SemaDecl.cpp revision ec33566ffb6111d0a2ef522a4f91a49ef7379e33
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLineDefinition())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// \brief Determine whether we allow overloading of the function
223/// PrevDecl with another declaration.
224///
225/// This routine determines whether overloading is possible, not
226/// whether some new function is actually an overload. It will return
227/// true in C++ (where we can always provide overloads) or, as an
228/// extension, in C when the previous function is already an
229/// overloaded function declaration or has the "overloadable"
230/// attribute.
231static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
232  if (Context.getLangOptions().CPlusPlus)
233    return true;
234
235  if (isa<OverloadedFunctionDecl>(PrevDecl))
236    return true;
237
238  return PrevDecl->getAttr<OverloadableAttr>() != 0;
239}
240
241/// Add this decl to the scope shadowed decl chains.
242void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
243  // Move up the scope chain until we find the nearest enclosing
244  // non-transparent context. The declaration will be introduced into this
245  // scope.
246  while (S->getEntity() &&
247         ((DeclContext *)S->getEntity())->isTransparentContext())
248    S = S->getParent();
249
250  S->AddDecl(DeclPtrTy::make(D));
251
252  // Add scoped declarations into their context, so that they can be
253  // found later. Declarations without a context won't be inserted
254  // into any context.
255  CurContext->addDecl(Context, D);
256
257  // C++ [basic.scope]p4:
258  //   -- exactly one declaration shall declare a class name or
259  //   enumeration name that is not a typedef name and the other
260  //   declarations shall all refer to the same object or
261  //   enumerator, or all refer to functions and function templates;
262  //   in this case the class name or enumeration name is hidden.
263  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
264    // We are pushing the name of a tag (enum or class).
265    if (CurContext->getLookupContext()
266          == TD->getDeclContext()->getLookupContext()) {
267      // We're pushing the tag into the current context, which might
268      // require some reshuffling in the identifier resolver.
269      IdentifierResolver::iterator
270        I = IdResolver.begin(TD->getDeclName()),
271        IEnd = IdResolver.end();
272      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
273        NamedDecl *PrevDecl = *I;
274        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
275             PrevDecl = *I, ++I) {
276          if (TD->declarationReplaces(*I)) {
277            // This is a redeclaration. Remove it from the chain and
278            // break out, so that we'll add in the shadowed
279            // declaration.
280            S->RemoveDecl(DeclPtrTy::make(*I));
281            if (PrevDecl == *I) {
282              IdResolver.RemoveDecl(*I);
283              IdResolver.AddDecl(TD);
284              return;
285            } else {
286              IdResolver.RemoveDecl(*I);
287              break;
288            }
289          }
290        }
291
292        // There is already a declaration with the same name in the same
293        // scope, which is not a tag declaration. It must be found
294        // before we find the new declaration, so insert the new
295        // declaration at the end of the chain.
296        IdResolver.AddShadowedDecl(TD, PrevDecl);
297
298        return;
299      }
300    }
301  } else if (isa<FunctionDecl>(D) &&
302             AllowOverloadingOfFunction(D, Context)) {
303    // We are pushing the name of a function, which might be an
304    // overloaded name.
305    FunctionDecl *FD = cast<FunctionDecl>(D);
306    IdentifierResolver::iterator Redecl
307      = std::find_if(IdResolver.begin(FD->getDeclName()),
308                     IdResolver.end(),
309                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
310                                  FD));
311    if (Redecl != IdResolver.end() &&
312        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
313      // There is already a declaration of a function on our
314      // IdResolver chain. Replace it with this declaration.
315      S->RemoveDecl(DeclPtrTy::make(*Redecl));
316      IdResolver.RemoveDecl(*Redecl);
317    }
318  } else if (isa<ObjCInterfaceDecl>(D)) {
319    // We're pushing an Objective-C interface into the current
320    // context. If there is already an alias declaration, remove it first.
321    for (IdentifierResolver::iterator
322           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
323         I != IEnd; ++I) {
324      if (isa<ObjCCompatibleAliasDecl>(*I)) {
325        S->RemoveDecl(DeclPtrTy::make(*I));
326        IdResolver.RemoveDecl(*I);
327        break;
328      }
329    }
330  }
331
332  IdResolver.AddDecl(D);
333}
334
335void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
336  if (S->decl_empty()) return;
337  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
338	 "Scope shouldn't contain decls!");
339
340  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
341       I != E; ++I) {
342    Decl *TmpD = (*I).getAs<Decl>();
343    assert(TmpD && "This decl didn't get pushed??");
344
345    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
346    NamedDecl *D = cast<NamedDecl>(TmpD);
347
348    if (!D->getDeclName()) continue;
349
350    // Remove this name from our lexical scope.
351    IdResolver.RemoveDecl(D);
352  }
353}
354
355/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
356/// return 0 if one not found.
357ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
358  // The third "scope" argument is 0 since we aren't enabling lazy built-in
359  // creation from this context.
360  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
361
362  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
363}
364
365/// getNonFieldDeclScope - Retrieves the innermost scope, starting
366/// from S, where a non-field would be declared. This routine copes
367/// with the difference between C and C++ scoping rules in structs and
368/// unions. For example, the following code is well-formed in C but
369/// ill-formed in C++:
370/// @code
371/// struct S6 {
372///   enum { BAR } e;
373/// };
374///
375/// void test_S6() {
376///   struct S6 a;
377///   a.e = BAR;
378/// }
379/// @endcode
380/// For the declaration of BAR, this routine will return a different
381/// scope. The scope S will be the scope of the unnamed enumeration
382/// within S6. In C++, this routine will return the scope associated
383/// with S6, because the enumeration's scope is a transparent
384/// context but structures can contain non-field names. In C, this
385/// routine will return the translation unit scope, since the
386/// enumeration's scope is a transparent context and structures cannot
387/// contain non-field names.
388Scope *Sema::getNonFieldDeclScope(Scope *S) {
389  while (((S->getFlags() & Scope::DeclScope) == 0) ||
390         (S->getEntity() &&
391          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
392         (S->isClassScope() && !getLangOptions().CPlusPlus))
393    S = S->getParent();
394  return S;
395}
396
397void Sema::InitBuiltinVaListType() {
398  if (!Context.getBuiltinVaListType().isNull())
399    return;
400
401  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
402  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
403  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
404  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
405}
406
407/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
408/// file scope.  lazily create a decl for it. ForRedeclaration is true
409/// if we're creating this built-in in anticipation of redeclaring the
410/// built-in.
411NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
412                                     Scope *S, bool ForRedeclaration,
413                                     SourceLocation Loc) {
414  Builtin::ID BID = (Builtin::ID)bid;
415
416  if (Context.BuiltinInfo.hasVAListUse(BID))
417    InitBuiltinVaListType();
418
419  Builtin::Context::GetBuiltinTypeError Error;
420  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
421  switch (Error) {
422  case Builtin::Context::GE_None:
423    // Okay
424    break;
425
426  case Builtin::Context::GE_Missing_FILE:
427    if (ForRedeclaration)
428      Diag(Loc, diag::err_implicit_decl_requires_stdio)
429        << Context.BuiltinInfo.GetName(BID);
430    return 0;
431  }
432
433  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
434    Diag(Loc, diag::ext_implicit_lib_function_decl)
435      << Context.BuiltinInfo.GetName(BID)
436      << R;
437    if (Context.BuiltinInfo.getHeaderName(BID) &&
438        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
439          != Diagnostic::Ignored)
440      Diag(Loc, diag::note_please_include_header)
441        << Context.BuiltinInfo.getHeaderName(BID)
442        << Context.BuiltinInfo.GetName(BID);
443  }
444
445  FunctionDecl *New = FunctionDecl::Create(Context,
446                                           Context.getTranslationUnitDecl(),
447                                           Loc, II, R,
448                                           FunctionDecl::Extern, false,
449                                           /*hasPrototype=*/true);
450  New->setImplicit();
451
452  // Create Decl objects for each parameter, adding them to the
453  // FunctionDecl.
454  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
455    llvm::SmallVector<ParmVarDecl*, 16> Params;
456    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
457      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
458                                           FT->getArgType(i), VarDecl::None, 0));
459    New->setParams(Context, &Params[0], Params.size());
460  }
461
462  AddKnownFunctionAttributes(New);
463
464  // TUScope is the translation-unit scope to insert this function into.
465  // FIXME: This is hideous. We need to teach PushOnScopeChains to
466  // relate Scopes to DeclContexts, and probably eliminate CurContext
467  // entirely, but we're not there yet.
468  DeclContext *SavedContext = CurContext;
469  CurContext = Context.getTranslationUnitDecl();
470  PushOnScopeChains(New, TUScope);
471  CurContext = SavedContext;
472  return New;
473}
474
475/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
476/// everything from the standard library is defined.
477NamespaceDecl *Sema::GetStdNamespace() {
478  if (!StdNamespace) {
479    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
480    DeclContext *Global = Context.getTranslationUnitDecl();
481    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
482    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
483  }
484  return StdNamespace;
485}
486
487/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
488/// same name and scope as a previous declaration 'Old'.  Figure out
489/// how to resolve this situation, merging decls or emitting
490/// diagnostics as appropriate. If there was an error, set New to be invalid.
491///
492void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
493  // If either decl is known invalid already, set the new one to be invalid and
494  // don't bother doing any merging checks.
495  if (New->isInvalidDecl() || OldD->isInvalidDecl())
496    return New->setInvalidDecl();
497
498  bool objc_types = false;
499
500  // Allow multiple definitions for ObjC built-in typedefs.
501  // FIXME: Verify the underlying types are equivalent!
502  if (getLangOptions().ObjC1) {
503    const IdentifierInfo *TypeID = New->getIdentifier();
504    switch (TypeID->getLength()) {
505    default: break;
506    case 2:
507      if (!TypeID->isStr("id"))
508        break;
509      Context.setObjCIdType(Context.getTypeDeclType(New));
510      objc_types = true;
511      break;
512    case 5:
513      if (!TypeID->isStr("Class"))
514        break;
515      Context.setObjCClassType(Context.getTypeDeclType(New));
516      return;
517    case 3:
518      if (!TypeID->isStr("SEL"))
519        break;
520      Context.setObjCSelType(Context.getTypeDeclType(New));
521      return;
522    case 8:
523      if (!TypeID->isStr("Protocol"))
524        break;
525      Context.setObjCProtoType(New->getUnderlyingType());
526      return;
527    }
528    // Fall through - the typedef name was not a builtin type.
529  }
530  // Verify the old decl was also a type.
531  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
532  if (!Old) {
533    Diag(New->getLocation(), diag::err_redefinition_different_kind)
534      << New->getDeclName();
535    if (OldD->getLocation().isValid())
536      Diag(OldD->getLocation(), diag::note_previous_definition);
537    return New->setInvalidDecl();
538  }
539
540  // Determine the "old" type we'll use for checking and diagnostics.
541  QualType OldType;
542  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
543    OldType = OldTypedef->getUnderlyingType();
544  else
545    OldType = Context.getTypeDeclType(Old);
546
547  // If the typedef types are not identical, reject them in all languages and
548  // with any extensions enabled.
549
550  if (OldType != New->getUnderlyingType() &&
551      Context.getCanonicalType(OldType) !=
552      Context.getCanonicalType(New->getUnderlyingType())) {
553    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
554      << New->getUnderlyingType() << OldType;
555    if (Old->getLocation().isValid())
556      Diag(Old->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  if (objc_types || getLangOptions().Microsoft)
561    return;
562
563  // C++ [dcl.typedef]p2:
564  //   In a given non-class scope, a typedef specifier can be used to
565  //   redefine the name of any type declared in that scope to refer
566  //   to the type to which it already refers.
567  if (getLangOptions().CPlusPlus) {
568    if (!isa<CXXRecordDecl>(CurContext))
569      return;
570    Diag(New->getLocation(), diag::err_redefinition)
571      << New->getDeclName();
572    Diag(Old->getLocation(), diag::note_previous_definition);
573    return New->setInvalidDecl();
574  }
575
576  // If we have a redefinition of a typedef in C, emit a warning.  This warning
577  // is normally mapped to an error, but can be controlled with
578  // -Wtypedef-redefinition.  If either the original was in a system header,
579  // don't emit this for compatibility with GCC.
580  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
581      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
582    return;
583
584  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
585    << New->getDeclName();
586  Diag(Old->getLocation(), diag::note_previous_definition);
587  return;
588}
589
590/// DeclhasAttr - returns true if decl Declaration already has the target
591/// attribute.
592static bool DeclHasAttr(const Decl *decl, const Attr *target) {
593  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
594    if (attr->getKind() == target->getKind())
595      return true;
596
597  return false;
598}
599
600/// MergeAttributes - append attributes from the Old decl to the New one.
601static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
602  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
603    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
604      Attr *NewAttr = attr->clone(C);
605      NewAttr->setInherited(true);
606      New->addAttr(NewAttr);
607    }
608  }
609}
610
611/// Used in MergeFunctionDecl to keep track of function parameters in
612/// C.
613struct GNUCompatibleParamWarning {
614  ParmVarDecl *OldParm;
615  ParmVarDecl *NewParm;
616  QualType PromotedType;
617};
618
619/// MergeFunctionDecl - We just parsed a function 'New' from
620/// declarator D which has the same name and scope as a previous
621/// declaration 'Old'.  Figure out how to resolve this situation,
622/// merging decls or emitting diagnostics as appropriate.
623///
624/// In C++, New and Old must be declarations that are not
625/// overloaded. Use IsOverload to determine whether New and Old are
626/// overloaded, and to select the Old declaration that New should be
627/// merged with.
628///
629/// Returns true if there was an error, false otherwise.
630bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
631  assert(!isa<OverloadedFunctionDecl>(OldD) &&
632         "Cannot merge with an overloaded function declaration");
633
634  // Verify the old decl was also a function.
635  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
636  if (!Old) {
637    Diag(New->getLocation(), diag::err_redefinition_different_kind)
638      << New->getDeclName();
639    Diag(OldD->getLocation(), diag::note_previous_definition);
640    return true;
641  }
642
643  // Determine whether the previous declaration was a definition,
644  // implicit declaration, or a declaration.
645  diag::kind PrevDiag;
646  if (Old->isThisDeclarationADefinition())
647    PrevDiag = diag::note_previous_definition;
648  else if (Old->isImplicit())
649    PrevDiag = diag::note_previous_implicit_declaration;
650  else
651    PrevDiag = diag::note_previous_declaration;
652
653  QualType OldQType = Context.getCanonicalType(Old->getType());
654  QualType NewQType = Context.getCanonicalType(New->getType());
655
656  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
657      New->getStorageClass() == FunctionDecl::Static &&
658      Old->getStorageClass() != FunctionDecl::Static) {
659    Diag(New->getLocation(), diag::err_static_non_static)
660      << New;
661    Diag(Old->getLocation(), PrevDiag);
662    return true;
663  }
664
665  if (getLangOptions().CPlusPlus) {
666    // (C++98 13.1p2):
667    //   Certain function declarations cannot be overloaded:
668    //     -- Function declarations that differ only in the return type
669    //        cannot be overloaded.
670    QualType OldReturnType
671      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
672    QualType NewReturnType
673      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
674    if (OldReturnType != NewReturnType) {
675      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
676      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
677      return true;
678    }
679
680    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
681    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
682    if (OldMethod && NewMethod &&
683        OldMethod->getLexicalDeclContext() ==
684          NewMethod->getLexicalDeclContext()) {
685      //    -- Member function declarations with the same name and the
686      //       same parameter types cannot be overloaded if any of them
687      //       is a static member function declaration.
688      if (OldMethod->isStatic() || NewMethod->isStatic()) {
689        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
690        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
691        return true;
692      }
693
694      // C++ [class.mem]p1:
695      //   [...] A member shall not be declared twice in the
696      //   member-specification, except that a nested class or member
697      //   class template can be declared and then later defined.
698      unsigned NewDiag;
699      if (isa<CXXConstructorDecl>(OldMethod))
700        NewDiag = diag::err_constructor_redeclared;
701      else if (isa<CXXDestructorDecl>(NewMethod))
702        NewDiag = diag::err_destructor_redeclared;
703      else if (isa<CXXConversionDecl>(NewMethod))
704        NewDiag = diag::err_conv_function_redeclared;
705      else
706        NewDiag = diag::err_member_redeclared;
707
708      Diag(New->getLocation(), NewDiag);
709      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
710    }
711
712    // (C++98 8.3.5p3):
713    //   All declarations for a function shall agree exactly in both the
714    //   return type and the parameter-type-list.
715    if (OldQType == NewQType)
716      return MergeCompatibleFunctionDecls(New, Old);
717
718    // Fall through for conflicting redeclarations and redefinitions.
719  }
720
721  // C: Function types need to be compatible, not identical. This handles
722  // duplicate function decls like "void f(int); void f(enum X);" properly.
723  if (!getLangOptions().CPlusPlus &&
724      Context.typesAreCompatible(OldQType, NewQType)) {
725    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
726    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
727    const FunctionProtoType *OldProto = 0;
728    if (isa<FunctionNoProtoType>(NewFuncType) &&
729        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
730      // The old declaration provided a function prototype, but the
731      // new declaration does not. Merge in the prototype.
732      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
733                                                 OldProto->arg_type_end());
734      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
735                                         &ParamTypes[0], ParamTypes.size(),
736                                         OldProto->isVariadic(),
737                                         OldProto->getTypeQuals());
738      New->setType(NewQType);
739      New->setHasInheritedPrototype();
740
741      // Synthesize a parameter for each argument type.
742      llvm::SmallVector<ParmVarDecl*, 16> Params;
743      for (FunctionProtoType::arg_type_iterator
744             ParamType = OldProto->arg_type_begin(),
745             ParamEnd = OldProto->arg_type_end();
746           ParamType != ParamEnd; ++ParamType) {
747        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
748                                                 SourceLocation(), 0,
749                                                 *ParamType, VarDecl::None,
750                                                 0);
751        Param->setImplicit();
752        Params.push_back(Param);
753      }
754
755      New->setParams(Context, &Params[0], Params.size());
756    }
757
758    return MergeCompatibleFunctionDecls(New, Old);
759  }
760
761  // GNU C permits a K&R definition to follow a prototype declaration
762  // if the declared types of the parameters in the K&R definition
763  // match the types in the prototype declaration, even when the
764  // promoted types of the parameters from the K&R definition differ
765  // from the types in the prototype. GCC then keeps the types from
766  // the prototype.
767  if (!getLangOptions().CPlusPlus &&
768      Old->hasPrototype() && !New->hasPrototype() &&
769      New->getType()->getAsFunctionProtoType() &&
770      Old->getNumParams() == New->getNumParams()) {
771    llvm::SmallVector<QualType, 16> ArgTypes;
772    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
773    const FunctionProtoType *OldProto
774      = Old->getType()->getAsFunctionProtoType();
775    const FunctionProtoType *NewProto
776      = New->getType()->getAsFunctionProtoType();
777
778    // Determine whether this is the GNU C extension.
779    bool GNUCompatible =
780      Context.typesAreCompatible(OldProto->getResultType(),
781                                 NewProto->getResultType()) &&
782      (OldProto->isVariadic() == NewProto->isVariadic());
783    for (unsigned Idx = 0, End = Old->getNumParams();
784         GNUCompatible && Idx != End; ++Idx) {
785      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
786      ParmVarDecl *NewParm = New->getParamDecl(Idx);
787      if (Context.typesAreCompatible(OldParm->getType(),
788                                     NewProto->getArgType(Idx))) {
789        ArgTypes.push_back(NewParm->getType());
790      } else if (Context.typesAreCompatible(OldParm->getType(),
791                                            NewParm->getType())) {
792        GNUCompatibleParamWarning Warn
793          = { OldParm, NewParm, NewProto->getArgType(Idx) };
794        Warnings.push_back(Warn);
795        ArgTypes.push_back(NewParm->getType());
796      } else
797        GNUCompatible = false;
798    }
799
800    if (GNUCompatible) {
801      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
802        Diag(Warnings[Warn].NewParm->getLocation(),
803             diag::ext_param_promoted_not_compatible_with_prototype)
804          << Warnings[Warn].PromotedType
805          << Warnings[Warn].OldParm->getType();
806        Diag(Warnings[Warn].OldParm->getLocation(),
807             diag::note_previous_declaration);
808      }
809
810      New->setType(Context.getFunctionType(NewProto->getResultType(),
811                                           &ArgTypes[0], ArgTypes.size(),
812                                           NewProto->isVariadic(),
813                                           NewProto->getTypeQuals()));
814      return MergeCompatibleFunctionDecls(New, Old);
815    }
816
817    // Fall through to diagnose conflicting types.
818  }
819
820  // A function that has already been declared has been redeclared or defined
821  // with a different type- show appropriate diagnostic
822  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
823    // The user has declared a builtin function with an incompatible
824    // signature.
825    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
826      // The function the user is redeclaring is a library-defined
827      // function like 'malloc' or 'printf'. Warn about the
828      // redeclaration, then pretend that we don't know about this
829      // library built-in.
830      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
831      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
832        << Old << Old->getType();
833      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
834      Old->setInvalidDecl();
835      return false;
836    }
837
838    PrevDiag = diag::note_previous_builtin_declaration;
839  }
840
841  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
842  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
843  return true;
844}
845
846/// \brief Completes the merge of two function declarations that are
847/// known to be compatible.
848///
849/// This routine handles the merging of attributes and other
850/// properties of function declarations form the old declaration to
851/// the new declaration, once we know that New is in fact a
852/// redeclaration of Old.
853///
854/// \returns false
855bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
856  // Merge the attributes
857  MergeAttributes(New, Old, Context);
858
859  // Merge the storage class.
860  if (Old->getStorageClass() != FunctionDecl::Extern)
861    New->setStorageClass(Old->getStorageClass());
862
863  // Merge "inline"
864  if (Old->isInline())
865    New->setInline(true);
866
867  // If this function declaration by itself qualifies as a C99 inline
868  // definition (C99 6.7.4p6), but the previous definition did not,
869  // then the function is not a C99 inline definition.
870  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
871    New->setC99InlineDefinition(false);
872  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
873    // Mark all preceding definitions as not being C99 inline definitions.
874    for (const FunctionDecl *Prev = Old; Prev;
875         Prev = Prev->getPreviousDeclaration())
876      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
877  }
878
879  // Merge "pure" flag.
880  if (Old->isPure())
881    New->setPure();
882
883  // Merge the "deleted" flag.
884  if (Old->isDeleted())
885    New->setDeleted();
886
887  if (getLangOptions().CPlusPlus)
888    return MergeCXXFunctionDecl(New, Old);
889
890  return false;
891}
892
893/// MergeVarDecl - We just parsed a variable 'New' which has the same name
894/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
895/// situation, merging decls or emitting diagnostics as appropriate.
896///
897/// Tentative definition rules (C99 6.9.2p2) are checked by
898/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
899/// definitions here, since the initializer hasn't been attached.
900///
901void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
902  // If either decl is invalid, make sure the new one is marked invalid and
903  // don't do any other checking.
904  if (New->isInvalidDecl() || OldD->isInvalidDecl())
905    return New->setInvalidDecl();
906
907  // Verify the old decl was also a variable.
908  VarDecl *Old = dyn_cast<VarDecl>(OldD);
909  if (!Old) {
910    Diag(New->getLocation(), diag::err_redefinition_different_kind)
911      << New->getDeclName();
912    Diag(OldD->getLocation(), diag::note_previous_definition);
913    return New->setInvalidDecl();
914  }
915
916  MergeAttributes(New, Old, Context);
917
918  // Merge the types
919  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
920  if (MergedT.isNull()) {
921    Diag(New->getLocation(), diag::err_redefinition_different_type)
922      << New->getDeclName();
923    Diag(Old->getLocation(), diag::note_previous_definition);
924    return New->setInvalidDecl();
925  }
926  New->setType(MergedT);
927
928  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
929  if (New->getStorageClass() == VarDecl::Static &&
930      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
931    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
932    Diag(Old->getLocation(), diag::note_previous_definition);
933    return New->setInvalidDecl();
934  }
935  // C99 6.2.2p4:
936  //   For an identifier declared with the storage-class specifier
937  //   extern in a scope in which a prior declaration of that
938  //   identifier is visible,23) if the prior declaration specifies
939  //   internal or external linkage, the linkage of the identifier at
940  //   the later declaration is the same as the linkage specified at
941  //   the prior declaration. If no prior declaration is visible, or
942  //   if the prior declaration specifies no linkage, then the
943  //   identifier has external linkage.
944  if (New->hasExternalStorage() && Old->hasLinkage())
945    /* Okay */;
946  else if (New->getStorageClass() != VarDecl::Static &&
947           Old->getStorageClass() == VarDecl::Static) {
948    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
949    Diag(Old->getLocation(), diag::note_previous_definition);
950    return New->setInvalidDecl();
951  }
952
953  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
954
955  // FIXME: The test for external storage here seems wrong? We still
956  // need to check for mismatches.
957  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
958      // Don't complain about out-of-line definitions of static members.
959      !(Old->getLexicalDeclContext()->isRecord() &&
960        !New->getLexicalDeclContext()->isRecord())) {
961    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
962    Diag(Old->getLocation(), diag::note_previous_definition);
963    return New->setInvalidDecl();
964  }
965
966  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
967    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
970    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
971    Diag(Old->getLocation(), diag::note_previous_definition);
972  }
973
974  // Keep a chain of previous declarations.
975  New->setPreviousDeclaration(Old);
976}
977
978/// CheckParmsForFunctionDef - Check that the parameters of the given
979/// function are appropriate for the definition of a function. This
980/// takes care of any checks that cannot be performed on the
981/// declaration itself, e.g., that the types of each of the function
982/// parameters are complete.
983bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
984  bool HasInvalidParm = false;
985  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
986    ParmVarDecl *Param = FD->getParamDecl(p);
987
988    // C99 6.7.5.3p4: the parameters in a parameter type list in a
989    // function declarator that is part of a function definition of
990    // that function shall not have incomplete type.
991    //
992    // This is also C++ [dcl.fct]p6.
993    if (!Param->isInvalidDecl() &&
994        RequireCompleteType(Param->getLocation(), Param->getType(),
995                               diag::err_typecheck_decl_incomplete_type)) {
996      Param->setInvalidDecl();
997      HasInvalidParm = true;
998    }
999
1000    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1001    // declaration of each parameter shall include an identifier.
1002    if (Param->getIdentifier() == 0 &&
1003        !Param->isImplicit() &&
1004        !getLangOptions().CPlusPlus)
1005      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1006  }
1007
1008  return HasInvalidParm;
1009}
1010
1011/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1012/// no declarator (e.g. "struct foo;") is parsed.
1013Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1014  // FIXME: Error on auto/register at file scope
1015  // FIXME: Error on inline/virtual/explicit
1016  // FIXME: Error on invalid restrict
1017  // FIXME: Warn on useless __thread
1018  // FIXME: Warn on useless const/volatile
1019  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1020  // FIXME: Warn on useless attributes
1021  TagDecl *Tag = 0;
1022  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1023      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1024      DS.getTypeSpecType() == DeclSpec::TST_union ||
1025      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1026    if (!DS.getTypeRep()) // We probably had an error
1027      return DeclPtrTy();
1028
1029    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1030  }
1031
1032  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1033    if (!Record->getDeclName() && Record->isDefinition() &&
1034        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1035      if (getLangOptions().CPlusPlus ||
1036          Record->getDeclContext()->isRecord())
1037        return BuildAnonymousStructOrUnion(S, DS, Record);
1038
1039      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1040        << DS.getSourceRange();
1041    }
1042
1043    // Microsoft allows unnamed struct/union fields. Don't complain
1044    // about them.
1045    // FIXME: Should we support Microsoft's extensions in this area?
1046    if (Record->getDeclName() && getLangOptions().Microsoft)
1047      return DeclPtrTy::make(Tag);
1048  }
1049
1050  if (!DS.isMissingDeclaratorOk() &&
1051      DS.getTypeSpecType() != DeclSpec::TST_error) {
1052    // Warn about typedefs of enums without names, since this is an
1053    // extension in both Microsoft an GNU.
1054    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1055        Tag && isa<EnumDecl>(Tag)) {
1056      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1057        << DS.getSourceRange();
1058      return DeclPtrTy::make(Tag);
1059    }
1060
1061    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1062      << DS.getSourceRange();
1063    return DeclPtrTy();
1064  }
1065
1066  return DeclPtrTy::make(Tag);
1067}
1068
1069/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1070/// anonymous struct or union AnonRecord into the owning context Owner
1071/// and scope S. This routine will be invoked just after we realize
1072/// that an unnamed union or struct is actually an anonymous union or
1073/// struct, e.g.,
1074///
1075/// @code
1076/// union {
1077///   int i;
1078///   float f;
1079/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1080///    // f into the surrounding scope.x
1081/// @endcode
1082///
1083/// This routine is recursive, injecting the names of nested anonymous
1084/// structs/unions into the owning context and scope as well.
1085bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1086                                               RecordDecl *AnonRecord) {
1087  bool Invalid = false;
1088  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1089                               FEnd = AnonRecord->field_end(Context);
1090       F != FEnd; ++F) {
1091    if ((*F)->getDeclName()) {
1092      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1093                                                LookupOrdinaryName, true);
1094      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1095        // C++ [class.union]p2:
1096        //   The names of the members of an anonymous union shall be
1097        //   distinct from the names of any other entity in the
1098        //   scope in which the anonymous union is declared.
1099        unsigned diagKind
1100          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1101                                 : diag::err_anonymous_struct_member_redecl;
1102        Diag((*F)->getLocation(), diagKind)
1103          << (*F)->getDeclName();
1104        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1105        Invalid = true;
1106      } else {
1107        // C++ [class.union]p2:
1108        //   For the purpose of name lookup, after the anonymous union
1109        //   definition, the members of the anonymous union are
1110        //   considered to have been defined in the scope in which the
1111        //   anonymous union is declared.
1112        Owner->makeDeclVisibleInContext(Context, *F);
1113        S->AddDecl(DeclPtrTy::make(*F));
1114        IdResolver.AddDecl(*F);
1115      }
1116    } else if (const RecordType *InnerRecordType
1117                 = (*F)->getType()->getAsRecordType()) {
1118      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1119      if (InnerRecord->isAnonymousStructOrUnion())
1120        Invalid = Invalid ||
1121          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1122    }
1123  }
1124
1125  return Invalid;
1126}
1127
1128/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1129/// anonymous structure or union. Anonymous unions are a C++ feature
1130/// (C++ [class.union]) and a GNU C extension; anonymous structures
1131/// are a GNU C and GNU C++ extension.
1132Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1133                                                  RecordDecl *Record) {
1134  DeclContext *Owner = Record->getDeclContext();
1135
1136  // Diagnose whether this anonymous struct/union is an extension.
1137  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1138    Diag(Record->getLocation(), diag::ext_anonymous_union);
1139  else if (!Record->isUnion())
1140    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1141
1142  // C and C++ require different kinds of checks for anonymous
1143  // structs/unions.
1144  bool Invalid = false;
1145  if (getLangOptions().CPlusPlus) {
1146    const char* PrevSpec = 0;
1147    // C++ [class.union]p3:
1148    //   Anonymous unions declared in a named namespace or in the
1149    //   global namespace shall be declared static.
1150    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1151        (isa<TranslationUnitDecl>(Owner) ||
1152         (isa<NamespaceDecl>(Owner) &&
1153          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1154      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1155      Invalid = true;
1156
1157      // Recover by adding 'static'.
1158      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1159    }
1160    // C++ [class.union]p3:
1161    //   A storage class is not allowed in a declaration of an
1162    //   anonymous union in a class scope.
1163    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1164             isa<RecordDecl>(Owner)) {
1165      Diag(DS.getStorageClassSpecLoc(),
1166           diag::err_anonymous_union_with_storage_spec);
1167      Invalid = true;
1168
1169      // Recover by removing the storage specifier.
1170      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1171                             PrevSpec);
1172    }
1173
1174    // C++ [class.union]p2:
1175    //   The member-specification of an anonymous union shall only
1176    //   define non-static data members. [Note: nested types and
1177    //   functions cannot be declared within an anonymous union. ]
1178    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1179                                 MemEnd = Record->decls_end(Context);
1180         Mem != MemEnd; ++Mem) {
1181      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1182        // C++ [class.union]p3:
1183        //   An anonymous union shall not have private or protected
1184        //   members (clause 11).
1185        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1186          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1187            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1188          Invalid = true;
1189        }
1190      } else if ((*Mem)->isImplicit()) {
1191        // Any implicit members are fine.
1192      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1193        // This is a type that showed up in an
1194        // elaborated-type-specifier inside the anonymous struct or
1195        // union, but which actually declares a type outside of the
1196        // anonymous struct or union. It's okay.
1197      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1198        if (!MemRecord->isAnonymousStructOrUnion() &&
1199            MemRecord->getDeclName()) {
1200          // This is a nested type declaration.
1201          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1202            << (int)Record->isUnion();
1203          Invalid = true;
1204        }
1205      } else {
1206        // We have something that isn't a non-static data
1207        // member. Complain about it.
1208        unsigned DK = diag::err_anonymous_record_bad_member;
1209        if (isa<TypeDecl>(*Mem))
1210          DK = diag::err_anonymous_record_with_type;
1211        else if (isa<FunctionDecl>(*Mem))
1212          DK = diag::err_anonymous_record_with_function;
1213        else if (isa<VarDecl>(*Mem))
1214          DK = diag::err_anonymous_record_with_static;
1215        Diag((*Mem)->getLocation(), DK)
1216            << (int)Record->isUnion();
1217          Invalid = true;
1218      }
1219    }
1220  }
1221
1222  if (!Record->isUnion() && !Owner->isRecord()) {
1223    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1224      << (int)getLangOptions().CPlusPlus;
1225    Invalid = true;
1226  }
1227
1228  // Create a declaration for this anonymous struct/union.
1229  NamedDecl *Anon = 0;
1230  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1231    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1232                             /*IdentifierInfo=*/0,
1233                             Context.getTypeDeclType(Record),
1234                             /*BitWidth=*/0, /*Mutable=*/false);
1235    Anon->setAccess(AS_public);
1236    if (getLangOptions().CPlusPlus)
1237      FieldCollector->Add(cast<FieldDecl>(Anon));
1238  } else {
1239    VarDecl::StorageClass SC;
1240    switch (DS.getStorageClassSpec()) {
1241    default: assert(0 && "Unknown storage class!");
1242    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1243    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1244    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1245    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1246    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1247    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1248    case DeclSpec::SCS_mutable:
1249      // mutable can only appear on non-static class members, so it's always
1250      // an error here
1251      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1252      Invalid = true;
1253      SC = VarDecl::None;
1254      break;
1255    }
1256
1257    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1258                           /*IdentifierInfo=*/0,
1259                           Context.getTypeDeclType(Record),
1260                           SC, DS.getSourceRange().getBegin());
1261  }
1262  Anon->setImplicit();
1263
1264  // Add the anonymous struct/union object to the current
1265  // context. We'll be referencing this object when we refer to one of
1266  // its members.
1267  Owner->addDecl(Context, Anon);
1268
1269  // Inject the members of the anonymous struct/union into the owning
1270  // context and into the identifier resolver chain for name lookup
1271  // purposes.
1272  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1273    Invalid = true;
1274
1275  // Mark this as an anonymous struct/union type. Note that we do not
1276  // do this until after we have already checked and injected the
1277  // members of this anonymous struct/union type, because otherwise
1278  // the members could be injected twice: once by DeclContext when it
1279  // builds its lookup table, and once by
1280  // InjectAnonymousStructOrUnionMembers.
1281  Record->setAnonymousStructOrUnion(true);
1282
1283  if (Invalid)
1284    Anon->setInvalidDecl();
1285
1286  return DeclPtrTy::make(Anon);
1287}
1288
1289
1290/// GetNameForDeclarator - Determine the full declaration name for the
1291/// given Declarator.
1292DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1293  switch (D.getKind()) {
1294  case Declarator::DK_Abstract:
1295    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1296    return DeclarationName();
1297
1298  case Declarator::DK_Normal:
1299    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1300    return DeclarationName(D.getIdentifier());
1301
1302  case Declarator::DK_Constructor: {
1303    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1304    Ty = Context.getCanonicalType(Ty);
1305    return Context.DeclarationNames.getCXXConstructorName(Ty);
1306  }
1307
1308  case Declarator::DK_Destructor: {
1309    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1310    Ty = Context.getCanonicalType(Ty);
1311    return Context.DeclarationNames.getCXXDestructorName(Ty);
1312  }
1313
1314  case Declarator::DK_Conversion: {
1315    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1316    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1317    Ty = Context.getCanonicalType(Ty);
1318    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1319  }
1320
1321  case Declarator::DK_Operator:
1322    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1323    return Context.DeclarationNames.getCXXOperatorName(
1324                                                D.getOverloadedOperator());
1325  }
1326
1327  assert(false && "Unknown name kind");
1328  return DeclarationName();
1329}
1330
1331/// isNearlyMatchingFunction - Determine whether the C++ functions
1332/// Declaration and Definition are "nearly" matching. This heuristic
1333/// is used to improve diagnostics in the case where an out-of-line
1334/// function definition doesn't match any declaration within
1335/// the class or namespace.
1336static bool isNearlyMatchingFunction(ASTContext &Context,
1337                                     FunctionDecl *Declaration,
1338                                     FunctionDecl *Definition) {
1339  if (Declaration->param_size() != Definition->param_size())
1340    return false;
1341  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1342    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1343    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1344
1345    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1346    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1347    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1348      return false;
1349  }
1350
1351  return true;
1352}
1353
1354Sema::DeclPtrTy
1355Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1356  DeclarationName Name = GetNameForDeclarator(D);
1357
1358  // All of these full declarators require an identifier.  If it doesn't have
1359  // one, the ParsedFreeStandingDeclSpec action should be used.
1360  if (!Name) {
1361    if (!D.isInvalidType())  // Reject this if we think it is valid.
1362      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1363           diag::err_declarator_need_ident)
1364        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1365    return DeclPtrTy();
1366  }
1367
1368  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1369  // we find one that is.
1370  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1371         (S->getFlags() & Scope::TemplateParamScope) != 0)
1372    S = S->getParent();
1373
1374  DeclContext *DC;
1375  NamedDecl *PrevDecl;
1376  NamedDecl *New;
1377
1378  QualType R = GetTypeForDeclarator(D, S);
1379
1380  // See if this is a redefinition of a variable in the same scope.
1381  if (D.getCXXScopeSpec().isInvalid()) {
1382    DC = CurContext;
1383    PrevDecl = 0;
1384    D.setInvalidType();
1385  } else if (!D.getCXXScopeSpec().isSet()) {
1386    LookupNameKind NameKind = LookupOrdinaryName;
1387
1388    // If the declaration we're planning to build will be a function
1389    // or object with linkage, then look for another declaration with
1390    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1391    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1392      /* Do nothing*/;
1393    else if (R->isFunctionType()) {
1394      if (CurContext->isFunctionOrMethod())
1395        NameKind = LookupRedeclarationWithLinkage;
1396    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1397      NameKind = LookupRedeclarationWithLinkage;
1398
1399    DC = CurContext;
1400    PrevDecl = LookupName(S, Name, NameKind, true,
1401                          D.getDeclSpec().getStorageClassSpec() !=
1402                            DeclSpec::SCS_static,
1403                          D.getIdentifierLoc());
1404  } else { // Something like "int foo::x;"
1405    DC = computeDeclContext(D.getCXXScopeSpec());
1406    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1407    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1408
1409    // C++ 7.3.1.2p2:
1410    // Members (including explicit specializations of templates) of a named
1411    // namespace can also be defined outside that namespace by explicit
1412    // qualification of the name being defined, provided that the entity being
1413    // defined was already declared in the namespace and the definition appears
1414    // after the point of declaration in a namespace that encloses the
1415    // declarations namespace.
1416    //
1417    // Note that we only check the context at this point. We don't yet
1418    // have enough information to make sure that PrevDecl is actually
1419    // the declaration we want to match. For example, given:
1420    //
1421    //   class X {
1422    //     void f();
1423    //     void f(float);
1424    //   };
1425    //
1426    //   void X::f(int) { } // ill-formed
1427    //
1428    // In this case, PrevDecl will point to the overload set
1429    // containing the two f's declared in X, but neither of them
1430    // matches.
1431
1432    // First check whether we named the global scope.
1433    if (isa<TranslationUnitDecl>(DC)) {
1434      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1435        << Name << D.getCXXScopeSpec().getRange();
1436    } else if (!CurContext->Encloses(DC)) {
1437      // The qualifying scope doesn't enclose the original declaration.
1438      // Emit diagnostic based on current scope.
1439      SourceLocation L = D.getIdentifierLoc();
1440      SourceRange R = D.getCXXScopeSpec().getRange();
1441      if (isa<FunctionDecl>(CurContext))
1442        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1443      else
1444        Diag(L, diag::err_invalid_declarator_scope)
1445          << Name << cast<NamedDecl>(DC) << R;
1446      D.setInvalidType();
1447    }
1448  }
1449
1450  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1451    // Maybe we will complain about the shadowed template parameter.
1452    if (!D.isInvalidType())
1453      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1454        D.setInvalidType();
1455
1456    // Just pretend that we didn't see the previous declaration.
1457    PrevDecl = 0;
1458  }
1459
1460  // In C++, the previous declaration we find might be a tag type
1461  // (class or enum). In this case, the new declaration will hide the
1462  // tag type. Note that this does does not apply if we're declaring a
1463  // typedef (C++ [dcl.typedef]p4).
1464  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1465      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1466    PrevDecl = 0;
1467
1468  bool Redeclaration = false;
1469  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1470    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1471  } else if (R->isFunctionType()) {
1472    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1473                                  IsFunctionDefinition, Redeclaration);
1474  } else {
1475    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1476  }
1477
1478  if (New == 0)
1479    return DeclPtrTy();
1480
1481  // If this has an identifier and is not an invalid redeclaration,
1482  // add it to the scope stack.
1483  if (Name && !(Redeclaration && New->isInvalidDecl()))
1484    PushOnScopeChains(New, S);
1485
1486  return DeclPtrTy::make(New);
1487}
1488
1489/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1490/// types into constant array types in certain situations which would otherwise
1491/// be errors (for GCC compatibility).
1492static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1493                                                    ASTContext &Context,
1494                                                    bool &SizeIsNegative) {
1495  // This method tries to turn a variable array into a constant
1496  // array even when the size isn't an ICE.  This is necessary
1497  // for compatibility with code that depends on gcc's buggy
1498  // constant expression folding, like struct {char x[(int)(char*)2];}
1499  SizeIsNegative = false;
1500
1501  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1502    QualType Pointee = PTy->getPointeeType();
1503    QualType FixedType =
1504        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1505    if (FixedType.isNull()) return FixedType;
1506    FixedType = Context.getPointerType(FixedType);
1507    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1508    return FixedType;
1509  }
1510
1511  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1512  if (!VLATy)
1513    return QualType();
1514  // FIXME: We should probably handle this case
1515  if (VLATy->getElementType()->isVariablyModifiedType())
1516    return QualType();
1517
1518  Expr::EvalResult EvalResult;
1519  if (!VLATy->getSizeExpr() ||
1520      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1521      !EvalResult.Val.isInt())
1522    return QualType();
1523
1524  llvm::APSInt &Res = EvalResult.Val.getInt();
1525  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1526    return Context.getConstantArrayType(VLATy->getElementType(),
1527                                        Res, ArrayType::Normal, 0);
1528
1529  SizeIsNegative = true;
1530  return QualType();
1531}
1532
1533/// \brief Register the given locally-scoped external C declaration so
1534/// that it can be found later for redeclarations
1535void
1536Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1537                                       Scope *S) {
1538  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1539         "Decl is not a locally-scoped decl!");
1540  // Note that we have a locally-scoped external with this name.
1541  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1542
1543  if (!PrevDecl)
1544    return;
1545
1546  // If there was a previous declaration of this variable, it may be
1547  // in our identifier chain. Update the identifier chain with the new
1548  // declaration.
1549  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1550    // The previous declaration was found on the identifer resolver
1551    // chain, so remove it from its scope.
1552    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1553      S = S->getParent();
1554
1555    if (S)
1556      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1557  }
1558}
1559
1560/// \brief Diagnose function specifiers on a declaration of an identifier that
1561/// does not identify a function.
1562void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1563  // FIXME: We should probably indicate the identifier in question to avoid
1564  // confusion for constructs like "inline int a(), b;"
1565  if (D.getDeclSpec().isInlineSpecified())
1566    Diag(D.getDeclSpec().getInlineSpecLoc(),
1567         diag::err_inline_non_function);
1568
1569  if (D.getDeclSpec().isVirtualSpecified())
1570    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1571         diag::err_virtual_non_function);
1572
1573  if (D.getDeclSpec().isExplicitSpecified())
1574    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1575         diag::err_explicit_non_function);
1576}
1577
1578NamedDecl*
1579Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1580                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1581  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1582  if (D.getCXXScopeSpec().isSet()) {
1583    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1584      << D.getCXXScopeSpec().getRange();
1585    D.setInvalidType();
1586    // Pretend we didn't see the scope specifier.
1587    DC = 0;
1588  }
1589
1590  if (getLangOptions().CPlusPlus) {
1591    // Check that there are no default arguments (C++ only).
1592    CheckExtraCXXDefaultArguments(D);
1593  }
1594
1595  DiagnoseFunctionSpecifiers(D);
1596
1597  if (D.getDeclSpec().isThreadSpecified())
1598    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1599
1600  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1601  if (!NewTD) return 0;
1602
1603  if (D.isInvalidType())
1604    NewTD->setInvalidDecl();
1605
1606  // Handle attributes prior to checking for duplicates in MergeVarDecl
1607  ProcessDeclAttributes(NewTD, D);
1608  // Merge the decl with the existing one if appropriate. If the decl is
1609  // in an outer scope, it isn't the same thing.
1610  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1611    Redeclaration = true;
1612    MergeTypeDefDecl(NewTD, PrevDecl);
1613  }
1614
1615  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1616  // then it shall have block scope.
1617  QualType T = NewTD->getUnderlyingType();
1618  if (T->isVariablyModifiedType()) {
1619    CurFunctionNeedsScopeChecking = true;
1620
1621    if (S->getFnParent() == 0) {
1622      bool SizeIsNegative;
1623      QualType FixedTy =
1624          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1625      if (!FixedTy.isNull()) {
1626        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1627        NewTD->setUnderlyingType(FixedTy);
1628      } else {
1629        if (SizeIsNegative)
1630          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1631        else if (T->isVariableArrayType())
1632          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1633        else
1634          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1635        NewTD->setInvalidDecl();
1636      }
1637    }
1638  }
1639  return NewTD;
1640}
1641
1642/// \brief Determines whether the given declaration is an out-of-scope
1643/// previous declaration.
1644///
1645/// This routine should be invoked when name lookup has found a
1646/// previous declaration (PrevDecl) that is not in the scope where a
1647/// new declaration by the same name is being introduced. If the new
1648/// declaration occurs in a local scope, previous declarations with
1649/// linkage may still be considered previous declarations (C99
1650/// 6.2.2p4-5, C++ [basic.link]p6).
1651///
1652/// \param PrevDecl the previous declaration found by name
1653/// lookup
1654///
1655/// \param DC the context in which the new declaration is being
1656/// declared.
1657///
1658/// \returns true if PrevDecl is an out-of-scope previous declaration
1659/// for a new delcaration with the same name.
1660static bool
1661isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1662                                ASTContext &Context) {
1663  if (!PrevDecl)
1664    return 0;
1665
1666  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1667  // case we need to check each of the overloaded functions.
1668  if (!PrevDecl->hasLinkage())
1669    return false;
1670
1671  if (Context.getLangOptions().CPlusPlus) {
1672    // C++ [basic.link]p6:
1673    //   If there is a visible declaration of an entity with linkage
1674    //   having the same name and type, ignoring entities declared
1675    //   outside the innermost enclosing namespace scope, the block
1676    //   scope declaration declares that same entity and receives the
1677    //   linkage of the previous declaration.
1678    DeclContext *OuterContext = DC->getLookupContext();
1679    if (!OuterContext->isFunctionOrMethod())
1680      // This rule only applies to block-scope declarations.
1681      return false;
1682    else {
1683      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1684      if (PrevOuterContext->isRecord())
1685        // We found a member function: ignore it.
1686        return false;
1687      else {
1688        // Find the innermost enclosing namespace for the new and
1689        // previous declarations.
1690        while (!OuterContext->isFileContext())
1691          OuterContext = OuterContext->getParent();
1692        while (!PrevOuterContext->isFileContext())
1693          PrevOuterContext = PrevOuterContext->getParent();
1694
1695        // The previous declaration is in a different namespace, so it
1696        // isn't the same function.
1697        if (OuterContext->getPrimaryContext() !=
1698            PrevOuterContext->getPrimaryContext())
1699          return false;
1700      }
1701    }
1702  }
1703
1704  return true;
1705}
1706
1707NamedDecl*
1708Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1709                              QualType R,NamedDecl* PrevDecl,
1710                              bool &Redeclaration) {
1711  DeclarationName Name = GetNameForDeclarator(D);
1712
1713  // Check that there are no default arguments (C++ only).
1714  if (getLangOptions().CPlusPlus)
1715    CheckExtraCXXDefaultArguments(D);
1716
1717  VarDecl *NewVD;
1718  VarDecl::StorageClass SC;
1719  switch (D.getDeclSpec().getStorageClassSpec()) {
1720  default: assert(0 && "Unknown storage class!");
1721  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1722  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1723  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1724  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1725  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1726  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1727  case DeclSpec::SCS_mutable:
1728    // mutable can only appear on non-static class members, so it's always
1729    // an error here
1730    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1731    D.setInvalidType();
1732    SC = VarDecl::None;
1733    break;
1734  }
1735
1736  IdentifierInfo *II = Name.getAsIdentifierInfo();
1737  if (!II) {
1738    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1739      << Name.getAsString();
1740    return 0;
1741  }
1742
1743  DiagnoseFunctionSpecifiers(D);
1744
1745  if (!DC->isRecord() && S->getFnParent() == 0) {
1746    // C99 6.9p2: The storage-class specifiers auto and register shall not
1747    // appear in the declaration specifiers in an external declaration.
1748    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1749
1750      // If this is a register variable with an asm label specified, then this
1751      // is a GNU extension.
1752      if (SC == VarDecl::Register && D.getAsmLabel())
1753        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1754      else
1755        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1756      D.setInvalidType();
1757    }
1758  }
1759  if (DC->isRecord() && !CurContext->isRecord()) {
1760    // This is an out-of-line definition of a static data member.
1761    if (SC == VarDecl::Static) {
1762      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1763           diag::err_static_out_of_line)
1764        << CodeModificationHint::CreateRemoval(
1765                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1766    } else if (SC == VarDecl::None)
1767      SC = VarDecl::Static;
1768  }
1769
1770  // The variable can not
1771  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1772                          II, R, SC,
1773                          // FIXME: Move to DeclGroup...
1774                          D.getDeclSpec().getSourceRange().getBegin());
1775
1776  if (D.isInvalidType())
1777    NewVD->setInvalidDecl();
1778
1779  if (D.getDeclSpec().isThreadSpecified()) {
1780    if (NewVD->hasLocalStorage())
1781      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1782    else if (!Context.Target.isTLSSupported())
1783      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1784    else
1785      NewVD->setThreadSpecified(true);
1786  }
1787
1788  // Set the lexical context. If the declarator has a C++ scope specifier, the
1789  // lexical context will be different from the semantic context.
1790  NewVD->setLexicalDeclContext(CurContext);
1791
1792  // Handle attributes prior to checking for duplicates in MergeVarDecl
1793  ProcessDeclAttributes(NewVD, D);
1794
1795  // Handle GNU asm-label extension (encoded as an attribute).
1796  if (Expr *E = (Expr*) D.getAsmLabel()) {
1797    // The parser guarantees this is a string.
1798    StringLiteral *SE = cast<StringLiteral>(E);
1799    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1800                                                        SE->getByteLength())));
1801  }
1802
1803  // If name lookup finds a previous declaration that is not in the
1804  // same scope as the new declaration, this may still be an
1805  // acceptable redeclaration.
1806  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1807      !(NewVD->hasLinkage() &&
1808        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1809    PrevDecl = 0;
1810
1811  // Merge the decl with the existing one if appropriate.
1812  if (PrevDecl) {
1813    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1814      // The user tried to define a non-static data member
1815      // out-of-line (C++ [dcl.meaning]p1).
1816      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1817        << D.getCXXScopeSpec().getRange();
1818      PrevDecl = 0;
1819      NewVD->setInvalidDecl();
1820    }
1821  } else if (D.getCXXScopeSpec().isSet()) {
1822    // No previous declaration in the qualifying scope.
1823    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1824      << Name << D.getCXXScopeSpec().getRange();
1825    NewVD->setInvalidDecl();
1826  }
1827
1828  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1829
1830  // If this is a locally-scoped extern C variable, update the map of
1831  // such variables.
1832  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1833      !NewVD->isInvalidDecl())
1834    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1835
1836  return NewVD;
1837}
1838
1839/// \brief Perform semantic checking on a newly-created variable
1840/// declaration.
1841///
1842/// This routine performs all of the type-checking required for a
1843/// variable declaration once it has been built. It is used both to
1844/// check variables after they have been parsed and their declarators
1845/// have been translated into a declaration, and to check variables
1846/// that have been instantiated from a template.
1847///
1848/// Sets NewVD->isInvalidDecl() if an error was encountered.
1849void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1850                                    bool &Redeclaration) {
1851  // If the decl is already known invalid, don't check it.
1852  if (NewVD->isInvalidDecl())
1853    return;
1854
1855  QualType T = NewVD->getType();
1856
1857  if (T->isObjCInterfaceType()) {
1858    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1859    return NewVD->setInvalidDecl();
1860  }
1861
1862  // The variable can not have an abstract class type.
1863  if (RequireNonAbstractType(NewVD->getLocation(), T,
1864                             diag::err_abstract_type_in_decl,
1865                             AbstractVariableType))
1866    return NewVD->setInvalidDecl();
1867
1868  // Emit an error if an address space was applied to decl with local storage.
1869  // This includes arrays of objects with address space qualifiers, but not
1870  // automatic variables that point to other address spaces.
1871  // ISO/IEC TR 18037 S5.1.2
1872  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1873    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1874    return NewVD->setInvalidDecl();
1875  }
1876
1877  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1878      && !NewVD->hasAttr<BlocksAttr>())
1879    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1880
1881  bool isVM = T->isVariablyModifiedType();
1882  if (isVM || NewVD->hasAttr<CleanupAttr>())
1883    CurFunctionNeedsScopeChecking = true;
1884
1885  if ((isVM && NewVD->hasLinkage()) ||
1886      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1887    bool SizeIsNegative;
1888    QualType FixedTy =
1889        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1890
1891    if (FixedTy.isNull() && T->isVariableArrayType()) {
1892      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1893      // FIXME: This won't give the correct result for
1894      // int a[10][n];
1895      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1896
1897      if (NewVD->isFileVarDecl())
1898        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1899        << SizeRange;
1900      else if (NewVD->getStorageClass() == VarDecl::Static)
1901        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1902        << SizeRange;
1903      else
1904        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1905        << SizeRange;
1906      return NewVD->setInvalidDecl();
1907    }
1908
1909    if (FixedTy.isNull()) {
1910      if (NewVD->isFileVarDecl())
1911        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1912      else
1913        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1914      return NewVD->setInvalidDecl();
1915    }
1916
1917    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1918    NewVD->setType(FixedTy);
1919  }
1920
1921  if (!PrevDecl && NewVD->isExternC(Context)) {
1922    // Since we did not find anything by this name and we're declaring
1923    // an extern "C" variable, look for a non-visible extern "C"
1924    // declaration with the same name.
1925    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1926      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1927    if (Pos != LocallyScopedExternalDecls.end())
1928      PrevDecl = Pos->second;
1929  }
1930
1931  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1932    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1933      << T;
1934    return NewVD->setInvalidDecl();
1935  }
1936
1937  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1938    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1939    return NewVD->setInvalidDecl();
1940  }
1941
1942  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1943    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1944    return NewVD->setInvalidDecl();
1945  }
1946
1947  if (PrevDecl) {
1948    Redeclaration = true;
1949    MergeVarDecl(NewVD, PrevDecl);
1950  }
1951}
1952
1953NamedDecl*
1954Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1955                              QualType R, NamedDecl* PrevDecl,
1956                              bool IsFunctionDefinition, bool &Redeclaration) {
1957  assert(R.getTypePtr()->isFunctionType());
1958
1959  DeclarationName Name = GetNameForDeclarator(D);
1960  FunctionDecl::StorageClass SC = FunctionDecl::None;
1961  switch (D.getDeclSpec().getStorageClassSpec()) {
1962  default: assert(0 && "Unknown storage class!");
1963  case DeclSpec::SCS_auto:
1964  case DeclSpec::SCS_register:
1965  case DeclSpec::SCS_mutable:
1966    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1967         diag::err_typecheck_sclass_func);
1968    D.setInvalidType();
1969    break;
1970  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1971  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1972  case DeclSpec::SCS_static: {
1973    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1974      // C99 6.7.1p5:
1975      //   The declaration of an identifier for a function that has
1976      //   block scope shall have no explicit storage-class specifier
1977      //   other than extern
1978      // See also (C++ [dcl.stc]p4).
1979      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1980           diag::err_static_block_func);
1981      SC = FunctionDecl::None;
1982    } else
1983      SC = FunctionDecl::Static;
1984    break;
1985  }
1986  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1987  }
1988
1989  if (D.getDeclSpec().isThreadSpecified())
1990    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1991
1992  bool isInline = D.getDeclSpec().isInlineSpecified();
1993  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1994  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1995
1996  // Check that the return type is not an abstract class type.
1997  // For record types, this is done by the AbstractClassUsageDiagnoser once
1998  // the class has been completely parsed.
1999  if (!DC->isRecord() &&
2000      RequireNonAbstractType(D.getIdentifierLoc(),
2001                             R->getAsFunctionType()->getResultType(),
2002                             diag::err_abstract_type_in_decl,
2003                             AbstractReturnType))
2004    D.setInvalidType();
2005
2006  // Do not allow returning a objc interface by-value.
2007  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2008    Diag(D.getIdentifierLoc(),
2009         diag::err_object_cannot_be_passed_returned_by_value) << 0
2010      << R->getAsFunctionType()->getResultType();
2011    D.setInvalidType();
2012  }
2013
2014  bool isVirtualOkay = false;
2015  FunctionDecl *NewFD;
2016  if (D.getKind() == Declarator::DK_Constructor) {
2017    // This is a C++ constructor declaration.
2018    assert(DC->isRecord() &&
2019           "Constructors can only be declared in a member context");
2020
2021    R = CheckConstructorDeclarator(D, R, SC);
2022
2023    // Create the new declaration
2024    NewFD = CXXConstructorDecl::Create(Context,
2025                                       cast<CXXRecordDecl>(DC),
2026                                       D.getIdentifierLoc(), Name, R,
2027                                       isExplicit, isInline,
2028                                       /*isImplicitlyDeclared=*/false);
2029  } else if (D.getKind() == Declarator::DK_Destructor) {
2030    // This is a C++ destructor declaration.
2031    if (DC->isRecord()) {
2032      R = CheckDestructorDeclarator(D, SC);
2033
2034      NewFD = CXXDestructorDecl::Create(Context,
2035                                        cast<CXXRecordDecl>(DC),
2036                                        D.getIdentifierLoc(), Name, R,
2037                                        isInline,
2038                                        /*isImplicitlyDeclared=*/false);
2039
2040      isVirtualOkay = true;
2041    } else {
2042      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2043
2044      // Create a FunctionDecl to satisfy the function definition parsing
2045      // code path.
2046      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2047                                   Name, R, SC, isInline,
2048                                   /*hasPrototype=*/true,
2049                                   // FIXME: Move to DeclGroup...
2050                                   D.getDeclSpec().getSourceRange().getBegin());
2051      D.setInvalidType();
2052    }
2053  } else if (D.getKind() == Declarator::DK_Conversion) {
2054    if (!DC->isRecord()) {
2055      Diag(D.getIdentifierLoc(),
2056           diag::err_conv_function_not_member);
2057      return 0;
2058    }
2059
2060    CheckConversionDeclarator(D, R, SC);
2061    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2062                                      D.getIdentifierLoc(), Name, R,
2063                                      isInline, isExplicit);
2064
2065    isVirtualOkay = true;
2066  } else if (DC->isRecord()) {
2067    // If the of the function is the same as the name of the record, then this
2068    // must be an invalid constructor that has a return type.
2069    // (The parser checks for a return type and makes the declarator a
2070    // constructor if it has no return type).
2071    // must have an invalid constructor that has a return type
2072    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2073      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2074        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2075        << SourceRange(D.getIdentifierLoc());
2076      return 0;
2077    }
2078
2079    // This is a C++ method declaration.
2080    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2081                                  D.getIdentifierLoc(), Name, R,
2082                                  (SC == FunctionDecl::Static), isInline);
2083
2084    isVirtualOkay = (SC != FunctionDecl::Static);
2085  } else {
2086    // Determine whether the function was written with a
2087    // prototype. This true when:
2088    //   - we're in C++ (where every function has a prototype),
2089    //   - there is a prototype in the declarator, or
2090    //   - the type R of the function is some kind of typedef or other reference
2091    //     to a type name (which eventually refers to a function type).
2092    bool HasPrototype =
2093       getLangOptions().CPlusPlus ||
2094       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2095       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2096
2097    NewFD = FunctionDecl::Create(Context, DC,
2098                                 D.getIdentifierLoc(),
2099                                 Name, R, SC, isInline, HasPrototype,
2100                                 // FIXME: Move to DeclGroup...
2101                                 D.getDeclSpec().getSourceRange().getBegin());
2102  }
2103
2104  if (D.isInvalidType())
2105    NewFD->setInvalidDecl();
2106
2107  // Set the lexical context. If the declarator has a C++
2108  // scope specifier, the lexical context will be different
2109  // from the semantic context.
2110  NewFD->setLexicalDeclContext(CurContext);
2111
2112  // C++ [dcl.fct.spec]p5:
2113  //   The virtual specifier shall only be used in declarations of
2114  //   nonstatic class member functions that appear within a
2115  //   member-specification of a class declaration; see 10.3.
2116  //
2117  if (isVirtual && !NewFD->isInvalidDecl()) {
2118    if (!isVirtualOkay) {
2119       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2120           diag::err_virtual_non_function);
2121    } else if (!CurContext->isRecord()) {
2122      // 'virtual' was specified outside of the class.
2123      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2124        << CodeModificationHint::CreateRemoval(
2125                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2126    } else {
2127      // Okay: Add virtual to the method.
2128      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2129      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2130      CurClass->setAggregate(false);
2131      CurClass->setPOD(false);
2132      CurClass->setPolymorphic(true);
2133      CurClass->setHasTrivialConstructor(false);
2134    }
2135  }
2136
2137  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2138    // Look for virtual methods in base classes that this method might override.
2139
2140    BasePaths Paths;
2141    // FIXME: This will not include hidden member functions.
2142    if (LookupInBases(cast<CXXRecordDecl>(DC),
2143                      MemberLookupCriteria(Name, LookupMemberName,
2144                                           // FIXME: Shouldn't IDNS_Member be
2145                                           // enough here?
2146                                           Decl::IDNS_Member |
2147                                           Decl::IDNS_Ordinary), Paths)) {
2148      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2149           E = Paths.found_decls_end(); I != E; ++I) {
2150        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2151          OverloadedFunctionDecl::function_iterator MatchedDecl;
2152          // FIXME: Is this OK? Should it be done by LookupInBases?
2153          if (IsOverload(NewMD, OldMD, MatchedDecl))
2154            continue;
2155          if (!OldMD->isVirtual())
2156            continue;
2157
2158          if (!CheckOverridingFunctionReturnType(NewMD, OldMD)) {
2159            // FIXME: Add OldMD to the list of methods NewMD overrides.
2160          }
2161
2162        }
2163      }
2164
2165    }
2166
2167  }
2168
2169  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2170      !CurContext->isRecord()) {
2171    // C++ [class.static]p1:
2172    //   A data or function member of a class may be declared static
2173    //   in a class definition, in which case it is a static member of
2174    //   the class.
2175
2176    // Complain about the 'static' specifier if it's on an out-of-line
2177    // member function definition.
2178    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2179         diag::err_static_out_of_line)
2180      << CodeModificationHint::CreateRemoval(
2181                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2182  }
2183
2184  // Handle GNU asm-label extension (encoded as an attribute).
2185  if (Expr *E = (Expr*) D.getAsmLabel()) {
2186    // The parser guarantees this is a string.
2187    StringLiteral *SE = cast<StringLiteral>(E);
2188    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2189                                                        SE->getByteLength())));
2190  }
2191
2192  // Copy the parameter declarations from the declarator D to the function
2193  // declaration NewFD, if they are available.  First scavenge them into Params.
2194  llvm::SmallVector<ParmVarDecl*, 16> Params;
2195  if (D.getNumTypeObjects() > 0) {
2196    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2197
2198    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2199    // function that takes no arguments, not a function that takes a
2200    // single void argument.
2201    // We let through "const void" here because Sema::GetTypeForDeclarator
2202    // already checks for that case.
2203    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2204        FTI.ArgInfo[0].Param &&
2205        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2206      // Empty arg list, don't push any params.
2207      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2208
2209      // In C++, the empty parameter-type-list must be spelled "void"; a
2210      // typedef of void is not permitted.
2211      if (getLangOptions().CPlusPlus &&
2212          Param->getType().getUnqualifiedType() != Context.VoidTy)
2213        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2214      // FIXME: Leaks decl?
2215    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2216      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2217        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2218    }
2219
2220  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2221    // When we're declaring a function with a typedef, typeof, etc as in the
2222    // following example, we'll need to synthesize (unnamed)
2223    // parameters for use in the declaration.
2224    //
2225    // @code
2226    // typedef void fn(int);
2227    // fn f;
2228    // @endcode
2229
2230    // Synthesize a parameter for each argument type.
2231    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2232         AE = FT->arg_type_end(); AI != AE; ++AI) {
2233      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2234                                               SourceLocation(), 0,
2235                                               *AI, VarDecl::None, 0);
2236      Param->setImplicit();
2237      Params.push_back(Param);
2238    }
2239  } else {
2240    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2241           "Should not need args for typedef of non-prototype fn");
2242  }
2243  // Finally, we know we have the right number of parameters, install them.
2244  NewFD->setParams(Context, &Params[0], Params.size());
2245
2246
2247
2248  // If name lookup finds a previous declaration that is not in the
2249  // same scope as the new declaration, this may still be an
2250  // acceptable redeclaration.
2251  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2252      !(NewFD->hasLinkage() &&
2253        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2254    PrevDecl = 0;
2255
2256  // Perform semantic checking on the function declaration.
2257  bool OverloadableAttrRequired = false; // FIXME: HACK!
2258  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2259                           /*FIXME:*/OverloadableAttrRequired);
2260
2261  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2262    // An out-of-line member function declaration must also be a
2263    // definition (C++ [dcl.meaning]p1).
2264    if (!IsFunctionDefinition) {
2265      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2266        << D.getCXXScopeSpec().getRange();
2267      NewFD->setInvalidDecl();
2268    } else if (!Redeclaration) {
2269      // The user tried to provide an out-of-line definition for a
2270      // function that is a member of a class or namespace, but there
2271      // was no such member function declared (C++ [class.mfct]p2,
2272      // C++ [namespace.memdef]p2). For example:
2273      //
2274      // class X {
2275      //   void f() const;
2276      // };
2277      //
2278      // void X::f() { } // ill-formed
2279      //
2280      // Complain about this problem, and attempt to suggest close
2281      // matches (e.g., those that differ only in cv-qualifiers and
2282      // whether the parameter types are references).
2283      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2284        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2285      NewFD->setInvalidDecl();
2286
2287      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2288                                              true);
2289      assert(!Prev.isAmbiguous() &&
2290             "Cannot have an ambiguity in previous-declaration lookup");
2291      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2292           Func != FuncEnd; ++Func) {
2293        if (isa<FunctionDecl>(*Func) &&
2294            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2295          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2296      }
2297
2298      PrevDecl = 0;
2299    }
2300  }
2301
2302  // Handle attributes. We need to have merged decls when handling attributes
2303  // (for example to check for conflicts, etc).
2304  // FIXME: This needs to happen before we merge declarations. Then,
2305  // let attribute merging cope with attribute conflicts.
2306  ProcessDeclAttributes(NewFD, D);
2307  AddKnownFunctionAttributes(NewFD);
2308
2309  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2310    // If a function name is overloadable in C, then every function
2311    // with that name must be marked "overloadable".
2312    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2313      << Redeclaration << NewFD;
2314    if (PrevDecl)
2315      Diag(PrevDecl->getLocation(),
2316           diag::note_attribute_overloadable_prev_overload);
2317    NewFD->addAttr(::new (Context) OverloadableAttr());
2318  }
2319
2320  // If this is a locally-scoped extern C function, update the
2321  // map of such names.
2322  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2323      && !NewFD->isInvalidDecl())
2324    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2325
2326  return NewFD;
2327}
2328
2329/// \brief Perform semantic checking of a new function declaration.
2330///
2331/// Performs semantic analysis of the new function declaration
2332/// NewFD. This routine performs all semantic checking that does not
2333/// require the actual declarator involved in the declaration, and is
2334/// used both for the declaration of functions as they are parsed
2335/// (called via ActOnDeclarator) and for the declaration of functions
2336/// that have been instantiated via C++ template instantiation (called
2337/// via InstantiateDecl).
2338///
2339/// This sets NewFD->isInvalidDecl() to true if there was an error.
2340void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2341                                    bool &Redeclaration,
2342                                    bool &OverloadableAttrRequired) {
2343  // If NewFD is already known erroneous, don't do any of this checking.
2344  if (NewFD->isInvalidDecl())
2345    return;
2346
2347  if (NewFD->getResultType()->isVariablyModifiedType()) {
2348    // Functions returning a variably modified type violate C99 6.7.5.2p2
2349    // because all functions have linkage.
2350    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2351    return NewFD->setInvalidDecl();
2352  }
2353
2354  // Semantic checking for this function declaration (in isolation).
2355  if (getLangOptions().CPlusPlus) {
2356    // C++-specific checks.
2357    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2358      CheckConstructor(Constructor);
2359    } else if (isa<CXXDestructorDecl>(NewFD)) {
2360      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2361      Record->setUserDeclaredDestructor(true);
2362      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2363      // user-defined destructor.
2364      Record->setPOD(false);
2365
2366      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2367      // declared destructor.
2368      Record->setHasTrivialDestructor(false);
2369    } else if (CXXConversionDecl *Conversion
2370               = dyn_cast<CXXConversionDecl>(NewFD))
2371      ActOnConversionDeclarator(Conversion);
2372
2373    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2374    if (NewFD->isOverloadedOperator() &&
2375        CheckOverloadedOperatorDeclaration(NewFD))
2376      return NewFD->setInvalidDecl();
2377  }
2378
2379  // C99 6.7.4p6:
2380  //   [... ] For a function with external linkage, the following
2381  //   restrictions apply: [...] If all of the file scope declarations
2382  //   for a function in a translation unit include the inline
2383  //   function specifier without extern, then the definition in that
2384  //   translation unit is an inline definition. An inline definition
2385  //   does not provide an external definition for the function, and
2386  //   does not forbid an external definition in another translation
2387  //   unit.
2388  //
2389  // Here we determine whether this function, in isolation, would be a
2390  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2391  // previous declarations.
2392  if (NewFD->isInline() && getLangOptions().C99 &&
2393      NewFD->getStorageClass() == FunctionDecl::None &&
2394      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2395    NewFD->setC99InlineDefinition(true);
2396
2397  // Check for a previous declaration of this name.
2398  if (!PrevDecl && NewFD->isExternC(Context)) {
2399    // Since we did not find anything by this name and we're declaring
2400    // an extern "C" function, look for a non-visible extern "C"
2401    // declaration with the same name.
2402    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2403      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2404    if (Pos != LocallyScopedExternalDecls.end())
2405      PrevDecl = Pos->second;
2406  }
2407
2408  // Merge or overload the declaration with an existing declaration of
2409  // the same name, if appropriate.
2410  if (PrevDecl) {
2411    // Determine whether NewFD is an overload of PrevDecl or
2412    // a declaration that requires merging. If it's an overload,
2413    // there's no more work to do here; we'll just add the new
2414    // function to the scope.
2415    OverloadedFunctionDecl::function_iterator MatchedDecl;
2416
2417    if (!getLangOptions().CPlusPlus &&
2418        AllowOverloadingOfFunction(PrevDecl, Context)) {
2419      OverloadableAttrRequired = true;
2420
2421      // Functions marked "overloadable" must have a prototype (that
2422      // we can't get through declaration merging).
2423      if (!NewFD->getType()->getAsFunctionProtoType()) {
2424        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2425          << NewFD;
2426        Redeclaration = true;
2427
2428        // Turn this into a variadic function with no parameters.
2429        QualType R = Context.getFunctionType(
2430                       NewFD->getType()->getAsFunctionType()->getResultType(),
2431                       0, 0, true, 0);
2432        NewFD->setType(R);
2433        return NewFD->setInvalidDecl();
2434      }
2435    }
2436
2437    if (PrevDecl &&
2438        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2439         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2440      Redeclaration = true;
2441      Decl *OldDecl = PrevDecl;
2442
2443      // If PrevDecl was an overloaded function, extract the
2444      // FunctionDecl that matched.
2445      if (isa<OverloadedFunctionDecl>(PrevDecl))
2446        OldDecl = *MatchedDecl;
2447
2448      // NewFD and OldDecl represent declarations that need to be
2449      // merged.
2450      if (MergeFunctionDecl(NewFD, OldDecl))
2451        return NewFD->setInvalidDecl();
2452
2453      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2454    }
2455  }
2456
2457  // In C++, check default arguments now that we have merged decls. Unless
2458  // the lexical context is the class, because in this case this is done
2459  // during delayed parsing anyway.
2460  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2461    CheckCXXDefaultArguments(NewFD);
2462}
2463
2464bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2465  // FIXME: Need strict checking.  In C89, we need to check for
2466  // any assignment, increment, decrement, function-calls, or
2467  // commas outside of a sizeof.  In C99, it's the same list,
2468  // except that the aforementioned are allowed in unevaluated
2469  // expressions.  Everything else falls under the
2470  // "may accept other forms of constant expressions" exception.
2471  // (We never end up here for C++, so the constant expression
2472  // rules there don't matter.)
2473  if (Init->isConstantInitializer(Context))
2474    return false;
2475  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2476    << Init->getSourceRange();
2477  return true;
2478}
2479
2480void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2481  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2482}
2483
2484/// AddInitializerToDecl - Adds the initializer Init to the
2485/// declaration dcl. If DirectInit is true, this is C++ direct
2486/// initialization rather than copy initialization.
2487void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2488  Decl *RealDecl = dcl.getAs<Decl>();
2489  // If there is no declaration, there was an error parsing it.  Just ignore
2490  // the initializer.
2491  if (RealDecl == 0)
2492    return;
2493
2494  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2495    // With declarators parsed the way they are, the parser cannot
2496    // distinguish between a normal initializer and a pure-specifier.
2497    // Thus this grotesque test.
2498    IntegerLiteral *IL;
2499    Expr *Init = static_cast<Expr *>(init.get());
2500    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2501        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2502      if (Method->isVirtualAsWritten()) {
2503        Method->setPure();
2504
2505        // A class is abstract if at least one function is pure virtual.
2506        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2507      } else if (!Method->isInvalidDecl()) {
2508        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2509          << Method->getDeclName() << Init->getSourceRange();
2510        Method->setInvalidDecl();
2511      }
2512    } else {
2513      Diag(Method->getLocation(), diag::err_member_function_initialization)
2514        << Method->getDeclName() << Init->getSourceRange();
2515      Method->setInvalidDecl();
2516    }
2517    return;
2518  }
2519
2520  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2521  if (!VDecl) {
2522    if (getLangOptions().CPlusPlus &&
2523        RealDecl->getLexicalDeclContext()->isRecord() &&
2524        isa<NamedDecl>(RealDecl))
2525      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2526        << cast<NamedDecl>(RealDecl)->getDeclName();
2527    else
2528      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2529    RealDecl->setInvalidDecl();
2530    return;
2531  }
2532
2533  if (!VDecl->getType()->isArrayType() &&
2534      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2535                          diag::err_typecheck_decl_incomplete_type)) {
2536    RealDecl->setInvalidDecl();
2537    return;
2538  }
2539
2540  const VarDecl *Def = 0;
2541  if (VDecl->getDefinition(Def)) {
2542    Diag(VDecl->getLocation(), diag::err_redefinition)
2543      << VDecl->getDeclName();
2544    Diag(Def->getLocation(), diag::note_previous_definition);
2545    VDecl->setInvalidDecl();
2546    return;
2547  }
2548
2549  // Take ownership of the expression, now that we're sure we have somewhere
2550  // to put it.
2551  Expr *Init = init.takeAs<Expr>();
2552  assert(Init && "missing initializer");
2553
2554  // Get the decls type and save a reference for later, since
2555  // CheckInitializerTypes may change it.
2556  QualType DclT = VDecl->getType(), SavT = DclT;
2557  if (VDecl->isBlockVarDecl()) {
2558    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2559      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2560      VDecl->setInvalidDecl();
2561    } else if (!VDecl->isInvalidDecl()) {
2562      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2563                                VDecl->getDeclName(), DirectInit))
2564        VDecl->setInvalidDecl();
2565
2566      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2567      // Don't check invalid declarations to avoid emitting useless diagnostics.
2568      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2569        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2570          CheckForConstantInitializer(Init, DclT);
2571      }
2572    }
2573  } else if (VDecl->isStaticDataMember() &&
2574             VDecl->getLexicalDeclContext()->isRecord()) {
2575    // This is an in-class initialization for a static data member, e.g.,
2576    //
2577    // struct S {
2578    //   static const int value = 17;
2579    // };
2580
2581    // Attach the initializer
2582    VDecl->setInit(Init);
2583
2584    // C++ [class.mem]p4:
2585    //   A member-declarator can contain a constant-initializer only
2586    //   if it declares a static member (9.4) of const integral or
2587    //   const enumeration type, see 9.4.2.
2588    QualType T = VDecl->getType();
2589    if (!T->isDependentType() &&
2590        (!Context.getCanonicalType(T).isConstQualified() ||
2591         !T->isIntegralType())) {
2592      Diag(VDecl->getLocation(), diag::err_member_initialization)
2593        << VDecl->getDeclName() << Init->getSourceRange();
2594      VDecl->setInvalidDecl();
2595    } else {
2596      // C++ [class.static.data]p4:
2597      //   If a static data member is of const integral or const
2598      //   enumeration type, its declaration in the class definition
2599      //   can specify a constant-initializer which shall be an
2600      //   integral constant expression (5.19).
2601      if (!Init->isTypeDependent() &&
2602          !Init->getType()->isIntegralType()) {
2603        // We have a non-dependent, non-integral or enumeration type.
2604        Diag(Init->getSourceRange().getBegin(),
2605             diag::err_in_class_initializer_non_integral_type)
2606          << Init->getType() << Init->getSourceRange();
2607        VDecl->setInvalidDecl();
2608      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2609        // Check whether the expression is a constant expression.
2610        llvm::APSInt Value;
2611        SourceLocation Loc;
2612        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2613          Diag(Loc, diag::err_in_class_initializer_non_constant)
2614            << Init->getSourceRange();
2615          VDecl->setInvalidDecl();
2616        } else if (!VDecl->getType()->isDependentType())
2617          ImpCastExprToType(Init, VDecl->getType());
2618      }
2619    }
2620  } else if (VDecl->isFileVarDecl()) {
2621    if (VDecl->getStorageClass() == VarDecl::Extern)
2622      Diag(VDecl->getLocation(), diag::warn_extern_init);
2623    if (!VDecl->isInvalidDecl())
2624      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2625                                VDecl->getDeclName(), DirectInit))
2626        VDecl->setInvalidDecl();
2627
2628    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2629    // Don't check invalid declarations to avoid emitting useless diagnostics.
2630    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2631      // C99 6.7.8p4. All file scoped initializers need to be constant.
2632      CheckForConstantInitializer(Init, DclT);
2633    }
2634  }
2635  // If the type changed, it means we had an incomplete type that was
2636  // completed by the initializer. For example:
2637  //   int ary[] = { 1, 3, 5 };
2638  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2639  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2640    VDecl->setType(DclT);
2641    Init->setType(DclT);
2642  }
2643
2644  // Attach the initializer to the decl.
2645  VDecl->setInit(Init);
2646
2647  // If the previous declaration of VDecl was a tentative definition,
2648  // remove it from the set of tentative definitions.
2649  if (VDecl->getPreviousDeclaration() &&
2650      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2651    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2652      = TentativeDefinitions.find(VDecl->getDeclName());
2653    assert(Pos != TentativeDefinitions.end() &&
2654           "Unrecorded tentative definition?");
2655    TentativeDefinitions.erase(Pos);
2656  }
2657
2658  return;
2659}
2660
2661void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2662  Decl *RealDecl = dcl.getAs<Decl>();
2663
2664  // If there is no declaration, there was an error parsing it. Just ignore it.
2665  if (RealDecl == 0)
2666    return;
2667
2668  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2669    QualType Type = Var->getType();
2670
2671    // Record tentative definitions.
2672    if (Var->isTentativeDefinition(Context))
2673      TentativeDefinitions[Var->getDeclName()] = Var;
2674
2675    // C++ [dcl.init.ref]p3:
2676    //   The initializer can be omitted for a reference only in a
2677    //   parameter declaration (8.3.5), in the declaration of a
2678    //   function return type, in the declaration of a class member
2679    //   within its class declaration (9.2), and where the extern
2680    //   specifier is explicitly used.
2681    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2682      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2683        << Var->getDeclName()
2684        << SourceRange(Var->getLocation(), Var->getLocation());
2685      Var->setInvalidDecl();
2686      return;
2687    }
2688
2689    // C++ [dcl.init]p9:
2690    //
2691    //   If no initializer is specified for an object, and the object
2692    //   is of (possibly cv-qualified) non-POD class type (or array
2693    //   thereof), the object shall be default-initialized; if the
2694    //   object is of const-qualified type, the underlying class type
2695    //   shall have a user-declared default constructor.
2696    if (getLangOptions().CPlusPlus) {
2697      QualType InitType = Type;
2698      if (const ArrayType *Array = Context.getAsArrayType(Type))
2699        InitType = Array->getElementType();
2700      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2701        CXXRecordDecl *RD =
2702          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2703        CXXConstructorDecl *Constructor = 0;
2704        if (!RequireCompleteType(Var->getLocation(), InitType,
2705                                    diag::err_invalid_incomplete_type_use))
2706          Constructor
2707            = PerformInitializationByConstructor(InitType, 0, 0,
2708                                                 Var->getLocation(),
2709                                               SourceRange(Var->getLocation(),
2710                                                           Var->getLocation()),
2711                                                 Var->getDeclName(),
2712                                                 IK_Default);
2713        if (!Constructor)
2714          Var->setInvalidDecl();
2715        else if (!RD->hasTrivialConstructor())
2716          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2717      }
2718    }
2719
2720#if 0
2721    // FIXME: Temporarily disabled because we are not properly parsing
2722    // linkage specifications on declarations, e.g.,
2723    //
2724    //   extern "C" const CGPoint CGPointerZero;
2725    //
2726    // C++ [dcl.init]p9:
2727    //
2728    //     If no initializer is specified for an object, and the
2729    //     object is of (possibly cv-qualified) non-POD class type (or
2730    //     array thereof), the object shall be default-initialized; if
2731    //     the object is of const-qualified type, the underlying class
2732    //     type shall have a user-declared default
2733    //     constructor. Otherwise, if no initializer is specified for
2734    //     an object, the object and its subobjects, if any, have an
2735    //     indeterminate initial value; if the object or any of its
2736    //     subobjects are of const-qualified type, the program is
2737    //     ill-formed.
2738    //
2739    // This isn't technically an error in C, so we don't diagnose it.
2740    //
2741    // FIXME: Actually perform the POD/user-defined default
2742    // constructor check.
2743    if (getLangOptions().CPlusPlus &&
2744        Context.getCanonicalType(Type).isConstQualified() &&
2745        !Var->hasExternalStorage())
2746      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2747        << Var->getName()
2748        << SourceRange(Var->getLocation(), Var->getLocation());
2749#endif
2750  }
2751}
2752
2753Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2754                                                   unsigned NumDecls) {
2755  llvm::SmallVector<Decl*, 8> Decls;
2756
2757  for (unsigned i = 0; i != NumDecls; ++i)
2758    if (Decl *D = Group[i].getAs<Decl>())
2759      Decls.push_back(D);
2760
2761  // Perform semantic analysis that depends on having fully processed both
2762  // the declarator and initializer.
2763  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2764    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2765    if (!IDecl)
2766      continue;
2767    QualType T = IDecl->getType();
2768
2769    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2770    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2771    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2772      if (!IDecl->isInvalidDecl() &&
2773          RequireCompleteType(IDecl->getLocation(), T,
2774                              diag::err_typecheck_decl_incomplete_type))
2775        IDecl->setInvalidDecl();
2776    }
2777    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2778    // object that has file scope without an initializer, and without a
2779    // storage-class specifier or with the storage-class specifier "static",
2780    // constitutes a tentative definition. Note: A tentative definition with
2781    // external linkage is valid (C99 6.2.2p5).
2782    if (IDecl->isTentativeDefinition(Context)) {
2783      QualType CheckType = T;
2784      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2785
2786      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2787      if (ArrayT) {
2788        CheckType = ArrayT->getElementType();
2789        DiagID = diag::err_illegal_decl_array_incomplete_type;
2790      }
2791
2792      if (IDecl->isInvalidDecl()) {
2793        // Do nothing with invalid declarations
2794      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2795                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2796        // C99 6.9.2p3: If the declaration of an identifier for an object is
2797        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2798        // declared type shall not be an incomplete type.
2799        IDecl->setInvalidDecl();
2800      }
2801    }
2802  }
2803  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2804                                                   &Decls[0], Decls.size()));
2805}
2806
2807
2808/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2809/// to introduce parameters into function prototype scope.
2810Sema::DeclPtrTy
2811Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2812  const DeclSpec &DS = D.getDeclSpec();
2813
2814  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2815  VarDecl::StorageClass StorageClass = VarDecl::None;
2816  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2817    StorageClass = VarDecl::Register;
2818  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2819    Diag(DS.getStorageClassSpecLoc(),
2820         diag::err_invalid_storage_class_in_func_decl);
2821    D.getMutableDeclSpec().ClearStorageClassSpecs();
2822  }
2823
2824  if (D.getDeclSpec().isThreadSpecified())
2825    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2826
2827  DiagnoseFunctionSpecifiers(D);
2828
2829  // Check that there are no default arguments inside the type of this
2830  // parameter (C++ only).
2831  if (getLangOptions().CPlusPlus)
2832    CheckExtraCXXDefaultArguments(D);
2833
2834  QualType parmDeclType = GetTypeForDeclarator(D, S);
2835
2836  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2837  // Can this happen for params?  We already checked that they don't conflict
2838  // among each other.  Here they can only shadow globals, which is ok.
2839  IdentifierInfo *II = D.getIdentifier();
2840  if (II) {
2841    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2842      if (PrevDecl->isTemplateParameter()) {
2843        // Maybe we will complain about the shadowed template parameter.
2844        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2845        // Just pretend that we didn't see the previous declaration.
2846        PrevDecl = 0;
2847      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2848        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2849
2850        // Recover by removing the name
2851        II = 0;
2852        D.SetIdentifier(0, D.getIdentifierLoc());
2853      }
2854    }
2855  }
2856
2857  // Parameters can not be abstract class types.
2858  // For record types, this is done by the AbstractClassUsageDiagnoser once
2859  // the class has been completely parsed.
2860  if (!CurContext->isRecord() &&
2861      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2862                             diag::err_abstract_type_in_decl,
2863                             AbstractParamType))
2864    D.setInvalidType(true);
2865
2866  QualType T = adjustParameterType(parmDeclType);
2867
2868  ParmVarDecl *New;
2869  if (T == parmDeclType) // parameter type did not need adjustment
2870    New = ParmVarDecl::Create(Context, CurContext,
2871                              D.getIdentifierLoc(), II,
2872                              parmDeclType, StorageClass,
2873                              0);
2874  else // keep track of both the adjusted and unadjusted types
2875    New = OriginalParmVarDecl::Create(Context, CurContext,
2876                                      D.getIdentifierLoc(), II, T,
2877                                      parmDeclType, StorageClass, 0);
2878
2879  if (D.isInvalidType())
2880    New->setInvalidDecl();
2881
2882  // Parameter declarators cannot be interface types. All ObjC objects are
2883  // passed by reference.
2884  if (T->isObjCInterfaceType()) {
2885    Diag(D.getIdentifierLoc(),
2886         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2887    New->setInvalidDecl();
2888  }
2889
2890  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2891  if (D.getCXXScopeSpec().isSet()) {
2892    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2893      << D.getCXXScopeSpec().getRange();
2894    New->setInvalidDecl();
2895  }
2896
2897  // Add the parameter declaration into this scope.
2898  S->AddDecl(DeclPtrTy::make(New));
2899  if (II)
2900    IdResolver.AddDecl(New);
2901
2902  ProcessDeclAttributes(New, D);
2903
2904  if (New->hasAttr<BlocksAttr>()) {
2905    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2906  }
2907  return DeclPtrTy::make(New);
2908}
2909
2910void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2911                                           SourceLocation LocAfterDecls) {
2912  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2913         "Not a function declarator!");
2914  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2915
2916  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2917  // for a K&R function.
2918  if (!FTI.hasPrototype) {
2919    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2920      --i;
2921      if (FTI.ArgInfo[i].Param == 0) {
2922        std::string Code = "  int ";
2923        Code += FTI.ArgInfo[i].Ident->getName();
2924        Code += ";\n";
2925        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2926          << FTI.ArgInfo[i].Ident
2927          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2928
2929        // Implicitly declare the argument as type 'int' for lack of a better
2930        // type.
2931        DeclSpec DS;
2932        const char* PrevSpec; // unused
2933        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2934                           PrevSpec);
2935        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2936        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2937        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2938      }
2939    }
2940  }
2941}
2942
2943Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2944                                              Declarator &D) {
2945  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2946  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2947         "Not a function declarator!");
2948  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2949
2950  if (FTI.hasPrototype) {
2951    // FIXME: Diagnose arguments without names in C.
2952  }
2953
2954  Scope *ParentScope = FnBodyScope->getParent();
2955
2956  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2957  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2958}
2959
2960Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2961  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2962
2963  CurFunctionNeedsScopeChecking = false;
2964
2965  // See if this is a redefinition.
2966  const FunctionDecl *Definition;
2967  if (FD->getBody(Context, Definition)) {
2968    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2969    Diag(Definition->getLocation(), diag::note_previous_definition);
2970  }
2971
2972  // Builtin functions cannot be defined.
2973  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2974    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2975      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2976      FD->setInvalidDecl();
2977    }
2978  }
2979
2980  // The return type of a function definition must be complete
2981  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2982  QualType ResultType = FD->getResultType();
2983  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2984      !FD->isInvalidDecl() &&
2985      RequireCompleteType(FD->getLocation(), ResultType,
2986                          diag::err_func_def_incomplete_result))
2987    FD->setInvalidDecl();
2988
2989  // GNU warning -Wmissing-prototypes:
2990  //   Warn if a global function is defined without a previous
2991  //   prototype declaration. This warning is issued even if the
2992  //   definition itself provides a prototype. The aim is to detect
2993  //   global functions that fail to be declared in header files.
2994  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2995      !FD->isMain()) {
2996    bool MissingPrototype = true;
2997    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2998         Prev; Prev = Prev->getPreviousDeclaration()) {
2999      // Ignore any declarations that occur in function or method
3000      // scope, because they aren't visible from the header.
3001      if (Prev->getDeclContext()->isFunctionOrMethod())
3002        continue;
3003
3004      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3005      break;
3006    }
3007
3008    if (MissingPrototype)
3009      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3010  }
3011
3012  if (FnBodyScope)
3013    PushDeclContext(FnBodyScope, FD);
3014
3015  // Check the validity of our function parameters
3016  CheckParmsForFunctionDef(FD);
3017
3018  // Introduce our parameters into the function scope
3019  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3020    ParmVarDecl *Param = FD->getParamDecl(p);
3021    Param->setOwningFunction(FD);
3022
3023    // If this has an identifier, add it to the scope stack.
3024    if (Param->getIdentifier() && FnBodyScope)
3025      PushOnScopeChains(Param, FnBodyScope);
3026  }
3027
3028  // Checking attributes of current function definition
3029  // dllimport attribute.
3030  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
3031    // dllimport attribute cannot be applied to definition.
3032    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3033      Diag(FD->getLocation(),
3034           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3035        << "dllimport";
3036      FD->setInvalidDecl();
3037      return DeclPtrTy::make(FD);
3038    } else {
3039      // If a symbol previously declared dllimport is later defined, the
3040      // attribute is ignored in subsequent references, and a warning is
3041      // emitted.
3042      Diag(FD->getLocation(),
3043           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3044        << FD->getNameAsCString() << "dllimport";
3045    }
3046  }
3047  return DeclPtrTy::make(FD);
3048}
3049
3050Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3051  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3052}
3053
3054Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3055                                              bool IsInstantiation) {
3056  Decl *dcl = D.getAs<Decl>();
3057  Stmt *Body = BodyArg.takeAs<Stmt>();
3058  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3059    FD->setBody(Body);
3060    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3061  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3062    assert(MD == getCurMethodDecl() && "Method parsing confused");
3063    MD->setBody(Body);
3064  } else {
3065    Body->Destroy(Context);
3066    return DeclPtrTy();
3067  }
3068  if (!IsInstantiation)
3069    PopDeclContext();
3070
3071  // Verify and clean out per-function state.
3072
3073  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3074
3075  // Check goto/label use.
3076  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3077       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3078    LabelStmt *L = I->second;
3079
3080    // Verify that we have no forward references left.  If so, there was a goto
3081    // or address of a label taken, but no definition of it.  Label fwd
3082    // definitions are indicated with a null substmt.
3083    if (L->getSubStmt() != 0)
3084      continue;
3085
3086    // Emit error.
3087    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3088
3089    // At this point, we have gotos that use the bogus label.  Stitch it into
3090    // the function body so that they aren't leaked and that the AST is well
3091    // formed.
3092    if (Body == 0) {
3093      // The whole function wasn't parsed correctly, just delete this.
3094      L->Destroy(Context);
3095      continue;
3096    }
3097
3098    // Otherwise, the body is valid: we want to stitch the label decl into the
3099    // function somewhere so that it is properly owned and so that the goto
3100    // has a valid target.  Do this by creating a new compound stmt with the
3101    // label in it.
3102
3103    // Give the label a sub-statement.
3104    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3105
3106    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3107                               cast<CXXTryStmt>(Body)->getTryBlock() :
3108                               cast<CompoundStmt>(Body);
3109    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3110    Elements.push_back(L);
3111    Compound->setStmts(Context, &Elements[0], Elements.size());
3112  }
3113  FunctionLabelMap.clear();
3114
3115  if (!Body) return D;
3116
3117  // Verify that that gotos and switch cases don't jump into scopes illegally.
3118  if (CurFunctionNeedsScopeChecking)
3119    DiagnoseInvalidJumps(Body);
3120
3121  // C++ constructors that have function-try-blocks can't have return statements
3122  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3123  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3124    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3125
3126  return D;
3127}
3128
3129/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3130/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3131NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3132                                          IdentifierInfo &II, Scope *S) {
3133  // Before we produce a declaration for an implicitly defined
3134  // function, see whether there was a locally-scoped declaration of
3135  // this name as a function or variable. If so, use that
3136  // (non-visible) declaration, and complain about it.
3137  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3138    = LocallyScopedExternalDecls.find(&II);
3139  if (Pos != LocallyScopedExternalDecls.end()) {
3140    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3141    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3142    return Pos->second;
3143  }
3144
3145  // Extension in C99.  Legal in C90, but warn about it.
3146  if (getLangOptions().C99)
3147    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3148  else
3149    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3150
3151  // FIXME: handle stuff like:
3152  // void foo() { extern float X(); }
3153  // void bar() { X(); }  <-- implicit decl for X in another scope.
3154
3155  // Set a Declarator for the implicit definition: int foo();
3156  const char *Dummy;
3157  DeclSpec DS;
3158  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3159  Error = Error; // Silence warning.
3160  assert(!Error && "Error setting up implicit decl!");
3161  Declarator D(DS, Declarator::BlockContext);
3162  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3163                                             0, 0, false, false, 0, 0, Loc, D),
3164                SourceLocation());
3165  D.SetIdentifier(&II, Loc);
3166
3167  // Insert this function into translation-unit scope.
3168
3169  DeclContext *PrevDC = CurContext;
3170  CurContext = Context.getTranslationUnitDecl();
3171
3172  FunctionDecl *FD =
3173 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3174  FD->setImplicit();
3175
3176  CurContext = PrevDC;
3177
3178  AddKnownFunctionAttributes(FD);
3179
3180  return FD;
3181}
3182
3183/// \brief Adds any function attributes that we know a priori based on
3184/// the declaration of this function.
3185///
3186/// These attributes can apply both to implicitly-declared builtins
3187/// (like __builtin___printf_chk) or to library-declared functions
3188/// like NSLog or printf.
3189void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3190  if (FD->isInvalidDecl())
3191    return;
3192
3193  // If this is a built-in function, map its builtin attributes to
3194  // actual attributes.
3195  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3196    // Handle printf-formatting attributes.
3197    unsigned FormatIdx;
3198    bool HasVAListArg;
3199    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3200      if (!FD->getAttr<FormatAttr>())
3201        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3202                                               FormatIdx + 2));
3203    }
3204
3205    // Mark const if we don't care about errno and that is the only
3206    // thing preventing the function from being const. This allows
3207    // IRgen to use LLVM intrinsics for such functions.
3208    if (!getLangOptions().MathErrno &&
3209        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3210      if (!FD->getAttr<ConstAttr>())
3211        FD->addAttr(::new (Context) ConstAttr());
3212    }
3213  }
3214
3215  IdentifierInfo *Name = FD->getIdentifier();
3216  if (!Name)
3217    return;
3218  if ((!getLangOptions().CPlusPlus &&
3219       FD->getDeclContext()->isTranslationUnit()) ||
3220      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3221       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3222       LinkageSpecDecl::lang_c)) {
3223    // Okay: this could be a libc/libm/Objective-C function we know
3224    // about.
3225  } else
3226    return;
3227
3228  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3229    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3230      // FIXME: We known better than our headers.
3231      const_cast<FormatAttr *>(Format)->setType("printf");
3232    } else
3233      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3234  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3235    if (!FD->getAttr<FormatAttr>())
3236      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3237  }
3238}
3239
3240TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3241  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3242  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3243
3244  // Scope manipulation handled by caller.
3245  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3246                                           D.getIdentifierLoc(),
3247                                           D.getIdentifier(),
3248                                           T);
3249
3250  if (TagType *TT = dyn_cast<TagType>(T)) {
3251    TagDecl *TD = TT->getDecl();
3252
3253    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3254    // keep track of the TypedefDecl.
3255    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3256      TD->setTypedefForAnonDecl(NewTD);
3257  }
3258
3259  if (D.isInvalidType())
3260    NewTD->setInvalidDecl();
3261  return NewTD;
3262}
3263
3264
3265/// \brief Determine whether a tag with a given kind is acceptable
3266/// as a redeclaration of the given tag declaration.
3267///
3268/// \returns true if the new tag kind is acceptable, false otherwise.
3269bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3270                                        TagDecl::TagKind NewTag,
3271                                        SourceLocation NewTagLoc,
3272                                        const IdentifierInfo &Name) {
3273  // C++ [dcl.type.elab]p3:
3274  //   The class-key or enum keyword present in the
3275  //   elaborated-type-specifier shall agree in kind with the
3276  //   declaration to which the name in theelaborated-type-specifier
3277  //   refers. This rule also applies to the form of
3278  //   elaborated-type-specifier that declares a class-name or
3279  //   friend class since it can be construed as referring to the
3280  //   definition of the class. Thus, in any
3281  //   elaborated-type-specifier, the enum keyword shall be used to
3282  //   refer to an enumeration (7.2), the union class-keyshall be
3283  //   used to refer to a union (clause 9), and either the class or
3284  //   struct class-key shall be used to refer to a class (clause 9)
3285  //   declared using the class or struct class-key.
3286  TagDecl::TagKind OldTag = Previous->getTagKind();
3287  if (OldTag == NewTag)
3288    return true;
3289
3290  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3291      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3292    // Warn about the struct/class tag mismatch.
3293    bool isTemplate = false;
3294    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3295      isTemplate = Record->getDescribedClassTemplate();
3296
3297    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3298      << (NewTag == TagDecl::TK_class)
3299      << isTemplate << &Name
3300      << (OldTag == TagDecl::TK_class)
3301      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3302                              OldTag == TagDecl::TK_class? "class" : "struct");
3303    Diag(Previous->getLocation(), diag::note_previous_use);
3304    return true;
3305  }
3306  return false;
3307}
3308
3309/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3310/// former case, Name will be non-null.  In the later case, Name will be null.
3311/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3312/// reference/declaration/definition of a tag.
3313Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3314                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3315                               IdentifierInfo *Name, SourceLocation NameLoc,
3316                               AttributeList *Attr, AccessSpecifier AS) {
3317  // If this is not a definition, it must have a name.
3318  assert((Name != 0 || TK == TK_Definition) &&
3319         "Nameless record must be a definition!");
3320
3321  TagDecl::TagKind Kind;
3322  switch (TagSpec) {
3323  default: assert(0 && "Unknown tag type!");
3324  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3325  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3326  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3327  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3328  }
3329
3330  DeclContext *SearchDC = CurContext;
3331  DeclContext *DC = CurContext;
3332  NamedDecl *PrevDecl = 0;
3333
3334  bool Invalid = false;
3335
3336  if (Name && SS.isNotEmpty()) {
3337    // We have a nested-name tag ('struct foo::bar').
3338
3339    // Check for invalid 'foo::'.
3340    if (SS.isInvalid()) {
3341      Name = 0;
3342      goto CreateNewDecl;
3343    }
3344
3345    if (RequireCompleteDeclContext(SS))
3346      return DeclPtrTy::make((Decl *)0);
3347
3348    DC = computeDeclContext(SS);
3349    SearchDC = DC;
3350    // Look-up name inside 'foo::'.
3351    PrevDecl
3352      = dyn_cast_or_null<TagDecl>(
3353               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3354
3355    // A tag 'foo::bar' must already exist.
3356    if (PrevDecl == 0) {
3357      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3358      Name = 0;
3359      goto CreateNewDecl;
3360    }
3361  } else if (Name) {
3362    // If this is a named struct, check to see if there was a previous forward
3363    // declaration or definition.
3364    // FIXME: We're looking into outer scopes here, even when we
3365    // shouldn't be. Doing so can result in ambiguities that we
3366    // shouldn't be diagnosing.
3367    LookupResult R = LookupName(S, Name, LookupTagName,
3368                                /*RedeclarationOnly=*/(TK != TK_Reference));
3369    if (R.isAmbiguous()) {
3370      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3371      // FIXME: This is not best way to recover from case like:
3372      //
3373      // struct S s;
3374      //
3375      // causes needless "incomplete type" error later.
3376      Name = 0;
3377      PrevDecl = 0;
3378      Invalid = true;
3379    }
3380    else
3381      PrevDecl = R;
3382
3383    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3384      // FIXME: This makes sure that we ignore the contexts associated
3385      // with C structs, unions, and enums when looking for a matching
3386      // tag declaration or definition. See the similar lookup tweak
3387      // in Sema::LookupName; is there a better way to deal with this?
3388      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3389        SearchDC = SearchDC->getParent();
3390    }
3391  }
3392
3393  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3394    // Maybe we will complain about the shadowed template parameter.
3395    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3396    // Just pretend that we didn't see the previous declaration.
3397    PrevDecl = 0;
3398  }
3399
3400  if (PrevDecl) {
3401    // Check whether the previous declaration is usable.
3402    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3403
3404    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3405      // If this is a use of a previous tag, or if the tag is already declared
3406      // in the same scope (so that the definition/declaration completes or
3407      // rementions the tag), reuse the decl.
3408      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3409        // Make sure that this wasn't declared as an enum and now used as a
3410        // struct or something similar.
3411        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3412          bool SafeToContinue
3413            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3414               Kind != TagDecl::TK_enum);
3415          if (SafeToContinue)
3416            Diag(KWLoc, diag::err_use_with_wrong_tag)
3417              << Name
3418              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3419                                                  PrevTagDecl->getKindName());
3420          else
3421            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3422          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3423
3424          if (SafeToContinue)
3425            Kind = PrevTagDecl->getTagKind();
3426          else {
3427            // Recover by making this an anonymous redefinition.
3428            Name = 0;
3429            PrevDecl = 0;
3430            Invalid = true;
3431          }
3432        }
3433
3434        if (!Invalid) {
3435          // If this is a use, just return the declaration we found.
3436
3437          // FIXME: In the future, return a variant or some other clue
3438          // for the consumer of this Decl to know it doesn't own it.
3439          // For our current ASTs this shouldn't be a problem, but will
3440          // need to be changed with DeclGroups.
3441          if (TK == TK_Reference)
3442            return DeclPtrTy::make(PrevDecl);
3443
3444          // Diagnose attempts to redefine a tag.
3445          if (TK == TK_Definition) {
3446            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3447              Diag(NameLoc, diag::err_redefinition) << Name;
3448              Diag(Def->getLocation(), diag::note_previous_definition);
3449              // If this is a redefinition, recover by making this
3450              // struct be anonymous, which will make any later
3451              // references get the previous definition.
3452              Name = 0;
3453              PrevDecl = 0;
3454              Invalid = true;
3455            } else {
3456              // If the type is currently being defined, complain
3457              // about a nested redefinition.
3458              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3459              if (Tag->isBeingDefined()) {
3460                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3461                Diag(PrevTagDecl->getLocation(),
3462                     diag::note_previous_definition);
3463                Name = 0;
3464                PrevDecl = 0;
3465                Invalid = true;
3466              }
3467            }
3468
3469            // Okay, this is definition of a previously declared or referenced
3470            // tag PrevDecl. We're going to create a new Decl for it.
3471          }
3472        }
3473        // If we get here we have (another) forward declaration or we
3474        // have a definition.  Just create a new decl.
3475      } else {
3476        // If we get here, this is a definition of a new tag type in a nested
3477        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3478        // new decl/type.  We set PrevDecl to NULL so that the entities
3479        // have distinct types.
3480        PrevDecl = 0;
3481      }
3482      // If we get here, we're going to create a new Decl. If PrevDecl
3483      // is non-NULL, it's a definition of the tag declared by
3484      // PrevDecl. If it's NULL, we have a new definition.
3485    } else {
3486      // PrevDecl is a namespace, template, or anything else
3487      // that lives in the IDNS_Tag identifier namespace.
3488      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3489        // The tag name clashes with a namespace name, issue an error and
3490        // recover by making this tag be anonymous.
3491        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3492        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3493        Name = 0;
3494        PrevDecl = 0;
3495        Invalid = true;
3496      } else {
3497        // The existing declaration isn't relevant to us; we're in a
3498        // new scope, so clear out the previous declaration.
3499        PrevDecl = 0;
3500      }
3501    }
3502  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3503             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3504    // C++ [basic.scope.pdecl]p5:
3505    //   -- for an elaborated-type-specifier of the form
3506    //
3507    //          class-key identifier
3508    //
3509    //      if the elaborated-type-specifier is used in the
3510    //      decl-specifier-seq or parameter-declaration-clause of a
3511    //      function defined in namespace scope, the identifier is
3512    //      declared as a class-name in the namespace that contains
3513    //      the declaration; otherwise, except as a friend
3514    //      declaration, the identifier is declared in the smallest
3515    //      non-class, non-function-prototype scope that contains the
3516    //      declaration.
3517    //
3518    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3519    // C structs and unions.
3520    //
3521    // GNU C also supports this behavior as part of its incomplete
3522    // enum types extension, while GNU C++ does not.
3523    //
3524    // Find the context where we'll be declaring the tag.
3525    // FIXME: We would like to maintain the current DeclContext as the
3526    // lexical context,
3527    while (SearchDC->isRecord())
3528      SearchDC = SearchDC->getParent();
3529
3530    // Find the scope where we'll be declaring the tag.
3531    while (S->isClassScope() ||
3532           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3533           ((S->getFlags() & Scope::DeclScope) == 0) ||
3534           (S->getEntity() &&
3535            ((DeclContext *)S->getEntity())->isTransparentContext()))
3536      S = S->getParent();
3537  }
3538
3539CreateNewDecl:
3540
3541  // If there is an identifier, use the location of the identifier as the
3542  // location of the decl, otherwise use the location of the struct/union
3543  // keyword.
3544  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3545
3546  // Otherwise, create a new declaration. If there is a previous
3547  // declaration of the same entity, the two will be linked via
3548  // PrevDecl.
3549  TagDecl *New;
3550
3551  if (Kind == TagDecl::TK_enum) {
3552    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3553    // enum X { A, B, C } D;    D should chain to X.
3554    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3555                           cast_or_null<EnumDecl>(PrevDecl));
3556    // If this is an undefined enum, warn.
3557    if (TK != TK_Definition && !Invalid)  {
3558      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3559                                              : diag::ext_forward_ref_enum;
3560      Diag(Loc, DK);
3561    }
3562  } else {
3563    // struct/union/class
3564
3565    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3566    // struct X { int A; } D;    D should chain to X.
3567    if (getLangOptions().CPlusPlus)
3568      // FIXME: Look for a way to use RecordDecl for simple structs.
3569      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3570                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3571    else
3572      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3573                               cast_or_null<RecordDecl>(PrevDecl));
3574  }
3575
3576  if (Kind != TagDecl::TK_enum) {
3577    // Handle #pragma pack: if the #pragma pack stack has non-default
3578    // alignment, make up a packed attribute for this decl. These
3579    // attributes are checked when the ASTContext lays out the
3580    // structure.
3581    //
3582    // It is important for implementing the correct semantics that this
3583    // happen here (in act on tag decl). The #pragma pack stack is
3584    // maintained as a result of parser callbacks which can occur at
3585    // many points during the parsing of a struct declaration (because
3586    // the #pragma tokens are effectively skipped over during the
3587    // parsing of the struct).
3588    if (unsigned Alignment = getPragmaPackAlignment())
3589      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3590  }
3591
3592  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3593    // C++ [dcl.typedef]p3:
3594    //   [...] Similarly, in a given scope, a class or enumeration
3595    //   shall not be declared with the same name as a typedef-name
3596    //   that is declared in that scope and refers to a type other
3597    //   than the class or enumeration itself.
3598    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3599    TypedefDecl *PrevTypedef = 0;
3600    if (Lookup.getKind() == LookupResult::Found)
3601      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3602
3603    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3604        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3605          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3606      Diag(Loc, diag::err_tag_definition_of_typedef)
3607        << Context.getTypeDeclType(New)
3608        << PrevTypedef->getUnderlyingType();
3609      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3610      Invalid = true;
3611    }
3612  }
3613
3614  if (Invalid)
3615    New->setInvalidDecl();
3616
3617  if (Attr)
3618    ProcessDeclAttributeList(New, Attr);
3619
3620  // If we're declaring or defining a tag in function prototype scope
3621  // in C, note that this type can only be used within the function.
3622  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3623    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3624
3625  // Set the lexical context. If the tag has a C++ scope specifier, the
3626  // lexical context will be different from the semantic context.
3627  New->setLexicalDeclContext(CurContext);
3628
3629  // Set the access specifier.
3630  SetMemberAccessSpecifier(New, PrevDecl, AS);
3631
3632  if (TK == TK_Definition)
3633    New->startDefinition();
3634
3635  // If this has an identifier, add it to the scope stack.
3636  if (Name) {
3637    S = getNonFieldDeclScope(S);
3638    PushOnScopeChains(New, S);
3639  } else {
3640    CurContext->addDecl(Context, New);
3641  }
3642
3643  return DeclPtrTy::make(New);
3644}
3645
3646void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3647  AdjustDeclIfTemplate(TagD);
3648  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3649
3650  // Enter the tag context.
3651  PushDeclContext(S, Tag);
3652
3653  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3654    FieldCollector->StartClass();
3655
3656    if (Record->getIdentifier()) {
3657      // C++ [class]p2:
3658      //   [...] The class-name is also inserted into the scope of the
3659      //   class itself; this is known as the injected-class-name. For
3660      //   purposes of access checking, the injected-class-name is treated
3661      //   as if it were a public member name.
3662      CXXRecordDecl *InjectedClassName
3663        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3664                                CurContext, Record->getLocation(),
3665                                Record->getIdentifier(), Record);
3666      InjectedClassName->setImplicit();
3667      InjectedClassName->setAccess(AS_public);
3668      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3669        InjectedClassName->setDescribedClassTemplate(Template);
3670      PushOnScopeChains(InjectedClassName, S);
3671      assert(InjectedClassName->isInjectedClassName() &&
3672             "Broken injected-class-name");
3673    }
3674  }
3675}
3676
3677void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3678  AdjustDeclIfTemplate(TagD);
3679  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3680
3681  if (isa<CXXRecordDecl>(Tag))
3682    FieldCollector->FinishClass();
3683
3684  // Exit this scope of this tag's definition.
3685  PopDeclContext();
3686
3687  // Notify the consumer that we've defined a tag.
3688  Consumer.HandleTagDeclDefinition(Tag);
3689}
3690
3691// Note that FieldName may be null for anonymous bitfields.
3692bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3693                          QualType FieldTy, const Expr *BitWidth) {
3694
3695  // C99 6.7.2.1p4 - verify the field type.
3696  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3697  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3698    // Handle incomplete types with specific error.
3699    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3700      return true;
3701    if (FieldName)
3702      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3703        << FieldName << FieldTy << BitWidth->getSourceRange();
3704    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3705      << FieldTy << BitWidth->getSourceRange();
3706  }
3707
3708  // If the bit-width is type- or value-dependent, don't try to check
3709  // it now.
3710  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3711    return false;
3712
3713  llvm::APSInt Value;
3714  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3715    return true;
3716
3717  // Zero-width bitfield is ok for anonymous field.
3718  if (Value == 0 && FieldName)
3719    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3720
3721  if (Value.isSigned() && Value.isNegative()) {
3722    if (FieldName)
3723      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3724               << FieldName << Value.toString(10);
3725    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3726      << Value.toString(10);
3727  }
3728
3729  if (!FieldTy->isDependentType()) {
3730    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3731    if (Value.getZExtValue() > TypeSize) {
3732      if (FieldName)
3733        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3734          << FieldName << (unsigned)TypeSize;
3735      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3736        << (unsigned)TypeSize;
3737    }
3738  }
3739
3740  return false;
3741}
3742
3743/// ActOnField - Each field of a struct/union/class is passed into this in order
3744/// to create a FieldDecl object for it.
3745Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3746                                 SourceLocation DeclStart,
3747                                 Declarator &D, ExprTy *BitfieldWidth) {
3748  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3749                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3750                               AS_public);
3751  return DeclPtrTy::make(Res);
3752}
3753
3754/// HandleField - Analyze a field of a C struct or a C++ data member.
3755///
3756FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3757                             SourceLocation DeclStart,
3758                             Declarator &D, Expr *BitWidth,
3759                             AccessSpecifier AS) {
3760  IdentifierInfo *II = D.getIdentifier();
3761  SourceLocation Loc = DeclStart;
3762  if (II) Loc = D.getIdentifierLoc();
3763
3764  QualType T = GetTypeForDeclarator(D, S);
3765  if (getLangOptions().CPlusPlus)
3766    CheckExtraCXXDefaultArguments(D);
3767
3768  DiagnoseFunctionSpecifiers(D);
3769
3770  if (D.getDeclSpec().isThreadSpecified())
3771    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3772
3773  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3774  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3775    PrevDecl = 0;
3776
3777  FieldDecl *NewFD
3778    = CheckFieldDecl(II, T, Record, Loc,
3779               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3780                     BitWidth, AS, PrevDecl, &D);
3781  if (NewFD->isInvalidDecl() && PrevDecl) {
3782    // Don't introduce NewFD into scope; there's already something
3783    // with the same name in the same scope.
3784  } else if (II) {
3785    PushOnScopeChains(NewFD, S);
3786  } else
3787    Record->addDecl(Context, NewFD);
3788
3789  return NewFD;
3790}
3791
3792/// \brief Build a new FieldDecl and check its well-formedness.
3793///
3794/// This routine builds a new FieldDecl given the fields name, type,
3795/// record, etc. \p PrevDecl should refer to any previous declaration
3796/// with the same name and in the same scope as the field to be
3797/// created.
3798///
3799/// \returns a new FieldDecl.
3800///
3801/// \todo The Declarator argument is a hack. It will be removed once
3802FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3803                                RecordDecl *Record, SourceLocation Loc,
3804                                bool Mutable, Expr *BitWidth,
3805                                AccessSpecifier AS, NamedDecl *PrevDecl,
3806                                Declarator *D) {
3807  IdentifierInfo *II = Name.getAsIdentifierInfo();
3808  bool InvalidDecl = false;
3809  if (D) InvalidDecl = D->isInvalidType();
3810
3811  // If we receive a broken type, recover by assuming 'int' and
3812  // marking this declaration as invalid.
3813  if (T.isNull()) {
3814    InvalidDecl = true;
3815    T = Context.IntTy;
3816  }
3817
3818  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3819  // than a variably modified type.
3820  if (T->isVariablyModifiedType()) {
3821    bool SizeIsNegative;
3822    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3823                                                           SizeIsNegative);
3824    if (!FixedTy.isNull()) {
3825      Diag(Loc, diag::warn_illegal_constant_array_size);
3826      T = FixedTy;
3827    } else {
3828      if (SizeIsNegative)
3829        Diag(Loc, diag::err_typecheck_negative_array_size);
3830      else
3831        Diag(Loc, diag::err_typecheck_field_variable_size);
3832      T = Context.IntTy;
3833      InvalidDecl = true;
3834    }
3835  }
3836
3837  // Fields can not have abstract class types
3838  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3839                             AbstractFieldType))
3840    InvalidDecl = true;
3841
3842  // If this is declared as a bit-field, check the bit-field.
3843  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3844    InvalidDecl = true;
3845    DeleteExpr(BitWidth);
3846    BitWidth = 0;
3847  }
3848
3849  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3850                                       Mutable);
3851  if (InvalidDecl)
3852    NewFD->setInvalidDecl();
3853
3854  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3855    Diag(Loc, diag::err_duplicate_member) << II;
3856    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3857    NewFD->setInvalidDecl();
3858  }
3859
3860  if (getLangOptions().CPlusPlus && !T->isPODType())
3861    cast<CXXRecordDecl>(Record)->setPOD(false);
3862
3863  // FIXME: We need to pass in the attributes given an AST
3864  // representation, not a parser representation.
3865  if (D)
3866    ProcessDeclAttributes(NewFD, *D);
3867
3868  if (T.isObjCGCWeak())
3869    Diag(Loc, diag::warn_attribute_weak_on_field);
3870
3871  NewFD->setAccess(AS);
3872
3873  // C++ [dcl.init.aggr]p1:
3874  //   An aggregate is an array or a class (clause 9) with [...] no
3875  //   private or protected non-static data members (clause 11).
3876  // A POD must be an aggregate.
3877  if (getLangOptions().CPlusPlus &&
3878      (AS == AS_private || AS == AS_protected)) {
3879    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3880    CXXRecord->setAggregate(false);
3881    CXXRecord->setPOD(false);
3882  }
3883
3884  return NewFD;
3885}
3886
3887/// TranslateIvarVisibility - Translate visibility from a token ID to an
3888///  AST enum value.
3889static ObjCIvarDecl::AccessControl
3890TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3891  switch (ivarVisibility) {
3892  default: assert(0 && "Unknown visitibility kind");
3893  case tok::objc_private: return ObjCIvarDecl::Private;
3894  case tok::objc_public: return ObjCIvarDecl::Public;
3895  case tok::objc_protected: return ObjCIvarDecl::Protected;
3896  case tok::objc_package: return ObjCIvarDecl::Package;
3897  }
3898}
3899
3900/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3901/// in order to create an IvarDecl object for it.
3902Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3903                                SourceLocation DeclStart,
3904                                Declarator &D, ExprTy *BitfieldWidth,
3905                                tok::ObjCKeywordKind Visibility) {
3906
3907  IdentifierInfo *II = D.getIdentifier();
3908  Expr *BitWidth = (Expr*)BitfieldWidth;
3909  SourceLocation Loc = DeclStart;
3910  if (II) Loc = D.getIdentifierLoc();
3911
3912  // FIXME: Unnamed fields can be handled in various different ways, for
3913  // example, unnamed unions inject all members into the struct namespace!
3914
3915  QualType T = GetTypeForDeclarator(D, S);
3916
3917  if (BitWidth) {
3918    // 6.7.2.1p3, 6.7.2.1p4
3919    if (VerifyBitField(Loc, II, T, BitWidth)) {
3920      D.setInvalidType();
3921      DeleteExpr(BitWidth);
3922      BitWidth = 0;
3923    }
3924  } else {
3925    // Not a bitfield.
3926
3927    // validate II.
3928
3929  }
3930
3931  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3932  // than a variably modified type.
3933  if (T->isVariablyModifiedType()) {
3934    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3935    D.setInvalidType();
3936  }
3937
3938  // Get the visibility (access control) for this ivar.
3939  ObjCIvarDecl::AccessControl ac =
3940    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3941                                        : ObjCIvarDecl::None;
3942
3943  // Construct the decl.
3944  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3945                                             (Expr *)BitfieldWidth);
3946
3947  if (II) {
3948    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3949    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3950        && !isa<TagDecl>(PrevDecl)) {
3951      Diag(Loc, diag::err_duplicate_member) << II;
3952      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3953      NewID->setInvalidDecl();
3954    }
3955  }
3956
3957  // Process attributes attached to the ivar.
3958  ProcessDeclAttributes(NewID, D);
3959
3960  if (D.isInvalidType())
3961    NewID->setInvalidDecl();
3962
3963  if (II) {
3964    // FIXME: When interfaces are DeclContexts, we'll need to add
3965    // these to the interface.
3966    S->AddDecl(DeclPtrTy::make(NewID));
3967    IdResolver.AddDecl(NewID);
3968  }
3969
3970  return DeclPtrTy::make(NewID);
3971}
3972
3973void Sema::ActOnFields(Scope* S,
3974                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3975                       DeclPtrTy *Fields, unsigned NumFields,
3976                       SourceLocation LBrac, SourceLocation RBrac,
3977                       AttributeList *Attr) {
3978  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3979  assert(EnclosingDecl && "missing record or interface decl");
3980
3981  // If the decl this is being inserted into is invalid, then it may be a
3982  // redeclaration or some other bogus case.  Don't try to add fields to it.
3983  if (EnclosingDecl->isInvalidDecl()) {
3984    // FIXME: Deallocate fields?
3985    return;
3986  }
3987
3988
3989  // Verify that all the fields are okay.
3990  unsigned NumNamedMembers = 0;
3991  llvm::SmallVector<FieldDecl*, 32> RecFields;
3992
3993  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3994  for (unsigned i = 0; i != NumFields; ++i) {
3995    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3996
3997    // Get the type for the field.
3998    Type *FDTy = FD->getType().getTypePtr();
3999
4000    if (!FD->isAnonymousStructOrUnion()) {
4001      // Remember all fields written by the user.
4002      RecFields.push_back(FD);
4003    }
4004
4005    // If the field is already invalid for some reason, don't emit more
4006    // diagnostics about it.
4007    if (FD->isInvalidDecl())
4008      continue;
4009
4010    // C99 6.7.2.1p2:
4011    //   A structure or union shall not contain a member with
4012    //   incomplete or function type (hence, a structure shall not
4013    //   contain an instance of itself, but may contain a pointer to
4014    //   an instance of itself), except that the last member of a
4015    //   structure with more than one named member may have incomplete
4016    //   array type; such a structure (and any union containing,
4017    //   possibly recursively, a member that is such a structure)
4018    //   shall not be a member of a structure or an element of an
4019    //   array.
4020    if (FDTy->isFunctionType()) {
4021      // Field declared as a function.
4022      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4023        << FD->getDeclName();
4024      FD->setInvalidDecl();
4025      EnclosingDecl->setInvalidDecl();
4026      continue;
4027    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4028               Record && Record->isStruct()) {
4029      // Flexible array member.
4030      if (NumNamedMembers < 1) {
4031        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4032          << FD->getDeclName();
4033        FD->setInvalidDecl();
4034        EnclosingDecl->setInvalidDecl();
4035        continue;
4036      }
4037      // Okay, we have a legal flexible array member at the end of the struct.
4038      if (Record)
4039        Record->setHasFlexibleArrayMember(true);
4040    } else if (!FDTy->isDependentType() &&
4041               RequireCompleteType(FD->getLocation(), FD->getType(),
4042                                   diag::err_field_incomplete)) {
4043      // Incomplete type
4044      FD->setInvalidDecl();
4045      EnclosingDecl->setInvalidDecl();
4046      continue;
4047    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4048      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4049        // If this is a member of a union, then entire union becomes "flexible".
4050        if (Record && Record->isUnion()) {
4051          Record->setHasFlexibleArrayMember(true);
4052        } else {
4053          // If this is a struct/class and this is not the last element, reject
4054          // it.  Note that GCC supports variable sized arrays in the middle of
4055          // structures.
4056          if (i != NumFields-1)
4057            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4058              << FD->getDeclName() << FD->getType();
4059          else {
4060            // We support flexible arrays at the end of structs in
4061            // other structs as an extension.
4062            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4063              << FD->getDeclName();
4064            if (Record)
4065              Record->setHasFlexibleArrayMember(true);
4066          }
4067        }
4068      }
4069    } else if (FDTy->isObjCInterfaceType()) {
4070      /// A field cannot be an Objective-c object
4071      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4072      FD->setInvalidDecl();
4073      EnclosingDecl->setInvalidDecl();
4074      continue;
4075    }
4076    // Keep track of the number of named members.
4077    if (FD->getIdentifier())
4078      ++NumNamedMembers;
4079  }
4080
4081  // Okay, we successfully defined 'Record'.
4082  if (Record) {
4083    Record->completeDefinition(Context);
4084  } else {
4085    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
4086    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4087      ID->setIVarList(ClsFields, RecFields.size(), Context);
4088      ID->setLocEnd(RBrac);
4089
4090      // Must enforce the rule that ivars in the base classes may not be
4091      // duplicates.
4092      if (ID->getSuperClass()) {
4093        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4094             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4095          ObjCIvarDecl* Ivar = (*IVI);
4096
4097          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4098            ObjCIvarDecl* prevIvar =
4099              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4100            if (prevIvar) {
4101              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4102              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4103            }
4104          }
4105        }
4106      }
4107    } else if (ObjCImplementationDecl *IMPDecl =
4108                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4109      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4110      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4111        // FIXME: Set the DeclContext correctly when we build the
4112        // declarations.
4113        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4114        IMPDecl->addDecl(Context, ClsFields[I]);
4115      }
4116      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4117    }
4118  }
4119
4120  if (Attr)
4121    ProcessDeclAttributeList(Record, Attr);
4122}
4123
4124EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4125                                          EnumConstantDecl *LastEnumConst,
4126                                          SourceLocation IdLoc,
4127                                          IdentifierInfo *Id,
4128                                          ExprArg val) {
4129  Expr *Val = (Expr *)val.get();
4130
4131  llvm::APSInt EnumVal(32);
4132  QualType EltTy;
4133  if (Val && !Val->isTypeDependent()) {
4134    // Make sure to promote the operand type to int.
4135    UsualUnaryConversions(Val);
4136    if (Val != val.get()) {
4137      val.release();
4138      val = Val;
4139    }
4140
4141    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4142    SourceLocation ExpLoc;
4143    if (!Val->isValueDependent() &&
4144        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4145      Val = 0;
4146    } else {
4147      EltTy = Val->getType();
4148    }
4149  }
4150
4151  if (!Val) {
4152    if (LastEnumConst) {
4153      // Assign the last value + 1.
4154      EnumVal = LastEnumConst->getInitVal();
4155      ++EnumVal;
4156
4157      // Check for overflow on increment.
4158      if (EnumVal < LastEnumConst->getInitVal())
4159        Diag(IdLoc, diag::warn_enum_value_overflow);
4160
4161      EltTy = LastEnumConst->getType();
4162    } else {
4163      // First value, set to zero.
4164      EltTy = Context.IntTy;
4165      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4166    }
4167  }
4168
4169  val.release();
4170  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4171                                  Val, EnumVal);
4172}
4173
4174
4175Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4176                                        DeclPtrTy lastEnumConst,
4177                                        SourceLocation IdLoc,
4178                                        IdentifierInfo *Id,
4179                                        SourceLocation EqualLoc, ExprTy *val) {
4180  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4181  EnumConstantDecl *LastEnumConst =
4182    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4183  Expr *Val = static_cast<Expr*>(val);
4184
4185  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4186  // we find one that is.
4187  S = getNonFieldDeclScope(S);
4188
4189  // Verify that there isn't already something declared with this name in this
4190  // scope.
4191  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4192  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4193    // Maybe we will complain about the shadowed template parameter.
4194    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4195    // Just pretend that we didn't see the previous declaration.
4196    PrevDecl = 0;
4197  }
4198
4199  if (PrevDecl) {
4200    // When in C++, we may get a TagDecl with the same name; in this case the
4201    // enum constant will 'hide' the tag.
4202    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4203           "Received TagDecl when not in C++!");
4204    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4205      if (isa<EnumConstantDecl>(PrevDecl))
4206        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4207      else
4208        Diag(IdLoc, diag::err_redefinition) << Id;
4209      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4210      if (Val) Val->Destroy(Context);
4211      return DeclPtrTy();
4212    }
4213  }
4214
4215  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4216                                            IdLoc, Id, Owned(Val));
4217
4218  // Register this decl in the current scope stack.
4219  if (New)
4220    PushOnScopeChains(New, S);
4221
4222  return DeclPtrTy::make(New);
4223}
4224
4225void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4226                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4227                         DeclPtrTy *Elements, unsigned NumElements) {
4228  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4229  QualType EnumType = Context.getTypeDeclType(Enum);
4230
4231  // TODO: If the result value doesn't fit in an int, it must be a long or long
4232  // long value.  ISO C does not support this, but GCC does as an extension,
4233  // emit a warning.
4234  unsigned IntWidth = Context.Target.getIntWidth();
4235
4236  // Verify that all the values are okay, compute the size of the values, and
4237  // reverse the list.
4238  unsigned NumNegativeBits = 0;
4239  unsigned NumPositiveBits = 0;
4240
4241  // Keep track of whether all elements have type int.
4242  bool AllElementsInt = true;
4243
4244  for (unsigned i = 0; i != NumElements; ++i) {
4245    EnumConstantDecl *ECD =
4246      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4247    if (!ECD) continue;  // Already issued a diagnostic.
4248
4249    // If the enum value doesn't fit in an int, emit an extension warning.
4250    const llvm::APSInt &InitVal = ECD->getInitVal();
4251    assert(InitVal.getBitWidth() >= IntWidth &&
4252           "Should have promoted value to int");
4253    if (InitVal.getBitWidth() > IntWidth) {
4254      llvm::APSInt V(InitVal);
4255      V.trunc(IntWidth);
4256      V.extend(InitVal.getBitWidth());
4257      if (V != InitVal)
4258        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4259          << InitVal.toString(10);
4260    }
4261
4262    // Keep track of the size of positive and negative values.
4263    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4264      NumPositiveBits = std::max(NumPositiveBits,
4265                                 (unsigned)InitVal.getActiveBits());
4266    else
4267      NumNegativeBits = std::max(NumNegativeBits,
4268                                 (unsigned)InitVal.getMinSignedBits());
4269
4270    // Keep track of whether every enum element has type int (very commmon).
4271    if (AllElementsInt)
4272      AllElementsInt = ECD->getType() == Context.IntTy;
4273  }
4274
4275  // Figure out the type that should be used for this enum.
4276  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4277  QualType BestType;
4278  unsigned BestWidth;
4279
4280  if (NumNegativeBits) {
4281    // If there is a negative value, figure out the smallest integer type (of
4282    // int/long/longlong) that fits.
4283    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4284      BestType = Context.IntTy;
4285      BestWidth = IntWidth;
4286    } else {
4287      BestWidth = Context.Target.getLongWidth();
4288
4289      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4290        BestType = Context.LongTy;
4291      else {
4292        BestWidth = Context.Target.getLongLongWidth();
4293
4294        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4295          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4296        BestType = Context.LongLongTy;
4297      }
4298    }
4299  } else {
4300    // If there is no negative value, figure out which of uint, ulong, ulonglong
4301    // fits.
4302    if (NumPositiveBits <= IntWidth) {
4303      BestType = Context.UnsignedIntTy;
4304      BestWidth = IntWidth;
4305    } else if (NumPositiveBits <=
4306               (BestWidth = Context.Target.getLongWidth())) {
4307      BestType = Context.UnsignedLongTy;
4308    } else {
4309      BestWidth = Context.Target.getLongLongWidth();
4310      assert(NumPositiveBits <= BestWidth &&
4311             "How could an initializer get larger than ULL?");
4312      BestType = Context.UnsignedLongLongTy;
4313    }
4314  }
4315
4316  // Loop over all of the enumerator constants, changing their types to match
4317  // the type of the enum if needed.
4318  for (unsigned i = 0; i != NumElements; ++i) {
4319    EnumConstantDecl *ECD =
4320      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4321    if (!ECD) continue;  // Already issued a diagnostic.
4322
4323    // Standard C says the enumerators have int type, but we allow, as an
4324    // extension, the enumerators to be larger than int size.  If each
4325    // enumerator value fits in an int, type it as an int, otherwise type it the
4326    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4327    // that X has type 'int', not 'unsigned'.
4328    if (ECD->getType() == Context.IntTy) {
4329      // Make sure the init value is signed.
4330      llvm::APSInt IV = ECD->getInitVal();
4331      IV.setIsSigned(true);
4332      ECD->setInitVal(IV);
4333
4334      if (getLangOptions().CPlusPlus)
4335        // C++ [dcl.enum]p4: Following the closing brace of an
4336        // enum-specifier, each enumerator has the type of its
4337        // enumeration.
4338        ECD->setType(EnumType);
4339      continue;  // Already int type.
4340    }
4341
4342    // Determine whether the value fits into an int.
4343    llvm::APSInt InitVal = ECD->getInitVal();
4344    bool FitsInInt;
4345    if (InitVal.isUnsigned() || !InitVal.isNegative())
4346      FitsInInt = InitVal.getActiveBits() < IntWidth;
4347    else
4348      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4349
4350    // If it fits into an integer type, force it.  Otherwise force it to match
4351    // the enum decl type.
4352    QualType NewTy;
4353    unsigned NewWidth;
4354    bool NewSign;
4355    if (FitsInInt) {
4356      NewTy = Context.IntTy;
4357      NewWidth = IntWidth;
4358      NewSign = true;
4359    } else if (ECD->getType() == BestType) {
4360      // Already the right type!
4361      if (getLangOptions().CPlusPlus)
4362        // C++ [dcl.enum]p4: Following the closing brace of an
4363        // enum-specifier, each enumerator has the type of its
4364        // enumeration.
4365        ECD->setType(EnumType);
4366      continue;
4367    } else {
4368      NewTy = BestType;
4369      NewWidth = BestWidth;
4370      NewSign = BestType->isSignedIntegerType();
4371    }
4372
4373    // Adjust the APSInt value.
4374    InitVal.extOrTrunc(NewWidth);
4375    InitVal.setIsSigned(NewSign);
4376    ECD->setInitVal(InitVal);
4377
4378    // Adjust the Expr initializer and type.
4379    if (ECD->getInitExpr())
4380      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4381                                                      /*isLvalue=*/false));
4382    if (getLangOptions().CPlusPlus)
4383      // C++ [dcl.enum]p4: Following the closing brace of an
4384      // enum-specifier, each enumerator has the type of its
4385      // enumeration.
4386      ECD->setType(EnumType);
4387    else
4388      ECD->setType(NewTy);
4389  }
4390
4391  Enum->completeDefinition(Context, BestType);
4392}
4393
4394Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4395                                            ExprArg expr) {
4396  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4397
4398  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4399                                                  Loc, AsmString));
4400}
4401