700           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8701        << FD->getName() << "dllimport";
8702    }
8703  }
8704  // We want to attach documentation to original Decl (which might be
8705  // a function template).
8706  ActOnDocumentableDecl(D);
8707  return D;
8708}
8709
8710/// \brief Given the set of return statements within a function body,
8711/// compute the variables that are subject to the named return value
8712/// optimization.
8713///
8714/// Each of the variables that is subject to the named return value
8715/// optimization will be marked as NRVO variables in the AST, and any
8716/// return statement that has a marked NRVO variable as its NRVO candidate can
8717/// use the named return value optimization.
8718///
8719/// This function applies a very simplistic algorithm for NRVO: if every return
8720/// statement in the function has the same NRVO candidate, that candidate is
8721/// the NRVO variable.
8722///
8723/// FIXME: Employ a smarter algorithm that accounts for multiple return
8724/// statements and the lifetimes of the NRVO candidates. We should be able to
8725/// find a maximal set of NRVO variables.
8726void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8727  ReturnStmt **Returns = Scope->Returns.data();
8728
8729  const VarDecl *NRVOCandidate = 0;
8730  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8731    if (!Returns[I]->getNRVOCandidate())
8732      return;
8733
8734    if (!NRVOCandidate)
8735      NRVOCandidate = Returns[I]->getNRVOCandidate();
8736    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8737      return;
8738  }
8739
8740  if (NRVOCandidate)
8741    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8742}
8743
8744bool Sema::canSkipFunctionBody(Decl *D) {
8745  if (!Consumer.shouldSkipFunctionBody(D))
8746    return false;
8747
8748  if (isa<ObjCMethodDecl>(D))
8749    return true;
8750
8751  FunctionDecl *FD = 0;
8752  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8753    FD = FTD->getTemplatedDecl();
8754  else
8755    FD = cast<FunctionDecl>(D);
8756
8757  // We cannot skip the body of a function (or function template) which is
8758  // constexpr, since we may need to evaluate its body in order to parse the
8759  // rest of the file.
8760  return !FD->isConstexpr();
8761}
8762
8763Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8764  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8765    FD->setHasSkippedBody();
8766  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8767    MD->setHasSkippedBody();
8768  return ActOnFinishFunctionBody(Decl, 0);
8769}
8770
8771Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8772  return ActOnFinishFunctionBody(D, BodyArg, false);
8773}
8774
8775Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8776                                    bool IsInstantiation) {
8777  FunctionDecl *FD = 0;
8778  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8779  if (FunTmpl)
8780    FD = FunTmpl->getTemplatedDecl();
8781  else
8782    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8783
8784  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8785  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8786
8787  if (FD) {
8788    FD->setBody(Body);
8789
8790    // The only way to be included in UndefinedButUsed is if there is an
8791    // ODR use before the definition. Avoid the expensive map lookup if this
8792    // is the first declaration.
8793    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8794      if (FD->getLinkage() != ExternalLinkage)
8795        UndefinedButUsed.erase(FD);
8796      else if (FD->isInlined() &&
8797               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8798               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8799        UndefinedButUsed.erase(FD);
8800    }
8801
8802    // If the function implicitly returns zero (like 'main') or is naked,
8803    // don't complain about missing return statements.
8804    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8805      WP.disableCheckFallThrough();
8806
8807    // MSVC permits the use of pure specifier (=0) on function definition,
8808    // defined at class scope, warn about this non standard construct.
8809    if (getLangOpts().MicrosoftExt && FD->isPure())
8810      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8811
8812    if (!FD->isInvalidDecl()) {
8813      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8814      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8815                                             FD->getResultType(), FD);
8816
8817      // If this is a constructor, we need a vtable.
8818      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8819        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8820
8821      // Try to apply the named return value optimization. We have to check
8822      // if we can do this here because lambdas keep return statements around
8823      // to deduce an implicit return type.
8824      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8825          !FD->isDependentContext())
8826        computeNRVO(Body, getCurFunction());
8827    }
8828
8829    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8830           "Function parsing confused");
8831  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8832    assert(MD == getCurMethodDecl() && "Method parsing confused");
8833    MD->setBody(Body);
8834    if (!MD->isInvalidDecl()) {
8835      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8836      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8837                                             MD->getResultType(), MD);
8838
8839      if (Body)
8840        computeNRVO(Body, getCurFunction());
8841    }
8842    if (getCurFunction()->ObjCShouldCallSuper) {
8843      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8844        << MD->getSelector().getAsString();
8845      getCurFunction()->ObjCShouldCallSuper = false;
8846    }
8847  } else {
8848    return 0;
8849  }
8850
8851  assert(!getCurFunction()->ObjCShouldCallSuper &&
8852         "This should only be set for ObjC methods, which should have been "
8853         "handled in the block above.");
8854
8855  // Verify and clean out per-function state.
8856  if (Body) {
8857    // C++ constructors that have function-try-blocks can't have return
8858    // statements in the handlers of that block. (C++ [except.handle]p14)
8859    // Verify this.
8860    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8861      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8862
8863    // Verify that gotos and switch cases don't jump into scopes illegally.
8864    if (getCurFunction()->NeedsScopeChecking() &&
8865        !dcl->isInvalidDecl() &&
8866        !hasAnyUnrecoverableErrorsInThisFunction() &&
8867        !PP.isCodeCompletionEnabled())
8868      DiagnoseInvalidJumps(Body);
8869
8870    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8871      if (!Destructor->getParent()->isDependentType())
8872        CheckDestructor(Destructor);
8873
8874      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8875                                             Destructor->getParent());
8876    }
8877
8878    // If any errors have occurred, clear out any temporaries that may have
8879    // been leftover. This ensures that these temporaries won't be picked up for
8880    // deletion in some later function.
8881    if (PP.getDiagnostics().hasErrorOccurred() ||
8882        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8883      DiscardCleanupsInEvaluationContext();
8884    }
8885    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8886        !isa<FunctionTemplateDecl>(dcl)) {
8887      // Since the body is valid, issue any analysis-based warnings that are
8888      // enabled.
8889      ActivePolicy = &WP;
8890    }
8891
8892    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8893        (!CheckConstexprFunctionDecl(FD) ||
8894         !CheckConstexprFunctionBody(FD, Body)))
8895      FD->setInvalidDecl();
8896
8897    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8898    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8899    assert(MaybeODRUseExprs.empty() &&
8900           "Leftover expressions for odr-use checking");
8901  }
8902
8903  if (!IsInstantiation)
8904    PopDeclContext();
8905
8906  PopFunctionScopeInfo(ActivePolicy, dcl);
8907
8908  // If any errors have occurred, clear out any temporaries that may have
8909  // been leftover. This ensures that these temporaries won't be picked up for
8910  // deletion in some later function.
8911  if (getDiagnostics().hasErrorOccurred()) {
8912    DiscardCleanupsInEvaluationContext();
8913  }
8914
8915  return dcl;
8916}
8917
8918
8919/// When we finish delayed parsing of an attribute, we must attach it to the
8920/// relevant Decl.
8921void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8922                                       ParsedAttributes &Attrs) {
8923  // Always attach attributes to the underlying decl.
8924  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8925    D = TD->getTemplatedDecl();
8926  ProcessDeclAttributeList(S, D, Attrs.getList());
8927
8928  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8929    if (Method->isStatic())
8930      checkThisInStaticMemberFunctionAttributes(Method);
8931}
8932
8933
8934/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8935/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8936NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8937                                          IdentifierInfo &II, Scope *S) {
8938  // Before we produce a declaration for an implicitly defined
8939  // function, see whether there was a locally-scoped declaration of
8940  // this name as a function or variable. If so, use that
8941  // (non-visible) declaration, and complain about it.
8942  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8943    = findLocallyScopedExternCDecl(&II);
8944  if (Pos != LocallyScopedExternCDecls.end()) {
8945    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8946    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8947    return Pos->second;
8948  }
8949
8950  // Extension in C99.  Legal in C90, but warn about it.
8951  unsigned diag_id;
8952  if (II.getName().startswith("__builtin_"))
8953    diag_id = diag::warn_builtin_unknown;
8954  else if (getLangOpts().C99)
8955    diag_id = diag::ext_implicit_function_decl;
8956  else
8957    diag_id = diag::warn_implicit_function_decl;
8958  Diag(Loc, diag_id) << &II;
8959
8960  // Because typo correction is expensive, only do it if the implicit
8961  // function declaration is going to be treated as an error.
8962  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8963    TypoCorrection Corrected;
8964    DeclFilterCCC<FunctionDecl> Validator;
8965    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8966                                      LookupOrdinaryName, S, 0, Validator))) {
8967      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8968      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8969      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8970
8971      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8972          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8973
8974      if (Func->getLocation().isValid()
8975          && !II.getName().startswith("__builtin_"))
8976        Diag(Func->getLocation(), diag::note_previous_decl)
8977            << CorrectedQuotedStr;
8978    }
8979  }
8980
8981  // Set a Declarator for the implicit definition: int foo();
8982  const char *Dummy;
8983  AttributeFactory attrFactory;
8984  DeclSpec DS(attrFactory);
8985  unsigned DiagID;
8986  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8987  (void)Error; // Silence warning.
8988  assert(!Error && "Error setting up implicit decl!");
8989  SourceLocation NoLoc;
8990  Declarator D(DS, Declarator::BlockContext);
8991  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8992                                             /*IsAmbiguous=*/false,
8993                                             /*RParenLoc=*/NoLoc,
8994                                             /*ArgInfo=*/0,
8995                                             /*NumArgs=*/0,
8996                                             /*EllipsisLoc=*/NoLoc,
8997                                             /*RParenLoc=*/NoLoc,
8998                                             /*TypeQuals=*/0,
8999                                             /*RefQualifierIsLvalueRef=*/true,
9000                                             /*RefQualifierLoc=*/NoLoc,
9001                                             /*ConstQualifierLoc=*/NoLoc,
9002                                             /*VolatileQualifierLoc=*/NoLoc,
9003                                             /*MutableLoc=*/NoLoc,
9004                                             EST_None,
9005                                             /*ESpecLoc=*/NoLoc,
9006                                             /*Exceptions=*/0,
9007                                             /*ExceptionRanges=*/0,
9008                                             /*NumExceptions=*/0,
9009                                             /*NoexceptExpr=*/0,
9010                                             Loc, Loc, D),
9011                DS.getAttributes(),
9012                SourceLocation());
9013  D.SetIdentifier(&II, Loc);
9014
9015  // Insert this function into translation-unit scope.
9016
9017  DeclContext *PrevDC = CurContext;
9018  CurContext = Context.getTranslationUnitDecl();
9019
9020  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9021  FD->setImplicit();
9022
9023  CurContext = PrevDC;
9024
9025  AddKnownFunctionAttributes(FD);
9026
9027  return FD;
9028}
9029
9030/// \brief Adds any function attributes that we know a priori based on
9031/// the declaration of this function.
9032///
9033/// These attributes can apply both to implicitly-declared builtins
9034/// (like __builtin___printf_chk) or to library-declared functions
9035/// like NSLog or printf.
9036///
9037/// We need to check for duplicate attributes both here and where user-written
9038/// attributes are applied to declarations.
9039void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9040  if (FD->isInvalidDecl())
9041    return;
9042
9043  // If this is a built-in function, map its builtin attributes to
9044  // actual attributes.
9045  if (unsigned BuiltinID = FD->getBuiltinID()) {
9046    // Handle printf-formatting attributes.
9047    unsigned FormatIdx;
9048    bool HasVAListArg;
9049    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9050      if (!FD->getAttr<FormatAttr>()) {
9051        const char *fmt = "printf";
9052        unsigned int NumParams = FD->getNumParams();
9053        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9054            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9055          fmt = "NSString";
9056        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9057                                               fmt, FormatIdx+1,
9058                                               HasVAListArg ? 0 : FormatIdx+2));
9059      }
9060    }
9061    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9062                                             HasVAListArg)) {
9063     if (!FD->getAttr<FormatAttr>())
9064       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9065                                              "scanf", FormatIdx+1,
9066                                              HasVAListArg ? 0 : FormatIdx+2));
9067    }
9068
9069    // Mark const if we don't care about errno and that is the only
9070    // thing preventing the function from being const. This allows
9071    // IRgen to use LLVM intrinsics for such functions.
9072    if (!getLangOpts().MathErrno &&
9073        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9074      if (!FD->getAttr<ConstAttr>())
9075        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9076    }
9077
9078    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9079        !FD->getAttr<ReturnsTwiceAttr>())
9080      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9081    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9082      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9083    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9084      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9085  }
9086
9087  IdentifierInfo *Name = FD->getIdentifier();
9088  if (!Name)
9089    return;
9090  if ((!getLangOpts().CPlusPlus &&
9091       FD->getDeclContext()->isTranslationUnit()) ||
9092      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9093       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9094       LinkageSpecDecl::lang_c)) {
9095    // Okay: this could be a libc/libm/Objective-C function we know
9096    // about.
9097  } else
9098    return;
9099
9100  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9101    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9102    // target-specific builtins, perhaps?
9103    if (!FD->getAttr<FormatAttr>())
9104      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9105                                             "printf", 2,
9106                                             Name->isStr("vasprintf") ? 0 : 3));
9107  }
9108
9109  if (Name->isStr("__CFStringMakeConstantString")) {
9110    // We already have a __builtin___CFStringMakeConstantString,
9111    // but builds that use -fno-constant-cfstrings don't go through that.
9112    if (!FD->getAttr<FormatArgAttr>())
9113      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9114  }
9115}
9116
9117TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9118                                    TypeSourceInfo *TInfo) {
9119  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9120  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9121
9122  if (!TInfo) {
9123    assert(D.isInvalidType() && "no declarator info for valid type");
9124    TInfo = Context.getTrivialTypeSourceInfo(T);
9125  }
9126
9127  // Scope manipulation handled by caller.
9128  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9129                                           D.getLocStart(),
9130                                           D.getIdentifierLoc(),
9131                                           D.getIdentifier(),
9132                                           TInfo);
9133
9134  // Bail out immediately if we have an invalid declaration.
9135  if (D.isInvalidType()) {
9136    NewTD->setInvalidDecl();
9137    return NewTD;
9138  }
9139
9140  if (D.getDeclSpec().isModulePrivateSpecified()) {
9141    if (CurContext->isFunctionOrMethod())
9142      Diag(NewTD->getLocation(), diag::err_module_private_local)
9143        << 2 << NewTD->getDeclName()
9144        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9145        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9146    else
9147      NewTD->setModulePrivate();
9148  }
9149
9150  // C++ [dcl.typedef]p8:
9151  //   If the typedef declaration defines an unnamed class (or
9152  //   enum), the first typedef-name declared by the declaration
9153  //   to be that class type (or enum type) is used to denote the
9154  //   class type (or enum type) for linkage purposes only.
9155  // We need to check whether the type was declared in the declaration.
9156  switch (D.getDeclSpec().getTypeSpecType()) {
9157  case TST_enum:
9158  case TST_struct:
9159  case TST_interface:
9160  case TST_union:
9161  case TST_class: {
9162    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9163
9164    // Do nothing if the tag is not anonymous or already has an
9165    // associated typedef (from an earlier typedef in this decl group).
9166    if (tagFromDeclSpec->getIdentifier()) break;
9167    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9168
9169    // A well-formed anonymous tag must always be a TUK_Definition.
9170    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9171
9172    // The type must match the tag exactly;  no qualifiers allowed.
9173    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9174      break;
9175
9176    // Otherwise, set this is the anon-decl typedef for the tag.
9177    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9178    break;
9179  }
9180
9181  default:
9182    break;
9183  }
9184
9185  return NewTD;
9186}
9187
9188
9189/// \brief Check that this is a valid underlying type for an enum declaration.
9190bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9191  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9192  QualType T = TI->getType();
9193
9194  if (T->isDependentType())
9195    return false;
9196
9197  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9198    if (BT->isInteger())
9199      return false;
9200
9201  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9202  return true;
9203}
9204
9205/// Check whether this is a valid redeclaration of a previous enumeration.
9206/// \return true if the redeclaration was invalid.
9207bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9208                                  QualType EnumUnderlyingTy,
9209                                  const EnumDecl *Prev) {
9210  bool IsFixed = !EnumUnderlyingTy.isNull();
9211
9212  if (IsScoped != Prev->isScoped()) {
9213    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9214      << Prev->isScoped();
9215    Diag(Prev->getLocation(), diag::note_previous_use);
9216    return true;
9217  }
9218
9219  if (IsFixed && Prev->isFixed()) {
9220    if (!EnumUnderlyingTy->isDependentType() &&
9221        !Prev->getIntegerType()->isDependentType() &&
9222        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9223                                        Prev->getIntegerType())) {
9224      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9225        << EnumUnderlyingTy << Prev->getIntegerType();
9226      Diag(Prev->getLocation(), diag::note_previous_use);
9227      return true;
9228    }
9229  } else if (IsFixed != Prev->isFixed()) {
9230    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9231      << Prev->isFixed();
9232    Diag(Prev->getLocation(), diag::note_previous_use);
9233    return true;
9234  }
9235
9236  return false;
9237}
9238
9239/// \brief Get diagnostic %select index for tag kind for
9240/// redeclaration diagnostic message.
9241/// WARNING: Indexes apply to particular diagnostics only!
9242///
9243/// \returns diagnostic %select index.
9244static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9245  switch (Tag) {
9246  case TTK_Struct: return 0;
9247  case TTK_Interface: return 1;
9248  case TTK_Class:  return 2;
9249  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9250  }
9251}
9252
9253/// \brief Determine if tag kind is a class-key compatible with
9254/// class for redeclaration (class, struct, or __interface).
9255///
9256/// \returns true iff the tag kind is compatible.
9257static bool isClassCompatTagKind(TagTypeKind Tag)
9258{
9259  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9260}
9261
9262/// \brief Determine whether a tag with a given kind is acceptable
9263/// as a redeclaration of the given tag declaration.
9264///
9265/// \returns true if the new tag kind is acceptable, false otherwise.
9266bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9267                                        TagTypeKind NewTag, bool isDefinition,
9268                                        SourceLocation NewTagLoc,
9269                                        const IdentifierInfo &Name) {
9270  // C++ [dcl.type.elab]p3:
9271  //   The class-key or enum keyword present in the
9272  //   elaborated-type-specifier shall agree in kind with the
9273  //   declaration to which the name in the elaborated-type-specifier
9274  //   refers. This rule also applies to the form of
9275  //   elaborated-type-specifier that declares a class-name or
9276  //   friend class since it can be construed as referring to the
9277  //   definition of the class. Thus, in any
9278  //   elaborated-type-specifier, the enum keyword shall be used to
9279  //   refer to an enumeration (7.2), the union class-key shall be
9280  //   used to refer to a union (clause 9), and either the class or
9281  //   struct class-key shall be used to refer to a class (clause 9)
9282  //   declared using the class or struct class-key.
9283  TagTypeKind OldTag = Previous->getTagKind();
9284  if (!isDefinition || !isClassCompatTagKind(NewTag))
9285    if (OldTag == NewTag)
9286      return true;
9287
9288  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9289    // Warn about the struct/class tag mismatch.
9290    bool isTemplate = false;
9291    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9292      isTemplate = Record->getDescribedClassTemplate();
9293
9294    if (!ActiveTemplateInstantiations.empty()) {
9295      // In a template instantiation, do not offer fix-its for tag mismatches
9296      // since they usually mess up the template instead of fixing the problem.
9297      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9298        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9299        << getRedeclDiagFromTagKind(OldTag);
9300      return true;
9301    }
9302
9303    if (isDefinition) {
9304      // On definitions, check previous tags and issue a fix-it for each
9305      // one that doesn't match the current tag.
9306      if (Previous->getDefinition()) {
9307        // Don't suggest fix-its for redefinitions.
9308        return true;
9309      }
9310
9311      bool previousMismatch = false;
9312      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9313           E(Previous->redecls_end()); I != E; ++I) {
9314        if (I->getTagKind() != NewTag) {
9315          if (!previousMismatch) {
9316            previousMismatch = true;
9317            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9318              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9319              << getRedeclDiagFromTagKind(I->getTagKind());
9320          }
9321          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9322            << getRedeclDiagFromTagKind(NewTag)
9323            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9324                 TypeWithKeyword::getTagTypeKindName(NewTag));
9325        }
9326      }
9327      return true;
9328    }
9329
9330    // Check for a previous definition.  If current tag and definition
9331    // are same type, do nothing.  If no definition, but disagree with
9332    // with previous tag type, give a warning, but no fix-it.
9333    const TagDecl *Redecl = Previous->getDefinition() ?
9334                            Previous->getDefinition() : Previous;
9335    if (Redecl->getTagKind() == NewTag) {
9336      return true;
9337    }
9338
9339    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9340      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9341      << getRedeclDiagFromTagKind(OldTag);
9342    Diag(Redecl->getLocation(), diag::note_previous_use);
9343
9344    // If there is a previous defintion, suggest a fix-it.
9345    if (Previous->getDefinition()) {
9346        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9347          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9348          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9349               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9350    }
9351
9352    return true;
9353  }
9354  return false;
9355}
9356
9357/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9358/// former case, Name will be non-null.  In the later case, Name will be null.
9359/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9360/// reference/declaration/definition of a tag.
9361Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9362                     SourceLocation KWLoc, CXXScopeSpec &SS,
9363                     IdentifierInfo *Name, SourceLocation NameLoc,
9364                     AttributeList *Attr, AccessSpecifier AS,
9365                     SourceLocation ModulePrivateLoc,
9366                     MultiTemplateParamsArg TemplateParameterLists,
9367                     bool &OwnedDecl, bool &IsDependent,
9368                     SourceLocation ScopedEnumKWLoc,
9369                     bool ScopedEnumUsesClassTag,
9370                     TypeResult UnderlyingType) {
9371  // If this is not a definition, it must have a name.
9372  IdentifierInfo *OrigName = Name;
9373  assert((Name != 0 || TUK == TUK_Definition) &&
9374         "Nameless record must be a definition!");
9375  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9376
9377  OwnedDecl = false;
9378  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9379  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9380
9381  // FIXME: Check explicit specializations more carefully.
9382  bool isExplicitSpecialization = false;
9383  bool Invalid = false;
9384
9385  // We only need to do this matching if we have template parameters
9386  // or a scope specifier, which also conveniently avoids this work
9387  // for non-C++ cases.
9388  if (TemplateParameterLists.size() > 0 ||
9389      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9390    if (TemplateParameterList *TemplateParams
9391          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9392                                                TemplateParameterLists.data(),
9393                                                TemplateParameterLists.size(),
9394                                                    TUK == TUK_Friend,
9395                                                    isExplicitSpecialization,
9396                                                    Invalid)) {
9397      if (Kind == TTK_Enum) {
9398        Diag(KWLoc, diag::err_enum_template);
9399        return 0;
9400      }
9401
9402      if (TemplateParams->size() > 0) {
9403        // This is a declaration or definition of a class template (which may
9404        // be a member of another template).
9405
9406        if (Invalid)
9407          return 0;
9408
9409        OwnedDecl = false;
9410        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9411                                               SS, Name, NameLoc, Attr,
9412                                               TemplateParams, AS,
9413                                               ModulePrivateLoc,
9414                                               TemplateParameterLists.size()-1,
9415                                               TemplateParameterLists.data());
9416        return Result.get();
9417      } else {
9418        // The "template<>" header is extraneous.
9419        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9420          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9421        isExplicitSpecialization = true;
9422      }
9423    }
9424  }
9425
9426  // Figure out the underlying type if this a enum declaration. We need to do
9427  // this early, because it's needed to detect if this is an incompatible
9428  // redeclaration.
9429  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9430
9431  if (Kind == TTK_Enum) {
9432    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9433      // No underlying type explicitly specified, or we failed to parse the
9434      // type, default to int.
9435      EnumUnderlying = Context.IntTy.getTypePtr();
9436    else if (UnderlyingType.get()) {
9437      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9438      // integral type; any cv-qualification is ignored.
9439      TypeSourceInfo *TI = 0;
9440      GetTypeFromParser(UnderlyingType.get(), &TI);
9441      EnumUnderlying = TI;
9442
9443      if (CheckEnumUnderlyingType(TI))
9444        // Recover by falling back to int.
9445        EnumUnderlying = Context.IntTy.getTypePtr();
9446
9447      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9448                                          UPPC_FixedUnderlyingType))
9449        EnumUnderlying = Context.IntTy.getTypePtr();
9450
9451    } else if (getLangOpts().MicrosoftMode)
9452      // Microsoft enums are always of int type.
9453      EnumUnderlying = Context.IntTy.getTypePtr();
9454  }
9455
9456  DeclContext *SearchDC = CurContext;
9457  DeclContext *DC = CurContext;
9458  bool isStdBadAlloc = false;
9459
9460  RedeclarationKind Redecl = ForRedeclaration;
9461  if (TUK == TUK_Friend || TUK == TUK_Reference)
9462    Redecl = NotForRedeclaration;
9463
9464  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9465
9466  if (Name && SS.isNotEmpty()) {
9467    // We have a nested-name tag ('struct foo::bar').
9468
9469    // Check for invalid 'foo::'.
9470    if (SS.isInvalid()) {
9471      Name = 0;
9472      goto CreateNewDecl;
9473    }
9474
9475    // If this is a friend or a reference to a class in a dependent
9476    // context, don't try to make a decl for it.
9477    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9478      DC = computeDeclContext(SS, false);
9479      if (!DC) {
9480        IsDependent = true;
9481        return 0;
9482      }
9483    } else {
9484      DC = computeDeclContext(SS, true);
9485      if (!DC) {
9486        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9487          << SS.getRange();
9488        return 0;
9489      }
9490    }
9491
9492    if (RequireCompleteDeclContext(SS, DC))
9493      return 0;
9494
9495    SearchDC = DC;
9496    // Look-up name inside 'foo::'.
9497    LookupQualifiedName(Previous, DC);
9498
9499    if (Previous.isAmbiguous())
9500      return 0;
9501
9502    if (Previous.empty()) {
9503      // Name lookup did not find anything. However, if the
9504      // nested-name-specifier refers to the current instantiation,
9505      // and that current instantiation has any dependent base
9506      // classes, we might find something at instantiation time: treat
9507      // this as a dependent elaborated-type-specifier.
9508      // But this only makes any sense for reference-like lookups.
9509      if (Previous.wasNotFoundInCurrentInstantiation() &&
9510          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9511        IsDependent = true;
9512        return 0;
9513      }
9514
9515      // A tag 'foo::bar' must already exist.
9516      Diag(NameLoc, diag::err_not_tag_in_scope)
9517        << Kind << Name << DC << SS.getRange();
9518      Name = 0;
9519      Invalid = true;
9520      goto CreateNewDecl;
9521    }
9522  } else if (Name) {
9523    // If this is a named struct, check to see if there was a previous forward
9524    // declaration or definition.
9525    // FIXME: We're looking into outer scopes here, even when we
9526    // shouldn't be. Doing so can result in ambiguities that we
9527    // shouldn't be diagnosing.
9528    LookupName(Previous, S);
9529
9530    // When declaring or defining a tag, ignore ambiguities introduced
9531    // by types using'ed into this scope.
9532    if (Previous.isAmbiguous() &&
9533        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9534      LookupResult::Filter F = Previous.makeFilter();
9535      while (F.hasNext()) {
9536        NamedDecl *ND = F.next();
9537        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9538          F.erase();
9539      }
9540      F.done();
9541    }
9542
9543    // C++11 [namespace.memdef]p3:
9544    //   If the name in a friend declaration is neither qualified nor
9545    //   a template-id and the declaration is a function or an
9546    //   elaborated-type-specifier, the lookup to determine whether
9547    //   the entity has been previously declared shall not consider
9548    //   any scopes outside the innermost enclosing namespace.
9549    //
9550    // Does it matter that this should be by scope instead of by
9551    // semantic context?
9552    if (!Previous.empty() && TUK == TUK_Friend) {
9553      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9554      LookupResult::Filter F = Previous.makeFilter();
9555      while (F.hasNext()) {
9556        NamedDecl *ND = F.next();
9557        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9558        if (DC->isFileContext() && !EnclosingNS->Encloses(ND->getDeclContext()))
9559          F.erase();
9560      }
9561      F.done();
9562    }
9563
9564    // Note:  there used to be some attempt at recovery here.
9565    if (Previous.isAmbiguous())
9566      return 0;
9567
9568    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9569      // FIXME: This makes sure that we ignore the contexts associated
9570      // with C structs, unions, and enums when looking for a matching
9571      // tag declaration or definition. See the similar lookup tweak
9572      // in Sema::LookupName; is there a better way to deal with this?
9573      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9574        SearchDC = SearchDC->getParent();
9575    }
9576  } else if (S->isFunctionPrototypeScope()) {
9577    // If this is an enum declaration in function prototype scope, set its
9578    // initial context to the translation unit.
9579    // FIXME: [citation needed]
9580    SearchDC = Context.getTranslationUnitDecl();
9581  }
9582
9583  if (Previous.isSingleResult() &&
9584      Previous.getFoundDecl()->isTemplateParameter()) {
9585    // Maybe we will complain about the shadowed template parameter.
9586    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9587    // Just pretend that we didn't see the previous declaration.
9588    Previous.clear();
9589  }
9590
9591  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9592      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9593    // This is a declaration of or a reference to "std::bad_alloc".
9594    isStdBadAlloc = true;
9595
9596    if (Previous.empty() && StdBadAlloc) {
9597      // std::bad_alloc has been implicitly declared (but made invisible to
9598      // name lookup). Fill in this implicit declaration as the previous
9599      // declaration, so that the declarations get chained appropriately.
9600      Previous.addDecl(getStdBadAlloc());
9601    }
9602  }
9603
9604  // If we didn't find a previous declaration, and this is a reference
9605  // (or friend reference), move to the correct scope.  In C++, we
9606  // also need to do a redeclaration lookup there, just in case
9607  // there's a shadow friend decl.
9608  if (Name && Previous.empty() &&
9609      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9610    if (Invalid) goto CreateNewDecl;
9611    assert(SS.isEmpty());
9612
9613    if (TUK == TUK_Reference) {
9614      // C++ [basic.scope.pdecl]p5:
9615      //   -- for an elaborated-type-specifier of the form
9616      //
9617      //          class-key identifier
9618      //
9619      //      if the elaborated-type-specifier is used in the
9620      //      decl-specifier-seq or parameter-declaration-clause of a
9621      //      function defined in namespace scope, the identifier is
9622      //      declared as a class-name in the namespace that contains
9623      //      the declaration; otherwise, except as a friend
9624      //      declaration, the identifier is declared in the smallest
9625      //      non-class, non-function-prototype scope that contains the
9626      //      declaration.
9627      //
9628      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9629      // C structs and unions.
9630      //
9631      // It is an error in C++ to declare (rather than define) an enum
9632      // type, including via an elaborated type specifier.  We'll
9633      // diagnose that later; for now, declare the enum in the same
9634      // scope as we would have picked for any other tag type.
9635      //
9636      // GNU C also supports this behavior as part of its incomplete
9637      // enum types extension, while GNU C++ does not.
9638      //
9639      // Find the context where we'll be declaring the tag.
9640      // FIXME: We would like to maintain the current DeclContext as the
9641      // lexical context,
9642      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9643        SearchDC = SearchDC->getParent();
9644
9645      // Find the scope where we'll be declaring the tag.
9646      while (S->isClassScope() ||
9647             (getLangOpts().CPlusPlus &&
9648              S->isFunctionPrototypeScope()) ||
9649             ((S->getFlags() & Scope::DeclScope) == 0) ||
9650             (S->getEntity() &&
9651              ((DeclContext *)S->getEntity())->isTransparentContext()))
9652        S = S->getParent();
9653    } else {
9654      assert(TUK == TUK_Friend);
9655      // C++ [namespace.memdef]p3:
9656      //   If a friend declaration in a non-local class first declares a
9657      //   class or function, the friend class or function is a member of
9658      //   the innermost enclosing namespace.
9659      SearchDC = SearchDC->getEnclosingNamespaceContext();
9660    }
9661
9662    // In C++, we need to do a redeclaration lookup to properly
9663    // diagnose some problems.
9664    if (getLangOpts().CPlusPlus) {
9665      Previous.setRedeclarationKind(ForRedeclaration);
9666      LookupQualifiedName(Previous, SearchDC);
9667    }
9668  }
9669
9670  if (!Previous.empty()) {
9671    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9672
9673    // It's okay to have a tag decl in the same scope as a typedef
9674    // which hides a tag decl in the same scope.  Finding this
9675    // insanity with a redeclaration lookup can only actually happen
9676    // in C++.
9677    //
9678    // This is also okay for elaborated-type-specifiers, which is
9679    // technically forbidden by the current standard but which is
9680    // okay according to the likely resolution of an open issue;
9681    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9682    if (getLangOpts().CPlusPlus) {
9683      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9684        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9685          TagDecl *Tag = TT->getDecl();
9686          if (Tag->getDeclName() == Name &&
9687              Tag->getDeclContext()->getRedeclContext()
9688                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9689            PrevDecl = Tag;
9690            Previous.clear();
9691            Previous.addDecl(Tag);
9692            Previous.resolveKind();
9693          }
9694        }
9695      }
9696    }
9697
9698    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9699      // If this is a use of a previous tag, or if the tag is already declared
9700      // in the same scope (so that the definition/declaration completes or
9701      // rementions the tag), reuse the decl.
9702      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9703          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9704        // Make sure that this wasn't declared as an enum and now used as a
9705        // struct or something similar.
9706        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9707                                          TUK == TUK_Definition, KWLoc,
9708                                          *Name)) {
9709          bool SafeToContinue
9710            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9711               Kind != TTK_Enum);
9712          if (SafeToContinue)
9713            Diag(KWLoc, diag::err_use_with_wrong_tag)
9714              << Name
9715              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9716                                              PrevTagDecl->getKindName());
9717          else
9718            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9719          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9720
9721          if (SafeToContinue)
9722            Kind = PrevTagDecl->getTagKind();
9723          else {
9724            // Recover by making this an anonymous redefinition.
9725            Name = 0;
9726            Previous.clear();
9727            Invalid = true;
9728          }
9729        }
9730
9731        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9732          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9733
9734          // If this is an elaborated-type-specifier for a scoped enumeration,
9735          // the 'class' keyword is not necessary and not permitted.
9736          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9737            if (ScopedEnum)
9738              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9739                << PrevEnum->isScoped()
9740                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9741            return PrevTagDecl;
9742          }
9743
9744          QualType EnumUnderlyingTy;
9745          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9746            EnumUnderlyingTy = TI->getType();
9747          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9748            EnumUnderlyingTy = QualType(T, 0);
9749
9750          // All conflicts with previous declarations are recovered by
9751          // returning the previous declaration, unless this is a definition,
9752          // in which case we want the caller to bail out.
9753          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9754                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9755            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9756        }
9757
9758        if (!Invalid) {
9759          // If this is a use, just return the declaration we found.
9760
9761          // FIXME: In the future, return a variant or some other clue
9762          // for the consumer of this Decl to know it doesn't own it.
9763          // For our current ASTs this shouldn't be a problem, but will
9764          // need to be changed with DeclGroups.
9765          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9766               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9767            return PrevTagDecl;
9768
9769          // Diagnose attempts to redefine a tag.
9770          if (TUK == TUK_Definition) {
9771            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9772              // If we're defining a specialization and the previous definition
9773              // is from an implicit instantiation, don't emit an error
9774              // here; we'll catch this in the general case below.
9775              bool IsExplicitSpecializationAfterInstantiation = false;
9776              if (isExplicitSpecialization) {
9777                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9778                  IsExplicitSpecializationAfterInstantiation =
9779                    RD->getTemplateSpecializationKind() !=
9780                    TSK_ExplicitSpecialization;
9781                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9782                  IsExplicitSpecializationAfterInstantiation =
9783                    ED->getTemplateSpecializationKind() !=
9784                    TSK_ExplicitSpecialization;
9785              }
9786
9787              if (!IsExplicitSpecializationAfterInstantiation) {
9788                // A redeclaration in function prototype scope in C isn't
9789                // visible elsewhere, so merely issue a warning.
9790                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9791                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9792                else
9793                  Diag(NameLoc, diag::err_redefinition) << Name;
9794                Diag(Def->getLocation(), diag::note_previous_definition);
9795                // If this is a redefinition, recover by making this
9796                // struct be anonymous, which will make any later
9797                // references get the previous definition.
9798                Name = 0;
9799                Previous.clear();
9800                Invalid = true;
9801              }
9802            } else {
9803              // If the type is currently being defined, complain
9804              // about a nested redefinition.
9805              const TagType *Tag
9806                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9807              if (Tag->isBeingDefined()) {
9808                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9809                Diag(PrevTagDecl->getLocation(),
9810                     diag::note_previous_definition);
9811                Name = 0;
9812                Previous.clear();
9813                Invalid = true;
9814              }
9815            }
9816
9817            // Okay, this is definition of a previously declared or referenced
9818            // tag PrevDecl. We're going to create a new Decl for it.
9819          }
9820        }
9821        // If we get here we have (another) forward declaration or we
9822        // have a definition.  Just create a new decl.
9823
9824      } else {
9825        // If we get here, this is a definition of a new tag type in a nested
9826        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9827        // new decl/type.  We set PrevDecl to NULL so that the entities
9828        // have distinct types.
9829        Previous.clear();
9830      }
9831      // If we get here, we're going to create a new Decl. If PrevDecl
9832      // is non-NULL, it's a definition of the tag declared by
9833      // PrevDecl. If it's NULL, we have a new definition.
9834
9835
9836    // Otherwise, PrevDecl is not a tag, but was found with tag
9837    // lookup.  This is only actually possible in C++, where a few
9838    // things like templates still live in the tag namespace.
9839    } else {
9840      // Use a better diagnostic if an elaborated-type-specifier
9841      // found the wrong kind of type on the first
9842      // (non-redeclaration) lookup.
9843      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9844          !Previous.isForRedeclaration()) {
9845        unsigned Kind = 0;
9846        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9847        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9848        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9849        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9850        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9851        Invalid = true;
9852
9853      // Otherwise, only diagnose if the declaration is in scope.
9854      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9855                                isExplicitSpecialization)) {
9856        // do nothing
9857
9858      // Diagnose implicit declarations introduced by elaborated types.
9859      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9860        unsigned Kind = 0;
9861        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9862        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9863        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9864        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9865        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9866        Invalid = true;
9867
9868      // Otherwise it's a declaration.  Call out a particularly common
9869      // case here.
9870      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9871        unsigned Kind = 0;
9872        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9873        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9874          << Name << Kind << TND->getUnderlyingType();
9875        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9876        Invalid = true;
9877
9878      // Otherwise, diagnose.
9879      } else {
9880        // The tag name clashes with something else in the target scope,
9881        // issue an error and recover by making this tag be anonymous.
9882        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9883        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9884        Name = 0;
9885        Invalid = true;
9886      }
9887
9888      // The existing declaration isn't relevant to us; we're in a
9889      // new scope, so clear out the previous declaration.
9890      Previous.clear();
9891    }
9892  }
9893
9894CreateNewDecl:
9895
9896  TagDecl *PrevDecl = 0;
9897  if (Previous.isSingleResult())
9898    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9899
9900  // If there is an identifier, use the location of the identifier as the
9901  // location of the decl, otherwise use the location of the struct/union
9902  // keyword.
9903  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9904
9905  // Otherwise, create a new declaration. If there is a previous
9906  // declaration of the same entity, the two will be linked via
9907  // PrevDecl.
9908  TagDecl *New;
9909
9910  bool IsForwardReference = false;
9911  if (Kind == TTK_Enum) {
9912    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9913    // enum X { A, B, C } D;    D should chain to X.
9914    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9915                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9916                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9917    // If this is an undefined enum, warn.
9918    if (TUK != TUK_Definition && !Invalid) {
9919      TagDecl *Def;
9920      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
9921          cast<EnumDecl>(New)->isFixed()) {
9922        // C++0x: 7.2p2: opaque-enum-declaration.
9923        // Conflicts are diagnosed above. Do nothing.
9924      }
9925      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9926        Diag(Loc, diag::ext_forward_ref_enum_def)
9927          << New;
9928        Diag(Def->getLocation(), diag::note_previous_definition);
9929      } else {
9930        unsigned DiagID = diag::ext_forward_ref_enum;
9931        if (getLangOpts().MicrosoftMode)
9932          DiagID = diag::ext_ms_forward_ref_enum;
9933        else if (getLangOpts().CPlusPlus)
9934          DiagID = diag::err_forward_ref_enum;
9935        Diag(Loc, DiagID);
9936
9937        // If this is a forward-declared reference to an enumeration, make a
9938        // note of it; we won't actually be introducing the declaration into
9939        // the declaration context.
9940        if (TUK == TUK_Reference)
9941          IsForwardReference = true;
9942      }
9943    }
9944
9945    if (EnumUnderlying) {
9946      EnumDecl *ED = cast<EnumDecl>(New);
9947      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9948        ED->setIntegerTypeSourceInfo(TI);
9949      else
9950        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9951      ED->setPromotionType(ED->getIntegerType());
9952    }
9953
9954  } else {
9955    // struct/union/class
9956
9957    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9958    // struct X { int A; } D;    D should chain to X.
9959    if (getLangOpts().CPlusPlus) {
9960      // FIXME: Look for a way to use RecordDecl for simple structs.
9961      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9962                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9963
9964      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9965        StdBadAlloc = cast<CXXRecordDecl>(New);
9966    } else
9967      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9968                               cast_or_null<RecordDecl>(PrevDecl));
9969  }
9970
9971  // Maybe add qualifier info.
9972  if (SS.isNotEmpty()) {
9973    if (SS.isSet()) {
9974      // If this is either a declaration or a definition, check the
9975      // nested-name-specifier against the current context. We don't do this
9976      // for explicit specializations, because they have similar checking
9977      // (with more specific diagnostics) in the call to
9978      // CheckMemberSpecialization, below.
9979      if (!isExplicitSpecialization &&
9980          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9981          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9982        Invalid = true;
9983
9984      New->setQualifierInfo(SS.getWithLocInContext(Context));
9985      if (TemplateParameterLists.size() > 0) {
9986        New->setTemplateParameterListsInfo(Context,
9987                                           TemplateParameterLists.size(),
9988                                           TemplateParameterLists.data());
9989      }
9990    }
9991    else
9992      Invalid = true;
9993  }
9994
9995  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9996    // Add alignment attributes if necessary; these attributes are checked when
9997    // the ASTContext lays out the structure.
9998    //
9999    // It is important for implementing the correct semantics that this
10000    // happen here (in act on tag decl). The #pragma pack stack is
10001    // maintained as a result of parser callbacks which can occur at
10002    // many points during the parsing of a struct declaration (because
10003    // the #pragma tokens are effectively skipped over during the
10004    // parsing of the struct).
10005    if (TUK == TUK_Definition) {
10006      AddAlignmentAttributesForRecord(RD);
10007      AddMsStructLayoutForRecord(RD);
10008    }
10009  }
10010
10011  if (ModulePrivateLoc.isValid()) {
10012    if (isExplicitSpecialization)
10013      Diag(New->getLocation(), diag::err_module_private_specialization)
10014        << 2
10015        << FixItHint::CreateRemoval(ModulePrivateLoc);
10016    // __module_private__ does not apply to local classes. However, we only
10017    // diagnose this as an error when the declaration specifiers are
10018    // freestanding. Here, we just ignore the __module_private__.
10019    else if (!SearchDC->isFunctionOrMethod())
10020      New->setModulePrivate();
10021  }
10022
10023  // If this is a specialization of a member class (of a class template),
10024  // check the specialization.
10025  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10026    Invalid = true;
10027
10028  if (Invalid)
10029    New->setInvalidDecl();
10030
10031  if (Attr)
10032    ProcessDeclAttributeList(S, New, Attr);
10033
10034  // If we're declaring or defining a tag in function prototype scope
10035  // in C, note that this type can only be used within the function.
10036  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10037    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10038
10039  // Set the lexical context. If the tag has a C++ scope specifier, the
10040  // lexical context will be different from the semantic context.
10041  New->setLexicalDeclContext(CurContext);
10042
10043  // Mark this as a friend decl if applicable.
10044  // In Microsoft mode, a friend declaration also acts as a forward
10045  // declaration so we always pass true to setObjectOfFriendDecl to make
10046  // the tag name visible.
10047  if (TUK == TUK_Friend)
10048    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10049                               getLangOpts().MicrosoftExt);
10050
10051  // Set the access specifier.
10052  if (!Invalid && SearchDC->isRecord())
10053    SetMemberAccessSpecifier(New, PrevDecl, AS);
10054
10055  if (TUK == TUK_Definition)
10056    New->startDefinition();
10057
10058  // If this has an identifier, add it to the scope stack.
10059  if (TUK == TUK_Friend) {
10060    // We might be replacing an existing declaration in the lookup tables;
10061    // if so, borrow its access specifier.
10062    if (PrevDecl)
10063      New->setAccess(PrevDecl->getAccess());
10064
10065    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10066    DC->makeDeclVisibleInContext(New);
10067    if (Name) // can be null along some error paths
10068      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10069        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10070  } else if (Name) {
10071    S = getNonFieldDeclScope(S);
10072    PushOnScopeChains(New, S, !IsForwardReference);
10073    if (IsForwardReference)
10074      SearchDC->makeDeclVisibleInContext(New);
10075
10076  } else {
10077    CurContext->addDecl(New);
10078  }
10079
10080  // If this is the C FILE type, notify the AST context.
10081  if (IdentifierInfo *II = New->getIdentifier())
10082    if (!New->isInvalidDecl() &&
10083        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10084        II->isStr("FILE"))
10085      Context.setFILEDecl(New);
10086
10087  // If we were in function prototype scope (and not in C++ mode), add this
10088  // tag to the list of decls to inject into the function definition scope.
10089  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10090      InFunctionDeclarator && Name)
10091    DeclsInPrototypeScope.push_back(New);
10092
10093  if (PrevDecl)
10094    mergeDeclAttributes(New, PrevDecl);
10095
10096  // If there's a #pragma GCC visibility in scope, set the visibility of this
10097  // record.
10098  AddPushedVisibilityAttribute(New);
10099
10100  OwnedDecl = true;
10101  // In C++, don't return an invalid declaration. We can't recover well from
10102  // the cases where we make the type anonymous.
10103  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10104}
10105
10106void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10107  AdjustDeclIfTemplate(TagD);
10108  TagDecl *Tag = cast<TagDecl>(TagD);
10109
10110  // Enter the tag context.
10111  PushDeclContext(S, Tag);
10112
10113  ActOnDocumentableDecl(TagD);
10114
10115  // If there's a #pragma GCC visibility in scope, set the visibility of this
10116  // record.
10117  AddPushedVisibilityAttribute(Tag);
10118}
10119
10120Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10121  assert(isa<ObjCContainerDecl>(IDecl) &&
10122         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10123  DeclContext *OCD = cast<DeclContext>(IDecl);
10124  assert(getContainingDC(OCD) == CurContext &&
10125      "The next DeclContext should be lexically contained in the current one.");
10126  CurContext = OCD;
10127  return IDecl;
10128}
10129
10130void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10131                                           SourceLocation FinalLoc,
10132                                           SourceLocation LBraceLoc) {
10133  AdjustDeclIfTemplate(TagD);
10134  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10135
10136  FieldCollector->StartClass();
10137
10138  if (!Record->getIdentifier())
10139    return;
10140
10141  if (FinalLoc.isValid())
10142    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10143
10144  // C++ [class]p2:
10145  //   [...] The class-name is also inserted into the scope of the
10146  //   class itself; this is known as the injected-class-name. For
10147  //   purposes of access checking, the injected-class-name is treated
10148  //   as if it were a public member name.
10149  CXXRecordDecl *InjectedClassName
10150    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10151                            Record->getLocStart(), Record->getLocation(),
10152                            Record->getIdentifier(),
10153                            /*PrevDecl=*/0,
10154                            /*DelayTypeCreation=*/true);
10155  Context.getTypeDeclType(InjectedClassName, Record);
10156  InjectedClassName->setImplicit();
10157  InjectedClassName->setAccess(AS_public);
10158  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10159      InjectedClassName->setDescribedClassTemplate(Template);
10160  PushOnScopeChains(InjectedClassName, S);
10161  assert(InjectedClassName->isInjectedClassName() &&
10162         "Broken injected-class-name");
10163}
10164
10165void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10166                                    SourceLocation RBraceLoc) {
10167  AdjustDeclIfTemplate(TagD);
10168  TagDecl *Tag = cast<TagDecl>(TagD);
10169  Tag->setRBraceLoc(RBraceLoc);
10170
10171  // Make sure we "complete" the definition even it is invalid.
10172  if (Tag->isBeingDefined()) {
10173    assert(Tag->isInvalidDecl() && "We should already have completed it");
10174    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10175      RD->completeDefinition();
10176  }
10177
10178  if (isa<CXXRecordDecl>(Tag))
10179    FieldCollector->FinishClass();
10180
10181  // Exit this scope of this tag's definition.
10182  PopDeclContext();
10183
10184  if (getCurLexicalContext()->isObjCContainer() &&
10185      Tag->getDeclContext()->isFileContext())
10186    Tag->setTopLevelDeclInObjCContainer();
10187
10188  // Notify the consumer that we've defined a tag.
10189  Consumer.HandleTagDeclDefinition(Tag);
10190}
10191
10192void Sema::ActOnObjCContainerFinishDefinition() {
10193  // Exit this scope of this interface definition.
10194  PopDeclContext();
10195}
10196
10197void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10198  assert(DC == CurContext && "Mismatch of container contexts");
10199  OriginalLexicalContext = DC;
10200  ActOnObjCContainerFinishDefinition();
10201}
10202
10203void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10204  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10205  OriginalLexicalContext = 0;
10206}
10207
10208void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10209  AdjustDeclIfTemplate(TagD);
10210  TagDecl *Tag = cast<TagDecl>(TagD);
10211  Tag->setInvalidDecl();
10212
10213  // Make sure we "complete" the definition even it is invalid.
10214  if (Tag->isBeingDefined()) {
10215    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10216      RD->completeDefinition();
10217  }
10218
10219  // We're undoing ActOnTagStartDefinition here, not
10220  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10221  // the FieldCollector.
10222
10223  PopDeclContext();
10224}
10225
10226// Note that FieldName may be null for anonymous bitfields.
10227ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10228                                IdentifierInfo *FieldName,
10229                                QualType FieldTy, Expr *BitWidth,
10230                                bool *ZeroWidth) {
10231  // Default to true; that shouldn't confuse checks for emptiness
10232  if (ZeroWidth)
10233    *ZeroWidth = true;
10234
10235  // C99 6.7.2.1p4 - verify the field type.
10236  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10237  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10238    // Handle incomplete types with specific error.
10239    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10240      return ExprError();
10241    if (FieldName)
10242      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10243        << FieldName << FieldTy << BitWidth->getSourceRange();
10244    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10245      << FieldTy << BitWidth->getSourceRange();
10246  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10247                                             UPPC_BitFieldWidth))
10248    return ExprError();
10249
10250  // If the bit-width is type- or value-dependent, don't try to check
10251  // it now.
10252  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10253    return Owned(BitWidth);
10254
10255  llvm::APSInt Value;
10256  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10257  if (ICE.isInvalid())
10258    return ICE;
10259  BitWidth = ICE.take();
10260
10261  if (Value != 0 && ZeroWidth)
10262    *ZeroWidth = false;
10263
10264  // Zero-width bitfield is ok for anonymous field.
10265  if (Value == 0 && FieldName)
10266    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10267
10268  if (Value.isSigned() && Value.isNegative()) {
10269    if (FieldName)
10270      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10271               << FieldName << Value.toString(10);
10272    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10273      << Value.toString(10);
10274  }
10275
10276  if (!FieldTy->isDependentType()) {
10277    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10278    if (Value.getZExtValue() > TypeSize) {
10279      if (!getLangOpts().CPlusPlus) {
10280        if (FieldName)
10281          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10282            << FieldName << (unsigned)Value.getZExtValue()
10283            << (unsigned)TypeSize;
10284
10285        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10286          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10287      }
10288
10289      if (FieldName)
10290        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10291          << FieldName << (unsigned)Value.getZExtValue()
10292          << (unsigned)TypeSize;
10293      else
10294        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10295          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10296    }
10297  }
10298
10299  return Owned(BitWidth);
10300}
10301
10302/// ActOnField - Each field of a C struct/union is passed into this in order
10303/// to create a FieldDecl object for it.
10304Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10305                       Declarator &D, Expr *BitfieldWidth) {
10306  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10307                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10308                               /*InitStyle=*/ICIS_NoInit, AS_public);
10309  return Res;
10310}
10311
10312/// HandleField - Analyze a field of a C struct or a C++ data member.
10313///
10314FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10315                             SourceLocation DeclStart,
10316                             Declarator &D, Expr *BitWidth,
10317                             InClassInitStyle InitStyle,
10318                             AccessSpecifier AS) {
10319  IdentifierInfo *II = D.getIdentifier();
10320  SourceLocation Loc = DeclStart;
10321  if (II) Loc = D.getIdentifierLoc();
10322
10323  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10324  QualType T = TInfo->getType();
10325  if (getLangOpts().CPlusPlus) {
10326    CheckExtraCXXDefaultArguments(D);
10327
10328    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10329                                        UPPC_DataMemberType)) {
10330      D.setInvalidType();
10331      T = Context.IntTy;
10332      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10333    }
10334  }
10335
10336  // TR 18037 does not allow fields to be declared with address spaces.
10337  if (T.getQualifiers().hasAddressSpace()) {
10338    Diag(Loc, diag::err_field_with_address_space);
10339    D.setInvalidType();
10340  }
10341
10342  // OpenCL 1.2 spec, s6.9 r:
10343  // The event type cannot be used to declare a structure or union field.
10344  if (LangOpts.OpenCL && T->isEventT()) {
10345    Diag(Loc, diag::err_event_t_struct_field);
10346    D.setInvalidType();
10347  }
10348
10349  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10350
10351  if (D.getDeclSpec().isThreadSpecified())
10352    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
10353
10354  // Check to see if this name was declared as a member previously
10355  NamedDecl *PrevDecl = 0;
10356  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10357  LookupName(Previous, S);
10358  switch (Previous.getResultKind()) {
10359    case LookupResult::Found:
10360    case LookupResult::FoundUnresolvedValue:
10361      PrevDecl = Previous.getAsSingle<NamedDecl>();
10362      break;
10363
10364    case LookupResult::FoundOverloaded:
10365      PrevDecl = Previous.getRepresentativeDecl();
10366      break;
10367
10368    case LookupResult::NotFound:
10369    case LookupResult::NotFoundInCurrentInstantiation:
10370    case LookupResult::Ambiguous:
10371      break;
10372  }
10373  Previous.suppressDiagnostics();
10374
10375  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10376    // Maybe we will complain about the shadowed template parameter.
10377    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10378    // Just pretend that we didn't see the previous declaration.
10379    PrevDecl = 0;
10380  }
10381
10382  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10383    PrevDecl = 0;
10384
10385  bool Mutable
10386    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10387  SourceLocation TSSL = D.getLocStart();
10388  FieldDecl *NewFD
10389    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10390                     TSSL, AS, PrevDecl, &D);
10391
10392  if (NewFD->isInvalidDecl())
10393    Record->setInvalidDecl();
10394
10395  if (D.getDeclSpec().isModulePrivateSpecified())
10396    NewFD->setModulePrivate();
10397
10398  if (NewFD->isInvalidDecl() && PrevDecl) {
10399    // Don't introduce NewFD into scope; there's already something
10400    // with the same name in the same scope.
10401  } else if (II) {
10402    PushOnScopeChains(NewFD, S);
10403  } else
10404    Record->addDecl(NewFD);
10405
10406  return NewFD;
10407}
10408
10409/// \brief Build a new FieldDecl and check its well-formedness.
10410///
10411/// This routine builds a new FieldDecl given the fields name, type,
10412/// record, etc. \p PrevDecl should refer to any previous declaration
10413/// with the same name and in the same scope as the field to be
10414/// created.
10415///
10416/// \returns a new FieldDecl.
10417///
10418/// \todo The Declarator argument is a hack. It will be removed once
10419FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10420                                TypeSourceInfo *TInfo,
10421                                RecordDecl *Record, SourceLocation Loc,
10422                                bool Mutable, Expr *BitWidth,
10423                                InClassInitStyle InitStyle,
10424                                SourceLocation TSSL,
10425                                AccessSpecifier AS, NamedDecl *PrevDecl,
10426                                Declarator *D) {
10427  IdentifierInfo *II = Name.getAsIdentifierInfo();
10428  bool InvalidDecl = false;
10429  if (D) InvalidDecl = D->isInvalidType();
10430
10431  // If we receive a broken type, recover by assuming 'int' and
10432  // marking this declaration as invalid.
10433  if (T.isNull()) {
10434    InvalidDecl = true;
10435    T = Context.IntTy;
10436  }
10437
10438  QualType EltTy = Context.getBaseElementType(T);
10439  if (!EltTy->isDependentType()) {
10440    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10441      // Fields of incomplete type force their record to be invalid.
10442      Record->setInvalidDecl();
10443      InvalidDecl = true;
10444    } else {
10445      NamedDecl *Def;
10446      EltTy->isIncompleteType(&Def);
10447      if (Def && Def->isInvalidDecl()) {
10448        Record->setInvalidDecl();
10449        InvalidDecl = true;
10450      }
10451    }
10452  }
10453
10454  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10455  if (BitWidth && getLangOpts().OpenCL) {
10456    Diag(Loc, diag::err_opencl_bitfields);
10457    InvalidDecl = true;
10458  }
10459
10460  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10461  // than a variably modified type.
10462  if (!InvalidDecl && T->isVariablyModifiedType()) {
10463    bool SizeIsNegative;
10464    llvm::APSInt Oversized;
10465
10466    TypeSourceInfo *FixedTInfo =
10467      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10468                                                    SizeIsNegative,
10469                                                    Oversized);
10470    if (FixedTInfo) {
10471      Diag(Loc, diag::warn_illegal_constant_array_size);
10472      TInfo = FixedTInfo;
10473      T = FixedTInfo->getType();
10474    } else {
10475      if (SizeIsNegative)
10476        Diag(Loc, diag::err_typecheck_negative_array_size);
10477      else if (Oversized.getBoolValue())
10478        Diag(Loc, diag::err_array_too_large)
10479          << Oversized.toString(10);
10480      else
10481        Diag(Loc, diag::err_typecheck_field_variable_size);
10482      InvalidDecl = true;
10483    }
10484  }
10485
10486  // Fields can not have abstract class types
10487  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10488                                             diag::err_abstract_type_in_decl,
10489                                             AbstractFieldType))
10490    InvalidDecl = true;
10491
10492  bool ZeroWidth = false;
10493  // If this is declared as a bit-field, check the bit-field.
10494  if (!InvalidDecl && BitWidth) {
10495    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10496    if (!BitWidth) {
10497      InvalidDecl = true;
10498      BitWidth = 0;
10499      ZeroWidth = false;
10500    }
10501  }
10502
10503  // Check that 'mutable' is consistent with the type of the declaration.
10504  if (!InvalidDecl && Mutable) {
10505    unsigned DiagID = 0;
10506    if (T->isReferenceType())
10507      DiagID = diag::err_mutable_reference;
10508    else if (T.isConstQualified())
10509      DiagID = diag::err_mutable_const;
10510
10511    if (DiagID) {
10512      SourceLocation ErrLoc = Loc;
10513      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10514        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10515      Diag(ErrLoc, DiagID);
10516      Mutable = false;
10517      InvalidDecl = true;
10518    }
10519  }
10520
10521  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10522                                       BitWidth, Mutable, InitStyle);
10523  if (InvalidDecl)
10524    NewFD->setInvalidDecl();
10525
10526  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10527    Diag(Loc, diag::err_duplicate_member) << II;
10528    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10529    NewFD->setInvalidDecl();
10530  }
10531
10532  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10533    if (Record->isUnion()) {
10534      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10535        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10536        if (RDecl->getDefinition()) {
10537          // C++ [class.union]p1: An object of a class with a non-trivial
10538          // constructor, a non-trivial copy constructor, a non-trivial
10539          // destructor, or a non-trivial copy assignment operator
10540          // cannot be a member of a union, nor can an array of such
10541          // objects.
10542          if (CheckNontrivialField(NewFD))
10543            NewFD->setInvalidDecl();
10544        }
10545      }
10546
10547      // C++ [class.union]p1: If a union contains a member of reference type,
10548      // the program is ill-formed.
10549      if (EltTy->isReferenceType()) {
10550        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10551          << NewFD->getDeclName() << EltTy;
10552        NewFD->setInvalidDecl();
10553      }
10554    }
10555  }
10556
10557  // FIXME: We need to pass in the attributes given an AST
10558  // representation, not a parser representation.
10559  if (D) {
10560    // FIXME: What to pass instead of TUScope?
10561    ProcessDeclAttributes(TUScope, NewFD, *D);
10562
10563    if (NewFD->hasAttrs())
10564      CheckAlignasUnderalignment(NewFD);
10565  }
10566
10567  // In auto-retain/release, infer strong retension for fields of
10568  // retainable type.
10569  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10570    NewFD->setInvalidDecl();
10571
10572  if (T.isObjCGCWeak())
10573    Diag(Loc, diag::warn_attribute_weak_on_field);
10574
10575  NewFD->setAccess(AS);
10576  return NewFD;
10577}
10578
10579bool Sema::CheckNontrivialField(FieldDecl *FD) {
10580  assert(FD);
10581  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10582
10583  if (FD->isInvalidDecl())
10584    return true;
10585
10586  QualType EltTy = Context.getBaseElementType(FD->getType());
10587  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10588    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10589    if (RDecl->getDefinition()) {
10590      // We check for copy constructors before constructors
10591      // because otherwise we'll never get complaints about
10592      // copy constructors.
10593
10594      CXXSpecialMember member = CXXInvalid;
10595      // We're required to check for any non-trivial constructors. Since the
10596      // implicit default constructor is suppressed if there are any
10597      // user-declared constructors, we just need to check that there is a
10598      // trivial default constructor and a trivial copy constructor. (We don't
10599      // worry about move constructors here, since this is a C++98 check.)
10600      if (RDecl->hasNonTrivialCopyConstructor())
10601        member = CXXCopyConstructor;
10602      else if (!RDecl->hasTrivialDefaultConstructor())
10603        member = CXXDefaultConstructor;
10604      else if (RDecl->hasNonTrivialCopyAssignment())
10605        member = CXXCopyAssignment;
10606      else if (RDecl->hasNonTrivialDestructor())
10607        member = CXXDestructor;
10608
10609      if (member != CXXInvalid) {
10610        if (!getLangOpts().CPlusPlus11 &&
10611            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10612          // Objective-C++ ARC: it is an error to have a non-trivial field of
10613          // a union. However, system headers in Objective-C programs
10614          // occasionally have Objective-C lifetime objects within unions,
10615          // and rather than cause the program to fail, we make those
10616          // members unavailable.
10617          SourceLocation Loc = FD->getLocation();
10618          if (getSourceManager().isInSystemHeader(Loc)) {
10619            if (!FD->hasAttr<UnavailableAttr>())
10620              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10621                                  "this system field has retaining ownership"));
10622            return false;
10623          }
10624        }
10625
10626        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10627               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10628               diag::err_illegal_union_or_anon_struct_member)
10629          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10630        DiagnoseNontrivial(RDecl, member);
10631        return !getLangOpts().CPlusPlus11;
10632      }
10633    }
10634  }
10635
10636  return false;
10637}
10638
10639/// TranslateIvarVisibility - Translate visibility from a token ID to an
10640///  AST enum value.
10641static ObjCIvarDecl::AccessControl
10642TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10643  switch (ivarVisibility) {
10644  default: llvm_unreachable("Unknown visitibility kind");
10645  case tok::objc_private: return ObjCIvarDecl::Private;
10646  case tok::objc_public: return ObjCIvarDecl::Public;
10647  case tok::objc_protected: return ObjCIvarDecl::Protected;
10648  case tok::objc_package: return ObjCIvarDecl::Package;
10649  }
10650}
10651
10652/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10653/// in order to create an IvarDecl object for it.
10654Decl *Sema::ActOnIvar(Scope *S,
10655                                SourceLocation DeclStart,
10656                                Declarator &D, Expr *BitfieldWidth,
10657                                tok::ObjCKeywordKind Visibility) {
10658
10659  IdentifierInfo *II = D.getIdentifier();
10660  Expr *BitWidth = (Expr*)BitfieldWidth;
10661  SourceLocation Loc = DeclStart;
10662  if (II) Loc = D.getIdentifierLoc();
10663
10664  // FIXME: Unnamed fields can be handled in various different ways, for
10665  // example, unnamed unions inject all members into the struct namespace!
10666
10667  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10668  QualType T = TInfo->getType();
10669
10670  if (BitWidth) {
10671    // 6.7.2.1p3, 6.7.2.1p4
10672    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10673    if (!BitWidth)
10674      D.setInvalidType();
10675  } else {
10676    // Not a bitfield.
10677
10678    // validate II.
10679
10680  }
10681  if (T->isReferenceType()) {
10682    Diag(Loc, diag::err_ivar_reference_type);
10683    D.setInvalidType();
10684  }
10685  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10686  // than a variably modified type.
10687  else if (T->isVariablyModifiedType()) {
10688    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10689    D.setInvalidType();
10690  }
10691
10692  // Get the visibility (access control) for this ivar.
10693  ObjCIvarDecl::AccessControl ac =
10694    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10695                                        : ObjCIvarDecl::None;
10696  // Must set ivar's DeclContext to its enclosing interface.
10697  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10698  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10699    return 0;
10700  ObjCContainerDecl *EnclosingContext;
10701  if (ObjCImplementationDecl *IMPDecl =
10702      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10703    if (LangOpts.ObjCRuntime.isFragile()) {
10704    // Case of ivar declared in an implementation. Context is that of its class.
10705      EnclosingContext = IMPDecl->getClassInterface();
10706      assert(EnclosingContext && "Implementation has no class interface!");
10707    }
10708    else
10709      EnclosingContext = EnclosingDecl;
10710  } else {
10711    if (ObjCCategoryDecl *CDecl =
10712        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10713      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10714        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10715        return 0;
10716      }
10717    }
10718    EnclosingContext = EnclosingDecl;
10719  }
10720
10721  // Construct the decl.
10722  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10723                                             DeclStart, Loc, II, T,
10724                                             TInfo, ac, (Expr *)BitfieldWidth);
10725
10726  if (II) {
10727    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10728                                           ForRedeclaration);
10729    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10730        && !isa<TagDecl>(PrevDecl)) {
10731      Diag(Loc, diag::err_duplicate_member) << II;
10732      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10733      NewID->setInvalidDecl();
10734    }
10735  }
10736
10737  // Process attributes attached to the ivar.
10738  ProcessDeclAttributes(S, NewID, D);
10739
10740  if (D.isInvalidType())
10741    NewID->setInvalidDecl();
10742
10743  // In ARC, infer 'retaining' for ivars of retainable type.
10744  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10745    NewID->setInvalidDecl();
10746
10747  if (D.getDeclSpec().isModulePrivateSpecified())
10748    NewID->setModulePrivate();
10749
10750  if (II) {
10751    // FIXME: When interfaces are DeclContexts, we'll need to add
10752    // these to the interface.
10753    S->AddDecl(NewID);
10754    IdResolver.AddDecl(NewID);
10755  }
10756
10757  if (LangOpts.ObjCRuntime.isNonFragile() &&
10758      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10759    Diag(Loc, diag::warn_ivars_in_interface);
10760
10761  return NewID;
10762}
10763
10764/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10765/// class and class extensions. For every class \@interface and class
10766/// extension \@interface, if the last ivar is a bitfield of any type,
10767/// then add an implicit `char :0` ivar to the end of that interface.
10768void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10769                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10770  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10771    return;
10772
10773  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10774  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10775
10776  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10777    return;
10778  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10779  if (!ID) {
10780    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10781      if (!CD->IsClassExtension())
10782        return;
10783    }
10784    // No need to add this to end of @implementation.
10785    else
10786      return;
10787  }
10788  // All conditions are met. Add a new bitfield to the tail end of ivars.
10789  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10790  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10791
10792  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10793                              DeclLoc, DeclLoc, 0,
10794                              Context.CharTy,
10795                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10796                                                               DeclLoc),
10797                              ObjCIvarDecl::Private, BW,
10798                              true);
10799  AllIvarDecls.push_back(Ivar);
10800}
10801
10802void Sema::ActOnFields(Scope* S,
10803                       SourceLocation RecLoc, Decl *EnclosingDecl,
10804                       llvm::ArrayRef<Decl *> Fields,
10805                       SourceLocation LBrac, SourceLocation RBrac,
10806                       AttributeList *Attr) {
10807  assert(EnclosingDecl && "missing record or interface decl");
10808
10809  // If this is an Objective-C @implementation or category and we have
10810  // new fields here we should reset the layout of the interface since
10811  // it will now change.
10812  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10813    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10814    switch (DC->getKind()) {
10815    default: break;
10816    case Decl::ObjCCategory:
10817      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10818      break;
10819    case Decl::ObjCImplementation:
10820      Context.
10821        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10822      break;
10823    }
10824  }
10825
10826  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10827
10828  // Start counting up the number of named members; make sure to include
10829  // members of anonymous structs and unions in the total.
10830  unsigned NumNamedMembers = 0;
10831  if (Record) {
10832    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10833                                   e = Record->decls_end(); i != e; i++) {
10834      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10835        if (IFD->getDeclName())
10836          ++NumNamedMembers;
10837    }
10838  }
10839
10840  // Verify that all the fields are okay.
10841  SmallVector<FieldDecl*, 32> RecFields;
10842
10843  bool ARCErrReported = false;
10844  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10845       i != end; ++i) {
10846    FieldDecl *FD = cast<FieldDecl>(*i);
10847
10848    // Get the type for the field.
10849    const Type *FDTy = FD->getType().getTypePtr();
10850
10851    if (!FD->isAnonymousStructOrUnion()) {
10852      // Remember all fields written by the user.
10853      RecFields.push_back(FD);
10854    }
10855
10856    // If the field is already invalid for some reason, don't emit more
10857    // diagnostics about it.
10858    if (FD->isInvalidDecl()) {
10859      EnclosingDecl->setInvalidDecl();
10860      continue;
10861    }
10862
10863    // C99 6.7.2.1p2:
10864    //   A structure or union shall not contain a member with
10865    //   incomplete or function type (hence, a structure shall not
10866    //   contain an instance of itself, but may contain a pointer to
10867    //   an instance of itself), except that the last member of a
10868    //   structure with more than one named member may have incomplete
10869    //   array type; such a structure (and any union containing,
10870    //   possibly recursively, a member that is such a structure)
10871    //   shall not be a member of a structure or an element of an
10872    //   array.
10873    if (FDTy->isFunctionType()) {
10874      // Field declared as a function.
10875      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10876        << FD->getDeclName();
10877      FD->setInvalidDecl();
10878      EnclosingDecl->setInvalidDecl();
10879      continue;
10880    } else if (FDTy->isIncompleteArrayType() && Record &&
10881               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10882                ((getLangOpts().MicrosoftExt ||
10883                  getLangOpts().CPlusPlus) &&
10884                 (i + 1 == Fields.end() || Record->isUnion())))) {
10885      // Flexible array member.
10886      // Microsoft and g++ is more permissive regarding flexible array.
10887      // It will accept flexible array in union and also
10888      // as the sole element of a struct/class.
10889      if (getLangOpts().MicrosoftExt) {
10890        if (Record->isUnion())
10891          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10892            << FD->getDeclName();
10893        else if (Fields.size() == 1)
10894          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10895            << FD->getDeclName() << Record->getTagKind();
10896      } else if (getLangOpts().CPlusPlus) {
10897        if (Record->isUnion())
10898          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10899            << FD->getDeclName();
10900        else if (Fields.size() == 1)
10901          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10902            << FD->getDeclName() << Record->getTagKind();
10903      } else if (!getLangOpts().C99) {
10904      if (Record->isUnion())
10905        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10906          << FD->getDeclName();
10907      else
10908        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10909          << FD->getDeclName() << Record->getTagKind();
10910      } else if (NumNamedMembers < 1) {
10911        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10912          << FD->getDeclName();
10913        FD->setInvalidDecl();
10914        EnclosingDecl->setInvalidDecl();
10915        continue;
10916      }
10917      if (!FD->getType()->isDependentType() &&
10918          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10919        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10920          << FD->getDeclName() << FD->getType();
10921        FD->setInvalidDecl();
10922        EnclosingDecl->setInvalidDecl();
10923        continue;
10924      }
10925      // Okay, we have a legal flexible array member at the end of the struct.
10926      if (Record)
10927        Record->setHasFlexibleArrayMember(true);
10928    } else if (!FDTy->isDependentType() &&
10929               RequireCompleteType(FD->getLocation(), FD->getType(),
10930                                   diag::err_field_incomplete)) {
10931      // Incomplete type
10932      FD->setInvalidDecl();
10933      EnclosingDecl->setInvalidDecl();
10934      continue;
10935    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10936      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10937        // If this is a member of a union, then entire union becomes "flexible".
10938        if (Record && Record->isUnion()) {
10939          Record->setHasFlexibleArrayMember(true);
10940        } else {
10941          // If this is a struct/class and this is not the last element, reject
10942          // it.  Note that GCC supports variable sized arrays in the middle of
10943          // structures.
10944          if (i + 1 != Fields.end())
10945            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10946              << FD->getDeclName() << FD->getType();
10947          else {
10948            // We support flexible arrays at the end of structs in
10949            // other structs as an extension.
10950            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10951              << FD->getDeclName();
10952            if (Record)
10953              Record->setHasFlexibleArrayMember(true);
10954          }
10955        }
10956      }
10957      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10958          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10959                                 diag::err_abstract_type_in_decl,
10960                                 AbstractIvarType)) {
10961        // Ivars can not have abstract class types
10962        FD->setInvalidDecl();
10963      }
10964      if (Record && FDTTy->getDecl()->hasObjectMember())
10965        Record->setHasObjectMember(true);
10966      if (Record && FDTTy->getDecl()->hasVolatileMember())
10967        Record->setHasVolatileMember(true);
10968    } else if (FDTy->isObjCObjectType()) {
10969      /// A field cannot be an Objective-c object
10970      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10971        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10972      QualType T = Context.getObjCObjectPointerType(FD->getType());
10973      FD->setType(T);
10974    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10975               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10976      // It's an error in ARC if a field has lifetime.
10977      // We don't want to report this in a system header, though,
10978      // so we just make the field unavailable.
10979      // FIXME: that's really not sufficient; we need to make the type
10980      // itself invalid to, say, initialize or copy.
10981      QualType T = FD->getType();
10982      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10983      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10984        SourceLocation loc = FD->getLocation();
10985        if (getSourceManager().isInSystemHeader(loc)) {
10986          if (!FD->hasAttr<UnavailableAttr>()) {
10987            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10988                              "this system field has retaining ownership"));
10989          }
10990        } else {
10991          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10992            << T->isBlockPointerType() << Record->getTagKind();
10993        }
10994        ARCErrReported = true;
10995      }
10996    } else if (getLangOpts().ObjC1 &&
10997               getLangOpts().getGC() != LangOptions::NonGC &&
10998               Record && !Record->hasObjectMember()) {
10999      if (FD->getType()->isObjCObjectPointerType() ||
11000          FD->getType().isObjCGCStrong())
11001        Record->setHasObjectMember(true);
11002      else if (Context.getAsArrayType(FD->getType())) {
11003        QualType BaseType = Context.getBaseElementType(FD->getType());
11004        if (BaseType->isRecordType() &&
11005            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11006          Record->setHasObjectMember(true);
11007        else if (BaseType->isObjCObjectPointerType() ||
11008                 BaseType.isObjCGCStrong())
11009               Record->setHasObjectMember(true);
11010      }
11011    }
11012    if (Record && FD->getType().isVolatileQualified())
11013      Record->setHasVolatileMember(true);
11014    // Keep track of the number of named members.
11015    if (FD->getIdentifier())
11016      ++NumNamedMembers;
11017  }
11018
11019  // Okay, we successfully defined 'Record'.
11020  if (Record) {
11021    bool Completed = false;
11022    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11023      if (!CXXRecord->isInvalidDecl()) {
11024        // Set access bits correctly on the directly-declared conversions.
11025        for (CXXRecordDecl::conversion_iterator
11026               I = CXXRecord->conversion_begin(),
11027               E = CXXRecord->conversion_end(); I != E; ++I)
11028          I.setAccess((*I)->getAccess());
11029
11030        if (!CXXRecord->isDependentType()) {
11031          // Adjust user-defined destructor exception spec.
11032          if (getLangOpts().CPlusPlus11 &&
11033              CXXRecord->hasUserDeclaredDestructor())
11034            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
11035
11036          // Add any implicitly-declared members to this class.
11037          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11038
11039          // If we have virtual base classes, we may end up finding multiple
11040          // final overriders for a given virtual function. Check for this
11041          // problem now.
11042          if (CXXRecord->getNumVBases()) {
11043            CXXFinalOverriderMap FinalOverriders;
11044            CXXRecord->getFinalOverriders(FinalOverriders);
11045
11046            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11047                                             MEnd = FinalOverriders.end();
11048                 M != MEnd; ++M) {
11049              for (OverridingMethods::iterator SO = M->second.begin(),
11050                                            SOEnd = M->second.end();
11051                   SO != SOEnd; ++SO) {
11052                assert(SO->second.size() > 0 &&
11053                       "Virtual function without overridding functions?");
11054                if (SO->second.size() == 1)
11055                  continue;
11056
11057                // C++ [class.virtual]p2:
11058                //   In a derived class, if a virtual member function of a base
11059                //   class subobject has more than one final overrider the
11060                //   program is ill-formed.
11061                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11062                  << (const NamedDecl *)M->first << Record;
11063                Diag(M->first->getLocation(),
11064                     diag::note_overridden_virtual_function);
11065                for (OverridingMethods::overriding_iterator
11066                          OM = SO->second.begin(),
11067                       OMEnd = SO->second.end();
11068                     OM != OMEnd; ++OM)
11069                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11070                    << (const NamedDecl *)M->first << OM->Method->getParent();
11071
11072                Record->setInvalidDecl();
11073              }
11074            }
11075            CXXRecord->completeDefinition(&FinalOverriders);
11076            Completed = true;
11077          }
11078        }
11079      }
11080    }
11081
11082    if (!Completed)
11083      Record->completeDefinition();
11084
11085    if (Record->hasAttrs())
11086      CheckAlignasUnderalignment(Record);
11087  } else {
11088    ObjCIvarDecl **ClsFields =
11089      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11090    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11091      ID->setEndOfDefinitionLoc(RBrac);
11092      // Add ivar's to class's DeclContext.
11093      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11094        ClsFields[i]->setLexicalDeclContext(ID);
11095        ID->addDecl(ClsFields[i]);
11096      }
11097      // Must enforce the rule that ivars in the base classes may not be
11098      // duplicates.
11099      if (ID->getSuperClass())
11100        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11101    } else if (ObjCImplementationDecl *IMPDecl =
11102                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11103      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11104      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11105        // Ivar declared in @implementation never belongs to the implementation.
11106        // Only it is in implementation's lexical context.
11107        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11108      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11109      IMPDecl->setIvarLBraceLoc(LBrac);
11110      IMPDecl->setIvarRBraceLoc(RBrac);
11111    } else if (ObjCCategoryDecl *CDecl =
11112                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11113      // case of ivars in class extension; all other cases have been
11114      // reported as errors elsewhere.
11115      // FIXME. Class extension does not have a LocEnd field.
11116      // CDecl->setLocEnd(RBrac);
11117      // Add ivar's to class extension's DeclContext.
11118      // Diagnose redeclaration of private ivars.
11119      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11120      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11121        if (IDecl) {
11122          if (const ObjCIvarDecl *ClsIvar =
11123              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11124            Diag(ClsFields[i]->getLocation(),
11125                 diag::err_duplicate_ivar_declaration);
11126            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11127            continue;
11128          }
11129          for (ObjCInterfaceDecl::known_extensions_iterator
11130                 Ext = IDecl->known_extensions_begin(),
11131                 ExtEnd = IDecl->known_extensions_end();
11132               Ext != ExtEnd; ++Ext) {
11133            if (const ObjCIvarDecl *ClsExtIvar
11134                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11135              Diag(ClsFields[i]->getLocation(),
11136                   diag::err_duplicate_ivar_declaration);
11137              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11138              continue;
11139            }
11140          }
11141        }
11142        ClsFields[i]->setLexicalDeclContext(CDecl);
11143        CDecl->addDecl(ClsFields[i]);
11144      }
11145      CDecl->setIvarLBraceLoc(LBrac);
11146      CDecl->setIvarRBraceLoc(RBrac);
11147    }
11148  }
11149
11150  if (Attr)
11151    ProcessDeclAttributeList(S, Record, Attr);
11152}
11153
11154/// \brief Determine whether the given integral value is representable within
11155/// the given type T.
11156static bool isRepresentableIntegerValue(ASTContext &Context,
11157                                        llvm::APSInt &Value,
11158                                        QualType T) {
11159  assert(T->isIntegralType(Context) && "Integral type required!");
11160  unsigned BitWidth = Context.getIntWidth(T);
11161
11162  if (Value.isUnsigned() || Value.isNonNegative()) {
11163    if (T->isSignedIntegerOrEnumerationType())
11164      --BitWidth;
11165    return Value.getActiveBits() <= BitWidth;
11166  }
11167  return Value.getMinSignedBits() <= BitWidth;
11168}
11169
11170// \brief Given an integral type, return the next larger integral type
11171// (or a NULL type of no such type exists).
11172static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11173  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11174  // enum checking below.
11175  assert(T->isIntegralType(Context) && "Integral type required!");
11176  const unsigned NumTypes = 4;
11177  QualType SignedIntegralTypes[NumTypes] = {
11178    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11179  };
11180  QualType UnsignedIntegralTypes[NumTypes] = {
11181    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11182    Context.UnsignedLongLongTy
11183  };
11184
11185  unsigned BitWidth = Context.getTypeSize(T);
11186  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11187                                                        : UnsignedIntegralTypes;
11188  for (unsigned I = 0; I != NumTypes; ++I)
11189    if (Context.getTypeSize(Types[I]) > BitWidth)
11190      return Types[I];
11191
11192  return QualType();
11193}
11194
11195EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11196                                          EnumConstantDecl *LastEnumConst,
11197                                          SourceLocation IdLoc,
11198                                          IdentifierInfo *Id,
11199                                          Expr *Val) {
11200  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11201  llvm::APSInt EnumVal(IntWidth);
11202  QualType EltTy;
11203
11204  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11205    Val = 0;
11206
11207  if (Val)
11208    Val = DefaultLvalueConversion(Val).take();
11209
11210  if (Val) {
11211    if (Enum->isDependentType() || Val->isTypeDependent())
11212      EltTy = Context.DependentTy;
11213    else {
11214      SourceLocation ExpLoc;
11215      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11216          !getLangOpts().MicrosoftMode) {
11217        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11218        // constant-expression in the enumerator-definition shall be a converted
11219        // constant expression of the underlying type.
11220        EltTy = Enum->getIntegerType();
11221        ExprResult Converted =
11222          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11223                                           CCEK_Enumerator);
11224        if (Converted.isInvalid())
11225          Val = 0;
11226        else
11227          Val = Converted.take();
11228      } else if (!Val->isValueDependent() &&
11229                 !(Val = VerifyIntegerConstantExpression(Val,
11230                                                         &EnumVal).take())) {
11231        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11232      } else {
11233        if (Enum->isFixed()) {
11234          EltTy = Enum->getIntegerType();
11235
11236          // In Obj-C and Microsoft mode, require the enumeration value to be
11237          // representable in the underlying type of the enumeration. In C++11,
11238          // we perform a non-narrowing conversion as part of converted constant
11239          // expression checking.
11240          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11241            if (getLangOpts().MicrosoftMode) {
11242              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11243              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11244            } else
11245              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11246          } else
11247            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11248        } else if (getLangOpts().CPlusPlus) {
11249          // C++11 [dcl.enum]p5:
11250          //   If the underlying type is not fixed, the type of each enumerator
11251          //   is the type of its initializing value:
11252          //     - If an initializer is specified for an enumerator, the
11253          //       initializing value has the same type as the expression.
11254          EltTy = Val->getType();
11255        } else {
11256          // C99 6.7.2.2p2:
11257          //   The expression that defines the value of an enumeration constant
11258          //   shall be an integer constant expression that has a value
11259          //   representable as an int.
11260
11261          // Complain if the value is not representable in an int.
11262          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11263            Diag(IdLoc, diag::ext_enum_value_not_int)
11264              << EnumVal.toString(10) << Val->getSourceRange()
11265              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11266          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11267            // Force the type of the expression to 'int'.
11268            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11269          }
11270          EltTy = Val->getType();
11271        }
11272      }
11273    }
11274  }
11275
11276  if (!Val) {
11277    if (Enum->isDependentType())
11278      EltTy = Context.DependentTy;
11279    else if (!LastEnumConst) {
11280      // C++0x [dcl.enum]p5:
11281      //   If the underlying type is not fixed, the type of each enumerator
11282      //   is the type of its initializing value:
11283      //     - If no initializer is specified for the first enumerator, the
11284      //       initializing value has an unspecified integral type.
11285      //
11286      // GCC uses 'int' for its unspecified integral type, as does
11287      // C99 6.7.2.2p3.
11288      if (Enum->isFixed()) {
11289        EltTy = Enum->getIntegerType();
11290      }
11291      else {
11292        EltTy = Context.IntTy;
11293      }
11294    } else {
11295      // Assign the last value + 1.
11296      EnumVal = LastEnumConst->getInitVal();
11297      ++EnumVal;
11298      EltTy = LastEnumConst->getType();
11299
11300      // Check for overflow on increment.
11301      if (EnumVal < LastEnumConst->getInitVal()) {
11302        // C++0x [dcl.enum]p5:
11303        //   If the underlying type is not fixed, the type of each enumerator
11304        //   is the type of its initializing value:
11305        //
11306        //     - Otherwise the type of the initializing value is the same as
11307        //       the type of the initializing value of the preceding enumerator
11308        //       unless the incremented value is not representable in that type,
11309        //       in which case the type is an unspecified integral type
11310        //       sufficient to contain the incremented value. If no such type
11311        //       exists, the program is ill-formed.
11312        QualType T = getNextLargerIntegralType(Context, EltTy);
11313        if (T.isNull() || Enum->isFixed()) {
11314          // There is no integral type larger enough to represent this
11315          // value. Complain, then allow the value to wrap around.
11316          EnumVal = LastEnumConst->getInitVal();
11317          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11318          ++EnumVal;
11319          if (Enum->isFixed())
11320            // When the underlying type is fixed, this is ill-formed.
11321            Diag(IdLoc, diag::err_enumerator_wrapped)
11322              << EnumVal.toString(10)
11323              << EltTy;
11324          else
11325            Diag(IdLoc, diag::warn_enumerator_too_large)
11326              << EnumVal.toString(10);
11327        } else {
11328          EltTy = T;
11329        }
11330
11331        // Retrieve the last enumerator's value, extent that type to the
11332        // type that is supposed to be large enough to represent the incremented
11333        // value, then increment.
11334        EnumVal = LastEnumConst->getInitVal();
11335        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11336        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11337        ++EnumVal;
11338
11339        // If we're not in C++, diagnose the overflow of enumerator values,
11340        // which in C99 means that the enumerator value is not representable in
11341        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11342        // permits enumerator values that are representable in some larger
11343        // integral type.
11344        if (!getLangOpts().CPlusPlus && !T.isNull())
11345          Diag(IdLoc, diag::warn_enum_value_overflow);
11346      } else if (!getLangOpts().CPlusPlus &&
11347                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11348        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11349        Diag(IdLoc, diag::ext_enum_value_not_int)
11350          << EnumVal.toString(10) << 1;
11351      }
11352    }
11353  }
11354
11355  if (!EltTy->isDependentType()) {
11356    // Make the enumerator value match the signedness and size of the
11357    // enumerator's type.
11358    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11359    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11360  }
11361
11362  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11363                                  Val, EnumVal);
11364}
11365
11366
11367Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11368                              SourceLocation IdLoc, IdentifierInfo *Id,
11369                              AttributeList *Attr,
11370                              SourceLocation EqualLoc, Expr *Val) {
11371  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11372  EnumConstantDecl *LastEnumConst =
11373    cast_or_null<EnumConstantDecl>(lastEnumConst);
11374
11375  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11376  // we find one that is.
11377  S = getNonFieldDeclScope(S);
11378
11379  // Verify that there isn't already something declared with this name in this
11380  // scope.
11381  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11382                                         ForRedeclaration);
11383  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11384    // Maybe we will complain about the shadowed template parameter.
11385    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11386    // Just pretend that we didn't see the previous declaration.
11387    PrevDecl = 0;
11388  }
11389
11390  if (PrevDecl) {
11391    // When in C++, we may get a TagDecl with the same name; in this case the
11392    // enum constant will 'hide' the tag.
11393    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11394           "Received TagDecl when not in C++!");
11395    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11396      if (isa<EnumConstantDecl>(PrevDecl))
11397        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11398      else
11399        Diag(IdLoc, diag::err_redefinition) << Id;
11400      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11401      return 0;
11402    }
11403  }
11404
11405  // C++ [class.mem]p15:
11406  // If T is the name of a class, then each of the following shall have a name
11407  // different from T:
11408  // - every enumerator of every member of class T that is an unscoped
11409  // enumerated type
11410  if (CXXRecordDecl *Record
11411                      = dyn_cast<CXXRecordDecl>(
11412                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11413    if (!TheEnumDecl->isScoped() &&
11414        Record->getIdentifier() && Record->getIdentifier() == Id)
11415      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11416
11417  EnumConstantDecl *New =
11418    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11419
11420  if (New) {
11421    // Process attributes.
11422    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11423
11424    // Register this decl in the current scope stack.
11425    New->setAccess(TheEnumDecl->getAccess());
11426    PushOnScopeChains(New, S);
11427  }
11428
11429  ActOnDocumentableDecl(New);
11430
11431  return New;
11432}
11433
11434// Returns true when the enum initial expression does not trigger the
11435// duplicate enum warning.  A few common cases are exempted as follows:
11436// Element2 = Element1
11437// Element2 = Element1 + 1
11438// Element2 = Element1 - 1
11439// Where Element2 and Element1 are from the same enum.
11440static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11441  Expr *InitExpr = ECD->getInitExpr();
11442  if (!InitExpr)
11443    return true;
11444  InitExpr = InitExpr->IgnoreImpCasts();
11445
11446  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11447    if (!BO->isAdditiveOp())
11448      return true;
11449    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11450    if (!IL)
11451      return true;
11452    if (IL->getValue() != 1)
11453      return true;
11454
11455    InitExpr = BO->getLHS();
11456  }
11457
11458  // This checks if the elements are from the same enum.
11459  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11460  if (!DRE)
11461    return true;
11462
11463  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11464  if (!EnumConstant)
11465    return true;
11466
11467  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11468      Enum)
11469    return true;
11470
11471  return false;
11472}
11473
11474struct DupKey {
11475  int64_t val;
11476  bool isTombstoneOrEmptyKey;
11477  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11478    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11479};
11480
11481static DupKey GetDupKey(const llvm::APSInt& Val) {
11482  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11483                false);
11484}
11485
11486struct DenseMapInfoDupKey {
11487  static DupKey getEmptyKey() { return DupKey(0, true); }
11488  static DupKey getTombstoneKey() { return DupKey(1, true); }
11489  static unsigned getHashValue(const DupKey Key) {
11490    return (unsigned)(Key.val * 37);
11491  }
11492  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11493    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11494           LHS.val == RHS.val;
11495  }
11496};
11497
11498// Emits a warning when an element is implicitly set a value that
11499// a previous element has already been set to.
11500static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11501                                        unsigned NumElements, EnumDecl *Enum,
11502                                        QualType EnumType) {
11503  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11504                                 Enum->getLocation()) ==
11505      DiagnosticsEngine::Ignored)
11506    return;
11507  // Avoid anonymous enums
11508  if (!Enum->getIdentifier())
11509    return;
11510
11511  // Only check for small enums.
11512  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11513    return;
11514
11515  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11516  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11517
11518  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11519  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11520          ValueToVectorMap;
11521
11522  DuplicatesVector DupVector;
11523  ValueToVectorMap EnumMap;
11524
11525  // Populate the EnumMap with all values represented by enum constants without
11526  // an initialier.
11527  for (unsigned i = 0; i < NumElements; ++i) {
11528    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11529
11530    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11531    // this constant.  Skip this enum since it may be ill-formed.
11532    if (!ECD) {
11533      return;
11534    }
11535
11536    if (ECD->getInitExpr())
11537      continue;
11538
11539    DupKey Key = GetDupKey(ECD->getInitVal());
11540    DeclOrVector &Entry = EnumMap[Key];
11541
11542    // First time encountering this value.
11543    if (Entry.isNull())
11544      Entry = ECD;
11545  }
11546
11547  // Create vectors for any values that has duplicates.
11548  for (unsigned i = 0; i < NumElements; ++i) {
11549    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11550    if (!ValidDuplicateEnum(ECD, Enum))
11551      continue;
11552
11553    DupKey Key = GetDupKey(ECD->getInitVal());
11554
11555    DeclOrVector& Entry = EnumMap[Key];
11556    if (Entry.isNull())
11557      continue;
11558
11559    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11560      // Ensure constants are different.
11561      if (D == ECD)
11562        continue;
11563
11564      // Create new vector and push values onto it.
11565      ECDVector *Vec = new ECDVector();
11566      Vec->push_back(D);
11567      Vec->push_back(ECD);
11568
11569      // Update entry to point to the duplicates vector.
11570      Entry = Vec;
11571
11572      // Store the vector somewhere we can consult later for quick emission of
11573      // diagnostics.
11574      DupVector.push_back(Vec);
11575      continue;
11576    }
11577
11578    ECDVector *Vec = Entry.get<ECDVector*>();
11579    // Make sure constants are not added more than once.
11580    if (*Vec->begin() == ECD)
11581      continue;
11582
11583    Vec->push_back(ECD);
11584  }
11585
11586  // Emit diagnostics.
11587  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11588                                  DupVectorEnd = DupVector.end();
11589       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11590    ECDVector *Vec = *DupVectorIter;
11591    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11592
11593    // Emit warning for one enum constant.
11594    ECDVector::iterator I = Vec->begin();
11595    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11596      << (*I)->getName() << (*I)->getInitVal().toString(10)
11597      << (*I)->getSourceRange();
11598    ++I;
11599
11600    // Emit one note for each of the remaining enum constants with
11601    // the same value.
11602    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11603      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11604        << (*I)->getName() << (*I)->getInitVal().toString(10)
11605        << (*I)->getSourceRange();
11606    delete Vec;
11607  }
11608}
11609
11610void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11611                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11612                         Decl **Elements, unsigned NumElements,
11613                         Scope *S, AttributeList *Attr) {
11614  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11615  QualType EnumType = Context.getTypeDeclType(Enum);
11616
11617  if (Attr)
11618    ProcessDeclAttributeList(S, Enum, Attr);
11619
11620  if (Enum->isDependentType()) {
11621    for (unsigned i = 0; i != NumElements; ++i) {
11622      EnumConstantDecl *ECD =
11623        cast_or_null<EnumConstantDecl>(Elements[i]);
11624      if (!ECD) continue;
11625
11626      ECD->setType(EnumType);
11627    }
11628
11629    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11630    return;
11631  }
11632
11633  // TODO: If the result value doesn't fit in an int, it must be a long or long
11634  // long value.  ISO C does not support this, but GCC does as an extension,
11635  // emit a warning.
11636  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11637  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11638  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11639
11640  // Verify that all the values are okay, compute the size of the values, and
11641  // reverse the list.
11642  unsigned NumNegativeBits = 0;
11643  unsigned NumPositiveBits = 0;
11644
11645  // Keep track of whether all elements have type int.
11646  bool AllElementsInt = true;
11647
11648  for (unsigned i = 0; i != NumElements; ++i) {
11649    EnumConstantDecl *ECD =
11650      cast_or_null<EnumConstantDecl>(Elements[i]);
11651    if (!ECD) continue;  // Already issued a diagnostic.
11652
11653    const llvm::APSInt &InitVal = ECD->getInitVal();
11654
11655    // Keep track of the size of positive and negative values.
11656    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11657      NumPositiveBits = std::max(NumPositiveBits,
11658                                 (unsigned)InitVal.getActiveBits());
11659    else
11660      NumNegativeBits = std::max(NumNegativeBits,
11661                                 (unsigned)InitVal.getMinSignedBits());
11662
11663    // Keep track of whether every enum element has type int (very commmon).
11664    if (AllElementsInt)
11665      AllElementsInt = ECD->getType() == Context.IntTy;
11666  }
11667
11668  // Figure out the type that should be used for this enum.
11669  QualType BestType;
11670  unsigned BestWidth;
11671
11672  // C++0x N3000 [conv.prom]p3:
11673  //   An rvalue of an unscoped enumeration type whose underlying
11674  //   type is not fixed can be converted to an rvalue of the first
11675  //   of the following types that can represent all the values of
11676  //   the enumeration: int, unsigned int, long int, unsigned long
11677  //   int, long long int, or unsigned long long int.
11678  // C99 6.4.4.3p2:
11679  //   An identifier declared as an enumeration constant has type int.
11680  // The C99 rule is modified by a gcc extension
11681  QualType BestPromotionType;
11682
11683  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11684  // -fshort-enums is the equivalent to specifying the packed attribute on all
11685  // enum definitions.
11686  if (LangOpts.ShortEnums)
11687    Packed = true;
11688
11689  if (Enum->isFixed()) {
11690    BestType = Enum->getIntegerType();
11691    if (BestType->isPromotableIntegerType())
11692      BestPromotionType = Context.getPromotedIntegerType(BestType);
11693    else
11694      BestPromotionType = BestType;
11695    // We don't need to set BestWidth, because BestType is going to be the type
11696    // of the enumerators, but we do anyway because otherwise some compilers
11697    // warn that it might be used uninitialized.
11698    BestWidth = CharWidth;
11699  }
11700  else if (NumNegativeBits) {
11701    // If there is a negative value, figure out the smallest integer type (of
11702    // int/long/longlong) that fits.
11703    // If it's packed, check also if it fits a char or a short.
11704    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11705      BestType = Context.SignedCharTy;
11706      BestWidth = CharWidth;
11707    } else if (Packed && NumNegativeBits <= ShortWidth &&
11708               NumPositiveBits < ShortWidth) {
11709      BestType = Context.ShortTy;
11710      BestWidth = ShortWidth;
11711    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11712      BestType = Context.IntTy;
11713      BestWidth = IntWidth;
11714    } else {
11715      BestWidth = Context.getTargetInfo().getLongWidth();
11716
11717      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11718        BestType = Context.LongTy;
11719      } else {
11720        BestWidth = Context.getTargetInfo().getLongLongWidth();
11721
11722        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11723          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11724        BestType = Context.LongLongTy;
11725      }
11726    }
11727    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11728  } else {
11729    // If there is no negative value, figure out the smallest type that fits
11730    // all of the enumerator values.
11731    // If it's packed, check also if it fits a char or a short.
11732    if (Packed && NumPositiveBits <= CharWidth) {
11733      BestType = Context.UnsignedCharTy;
11734      BestPromotionType = Context.IntTy;
11735      BestWidth = CharWidth;
11736    } else if (Packed && NumPositiveBits <= ShortWidth) {
11737      BestType = Context.UnsignedShortTy;
11738      BestPromotionType = Context.IntTy;
11739      BestWidth = ShortWidth;
11740    } else if (NumPositiveBits <= IntWidth) {
11741      BestType = Context.UnsignedIntTy;
11742      BestWidth = IntWidth;
11743      BestPromotionType
11744        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11745                           ? Context.UnsignedIntTy : Context.IntTy;
11746    } else if (NumPositiveBits <=
11747               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11748      BestType = Context.UnsignedLongTy;
11749      BestPromotionType
11750        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11751                           ? Context.UnsignedLongTy : Context.LongTy;
11752    } else {
11753      BestWidth = Context.getTargetInfo().getLongLongWidth();
11754      assert(NumPositiveBits <= BestWidth &&
11755             "How could an initializer get larger than ULL?");
11756      BestType = Context.UnsignedLongLongTy;
11757      BestPromotionType
11758        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11759                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11760    }
11761  }
11762
11763  // Loop over all of the enumerator constants, changing their types to match
11764  // the type of the enum if needed.
11765  for (unsigned i = 0; i != NumElements; ++i) {
11766    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11767    if (!ECD) continue;  // Already issued a diagnostic.
11768
11769    // Standard C says the enumerators have int type, but we allow, as an
11770    // extension, the enumerators to be larger than int size.  If each
11771    // enumerator value fits in an int, type it as an int, otherwise type it the
11772    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11773    // that X has type 'int', not 'unsigned'.
11774
11775    // Determine whether the value fits into an int.
11776    llvm::APSInt InitVal = ECD->getInitVal();
11777
11778    // If it fits into an integer type, force it.  Otherwise force it to match
11779    // the enum decl type.
11780    QualType NewTy;
11781    unsigned NewWidth;
11782    bool NewSign;
11783    if (!getLangOpts().CPlusPlus &&
11784        !Enum->isFixed() &&
11785        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11786      NewTy = Context.IntTy;
11787      NewWidth = IntWidth;
11788      NewSign = true;
11789    } else if (ECD->getType() == BestType) {
11790      // Already the right type!
11791      if (getLangOpts().CPlusPlus)
11792        // C++ [dcl.enum]p4: Following the closing brace of an
11793        // enum-specifier, each enumerator has the type of its
11794        // enumeration.
11795        ECD->setType(EnumType);
11796      continue;
11797    } else {
11798      NewTy = BestType;
11799      NewWidth = BestWidth;
11800      NewSign = BestType->isSignedIntegerOrEnumerationType();
11801    }
11802
11803    // Adjust the APSInt value.
11804    InitVal = InitVal.extOrTrunc(NewWidth);
11805    InitVal.setIsSigned(NewSign);
11806    ECD->setInitVal(InitVal);
11807
11808    // Adjust the Expr initializer and type.
11809    if (ECD->getInitExpr() &&
11810        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11811      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11812                                                CK_IntegralCast,
11813                                                ECD->getInitExpr(),
11814                                                /*base paths*/ 0,
11815                                                VK_RValue));
11816    if (getLangOpts().CPlusPlus)
11817      // C++ [dcl.enum]p4: Following the closing brace of an
11818      // enum-specifier, each enumerator has the type of its
11819      // enumeration.
11820      ECD->setType(EnumType);
11821    else
11822      ECD->setType(NewTy);
11823  }
11824
11825  Enum->completeDefinition(BestType, BestPromotionType,
11826                           NumPositiveBits, NumNegativeBits);
11827
11828  // If we're declaring a function, ensure this decl isn't forgotten about -
11829  // it needs to go into the function scope.
11830  if (InFunctionDeclarator)
11831    DeclsInPrototypeScope.push_back(Enum);
11832
11833  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11834
11835  // Now that the enum type is defined, ensure it's not been underaligned.
11836  if (Enum->hasAttrs())
11837    CheckAlignasUnderalignment(Enum);
11838}
11839
11840Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11841                                  SourceLocation StartLoc,
11842                                  SourceLocation EndLoc) {
11843  StringLiteral *AsmString = cast<StringLiteral>(expr);
11844
11845  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11846                                                   AsmString, StartLoc,
11847                                                   EndLoc);
11848  CurContext->addDecl(New);
11849  return New;
11850}
11851
11852DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11853                                   SourceLocation ImportLoc,
11854                                   ModuleIdPath Path) {
11855  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11856                                                Module::AllVisible,
11857                                                /*IsIncludeDirective=*/false);
11858  if (!Mod)
11859    return true;
11860
11861  SmallVector<SourceLocation, 2> IdentifierLocs;
11862  Module *ModCheck = Mod;
11863  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11864    // If we've run out of module parents, just drop the remaining identifiers.
11865    // We need the length to be consistent.
11866    if (!ModCheck)
11867      break;
11868    ModCheck = ModCheck->Parent;
11869
11870    IdentifierLocs.push_back(Path[I].second);
11871  }
11872
11873  ImportDecl *Import = ImportDecl::Create(Context,
11874                                          Context.getTranslationUnitDecl(),
11875                                          AtLoc.isValid()? AtLoc : ImportLoc,
11876                                          Mod, IdentifierLocs);
11877  Context.getTranslationUnitDecl()->addDecl(Import);
11878  return Import;
11879}
11880
11881void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11882  // Create the implicit import declaration.
11883  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11884  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11885                                                   Loc, Mod, Loc);
11886  TU->addDecl(ImportD);
11887  Consumer.HandleImplicitImportDecl(ImportD);
11888
11889  // Make the module visible.
11890  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
11891                                         /*Complain=*/false);
11892}
11893
11894void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11895                                      IdentifierInfo* AliasName,
11896                                      SourceLocation PragmaLoc,
11897                                      SourceLocation NameLoc,
11898                                      SourceLocation AliasNameLoc) {
11899  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11900                                    LookupOrdinaryName);
11901  AsmLabelAttr *Attr =
11902     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11903
11904  if (PrevDecl)
11905    PrevDecl->addAttr(Attr);
11906  else
11907    (void)ExtnameUndeclaredIdentifiers.insert(
11908      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11909}
11910
11911void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11912                             SourceLocation PragmaLoc,
11913                             SourceLocation NameLoc) {
11914  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11915
11916  if (PrevDecl) {
11917    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11918  } else {
11919    (void)WeakUndeclaredIdentifiers.insert(
11920      std::pair<IdentifierInfo*,WeakInfo>
11921        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11922  }
11923}
11924
11925void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11926                                IdentifierInfo* AliasName,
11927                                SourceLocation PragmaLoc,
11928                                SourceLocation NameLoc,
11929                                SourceLocation AliasNameLoc) {
11930  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11931                                    LookupOrdinaryName);
11932  WeakInfo W = WeakInfo(Name, NameLoc);
11933
11934  if (PrevDecl) {
11935    if (!PrevDecl->hasAttr<AliasAttr>())
11936      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11937        DeclApplyPragmaWeak(TUScope, ND, W);
11938  } else {
11939    (void)WeakUndeclaredIdentifiers.insert(
11940      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11941  }
11942}
11943
11944Decl *Sema::getObjCDeclContext() const {
11945  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11946}
11947
11948AvailabilityResult Sema::getCurContextAvailability() const {
11949  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11950  return D->getAvailability();
11951}
11952