SemaDecl.cpp revision eb92564b8e5ab9eaadb835b0bf6aee735aa4f370
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>() != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if ((isa<FunctionDecl>(D) &&
323              AllowOverloadingOfFunction(D, Context)) ||
324             isa<FunctionTemplateDecl>(D)) {
325    // We are pushing the name of a function or function template,
326    // which might be an overloaded name.
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(D->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  D));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  // Allow multiple definitions for ObjC built-in typedefs.
520  // FIXME: Verify the underlying types are equivalent!
521  if (getLangOptions().ObjC1) {
522    const IdentifierInfo *TypeID = New->getIdentifier();
523    switch (TypeID->getLength()) {
524    default: break;
525    case 2:
526      if (!TypeID->isStr("id"))
527        break;
528      // Install the built-in type for 'id', ignoring the current definition.
529      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
530      return;
531    case 5:
532      if (!TypeID->isStr("Class"))
533        break;
534      // Install the built-in type for 'Class', ignoring the current definition.
535      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
536      return;
537    case 3:
538      if (!TypeID->isStr("SEL"))
539        break;
540      Context.setObjCSelType(Context.getTypeDeclType(New));
541      return;
542    case 8:
543      if (!TypeID->isStr("Protocol"))
544        break;
545      Context.setObjCProtoType(New->getUnderlyingType());
546      return;
547    }
548    // Fall through - the typedef name was not a builtin type.
549  }
550  // Verify the old decl was also a type.
551  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
552  if (!Old) {
553    Diag(New->getLocation(), diag::err_redefinition_different_kind)
554      << New->getDeclName();
555    if (OldD->getLocation().isValid())
556      Diag(OldD->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  // Determine the "old" type we'll use for checking and diagnostics.
561  QualType OldType;
562  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
563    OldType = OldTypedef->getUnderlyingType();
564  else
565    OldType = Context.getTypeDeclType(Old);
566
567  // If the typedef types are not identical, reject them in all languages and
568  // with any extensions enabled.
569
570  if (OldType != New->getUnderlyingType() &&
571      Context.getCanonicalType(OldType) !=
572      Context.getCanonicalType(New->getUnderlyingType())) {
573    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
574      << New->getUnderlyingType() << OldType;
575    if (Old->getLocation().isValid())
576      Diag(Old->getLocation(), diag::note_previous_definition);
577    return New->setInvalidDecl();
578  }
579
580  if (getLangOptions().Microsoft)
581    return;
582
583  // C++ [dcl.typedef]p2:
584  //   In a given non-class scope, a typedef specifier can be used to
585  //   redefine the name of any type declared in that scope to refer
586  //   to the type to which it already refers.
587  if (getLangOptions().CPlusPlus) {
588    if (!isa<CXXRecordDecl>(CurContext))
589      return;
590    Diag(New->getLocation(), diag::err_redefinition)
591      << New->getDeclName();
592    Diag(Old->getLocation(), diag::note_previous_definition);
593    return New->setInvalidDecl();
594  }
595
596  // If we have a redefinition of a typedef in C, emit a warning.  This warning
597  // is normally mapped to an error, but can be controlled with
598  // -Wtypedef-redefinition.  If either the original or the redefinition is
599  // in a system header, don't emit this for compatibility with GCC.
600  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
601      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
602       Context.getSourceManager().isInSystemHeader(New->getLocation())))
603    return;
604
605  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
606    << New->getDeclName();
607  Diag(Old->getLocation(), diag::note_previous_definition);
608  return;
609}
610
611/// DeclhasAttr - returns true if decl Declaration already has the target
612/// attribute.
613static bool
614DeclHasAttr(const Decl *decl, const Attr *target) {
615  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
616    if (attr->getKind() == target->getKind())
617      return true;
618
619  return false;
620}
621
622/// MergeAttributes - append attributes from the Old decl to the New one.
623static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
624  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
625    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
626      Attr *NewAttr = attr->clone(C);
627      NewAttr->setInherited(true);
628      New->addAttr(NewAttr);
629    }
630  }
631}
632
633/// Used in MergeFunctionDecl to keep track of function parameters in
634/// C.
635struct GNUCompatibleParamWarning {
636  ParmVarDecl *OldParm;
637  ParmVarDecl *NewParm;
638  QualType PromotedType;
639};
640
641/// MergeFunctionDecl - We just parsed a function 'New' from
642/// declarator D which has the same name and scope as a previous
643/// declaration 'Old'.  Figure out how to resolve this situation,
644/// merging decls or emitting diagnostics as appropriate.
645///
646/// In C++, New and Old must be declarations that are not
647/// overloaded. Use IsOverload to determine whether New and Old are
648/// overloaded, and to select the Old declaration that New should be
649/// merged with.
650///
651/// Returns true if there was an error, false otherwise.
652bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
653  assert(!isa<OverloadedFunctionDecl>(OldD) &&
654         "Cannot merge with an overloaded function declaration");
655
656  // Verify the old decl was also a function.
657  FunctionDecl *Old = 0;
658  if (FunctionTemplateDecl *OldFunctionTemplate
659        = dyn_cast<FunctionTemplateDecl>(OldD))
660    Old = OldFunctionTemplate->getTemplatedDecl();
661  else
662    Old = dyn_cast<FunctionDecl>(OldD);
663  if (!Old) {
664    Diag(New->getLocation(), diag::err_redefinition_different_kind)
665      << New->getDeclName();
666    Diag(OldD->getLocation(), diag::note_previous_definition);
667    return true;
668  }
669
670  // Determine whether the previous declaration was a definition,
671  // implicit declaration, or a declaration.
672  diag::kind PrevDiag;
673  if (Old->isThisDeclarationADefinition())
674    PrevDiag = diag::note_previous_definition;
675  else if (Old->isImplicit())
676    PrevDiag = diag::note_previous_implicit_declaration;
677  else
678    PrevDiag = diag::note_previous_declaration;
679
680  QualType OldQType = Context.getCanonicalType(Old->getType());
681  QualType NewQType = Context.getCanonicalType(New->getType());
682
683  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
684      New->getStorageClass() == FunctionDecl::Static &&
685      Old->getStorageClass() != FunctionDecl::Static) {
686    Diag(New->getLocation(), diag::err_static_non_static)
687      << New;
688    Diag(Old->getLocation(), PrevDiag);
689    return true;
690  }
691
692  if (getLangOptions().CPlusPlus) {
693    // (C++98 13.1p2):
694    //   Certain function declarations cannot be overloaded:
695    //     -- Function declarations that differ only in the return type
696    //        cannot be overloaded.
697    QualType OldReturnType
698      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
699    QualType NewReturnType
700      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
701    if (OldReturnType != NewReturnType) {
702      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
703      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
704      return true;
705    }
706
707    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
708    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
709    if (OldMethod && NewMethod &&
710        OldMethod->getLexicalDeclContext() ==
711          NewMethod->getLexicalDeclContext()) {
712      //    -- Member function declarations with the same name and the
713      //       same parameter types cannot be overloaded if any of them
714      //       is a static member function declaration.
715      if (OldMethod->isStatic() || NewMethod->isStatic()) {
716        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
717        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
718        return true;
719      }
720
721      // C++ [class.mem]p1:
722      //   [...] A member shall not be declared twice in the
723      //   member-specification, except that a nested class or member
724      //   class template can be declared and then later defined.
725      unsigned NewDiag;
726      if (isa<CXXConstructorDecl>(OldMethod))
727        NewDiag = diag::err_constructor_redeclared;
728      else if (isa<CXXDestructorDecl>(NewMethod))
729        NewDiag = diag::err_destructor_redeclared;
730      else if (isa<CXXConversionDecl>(NewMethod))
731        NewDiag = diag::err_conv_function_redeclared;
732      else
733        NewDiag = diag::err_member_redeclared;
734
735      Diag(New->getLocation(), NewDiag);
736      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
737    }
738
739    // (C++98 8.3.5p3):
740    //   All declarations for a function shall agree exactly in both the
741    //   return type and the parameter-type-list.
742    if (OldQType == NewQType)
743      return MergeCompatibleFunctionDecls(New, Old);
744
745    // Fall through for conflicting redeclarations and redefinitions.
746  }
747
748  // C: Function types need to be compatible, not identical. This handles
749  // duplicate function decls like "void f(int); void f(enum X);" properly.
750  if (!getLangOptions().CPlusPlus &&
751      Context.typesAreCompatible(OldQType, NewQType)) {
752    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
753    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
754    const FunctionProtoType *OldProto = 0;
755    if (isa<FunctionNoProtoType>(NewFuncType) &&
756        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
757      // The old declaration provided a function prototype, but the
758      // new declaration does not. Merge in the prototype.
759      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
760      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
761                                                 OldProto->arg_type_end());
762      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
763                                         ParamTypes.data(), ParamTypes.size(),
764                                         OldProto->isVariadic(),
765                                         OldProto->getTypeQuals());
766      New->setType(NewQType);
767      New->setHasInheritedPrototype();
768
769      // Synthesize a parameter for each argument type.
770      llvm::SmallVector<ParmVarDecl*, 16> Params;
771      for (FunctionProtoType::arg_type_iterator
772             ParamType = OldProto->arg_type_begin(),
773             ParamEnd = OldProto->arg_type_end();
774           ParamType != ParamEnd; ++ParamType) {
775        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
776                                                 SourceLocation(), 0,
777                                                 *ParamType, VarDecl::None,
778                                                 0);
779        Param->setImplicit();
780        Params.push_back(Param);
781      }
782
783      New->setParams(Context, Params.data(), Params.size());
784    }
785
786    return MergeCompatibleFunctionDecls(New, Old);
787  }
788
789  // GNU C permits a K&R definition to follow a prototype declaration
790  // if the declared types of the parameters in the K&R definition
791  // match the types in the prototype declaration, even when the
792  // promoted types of the parameters from the K&R definition differ
793  // from the types in the prototype. GCC then keeps the types from
794  // the prototype.
795  //
796  // If a variadic prototype is followed by a non-variadic K&R definition,
797  // the K&R definition becomes variadic.  This is sort of an edge case, but
798  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
799  // C99 6.9.1p8.
800  if (!getLangOptions().CPlusPlus &&
801      Old->hasPrototype() && !New->hasPrototype() &&
802      New->getType()->getAsFunctionProtoType() &&
803      Old->getNumParams() == New->getNumParams()) {
804    llvm::SmallVector<QualType, 16> ArgTypes;
805    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
806    const FunctionProtoType *OldProto
807      = Old->getType()->getAsFunctionProtoType();
808    const FunctionProtoType *NewProto
809      = New->getType()->getAsFunctionProtoType();
810
811    // Determine whether this is the GNU C extension.
812    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
813                                               NewProto->getResultType());
814    bool LooseCompatible = !MergedReturn.isNull();
815    for (unsigned Idx = 0, End = Old->getNumParams();
816         LooseCompatible && Idx != End; ++Idx) {
817      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
818      ParmVarDecl *NewParm = New->getParamDecl(Idx);
819      if (Context.typesAreCompatible(OldParm->getType(),
820                                     NewProto->getArgType(Idx))) {
821        ArgTypes.push_back(NewParm->getType());
822      } else if (Context.typesAreCompatible(OldParm->getType(),
823                                            NewParm->getType())) {
824        GNUCompatibleParamWarning Warn
825          = { OldParm, NewParm, NewProto->getArgType(Idx) };
826        Warnings.push_back(Warn);
827        ArgTypes.push_back(NewParm->getType());
828      } else
829        LooseCompatible = false;
830    }
831
832    if (LooseCompatible) {
833      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
834        Diag(Warnings[Warn].NewParm->getLocation(),
835             diag::ext_param_promoted_not_compatible_with_prototype)
836          << Warnings[Warn].PromotedType
837          << Warnings[Warn].OldParm->getType();
838        Diag(Warnings[Warn].OldParm->getLocation(),
839             diag::note_previous_declaration);
840      }
841
842      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
843                                           ArgTypes.size(),
844                                           OldProto->isVariadic(), 0));
845      return MergeCompatibleFunctionDecls(New, Old);
846    }
847
848    // Fall through to diagnose conflicting types.
849  }
850
851  // A function that has already been declared has been redeclared or defined
852  // with a different type- show appropriate diagnostic
853  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
854    // The user has declared a builtin function with an incompatible
855    // signature.
856    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
857      // The function the user is redeclaring is a library-defined
858      // function like 'malloc' or 'printf'. Warn about the
859      // redeclaration, then pretend that we don't know about this
860      // library built-in.
861      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
862      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
863        << Old << Old->getType();
864      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
865      Old->setInvalidDecl();
866      return false;
867    }
868
869    PrevDiag = diag::note_previous_builtin_declaration;
870  }
871
872  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
873  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
874  return true;
875}
876
877/// \brief Completes the merge of two function declarations that are
878/// known to be compatible.
879///
880/// This routine handles the merging of attributes and other
881/// properties of function declarations form the old declaration to
882/// the new declaration, once we know that New is in fact a
883/// redeclaration of Old.
884///
885/// \returns false
886bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
887  // Merge the attributes
888  MergeAttributes(New, Old, Context);
889
890  // Merge the storage class.
891  if (Old->getStorageClass() != FunctionDecl::Extern)
892    New->setStorageClass(Old->getStorageClass());
893
894  // Merge "inline"
895  if (Old->isInline())
896    New->setInline(true);
897
898  // If this function declaration by itself qualifies as a C99 inline
899  // definition (C99 6.7.4p6), but the previous definition did not,
900  // then the function is not a C99 inline definition.
901  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
902    New->setC99InlineDefinition(false);
903  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
904    // Mark all preceding definitions as not being C99 inline definitions.
905    for (const FunctionDecl *Prev = Old; Prev;
906         Prev = Prev->getPreviousDeclaration())
907      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
908  }
909
910  // Merge "pure" flag.
911  if (Old->isPure())
912    New->setPure();
913
914  // Merge the "deleted" flag.
915  if (Old->isDeleted())
916    New->setDeleted();
917
918  if (getLangOptions().CPlusPlus)
919    return MergeCXXFunctionDecl(New, Old);
920
921  return false;
922}
923
924/// MergeVarDecl - We just parsed a variable 'New' which has the same name
925/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
926/// situation, merging decls or emitting diagnostics as appropriate.
927///
928/// Tentative definition rules (C99 6.9.2p2) are checked by
929/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
930/// definitions here, since the initializer hasn't been attached.
931///
932void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
933  // If either decl is invalid, make sure the new one is marked invalid and
934  // don't do any other checking.
935  if (New->isInvalidDecl() || OldD->isInvalidDecl())
936    return New->setInvalidDecl();
937
938  // Verify the old decl was also a variable.
939  VarDecl *Old = dyn_cast<VarDecl>(OldD);
940  if (!Old) {
941    Diag(New->getLocation(), diag::err_redefinition_different_kind)
942      << New->getDeclName();
943    Diag(OldD->getLocation(), diag::note_previous_definition);
944    return New->setInvalidDecl();
945  }
946
947  MergeAttributes(New, Old, Context);
948
949  // Merge the types
950  QualType MergedT;
951  if (getLangOptions().CPlusPlus) {
952    if (Context.hasSameType(New->getType(), Old->getType()))
953      MergedT = New->getType();
954  } else {
955    MergedT = Context.mergeTypes(New->getType(), Old->getType());
956  }
957  if (MergedT.isNull()) {
958    Diag(New->getLocation(), diag::err_redefinition_different_type)
959      << New->getDeclName();
960    Diag(Old->getLocation(), diag::note_previous_definition);
961    return New->setInvalidDecl();
962  }
963  New->setType(MergedT);
964
965  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
966  if (New->getStorageClass() == VarDecl::Static &&
967      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
968    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
969    Diag(Old->getLocation(), diag::note_previous_definition);
970    return New->setInvalidDecl();
971  }
972  // C99 6.2.2p4:
973  //   For an identifier declared with the storage-class specifier
974  //   extern in a scope in which a prior declaration of that
975  //   identifier is visible,23) if the prior declaration specifies
976  //   internal or external linkage, the linkage of the identifier at
977  //   the later declaration is the same as the linkage specified at
978  //   the prior declaration. If no prior declaration is visible, or
979  //   if the prior declaration specifies no linkage, then the
980  //   identifier has external linkage.
981  if (New->hasExternalStorage() && Old->hasLinkage())
982    /* Okay */;
983  else if (New->getStorageClass() != VarDecl::Static &&
984           Old->getStorageClass() == VarDecl::Static) {
985    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989
990  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
991
992  // FIXME: The test for external storage here seems wrong? We still
993  // need to check for mismatches.
994  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
995      // Don't complain about out-of-line definitions of static members.
996      !(Old->getLexicalDeclContext()->isRecord() &&
997        !New->getLexicalDeclContext()->isRecord())) {
998    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
999    Diag(Old->getLocation(), diag::note_previous_definition);
1000    return New->setInvalidDecl();
1001  }
1002
1003  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1004    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1005    Diag(Old->getLocation(), diag::note_previous_definition);
1006  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1007    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009  }
1010
1011  // Keep a chain of previous declarations.
1012  New->setPreviousDeclaration(Old);
1013}
1014
1015/// CheckParmsForFunctionDef - Check that the parameters of the given
1016/// function are appropriate for the definition of a function. This
1017/// takes care of any checks that cannot be performed on the
1018/// declaration itself, e.g., that the types of each of the function
1019/// parameters are complete.
1020bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1021  bool HasInvalidParm = false;
1022  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1023    ParmVarDecl *Param = FD->getParamDecl(p);
1024
1025    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1026    // function declarator that is part of a function definition of
1027    // that function shall not have incomplete type.
1028    //
1029    // This is also C++ [dcl.fct]p6.
1030    if (!Param->isInvalidDecl() &&
1031        RequireCompleteType(Param->getLocation(), Param->getType(),
1032                               diag::err_typecheck_decl_incomplete_type)) {
1033      Param->setInvalidDecl();
1034      HasInvalidParm = true;
1035    }
1036
1037    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1038    // declaration of each parameter shall include an identifier.
1039    if (Param->getIdentifier() == 0 &&
1040        !Param->isImplicit() &&
1041        !getLangOptions().CPlusPlus)
1042      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1043  }
1044
1045  return HasInvalidParm;
1046}
1047
1048/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1049/// no declarator (e.g. "struct foo;") is parsed.
1050Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1051  // FIXME: Error on auto/register at file scope
1052  // FIXME: Error on inline/virtual/explicit
1053  // FIXME: Error on invalid restrict
1054  // FIXME: Warn on useless __thread
1055  // FIXME: Warn on useless const/volatile
1056  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1057  // FIXME: Warn on useless attributes
1058  TagDecl *Tag = 0;
1059  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1060      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1061      DS.getTypeSpecType() == DeclSpec::TST_union ||
1062      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1063    if (!DS.getTypeRep()) // We probably had an error
1064      return DeclPtrTy();
1065
1066    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1067  }
1068
1069  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1070    if (!Record->getDeclName() && Record->isDefinition() &&
1071        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1072      if (getLangOptions().CPlusPlus ||
1073          Record->getDeclContext()->isRecord())
1074        return BuildAnonymousStructOrUnion(S, DS, Record);
1075
1076      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1077        << DS.getSourceRange();
1078    }
1079
1080    // Microsoft allows unnamed struct/union fields. Don't complain
1081    // about them.
1082    // FIXME: Should we support Microsoft's extensions in this area?
1083    if (Record->getDeclName() && getLangOptions().Microsoft)
1084      return DeclPtrTy::make(Tag);
1085  }
1086
1087  if (!DS.isMissingDeclaratorOk() &&
1088      DS.getTypeSpecType() != DeclSpec::TST_error) {
1089    // Warn about typedefs of enums without names, since this is an
1090    // extension in both Microsoft an GNU.
1091    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1092        Tag && isa<EnumDecl>(Tag)) {
1093      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1094        << DS.getSourceRange();
1095      return DeclPtrTy::make(Tag);
1096    }
1097
1098    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1099      << DS.getSourceRange();
1100    return DeclPtrTy();
1101  }
1102
1103  return DeclPtrTy::make(Tag);
1104}
1105
1106/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1107/// anonymous struct or union AnonRecord into the owning context Owner
1108/// and scope S. This routine will be invoked just after we realize
1109/// that an unnamed union or struct is actually an anonymous union or
1110/// struct, e.g.,
1111///
1112/// @code
1113/// union {
1114///   int i;
1115///   float f;
1116/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1117///    // f into the surrounding scope.x
1118/// @endcode
1119///
1120/// This routine is recursive, injecting the names of nested anonymous
1121/// structs/unions into the owning context and scope as well.
1122bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1123                                               RecordDecl *AnonRecord) {
1124  bool Invalid = false;
1125  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1126                               FEnd = AnonRecord->field_end();
1127       F != FEnd; ++F) {
1128    if ((*F)->getDeclName()) {
1129      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1130                                                LookupOrdinaryName, true);
1131      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1132        // C++ [class.union]p2:
1133        //   The names of the members of an anonymous union shall be
1134        //   distinct from the names of any other entity in the
1135        //   scope in which the anonymous union is declared.
1136        unsigned diagKind
1137          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1138                                 : diag::err_anonymous_struct_member_redecl;
1139        Diag((*F)->getLocation(), diagKind)
1140          << (*F)->getDeclName();
1141        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1142        Invalid = true;
1143      } else {
1144        // C++ [class.union]p2:
1145        //   For the purpose of name lookup, after the anonymous union
1146        //   definition, the members of the anonymous union are
1147        //   considered to have been defined in the scope in which the
1148        //   anonymous union is declared.
1149        Owner->makeDeclVisibleInContext(*F);
1150        S->AddDecl(DeclPtrTy::make(*F));
1151        IdResolver.AddDecl(*F);
1152      }
1153    } else if (const RecordType *InnerRecordType
1154                 = (*F)->getType()->getAsRecordType()) {
1155      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1156      if (InnerRecord->isAnonymousStructOrUnion())
1157        Invalid = Invalid ||
1158          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1159    }
1160  }
1161
1162  return Invalid;
1163}
1164
1165/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1166/// anonymous structure or union. Anonymous unions are a C++ feature
1167/// (C++ [class.union]) and a GNU C extension; anonymous structures
1168/// are a GNU C and GNU C++ extension.
1169Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1170                                                  RecordDecl *Record) {
1171  DeclContext *Owner = Record->getDeclContext();
1172
1173  // Diagnose whether this anonymous struct/union is an extension.
1174  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1175    Diag(Record->getLocation(), diag::ext_anonymous_union);
1176  else if (!Record->isUnion())
1177    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1178
1179  // C and C++ require different kinds of checks for anonymous
1180  // structs/unions.
1181  bool Invalid = false;
1182  if (getLangOptions().CPlusPlus) {
1183    const char* PrevSpec = 0;
1184    // C++ [class.union]p3:
1185    //   Anonymous unions declared in a named namespace or in the
1186    //   global namespace shall be declared static.
1187    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1188        (isa<TranslationUnitDecl>(Owner) ||
1189         (isa<NamespaceDecl>(Owner) &&
1190          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1191      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1192      Invalid = true;
1193
1194      // Recover by adding 'static'.
1195      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1196    }
1197    // C++ [class.union]p3:
1198    //   A storage class is not allowed in a declaration of an
1199    //   anonymous union in a class scope.
1200    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1201             isa<RecordDecl>(Owner)) {
1202      Diag(DS.getStorageClassSpecLoc(),
1203           diag::err_anonymous_union_with_storage_spec);
1204      Invalid = true;
1205
1206      // Recover by removing the storage specifier.
1207      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1208                             PrevSpec);
1209    }
1210
1211    // C++ [class.union]p2:
1212    //   The member-specification of an anonymous union shall only
1213    //   define non-static data members. [Note: nested types and
1214    //   functions cannot be declared within an anonymous union. ]
1215    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1216                                 MemEnd = Record->decls_end();
1217         Mem != MemEnd; ++Mem) {
1218      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1219        // C++ [class.union]p3:
1220        //   An anonymous union shall not have private or protected
1221        //   members (clause 11).
1222        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1223          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1224            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1225          Invalid = true;
1226        }
1227      } else if ((*Mem)->isImplicit()) {
1228        // Any implicit members are fine.
1229      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1230        // This is a type that showed up in an
1231        // elaborated-type-specifier inside the anonymous struct or
1232        // union, but which actually declares a type outside of the
1233        // anonymous struct or union. It's okay.
1234      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1235        if (!MemRecord->isAnonymousStructOrUnion() &&
1236            MemRecord->getDeclName()) {
1237          // This is a nested type declaration.
1238          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1239            << (int)Record->isUnion();
1240          Invalid = true;
1241        }
1242      } else {
1243        // We have something that isn't a non-static data
1244        // member. Complain about it.
1245        unsigned DK = diag::err_anonymous_record_bad_member;
1246        if (isa<TypeDecl>(*Mem))
1247          DK = diag::err_anonymous_record_with_type;
1248        else if (isa<FunctionDecl>(*Mem))
1249          DK = diag::err_anonymous_record_with_function;
1250        else if (isa<VarDecl>(*Mem))
1251          DK = diag::err_anonymous_record_with_static;
1252        Diag((*Mem)->getLocation(), DK)
1253            << (int)Record->isUnion();
1254          Invalid = true;
1255      }
1256    }
1257  }
1258
1259  if (!Record->isUnion() && !Owner->isRecord()) {
1260    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1261      << (int)getLangOptions().CPlusPlus;
1262    Invalid = true;
1263  }
1264
1265  // Create a declaration for this anonymous struct/union.
1266  NamedDecl *Anon = 0;
1267  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1268    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1269                             /*IdentifierInfo=*/0,
1270                             Context.getTypeDeclType(Record),
1271                             /*BitWidth=*/0, /*Mutable=*/false);
1272    Anon->setAccess(AS_public);
1273    if (getLangOptions().CPlusPlus)
1274      FieldCollector->Add(cast<FieldDecl>(Anon));
1275  } else {
1276    VarDecl::StorageClass SC;
1277    switch (DS.getStorageClassSpec()) {
1278    default: assert(0 && "Unknown storage class!");
1279    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1280    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1281    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1282    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1283    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1284    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1285    case DeclSpec::SCS_mutable:
1286      // mutable can only appear on non-static class members, so it's always
1287      // an error here
1288      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1289      Invalid = true;
1290      SC = VarDecl::None;
1291      break;
1292    }
1293
1294    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1295                           /*IdentifierInfo=*/0,
1296                           Context.getTypeDeclType(Record),
1297                           SC, DS.getSourceRange().getBegin());
1298  }
1299  Anon->setImplicit();
1300
1301  // Add the anonymous struct/union object to the current
1302  // context. We'll be referencing this object when we refer to one of
1303  // its members.
1304  Owner->addDecl(Anon);
1305
1306  // Inject the members of the anonymous struct/union into the owning
1307  // context and into the identifier resolver chain for name lookup
1308  // purposes.
1309  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1310    Invalid = true;
1311
1312  // Mark this as an anonymous struct/union type. Note that we do not
1313  // do this until after we have already checked and injected the
1314  // members of this anonymous struct/union type, because otherwise
1315  // the members could be injected twice: once by DeclContext when it
1316  // builds its lookup table, and once by
1317  // InjectAnonymousStructOrUnionMembers.
1318  Record->setAnonymousStructOrUnion(true);
1319
1320  if (Invalid)
1321    Anon->setInvalidDecl();
1322
1323  return DeclPtrTy::make(Anon);
1324}
1325
1326
1327/// GetNameForDeclarator - Determine the full declaration name for the
1328/// given Declarator.
1329DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1330  switch (D.getKind()) {
1331  case Declarator::DK_Abstract:
1332    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1333    return DeclarationName();
1334
1335  case Declarator::DK_Normal:
1336    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1337    return DeclarationName(D.getIdentifier());
1338
1339  case Declarator::DK_Constructor: {
1340    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1341    Ty = Context.getCanonicalType(Ty);
1342    return Context.DeclarationNames.getCXXConstructorName(Ty);
1343  }
1344
1345  case Declarator::DK_Destructor: {
1346    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1347    Ty = Context.getCanonicalType(Ty);
1348    return Context.DeclarationNames.getCXXDestructorName(Ty);
1349  }
1350
1351  case Declarator::DK_Conversion: {
1352    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1353    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1354    Ty = Context.getCanonicalType(Ty);
1355    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1356  }
1357
1358  case Declarator::DK_Operator:
1359    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1360    return Context.DeclarationNames.getCXXOperatorName(
1361                                                D.getOverloadedOperator());
1362  }
1363
1364  assert(false && "Unknown name kind");
1365  return DeclarationName();
1366}
1367
1368/// isNearlyMatchingFunction - Determine whether the C++ functions
1369/// Declaration and Definition are "nearly" matching. This heuristic
1370/// is used to improve diagnostics in the case where an out-of-line
1371/// function definition doesn't match any declaration within
1372/// the class or namespace.
1373static bool isNearlyMatchingFunction(ASTContext &Context,
1374                                     FunctionDecl *Declaration,
1375                                     FunctionDecl *Definition) {
1376  if (Declaration->param_size() != Definition->param_size())
1377    return false;
1378  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1379    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1380    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1381
1382    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1383    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1384    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1385      return false;
1386  }
1387
1388  return true;
1389}
1390
1391Sema::DeclPtrTy
1392Sema::HandleDeclarator(Scope *S, Declarator &D,
1393                       MultiTemplateParamsArg TemplateParamLists,
1394                       bool IsFunctionDefinition) {
1395  DeclarationName Name = GetNameForDeclarator(D);
1396
1397  // All of these full declarators require an identifier.  If it doesn't have
1398  // one, the ParsedFreeStandingDeclSpec action should be used.
1399  if (!Name) {
1400    if (!D.isInvalidType())  // Reject this if we think it is valid.
1401      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1402           diag::err_declarator_need_ident)
1403        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1404    return DeclPtrTy();
1405  }
1406
1407  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1408  // we find one that is.
1409  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1410         (S->getFlags() & Scope::TemplateParamScope) != 0)
1411    S = S->getParent();
1412
1413  DeclContext *DC;
1414  NamedDecl *PrevDecl;
1415  NamedDecl *New;
1416
1417  QualType R = GetTypeForDeclarator(D, S);
1418
1419  // See if this is a redefinition of a variable in the same scope.
1420  if (D.getCXXScopeSpec().isInvalid()) {
1421    DC = CurContext;
1422    PrevDecl = 0;
1423    D.setInvalidType();
1424  } else if (!D.getCXXScopeSpec().isSet()) {
1425    LookupNameKind NameKind = LookupOrdinaryName;
1426
1427    // If the declaration we're planning to build will be a function
1428    // or object with linkage, then look for another declaration with
1429    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1430    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1431      /* Do nothing*/;
1432    else if (R->isFunctionType()) {
1433      if (CurContext->isFunctionOrMethod() ||
1434          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1435        NameKind = LookupRedeclarationWithLinkage;
1436    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1437      NameKind = LookupRedeclarationWithLinkage;
1438    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1439             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1440      NameKind = LookupRedeclarationWithLinkage;
1441
1442    DC = CurContext;
1443    PrevDecl = LookupName(S, Name, NameKind, true,
1444                          NameKind == LookupRedeclarationWithLinkage,
1445                          D.getIdentifierLoc());
1446  } else { // Something like "int foo::x;"
1447    DC = computeDeclContext(D.getCXXScopeSpec());
1448    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1449    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1450
1451    // C++ 7.3.1.2p2:
1452    // Members (including explicit specializations of templates) of a named
1453    // namespace can also be defined outside that namespace by explicit
1454    // qualification of the name being defined, provided that the entity being
1455    // defined was already declared in the namespace and the definition appears
1456    // after the point of declaration in a namespace that encloses the
1457    // declarations namespace.
1458    //
1459    // Note that we only check the context at this point. We don't yet
1460    // have enough information to make sure that PrevDecl is actually
1461    // the declaration we want to match. For example, given:
1462    //
1463    //   class X {
1464    //     void f();
1465    //     void f(float);
1466    //   };
1467    //
1468    //   void X::f(int) { } // ill-formed
1469    //
1470    // In this case, PrevDecl will point to the overload set
1471    // containing the two f's declared in X, but neither of them
1472    // matches.
1473
1474    // First check whether we named the global scope.
1475    if (isa<TranslationUnitDecl>(DC)) {
1476      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1477        << Name << D.getCXXScopeSpec().getRange();
1478    } else if (!CurContext->Encloses(DC)) {
1479      // The qualifying scope doesn't enclose the original declaration.
1480      // Emit diagnostic based on current scope.
1481      SourceLocation L = D.getIdentifierLoc();
1482      SourceRange R = D.getCXXScopeSpec().getRange();
1483      if (isa<FunctionDecl>(CurContext))
1484        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1485      else
1486        Diag(L, diag::err_invalid_declarator_scope)
1487          << Name << cast<NamedDecl>(DC) << R;
1488      D.setInvalidType();
1489    }
1490  }
1491
1492  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1493    // Maybe we will complain about the shadowed template parameter.
1494    if (!D.isInvalidType())
1495      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1496        D.setInvalidType();
1497
1498    // Just pretend that we didn't see the previous declaration.
1499    PrevDecl = 0;
1500  }
1501
1502  // In C++, the previous declaration we find might be a tag type
1503  // (class or enum). In this case, the new declaration will hide the
1504  // tag type. Note that this does does not apply if we're declaring a
1505  // typedef (C++ [dcl.typedef]p4).
1506  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1507      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1508    PrevDecl = 0;
1509
1510  bool Redeclaration = false;
1511  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1512    if (TemplateParamLists.size()) {
1513      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1514      return DeclPtrTy();
1515    }
1516
1517    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1518  } else if (R->isFunctionType()) {
1519    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1520                                  move(TemplateParamLists),
1521                                  IsFunctionDefinition, Redeclaration);
1522  } else {
1523    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1524  }
1525
1526  if (New == 0)
1527    return DeclPtrTy();
1528
1529  // If this has an identifier and is not an invalid redeclaration,
1530  // add it to the scope stack.
1531  if (Name && !(Redeclaration && New->isInvalidDecl()))
1532    PushOnScopeChains(New, S);
1533
1534  return DeclPtrTy::make(New);
1535}
1536
1537/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1538/// types into constant array types in certain situations which would otherwise
1539/// be errors (for GCC compatibility).
1540static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1541                                                    ASTContext &Context,
1542                                                    bool &SizeIsNegative) {
1543  // This method tries to turn a variable array into a constant
1544  // array even when the size isn't an ICE.  This is necessary
1545  // for compatibility with code that depends on gcc's buggy
1546  // constant expression folding, like struct {char x[(int)(char*)2];}
1547  SizeIsNegative = false;
1548
1549  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1550    QualType Pointee = PTy->getPointeeType();
1551    QualType FixedType =
1552        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1553    if (FixedType.isNull()) return FixedType;
1554    FixedType = Context.getPointerType(FixedType);
1555    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1556    return FixedType;
1557  }
1558
1559  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1560  if (!VLATy)
1561    return QualType();
1562  // FIXME: We should probably handle this case
1563  if (VLATy->getElementType()->isVariablyModifiedType())
1564    return QualType();
1565
1566  Expr::EvalResult EvalResult;
1567  if (!VLATy->getSizeExpr() ||
1568      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1569      !EvalResult.Val.isInt())
1570    return QualType();
1571
1572  llvm::APSInt &Res = EvalResult.Val.getInt();
1573  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1574    Expr* ArySizeExpr = VLATy->getSizeExpr();
1575    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1576    // so as to transfer ownership to the ConstantArrayWithExpr.
1577    // Alternatively, we could "clone" it (how?).
1578    // Since we don't know how to do things above, we just use the
1579    // very same Expr*.
1580    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1581                                                Res, ArySizeExpr,
1582                                                ArrayType::Normal, 0,
1583                                                VLATy->getBracketsRange());
1584  }
1585
1586  SizeIsNegative = true;
1587  return QualType();
1588}
1589
1590/// \brief Register the given locally-scoped external C declaration so
1591/// that it can be found later for redeclarations
1592void
1593Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1594                                       Scope *S) {
1595  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1596         "Decl is not a locally-scoped decl!");
1597  // Note that we have a locally-scoped external with this name.
1598  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1599
1600  if (!PrevDecl)
1601    return;
1602
1603  // If there was a previous declaration of this variable, it may be
1604  // in our identifier chain. Update the identifier chain with the new
1605  // declaration.
1606  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1607    // The previous declaration was found on the identifer resolver
1608    // chain, so remove it from its scope.
1609    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1610      S = S->getParent();
1611
1612    if (S)
1613      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1614  }
1615}
1616
1617/// \brief Diagnose function specifiers on a declaration of an identifier that
1618/// does not identify a function.
1619void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1620  // FIXME: We should probably indicate the identifier in question to avoid
1621  // confusion for constructs like "inline int a(), b;"
1622  if (D.getDeclSpec().isInlineSpecified())
1623    Diag(D.getDeclSpec().getInlineSpecLoc(),
1624         diag::err_inline_non_function);
1625
1626  if (D.getDeclSpec().isVirtualSpecified())
1627    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1628         diag::err_virtual_non_function);
1629
1630  if (D.getDeclSpec().isExplicitSpecified())
1631    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1632         diag::err_explicit_non_function);
1633}
1634
1635NamedDecl*
1636Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1637                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1638  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1639  if (D.getCXXScopeSpec().isSet()) {
1640    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1641      << D.getCXXScopeSpec().getRange();
1642    D.setInvalidType();
1643    // Pretend we didn't see the scope specifier.
1644    DC = 0;
1645  }
1646
1647  if (getLangOptions().CPlusPlus) {
1648    // Check that there are no default arguments (C++ only).
1649    CheckExtraCXXDefaultArguments(D);
1650  }
1651
1652  DiagnoseFunctionSpecifiers(D);
1653
1654  if (D.getDeclSpec().isThreadSpecified())
1655    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1656
1657  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1658  if (!NewTD) return 0;
1659
1660  if (D.isInvalidType())
1661    NewTD->setInvalidDecl();
1662
1663  // Handle attributes prior to checking for duplicates in MergeVarDecl
1664  ProcessDeclAttributes(S, NewTD, D);
1665  // Merge the decl with the existing one if appropriate. If the decl is
1666  // in an outer scope, it isn't the same thing.
1667  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1668    Redeclaration = true;
1669    MergeTypeDefDecl(NewTD, PrevDecl);
1670  }
1671
1672  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1673  // then it shall have block scope.
1674  QualType T = NewTD->getUnderlyingType();
1675  if (T->isVariablyModifiedType()) {
1676    CurFunctionNeedsScopeChecking = true;
1677
1678    if (S->getFnParent() == 0) {
1679      bool SizeIsNegative;
1680      QualType FixedTy =
1681          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1682      if (!FixedTy.isNull()) {
1683        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1684        NewTD->setUnderlyingType(FixedTy);
1685      } else {
1686        if (SizeIsNegative)
1687          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1688        else if (T->isVariableArrayType())
1689          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1690        else
1691          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1692        NewTD->setInvalidDecl();
1693      }
1694    }
1695  }
1696
1697  // If this is the C FILE type, notify the AST context.
1698  if (IdentifierInfo *II = NewTD->getIdentifier())
1699    if (!NewTD->isInvalidDecl() &&
1700        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1701        II->isStr("FILE"))
1702      Context.setFILEDecl(NewTD);
1703
1704  return NewTD;
1705}
1706
1707/// \brief Determines whether the given declaration is an out-of-scope
1708/// previous declaration.
1709///
1710/// This routine should be invoked when name lookup has found a
1711/// previous declaration (PrevDecl) that is not in the scope where a
1712/// new declaration by the same name is being introduced. If the new
1713/// declaration occurs in a local scope, previous declarations with
1714/// linkage may still be considered previous declarations (C99
1715/// 6.2.2p4-5, C++ [basic.link]p6).
1716///
1717/// \param PrevDecl the previous declaration found by name
1718/// lookup
1719///
1720/// \param DC the context in which the new declaration is being
1721/// declared.
1722///
1723/// \returns true if PrevDecl is an out-of-scope previous declaration
1724/// for a new delcaration with the same name.
1725static bool
1726isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1727                                ASTContext &Context) {
1728  if (!PrevDecl)
1729    return 0;
1730
1731  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1732  // case we need to check each of the overloaded functions.
1733  if (!PrevDecl->hasLinkage())
1734    return false;
1735
1736  if (Context.getLangOptions().CPlusPlus) {
1737    // C++ [basic.link]p6:
1738    //   If there is a visible declaration of an entity with linkage
1739    //   having the same name and type, ignoring entities declared
1740    //   outside the innermost enclosing namespace scope, the block
1741    //   scope declaration declares that same entity and receives the
1742    //   linkage of the previous declaration.
1743    DeclContext *OuterContext = DC->getLookupContext();
1744    if (!OuterContext->isFunctionOrMethod())
1745      // This rule only applies to block-scope declarations.
1746      return false;
1747    else {
1748      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1749      if (PrevOuterContext->isRecord())
1750        // We found a member function: ignore it.
1751        return false;
1752      else {
1753        // Find the innermost enclosing namespace for the new and
1754        // previous declarations.
1755        while (!OuterContext->isFileContext())
1756          OuterContext = OuterContext->getParent();
1757        while (!PrevOuterContext->isFileContext())
1758          PrevOuterContext = PrevOuterContext->getParent();
1759
1760        // The previous declaration is in a different namespace, so it
1761        // isn't the same function.
1762        if (OuterContext->getPrimaryContext() !=
1763            PrevOuterContext->getPrimaryContext())
1764          return false;
1765      }
1766    }
1767  }
1768
1769  return true;
1770}
1771
1772NamedDecl*
1773Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1774                              QualType R,NamedDecl* PrevDecl,
1775                              bool &Redeclaration) {
1776  DeclarationName Name = GetNameForDeclarator(D);
1777
1778  // Check that there are no default arguments (C++ only).
1779  if (getLangOptions().CPlusPlus)
1780    CheckExtraCXXDefaultArguments(D);
1781
1782  VarDecl *NewVD;
1783  VarDecl::StorageClass SC;
1784  switch (D.getDeclSpec().getStorageClassSpec()) {
1785  default: assert(0 && "Unknown storage class!");
1786  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1787  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1788  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1789  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1790  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1791  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1792  case DeclSpec::SCS_mutable:
1793    // mutable can only appear on non-static class members, so it's always
1794    // an error here
1795    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1796    D.setInvalidType();
1797    SC = VarDecl::None;
1798    break;
1799  }
1800
1801  IdentifierInfo *II = Name.getAsIdentifierInfo();
1802  if (!II) {
1803    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1804      << Name.getAsString();
1805    return 0;
1806  }
1807
1808  DiagnoseFunctionSpecifiers(D);
1809
1810  if (!DC->isRecord() && S->getFnParent() == 0) {
1811    // C99 6.9p2: The storage-class specifiers auto and register shall not
1812    // appear in the declaration specifiers in an external declaration.
1813    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1814
1815      // If this is a register variable with an asm label specified, then this
1816      // is a GNU extension.
1817      if (SC == VarDecl::Register && D.getAsmLabel())
1818        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1819      else
1820        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1821      D.setInvalidType();
1822    }
1823  }
1824  if (DC->isRecord() && !CurContext->isRecord()) {
1825    // This is an out-of-line definition of a static data member.
1826    if (SC == VarDecl::Static) {
1827      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1828           diag::err_static_out_of_line)
1829        << CodeModificationHint::CreateRemoval(
1830                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1831    } else if (SC == VarDecl::None)
1832      SC = VarDecl::Static;
1833  }
1834  if (SC == VarDecl::Static) {
1835    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1836      if (RD->isLocalClass())
1837        Diag(D.getIdentifierLoc(),
1838             diag::err_static_data_member_not_allowed_in_local_class)
1839          << Name << RD->getDeclName();
1840    }
1841  }
1842
1843
1844  // The variable can not
1845  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1846                          II, R, SC,
1847                          // FIXME: Move to DeclGroup...
1848                          D.getDeclSpec().getSourceRange().getBegin());
1849
1850  if (D.isInvalidType())
1851    NewVD->setInvalidDecl();
1852
1853  if (D.getDeclSpec().isThreadSpecified()) {
1854    if (NewVD->hasLocalStorage())
1855      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1856    else if (!Context.Target.isTLSSupported())
1857      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1858    else
1859      NewVD->setThreadSpecified(true);
1860  }
1861
1862  // Set the lexical context. If the declarator has a C++ scope specifier, the
1863  // lexical context will be different from the semantic context.
1864  NewVD->setLexicalDeclContext(CurContext);
1865
1866  // Handle attributes prior to checking for duplicates in MergeVarDecl
1867  ProcessDeclAttributes(S, NewVD, D);
1868
1869  // Handle GNU asm-label extension (encoded as an attribute).
1870  if (Expr *E = (Expr*) D.getAsmLabel()) {
1871    // The parser guarantees this is a string.
1872    StringLiteral *SE = cast<StringLiteral>(E);
1873    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1874                                                        SE->getByteLength())));
1875  }
1876
1877  // If name lookup finds a previous declaration that is not in the
1878  // same scope as the new declaration, this may still be an
1879  // acceptable redeclaration.
1880  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1881      !(NewVD->hasLinkage() &&
1882        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1883    PrevDecl = 0;
1884
1885  // Merge the decl with the existing one if appropriate.
1886  if (PrevDecl) {
1887    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1888      // The user tried to define a non-static data member
1889      // out-of-line (C++ [dcl.meaning]p1).
1890      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1891        << D.getCXXScopeSpec().getRange();
1892      PrevDecl = 0;
1893      NewVD->setInvalidDecl();
1894    }
1895  } else if (D.getCXXScopeSpec().isSet()) {
1896    // No previous declaration in the qualifying scope.
1897    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1898      << Name << D.getCXXScopeSpec().getRange();
1899    NewVD->setInvalidDecl();
1900  }
1901
1902  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1903
1904  // If this is a locally-scoped extern C variable, update the map of
1905  // such variables.
1906  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1907      !NewVD->isInvalidDecl())
1908    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1909
1910  return NewVD;
1911}
1912
1913/// \brief Perform semantic checking on a newly-created variable
1914/// declaration.
1915///
1916/// This routine performs all of the type-checking required for a
1917/// variable declaration once it has been built. It is used both to
1918/// check variables after they have been parsed and their declarators
1919/// have been translated into a declaration, and to check variables
1920/// that have been instantiated from a template.
1921///
1922/// Sets NewVD->isInvalidDecl() if an error was encountered.
1923void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1924                                    bool &Redeclaration) {
1925  // If the decl is already known invalid, don't check it.
1926  if (NewVD->isInvalidDecl())
1927    return;
1928
1929  QualType T = NewVD->getType();
1930
1931  if (T->isObjCInterfaceType()) {
1932    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1933    return NewVD->setInvalidDecl();
1934  }
1935
1936  // The variable can not have an abstract class type.
1937  if (RequireNonAbstractType(NewVD->getLocation(), T,
1938                             diag::err_abstract_type_in_decl,
1939                             AbstractVariableType))
1940    return NewVD->setInvalidDecl();
1941
1942  // Emit an error if an address space was applied to decl with local storage.
1943  // This includes arrays of objects with address space qualifiers, but not
1944  // automatic variables that point to other address spaces.
1945  // ISO/IEC TR 18037 S5.1.2
1946  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1947    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1948    return NewVD->setInvalidDecl();
1949  }
1950
1951  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1952      && !NewVD->hasAttr<BlocksAttr>())
1953    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1954
1955  bool isVM = T->isVariablyModifiedType();
1956  if (isVM || NewVD->hasAttr<CleanupAttr>())
1957    CurFunctionNeedsScopeChecking = true;
1958
1959  if ((isVM && NewVD->hasLinkage()) ||
1960      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1961    bool SizeIsNegative;
1962    QualType FixedTy =
1963        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1964
1965    if (FixedTy.isNull() && T->isVariableArrayType()) {
1966      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1967      // FIXME: This won't give the correct result for
1968      // int a[10][n];
1969      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1970
1971      if (NewVD->isFileVarDecl())
1972        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1973        << SizeRange;
1974      else if (NewVD->getStorageClass() == VarDecl::Static)
1975        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1976        << SizeRange;
1977      else
1978        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1979        << SizeRange;
1980      return NewVD->setInvalidDecl();
1981    }
1982
1983    if (FixedTy.isNull()) {
1984      if (NewVD->isFileVarDecl())
1985        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1986      else
1987        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1988      return NewVD->setInvalidDecl();
1989    }
1990
1991    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1992    NewVD->setType(FixedTy);
1993  }
1994
1995  if (!PrevDecl && NewVD->isExternC(Context)) {
1996    // Since we did not find anything by this name and we're declaring
1997    // an extern "C" variable, look for a non-visible extern "C"
1998    // declaration with the same name.
1999    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2000      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2001    if (Pos != LocallyScopedExternalDecls.end())
2002      PrevDecl = Pos->second;
2003  }
2004
2005  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2006    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2007      << T;
2008    return NewVD->setInvalidDecl();
2009  }
2010
2011  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2012    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2013    return NewVD->setInvalidDecl();
2014  }
2015
2016  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2017    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2018    return NewVD->setInvalidDecl();
2019  }
2020
2021  if (PrevDecl) {
2022    Redeclaration = true;
2023    MergeVarDecl(NewVD, PrevDecl);
2024  }
2025}
2026
2027NamedDecl*
2028Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2029                              QualType R, NamedDecl* PrevDecl,
2030                              MultiTemplateParamsArg TemplateParamLists,
2031                              bool IsFunctionDefinition, bool &Redeclaration) {
2032  assert(R.getTypePtr()->isFunctionType());
2033
2034  DeclarationName Name = GetNameForDeclarator(D);
2035  FunctionDecl::StorageClass SC = FunctionDecl::None;
2036  switch (D.getDeclSpec().getStorageClassSpec()) {
2037  default: assert(0 && "Unknown storage class!");
2038  case DeclSpec::SCS_auto:
2039  case DeclSpec::SCS_register:
2040  case DeclSpec::SCS_mutable:
2041    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2042         diag::err_typecheck_sclass_func);
2043    D.setInvalidType();
2044    break;
2045  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2046  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2047  case DeclSpec::SCS_static: {
2048    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2049      // C99 6.7.1p5:
2050      //   The declaration of an identifier for a function that has
2051      //   block scope shall have no explicit storage-class specifier
2052      //   other than extern
2053      // See also (C++ [dcl.stc]p4).
2054      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2055           diag::err_static_block_func);
2056      SC = FunctionDecl::None;
2057    } else
2058      SC = FunctionDecl::Static;
2059    break;
2060  }
2061  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2062  }
2063
2064  if (D.getDeclSpec().isThreadSpecified())
2065    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2066
2067  bool isInline = D.getDeclSpec().isInlineSpecified();
2068  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2069  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2070
2071  // Check that the return type is not an abstract class type.
2072  // For record types, this is done by the AbstractClassUsageDiagnoser once
2073  // the class has been completely parsed.
2074  if (!DC->isRecord() &&
2075      RequireNonAbstractType(D.getIdentifierLoc(),
2076                             R->getAsFunctionType()->getResultType(),
2077                             diag::err_abstract_type_in_decl,
2078                             AbstractReturnType))
2079    D.setInvalidType();
2080
2081  // Do not allow returning a objc interface by-value.
2082  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2083    Diag(D.getIdentifierLoc(),
2084         diag::err_object_cannot_be_passed_returned_by_value) << 0
2085      << R->getAsFunctionType()->getResultType();
2086    D.setInvalidType();
2087  }
2088
2089  // Check that we can declare a template here.
2090  if (TemplateParamLists.size() &&
2091      CheckTemplateDeclScope(S, TemplateParamLists))
2092    return 0;
2093
2094  bool isVirtualOkay = false;
2095  FunctionDecl *NewFD;
2096  if (D.getKind() == Declarator::DK_Constructor) {
2097    // This is a C++ constructor declaration.
2098    assert(DC->isRecord() &&
2099           "Constructors can only be declared in a member context");
2100
2101    R = CheckConstructorDeclarator(D, R, SC);
2102
2103    // Create the new declaration
2104    NewFD = CXXConstructorDecl::Create(Context,
2105                                       cast<CXXRecordDecl>(DC),
2106                                       D.getIdentifierLoc(), Name, R,
2107                                       isExplicit, isInline,
2108                                       /*isImplicitlyDeclared=*/false);
2109  } else if (D.getKind() == Declarator::DK_Destructor) {
2110    // This is a C++ destructor declaration.
2111    if (DC->isRecord()) {
2112      R = CheckDestructorDeclarator(D, SC);
2113
2114      NewFD = CXXDestructorDecl::Create(Context,
2115                                        cast<CXXRecordDecl>(DC),
2116                                        D.getIdentifierLoc(), Name, R,
2117                                        isInline,
2118                                        /*isImplicitlyDeclared=*/false);
2119
2120      isVirtualOkay = true;
2121    } else {
2122      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2123
2124      // Create a FunctionDecl to satisfy the function definition parsing
2125      // code path.
2126      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2127                                   Name, R, SC, isInline,
2128                                   /*hasPrototype=*/true,
2129                                   // FIXME: Move to DeclGroup...
2130                                   D.getDeclSpec().getSourceRange().getBegin());
2131      D.setInvalidType();
2132    }
2133  } else if (D.getKind() == Declarator::DK_Conversion) {
2134    if (!DC->isRecord()) {
2135      Diag(D.getIdentifierLoc(),
2136           diag::err_conv_function_not_member);
2137      return 0;
2138    }
2139
2140    CheckConversionDeclarator(D, R, SC);
2141    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2142                                      D.getIdentifierLoc(), Name, R,
2143                                      isInline, isExplicit);
2144
2145    isVirtualOkay = true;
2146  } else if (DC->isRecord()) {
2147    // If the of the function is the same as the name of the record, then this
2148    // must be an invalid constructor that has a return type.
2149    // (The parser checks for a return type and makes the declarator a
2150    // constructor if it has no return type).
2151    // must have an invalid constructor that has a return type
2152    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2153      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2154        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2155        << SourceRange(D.getIdentifierLoc());
2156      return 0;
2157    }
2158
2159    // This is a C++ method declaration.
2160    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2161                                  D.getIdentifierLoc(), Name, R,
2162                                  (SC == FunctionDecl::Static), isInline);
2163
2164    isVirtualOkay = (SC != FunctionDecl::Static);
2165  } else {
2166    // Determine whether the function was written with a
2167    // prototype. This true when:
2168    //   - we're in C++ (where every function has a prototype),
2169    //   - there is a prototype in the declarator, or
2170    //   - the type R of the function is some kind of typedef or other reference
2171    //     to a type name (which eventually refers to a function type).
2172    bool HasPrototype =
2173       getLangOptions().CPlusPlus ||
2174       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2175       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2176
2177    NewFD = FunctionDecl::Create(Context, DC,
2178                                 D.getIdentifierLoc(),
2179                                 Name, R, SC, isInline, HasPrototype,
2180                                 // FIXME: Move to DeclGroup...
2181                                 D.getDeclSpec().getSourceRange().getBegin());
2182  }
2183
2184  if (D.isInvalidType())
2185    NewFD->setInvalidDecl();
2186
2187  // Set the lexical context. If the declarator has a C++
2188  // scope specifier, the lexical context will be different
2189  // from the semantic context.
2190  NewFD->setLexicalDeclContext(CurContext);
2191
2192  // If there is a template parameter list, then we are dealing with a
2193  // template declaration or specialization.
2194  FunctionTemplateDecl *FunctionTemplate = 0;
2195  if (TemplateParamLists.size()) {
2196    // FIXME: member templates!
2197    TemplateParameterList *TemplateParams
2198      = static_cast<TemplateParameterList *>(*TemplateParamLists.release());
2199
2200    if (TemplateParams->size() > 0) {
2201      // This is a function template
2202      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2203                                                      NewFD->getLocation(),
2204                                                      Name, TemplateParams,
2205                                                      NewFD);
2206      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2207    } else {
2208      // FIXME: Handle function template specializations
2209    }
2210  }
2211
2212  // C++ [dcl.fct.spec]p5:
2213  //   The virtual specifier shall only be used in declarations of
2214  //   nonstatic class member functions that appear within a
2215  //   member-specification of a class declaration; see 10.3.
2216  //
2217  if (isVirtual && !NewFD->isInvalidDecl()) {
2218    if (!isVirtualOkay) {
2219       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2220           diag::err_virtual_non_function);
2221    } else if (!CurContext->isRecord()) {
2222      // 'virtual' was specified outside of the class.
2223      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2224        << CodeModificationHint::CreateRemoval(
2225                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2226    } else {
2227      // Okay: Add virtual to the method.
2228      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2229      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2230      CurClass->setAggregate(false);
2231      CurClass->setPOD(false);
2232      CurClass->setPolymorphic(true);
2233      CurClass->setHasTrivialConstructor(false);
2234    }
2235  }
2236
2237  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2238    // Look for virtual methods in base classes that this method might override.
2239
2240    BasePaths Paths;
2241    if (LookupInBases(cast<CXXRecordDecl>(DC),
2242                      MemberLookupCriteria(NewMD), Paths)) {
2243      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2244           E = Paths.found_decls_end(); I != E; ++I) {
2245        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2246          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2247              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2248            NewMD->addOverriddenMethod(OldMD);
2249        }
2250      }
2251    }
2252  }
2253
2254  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2255      !CurContext->isRecord()) {
2256    // C++ [class.static]p1:
2257    //   A data or function member of a class may be declared static
2258    //   in a class definition, in which case it is a static member of
2259    //   the class.
2260
2261    // Complain about the 'static' specifier if it's on an out-of-line
2262    // member function definition.
2263    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2264         diag::err_static_out_of_line)
2265      << CodeModificationHint::CreateRemoval(
2266                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2267  }
2268
2269  // Handle GNU asm-label extension (encoded as an attribute).
2270  if (Expr *E = (Expr*) D.getAsmLabel()) {
2271    // The parser guarantees this is a string.
2272    StringLiteral *SE = cast<StringLiteral>(E);
2273    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2274                                                        SE->getByteLength())));
2275  }
2276
2277  // Copy the parameter declarations from the declarator D to the function
2278  // declaration NewFD, if they are available.  First scavenge them into Params.
2279  llvm::SmallVector<ParmVarDecl*, 16> Params;
2280  if (D.getNumTypeObjects() > 0) {
2281    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2282
2283    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2284    // function that takes no arguments, not a function that takes a
2285    // single void argument.
2286    // We let through "const void" here because Sema::GetTypeForDeclarator
2287    // already checks for that case.
2288    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2289        FTI.ArgInfo[0].Param &&
2290        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2291      // Empty arg list, don't push any params.
2292      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2293
2294      // In C++, the empty parameter-type-list must be spelled "void"; a
2295      // typedef of void is not permitted.
2296      if (getLangOptions().CPlusPlus &&
2297          Param->getType().getUnqualifiedType() != Context.VoidTy)
2298        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2299      // FIXME: Leaks decl?
2300    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2301      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2302        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2303    }
2304
2305  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2306    // When we're declaring a function with a typedef, typeof, etc as in the
2307    // following example, we'll need to synthesize (unnamed)
2308    // parameters for use in the declaration.
2309    //
2310    // @code
2311    // typedef void fn(int);
2312    // fn f;
2313    // @endcode
2314
2315    // Synthesize a parameter for each argument type.
2316    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2317         AE = FT->arg_type_end(); AI != AE; ++AI) {
2318      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2319                                               SourceLocation(), 0,
2320                                               *AI, VarDecl::None, 0);
2321      Param->setImplicit();
2322      Params.push_back(Param);
2323    }
2324  } else {
2325    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2326           "Should not need args for typedef of non-prototype fn");
2327  }
2328  // Finally, we know we have the right number of parameters, install them.
2329  NewFD->setParams(Context, Params.data(), Params.size());
2330
2331  // If name lookup finds a previous declaration that is not in the
2332  // same scope as the new declaration, this may still be an
2333  // acceptable redeclaration.
2334  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2335      !(NewFD->hasLinkage() &&
2336        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2337    PrevDecl = 0;
2338
2339  // Perform semantic checking on the function declaration.
2340  bool OverloadableAttrRequired = false; // FIXME: HACK!
2341  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2342                           /*FIXME:*/OverloadableAttrRequired);
2343
2344  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2345    // An out-of-line member function declaration must also be a
2346    // definition (C++ [dcl.meaning]p1).
2347    if (!IsFunctionDefinition) {
2348      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2349        << D.getCXXScopeSpec().getRange();
2350      NewFD->setInvalidDecl();
2351    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2352      // The user tried to provide an out-of-line definition for a
2353      // function that is a member of a class or namespace, but there
2354      // was no such member function declared (C++ [class.mfct]p2,
2355      // C++ [namespace.memdef]p2). For example:
2356      //
2357      // class X {
2358      //   void f() const;
2359      // };
2360      //
2361      // void X::f() { } // ill-formed
2362      //
2363      // Complain about this problem, and attempt to suggest close
2364      // matches (e.g., those that differ only in cv-qualifiers and
2365      // whether the parameter types are references).
2366      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2367        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2368      NewFD->setInvalidDecl();
2369
2370      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2371                                              true);
2372      assert(!Prev.isAmbiguous() &&
2373             "Cannot have an ambiguity in previous-declaration lookup");
2374      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2375           Func != FuncEnd; ++Func) {
2376        if (isa<FunctionDecl>(*Func) &&
2377            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2378          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2379      }
2380
2381      PrevDecl = 0;
2382    }
2383  }
2384
2385  // Handle attributes. We need to have merged decls when handling attributes
2386  // (for example to check for conflicts, etc).
2387  // FIXME: This needs to happen before we merge declarations. Then,
2388  // let attribute merging cope with attribute conflicts.
2389  ProcessDeclAttributes(S, NewFD, D);
2390  AddKnownFunctionAttributes(NewFD);
2391
2392  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2393    // If a function name is overloadable in C, then every function
2394    // with that name must be marked "overloadable".
2395    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2396      << Redeclaration << NewFD;
2397    if (PrevDecl)
2398      Diag(PrevDecl->getLocation(),
2399           diag::note_attribute_overloadable_prev_overload);
2400    NewFD->addAttr(::new (Context) OverloadableAttr());
2401  }
2402
2403  // If this is a locally-scoped extern C function, update the
2404  // map of such names.
2405  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2406      && !NewFD->isInvalidDecl())
2407    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2408
2409  // Set this FunctionDecl's range up to the right paren.
2410  NewFD->setLocEnd(D.getSourceRange().getEnd());
2411
2412  if (FunctionTemplate && NewFD->isInvalidDecl())
2413    FunctionTemplate->setInvalidDecl();
2414
2415  if (FunctionTemplate)
2416    return FunctionTemplate;
2417
2418  return NewFD;
2419}
2420
2421/// \brief Perform semantic checking of a new function declaration.
2422///
2423/// Performs semantic analysis of the new function declaration
2424/// NewFD. This routine performs all semantic checking that does not
2425/// require the actual declarator involved in the declaration, and is
2426/// used both for the declaration of functions as they are parsed
2427/// (called via ActOnDeclarator) and for the declaration of functions
2428/// that have been instantiated via C++ template instantiation (called
2429/// via InstantiateDecl).
2430///
2431/// This sets NewFD->isInvalidDecl() to true if there was an error.
2432void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2433                                    bool &Redeclaration,
2434                                    bool &OverloadableAttrRequired) {
2435  // If NewFD is already known erroneous, don't do any of this checking.
2436  if (NewFD->isInvalidDecl())
2437    return;
2438
2439  if (NewFD->getResultType()->isVariablyModifiedType()) {
2440    // Functions returning a variably modified type violate C99 6.7.5.2p2
2441    // because all functions have linkage.
2442    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2443    return NewFD->setInvalidDecl();
2444  }
2445
2446  // Semantic checking for this function declaration (in isolation).
2447  if (getLangOptions().CPlusPlus) {
2448    // C++-specific checks.
2449    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2450      CheckConstructor(Constructor);
2451    } else if (isa<CXXDestructorDecl>(NewFD)) {
2452      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2453      Record->setUserDeclaredDestructor(true);
2454      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2455      // user-defined destructor.
2456      Record->setPOD(false);
2457
2458      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2459      // declared destructor.
2460      Record->setHasTrivialDestructor(false);
2461    } else if (CXXConversionDecl *Conversion
2462               = dyn_cast<CXXConversionDecl>(NewFD))
2463      ActOnConversionDeclarator(Conversion);
2464
2465    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2466    if (NewFD->isOverloadedOperator() &&
2467        CheckOverloadedOperatorDeclaration(NewFD))
2468      return NewFD->setInvalidDecl();
2469  }
2470
2471  // C99 6.7.4p6:
2472  //   [... ] For a function with external linkage, the following
2473  //   restrictions apply: [...] If all of the file scope declarations
2474  //   for a function in a translation unit include the inline
2475  //   function specifier without extern, then the definition in that
2476  //   translation unit is an inline definition. An inline definition
2477  //   does not provide an external definition for the function, and
2478  //   does not forbid an external definition in another translation
2479  //   unit.
2480  //
2481  // Here we determine whether this function, in isolation, would be a
2482  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2483  // previous declarations.
2484  if (NewFD->isInline() && getLangOptions().C99 &&
2485      NewFD->getStorageClass() == FunctionDecl::None &&
2486      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2487    NewFD->setC99InlineDefinition(true);
2488
2489  // Check for a previous declaration of this name.
2490  if (!PrevDecl && NewFD->isExternC(Context)) {
2491    // Since we did not find anything by this name and we're declaring
2492    // an extern "C" function, look for a non-visible extern "C"
2493    // declaration with the same name.
2494    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2495      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2496    if (Pos != LocallyScopedExternalDecls.end())
2497      PrevDecl = Pos->second;
2498  }
2499
2500  // Merge or overload the declaration with an existing declaration of
2501  // the same name, if appropriate.
2502  if (PrevDecl) {
2503    // Determine whether NewFD is an overload of PrevDecl or
2504    // a declaration that requires merging. If it's an overload,
2505    // there's no more work to do here; we'll just add the new
2506    // function to the scope.
2507    OverloadedFunctionDecl::function_iterator MatchedDecl;
2508
2509    if (!getLangOptions().CPlusPlus &&
2510        AllowOverloadingOfFunction(PrevDecl, Context)) {
2511      OverloadableAttrRequired = true;
2512
2513      // Functions marked "overloadable" must have a prototype (that
2514      // we can't get through declaration merging).
2515      if (!NewFD->getType()->getAsFunctionProtoType()) {
2516        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2517          << NewFD;
2518        Redeclaration = true;
2519
2520        // Turn this into a variadic function with no parameters.
2521        QualType R = Context.getFunctionType(
2522                       NewFD->getType()->getAsFunctionType()->getResultType(),
2523                       0, 0, true, 0);
2524        NewFD->setType(R);
2525        return NewFD->setInvalidDecl();
2526      }
2527    }
2528
2529    if (PrevDecl &&
2530        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2531         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2532        !isa<UsingDecl>(PrevDecl)) {
2533      Redeclaration = true;
2534      Decl *OldDecl = PrevDecl;
2535
2536      // If PrevDecl was an overloaded function, extract the
2537      // FunctionDecl that matched.
2538      if (isa<OverloadedFunctionDecl>(PrevDecl))
2539        OldDecl = *MatchedDecl;
2540
2541      // NewFD and OldDecl represent declarations that need to be
2542      // merged.
2543      if (MergeFunctionDecl(NewFD, OldDecl))
2544        return NewFD->setInvalidDecl();
2545
2546      if (FunctionTemplateDecl *OldTemplateDecl
2547            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2548        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2549      else
2550        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2551    }
2552  }
2553
2554  // In C++, check default arguments now that we have merged decls. Unless
2555  // the lexical context is the class, because in this case this is done
2556  // during delayed parsing anyway.
2557  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2558    CheckCXXDefaultArguments(NewFD);
2559}
2560
2561bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2562  // FIXME: Need strict checking.  In C89, we need to check for
2563  // any assignment, increment, decrement, function-calls, or
2564  // commas outside of a sizeof.  In C99, it's the same list,
2565  // except that the aforementioned are allowed in unevaluated
2566  // expressions.  Everything else falls under the
2567  // "may accept other forms of constant expressions" exception.
2568  // (We never end up here for C++, so the constant expression
2569  // rules there don't matter.)
2570  if (Init->isConstantInitializer(Context))
2571    return false;
2572  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2573    << Init->getSourceRange();
2574  return true;
2575}
2576
2577void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2578  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2579}
2580
2581/// AddInitializerToDecl - Adds the initializer Init to the
2582/// declaration dcl. If DirectInit is true, this is C++ direct
2583/// initialization rather than copy initialization.
2584void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2585  Decl *RealDecl = dcl.getAs<Decl>();
2586  // If there is no declaration, there was an error parsing it.  Just ignore
2587  // the initializer.
2588  if (RealDecl == 0)
2589    return;
2590
2591  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2592    // With declarators parsed the way they are, the parser cannot
2593    // distinguish between a normal initializer and a pure-specifier.
2594    // Thus this grotesque test.
2595    IntegerLiteral *IL;
2596    Expr *Init = static_cast<Expr *>(init.get());
2597    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2598        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2599      if (Method->isVirtualAsWritten()) {
2600        Method->setPure();
2601
2602        // A class is abstract if at least one function is pure virtual.
2603        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2604      } else if (!Method->isInvalidDecl()) {
2605        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2606          << Method->getDeclName() << Init->getSourceRange();
2607        Method->setInvalidDecl();
2608      }
2609    } else {
2610      Diag(Method->getLocation(), diag::err_member_function_initialization)
2611        << Method->getDeclName() << Init->getSourceRange();
2612      Method->setInvalidDecl();
2613    }
2614    return;
2615  }
2616
2617  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2618  if (!VDecl) {
2619    if (getLangOptions().CPlusPlus &&
2620        RealDecl->getLexicalDeclContext()->isRecord() &&
2621        isa<NamedDecl>(RealDecl))
2622      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2623        << cast<NamedDecl>(RealDecl)->getDeclName();
2624    else
2625      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2626    RealDecl->setInvalidDecl();
2627    return;
2628  }
2629
2630  if (!VDecl->getType()->isArrayType() &&
2631      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2632                          diag::err_typecheck_decl_incomplete_type)) {
2633    RealDecl->setInvalidDecl();
2634    return;
2635  }
2636
2637  const VarDecl *Def = 0;
2638  if (VDecl->getDefinition(Def)) {
2639    Diag(VDecl->getLocation(), diag::err_redefinition)
2640      << VDecl->getDeclName();
2641    Diag(Def->getLocation(), diag::note_previous_definition);
2642    VDecl->setInvalidDecl();
2643    return;
2644  }
2645
2646  // Take ownership of the expression, now that we're sure we have somewhere
2647  // to put it.
2648  Expr *Init = init.takeAs<Expr>();
2649  assert(Init && "missing initializer");
2650
2651  // Get the decls type and save a reference for later, since
2652  // CheckInitializerTypes may change it.
2653  QualType DclT = VDecl->getType(), SavT = DclT;
2654  if (VDecl->isBlockVarDecl()) {
2655    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2656      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2657      VDecl->setInvalidDecl();
2658    } else if (!VDecl->isInvalidDecl()) {
2659      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2660                                VDecl->getDeclName(), DirectInit))
2661        VDecl->setInvalidDecl();
2662
2663      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2664      // Don't check invalid declarations to avoid emitting useless diagnostics.
2665      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2666        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2667          CheckForConstantInitializer(Init, DclT);
2668      }
2669    }
2670  } else if (VDecl->isStaticDataMember() &&
2671             VDecl->getLexicalDeclContext()->isRecord()) {
2672    // This is an in-class initialization for a static data member, e.g.,
2673    //
2674    // struct S {
2675    //   static const int value = 17;
2676    // };
2677
2678    // Attach the initializer
2679    VDecl->setInit(Context, Init);
2680
2681    // C++ [class.mem]p4:
2682    //   A member-declarator can contain a constant-initializer only
2683    //   if it declares a static member (9.4) of const integral or
2684    //   const enumeration type, see 9.4.2.
2685    QualType T = VDecl->getType();
2686    if (!T->isDependentType() &&
2687        (!Context.getCanonicalType(T).isConstQualified() ||
2688         !T->isIntegralType())) {
2689      Diag(VDecl->getLocation(), diag::err_member_initialization)
2690        << VDecl->getDeclName() << Init->getSourceRange();
2691      VDecl->setInvalidDecl();
2692    } else {
2693      // C++ [class.static.data]p4:
2694      //   If a static data member is of const integral or const
2695      //   enumeration type, its declaration in the class definition
2696      //   can specify a constant-initializer which shall be an
2697      //   integral constant expression (5.19).
2698      if (!Init->isTypeDependent() &&
2699          !Init->getType()->isIntegralType()) {
2700        // We have a non-dependent, non-integral or enumeration type.
2701        Diag(Init->getSourceRange().getBegin(),
2702             diag::err_in_class_initializer_non_integral_type)
2703          << Init->getType() << Init->getSourceRange();
2704        VDecl->setInvalidDecl();
2705      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2706        // Check whether the expression is a constant expression.
2707        llvm::APSInt Value;
2708        SourceLocation Loc;
2709        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2710          Diag(Loc, diag::err_in_class_initializer_non_constant)
2711            << Init->getSourceRange();
2712          VDecl->setInvalidDecl();
2713        } else if (!VDecl->getType()->isDependentType())
2714          ImpCastExprToType(Init, VDecl->getType());
2715      }
2716    }
2717  } else if (VDecl->isFileVarDecl()) {
2718    if (VDecl->getStorageClass() == VarDecl::Extern)
2719      Diag(VDecl->getLocation(), diag::warn_extern_init);
2720    if (!VDecl->isInvalidDecl())
2721      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2722                                VDecl->getDeclName(), DirectInit))
2723        VDecl->setInvalidDecl();
2724
2725    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2726    // Don't check invalid declarations to avoid emitting useless diagnostics.
2727    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2728      // C99 6.7.8p4. All file scoped initializers need to be constant.
2729      CheckForConstantInitializer(Init, DclT);
2730    }
2731  }
2732  // If the type changed, it means we had an incomplete type that was
2733  // completed by the initializer. For example:
2734  //   int ary[] = { 1, 3, 5 };
2735  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2736  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2737    VDecl->setType(DclT);
2738    Init->setType(DclT);
2739  }
2740
2741  // Attach the initializer to the decl.
2742  VDecl->setInit(Context, Init);
2743
2744  // If the previous declaration of VDecl was a tentative definition,
2745  // remove it from the set of tentative definitions.
2746  if (VDecl->getPreviousDeclaration() &&
2747      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2748    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2749      = TentativeDefinitions.find(VDecl->getDeclName());
2750    assert(Pos != TentativeDefinitions.end() &&
2751           "Unrecorded tentative definition?");
2752    TentativeDefinitions.erase(Pos);
2753  }
2754
2755  return;
2756}
2757
2758void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
2759                                  bool TypeContainsUndeducedAuto) {
2760  Decl *RealDecl = dcl.getAs<Decl>();
2761
2762  // If there is no declaration, there was an error parsing it. Just ignore it.
2763  if (RealDecl == 0)
2764    return;
2765
2766  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2767    QualType Type = Var->getType();
2768
2769    // Record tentative definitions.
2770    if (Var->isTentativeDefinition(Context))
2771      TentativeDefinitions[Var->getDeclName()] = Var;
2772
2773    // C++ [dcl.init.ref]p3:
2774    //   The initializer can be omitted for a reference only in a
2775    //   parameter declaration (8.3.5), in the declaration of a
2776    //   function return type, in the declaration of a class member
2777    //   within its class declaration (9.2), and where the extern
2778    //   specifier is explicitly used.
2779    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2780      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2781        << Var->getDeclName()
2782        << SourceRange(Var->getLocation(), Var->getLocation());
2783      Var->setInvalidDecl();
2784      return;
2785    }
2786
2787    // C++0x [dcl.spec.auto]p3
2788    if (TypeContainsUndeducedAuto) {
2789      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
2790        << Var->getDeclName() << Type;
2791      Var->setInvalidDecl();
2792      return;
2793    }
2794
2795    // C++ [dcl.init]p9:
2796    //
2797    //   If no initializer is specified for an object, and the object
2798    //   is of (possibly cv-qualified) non-POD class type (or array
2799    //   thereof), the object shall be default-initialized; if the
2800    //   object is of const-qualified type, the underlying class type
2801    //   shall have a user-declared default constructor.
2802    if (getLangOptions().CPlusPlus) {
2803      QualType InitType = Type;
2804      if (const ArrayType *Array = Context.getAsArrayType(Type))
2805        InitType = Array->getElementType();
2806      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2807          InitType->isRecordType() && !InitType->isDependentType()) {
2808        CXXRecordDecl *RD =
2809          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2810        CXXConstructorDecl *Constructor = 0;
2811        if (!RequireCompleteType(Var->getLocation(), InitType,
2812                                    diag::err_invalid_incomplete_type_use))
2813          Constructor
2814            = PerformInitializationByConstructor(InitType, 0, 0,
2815                                                 Var->getLocation(),
2816                                               SourceRange(Var->getLocation(),
2817                                                           Var->getLocation()),
2818                                                 Var->getDeclName(),
2819                                                 IK_Default);
2820        if (!Constructor)
2821          Var->setInvalidDecl();
2822        else {
2823          if (!RD->hasTrivialConstructor())
2824            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2825          // FIXME. Must do all that is needed to destroy the object
2826          // on scope exit. For now, just mark the destructor as used.
2827          MarkDestructorReferenced(Var->getLocation(), InitType);
2828        }
2829      }
2830    }
2831
2832#if 0
2833    // FIXME: Temporarily disabled because we are not properly parsing
2834    // linkage specifications on declarations, e.g.,
2835    //
2836    //   extern "C" const CGPoint CGPointerZero;
2837    //
2838    // C++ [dcl.init]p9:
2839    //
2840    //     If no initializer is specified for an object, and the
2841    //     object is of (possibly cv-qualified) non-POD class type (or
2842    //     array thereof), the object shall be default-initialized; if
2843    //     the object is of const-qualified type, the underlying class
2844    //     type shall have a user-declared default
2845    //     constructor. Otherwise, if no initializer is specified for
2846    //     an object, the object and its subobjects, if any, have an
2847    //     indeterminate initial value; if the object or any of its
2848    //     subobjects are of const-qualified type, the program is
2849    //     ill-formed.
2850    //
2851    // This isn't technically an error in C, so we don't diagnose it.
2852    //
2853    // FIXME: Actually perform the POD/user-defined default
2854    // constructor check.
2855    if (getLangOptions().CPlusPlus &&
2856        Context.getCanonicalType(Type).isConstQualified() &&
2857        !Var->hasExternalStorage())
2858      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2859        << Var->getName()
2860        << SourceRange(Var->getLocation(), Var->getLocation());
2861#endif
2862  }
2863}
2864
2865Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2866                                                   DeclPtrTy *Group,
2867                                                   unsigned NumDecls) {
2868  llvm::SmallVector<Decl*, 8> Decls;
2869
2870  if (DS.isTypeSpecOwned())
2871    Decls.push_back((Decl*)DS.getTypeRep());
2872
2873  for (unsigned i = 0; i != NumDecls; ++i)
2874    if (Decl *D = Group[i].getAs<Decl>())
2875      Decls.push_back(D);
2876
2877  // Perform semantic analysis that depends on having fully processed both
2878  // the declarator and initializer.
2879  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2880    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2881    if (!IDecl)
2882      continue;
2883    QualType T = IDecl->getType();
2884
2885    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2886    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2887    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2888      if (!IDecl->isInvalidDecl() &&
2889          RequireCompleteType(IDecl->getLocation(), T,
2890                              diag::err_typecheck_decl_incomplete_type))
2891        IDecl->setInvalidDecl();
2892    }
2893    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2894    // object that has file scope without an initializer, and without a
2895    // storage-class specifier or with the storage-class specifier "static",
2896    // constitutes a tentative definition. Note: A tentative definition with
2897    // external linkage is valid (C99 6.2.2p5).
2898    if (IDecl->isTentativeDefinition(Context)) {
2899      QualType CheckType = T;
2900      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2901
2902      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2903      if (ArrayT) {
2904        CheckType = ArrayT->getElementType();
2905        DiagID = diag::err_illegal_decl_array_incomplete_type;
2906      }
2907
2908      if (IDecl->isInvalidDecl()) {
2909        // Do nothing with invalid declarations
2910      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2911                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2912        // C99 6.9.2p3: If the declaration of an identifier for an object is
2913        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2914        // declared type shall not be an incomplete type.
2915        IDecl->setInvalidDecl();
2916      }
2917    }
2918  }
2919  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2920                                                   Decls.data(), Decls.size()));
2921}
2922
2923
2924/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2925/// to introduce parameters into function prototype scope.
2926Sema::DeclPtrTy
2927Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2928  const DeclSpec &DS = D.getDeclSpec();
2929
2930  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2931  VarDecl::StorageClass StorageClass = VarDecl::None;
2932  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2933    StorageClass = VarDecl::Register;
2934  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2935    Diag(DS.getStorageClassSpecLoc(),
2936         diag::err_invalid_storage_class_in_func_decl);
2937    D.getMutableDeclSpec().ClearStorageClassSpecs();
2938  }
2939
2940  if (D.getDeclSpec().isThreadSpecified())
2941    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2942
2943  DiagnoseFunctionSpecifiers(D);
2944
2945  // Check that there are no default arguments inside the type of this
2946  // parameter (C++ only).
2947  if (getLangOptions().CPlusPlus)
2948    CheckExtraCXXDefaultArguments(D);
2949
2950  TagDecl *OwnedDecl = 0;
2951  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2952
2953  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2954    // C++ [dcl.fct]p6:
2955    //   Types shall not be defined in return or parameter types.
2956    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2957      << Context.getTypeDeclType(OwnedDecl);
2958  }
2959
2960  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2961  // Can this happen for params?  We already checked that they don't conflict
2962  // among each other.  Here they can only shadow globals, which is ok.
2963  IdentifierInfo *II = D.getIdentifier();
2964  if (II) {
2965    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2966      if (PrevDecl->isTemplateParameter()) {
2967        // Maybe we will complain about the shadowed template parameter.
2968        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2969        // Just pretend that we didn't see the previous declaration.
2970        PrevDecl = 0;
2971      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2972        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2973
2974        // Recover by removing the name
2975        II = 0;
2976        D.SetIdentifier(0, D.getIdentifierLoc());
2977      }
2978    }
2979  }
2980
2981  // Parameters can not be abstract class types.
2982  // For record types, this is done by the AbstractClassUsageDiagnoser once
2983  // the class has been completely parsed.
2984  if (!CurContext->isRecord() &&
2985      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2986                             diag::err_abstract_type_in_decl,
2987                             AbstractParamType))
2988    D.setInvalidType(true);
2989
2990  QualType T = adjustParameterType(parmDeclType);
2991
2992  ParmVarDecl *New;
2993  if (T == parmDeclType) // parameter type did not need adjustment
2994    New = ParmVarDecl::Create(Context, CurContext,
2995                              D.getIdentifierLoc(), II,
2996                              parmDeclType, StorageClass,
2997                              0);
2998  else // keep track of both the adjusted and unadjusted types
2999    New = OriginalParmVarDecl::Create(Context, CurContext,
3000                                      D.getIdentifierLoc(), II, T,
3001                                      parmDeclType, StorageClass, 0);
3002
3003  if (D.isInvalidType())
3004    New->setInvalidDecl();
3005
3006  // Parameter declarators cannot be interface types. All ObjC objects are
3007  // passed by reference.
3008  if (T->isObjCInterfaceType()) {
3009    Diag(D.getIdentifierLoc(),
3010         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3011    New->setInvalidDecl();
3012  }
3013
3014  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3015  if (D.getCXXScopeSpec().isSet()) {
3016    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3017      << D.getCXXScopeSpec().getRange();
3018    New->setInvalidDecl();
3019  }
3020
3021  // Add the parameter declaration into this scope.
3022  S->AddDecl(DeclPtrTy::make(New));
3023  if (II)
3024    IdResolver.AddDecl(New);
3025
3026  ProcessDeclAttributes(S, New, D);
3027
3028  if (New->hasAttr<BlocksAttr>()) {
3029    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3030  }
3031  return DeclPtrTy::make(New);
3032}
3033
3034void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3035                                           SourceLocation LocAfterDecls) {
3036  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3037         "Not a function declarator!");
3038  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3039
3040  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3041  // for a K&R function.
3042  if (!FTI.hasPrototype) {
3043    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3044      --i;
3045      if (FTI.ArgInfo[i].Param == 0) {
3046        std::string Code = "  int ";
3047        Code += FTI.ArgInfo[i].Ident->getName();
3048        Code += ";\n";
3049        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3050          << FTI.ArgInfo[i].Ident
3051          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3052
3053        // Implicitly declare the argument as type 'int' for lack of a better
3054        // type.
3055        DeclSpec DS;
3056        const char* PrevSpec; // unused
3057        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3058                           PrevSpec);
3059        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3060        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3061        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3062      }
3063    }
3064  }
3065}
3066
3067Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3068                                              Declarator &D) {
3069  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3070  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3071         "Not a function declarator!");
3072  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3073
3074  if (FTI.hasPrototype) {
3075    // FIXME: Diagnose arguments without names in C.
3076  }
3077
3078  Scope *ParentScope = FnBodyScope->getParent();
3079
3080  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3081                                  MultiTemplateParamsArg(*this),
3082                                  /*IsFunctionDefinition=*/true);
3083  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3084}
3085
3086Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3087  if (!D)
3088    return D;
3089  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3090
3091  CurFunctionNeedsScopeChecking = false;
3092
3093  // See if this is a redefinition.
3094  const FunctionDecl *Definition;
3095  if (FD->getBody(Definition)) {
3096    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3097    Diag(Definition->getLocation(), diag::note_previous_definition);
3098  }
3099
3100  // Builtin functions cannot be defined.
3101  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3102    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3103      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3104      FD->setInvalidDecl();
3105    }
3106  }
3107
3108  // The return type of a function definition must be complete
3109  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3110  QualType ResultType = FD->getResultType();
3111  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3112      !FD->isInvalidDecl() &&
3113      RequireCompleteType(FD->getLocation(), ResultType,
3114                          diag::err_func_def_incomplete_result))
3115    FD->setInvalidDecl();
3116
3117  // GNU warning -Wmissing-prototypes:
3118  //   Warn if a global function is defined without a previous
3119  //   prototype declaration. This warning is issued even if the
3120  //   definition itself provides a prototype. The aim is to detect
3121  //   global functions that fail to be declared in header files.
3122  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3123      !FD->isMain()) {
3124    bool MissingPrototype = true;
3125    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3126         Prev; Prev = Prev->getPreviousDeclaration()) {
3127      // Ignore any declarations that occur in function or method
3128      // scope, because they aren't visible from the header.
3129      if (Prev->getDeclContext()->isFunctionOrMethod())
3130        continue;
3131
3132      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3133      break;
3134    }
3135
3136    if (MissingPrototype)
3137      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3138  }
3139
3140  if (FnBodyScope)
3141    PushDeclContext(FnBodyScope, FD);
3142
3143  // Check the validity of our function parameters
3144  CheckParmsForFunctionDef(FD);
3145
3146  // Introduce our parameters into the function scope
3147  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3148    ParmVarDecl *Param = FD->getParamDecl(p);
3149    Param->setOwningFunction(FD);
3150
3151    // If this has an identifier, add it to the scope stack.
3152    if (Param->getIdentifier() && FnBodyScope)
3153      PushOnScopeChains(Param, FnBodyScope);
3154  }
3155
3156  // Checking attributes of current function definition
3157  // dllimport attribute.
3158  if (FD->getAttr<DLLImportAttr>() &&
3159      (!FD->getAttr<DLLExportAttr>())) {
3160    // dllimport attribute cannot be applied to definition.
3161    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3162      Diag(FD->getLocation(),
3163           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3164        << "dllimport";
3165      FD->setInvalidDecl();
3166      return DeclPtrTy::make(FD);
3167    } else {
3168      // If a symbol previously declared dllimport is later defined, the
3169      // attribute is ignored in subsequent references, and a warning is
3170      // emitted.
3171      Diag(FD->getLocation(),
3172           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3173        << FD->getNameAsCString() << "dllimport";
3174    }
3175  }
3176  return DeclPtrTy::make(FD);
3177}
3178
3179Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3180  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3181}
3182
3183Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3184                                              bool IsInstantiation) {
3185  Decl *dcl = D.getAs<Decl>();
3186  Stmt *Body = BodyArg.takeAs<Stmt>();
3187  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3188    FD->setBody(Body);
3189
3190    if (!FD->isInvalidDecl())
3191      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3192
3193    // C++ [basic.def.odr]p2:
3194    //   [...] A virtual member function is used if it is not pure. [...]
3195    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3196      if (Method->isVirtual() && !Method->isPure())
3197        MarkDeclarationReferenced(Method->getLocation(), Method);
3198
3199    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3200  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3201    assert(MD == getCurMethodDecl() && "Method parsing confused");
3202    MD->setBody(Body);
3203
3204    if (!MD->isInvalidDecl())
3205      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3206  } else {
3207    Body->Destroy(Context);
3208    return DeclPtrTy();
3209  }
3210  if (!IsInstantiation)
3211    PopDeclContext();
3212
3213  // Verify and clean out per-function state.
3214
3215  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3216
3217  // Check goto/label use.
3218  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3219       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3220    LabelStmt *L = I->second;
3221
3222    // Verify that we have no forward references left.  If so, there was a goto
3223    // or address of a label taken, but no definition of it.  Label fwd
3224    // definitions are indicated with a null substmt.
3225    if (L->getSubStmt() != 0)
3226      continue;
3227
3228    // Emit error.
3229    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3230
3231    // At this point, we have gotos that use the bogus label.  Stitch it into
3232    // the function body so that they aren't leaked and that the AST is well
3233    // formed.
3234    if (Body == 0) {
3235      // The whole function wasn't parsed correctly, just delete this.
3236      L->Destroy(Context);
3237      continue;
3238    }
3239
3240    // Otherwise, the body is valid: we want to stitch the label decl into the
3241    // function somewhere so that it is properly owned and so that the goto
3242    // has a valid target.  Do this by creating a new compound stmt with the
3243    // label in it.
3244
3245    // Give the label a sub-statement.
3246    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3247
3248    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3249                               cast<CXXTryStmt>(Body)->getTryBlock() :
3250                               cast<CompoundStmt>(Body);
3251    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3252    Elements.push_back(L);
3253    Compound->setStmts(Context, &Elements[0], Elements.size());
3254  }
3255  FunctionLabelMap.clear();
3256
3257  if (!Body) return D;
3258
3259  // Verify that that gotos and switch cases don't jump into scopes illegally.
3260  if (CurFunctionNeedsScopeChecking)
3261    DiagnoseInvalidJumps(Body);
3262
3263  // C++ constructors that have function-try-blocks can't have return statements
3264  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3265  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3266    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3267
3268  return D;
3269}
3270
3271/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3272/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3273NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3274                                          IdentifierInfo &II, Scope *S) {
3275  // Before we produce a declaration for an implicitly defined
3276  // function, see whether there was a locally-scoped declaration of
3277  // this name as a function or variable. If so, use that
3278  // (non-visible) declaration, and complain about it.
3279  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3280    = LocallyScopedExternalDecls.find(&II);
3281  if (Pos != LocallyScopedExternalDecls.end()) {
3282    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3283    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3284    return Pos->second;
3285  }
3286
3287  // Extension in C99.  Legal in C90, but warn about it.
3288  if (getLangOptions().C99)
3289    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3290  else
3291    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3292
3293  // FIXME: handle stuff like:
3294  // void foo() { extern float X(); }
3295  // void bar() { X(); }  <-- implicit decl for X in another scope.
3296
3297  // Set a Declarator for the implicit definition: int foo();
3298  const char *Dummy;
3299  DeclSpec DS;
3300  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3301  Error = Error; // Silence warning.
3302  assert(!Error && "Error setting up implicit decl!");
3303  Declarator D(DS, Declarator::BlockContext);
3304  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3305                                             0, 0, false, SourceLocation(),
3306                                             false, 0,0,0, Loc, D),
3307                SourceLocation());
3308  D.SetIdentifier(&II, Loc);
3309
3310  // Insert this function into translation-unit scope.
3311
3312  DeclContext *PrevDC = CurContext;
3313  CurContext = Context.getTranslationUnitDecl();
3314
3315  FunctionDecl *FD =
3316 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3317  FD->setImplicit();
3318
3319  CurContext = PrevDC;
3320
3321  AddKnownFunctionAttributes(FD);
3322
3323  return FD;
3324}
3325
3326/// \brief Adds any function attributes that we know a priori based on
3327/// the declaration of this function.
3328///
3329/// These attributes can apply both to implicitly-declared builtins
3330/// (like __builtin___printf_chk) or to library-declared functions
3331/// like NSLog or printf.
3332void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3333  if (FD->isInvalidDecl())
3334    return;
3335
3336  // If this is a built-in function, map its builtin attributes to
3337  // actual attributes.
3338  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3339    // Handle printf-formatting attributes.
3340    unsigned FormatIdx;
3341    bool HasVAListArg;
3342    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3343      if (!FD->getAttr<FormatAttr>())
3344        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3345                                             HasVAListArg ? 0 : FormatIdx + 2));
3346    }
3347
3348    // Mark const if we don't care about errno and that is the only
3349    // thing preventing the function from being const. This allows
3350    // IRgen to use LLVM intrinsics for such functions.
3351    if (!getLangOptions().MathErrno &&
3352        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3353      if (!FD->getAttr<ConstAttr>())
3354        FD->addAttr(::new (Context) ConstAttr());
3355    }
3356  }
3357
3358  IdentifierInfo *Name = FD->getIdentifier();
3359  if (!Name)
3360    return;
3361  if ((!getLangOptions().CPlusPlus &&
3362       FD->getDeclContext()->isTranslationUnit()) ||
3363      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3364       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3365       LinkageSpecDecl::lang_c)) {
3366    // Okay: this could be a libc/libm/Objective-C function we know
3367    // about.
3368  } else
3369    return;
3370
3371  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3372    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3373      // FIXME: We known better than our headers.
3374      const_cast<FormatAttr *>(Format)->setType("printf");
3375    } else
3376      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3377                                             Name->isStr("NSLogv") ? 0 : 2));
3378  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3379    if (!FD->getAttr<FormatAttr>())
3380      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3381                                             Name->isStr("vasprintf") ? 0 : 3));
3382  }
3383}
3384
3385TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3386  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3387  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3388
3389  // Scope manipulation handled by caller.
3390  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3391                                           D.getIdentifierLoc(),
3392                                           D.getIdentifier(),
3393                                           T);
3394
3395  if (TagType *TT = dyn_cast<TagType>(T)) {
3396    TagDecl *TD = TT->getDecl();
3397
3398    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3399    // keep track of the TypedefDecl.
3400    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3401      TD->setTypedefForAnonDecl(NewTD);
3402  }
3403
3404  if (D.isInvalidType())
3405    NewTD->setInvalidDecl();
3406  return NewTD;
3407}
3408
3409
3410/// \brief Determine whether a tag with a given kind is acceptable
3411/// as a redeclaration of the given tag declaration.
3412///
3413/// \returns true if the new tag kind is acceptable, false otherwise.
3414bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3415                                        TagDecl::TagKind NewTag,
3416                                        SourceLocation NewTagLoc,
3417                                        const IdentifierInfo &Name) {
3418  // C++ [dcl.type.elab]p3:
3419  //   The class-key or enum keyword present in the
3420  //   elaborated-type-specifier shall agree in kind with the
3421  //   declaration to which the name in theelaborated-type-specifier
3422  //   refers. This rule also applies to the form of
3423  //   elaborated-type-specifier that declares a class-name or
3424  //   friend class since it can be construed as referring to the
3425  //   definition of the class. Thus, in any
3426  //   elaborated-type-specifier, the enum keyword shall be used to
3427  //   refer to an enumeration (7.2), the union class-keyshall be
3428  //   used to refer to a union (clause 9), and either the class or
3429  //   struct class-key shall be used to refer to a class (clause 9)
3430  //   declared using the class or struct class-key.
3431  TagDecl::TagKind OldTag = Previous->getTagKind();
3432  if (OldTag == NewTag)
3433    return true;
3434
3435  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3436      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3437    // Warn about the struct/class tag mismatch.
3438    bool isTemplate = false;
3439    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3440      isTemplate = Record->getDescribedClassTemplate();
3441
3442    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3443      << (NewTag == TagDecl::TK_class)
3444      << isTemplate << &Name
3445      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3446                              OldTag == TagDecl::TK_class? "class" : "struct");
3447    Diag(Previous->getLocation(), diag::note_previous_use);
3448    return true;
3449  }
3450  return false;
3451}
3452
3453/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3454/// former case, Name will be non-null.  In the later case, Name will be null.
3455/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3456/// reference/declaration/definition of a tag.
3457Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3458                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3459                               IdentifierInfo *Name, SourceLocation NameLoc,
3460                               AttributeList *Attr, AccessSpecifier AS,
3461                               bool &OwnedDecl) {
3462  // If this is not a definition, it must have a name.
3463  assert((Name != 0 || TK == TK_Definition) &&
3464         "Nameless record must be a definition!");
3465
3466  OwnedDecl = false;
3467  TagDecl::TagKind Kind;
3468  switch (TagSpec) {
3469  default: assert(0 && "Unknown tag type!");
3470  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3471  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3472  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3473  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3474  }
3475
3476  DeclContext *SearchDC = CurContext;
3477  DeclContext *DC = CurContext;
3478  NamedDecl *PrevDecl = 0;
3479
3480  bool Invalid = false;
3481
3482  if (Name && SS.isNotEmpty()) {
3483    // We have a nested-name tag ('struct foo::bar').
3484
3485    // Check for invalid 'foo::'.
3486    if (SS.isInvalid()) {
3487      Name = 0;
3488      goto CreateNewDecl;
3489    }
3490
3491    if (RequireCompleteDeclContext(SS))
3492      return DeclPtrTy::make((Decl *)0);
3493
3494    DC = computeDeclContext(SS);
3495    SearchDC = DC;
3496    // Look-up name inside 'foo::'.
3497    PrevDecl
3498      = dyn_cast_or_null<TagDecl>(
3499               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3500
3501    // A tag 'foo::bar' must already exist.
3502    if (PrevDecl == 0) {
3503      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3504      Name = 0;
3505      Invalid = true;
3506      goto CreateNewDecl;
3507    }
3508  } else if (Name) {
3509    // If this is a named struct, check to see if there was a previous forward
3510    // declaration or definition.
3511    // FIXME: We're looking into outer scopes here, even when we
3512    // shouldn't be. Doing so can result in ambiguities that we
3513    // shouldn't be diagnosing.
3514    LookupResult R = LookupName(S, Name, LookupTagName,
3515                                /*RedeclarationOnly=*/(TK != TK_Reference));
3516    if (R.isAmbiguous()) {
3517      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3518      // FIXME: This is not best way to recover from case like:
3519      //
3520      // struct S s;
3521      //
3522      // causes needless "incomplete type" error later.
3523      Name = 0;
3524      PrevDecl = 0;
3525      Invalid = true;
3526    }
3527    else
3528      PrevDecl = R;
3529
3530    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3531      // FIXME: This makes sure that we ignore the contexts associated
3532      // with C structs, unions, and enums when looking for a matching
3533      // tag declaration or definition. See the similar lookup tweak
3534      // in Sema::LookupName; is there a better way to deal with this?
3535      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3536        SearchDC = SearchDC->getParent();
3537    }
3538  }
3539
3540  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3541    // Maybe we will complain about the shadowed template parameter.
3542    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3543    // Just pretend that we didn't see the previous declaration.
3544    PrevDecl = 0;
3545  }
3546
3547  if (PrevDecl) {
3548    // Check whether the previous declaration is usable.
3549    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3550
3551    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3552      // If this is a use of a previous tag, or if the tag is already declared
3553      // in the same scope (so that the definition/declaration completes or
3554      // rementions the tag), reuse the decl.
3555      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3556        // Make sure that this wasn't declared as an enum and now used as a
3557        // struct or something similar.
3558        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3559          bool SafeToContinue
3560            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3561               Kind != TagDecl::TK_enum);
3562          if (SafeToContinue)
3563            Diag(KWLoc, diag::err_use_with_wrong_tag)
3564              << Name
3565              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3566                                                  PrevTagDecl->getKindName());
3567          else
3568            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3569          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3570
3571          if (SafeToContinue)
3572            Kind = PrevTagDecl->getTagKind();
3573          else {
3574            // Recover by making this an anonymous redefinition.
3575            Name = 0;
3576            PrevDecl = 0;
3577            Invalid = true;
3578          }
3579        }
3580
3581        if (!Invalid) {
3582          // If this is a use, just return the declaration we found.
3583
3584          // FIXME: In the future, return a variant or some other clue
3585          // for the consumer of this Decl to know it doesn't own it.
3586          // For our current ASTs this shouldn't be a problem, but will
3587          // need to be changed with DeclGroups.
3588          if (TK == TK_Reference)
3589            return DeclPtrTy::make(PrevDecl);
3590
3591          // Diagnose attempts to redefine a tag.
3592          if (TK == TK_Definition) {
3593            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3594              Diag(NameLoc, diag::err_redefinition) << Name;
3595              Diag(Def->getLocation(), diag::note_previous_definition);
3596              // If this is a redefinition, recover by making this
3597              // struct be anonymous, which will make any later
3598              // references get the previous definition.
3599              Name = 0;
3600              PrevDecl = 0;
3601              Invalid = true;
3602            } else {
3603              // If the type is currently being defined, complain
3604              // about a nested redefinition.
3605              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3606              if (Tag->isBeingDefined()) {
3607                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3608                Diag(PrevTagDecl->getLocation(),
3609                     diag::note_previous_definition);
3610                Name = 0;
3611                PrevDecl = 0;
3612                Invalid = true;
3613              }
3614            }
3615
3616            // Okay, this is definition of a previously declared or referenced
3617            // tag PrevDecl. We're going to create a new Decl for it.
3618          }
3619        }
3620        // If we get here we have (another) forward declaration or we
3621        // have a definition.  Just create a new decl.
3622      } else {
3623        // If we get here, this is a definition of a new tag type in a nested
3624        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3625        // new decl/type.  We set PrevDecl to NULL so that the entities
3626        // have distinct types.
3627        PrevDecl = 0;
3628      }
3629      // If we get here, we're going to create a new Decl. If PrevDecl
3630      // is non-NULL, it's a definition of the tag declared by
3631      // PrevDecl. If it's NULL, we have a new definition.
3632    } else {
3633      // PrevDecl is a namespace, template, or anything else
3634      // that lives in the IDNS_Tag identifier namespace.
3635      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3636        // The tag name clashes with a namespace name, issue an error and
3637        // recover by making this tag be anonymous.
3638        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3639        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3640        Name = 0;
3641        PrevDecl = 0;
3642        Invalid = true;
3643      } else {
3644        // The existing declaration isn't relevant to us; we're in a
3645        // new scope, so clear out the previous declaration.
3646        PrevDecl = 0;
3647      }
3648    }
3649  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3650             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3651    // C++ [basic.scope.pdecl]p5:
3652    //   -- for an elaborated-type-specifier of the form
3653    //
3654    //          class-key identifier
3655    //
3656    //      if the elaborated-type-specifier is used in the
3657    //      decl-specifier-seq or parameter-declaration-clause of a
3658    //      function defined in namespace scope, the identifier is
3659    //      declared as a class-name in the namespace that contains
3660    //      the declaration; otherwise, except as a friend
3661    //      declaration, the identifier is declared in the smallest
3662    //      non-class, non-function-prototype scope that contains the
3663    //      declaration.
3664    //
3665    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3666    // C structs and unions.
3667    //
3668    // GNU C also supports this behavior as part of its incomplete
3669    // enum types extension, while GNU C++ does not.
3670    //
3671    // Find the context where we'll be declaring the tag.
3672    // FIXME: We would like to maintain the current DeclContext as the
3673    // lexical context,
3674    while (SearchDC->isRecord())
3675      SearchDC = SearchDC->getParent();
3676
3677    // Find the scope where we'll be declaring the tag.
3678    while (S->isClassScope() ||
3679           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3680           ((S->getFlags() & Scope::DeclScope) == 0) ||
3681           (S->getEntity() &&
3682            ((DeclContext *)S->getEntity())->isTransparentContext()))
3683      S = S->getParent();
3684  }
3685
3686CreateNewDecl:
3687
3688  // If there is an identifier, use the location of the identifier as the
3689  // location of the decl, otherwise use the location of the struct/union
3690  // keyword.
3691  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3692
3693  // Otherwise, create a new declaration. If there is a previous
3694  // declaration of the same entity, the two will be linked via
3695  // PrevDecl.
3696  TagDecl *New;
3697
3698  if (Kind == TagDecl::TK_enum) {
3699    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3700    // enum X { A, B, C } D;    D should chain to X.
3701    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3702                           cast_or_null<EnumDecl>(PrevDecl));
3703    // If this is an undefined enum, warn.
3704    if (TK != TK_Definition && !Invalid)  {
3705      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3706                                              : diag::ext_forward_ref_enum;
3707      Diag(Loc, DK);
3708    }
3709  } else {
3710    // struct/union/class
3711
3712    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3713    // struct X { int A; } D;    D should chain to X.
3714    if (getLangOptions().CPlusPlus)
3715      // FIXME: Look for a way to use RecordDecl for simple structs.
3716      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3717                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3718    else
3719      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3720                               cast_or_null<RecordDecl>(PrevDecl));
3721  }
3722
3723  if (Kind != TagDecl::TK_enum) {
3724    // Handle #pragma pack: if the #pragma pack stack has non-default
3725    // alignment, make up a packed attribute for this decl. These
3726    // attributes are checked when the ASTContext lays out the
3727    // structure.
3728    //
3729    // It is important for implementing the correct semantics that this
3730    // happen here (in act on tag decl). The #pragma pack stack is
3731    // maintained as a result of parser callbacks which can occur at
3732    // many points during the parsing of a struct declaration (because
3733    // the #pragma tokens are effectively skipped over during the
3734    // parsing of the struct).
3735    if (unsigned Alignment = getPragmaPackAlignment())
3736      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3737  }
3738
3739  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3740    // C++ [dcl.typedef]p3:
3741    //   [...] Similarly, in a given scope, a class or enumeration
3742    //   shall not be declared with the same name as a typedef-name
3743    //   that is declared in that scope and refers to a type other
3744    //   than the class or enumeration itself.
3745    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3746    TypedefDecl *PrevTypedef = 0;
3747    if (Lookup.getKind() == LookupResult::Found)
3748      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3749
3750    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3751        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3752          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3753      Diag(Loc, diag::err_tag_definition_of_typedef)
3754        << Context.getTypeDeclType(New)
3755        << PrevTypedef->getUnderlyingType();
3756      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3757      Invalid = true;
3758    }
3759  }
3760
3761  if (Invalid)
3762    New->setInvalidDecl();
3763
3764  if (Attr)
3765    ProcessDeclAttributeList(S, New, Attr);
3766
3767  // If we're declaring or defining a tag in function prototype scope
3768  // in C, note that this type can only be used within the function.
3769  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3770    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3771
3772  // Set the lexical context. If the tag has a C++ scope specifier, the
3773  // lexical context will be different from the semantic context.
3774  New->setLexicalDeclContext(CurContext);
3775
3776  // Set the access specifier.
3777  if (!Invalid)
3778    SetMemberAccessSpecifier(New, PrevDecl, AS);
3779
3780  if (TK == TK_Definition)
3781    New->startDefinition();
3782
3783  // If this has an identifier, add it to the scope stack.
3784  if (Name) {
3785    S = getNonFieldDeclScope(S);
3786    PushOnScopeChains(New, S);
3787  } else {
3788    CurContext->addDecl(New);
3789  }
3790
3791  // If this is the C FILE type, notify the AST context.
3792  if (IdentifierInfo *II = New->getIdentifier())
3793    if (!New->isInvalidDecl() &&
3794        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
3795        II->isStr("FILE"))
3796      Context.setFILEDecl(New);
3797
3798  OwnedDecl = true;
3799  return DeclPtrTy::make(New);
3800}
3801
3802void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3803  AdjustDeclIfTemplate(TagD);
3804  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3805
3806  // Enter the tag context.
3807  PushDeclContext(S, Tag);
3808
3809  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3810    FieldCollector->StartClass();
3811
3812    if (Record->getIdentifier()) {
3813      // C++ [class]p2:
3814      //   [...] The class-name is also inserted into the scope of the
3815      //   class itself; this is known as the injected-class-name. For
3816      //   purposes of access checking, the injected-class-name is treated
3817      //   as if it were a public member name.
3818      CXXRecordDecl *InjectedClassName
3819        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3820                                CurContext, Record->getLocation(),
3821                                Record->getIdentifier(), Record);
3822      InjectedClassName->setImplicit();
3823      InjectedClassName->setAccess(AS_public);
3824      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3825        InjectedClassName->setDescribedClassTemplate(Template);
3826      PushOnScopeChains(InjectedClassName, S);
3827      assert(InjectedClassName->isInjectedClassName() &&
3828             "Broken injected-class-name");
3829    }
3830  }
3831}
3832
3833void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
3834                                    SourceLocation RBraceLoc) {
3835  AdjustDeclIfTemplate(TagD);
3836  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3837  Tag->setRBraceLoc(RBraceLoc);
3838
3839  if (isa<CXXRecordDecl>(Tag))
3840    FieldCollector->FinishClass();
3841
3842  // Exit this scope of this tag's definition.
3843  PopDeclContext();
3844
3845  // Notify the consumer that we've defined a tag.
3846  Consumer.HandleTagDeclDefinition(Tag);
3847}
3848
3849// Note that FieldName may be null for anonymous bitfields.
3850bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3851                          QualType FieldTy, const Expr *BitWidth) {
3852
3853  // C99 6.7.2.1p4 - verify the field type.
3854  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3855  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3856    // Handle incomplete types with specific error.
3857    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3858      return true;
3859    if (FieldName)
3860      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3861        << FieldName << FieldTy << BitWidth->getSourceRange();
3862    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3863      << FieldTy << BitWidth->getSourceRange();
3864  }
3865
3866  // If the bit-width is type- or value-dependent, don't try to check
3867  // it now.
3868  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3869    return false;
3870
3871  llvm::APSInt Value;
3872  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3873    return true;
3874
3875  // Zero-width bitfield is ok for anonymous field.
3876  if (Value == 0 && FieldName)
3877    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3878
3879  if (Value.isSigned() && Value.isNegative()) {
3880    if (FieldName)
3881      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3882               << FieldName << Value.toString(10);
3883    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3884      << Value.toString(10);
3885  }
3886
3887  if (!FieldTy->isDependentType()) {
3888    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3889    if (Value.getZExtValue() > TypeSize) {
3890      if (FieldName)
3891        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3892          << FieldName << (unsigned)TypeSize;
3893      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3894        << (unsigned)TypeSize;
3895    }
3896  }
3897
3898  return false;
3899}
3900
3901/// ActOnField - Each field of a struct/union/class is passed into this in order
3902/// to create a FieldDecl object for it.
3903Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3904                                 SourceLocation DeclStart,
3905                                 Declarator &D, ExprTy *BitfieldWidth) {
3906  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3907                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3908                               AS_public);
3909  return DeclPtrTy::make(Res);
3910}
3911
3912/// HandleField - Analyze a field of a C struct or a C++ data member.
3913///
3914FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3915                             SourceLocation DeclStart,
3916                             Declarator &D, Expr *BitWidth,
3917                             AccessSpecifier AS) {
3918  IdentifierInfo *II = D.getIdentifier();
3919  SourceLocation Loc = DeclStart;
3920  if (II) Loc = D.getIdentifierLoc();
3921
3922  QualType T = GetTypeForDeclarator(D, S);
3923  if (getLangOptions().CPlusPlus)
3924    CheckExtraCXXDefaultArguments(D);
3925
3926  DiagnoseFunctionSpecifiers(D);
3927
3928  if (D.getDeclSpec().isThreadSpecified())
3929    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3930
3931  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3932
3933  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3934    // Maybe we will complain about the shadowed template parameter.
3935    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3936    // Just pretend that we didn't see the previous declaration.
3937    PrevDecl = 0;
3938  }
3939
3940  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3941    PrevDecl = 0;
3942
3943  FieldDecl *NewFD
3944    = CheckFieldDecl(II, T, Record, Loc,
3945               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3946                     BitWidth, AS, PrevDecl, &D);
3947  if (NewFD->isInvalidDecl() && PrevDecl) {
3948    // Don't introduce NewFD into scope; there's already something
3949    // with the same name in the same scope.
3950  } else if (II) {
3951    PushOnScopeChains(NewFD, S);
3952  } else
3953    Record->addDecl(NewFD);
3954
3955  return NewFD;
3956}
3957
3958/// \brief Build a new FieldDecl and check its well-formedness.
3959///
3960/// This routine builds a new FieldDecl given the fields name, type,
3961/// record, etc. \p PrevDecl should refer to any previous declaration
3962/// with the same name and in the same scope as the field to be
3963/// created.
3964///
3965/// \returns a new FieldDecl.
3966///
3967/// \todo The Declarator argument is a hack. It will be removed once
3968FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3969                                RecordDecl *Record, SourceLocation Loc,
3970                                bool Mutable, Expr *BitWidth,
3971                                AccessSpecifier AS, NamedDecl *PrevDecl,
3972                                Declarator *D) {
3973  IdentifierInfo *II = Name.getAsIdentifierInfo();
3974  bool InvalidDecl = false;
3975  if (D) InvalidDecl = D->isInvalidType();
3976
3977  // If we receive a broken type, recover by assuming 'int' and
3978  // marking this declaration as invalid.
3979  if (T.isNull()) {
3980    InvalidDecl = true;
3981    T = Context.IntTy;
3982  }
3983
3984  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3985  // than a variably modified type.
3986  if (T->isVariablyModifiedType()) {
3987    bool SizeIsNegative;
3988    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3989                                                           SizeIsNegative);
3990    if (!FixedTy.isNull()) {
3991      Diag(Loc, diag::warn_illegal_constant_array_size);
3992      T = FixedTy;
3993    } else {
3994      if (SizeIsNegative)
3995        Diag(Loc, diag::err_typecheck_negative_array_size);
3996      else
3997        Diag(Loc, diag::err_typecheck_field_variable_size);
3998      T = Context.IntTy;
3999      InvalidDecl = true;
4000    }
4001  }
4002
4003  // Fields can not have abstract class types
4004  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4005                             AbstractFieldType))
4006    InvalidDecl = true;
4007
4008  // If this is declared as a bit-field, check the bit-field.
4009  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4010    InvalidDecl = true;
4011    DeleteExpr(BitWidth);
4012    BitWidth = 0;
4013  }
4014
4015  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4016                                       Mutable);
4017  if (InvalidDecl)
4018    NewFD->setInvalidDecl();
4019
4020  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4021    Diag(Loc, diag::err_duplicate_member) << II;
4022    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4023    NewFD->setInvalidDecl();
4024  }
4025
4026  if (getLangOptions().CPlusPlus && !T->isPODType())
4027    cast<CXXRecordDecl>(Record)->setPOD(false);
4028
4029  // FIXME: We need to pass in the attributes given an AST
4030  // representation, not a parser representation.
4031  if (D)
4032    // FIXME: What to pass instead of TUScope?
4033    ProcessDeclAttributes(TUScope, NewFD, *D);
4034
4035  if (T.isObjCGCWeak())
4036    Diag(Loc, diag::warn_attribute_weak_on_field);
4037
4038  NewFD->setAccess(AS);
4039
4040  // C++ [dcl.init.aggr]p1:
4041  //   An aggregate is an array or a class (clause 9) with [...] no
4042  //   private or protected non-static data members (clause 11).
4043  // A POD must be an aggregate.
4044  if (getLangOptions().CPlusPlus &&
4045      (AS == AS_private || AS == AS_protected)) {
4046    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4047    CXXRecord->setAggregate(false);
4048    CXXRecord->setPOD(false);
4049  }
4050
4051  return NewFD;
4052}
4053
4054/// TranslateIvarVisibility - Translate visibility from a token ID to an
4055///  AST enum value.
4056static ObjCIvarDecl::AccessControl
4057TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4058  switch (ivarVisibility) {
4059  default: assert(0 && "Unknown visitibility kind");
4060  case tok::objc_private: return ObjCIvarDecl::Private;
4061  case tok::objc_public: return ObjCIvarDecl::Public;
4062  case tok::objc_protected: return ObjCIvarDecl::Protected;
4063  case tok::objc_package: return ObjCIvarDecl::Package;
4064  }
4065}
4066
4067/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4068/// in order to create an IvarDecl object for it.
4069Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4070                                SourceLocation DeclStart,
4071                                DeclPtrTy IntfDecl,
4072                                Declarator &D, ExprTy *BitfieldWidth,
4073                                tok::ObjCKeywordKind Visibility) {
4074
4075  IdentifierInfo *II = D.getIdentifier();
4076  Expr *BitWidth = (Expr*)BitfieldWidth;
4077  SourceLocation Loc = DeclStart;
4078  if (II) Loc = D.getIdentifierLoc();
4079
4080  // FIXME: Unnamed fields can be handled in various different ways, for
4081  // example, unnamed unions inject all members into the struct namespace!
4082
4083  QualType T = GetTypeForDeclarator(D, S);
4084
4085  if (BitWidth) {
4086    // 6.7.2.1p3, 6.7.2.1p4
4087    if (VerifyBitField(Loc, II, T, BitWidth)) {
4088      D.setInvalidType();
4089      DeleteExpr(BitWidth);
4090      BitWidth = 0;
4091    }
4092  } else {
4093    // Not a bitfield.
4094
4095    // validate II.
4096
4097  }
4098
4099  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4100  // than a variably modified type.
4101  if (T->isVariablyModifiedType()) {
4102    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4103    D.setInvalidType();
4104  }
4105
4106  // Get the visibility (access control) for this ivar.
4107  ObjCIvarDecl::AccessControl ac =
4108    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4109                                        : ObjCIvarDecl::None;
4110  // Must set ivar's DeclContext to its enclosing interface.
4111  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4112  DeclContext *EnclosingContext;
4113  if (ObjCImplementationDecl *IMPDecl =
4114      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4115    // Case of ivar declared in an implementation. Context is that of its class.
4116    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4117    assert(IDecl && "No class- ActOnIvar");
4118    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4119  }
4120  else
4121    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4122  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4123
4124  // Construct the decl.
4125  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4126                                             EnclosingContext, Loc, II, T,ac,
4127                                             (Expr *)BitfieldWidth);
4128
4129  if (II) {
4130    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4131    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4132        && !isa<TagDecl>(PrevDecl)) {
4133      Diag(Loc, diag::err_duplicate_member) << II;
4134      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4135      NewID->setInvalidDecl();
4136    }
4137  }
4138
4139  // Process attributes attached to the ivar.
4140  ProcessDeclAttributes(S, NewID, D);
4141
4142  if (D.isInvalidType())
4143    NewID->setInvalidDecl();
4144
4145  if (II) {
4146    // FIXME: When interfaces are DeclContexts, we'll need to add
4147    // these to the interface.
4148    S->AddDecl(DeclPtrTy::make(NewID));
4149    IdResolver.AddDecl(NewID);
4150  }
4151
4152  return DeclPtrTy::make(NewID);
4153}
4154
4155void Sema::ActOnFields(Scope* S,
4156                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4157                       DeclPtrTy *Fields, unsigned NumFields,
4158                       SourceLocation LBrac, SourceLocation RBrac,
4159                       AttributeList *Attr) {
4160  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4161  assert(EnclosingDecl && "missing record or interface decl");
4162
4163  // If the decl this is being inserted into is invalid, then it may be a
4164  // redeclaration or some other bogus case.  Don't try to add fields to it.
4165  if (EnclosingDecl->isInvalidDecl()) {
4166    // FIXME: Deallocate fields?
4167    return;
4168  }
4169
4170
4171  // Verify that all the fields are okay.
4172  unsigned NumNamedMembers = 0;
4173  llvm::SmallVector<FieldDecl*, 32> RecFields;
4174
4175  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4176  for (unsigned i = 0; i != NumFields; ++i) {
4177    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4178
4179    // Get the type for the field.
4180    Type *FDTy = FD->getType().getTypePtr();
4181
4182    if (!FD->isAnonymousStructOrUnion()) {
4183      // Remember all fields written by the user.
4184      RecFields.push_back(FD);
4185    }
4186
4187    // If the field is already invalid for some reason, don't emit more
4188    // diagnostics about it.
4189    if (FD->isInvalidDecl())
4190      continue;
4191
4192    // C99 6.7.2.1p2:
4193    //   A structure or union shall not contain a member with
4194    //   incomplete or function type (hence, a structure shall not
4195    //   contain an instance of itself, but may contain a pointer to
4196    //   an instance of itself), except that the last member of a
4197    //   structure with more than one named member may have incomplete
4198    //   array type; such a structure (and any union containing,
4199    //   possibly recursively, a member that is such a structure)
4200    //   shall not be a member of a structure or an element of an
4201    //   array.
4202    if (FDTy->isFunctionType()) {
4203      // Field declared as a function.
4204      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4205        << FD->getDeclName();
4206      FD->setInvalidDecl();
4207      EnclosingDecl->setInvalidDecl();
4208      continue;
4209    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4210               Record && Record->isStruct()) {
4211      // Flexible array member.
4212      if (NumNamedMembers < 1) {
4213        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4214          << FD->getDeclName();
4215        FD->setInvalidDecl();
4216        EnclosingDecl->setInvalidDecl();
4217        continue;
4218      }
4219      // Okay, we have a legal flexible array member at the end of the struct.
4220      if (Record)
4221        Record->setHasFlexibleArrayMember(true);
4222    } else if (!FDTy->isDependentType() &&
4223               RequireCompleteType(FD->getLocation(), FD->getType(),
4224                                   diag::err_field_incomplete)) {
4225      // Incomplete type
4226      FD->setInvalidDecl();
4227      EnclosingDecl->setInvalidDecl();
4228      continue;
4229    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4230      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4231        // If this is a member of a union, then entire union becomes "flexible".
4232        if (Record && Record->isUnion()) {
4233          Record->setHasFlexibleArrayMember(true);
4234        } else {
4235          // If this is a struct/class and this is not the last element, reject
4236          // it.  Note that GCC supports variable sized arrays in the middle of
4237          // structures.
4238          if (i != NumFields-1)
4239            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4240              << FD->getDeclName() << FD->getType();
4241          else {
4242            // We support flexible arrays at the end of structs in
4243            // other structs as an extension.
4244            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4245              << FD->getDeclName();
4246            if (Record)
4247              Record->setHasFlexibleArrayMember(true);
4248          }
4249        }
4250      }
4251      if (Record && FDTTy->getDecl()->hasObjectMember())
4252        Record->setHasObjectMember(true);
4253    } else if (FDTy->isObjCInterfaceType()) {
4254      /// A field cannot be an Objective-c object
4255      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4256      FD->setInvalidDecl();
4257      EnclosingDecl->setInvalidDecl();
4258      continue;
4259    }
4260    else if (getLangOptions().ObjC1 &&
4261             getLangOptions().getGCMode() != LangOptions::NonGC &&
4262             Record &&
4263             (Context.isObjCObjectPointerType(FD->getType()) ||
4264              FD->getType().isObjCGCStrong()))
4265      Record->setHasObjectMember(true);
4266    // Keep track of the number of named members.
4267    if (FD->getIdentifier())
4268      ++NumNamedMembers;
4269  }
4270
4271  // Okay, we successfully defined 'Record'.
4272  if (Record) {
4273    Record->completeDefinition(Context);
4274  } else {
4275    ObjCIvarDecl **ClsFields =
4276      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4277    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4278      ID->setIVarList(ClsFields, RecFields.size(), Context);
4279      ID->setLocEnd(RBrac);
4280      // Add ivar's to class's DeclContext.
4281      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4282        ClsFields[i]->setLexicalDeclContext(ID);
4283        ID->addDecl(ClsFields[i]);
4284      }
4285      // Must enforce the rule that ivars in the base classes may not be
4286      // duplicates.
4287      if (ID->getSuperClass()) {
4288        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4289             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4290          ObjCIvarDecl* Ivar = (*IVI);
4291
4292          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4293            ObjCIvarDecl* prevIvar =
4294              ID->getSuperClass()->lookupInstanceVariable(II);
4295            if (prevIvar) {
4296              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4297              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4298            }
4299          }
4300        }
4301      }
4302    } else if (ObjCImplementationDecl *IMPDecl =
4303                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4304      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4305      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4306        // Ivar declared in @implementation never belongs to the implementation.
4307        // Only it is in implementation's lexical context.
4308        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4309      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4310    }
4311  }
4312
4313  if (Attr)
4314    ProcessDeclAttributeList(S, Record, Attr);
4315}
4316
4317EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4318                                          EnumConstantDecl *LastEnumConst,
4319                                          SourceLocation IdLoc,
4320                                          IdentifierInfo *Id,
4321                                          ExprArg val) {
4322  Expr *Val = (Expr *)val.get();
4323
4324  llvm::APSInt EnumVal(32);
4325  QualType EltTy;
4326  if (Val && !Val->isTypeDependent()) {
4327    // Make sure to promote the operand type to int.
4328    UsualUnaryConversions(Val);
4329    if (Val != val.get()) {
4330      val.release();
4331      val = Val;
4332    }
4333
4334    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4335    SourceLocation ExpLoc;
4336    if (!Val->isValueDependent() &&
4337        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4338      Val = 0;
4339    } else {
4340      EltTy = Val->getType();
4341    }
4342  }
4343
4344  if (!Val) {
4345    if (LastEnumConst) {
4346      // Assign the last value + 1.
4347      EnumVal = LastEnumConst->getInitVal();
4348      ++EnumVal;
4349
4350      // Check for overflow on increment.
4351      if (EnumVal < LastEnumConst->getInitVal())
4352        Diag(IdLoc, diag::warn_enum_value_overflow);
4353
4354      EltTy = LastEnumConst->getType();
4355    } else {
4356      // First value, set to zero.
4357      EltTy = Context.IntTy;
4358      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4359    }
4360  }
4361
4362  val.release();
4363  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4364                                  Val, EnumVal);
4365}
4366
4367
4368Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4369                                        DeclPtrTy lastEnumConst,
4370                                        SourceLocation IdLoc,
4371                                        IdentifierInfo *Id,
4372                                        SourceLocation EqualLoc, ExprTy *val) {
4373  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4374  EnumConstantDecl *LastEnumConst =
4375    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4376  Expr *Val = static_cast<Expr*>(val);
4377
4378  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4379  // we find one that is.
4380  S = getNonFieldDeclScope(S);
4381
4382  // Verify that there isn't already something declared with this name in this
4383  // scope.
4384  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4385  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4386    // Maybe we will complain about the shadowed template parameter.
4387    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4388    // Just pretend that we didn't see the previous declaration.
4389    PrevDecl = 0;
4390  }
4391
4392  if (PrevDecl) {
4393    // When in C++, we may get a TagDecl with the same name; in this case the
4394    // enum constant will 'hide' the tag.
4395    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4396           "Received TagDecl when not in C++!");
4397    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4398      if (isa<EnumConstantDecl>(PrevDecl))
4399        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4400      else
4401        Diag(IdLoc, diag::err_redefinition) << Id;
4402      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4403      if (Val) Val->Destroy(Context);
4404      return DeclPtrTy();
4405    }
4406  }
4407
4408  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4409                                            IdLoc, Id, Owned(Val));
4410
4411  // Register this decl in the current scope stack.
4412  if (New)
4413    PushOnScopeChains(New, S);
4414
4415  return DeclPtrTy::make(New);
4416}
4417
4418void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4419                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4420                         DeclPtrTy *Elements, unsigned NumElements) {
4421  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4422  QualType EnumType = Context.getTypeDeclType(Enum);
4423
4424  // TODO: If the result value doesn't fit in an int, it must be a long or long
4425  // long value.  ISO C does not support this, but GCC does as an extension,
4426  // emit a warning.
4427  unsigned IntWidth = Context.Target.getIntWidth();
4428
4429  // Verify that all the values are okay, compute the size of the values, and
4430  // reverse the list.
4431  unsigned NumNegativeBits = 0;
4432  unsigned NumPositiveBits = 0;
4433
4434  // Keep track of whether all elements have type int.
4435  bool AllElementsInt = true;
4436
4437  for (unsigned i = 0; i != NumElements; ++i) {
4438    EnumConstantDecl *ECD =
4439      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4440    if (!ECD) continue;  // Already issued a diagnostic.
4441
4442    // If the enum value doesn't fit in an int, emit an extension warning.
4443    const llvm::APSInt &InitVal = ECD->getInitVal();
4444    assert(InitVal.getBitWidth() >= IntWidth &&
4445           "Should have promoted value to int");
4446    if (InitVal.getBitWidth() > IntWidth) {
4447      llvm::APSInt V(InitVal);
4448      V.trunc(IntWidth);
4449      V.extend(InitVal.getBitWidth());
4450      if (V != InitVal)
4451        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4452          << InitVal.toString(10);
4453    }
4454
4455    // Keep track of the size of positive and negative values.
4456    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4457      NumPositiveBits = std::max(NumPositiveBits,
4458                                 (unsigned)InitVal.getActiveBits());
4459    else
4460      NumNegativeBits = std::max(NumNegativeBits,
4461                                 (unsigned)InitVal.getMinSignedBits());
4462
4463    // Keep track of whether every enum element has type int (very commmon).
4464    if (AllElementsInt)
4465      AllElementsInt = ECD->getType() == Context.IntTy;
4466  }
4467
4468  // Figure out the type that should be used for this enum.
4469  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4470  QualType BestType;
4471  unsigned BestWidth;
4472
4473  if (NumNegativeBits) {
4474    // If there is a negative value, figure out the smallest integer type (of
4475    // int/long/longlong) that fits.
4476    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4477      BestType = Context.IntTy;
4478      BestWidth = IntWidth;
4479    } else {
4480      BestWidth = Context.Target.getLongWidth();
4481
4482      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4483        BestType = Context.LongTy;
4484      else {
4485        BestWidth = Context.Target.getLongLongWidth();
4486
4487        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4488          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4489        BestType = Context.LongLongTy;
4490      }
4491    }
4492  } else {
4493    // If there is no negative value, figure out which of uint, ulong, ulonglong
4494    // fits.
4495    if (NumPositiveBits <= IntWidth) {
4496      BestType = Context.UnsignedIntTy;
4497      BestWidth = IntWidth;
4498    } else if (NumPositiveBits <=
4499               (BestWidth = Context.Target.getLongWidth())) {
4500      BestType = Context.UnsignedLongTy;
4501    } else {
4502      BestWidth = Context.Target.getLongLongWidth();
4503      assert(NumPositiveBits <= BestWidth &&
4504             "How could an initializer get larger than ULL?");
4505      BestType = Context.UnsignedLongLongTy;
4506    }
4507  }
4508
4509  // Loop over all of the enumerator constants, changing their types to match
4510  // the type of the enum if needed.
4511  for (unsigned i = 0; i != NumElements; ++i) {
4512    EnumConstantDecl *ECD =
4513      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4514    if (!ECD) continue;  // Already issued a diagnostic.
4515
4516    // Standard C says the enumerators have int type, but we allow, as an
4517    // extension, the enumerators to be larger than int size.  If each
4518    // enumerator value fits in an int, type it as an int, otherwise type it the
4519    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4520    // that X has type 'int', not 'unsigned'.
4521    if (ECD->getType() == Context.IntTy) {
4522      // Make sure the init value is signed.
4523      llvm::APSInt IV = ECD->getInitVal();
4524      IV.setIsSigned(true);
4525      ECD->setInitVal(IV);
4526
4527      if (getLangOptions().CPlusPlus)
4528        // C++ [dcl.enum]p4: Following the closing brace of an
4529        // enum-specifier, each enumerator has the type of its
4530        // enumeration.
4531        ECD->setType(EnumType);
4532      continue;  // Already int type.
4533    }
4534
4535    // Determine whether the value fits into an int.
4536    llvm::APSInt InitVal = ECD->getInitVal();
4537    bool FitsInInt;
4538    if (InitVal.isUnsigned() || !InitVal.isNegative())
4539      FitsInInt = InitVal.getActiveBits() < IntWidth;
4540    else
4541      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4542
4543    // If it fits into an integer type, force it.  Otherwise force it to match
4544    // the enum decl type.
4545    QualType NewTy;
4546    unsigned NewWidth;
4547    bool NewSign;
4548    if (FitsInInt) {
4549      NewTy = Context.IntTy;
4550      NewWidth = IntWidth;
4551      NewSign = true;
4552    } else if (ECD->getType() == BestType) {
4553      // Already the right type!
4554      if (getLangOptions().CPlusPlus)
4555        // C++ [dcl.enum]p4: Following the closing brace of an
4556        // enum-specifier, each enumerator has the type of its
4557        // enumeration.
4558        ECD->setType(EnumType);
4559      continue;
4560    } else {
4561      NewTy = BestType;
4562      NewWidth = BestWidth;
4563      NewSign = BestType->isSignedIntegerType();
4564    }
4565
4566    // Adjust the APSInt value.
4567    InitVal.extOrTrunc(NewWidth);
4568    InitVal.setIsSigned(NewSign);
4569    ECD->setInitVal(InitVal);
4570
4571    // Adjust the Expr initializer and type.
4572    if (ECD->getInitExpr())
4573      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4574                                                      /*isLvalue=*/false));
4575    if (getLangOptions().CPlusPlus)
4576      // C++ [dcl.enum]p4: Following the closing brace of an
4577      // enum-specifier, each enumerator has the type of its
4578      // enumeration.
4579      ECD->setType(EnumType);
4580    else
4581      ECD->setType(NewTy);
4582  }
4583
4584  Enum->completeDefinition(Context, BestType);
4585}
4586
4587Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4588                                            ExprArg expr) {
4589  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4590
4591  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4592                                                   Loc, AsmString);
4593  CurContext->addDecl(New);
4594  return DeclPtrTy::make(New);
4595}
4596
4597void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4598                             SourceLocation PragmaLoc,
4599                             SourceLocation NameLoc) {
4600  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4601
4602  // FIXME: This implementation is an ugly hack!
4603  if (PrevDecl) {
4604    PrevDecl->addAttr(::new (Context) WeakAttr());
4605    return;
4606  }
4607  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4608  return;
4609}
4610
4611void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4612                                IdentifierInfo* AliasName,
4613                                SourceLocation PragmaLoc,
4614                                SourceLocation NameLoc,
4615                                SourceLocation AliasNameLoc) {
4616  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4617
4618  // FIXME: This implementation is an ugly hack!
4619  if (PrevDecl) {
4620    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
4621    PrevDecl->addAttr(::new (Context) WeakAttr());
4622    return;
4623  }
4624  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4625  return;
4626}
4627