SemaDecl.cpp revision edf8844f2e68617892c6883fedd343efd987df68
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Basic/SourceManager.h"
25// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Lex/HeaderSearch.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include <algorithm>
31#include <functional>
32using namespace clang;
33
34/// getDeclName - Return a pretty name for the specified decl if possible, or
35/// an empty string if not.  This is used for pretty crash reporting.
36std::string Sema::getDeclName(DeclPtrTy d) {
37  Decl *D = d.getAs<Decl>();
38  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
39    return DN->getQualifiedNameAsString();
40  return "";
41}
42
43Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
44  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
45}
46
47/// \brief If the identifier refers to a type name within this scope,
48/// return the declaration of that type.
49///
50/// This routine performs ordinary name lookup of the identifier II
51/// within the given scope, with optional C++ scope specifier SS, to
52/// determine whether the name refers to a type. If so, returns an
53/// opaque pointer (actually a QualType) corresponding to that
54/// type. Otherwise, returns NULL.
55///
56/// If name lookup results in an ambiguity, this routine will complain
57/// and then return NULL.
58Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
59                                Scope *S, const CXXScopeSpec *SS) {
60  // C++ [temp.res]p3:
61  //   A qualified-id that refers to a type and in which the
62  //   nested-name-specifier depends on a template-parameter (14.6.2)
63  //   shall be prefixed by the keyword typename to indicate that the
64  //   qualified-id denotes a type, forming an
65  //   elaborated-type-specifier (7.1.5.3).
66  //
67  // We therefore do not perform any name lookup if the result would
68  // refer to a member of an unknown specialization.
69  if (SS && isUnknownSpecialization(*SS))
70    return 0;
71
72  LookupResult Result
73    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
74
75  NamedDecl *IIDecl = 0;
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        if (!IIDecl ||
89            (*Res)->getLocation().getRawEncoding() <
90              IIDecl->getLocation().getRawEncoding())
91          IIDecl = *Res;
92      }
93    }
94
95    if (!IIDecl) {
96      // None of the entities we found is a type, so there is no way
97      // to even assume that the result is a type. In this case, don't
98      // complain about the ambiguity. The parser will either try to
99      // perform this lookup again (e.g., as an object name), which
100      // will produce the ambiguity, or will complain that it expected
101      // a type name.
102      Result.Destroy();
103      return 0;
104    }
105
106    // We found a type within the ambiguous lookup; diagnose the
107    // ambiguity and then return that type. This might be the right
108    // answer, or it might not be, but it suppresses any attempt to
109    // perform the name lookup again.
110    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
111    break;
112  }
113
114  case LookupResult::Found:
115    IIDecl = Result.getAsDecl();
116    break;
117  }
118
119  if (IIDecl) {
120    QualType T;
121
122    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
123      // Check whether we can use this type
124      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
125
126      if (getLangOptions().CPlusPlus) {
127        // C++ [temp.local]p2:
128        //   Within the scope of a class template specialization or
129        //   partial specialization, when the injected-class-name is
130        //   not followed by a <, it is equivalent to the
131        //   injected-class-name followed by the template-argument s
132        //   of the class template specialization or partial
133        //   specialization enclosed in <>.
134        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
135          if (RD->isInjectedClassName())
136            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
137              T = Template->getInjectedClassNameType(Context);
138      }
139
140      if (T.isNull())
141        T = Context.getTypeDeclType(TD);
142    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
143      // Check whether we can use this interface.
144      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
145
146      T = Context.getObjCInterfaceType(IDecl);
147    } else
148      return 0;
149
150    if (SS)
151      T = getQualifiedNameType(*SS, T);
152
153    return T.getAsOpaquePtr();
154  }
155
156  return 0;
157}
158
159/// isTagName() - This method is called *for error recovery purposes only*
160/// to determine if the specified name is a valid tag name ("struct foo").  If
161/// so, this returns the TST for the tag corresponding to it (TST_enum,
162/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
163/// where the user forgot to specify the tag.
164DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
165  // Do a tag name lookup in this scope.
166  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
167  if (R.getKind() == LookupResult::Found)
168    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
169      switch (TD->getTagKind()) {
170      case TagDecl::TK_struct: return DeclSpec::TST_struct;
171      case TagDecl::TK_union:  return DeclSpec::TST_union;
172      case TagDecl::TK_class:  return DeclSpec::TST_class;
173      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
174      }
175    }
176
177  return DeclSpec::TST_unspecified;
178}
179
180
181
182DeclContext *Sema::getContainingDC(DeclContext *DC) {
183  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
184    // A C++ out-of-line method will return to the file declaration context.
185    if (MD->isOutOfLineDefinition())
186      return MD->getLexicalDeclContext();
187
188    // A C++ inline method is parsed *after* the topmost class it was declared
189    // in is fully parsed (it's "complete").
190    // The parsing of a C++ inline method happens at the declaration context of
191    // the topmost (non-nested) class it is lexically declared in.
192    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
193    DC = MD->getParent();
194    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
195      DC = RD;
196
197    // Return the declaration context of the topmost class the inline method is
198    // declared in.
199    return DC;
200  }
201
202  if (isa<ObjCMethodDecl>(DC))
203    return Context.getTranslationUnitDecl();
204
205  return DC->getLexicalParent();
206}
207
208void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
209  assert(getContainingDC(DC) == CurContext &&
210      "The next DeclContext should be lexically contained in the current one.");
211  CurContext = DC;
212  S->setEntity(DC);
213}
214
215void Sema::PopDeclContext() {
216  assert(CurContext && "DeclContext imbalance!");
217
218  CurContext = getContainingDC(CurContext);
219}
220
221/// \brief Determine whether we allow overloading of the function
222/// PrevDecl with another declaration.
223///
224/// This routine determines whether overloading is possible, not
225/// whether some new function is actually an overload. It will return
226/// true in C++ (where we can always provide overloads) or, as an
227/// extension, in C when the previous function is already an
228/// overloaded function declaration or has the "overloadable"
229/// attribute.
230static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
231  if (Context.getLangOptions().CPlusPlus)
232    return true;
233
234  if (isa<OverloadedFunctionDecl>(PrevDecl))
235    return true;
236
237  return PrevDecl->getAttr<OverloadableAttr>() != 0;
238}
239
240/// Add this decl to the scope shadowed decl chains.
241void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
242  // Move up the scope chain until we find the nearest enclosing
243  // non-transparent context. The declaration will be introduced into this
244  // scope.
245  while (S->getEntity() &&
246         ((DeclContext *)S->getEntity())->isTransparentContext())
247    S = S->getParent();
248
249  S->AddDecl(DeclPtrTy::make(D));
250
251  // Add scoped declarations into their context, so that they can be
252  // found later. Declarations without a context won't be inserted
253  // into any context.
254  CurContext->addDecl(Context, D);
255
256  // C++ [basic.scope]p4:
257  //   -- exactly one declaration shall declare a class name or
258  //   enumeration name that is not a typedef name and the other
259  //   declarations shall all refer to the same object or
260  //   enumerator, or all refer to functions and function templates;
261  //   in this case the class name or enumeration name is hidden.
262  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
263    // We are pushing the name of a tag (enum or class).
264    if (CurContext->getLookupContext()
265          == TD->getDeclContext()->getLookupContext()) {
266      // We're pushing the tag into the current context, which might
267      // require some reshuffling in the identifier resolver.
268      IdentifierResolver::iterator
269        I = IdResolver.begin(TD->getDeclName()),
270        IEnd = IdResolver.end();
271      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
272        NamedDecl *PrevDecl = *I;
273        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
274             PrevDecl = *I, ++I) {
275          if (TD->declarationReplaces(*I)) {
276            // This is a redeclaration. Remove it from the chain and
277            // break out, so that we'll add in the shadowed
278            // declaration.
279            S->RemoveDecl(DeclPtrTy::make(*I));
280            if (PrevDecl == *I) {
281              IdResolver.RemoveDecl(*I);
282              IdResolver.AddDecl(TD);
283              return;
284            } else {
285              IdResolver.RemoveDecl(*I);
286              break;
287            }
288          }
289        }
290
291        // There is already a declaration with the same name in the same
292        // scope, which is not a tag declaration. It must be found
293        // before we find the new declaration, so insert the new
294        // declaration at the end of the chain.
295        IdResolver.AddShadowedDecl(TD, PrevDecl);
296
297        return;
298      }
299    }
300  } else if (isa<FunctionDecl>(D) &&
301             AllowOverloadingOfFunction(D, Context)) {
302    // We are pushing the name of a function, which might be an
303    // overloaded name.
304    FunctionDecl *FD = cast<FunctionDecl>(D);
305    IdentifierResolver::iterator Redecl
306      = std::find_if(IdResolver.begin(FD->getDeclName()),
307                     IdResolver.end(),
308                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
309                                  FD));
310    if (Redecl != IdResolver.end() &&
311        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
312      // There is already a declaration of a function on our
313      // IdResolver chain. Replace it with this declaration.
314      S->RemoveDecl(DeclPtrTy::make(*Redecl));
315      IdResolver.RemoveDecl(*Redecl);
316    }
317  } else if (isa<ObjCInterfaceDecl>(D)) {
318    // We're pushing an Objective-C interface into the current
319    // context. If there is already an alias declaration, remove it first.
320    for (IdentifierResolver::iterator
321           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
322         I != IEnd; ++I) {
323      if (isa<ObjCCompatibleAliasDecl>(*I)) {
324        S->RemoveDecl(DeclPtrTy::make(*I));
325        IdResolver.RemoveDecl(*I);
326        break;
327      }
328    }
329  }
330
331  IdResolver.AddDecl(D);
332}
333
334void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
335  if (S->decl_empty()) return;
336  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
337	 "Scope shouldn't contain decls!");
338
339  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
340       I != E; ++I) {
341    Decl *TmpD = (*I).getAs<Decl>();
342    assert(TmpD && "This decl didn't get pushed??");
343
344    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
345    NamedDecl *D = cast<NamedDecl>(TmpD);
346
347    if (!D->getDeclName()) continue;
348
349    // Remove this name from our lexical scope.
350    IdResolver.RemoveDecl(D);
351  }
352}
353
354/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
355/// return 0 if one not found.
356ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
357  // The third "scope" argument is 0 since we aren't enabling lazy built-in
358  // creation from this context.
359  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
360
361  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
362}
363
364/// getNonFieldDeclScope - Retrieves the innermost scope, starting
365/// from S, where a non-field would be declared. This routine copes
366/// with the difference between C and C++ scoping rules in structs and
367/// unions. For example, the following code is well-formed in C but
368/// ill-formed in C++:
369/// @code
370/// struct S6 {
371///   enum { BAR } e;
372/// };
373///
374/// void test_S6() {
375///   struct S6 a;
376///   a.e = BAR;
377/// }
378/// @endcode
379/// For the declaration of BAR, this routine will return a different
380/// scope. The scope S will be the scope of the unnamed enumeration
381/// within S6. In C++, this routine will return the scope associated
382/// with S6, because the enumeration's scope is a transparent
383/// context but structures can contain non-field names. In C, this
384/// routine will return the translation unit scope, since the
385/// enumeration's scope is a transparent context and structures cannot
386/// contain non-field names.
387Scope *Sema::getNonFieldDeclScope(Scope *S) {
388  while (((S->getFlags() & Scope::DeclScope) == 0) ||
389         (S->getEntity() &&
390          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
391         (S->isClassScope() && !getLangOptions().CPlusPlus))
392    S = S->getParent();
393  return S;
394}
395
396void Sema::InitBuiltinVaListType() {
397  if (!Context.getBuiltinVaListType().isNull())
398    return;
399
400  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
401  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
402  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
403  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
404}
405
406/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
407/// file scope.  lazily create a decl for it. ForRedeclaration is true
408/// if we're creating this built-in in anticipation of redeclaring the
409/// built-in.
410NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
411                                     Scope *S, bool ForRedeclaration,
412                                     SourceLocation Loc) {
413  Builtin::ID BID = (Builtin::ID)bid;
414
415  if (Context.BuiltinInfo.hasVAListUse(BID))
416    InitBuiltinVaListType();
417
418  Builtin::Context::GetBuiltinTypeError Error;
419  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
420  switch (Error) {
421  case Builtin::Context::GE_None:
422    // Okay
423    break;
424
425  case Builtin::Context::GE_Missing_FILE:
426    if (ForRedeclaration)
427      Diag(Loc, diag::err_implicit_decl_requires_stdio)
428        << Context.BuiltinInfo.GetName(BID);
429    return 0;
430  }
431
432  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
433    Diag(Loc, diag::ext_implicit_lib_function_decl)
434      << Context.BuiltinInfo.GetName(BID)
435      << R;
436    if (Context.BuiltinInfo.getHeaderName(BID) &&
437        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
438          != Diagnostic::Ignored)
439      Diag(Loc, diag::note_please_include_header)
440        << Context.BuiltinInfo.getHeaderName(BID)
441        << Context.BuiltinInfo.GetName(BID);
442  }
443
444  FunctionDecl *New = FunctionDecl::Create(Context,
445                                           Context.getTranslationUnitDecl(),
446                                           Loc, II, R,
447                                           FunctionDecl::Extern, false,
448                                           /*hasPrototype=*/true);
449  New->setImplicit();
450
451  // Create Decl objects for each parameter, adding them to the
452  // FunctionDecl.
453  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
454    llvm::SmallVector<ParmVarDecl*, 16> Params;
455    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
456      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
457                                           FT->getArgType(i), VarDecl::None, 0));
458    New->setParams(Context, &Params[0], Params.size());
459  }
460
461  AddKnownFunctionAttributes(New);
462
463  // TUScope is the translation-unit scope to insert this function into.
464  // FIXME: This is hideous. We need to teach PushOnScopeChains to
465  // relate Scopes to DeclContexts, and probably eliminate CurContext
466  // entirely, but we're not there yet.
467  DeclContext *SavedContext = CurContext;
468  CurContext = Context.getTranslationUnitDecl();
469  PushOnScopeChains(New, TUScope);
470  CurContext = SavedContext;
471  return New;
472}
473
474/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
475/// everything from the standard library is defined.
476NamespaceDecl *Sema::GetStdNamespace() {
477  if (!StdNamespace) {
478    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
479    DeclContext *Global = Context.getTranslationUnitDecl();
480    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
481    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
482  }
483  return StdNamespace;
484}
485
486/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
487/// same name and scope as a previous declaration 'Old'.  Figure out
488/// how to resolve this situation, merging decls or emitting
489/// diagnostics as appropriate. If there was an error, set New to be invalid.
490///
491void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
492  // If either decl is known invalid already, set the new one to be invalid and
493  // don't bother doing any merging checks.
494  if (New->isInvalidDecl() || OldD->isInvalidDecl())
495    return New->setInvalidDecl();
496
497  bool objc_types = false;
498
499  // Allow multiple definitions for ObjC built-in typedefs.
500  // FIXME: Verify the underlying types are equivalent!
501  if (getLangOptions().ObjC1) {
502    const IdentifierInfo *TypeID = New->getIdentifier();
503    switch (TypeID->getLength()) {
504    default: break;
505    case 2:
506      if (!TypeID->isStr("id"))
507        break;
508      Context.setObjCIdType(Context.getTypeDeclType(New));
509      objc_types = true;
510      break;
511    case 5:
512      if (!TypeID->isStr("Class"))
513        break;
514      Context.setObjCClassType(Context.getTypeDeclType(New));
515      return;
516    case 3:
517      if (!TypeID->isStr("SEL"))
518        break;
519      Context.setObjCSelType(Context.getTypeDeclType(New));
520      return;
521    case 8:
522      if (!TypeID->isStr("Protocol"))
523        break;
524      Context.setObjCProtoType(New->getUnderlyingType());
525      return;
526    }
527    // Fall through - the typedef name was not a builtin type.
528  }
529  // Verify the old decl was also a type.
530  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
531  if (!Old) {
532    Diag(New->getLocation(), diag::err_redefinition_different_kind)
533      << New->getDeclName();
534    if (OldD->getLocation().isValid())
535      Diag(OldD->getLocation(), diag::note_previous_definition);
536    return New->setInvalidDecl();
537  }
538
539  // Determine the "old" type we'll use for checking and diagnostics.
540  QualType OldType;
541  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
542    OldType = OldTypedef->getUnderlyingType();
543  else
544    OldType = Context.getTypeDeclType(Old);
545
546  // If the typedef types are not identical, reject them in all languages and
547  // with any extensions enabled.
548
549  if (OldType != New->getUnderlyingType() &&
550      Context.getCanonicalType(OldType) !=
551      Context.getCanonicalType(New->getUnderlyingType())) {
552    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
553      << New->getUnderlyingType() << OldType;
554    if (Old->getLocation().isValid())
555      Diag(Old->getLocation(), diag::note_previous_definition);
556    return New->setInvalidDecl();
557  }
558
559  if (objc_types || getLangOptions().Microsoft)
560    return;
561
562  // C++ [dcl.typedef]p2:
563  //   In a given non-class scope, a typedef specifier can be used to
564  //   redefine the name of any type declared in that scope to refer
565  //   to the type to which it already refers.
566  if (getLangOptions().CPlusPlus) {
567    if (!isa<CXXRecordDecl>(CurContext))
568      return;
569    Diag(New->getLocation(), diag::err_redefinition)
570      << New->getDeclName();
571    Diag(Old->getLocation(), diag::note_previous_definition);
572    return New->setInvalidDecl();
573  }
574
575  // If we have a redefinition of a typedef in C, emit a warning.  This warning
576  // is normally mapped to an error, but can be controlled with
577  // -Wtypedef-redefinition.  If either the original was in a system header,
578  // don't emit this for compatibility with GCC.
579  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
580      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
581    return;
582
583  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
584    << New->getDeclName();
585  Diag(Old->getLocation(), diag::note_previous_definition);
586  return;
587}
588
589/// DeclhasAttr - returns true if decl Declaration already has the target
590/// attribute.
591static bool DeclHasAttr(const Decl *decl, const Attr *target) {
592  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
593    if (attr->getKind() == target->getKind())
594      return true;
595
596  return false;
597}
598
599/// MergeAttributes - append attributes from the Old decl to the New one.
600static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
601  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
602    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
603      Attr *NewAttr = attr->clone(C);
604      NewAttr->setInherited(true);
605      New->addAttr(NewAttr);
606    }
607  }
608}
609
610/// Used in MergeFunctionDecl to keep track of function parameters in
611/// C.
612struct GNUCompatibleParamWarning {
613  ParmVarDecl *OldParm;
614  ParmVarDecl *NewParm;
615  QualType PromotedType;
616};
617
618/// MergeFunctionDecl - We just parsed a function 'New' from
619/// declarator D which has the same name and scope as a previous
620/// declaration 'Old'.  Figure out how to resolve this situation,
621/// merging decls or emitting diagnostics as appropriate.
622///
623/// In C++, New and Old must be declarations that are not
624/// overloaded. Use IsOverload to determine whether New and Old are
625/// overloaded, and to select the Old declaration that New should be
626/// merged with.
627///
628/// Returns true if there was an error, false otherwise.
629bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
630  assert(!isa<OverloadedFunctionDecl>(OldD) &&
631         "Cannot merge with an overloaded function declaration");
632
633  // Verify the old decl was also a function.
634  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
635  if (!Old) {
636    Diag(New->getLocation(), diag::err_redefinition_different_kind)
637      << New->getDeclName();
638    Diag(OldD->getLocation(), diag::note_previous_definition);
639    return true;
640  }
641
642  // Determine whether the previous declaration was a definition,
643  // implicit declaration, or a declaration.
644  diag::kind PrevDiag;
645  if (Old->isThisDeclarationADefinition())
646    PrevDiag = diag::note_previous_definition;
647  else if (Old->isImplicit())
648    PrevDiag = diag::note_previous_implicit_declaration;
649  else
650    PrevDiag = diag::note_previous_declaration;
651
652  QualType OldQType = Context.getCanonicalType(Old->getType());
653  QualType NewQType = Context.getCanonicalType(New->getType());
654
655  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
656      New->getStorageClass() == FunctionDecl::Static &&
657      Old->getStorageClass() != FunctionDecl::Static) {
658    Diag(New->getLocation(), diag::err_static_non_static)
659      << New;
660    Diag(Old->getLocation(), PrevDiag);
661    return true;
662  }
663
664  if (getLangOptions().CPlusPlus) {
665    // (C++98 13.1p2):
666    //   Certain function declarations cannot be overloaded:
667    //     -- Function declarations that differ only in the return type
668    //        cannot be overloaded.
669    QualType OldReturnType
670      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
671    QualType NewReturnType
672      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
673    if (OldReturnType != NewReturnType) {
674      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
675      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
676      return true;
677    }
678
679    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
680    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
681    if (OldMethod && NewMethod &&
682        OldMethod->getLexicalDeclContext() ==
683          NewMethod->getLexicalDeclContext()) {
684      //    -- Member function declarations with the same name and the
685      //       same parameter types cannot be overloaded if any of them
686      //       is a static member function declaration.
687      if (OldMethod->isStatic() || NewMethod->isStatic()) {
688        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
689        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
690        return true;
691      }
692
693      // C++ [class.mem]p1:
694      //   [...] A member shall not be declared twice in the
695      //   member-specification, except that a nested class or member
696      //   class template can be declared and then later defined.
697      unsigned NewDiag;
698      if (isa<CXXConstructorDecl>(OldMethod))
699        NewDiag = diag::err_constructor_redeclared;
700      else if (isa<CXXDestructorDecl>(NewMethod))
701        NewDiag = diag::err_destructor_redeclared;
702      else if (isa<CXXConversionDecl>(NewMethod))
703        NewDiag = diag::err_conv_function_redeclared;
704      else
705        NewDiag = diag::err_member_redeclared;
706
707      Diag(New->getLocation(), NewDiag);
708      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
709    }
710
711    // (C++98 8.3.5p3):
712    //   All declarations for a function shall agree exactly in both the
713    //   return type and the parameter-type-list.
714    if (OldQType == NewQType)
715      return MergeCompatibleFunctionDecls(New, Old);
716
717    // Fall through for conflicting redeclarations and redefinitions.
718  }
719
720  // C: Function types need to be compatible, not identical. This handles
721  // duplicate function decls like "void f(int); void f(enum X);" properly.
722  if (!getLangOptions().CPlusPlus &&
723      Context.typesAreCompatible(OldQType, NewQType)) {
724    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
725    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
726    const FunctionProtoType *OldProto = 0;
727    if (isa<FunctionNoProtoType>(NewFuncType) &&
728        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
729      // The old declaration provided a function prototype, but the
730      // new declaration does not. Merge in the prototype.
731      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
732                                                 OldProto->arg_type_end());
733      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
734                                         &ParamTypes[0], ParamTypes.size(),
735                                         OldProto->isVariadic(),
736                                         OldProto->getTypeQuals());
737      New->setType(NewQType);
738      New->setInheritedPrototype();
739
740      // Synthesize a parameter for each argument type.
741      llvm::SmallVector<ParmVarDecl*, 16> Params;
742      for (FunctionProtoType::arg_type_iterator
743             ParamType = OldProto->arg_type_begin(),
744             ParamEnd = OldProto->arg_type_end();
745           ParamType != ParamEnd; ++ParamType) {
746        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
747                                                 SourceLocation(), 0,
748                                                 *ParamType, VarDecl::None,
749                                                 0);
750        Param->setImplicit();
751        Params.push_back(Param);
752      }
753
754      New->setParams(Context, &Params[0], Params.size());
755    }
756
757    return MergeCompatibleFunctionDecls(New, Old);
758  }
759
760  // GNU C permits a K&R definition to follow a prototype declaration
761  // if the declared types of the parameters in the K&R definition
762  // match the types in the prototype declaration, even when the
763  // promoted types of the parameters from the K&R definition differ
764  // from the types in the prototype. GCC then keeps the types from
765  // the prototype.
766  if (!getLangOptions().CPlusPlus &&
767      Old->hasPrototype() && !New->hasPrototype() &&
768      New->getType()->getAsFunctionProtoType() &&
769      Old->getNumParams() == New->getNumParams()) {
770    llvm::SmallVector<QualType, 16> ArgTypes;
771    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
772    const FunctionProtoType *OldProto
773      = Old->getType()->getAsFunctionProtoType();
774    const FunctionProtoType *NewProto
775      = New->getType()->getAsFunctionProtoType();
776
777    // Determine whether this is the GNU C extension.
778    bool GNUCompatible =
779      Context.typesAreCompatible(OldProto->getResultType(),
780                                 NewProto->getResultType()) &&
781      (OldProto->isVariadic() == NewProto->isVariadic());
782    for (unsigned Idx = 0, End = Old->getNumParams();
783         GNUCompatible && Idx != End; ++Idx) {
784      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
785      ParmVarDecl *NewParm = New->getParamDecl(Idx);
786      if (Context.typesAreCompatible(OldParm->getType(),
787                                     NewProto->getArgType(Idx))) {
788        ArgTypes.push_back(NewParm->getType());
789      } else if (Context.typesAreCompatible(OldParm->getType(),
790                                            NewParm->getType())) {
791        GNUCompatibleParamWarning Warn
792          = { OldParm, NewParm, NewProto->getArgType(Idx) };
793        Warnings.push_back(Warn);
794        ArgTypes.push_back(NewParm->getType());
795      } else
796        GNUCompatible = false;
797    }
798
799    if (GNUCompatible) {
800      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
801        Diag(Warnings[Warn].NewParm->getLocation(),
802             diag::ext_param_promoted_not_compatible_with_prototype)
803          << Warnings[Warn].PromotedType
804          << Warnings[Warn].OldParm->getType();
805        Diag(Warnings[Warn].OldParm->getLocation(),
806             diag::note_previous_declaration);
807      }
808
809      New->setType(Context.getFunctionType(NewProto->getResultType(),
810                                           &ArgTypes[0], ArgTypes.size(),
811                                           NewProto->isVariadic(),
812                                           NewProto->getTypeQuals()));
813      return MergeCompatibleFunctionDecls(New, Old);
814    }
815
816    // Fall through to diagnose conflicting types.
817  }
818
819  // A function that has already been declared has been redeclared or defined
820  // with a different type- show appropriate diagnostic
821  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
822    // The user has declared a builtin function with an incompatible
823    // signature.
824    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
825      // The function the user is redeclaring is a library-defined
826      // function like 'malloc' or 'printf'. Warn about the
827      // redeclaration, then pretend that we don't know about this
828      // library built-in.
829      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
830      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
831        << Old << Old->getType();
832      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
833      Old->setInvalidDecl();
834      return false;
835    }
836
837    PrevDiag = diag::note_previous_builtin_declaration;
838  }
839
840  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
841  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
842  return true;
843}
844
845/// \brief Completes the merge of two function declarations that are
846/// known to be compatible.
847///
848/// This routine handles the merging of attributes and other
849/// properties of function declarations form the old declaration to
850/// the new declaration, once we know that New is in fact a
851/// redeclaration of Old.
852///
853/// \returns false
854bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
855  // Merge the attributes
856  MergeAttributes(New, Old, Context);
857
858  // Merge the storage class.
859  if (Old->getStorageClass() != FunctionDecl::Extern)
860    New->setStorageClass(Old->getStorageClass());
861
862  // Merge "inline"
863  if (Old->isInline())
864    New->setInline(true);
865
866  // If this function declaration by itself qualifies as a C99 inline
867  // definition (C99 6.7.4p6), but the previous definition did not,
868  // then the function is not a C99 inline definition.
869  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
870    New->setC99InlineDefinition(false);
871  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
872    // Mark all preceding definitions as not being C99 inline definitions.
873    for (const FunctionDecl *Prev = Old; Prev;
874         Prev = Prev->getPreviousDeclaration())
875      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
876  }
877
878  // Merge "pure" flag.
879  if (Old->isPure())
880    New->setPure();
881
882  // Merge the "deleted" flag.
883  if (Old->isDeleted())
884    New->setDeleted();
885
886  if (getLangOptions().CPlusPlus)
887    return MergeCXXFunctionDecl(New, Old);
888
889  return false;
890}
891
892/// MergeVarDecl - We just parsed a variable 'New' which has the same name
893/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
894/// situation, merging decls or emitting diagnostics as appropriate.
895///
896/// Tentative definition rules (C99 6.9.2p2) are checked by
897/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
898/// definitions here, since the initializer hasn't been attached.
899///
900void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
901  // If either decl is invalid, make sure the new one is marked invalid and
902  // don't do any other checking.
903  if (New->isInvalidDecl() || OldD->isInvalidDecl())
904    return New->setInvalidDecl();
905
906  // Verify the old decl was also a variable.
907  VarDecl *Old = dyn_cast<VarDecl>(OldD);
908  if (!Old) {
909    Diag(New->getLocation(), diag::err_redefinition_different_kind)
910      << New->getDeclName();
911    Diag(OldD->getLocation(), diag::note_previous_definition);
912    return New->setInvalidDecl();
913  }
914
915  MergeAttributes(New, Old, Context);
916
917  // Merge the types
918  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
919  if (MergedT.isNull()) {
920    Diag(New->getLocation(), diag::err_redefinition_different_type)
921      << New->getDeclName();
922    Diag(Old->getLocation(), diag::note_previous_definition);
923    return New->setInvalidDecl();
924  }
925  New->setType(MergedT);
926
927  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
928  if (New->getStorageClass() == VarDecl::Static &&
929      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
930    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
931    Diag(Old->getLocation(), diag::note_previous_definition);
932    return New->setInvalidDecl();
933  }
934  // C99 6.2.2p4:
935  //   For an identifier declared with the storage-class specifier
936  //   extern in a scope in which a prior declaration of that
937  //   identifier is visible,23) if the prior declaration specifies
938  //   internal or external linkage, the linkage of the identifier at
939  //   the later declaration is the same as the linkage specified at
940  //   the prior declaration. If no prior declaration is visible, or
941  //   if the prior declaration specifies no linkage, then the
942  //   identifier has external linkage.
943  if (New->hasExternalStorage() && Old->hasLinkage())
944    /* Okay */;
945  else if (New->getStorageClass() != VarDecl::Static &&
946           Old->getStorageClass() == VarDecl::Static) {
947    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
948    Diag(Old->getLocation(), diag::note_previous_definition);
949    return New->setInvalidDecl();
950  }
951
952  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
953
954  // FIXME: The test for external storage here seems wrong? We still
955  // need to check for mismatches.
956  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
957      // Don't complain about out-of-line definitions of static members.
958      !(Old->getLexicalDeclContext()->isRecord() &&
959        !New->getLexicalDeclContext()->isRecord())) {
960    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
961    Diag(Old->getLocation(), diag::note_previous_definition);
962    return New->setInvalidDecl();
963  }
964
965  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
966    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
967    Diag(Old->getLocation(), diag::note_previous_definition);
968  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
969    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
970    Diag(Old->getLocation(), diag::note_previous_definition);
971  }
972
973  // Keep a chain of previous declarations.
974  New->setPreviousDeclaration(Old);
975}
976
977/// CheckParmsForFunctionDef - Check that the parameters of the given
978/// function are appropriate for the definition of a function. This
979/// takes care of any checks that cannot be performed on the
980/// declaration itself, e.g., that the types of each of the function
981/// parameters are complete.
982bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
983  bool HasInvalidParm = false;
984  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
985    ParmVarDecl *Param = FD->getParamDecl(p);
986
987    // C99 6.7.5.3p4: the parameters in a parameter type list in a
988    // function declarator that is part of a function definition of
989    // that function shall not have incomplete type.
990    //
991    // This is also C++ [dcl.fct]p6.
992    if (!Param->isInvalidDecl() &&
993        RequireCompleteType(Param->getLocation(), Param->getType(),
994                               diag::err_typecheck_decl_incomplete_type)) {
995      Param->setInvalidDecl();
996      HasInvalidParm = true;
997    }
998
999    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1000    // declaration of each parameter shall include an identifier.
1001    if (Param->getIdentifier() == 0 &&
1002        !Param->isImplicit() &&
1003        !getLangOptions().CPlusPlus)
1004      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1005  }
1006
1007  return HasInvalidParm;
1008}
1009
1010/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1011/// no declarator (e.g. "struct foo;") is parsed.
1012Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1013  // FIXME: Error on auto/register at file scope
1014  // FIXME: Error on inline/virtual/explicit
1015  // FIXME: Error on invalid restrict
1016  // FIXME: Warn on useless __thread
1017  // FIXME: Warn on useless const/volatile
1018  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1019  // FIXME: Warn on useless attributes
1020
1021  TagDecl *Tag = 0;
1022  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1023      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1024      DS.getTypeSpecType() == DeclSpec::TST_union ||
1025      DS.getTypeSpecType() == DeclSpec::TST_enum)
1026    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1027
1028  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1029    if (!Record->getDeclName() && Record->isDefinition() &&
1030        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1031      if (getLangOptions().CPlusPlus ||
1032          Record->getDeclContext()->isRecord())
1033        return BuildAnonymousStructOrUnion(S, DS, Record);
1034
1035      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1036        << DS.getSourceRange();
1037    }
1038
1039    // Microsoft allows unnamed struct/union fields. Don't complain
1040    // about them.
1041    // FIXME: Should we support Microsoft's extensions in this area?
1042    if (Record->getDeclName() && getLangOptions().Microsoft)
1043      return DeclPtrTy::make(Tag);
1044  }
1045
1046  if (!DS.isMissingDeclaratorOk() &&
1047      DS.getTypeSpecType() != DeclSpec::TST_error) {
1048    // Warn about typedefs of enums without names, since this is an
1049    // extension in both Microsoft an GNU.
1050    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1051        Tag && isa<EnumDecl>(Tag)) {
1052      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1053        << DS.getSourceRange();
1054      return DeclPtrTy::make(Tag);
1055    }
1056
1057    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1058      << DS.getSourceRange();
1059    return DeclPtrTy();
1060  }
1061
1062  return DeclPtrTy::make(Tag);
1063}
1064
1065/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1066/// anonymous struct or union AnonRecord into the owning context Owner
1067/// and scope S. This routine will be invoked just after we realize
1068/// that an unnamed union or struct is actually an anonymous union or
1069/// struct, e.g.,
1070///
1071/// @code
1072/// union {
1073///   int i;
1074///   float f;
1075/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1076///    // f into the surrounding scope.x
1077/// @endcode
1078///
1079/// This routine is recursive, injecting the names of nested anonymous
1080/// structs/unions into the owning context and scope as well.
1081bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1082                                               RecordDecl *AnonRecord) {
1083  bool Invalid = false;
1084  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1085                               FEnd = AnonRecord->field_end(Context);
1086       F != FEnd; ++F) {
1087    if ((*F)->getDeclName()) {
1088      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1089                                                LookupOrdinaryName, true);
1090      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1091        // C++ [class.union]p2:
1092        //   The names of the members of an anonymous union shall be
1093        //   distinct from the names of any other entity in the
1094        //   scope in which the anonymous union is declared.
1095        unsigned diagKind
1096          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1097                                 : diag::err_anonymous_struct_member_redecl;
1098        Diag((*F)->getLocation(), diagKind)
1099          << (*F)->getDeclName();
1100        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1101        Invalid = true;
1102      } else {
1103        // C++ [class.union]p2:
1104        //   For the purpose of name lookup, after the anonymous union
1105        //   definition, the members of the anonymous union are
1106        //   considered to have been defined in the scope in which the
1107        //   anonymous union is declared.
1108        Owner->makeDeclVisibleInContext(Context, *F);
1109        S->AddDecl(DeclPtrTy::make(*F));
1110        IdResolver.AddDecl(*F);
1111      }
1112    } else if (const RecordType *InnerRecordType
1113                 = (*F)->getType()->getAsRecordType()) {
1114      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1115      if (InnerRecord->isAnonymousStructOrUnion())
1116        Invalid = Invalid ||
1117          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1118    }
1119  }
1120
1121  return Invalid;
1122}
1123
1124/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1125/// anonymous structure or union. Anonymous unions are a C++ feature
1126/// (C++ [class.union]) and a GNU C extension; anonymous structures
1127/// are a GNU C and GNU C++ extension.
1128Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1129                                                  RecordDecl *Record) {
1130  DeclContext *Owner = Record->getDeclContext();
1131
1132  // Diagnose whether this anonymous struct/union is an extension.
1133  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1134    Diag(Record->getLocation(), diag::ext_anonymous_union);
1135  else if (!Record->isUnion())
1136    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1137
1138  // C and C++ require different kinds of checks for anonymous
1139  // structs/unions.
1140  bool Invalid = false;
1141  if (getLangOptions().CPlusPlus) {
1142    const char* PrevSpec = 0;
1143    // C++ [class.union]p3:
1144    //   Anonymous unions declared in a named namespace or in the
1145    //   global namespace shall be declared static.
1146    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1147        (isa<TranslationUnitDecl>(Owner) ||
1148         (isa<NamespaceDecl>(Owner) &&
1149          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1150      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1151      Invalid = true;
1152
1153      // Recover by adding 'static'.
1154      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1155    }
1156    // C++ [class.union]p3:
1157    //   A storage class is not allowed in a declaration of an
1158    //   anonymous union in a class scope.
1159    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1160             isa<RecordDecl>(Owner)) {
1161      Diag(DS.getStorageClassSpecLoc(),
1162           diag::err_anonymous_union_with_storage_spec);
1163      Invalid = true;
1164
1165      // Recover by removing the storage specifier.
1166      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1167                             PrevSpec);
1168    }
1169
1170    // C++ [class.union]p2:
1171    //   The member-specification of an anonymous union shall only
1172    //   define non-static data members. [Note: nested types and
1173    //   functions cannot be declared within an anonymous union. ]
1174    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1175                                 MemEnd = Record->decls_end(Context);
1176         Mem != MemEnd; ++Mem) {
1177      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1178        // C++ [class.union]p3:
1179        //   An anonymous union shall not have private or protected
1180        //   members (clause 11).
1181        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1182          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1183            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1184          Invalid = true;
1185        }
1186      } else if ((*Mem)->isImplicit()) {
1187        // Any implicit members are fine.
1188      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1189        // This is a type that showed up in an
1190        // elaborated-type-specifier inside the anonymous struct or
1191        // union, but which actually declares a type outside of the
1192        // anonymous struct or union. It's okay.
1193      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1194        if (!MemRecord->isAnonymousStructOrUnion() &&
1195            MemRecord->getDeclName()) {
1196          // This is a nested type declaration.
1197          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1198            << (int)Record->isUnion();
1199          Invalid = true;
1200        }
1201      } else {
1202        // We have something that isn't a non-static data
1203        // member. Complain about it.
1204        unsigned DK = diag::err_anonymous_record_bad_member;
1205        if (isa<TypeDecl>(*Mem))
1206          DK = diag::err_anonymous_record_with_type;
1207        else if (isa<FunctionDecl>(*Mem))
1208          DK = diag::err_anonymous_record_with_function;
1209        else if (isa<VarDecl>(*Mem))
1210          DK = diag::err_anonymous_record_with_static;
1211        Diag((*Mem)->getLocation(), DK)
1212            << (int)Record->isUnion();
1213          Invalid = true;
1214      }
1215    }
1216  }
1217
1218  if (!Record->isUnion() && !Owner->isRecord()) {
1219    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1220      << (int)getLangOptions().CPlusPlus;
1221    Invalid = true;
1222  }
1223
1224  // Create a declaration for this anonymous struct/union.
1225  NamedDecl *Anon = 0;
1226  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1227    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1228                             /*IdentifierInfo=*/0,
1229                             Context.getTypeDeclType(Record),
1230                             /*BitWidth=*/0, /*Mutable=*/false);
1231    Anon->setAccess(AS_public);
1232    if (getLangOptions().CPlusPlus)
1233      FieldCollector->Add(cast<FieldDecl>(Anon));
1234  } else {
1235    VarDecl::StorageClass SC;
1236    switch (DS.getStorageClassSpec()) {
1237    default: assert(0 && "Unknown storage class!");
1238    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1239    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1240    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1241    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1242    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1243    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1244    case DeclSpec::SCS_mutable:
1245      // mutable can only appear on non-static class members, so it's always
1246      // an error here
1247      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1248      Invalid = true;
1249      SC = VarDecl::None;
1250      break;
1251    }
1252
1253    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1254                           /*IdentifierInfo=*/0,
1255                           Context.getTypeDeclType(Record),
1256                           SC, DS.getSourceRange().getBegin());
1257  }
1258  Anon->setImplicit();
1259
1260  // Add the anonymous struct/union object to the current
1261  // context. We'll be referencing this object when we refer to one of
1262  // its members.
1263  Owner->addDecl(Context, Anon);
1264
1265  // Inject the members of the anonymous struct/union into the owning
1266  // context and into the identifier resolver chain for name lookup
1267  // purposes.
1268  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1269    Invalid = true;
1270
1271  // Mark this as an anonymous struct/union type. Note that we do not
1272  // do this until after we have already checked and injected the
1273  // members of this anonymous struct/union type, because otherwise
1274  // the members could be injected twice: once by DeclContext when it
1275  // builds its lookup table, and once by
1276  // InjectAnonymousStructOrUnionMembers.
1277  Record->setAnonymousStructOrUnion(true);
1278
1279  if (Invalid)
1280    Anon->setInvalidDecl();
1281
1282  return DeclPtrTy::make(Anon);
1283}
1284
1285
1286/// GetNameForDeclarator - Determine the full declaration name for the
1287/// given Declarator.
1288DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1289  switch (D.getKind()) {
1290  case Declarator::DK_Abstract:
1291    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1292    return DeclarationName();
1293
1294  case Declarator::DK_Normal:
1295    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1296    return DeclarationName(D.getIdentifier());
1297
1298  case Declarator::DK_Constructor: {
1299    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1300    Ty = Context.getCanonicalType(Ty);
1301    return Context.DeclarationNames.getCXXConstructorName(Ty);
1302  }
1303
1304  case Declarator::DK_Destructor: {
1305    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1306    Ty = Context.getCanonicalType(Ty);
1307    return Context.DeclarationNames.getCXXDestructorName(Ty);
1308  }
1309
1310  case Declarator::DK_Conversion: {
1311    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1312    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1313    Ty = Context.getCanonicalType(Ty);
1314    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1315  }
1316
1317  case Declarator::DK_Operator:
1318    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1319    return Context.DeclarationNames.getCXXOperatorName(
1320                                                D.getOverloadedOperator());
1321  }
1322
1323  assert(false && "Unknown name kind");
1324  return DeclarationName();
1325}
1326
1327/// isNearlyMatchingFunction - Determine whether the C++ functions
1328/// Declaration and Definition are "nearly" matching. This heuristic
1329/// is used to improve diagnostics in the case where an out-of-line
1330/// function definition doesn't match any declaration within
1331/// the class or namespace.
1332static bool isNearlyMatchingFunction(ASTContext &Context,
1333                                     FunctionDecl *Declaration,
1334                                     FunctionDecl *Definition) {
1335  if (Declaration->param_size() != Definition->param_size())
1336    return false;
1337  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1338    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1339    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1340
1341    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1342    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1343    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1344      return false;
1345  }
1346
1347  return true;
1348}
1349
1350Sema::DeclPtrTy
1351Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1352  DeclarationName Name = GetNameForDeclarator(D);
1353
1354  // All of these full declarators require an identifier.  If it doesn't have
1355  // one, the ParsedFreeStandingDeclSpec action should be used.
1356  if (!Name) {
1357    if (!D.isInvalidType())  // Reject this if we think it is valid.
1358      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1359           diag::err_declarator_need_ident)
1360        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1361    return DeclPtrTy();
1362  }
1363
1364  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1365  // we find one that is.
1366  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1367         (S->getFlags() & Scope::TemplateParamScope) != 0)
1368    S = S->getParent();
1369
1370  DeclContext *DC;
1371  NamedDecl *PrevDecl;
1372  NamedDecl *New;
1373
1374  QualType R = GetTypeForDeclarator(D, S);
1375
1376  // See if this is a redefinition of a variable in the same scope.
1377  if (D.getCXXScopeSpec().isInvalid()) {
1378    DC = CurContext;
1379    PrevDecl = 0;
1380    D.setInvalidType();
1381  } else if (!D.getCXXScopeSpec().isSet()) {
1382    LookupNameKind NameKind = LookupOrdinaryName;
1383
1384    // If the declaration we're planning to build will be a function
1385    // or object with linkage, then look for another declaration with
1386    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1387    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1388      /* Do nothing*/;
1389    else if (R->isFunctionType()) {
1390      if (CurContext->isFunctionOrMethod())
1391        NameKind = LookupRedeclarationWithLinkage;
1392    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1393      NameKind = LookupRedeclarationWithLinkage;
1394
1395    DC = CurContext;
1396    PrevDecl = LookupName(S, Name, NameKind, true,
1397                          D.getDeclSpec().getStorageClassSpec() !=
1398                            DeclSpec::SCS_static,
1399                          D.getIdentifierLoc());
1400  } else { // Something like "int foo::x;"
1401    DC = computeDeclContext(D.getCXXScopeSpec());
1402    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1403    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1404
1405    // C++ 7.3.1.2p2:
1406    // Members (including explicit specializations of templates) of a named
1407    // namespace can also be defined outside that namespace by explicit
1408    // qualification of the name being defined, provided that the entity being
1409    // defined was already declared in the namespace and the definition appears
1410    // after the point of declaration in a namespace that encloses the
1411    // declarations namespace.
1412    //
1413    // Note that we only check the context at this point. We don't yet
1414    // have enough information to make sure that PrevDecl is actually
1415    // the declaration we want to match. For example, given:
1416    //
1417    //   class X {
1418    //     void f();
1419    //     void f(float);
1420    //   };
1421    //
1422    //   void X::f(int) { } // ill-formed
1423    //
1424    // In this case, PrevDecl will point to the overload set
1425    // containing the two f's declared in X, but neither of them
1426    // matches.
1427
1428    // First check whether we named the global scope.
1429    if (isa<TranslationUnitDecl>(DC)) {
1430      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1431        << Name << D.getCXXScopeSpec().getRange();
1432    } else if (!CurContext->Encloses(DC)) {
1433      // The qualifying scope doesn't enclose the original declaration.
1434      // Emit diagnostic based on current scope.
1435      SourceLocation L = D.getIdentifierLoc();
1436      SourceRange R = D.getCXXScopeSpec().getRange();
1437      if (isa<FunctionDecl>(CurContext))
1438        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1439      else
1440        Diag(L, diag::err_invalid_declarator_scope)
1441          << Name << cast<NamedDecl>(DC) << R;
1442      D.setInvalidType();
1443    }
1444  }
1445
1446  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1447    // Maybe we will complain about the shadowed template parameter.
1448    if (!D.isInvalidType())
1449      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1450        D.setInvalidType();
1451
1452    // Just pretend that we didn't see the previous declaration.
1453    PrevDecl = 0;
1454  }
1455
1456  // In C++, the previous declaration we find might be a tag type
1457  // (class or enum). In this case, the new declaration will hide the
1458  // tag type. Note that this does does not apply if we're declaring a
1459  // typedef (C++ [dcl.typedef]p4).
1460  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1461      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1462    PrevDecl = 0;
1463
1464  bool Redeclaration = false;
1465  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1466    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1467  } else if (R->isFunctionType()) {
1468    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1469                                  IsFunctionDefinition, Redeclaration);
1470  } else {
1471    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1472  }
1473
1474  if (New == 0)
1475    return DeclPtrTy();
1476
1477  // If this has an identifier and is not an invalid redeclaration,
1478  // add it to the scope stack.
1479  if (Name && !(Redeclaration && New->isInvalidDecl()))
1480    PushOnScopeChains(New, S);
1481
1482  return DeclPtrTy::make(New);
1483}
1484
1485/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1486/// types into constant array types in certain situations which would otherwise
1487/// be errors (for GCC compatibility).
1488static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1489                                                    ASTContext &Context,
1490                                                    bool &SizeIsNegative) {
1491  // This method tries to turn a variable array into a constant
1492  // array even when the size isn't an ICE.  This is necessary
1493  // for compatibility with code that depends on gcc's buggy
1494  // constant expression folding, like struct {char x[(int)(char*)2];}
1495  SizeIsNegative = false;
1496
1497  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1498    QualType Pointee = PTy->getPointeeType();
1499    QualType FixedType =
1500        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1501    if (FixedType.isNull()) return FixedType;
1502    FixedType = Context.getPointerType(FixedType);
1503    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1504    return FixedType;
1505  }
1506
1507  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1508  if (!VLATy)
1509    return QualType();
1510  // FIXME: We should probably handle this case
1511  if (VLATy->getElementType()->isVariablyModifiedType())
1512    return QualType();
1513
1514  Expr::EvalResult EvalResult;
1515  if (!VLATy->getSizeExpr() ||
1516      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1517      !EvalResult.Val.isInt())
1518    return QualType();
1519
1520  llvm::APSInt &Res = EvalResult.Val.getInt();
1521  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1522    return Context.getConstantArrayType(VLATy->getElementType(),
1523                                        Res, ArrayType::Normal, 0);
1524
1525  SizeIsNegative = true;
1526  return QualType();
1527}
1528
1529/// \brief Register the given locally-scoped external C declaration so
1530/// that it can be found later for redeclarations
1531void
1532Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1533                                       Scope *S) {
1534  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1535         "Decl is not a locally-scoped decl!");
1536  // Note that we have a locally-scoped external with this name.
1537  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1538
1539  if (!PrevDecl)
1540    return;
1541
1542  // If there was a previous declaration of this variable, it may be
1543  // in our identifier chain. Update the identifier chain with the new
1544  // declaration.
1545  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1546    // The previous declaration was found on the identifer resolver
1547    // chain, so remove it from its scope.
1548    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1549      S = S->getParent();
1550
1551    if (S)
1552      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1553  }
1554}
1555
1556/// \brief Diagnose function specifiers on a declaration of an identifier that
1557/// does not identify a function.
1558void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1559  // FIXME: We should probably indicate the identifier in question to avoid
1560  // confusion for constructs like "inline int a(), b;"
1561  if (D.getDeclSpec().isInlineSpecified())
1562    Diag(D.getDeclSpec().getInlineSpecLoc(),
1563         diag::err_inline_non_function);
1564
1565  if (D.getDeclSpec().isVirtualSpecified())
1566    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1567         diag::err_virtual_non_function);
1568
1569  if (D.getDeclSpec().isExplicitSpecified())
1570    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1571         diag::err_explicit_non_function);
1572}
1573
1574NamedDecl*
1575Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1576                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1577  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1578  if (D.getCXXScopeSpec().isSet()) {
1579    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1580      << D.getCXXScopeSpec().getRange();
1581    D.setInvalidType();
1582    // Pretend we didn't see the scope specifier.
1583    DC = 0;
1584  }
1585
1586  if (getLangOptions().CPlusPlus) {
1587    // Check that there are no default arguments (C++ only).
1588    CheckExtraCXXDefaultArguments(D);
1589  }
1590
1591  DiagnoseFunctionSpecifiers(D);
1592
1593  if (D.getDeclSpec().isThreadSpecified())
1594    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1595
1596  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1597  if (!NewTD) return 0;
1598
1599  if (D.isInvalidType())
1600    NewTD->setInvalidDecl();
1601
1602  // Handle attributes prior to checking for duplicates in MergeVarDecl
1603  ProcessDeclAttributes(NewTD, D);
1604  // Merge the decl with the existing one if appropriate. If the decl is
1605  // in an outer scope, it isn't the same thing.
1606  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1607    Redeclaration = true;
1608    MergeTypeDefDecl(NewTD, PrevDecl);
1609  }
1610
1611  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1612  // then it shall have block scope.
1613  QualType T = NewTD->getUnderlyingType();
1614  if (T->isVariablyModifiedType()) {
1615    CurFunctionNeedsScopeChecking = true;
1616
1617    if (S->getFnParent() == 0) {
1618      bool SizeIsNegative;
1619      QualType FixedTy =
1620          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1621      if (!FixedTy.isNull()) {
1622        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1623        NewTD->setUnderlyingType(FixedTy);
1624      } else {
1625        if (SizeIsNegative)
1626          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1627        else if (T->isVariableArrayType())
1628          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1629        else
1630          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1631        NewTD->setInvalidDecl();
1632      }
1633    }
1634  }
1635  return NewTD;
1636}
1637
1638/// \brief Determines whether the given declaration is an out-of-scope
1639/// previous declaration.
1640///
1641/// This routine should be invoked when name lookup has found a
1642/// previous declaration (PrevDecl) that is not in the scope where a
1643/// new declaration by the same name is being introduced. If the new
1644/// declaration occurs in a local scope, previous declarations with
1645/// linkage may still be considered previous declarations (C99
1646/// 6.2.2p4-5, C++ [basic.link]p6).
1647///
1648/// \param PrevDecl the previous declaration found by name
1649/// lookup
1650///
1651/// \param DC the context in which the new declaration is being
1652/// declared.
1653///
1654/// \returns true if PrevDecl is an out-of-scope previous declaration
1655/// for a new delcaration with the same name.
1656static bool
1657isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1658                                ASTContext &Context) {
1659  if (!PrevDecl)
1660    return 0;
1661
1662  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1663  // case we need to check each of the overloaded functions.
1664  if (!PrevDecl->hasLinkage())
1665    return false;
1666
1667  if (Context.getLangOptions().CPlusPlus) {
1668    // C++ [basic.link]p6:
1669    //   If there is a visible declaration of an entity with linkage
1670    //   having the same name and type, ignoring entities declared
1671    //   outside the innermost enclosing namespace scope, the block
1672    //   scope declaration declares that same entity and receives the
1673    //   linkage of the previous declaration.
1674    DeclContext *OuterContext = DC->getLookupContext();
1675    if (!OuterContext->isFunctionOrMethod())
1676      // This rule only applies to block-scope declarations.
1677      return false;
1678    else {
1679      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1680      if (PrevOuterContext->isRecord())
1681        // We found a member function: ignore it.
1682        return false;
1683      else {
1684        // Find the innermost enclosing namespace for the new and
1685        // previous declarations.
1686        while (!OuterContext->isFileContext())
1687          OuterContext = OuterContext->getParent();
1688        while (!PrevOuterContext->isFileContext())
1689          PrevOuterContext = PrevOuterContext->getParent();
1690
1691        // The previous declaration is in a different namespace, so it
1692        // isn't the same function.
1693        if (OuterContext->getPrimaryContext() !=
1694            PrevOuterContext->getPrimaryContext())
1695          return false;
1696      }
1697    }
1698  }
1699
1700  return true;
1701}
1702
1703NamedDecl*
1704Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1705                              QualType R,NamedDecl* PrevDecl,
1706                              bool &Redeclaration) {
1707  DeclarationName Name = GetNameForDeclarator(D);
1708
1709  // Check that there are no default arguments (C++ only).
1710  if (getLangOptions().CPlusPlus)
1711    CheckExtraCXXDefaultArguments(D);
1712
1713  VarDecl *NewVD;
1714  VarDecl::StorageClass SC;
1715  switch (D.getDeclSpec().getStorageClassSpec()) {
1716  default: assert(0 && "Unknown storage class!");
1717  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1718  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1719  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1720  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1721  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1722  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1723  case DeclSpec::SCS_mutable:
1724    // mutable can only appear on non-static class members, so it's always
1725    // an error here
1726    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1727    D.setInvalidType();
1728    SC = VarDecl::None;
1729    break;
1730  }
1731
1732  IdentifierInfo *II = Name.getAsIdentifierInfo();
1733  if (!II) {
1734    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1735      << Name.getAsString();
1736    return 0;
1737  }
1738
1739  DiagnoseFunctionSpecifiers(D);
1740
1741  if (!DC->isRecord() && S->getFnParent() == 0) {
1742    // C99 6.9p2: The storage-class specifiers auto and register shall not
1743    // appear in the declaration specifiers in an external declaration.
1744    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1745
1746      // If this is a register variable with an asm label specified, then this
1747      // is a GNU extension.
1748      if (SC == VarDecl::Register && D.getAsmLabel())
1749        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1750      else
1751        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1752      D.setInvalidType();
1753    }
1754  }
1755  if (DC->isRecord() && !CurContext->isRecord()) {
1756    // This is an out-of-line definition of a static data member.
1757    if (SC == VarDecl::Static) {
1758      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1759           diag::err_static_out_of_line)
1760        << CodeModificationHint::CreateRemoval(
1761                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1762    } else if (SC == VarDecl::None)
1763      SC = VarDecl::Static;
1764  }
1765
1766  // The variable can not
1767  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1768                          II, R, SC,
1769                          // FIXME: Move to DeclGroup...
1770                          D.getDeclSpec().getSourceRange().getBegin());
1771
1772  if (D.isInvalidType())
1773    NewVD->setInvalidDecl();
1774
1775  if (D.getDeclSpec().isThreadSpecified()) {
1776    if (NewVD->hasLocalStorage())
1777      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1778    else if (!Context.Target.isTLSSupported())
1779      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1780    else
1781      NewVD->setThreadSpecified(true);
1782  }
1783
1784  // Set the lexical context. If the declarator has a C++ scope specifier, the
1785  // lexical context will be different from the semantic context.
1786  NewVD->setLexicalDeclContext(CurContext);
1787
1788  // Handle attributes prior to checking for duplicates in MergeVarDecl
1789  ProcessDeclAttributes(NewVD, D);
1790
1791  // Handle GNU asm-label extension (encoded as an attribute).
1792  if (Expr *E = (Expr*) D.getAsmLabel()) {
1793    // The parser guarantees this is a string.
1794    StringLiteral *SE = cast<StringLiteral>(E);
1795    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1796                                                        SE->getByteLength())));
1797  }
1798
1799  // If name lookup finds a previous declaration that is not in the
1800  // same scope as the new declaration, this may still be an
1801  // acceptable redeclaration.
1802  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1803      !(NewVD->hasLinkage() &&
1804        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1805    PrevDecl = 0;
1806
1807  // Merge the decl with the existing one if appropriate.
1808  if (PrevDecl) {
1809    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1810      // The user tried to define a non-static data member
1811      // out-of-line (C++ [dcl.meaning]p1).
1812      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1813        << D.getCXXScopeSpec().getRange();
1814      PrevDecl = 0;
1815      NewVD->setInvalidDecl();
1816    }
1817  } else if (D.getCXXScopeSpec().isSet()) {
1818    // No previous declaration in the qualifying scope.
1819    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1820      << Name << D.getCXXScopeSpec().getRange();
1821    NewVD->setInvalidDecl();
1822  }
1823
1824  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1825
1826  // If this is a locally-scoped extern C variable, update the map of
1827  // such variables.
1828  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1829      !NewVD->isInvalidDecl())
1830    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1831
1832  return NewVD;
1833}
1834
1835/// \brief Perform semantic checking on a newly-created variable
1836/// declaration.
1837///
1838/// This routine performs all of the type-checking required for a
1839/// variable declaration once it has been built. It is used both to
1840/// check variables after they have been parsed and their declarators
1841/// have been translated into a declaration, and to check variables
1842/// that have been instantiated from a template.
1843///
1844/// Sets NewVD->isInvalidDecl() if an error was encountered.
1845void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1846                                    bool &Redeclaration) {
1847  // If the decl is already known invalid, don't check it.
1848  if (NewVD->isInvalidDecl())
1849    return;
1850
1851  QualType T = NewVD->getType();
1852
1853  if (T->isObjCInterfaceType()) {
1854    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1855    return NewVD->setInvalidDecl();
1856  }
1857
1858  // The variable can not have an abstract class type.
1859  if (RequireNonAbstractType(NewVD->getLocation(), T,
1860                             diag::err_abstract_type_in_decl,
1861                             AbstractVariableType))
1862    return NewVD->setInvalidDecl();
1863
1864  // Emit an error if an address space was applied to decl with local storage.
1865  // This includes arrays of objects with address space qualifiers, but not
1866  // automatic variables that point to other address spaces.
1867  // ISO/IEC TR 18037 S5.1.2
1868  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1869    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1870    return NewVD->setInvalidDecl();
1871  }
1872
1873  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1874      && !NewVD->hasAttr<BlocksAttr>())
1875    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1876
1877  bool isVM = T->isVariablyModifiedType();
1878  if (isVM || NewVD->hasAttr<CleanupAttr>())
1879    CurFunctionNeedsScopeChecking = true;
1880
1881  if ((isVM && NewVD->hasLinkage()) ||
1882      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1883    bool SizeIsNegative;
1884    QualType FixedTy =
1885        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1886
1887    if (FixedTy.isNull() && T->isVariableArrayType()) {
1888      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1889      // FIXME: This won't give the correct result for
1890      // int a[10][n];
1891      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1892
1893      if (NewVD->isFileVarDecl())
1894        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1895        << SizeRange;
1896      else if (NewVD->getStorageClass() == VarDecl::Static)
1897        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1898        << SizeRange;
1899      else
1900        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1901        << SizeRange;
1902      return NewVD->setInvalidDecl();
1903    }
1904
1905    if (FixedTy.isNull()) {
1906      if (NewVD->isFileVarDecl())
1907        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1908      else
1909        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1910      return NewVD->setInvalidDecl();
1911    }
1912
1913    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1914    NewVD->setType(FixedTy);
1915  }
1916
1917  if (!PrevDecl && NewVD->isExternC(Context)) {
1918    // Since we did not find anything by this name and we're declaring
1919    // an extern "C" variable, look for a non-visible extern "C"
1920    // declaration with the same name.
1921    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1922      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1923    if (Pos != LocallyScopedExternalDecls.end())
1924      PrevDecl = Pos->second;
1925  }
1926
1927  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1928    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1929      << T;
1930    return NewVD->setInvalidDecl();
1931  }
1932
1933  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1934    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1935    return NewVD->setInvalidDecl();
1936  }
1937
1938  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1939    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1940    return NewVD->setInvalidDecl();
1941  }
1942
1943  if (PrevDecl) {
1944    Redeclaration = true;
1945    MergeVarDecl(NewVD, PrevDecl);
1946  }
1947}
1948
1949NamedDecl*
1950Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1951                              QualType R, NamedDecl* PrevDecl,
1952                              bool IsFunctionDefinition, bool &Redeclaration) {
1953  assert(R.getTypePtr()->isFunctionType());
1954
1955  DeclarationName Name = GetNameForDeclarator(D);
1956  FunctionDecl::StorageClass SC = FunctionDecl::None;
1957  switch (D.getDeclSpec().getStorageClassSpec()) {
1958  default: assert(0 && "Unknown storage class!");
1959  case DeclSpec::SCS_auto:
1960  case DeclSpec::SCS_register:
1961  case DeclSpec::SCS_mutable:
1962    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1963         diag::err_typecheck_sclass_func);
1964    D.setInvalidType();
1965    break;
1966  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1967  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1968  case DeclSpec::SCS_static: {
1969    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1970      // C99 6.7.1p5:
1971      //   The declaration of an identifier for a function that has
1972      //   block scope shall have no explicit storage-class specifier
1973      //   other than extern
1974      // See also (C++ [dcl.stc]p4).
1975      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1976           diag::err_static_block_func);
1977      SC = FunctionDecl::None;
1978    } else
1979      SC = FunctionDecl::Static;
1980    break;
1981  }
1982  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1983  }
1984
1985  if (D.getDeclSpec().isThreadSpecified())
1986    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1987
1988  bool isInline = D.getDeclSpec().isInlineSpecified();
1989  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1990  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1991
1992  // Check that the return type is not an abstract class type.
1993  // For record types, this is done by the AbstractClassUsageDiagnoser once
1994  // the class has been completely parsed.
1995  if (!DC->isRecord() &&
1996      RequireNonAbstractType(D.getIdentifierLoc(),
1997                             R->getAsFunctionType()->getResultType(),
1998                             diag::err_abstract_type_in_decl,
1999                             AbstractReturnType))
2000    D.setInvalidType();
2001
2002  // Do not allow returning a objc interface by-value.
2003  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2004    Diag(D.getIdentifierLoc(),
2005         diag::err_object_cannot_be_passed_returned_by_value) << 0
2006      << R->getAsFunctionType()->getResultType();
2007    D.setInvalidType();
2008  }
2009
2010  bool isVirtualOkay = false;
2011  FunctionDecl *NewFD;
2012  if (D.getKind() == Declarator::DK_Constructor) {
2013    // This is a C++ constructor declaration.
2014    assert(DC->isRecord() &&
2015           "Constructors can only be declared in a member context");
2016
2017    R = CheckConstructorDeclarator(D, R, SC);
2018
2019    // Create the new declaration
2020    NewFD = CXXConstructorDecl::Create(Context,
2021                                       cast<CXXRecordDecl>(DC),
2022                                       D.getIdentifierLoc(), Name, R,
2023                                       isExplicit, isInline,
2024                                       /*isImplicitlyDeclared=*/false);
2025  } else if (D.getKind() == Declarator::DK_Destructor) {
2026    // This is a C++ destructor declaration.
2027    if (DC->isRecord()) {
2028      R = CheckDestructorDeclarator(D, SC);
2029
2030      NewFD = CXXDestructorDecl::Create(Context,
2031                                        cast<CXXRecordDecl>(DC),
2032                                        D.getIdentifierLoc(), Name, R,
2033                                        isInline,
2034                                        /*isImplicitlyDeclared=*/false);
2035
2036      isVirtualOkay = true;
2037    } else {
2038      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2039
2040      // Create a FunctionDecl to satisfy the function definition parsing
2041      // code path.
2042      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2043                                   Name, R, SC, isInline,
2044                                   /*hasPrototype=*/true,
2045                                   // FIXME: Move to DeclGroup...
2046                                   D.getDeclSpec().getSourceRange().getBegin());
2047      D.setInvalidType();
2048    }
2049  } else if (D.getKind() == Declarator::DK_Conversion) {
2050    if (!DC->isRecord()) {
2051      Diag(D.getIdentifierLoc(),
2052           diag::err_conv_function_not_member);
2053      return 0;
2054    }
2055
2056    CheckConversionDeclarator(D, R, SC);
2057    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2058                                      D.getIdentifierLoc(), Name, R,
2059                                      isInline, isExplicit);
2060
2061    isVirtualOkay = true;
2062  } else if (DC->isRecord()) {
2063    // If the of the function is the same as the name of the record, then this
2064    // must be an invalid constructor that has a return type.
2065    // (The parser checks for a return type and makes the declarator a
2066    // constructor if it has no return type).
2067    // must have an invalid constructor that has a return type
2068    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2069      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2070        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2071        << SourceRange(D.getIdentifierLoc());
2072      return 0;
2073    }
2074
2075    // This is a C++ method declaration.
2076
2077    // FIXME: All inline method declarations are semantically inline.  We
2078    // should add a new bit to keep track of whether they were declared with an
2079    // inline keyword as well.
2080    if (CurContext == DC && IsFunctionDefinition)
2081      isInline = true;
2082
2083    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2084                                  D.getIdentifierLoc(), Name, R,
2085                                  (SC == FunctionDecl::Static), isInline);
2086
2087    isVirtualOkay = (SC != FunctionDecl::Static);
2088  } else {
2089    // Determine whether the function was written with a
2090    // prototype. This true when:
2091    //   - we're in C++ (where every function has a prototype),
2092    //   - there is a prototype in the declarator, or
2093    //   - the type R of the function is some kind of typedef or other reference
2094    //     to a type name (which eventually refers to a function type).
2095    bool HasPrototype =
2096       getLangOptions().CPlusPlus ||
2097       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2098       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2099
2100    NewFD = FunctionDecl::Create(Context, DC,
2101                                 D.getIdentifierLoc(),
2102                                 Name, R, SC, isInline, HasPrototype,
2103                                 // FIXME: Move to DeclGroup...
2104                                 D.getDeclSpec().getSourceRange().getBegin());
2105  }
2106
2107  if (D.isInvalidType())
2108    NewFD->setInvalidDecl();
2109
2110  // Set the lexical context. If the declarator has a C++
2111  // scope specifier, the lexical context will be different
2112  // from the semantic context.
2113  NewFD->setLexicalDeclContext(CurContext);
2114
2115  // C++ [dcl.fct.spec]p5:
2116  //   The virtual specifier shall only be used in declarations of
2117  //   nonstatic class member functions that appear within a
2118  //   member-specification of a class declaration; see 10.3.
2119  //
2120  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2121  // function is also virtual if it overrides an already virtual
2122  // function. This is important to do here because it's part of the
2123  // declaration.
2124  if (isVirtual && !NewFD->isInvalidDecl()) {
2125    if (!isVirtualOkay) {
2126       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2127           diag::err_virtual_non_function);
2128    } else if (!CurContext->isRecord()) {
2129      // 'virtual' was specified outside of the class.
2130      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2131        << CodeModificationHint::CreateRemoval(
2132                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2133    } else {
2134      // Okay: Add virtual to the method.
2135      cast<CXXMethodDecl>(NewFD)->setVirtual();
2136      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2137      CurClass->setAggregate(false);
2138      CurClass->setPOD(false);
2139      CurClass->setPolymorphic(true);
2140      CurClass->setHasTrivialConstructor(false);
2141    }
2142  }
2143
2144  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2145      !CurContext->isRecord()) {
2146    // C++ [class.static]p1:
2147    //   A data or function member of a class may be declared static
2148    //   in a class definition, in which case it is a static member of
2149    //   the class.
2150
2151    // Complain about the 'static' specifier if it's on an out-of-line
2152    // member function definition.
2153    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2154         diag::err_static_out_of_line)
2155      << CodeModificationHint::CreateRemoval(
2156                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2157  }
2158
2159  // Handle GNU asm-label extension (encoded as an attribute).
2160  if (Expr *E = (Expr*) D.getAsmLabel()) {
2161    // The parser guarantees this is a string.
2162    StringLiteral *SE = cast<StringLiteral>(E);
2163    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2164                                                        SE->getByteLength())));
2165  }
2166
2167  // Copy the parameter declarations from the declarator D to the function
2168  // declaration NewFD, if they are available.  First scavenge them into Params.
2169  llvm::SmallVector<ParmVarDecl*, 16> Params;
2170  if (D.getNumTypeObjects() > 0) {
2171    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2172
2173    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2174    // function that takes no arguments, not a function that takes a
2175    // single void argument.
2176    // We let through "const void" here because Sema::GetTypeForDeclarator
2177    // already checks for that case.
2178    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2179        FTI.ArgInfo[0].Param &&
2180        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2181      // Empty arg list, don't push any params.
2182      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2183
2184      // In C++, the empty parameter-type-list must be spelled "void"; a
2185      // typedef of void is not permitted.
2186      if (getLangOptions().CPlusPlus &&
2187          Param->getType().getUnqualifiedType() != Context.VoidTy)
2188        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2189      // FIXME: Leaks decl?
2190    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2191      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2192        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2193    }
2194
2195  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2196    // When we're declaring a function with a typedef, typeof, etc as in the
2197    // following example, we'll need to synthesize (unnamed)
2198    // parameters for use in the declaration.
2199    //
2200    // @code
2201    // typedef void fn(int);
2202    // fn f;
2203    // @endcode
2204
2205    // Synthesize a parameter for each argument type.
2206    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2207         AE = FT->arg_type_end(); AI != AE; ++AI) {
2208      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2209                                               SourceLocation(), 0,
2210                                               *AI, VarDecl::None, 0);
2211      Param->setImplicit();
2212      Params.push_back(Param);
2213    }
2214  } else {
2215    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2216           "Should not need args for typedef of non-prototype fn");
2217  }
2218  // Finally, we know we have the right number of parameters, install them.
2219  NewFD->setParams(Context, &Params[0], Params.size());
2220
2221
2222
2223  // If name lookup finds a previous declaration that is not in the
2224  // same scope as the new declaration, this may still be an
2225  // acceptable redeclaration.
2226  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2227      !(NewFD->hasLinkage() &&
2228        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2229    PrevDecl = 0;
2230
2231  // Perform semantic checking on the function declaration.
2232  bool OverloadableAttrRequired = false; // FIXME: HACK!
2233  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2234                           /*FIXME:*/OverloadableAttrRequired);
2235
2236  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2237    // An out-of-line member function declaration must also be a
2238    // definition (C++ [dcl.meaning]p1).
2239    if (!IsFunctionDefinition) {
2240      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2241        << D.getCXXScopeSpec().getRange();
2242      NewFD->setInvalidDecl();
2243    } else if (!Redeclaration) {
2244      // The user tried to provide an out-of-line definition for a
2245      // function that is a member of a class or namespace, but there
2246      // was no such member function declared (C++ [class.mfct]p2,
2247      // C++ [namespace.memdef]p2). For example:
2248      //
2249      // class X {
2250      //   void f() const;
2251      // };
2252      //
2253      // void X::f() { } // ill-formed
2254      //
2255      // Complain about this problem, and attempt to suggest close
2256      // matches (e.g., those that differ only in cv-qualifiers and
2257      // whether the parameter types are references).
2258      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2259        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2260      NewFD->setInvalidDecl();
2261
2262      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2263                                              true);
2264      assert(!Prev.isAmbiguous() &&
2265             "Cannot have an ambiguity in previous-declaration lookup");
2266      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2267           Func != FuncEnd; ++Func) {
2268        if (isa<FunctionDecl>(*Func) &&
2269            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2270          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2271      }
2272
2273      PrevDecl = 0;
2274    }
2275  }
2276
2277  // Handle attributes. We need to have merged decls when handling attributes
2278  // (for example to check for conflicts, etc).
2279  // FIXME: This needs to happen before we merge declarations. Then,
2280  // let attribute merging cope with attribute conflicts.
2281  ProcessDeclAttributes(NewFD, D);
2282  AddKnownFunctionAttributes(NewFD);
2283
2284  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2285    // If a function name is overloadable in C, then every function
2286    // with that name must be marked "overloadable".
2287    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2288      << Redeclaration << NewFD;
2289    if (PrevDecl)
2290      Diag(PrevDecl->getLocation(),
2291           diag::note_attribute_overloadable_prev_overload);
2292    NewFD->addAttr(::new (Context) OverloadableAttr());
2293  }
2294
2295  // If this is a locally-scoped extern C function, update the
2296  // map of such names.
2297  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2298      && !NewFD->isInvalidDecl())
2299    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2300
2301  return NewFD;
2302}
2303
2304/// \brief Perform semantic checking of a new function declaration.
2305///
2306/// Performs semantic analysis of the new function declaration
2307/// NewFD. This routine performs all semantic checking that does not
2308/// require the actual declarator involved in the declaration, and is
2309/// used both for the declaration of functions as they are parsed
2310/// (called via ActOnDeclarator) and for the declaration of functions
2311/// that have been instantiated via C++ template instantiation (called
2312/// via InstantiateDecl).
2313///
2314/// This sets NewFD->isInvalidDecl() to true if there was an error.
2315void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2316                                    bool &Redeclaration,
2317                                    bool &OverloadableAttrRequired) {
2318  // If NewFD is already known erroneous, don't do any of this checking.
2319  if (NewFD->isInvalidDecl())
2320    return;
2321
2322  // Semantic checking for this function declaration (in isolation).
2323  if (getLangOptions().CPlusPlus) {
2324    // C++-specific checks.
2325    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2326      CheckConstructor(Constructor);
2327    } else if (isa<CXXDestructorDecl>(NewFD)) {
2328      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2329      Record->setUserDeclaredDestructor(true);
2330      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2331      // user-defined destructor.
2332      Record->setPOD(false);
2333
2334      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2335      // declared destructor.
2336      Record->setHasTrivialDestructor(false);
2337    } else if (CXXConversionDecl *Conversion
2338               = dyn_cast<CXXConversionDecl>(NewFD))
2339      ActOnConversionDeclarator(Conversion);
2340
2341    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2342    if (NewFD->isOverloadedOperator() &&
2343        CheckOverloadedOperatorDeclaration(NewFD))
2344      return NewFD->setInvalidDecl();
2345  }
2346
2347  // C99 6.7.4p6:
2348  //   [... ] For a function with external linkage, the following
2349  //   restrictions apply: [...] If all of the file scope declarations
2350  //   for a function in a translation unit include the inline
2351  //   function specifier without extern, then the definition in that
2352  //   translation unit is an inline definition. An inline definition
2353  //   does not provide an external definition for the function, and
2354  //   does not forbid an external definition in another translation
2355  //   unit.
2356  //
2357  // Here we determine whether this function, in isolation, would be a
2358  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2359  // previous declarations.
2360  if (NewFD->isInline() && getLangOptions().C99 &&
2361      NewFD->getStorageClass() == FunctionDecl::None &&
2362      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2363    NewFD->setC99InlineDefinition(true);
2364
2365  // Check for a previous declaration of this name.
2366  if (!PrevDecl && NewFD->isExternC(Context)) {
2367    // Since we did not find anything by this name and we're declaring
2368    // an extern "C" function, look for a non-visible extern "C"
2369    // declaration with the same name.
2370    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2371      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2372    if (Pos != LocallyScopedExternalDecls.end())
2373      PrevDecl = Pos->second;
2374  }
2375
2376  // Merge or overload the declaration with an existing declaration of
2377  // the same name, if appropriate.
2378  if (PrevDecl) {
2379    // Determine whether NewFD is an overload of PrevDecl or
2380    // a declaration that requires merging. If it's an overload,
2381    // there's no more work to do here; we'll just add the new
2382    // function to the scope.
2383    OverloadedFunctionDecl::function_iterator MatchedDecl;
2384
2385    if (!getLangOptions().CPlusPlus &&
2386        AllowOverloadingOfFunction(PrevDecl, Context)) {
2387      OverloadableAttrRequired = true;
2388
2389      // Functions marked "overloadable" must have a prototype (that
2390      // we can't get through declaration merging).
2391      if (!NewFD->getType()->getAsFunctionProtoType()) {
2392        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2393          << NewFD;
2394        Redeclaration = true;
2395
2396        // Turn this into a variadic function with no parameters.
2397        QualType R = Context.getFunctionType(
2398                       NewFD->getType()->getAsFunctionType()->getResultType(),
2399                       0, 0, true, 0);
2400        NewFD->setType(R);
2401        return NewFD->setInvalidDecl();
2402      }
2403    }
2404
2405    if (PrevDecl &&
2406        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2407         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2408      Redeclaration = true;
2409      Decl *OldDecl = PrevDecl;
2410
2411      // If PrevDecl was an overloaded function, extract the
2412      // FunctionDecl that matched.
2413      if (isa<OverloadedFunctionDecl>(PrevDecl))
2414        OldDecl = *MatchedDecl;
2415
2416      // NewFD and OldDecl represent declarations that need to be
2417      // merged.
2418      if (MergeFunctionDecl(NewFD, OldDecl))
2419        return NewFD->setInvalidDecl();
2420
2421      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2422    }
2423  }
2424
2425  // In C++, check default arguments now that we have merged decls. Unless
2426  // the lexical context is the class, because in this case this is done
2427  // during delayed parsing anyway.
2428  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2429    CheckCXXDefaultArguments(NewFD);
2430}
2431
2432bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2433  // FIXME: Need strict checking.  In C89, we need to check for
2434  // any assignment, increment, decrement, function-calls, or
2435  // commas outside of a sizeof.  In C99, it's the same list,
2436  // except that the aforementioned are allowed in unevaluated
2437  // expressions.  Everything else falls under the
2438  // "may accept other forms of constant expressions" exception.
2439  // (We never end up here for C++, so the constant expression
2440  // rules there don't matter.)
2441  if (Init->isConstantInitializer(Context))
2442    return false;
2443  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2444    << Init->getSourceRange();
2445  return true;
2446}
2447
2448void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2449  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2450}
2451
2452/// AddInitializerToDecl - Adds the initializer Init to the
2453/// declaration dcl. If DirectInit is true, this is C++ direct
2454/// initialization rather than copy initialization.
2455void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2456  Decl *RealDecl = dcl.getAs<Decl>();
2457  // If there is no declaration, there was an error parsing it.  Just ignore
2458  // the initializer.
2459  if (RealDecl == 0)
2460    return;
2461
2462  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2463    // With declarators parsed the way they are, the parser cannot
2464    // distinguish between a normal initializer and a pure-specifier.
2465    // Thus this grotesque test.
2466    IntegerLiteral *IL;
2467    Expr *Init = static_cast<Expr *>(init.get());
2468    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2469        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2470      if (Method->isVirtual()) {
2471        Method->setPure();
2472
2473        // A class is abstract if at least one function is pure virtual.
2474        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2475      } else if (!Method->isInvalidDecl()) {
2476        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2477          << Method->getDeclName() << Init->getSourceRange();
2478        Method->setInvalidDecl();
2479      }
2480    } else {
2481      Diag(Method->getLocation(), diag::err_member_function_initialization)
2482        << Method->getDeclName() << Init->getSourceRange();
2483      Method->setInvalidDecl();
2484    }
2485    return;
2486  }
2487
2488  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2489  if (!VDecl) {
2490    if (getLangOptions().CPlusPlus &&
2491        RealDecl->getLexicalDeclContext()->isRecord() &&
2492        isa<NamedDecl>(RealDecl))
2493      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2494        << cast<NamedDecl>(RealDecl)->getDeclName();
2495    else
2496      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2497    RealDecl->setInvalidDecl();
2498    return;
2499  }
2500
2501  if (!VDecl->getType()->isArrayType() &&
2502      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2503                          diag::err_typecheck_decl_incomplete_type)) {
2504    RealDecl->setInvalidDecl();
2505    return;
2506  }
2507
2508  const VarDecl *Def = 0;
2509  if (VDecl->getDefinition(Def)) {
2510    Diag(VDecl->getLocation(), diag::err_redefinition)
2511      << VDecl->getDeclName();
2512    Diag(Def->getLocation(), diag::note_previous_definition);
2513    VDecl->setInvalidDecl();
2514    return;
2515  }
2516
2517  // Take ownership of the expression, now that we're sure we have somewhere
2518  // to put it.
2519  Expr *Init = init.takeAs<Expr>();
2520  assert(Init && "missing initializer");
2521
2522  // Get the decls type and save a reference for later, since
2523  // CheckInitializerTypes may change it.
2524  QualType DclT = VDecl->getType(), SavT = DclT;
2525  if (VDecl->isBlockVarDecl()) {
2526    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2527      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2528      VDecl->setInvalidDecl();
2529    } else if (!VDecl->isInvalidDecl()) {
2530      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2531                                VDecl->getDeclName(), DirectInit))
2532        VDecl->setInvalidDecl();
2533
2534      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2535      // Don't check invalid declarations to avoid emitting useless diagnostics.
2536      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2537        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2538          CheckForConstantInitializer(Init, DclT);
2539      }
2540    }
2541  } else if (VDecl->isStaticDataMember() &&
2542             VDecl->getLexicalDeclContext()->isRecord()) {
2543    // This is an in-class initialization for a static data member, e.g.,
2544    //
2545    // struct S {
2546    //   static const int value = 17;
2547    // };
2548
2549    // Attach the initializer
2550    VDecl->setInit(Init);
2551
2552    // C++ [class.mem]p4:
2553    //   A member-declarator can contain a constant-initializer only
2554    //   if it declares a static member (9.4) of const integral or
2555    //   const enumeration type, see 9.4.2.
2556    QualType T = VDecl->getType();
2557    if (!T->isDependentType() &&
2558        (!Context.getCanonicalType(T).isConstQualified() ||
2559         !T->isIntegralType())) {
2560      Diag(VDecl->getLocation(), diag::err_member_initialization)
2561        << VDecl->getDeclName() << Init->getSourceRange();
2562      VDecl->setInvalidDecl();
2563    } else {
2564      // C++ [class.static.data]p4:
2565      //   If a static data member is of const integral or const
2566      //   enumeration type, its declaration in the class definition
2567      //   can specify a constant-initializer which shall be an
2568      //   integral constant expression (5.19).
2569      if (!Init->isTypeDependent() &&
2570          !Init->getType()->isIntegralType()) {
2571        // We have a non-dependent, non-integral or enumeration type.
2572        Diag(Init->getSourceRange().getBegin(),
2573             diag::err_in_class_initializer_non_integral_type)
2574          << Init->getType() << Init->getSourceRange();
2575        VDecl->setInvalidDecl();
2576      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2577        // Check whether the expression is a constant expression.
2578        llvm::APSInt Value;
2579        SourceLocation Loc;
2580        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2581          Diag(Loc, diag::err_in_class_initializer_non_constant)
2582            << Init->getSourceRange();
2583          VDecl->setInvalidDecl();
2584        } else if (!VDecl->getType()->isDependentType())
2585          ImpCastExprToType(Init, VDecl->getType());
2586      }
2587    }
2588  } else if (VDecl->isFileVarDecl()) {
2589    if (VDecl->getStorageClass() == VarDecl::Extern)
2590      Diag(VDecl->getLocation(), diag::warn_extern_init);
2591    if (!VDecl->isInvalidDecl())
2592      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2593                                VDecl->getDeclName(), DirectInit))
2594        VDecl->setInvalidDecl();
2595
2596    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2597    // Don't check invalid declarations to avoid emitting useless diagnostics.
2598    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2599      // C99 6.7.8p4. All file scoped initializers need to be constant.
2600      CheckForConstantInitializer(Init, DclT);
2601    }
2602  }
2603  // If the type changed, it means we had an incomplete type that was
2604  // completed by the initializer. For example:
2605  //   int ary[] = { 1, 3, 5 };
2606  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2607  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2608    VDecl->setType(DclT);
2609    Init->setType(DclT);
2610  }
2611
2612  // Attach the initializer to the decl.
2613  VDecl->setInit(Init);
2614
2615  // If the previous declaration of VDecl was a tentative definition,
2616  // remove it from the set of tentative definitions.
2617  if (VDecl->getPreviousDeclaration() &&
2618      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2619    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2620      = TentativeDefinitions.find(VDecl->getDeclName());
2621    assert(Pos != TentativeDefinitions.end() &&
2622           "Unrecorded tentative definition?");
2623    TentativeDefinitions.erase(Pos);
2624  }
2625
2626  return;
2627}
2628
2629void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2630  Decl *RealDecl = dcl.getAs<Decl>();
2631
2632  // If there is no declaration, there was an error parsing it. Just ignore it.
2633  if (RealDecl == 0)
2634    return;
2635
2636  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2637    QualType Type = Var->getType();
2638
2639    // Record tentative definitions.
2640    if (Var->isTentativeDefinition(Context))
2641      TentativeDefinitions[Var->getDeclName()] = Var;
2642
2643    // C++ [dcl.init.ref]p3:
2644    //   The initializer can be omitted for a reference only in a
2645    //   parameter declaration (8.3.5), in the declaration of a
2646    //   function return type, in the declaration of a class member
2647    //   within its class declaration (9.2), and where the extern
2648    //   specifier is explicitly used.
2649    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2650      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2651        << Var->getDeclName()
2652        << SourceRange(Var->getLocation(), Var->getLocation());
2653      Var->setInvalidDecl();
2654      return;
2655    }
2656
2657    // C++ [dcl.init]p9:
2658    //
2659    //   If no initializer is specified for an object, and the object
2660    //   is of (possibly cv-qualified) non-POD class type (or array
2661    //   thereof), the object shall be default-initialized; if the
2662    //   object is of const-qualified type, the underlying class type
2663    //   shall have a user-declared default constructor.
2664    if (getLangOptions().CPlusPlus) {
2665      QualType InitType = Type;
2666      if (const ArrayType *Array = Context.getAsArrayType(Type))
2667        InitType = Array->getElementType();
2668      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2669        CXXRecordDecl *RD =
2670          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2671        CXXConstructorDecl *Constructor = 0;
2672        if (!RequireCompleteType(Var->getLocation(), InitType,
2673                                    diag::err_invalid_incomplete_type_use))
2674          Constructor
2675            = PerformInitializationByConstructor(InitType, 0, 0,
2676                                                 Var->getLocation(),
2677                                               SourceRange(Var->getLocation(),
2678                                                           Var->getLocation()),
2679                                                 Var->getDeclName(),
2680                                                 IK_Default);
2681        if (!Constructor)
2682          Var->setInvalidDecl();
2683        else if (!RD->hasTrivialConstructor())
2684          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2685      }
2686    }
2687
2688#if 0
2689    // FIXME: Temporarily disabled because we are not properly parsing
2690    // linkage specifications on declarations, e.g.,
2691    //
2692    //   extern "C" const CGPoint CGPointerZero;
2693    //
2694    // C++ [dcl.init]p9:
2695    //
2696    //     If no initializer is specified for an object, and the
2697    //     object is of (possibly cv-qualified) non-POD class type (or
2698    //     array thereof), the object shall be default-initialized; if
2699    //     the object is of const-qualified type, the underlying class
2700    //     type shall have a user-declared default
2701    //     constructor. Otherwise, if no initializer is specified for
2702    //     an object, the object and its subobjects, if any, have an
2703    //     indeterminate initial value; if the object or any of its
2704    //     subobjects are of const-qualified type, the program is
2705    //     ill-formed.
2706    //
2707    // This isn't technically an error in C, so we don't diagnose it.
2708    //
2709    // FIXME: Actually perform the POD/user-defined default
2710    // constructor check.
2711    if (getLangOptions().CPlusPlus &&
2712        Context.getCanonicalType(Type).isConstQualified() &&
2713        !Var->hasExternalStorage())
2714      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2715        << Var->getName()
2716        << SourceRange(Var->getLocation(), Var->getLocation());
2717#endif
2718  }
2719}
2720
2721Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2722                                                   unsigned NumDecls) {
2723  llvm::SmallVector<Decl*, 8> Decls;
2724
2725  for (unsigned i = 0; i != NumDecls; ++i)
2726    if (Decl *D = Group[i].getAs<Decl>())
2727      Decls.push_back(D);
2728
2729  // Perform semantic analysis that depends on having fully processed both
2730  // the declarator and initializer.
2731  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2732    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2733    if (!IDecl)
2734      continue;
2735    QualType T = IDecl->getType();
2736
2737    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2738    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2739    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2740      if (!IDecl->isInvalidDecl() &&
2741          RequireCompleteType(IDecl->getLocation(), T,
2742                              diag::err_typecheck_decl_incomplete_type))
2743        IDecl->setInvalidDecl();
2744    }
2745    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2746    // object that has file scope without an initializer, and without a
2747    // storage-class specifier or with the storage-class specifier "static",
2748    // constitutes a tentative definition. Note: A tentative definition with
2749    // external linkage is valid (C99 6.2.2p5).
2750    if (IDecl->isTentativeDefinition(Context)) {
2751      QualType CheckType = T;
2752      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2753
2754      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2755      if (ArrayT) {
2756        CheckType = ArrayT->getElementType();
2757        DiagID = diag::err_illegal_decl_array_incomplete_type;
2758      }
2759
2760      if (IDecl->isInvalidDecl()) {
2761        // Do nothing with invalid declarations
2762      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2763                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2764        // C99 6.9.2p3: If the declaration of an identifier for an object is
2765        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2766        // declared type shall not be an incomplete type.
2767        IDecl->setInvalidDecl();
2768      }
2769    }
2770  }
2771  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2772                                                   &Decls[0], Decls.size()));
2773}
2774
2775
2776/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2777/// to introduce parameters into function prototype scope.
2778Sema::DeclPtrTy
2779Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2780  const DeclSpec &DS = D.getDeclSpec();
2781
2782  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2783  VarDecl::StorageClass StorageClass = VarDecl::None;
2784  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2785    StorageClass = VarDecl::Register;
2786  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2787    Diag(DS.getStorageClassSpecLoc(),
2788         diag::err_invalid_storage_class_in_func_decl);
2789    D.getMutableDeclSpec().ClearStorageClassSpecs();
2790  }
2791
2792  if (D.getDeclSpec().isThreadSpecified())
2793    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2794
2795  DiagnoseFunctionSpecifiers(D);
2796
2797  // Check that there are no default arguments inside the type of this
2798  // parameter (C++ only).
2799  if (getLangOptions().CPlusPlus)
2800    CheckExtraCXXDefaultArguments(D);
2801
2802  QualType parmDeclType = GetTypeForDeclarator(D, S);
2803
2804  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2805  // Can this happen for params?  We already checked that they don't conflict
2806  // among each other.  Here they can only shadow globals, which is ok.
2807  IdentifierInfo *II = D.getIdentifier();
2808  if (II) {
2809    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2810      if (PrevDecl->isTemplateParameter()) {
2811        // Maybe we will complain about the shadowed template parameter.
2812        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2813        // Just pretend that we didn't see the previous declaration.
2814        PrevDecl = 0;
2815      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2816        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2817
2818        // Recover by removing the name
2819        II = 0;
2820        D.SetIdentifier(0, D.getIdentifierLoc());
2821      }
2822    }
2823  }
2824
2825  // Parameters can not be abstract class types.
2826  // For record types, this is done by the AbstractClassUsageDiagnoser once
2827  // the class has been completely parsed.
2828  if (!CurContext->isRecord() &&
2829      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2830                             diag::err_abstract_type_in_decl,
2831                             AbstractParamType))
2832    D.setInvalidType(true);
2833
2834  QualType T = adjustParameterType(parmDeclType);
2835
2836  ParmVarDecl *New;
2837  if (T == parmDeclType) // parameter type did not need adjustment
2838    New = ParmVarDecl::Create(Context, CurContext,
2839                              D.getIdentifierLoc(), II,
2840                              parmDeclType, StorageClass,
2841                              0);
2842  else // keep track of both the adjusted and unadjusted types
2843    New = OriginalParmVarDecl::Create(Context, CurContext,
2844                                      D.getIdentifierLoc(), II, T,
2845                                      parmDeclType, StorageClass, 0);
2846
2847  if (D.isInvalidType())
2848    New->setInvalidDecl();
2849
2850  // Parameter declarators cannot be interface types. All ObjC objects are
2851  // passed by reference.
2852  if (T->isObjCInterfaceType()) {
2853    Diag(D.getIdentifierLoc(),
2854         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2855    New->setInvalidDecl();
2856  }
2857
2858  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2859  if (D.getCXXScopeSpec().isSet()) {
2860    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2861      << D.getCXXScopeSpec().getRange();
2862    New->setInvalidDecl();
2863  }
2864
2865  // Add the parameter declaration into this scope.
2866  S->AddDecl(DeclPtrTy::make(New));
2867  if (II)
2868    IdResolver.AddDecl(New);
2869
2870  ProcessDeclAttributes(New, D);
2871
2872  if (New->hasAttr<BlocksAttr>()) {
2873    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2874  }
2875  return DeclPtrTy::make(New);
2876}
2877
2878void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2879                                           SourceLocation LocAfterDecls) {
2880  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2881         "Not a function declarator!");
2882  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2883
2884  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2885  // for a K&R function.
2886  if (!FTI.hasPrototype) {
2887    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2888      --i;
2889      if (FTI.ArgInfo[i].Param == 0) {
2890        std::string Code = "  int ";
2891        Code += FTI.ArgInfo[i].Ident->getName();
2892        Code += ";\n";
2893        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2894          << FTI.ArgInfo[i].Ident
2895          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2896
2897        // Implicitly declare the argument as type 'int' for lack of a better
2898        // type.
2899        DeclSpec DS;
2900        const char* PrevSpec; // unused
2901        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2902                           PrevSpec);
2903        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2904        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2905        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2906      }
2907    }
2908  }
2909}
2910
2911Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2912                                              Declarator &D) {
2913  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2914  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2915         "Not a function declarator!");
2916  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2917
2918  if (FTI.hasPrototype) {
2919    // FIXME: Diagnose arguments without names in C.
2920  }
2921
2922  Scope *ParentScope = FnBodyScope->getParent();
2923
2924  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2925  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2926}
2927
2928Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2929  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2930
2931  CurFunctionNeedsScopeChecking = false;
2932
2933  // See if this is a redefinition.
2934  const FunctionDecl *Definition;
2935  if (FD->getBody(Context, Definition)) {
2936    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2937    Diag(Definition->getLocation(), diag::note_previous_definition);
2938  }
2939
2940  // Builtin functions cannot be defined.
2941  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2942    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2943      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2944      FD->setInvalidDecl();
2945    }
2946  }
2947
2948  // The return type of a function definition must be complete
2949  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2950  QualType ResultType = FD->getResultType();
2951  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2952      !FD->isInvalidDecl() &&
2953      RequireCompleteType(FD->getLocation(), ResultType,
2954                          diag::err_func_def_incomplete_result))
2955    FD->setInvalidDecl();
2956
2957  // GNU warning -Wmissing-prototypes:
2958  //   Warn if a global function is defined without a previous
2959  //   prototype declaration. This warning is issued even if the
2960  //   definition itself provides a prototype. The aim is to detect
2961  //   global functions that fail to be declared in header files.
2962  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2963      !FD->isMain()) {
2964    bool MissingPrototype = true;
2965    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2966         Prev; Prev = Prev->getPreviousDeclaration()) {
2967      // Ignore any declarations that occur in function or method
2968      // scope, because they aren't visible from the header.
2969      if (Prev->getDeclContext()->isFunctionOrMethod())
2970        continue;
2971
2972      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2973      break;
2974    }
2975
2976    if (MissingPrototype)
2977      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2978  }
2979
2980  PushDeclContext(FnBodyScope, FD);
2981
2982  // Check the validity of our function parameters
2983  CheckParmsForFunctionDef(FD);
2984
2985  // Introduce our parameters into the function scope
2986  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2987    ParmVarDecl *Param = FD->getParamDecl(p);
2988    Param->setOwningFunction(FD);
2989
2990    // If this has an identifier, add it to the scope stack.
2991    if (Param->getIdentifier())
2992      PushOnScopeChains(Param, FnBodyScope);
2993  }
2994
2995  // Checking attributes of current function definition
2996  // dllimport attribute.
2997  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2998    // dllimport attribute cannot be applied to definition.
2999    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3000      Diag(FD->getLocation(),
3001           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3002        << "dllimport";
3003      FD->setInvalidDecl();
3004      return DeclPtrTy::make(FD);
3005    } else {
3006      // If a symbol previously declared dllimport is later defined, the
3007      // attribute is ignored in subsequent references, and a warning is
3008      // emitted.
3009      Diag(FD->getLocation(),
3010           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3011        << FD->getNameAsCString() << "dllimport";
3012    }
3013  }
3014  return DeclPtrTy::make(FD);
3015}
3016
3017
3018Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3019  Decl *dcl = D.getAs<Decl>();
3020  Stmt *Body = BodyArg.takeAs<Stmt>();
3021  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3022    FD->setBody(Body);
3023    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3024  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3025    assert(MD == getCurMethodDecl() && "Method parsing confused");
3026    MD->setBody(Body);
3027  } else {
3028    Body->Destroy(Context);
3029    return DeclPtrTy();
3030  }
3031  PopDeclContext();
3032  // Verify and clean out per-function state.
3033
3034  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3035
3036  // Check goto/label use.
3037  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3038       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3039    LabelStmt *L = I->second;
3040
3041    // Verify that we have no forward references left.  If so, there was a goto
3042    // or address of a label taken, but no definition of it.  Label fwd
3043    // definitions are indicated with a null substmt.
3044    if (L->getSubStmt() != 0)
3045      continue;
3046
3047    // Emit error.
3048    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3049
3050    // At this point, we have gotos that use the bogus label.  Stitch it into
3051    // the function body so that they aren't leaked and that the AST is well
3052    // formed.
3053    if (Body == 0) {
3054      // The whole function wasn't parsed correctly, just delete this.
3055      L->Destroy(Context);
3056      continue;
3057    }
3058
3059    // Otherwise, the body is valid: we want to stitch the label decl into the
3060    // function somewhere so that it is properly owned and so that the goto
3061    // has a valid target.  Do this by creating a new compound stmt with the
3062    // label in it.
3063
3064    // Give the label a sub-statement.
3065    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3066
3067    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3068                               cast<CXXTryStmt>(Body)->getTryBlock() :
3069                               cast<CompoundStmt>(Body);
3070    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3071    Elements.push_back(L);
3072    Compound->setStmts(Context, &Elements[0], Elements.size());
3073  }
3074  FunctionLabelMap.clear();
3075
3076  if (!Body) return D;
3077
3078  // Verify that that gotos and switch cases don't jump into scopes illegally.
3079  if (CurFunctionNeedsScopeChecking)
3080    DiagnoseInvalidJumps(Body);
3081
3082  // C++ constructors that have function-try-blocks can't have return statements
3083  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3084  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3085    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3086
3087  return D;
3088}
3089
3090/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3091/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3092NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3093                                          IdentifierInfo &II, Scope *S) {
3094  // Before we produce a declaration for an implicitly defined
3095  // function, see whether there was a locally-scoped declaration of
3096  // this name as a function or variable. If so, use that
3097  // (non-visible) declaration, and complain about it.
3098  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3099    = LocallyScopedExternalDecls.find(&II);
3100  if (Pos != LocallyScopedExternalDecls.end()) {
3101    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3102    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3103    return Pos->second;
3104  }
3105
3106  // Extension in C99.  Legal in C90, but warn about it.
3107  if (getLangOptions().C99)
3108    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3109  else
3110    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3111
3112  // FIXME: handle stuff like:
3113  // void foo() { extern float X(); }
3114  // void bar() { X(); }  <-- implicit decl for X in another scope.
3115
3116  // Set a Declarator for the implicit definition: int foo();
3117  const char *Dummy;
3118  DeclSpec DS;
3119  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3120  Error = Error; // Silence warning.
3121  assert(!Error && "Error setting up implicit decl!");
3122  Declarator D(DS, Declarator::BlockContext);
3123  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3124                                             0, 0, false, false, 0, 0, Loc, D),
3125                SourceLocation());
3126  D.SetIdentifier(&II, Loc);
3127
3128  // Insert this function into translation-unit scope.
3129
3130  DeclContext *PrevDC = CurContext;
3131  CurContext = Context.getTranslationUnitDecl();
3132
3133  FunctionDecl *FD =
3134 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3135  FD->setImplicit();
3136
3137  CurContext = PrevDC;
3138
3139  AddKnownFunctionAttributes(FD);
3140
3141  return FD;
3142}
3143
3144/// \brief Adds any function attributes that we know a priori based on
3145/// the declaration of this function.
3146///
3147/// These attributes can apply both to implicitly-declared builtins
3148/// (like __builtin___printf_chk) or to library-declared functions
3149/// like NSLog or printf.
3150void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3151  if (FD->isInvalidDecl())
3152    return;
3153
3154  // If this is a built-in function, map its builtin attributes to
3155  // actual attributes.
3156  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3157    // Handle printf-formatting attributes.
3158    unsigned FormatIdx;
3159    bool HasVAListArg;
3160    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3161      if (!FD->getAttr<FormatAttr>())
3162        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3163                                               FormatIdx + 2));
3164    }
3165
3166    // Mark const if we don't care about errno and that is the only
3167    // thing preventing the function from being const. This allows
3168    // IRgen to use LLVM intrinsics for such functions.
3169    if (!getLangOptions().MathErrno &&
3170        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3171      if (!FD->getAttr<ConstAttr>())
3172        FD->addAttr(::new (Context) ConstAttr());
3173    }
3174  }
3175
3176  IdentifierInfo *Name = FD->getIdentifier();
3177  if (!Name)
3178    return;
3179  if ((!getLangOptions().CPlusPlus &&
3180       FD->getDeclContext()->isTranslationUnit()) ||
3181      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3182       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3183       LinkageSpecDecl::lang_c)) {
3184    // Okay: this could be a libc/libm/Objective-C function we know
3185    // about.
3186  } else
3187    return;
3188
3189  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3190    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3191      // FIXME: We known better than our headers.
3192      const_cast<FormatAttr *>(Format)->setType("printf");
3193    } else
3194      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3195  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3196    if (!FD->getAttr<FormatAttr>())
3197      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3198  }
3199}
3200
3201TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3202  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3203  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3204
3205  // Scope manipulation handled by caller.
3206  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3207                                           D.getIdentifierLoc(),
3208                                           D.getIdentifier(),
3209                                           T);
3210
3211  if (TagType *TT = dyn_cast<TagType>(T)) {
3212    TagDecl *TD = TT->getDecl();
3213
3214    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3215    // keep track of the TypedefDecl.
3216    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3217      TD->setTypedefForAnonDecl(NewTD);
3218  }
3219
3220  if (D.isInvalidType())
3221    NewTD->setInvalidDecl();
3222  return NewTD;
3223}
3224
3225/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3226/// former case, Name will be non-null.  In the later case, Name will be null.
3227/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3228/// reference/declaration/definition of a tag.
3229Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3230                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3231                               IdentifierInfo *Name, SourceLocation NameLoc,
3232                               AttributeList *Attr, AccessSpecifier AS) {
3233  // If this is not a definition, it must have a name.
3234  assert((Name != 0 || TK == TK_Definition) &&
3235         "Nameless record must be a definition!");
3236
3237  TagDecl::TagKind Kind;
3238  switch (TagSpec) {
3239  default: assert(0 && "Unknown tag type!");
3240  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3241  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3242  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3243  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3244  }
3245
3246  DeclContext *SearchDC = CurContext;
3247  DeclContext *DC = CurContext;
3248  NamedDecl *PrevDecl = 0;
3249
3250  bool Invalid = false;
3251
3252  if (Name && SS.isNotEmpty()) {
3253    // We have a nested-name tag ('struct foo::bar').
3254
3255    // Check for invalid 'foo::'.
3256    if (SS.isInvalid()) {
3257      Name = 0;
3258      goto CreateNewDecl;
3259    }
3260
3261    // FIXME: RequireCompleteDeclContext(SS)?
3262    DC = computeDeclContext(SS);
3263    SearchDC = DC;
3264    // Look-up name inside 'foo::'.
3265    PrevDecl = dyn_cast_or_null<TagDecl>(
3266                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3267
3268    // A tag 'foo::bar' must already exist.
3269    if (PrevDecl == 0) {
3270      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3271      Name = 0;
3272      goto CreateNewDecl;
3273    }
3274  } else if (Name) {
3275    // If this is a named struct, check to see if there was a previous forward
3276    // declaration or definition.
3277    // FIXME: We're looking into outer scopes here, even when we
3278    // shouldn't be. Doing so can result in ambiguities that we
3279    // shouldn't be diagnosing.
3280    LookupResult R = LookupName(S, Name, LookupTagName,
3281                                /*RedeclarationOnly=*/(TK != TK_Reference));
3282    if (R.isAmbiguous()) {
3283      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3284      // FIXME: This is not best way to recover from case like:
3285      //
3286      // struct S s;
3287      //
3288      // causes needless "incomplete type" error later.
3289      Name = 0;
3290      PrevDecl = 0;
3291      Invalid = true;
3292    }
3293    else
3294      PrevDecl = R;
3295
3296    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3297      // FIXME: This makes sure that we ignore the contexts associated
3298      // with C structs, unions, and enums when looking for a matching
3299      // tag declaration or definition. See the similar lookup tweak
3300      // in Sema::LookupName; is there a better way to deal with this?
3301      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3302        SearchDC = SearchDC->getParent();
3303    }
3304  }
3305
3306  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3307    // Maybe we will complain about the shadowed template parameter.
3308    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3309    // Just pretend that we didn't see the previous declaration.
3310    PrevDecl = 0;
3311  }
3312
3313  if (PrevDecl) {
3314    // Check whether the previous declaration is usable.
3315    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3316
3317    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3318      // If this is a use of a previous tag, or if the tag is already declared
3319      // in the same scope (so that the definition/declaration completes or
3320      // rementions the tag), reuse the decl.
3321      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3322        // Make sure that this wasn't declared as an enum and now used as a
3323        // struct or something similar.
3324        if (!isAcceptableTagRedeclaration(PrevTagDecl->getTagKind(), Kind)) {
3325          bool SafeToContinue
3326            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3327               Kind != TagDecl::TK_enum);
3328          if (SafeToContinue)
3329            Diag(KWLoc, diag::err_use_with_wrong_tag)
3330              << Name
3331              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3332                                                  PrevTagDecl->getKindName());
3333          else
3334            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3335          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3336
3337          if (SafeToContinue)
3338            Kind = PrevTagDecl->getTagKind();
3339          else {
3340            // Recover by making this an anonymous redefinition.
3341            Name = 0;
3342            PrevDecl = 0;
3343            Invalid = true;
3344          }
3345        }
3346
3347        if (!Invalid) {
3348          // If this is a use, just return the declaration we found.
3349
3350          // FIXME: In the future, return a variant or some other clue
3351          // for the consumer of this Decl to know it doesn't own it.
3352          // For our current ASTs this shouldn't be a problem, but will
3353          // need to be changed with DeclGroups.
3354          if (TK == TK_Reference)
3355            return DeclPtrTy::make(PrevDecl);
3356
3357          // Diagnose attempts to redefine a tag.
3358          if (TK == TK_Definition) {
3359            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3360              Diag(NameLoc, diag::err_redefinition) << Name;
3361              Diag(Def->getLocation(), diag::note_previous_definition);
3362              // If this is a redefinition, recover by making this
3363              // struct be anonymous, which will make any later
3364              // references get the previous definition.
3365              Name = 0;
3366              PrevDecl = 0;
3367              Invalid = true;
3368            } else {
3369              // If the type is currently being defined, complain
3370              // about a nested redefinition.
3371              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3372              if (Tag->isBeingDefined()) {
3373                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3374                Diag(PrevTagDecl->getLocation(),
3375                     diag::note_previous_definition);
3376                Name = 0;
3377                PrevDecl = 0;
3378                Invalid = true;
3379              }
3380            }
3381
3382            // Okay, this is definition of a previously declared or referenced
3383            // tag PrevDecl. We're going to create a new Decl for it.
3384          }
3385        }
3386        // If we get here we have (another) forward declaration or we
3387        // have a definition.  Just create a new decl.
3388      } else {
3389        // If we get here, this is a definition of a new tag type in a nested
3390        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3391        // new decl/type.  We set PrevDecl to NULL so that the entities
3392        // have distinct types.
3393        PrevDecl = 0;
3394      }
3395      // If we get here, we're going to create a new Decl. If PrevDecl
3396      // is non-NULL, it's a definition of the tag declared by
3397      // PrevDecl. If it's NULL, we have a new definition.
3398    } else {
3399      // PrevDecl is a namespace, template, or anything else
3400      // that lives in the IDNS_Tag identifier namespace.
3401      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3402        // The tag name clashes with a namespace name, issue an error and
3403        // recover by making this tag be anonymous.
3404        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3405        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3406        Name = 0;
3407        PrevDecl = 0;
3408        Invalid = true;
3409      } else {
3410        // The existing declaration isn't relevant to us; we're in a
3411        // new scope, so clear out the previous declaration.
3412        PrevDecl = 0;
3413      }
3414    }
3415  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3416             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3417    // C++ [basic.scope.pdecl]p5:
3418    //   -- for an elaborated-type-specifier of the form
3419    //
3420    //          class-key identifier
3421    //
3422    //      if the elaborated-type-specifier is used in the
3423    //      decl-specifier-seq or parameter-declaration-clause of a
3424    //      function defined in namespace scope, the identifier is
3425    //      declared as a class-name in the namespace that contains
3426    //      the declaration; otherwise, except as a friend
3427    //      declaration, the identifier is declared in the smallest
3428    //      non-class, non-function-prototype scope that contains the
3429    //      declaration.
3430    //
3431    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3432    // C structs and unions.
3433    //
3434    // GNU C also supports this behavior as part of its incomplete
3435    // enum types extension, while GNU C++ does not.
3436    //
3437    // Find the context where we'll be declaring the tag.
3438    // FIXME: We would like to maintain the current DeclContext as the
3439    // lexical context,
3440    while (SearchDC->isRecord())
3441      SearchDC = SearchDC->getParent();
3442
3443    // Find the scope where we'll be declaring the tag.
3444    while (S->isClassScope() ||
3445           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3446           ((S->getFlags() & Scope::DeclScope) == 0) ||
3447           (S->getEntity() &&
3448            ((DeclContext *)S->getEntity())->isTransparentContext()))
3449      S = S->getParent();
3450  }
3451
3452CreateNewDecl:
3453
3454  // If there is an identifier, use the location of the identifier as the
3455  // location of the decl, otherwise use the location of the struct/union
3456  // keyword.
3457  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3458
3459  // Otherwise, create a new declaration. If there is a previous
3460  // declaration of the same entity, the two will be linked via
3461  // PrevDecl.
3462  TagDecl *New;
3463
3464  if (Kind == TagDecl::TK_enum) {
3465    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3466    // enum X { A, B, C } D;    D should chain to X.
3467    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3468                           cast_or_null<EnumDecl>(PrevDecl));
3469    // If this is an undefined enum, warn.
3470    if (TK != TK_Definition && !Invalid)  {
3471      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3472                                              : diag::ext_forward_ref_enum;
3473      Diag(Loc, DK);
3474    }
3475  } else {
3476    // struct/union/class
3477
3478    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3479    // struct X { int A; } D;    D should chain to X.
3480    if (getLangOptions().CPlusPlus)
3481      // FIXME: Look for a way to use RecordDecl for simple structs.
3482      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3483                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3484    else
3485      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3486                               cast_or_null<RecordDecl>(PrevDecl));
3487  }
3488
3489  if (Kind != TagDecl::TK_enum) {
3490    // Handle #pragma pack: if the #pragma pack stack has non-default
3491    // alignment, make up a packed attribute for this decl. These
3492    // attributes are checked when the ASTContext lays out the
3493    // structure.
3494    //
3495    // It is important for implementing the correct semantics that this
3496    // happen here (in act on tag decl). The #pragma pack stack is
3497    // maintained as a result of parser callbacks which can occur at
3498    // many points during the parsing of a struct declaration (because
3499    // the #pragma tokens are effectively skipped over during the
3500    // parsing of the struct).
3501    if (unsigned Alignment = getPragmaPackAlignment())
3502      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3503  }
3504
3505  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3506    // C++ [dcl.typedef]p3:
3507    //   [...] Similarly, in a given scope, a class or enumeration
3508    //   shall not be declared with the same name as a typedef-name
3509    //   that is declared in that scope and refers to a type other
3510    //   than the class or enumeration itself.
3511    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3512    TypedefDecl *PrevTypedef = 0;
3513    if (Lookup.getKind() == LookupResult::Found)
3514      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3515
3516    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3517        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3518          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3519      Diag(Loc, diag::err_tag_definition_of_typedef)
3520        << Context.getTypeDeclType(New)
3521        << PrevTypedef->getUnderlyingType();
3522      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3523      Invalid = true;
3524    }
3525  }
3526
3527  if (Invalid)
3528    New->setInvalidDecl();
3529
3530  if (Attr)
3531    ProcessDeclAttributeList(New, Attr);
3532
3533  // If we're declaring or defining a tag in function prototype scope
3534  // in C, note that this type can only be used within the function.
3535  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3536    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3537
3538  // Set the lexical context. If the tag has a C++ scope specifier, the
3539  // lexical context will be different from the semantic context.
3540  New->setLexicalDeclContext(CurContext);
3541
3542  // Set the access specifier.
3543  SetMemberAccessSpecifier(New, PrevDecl, AS);
3544
3545  if (TK == TK_Definition)
3546    New->startDefinition();
3547
3548  // If this has an identifier, add it to the scope stack.
3549  if (Name) {
3550    S = getNonFieldDeclScope(S);
3551    PushOnScopeChains(New, S);
3552  } else {
3553    CurContext->addDecl(Context, New);
3554  }
3555
3556  return DeclPtrTy::make(New);
3557}
3558
3559void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3560  AdjustDeclIfTemplate(TagD);
3561  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3562
3563  // Enter the tag context.
3564  PushDeclContext(S, Tag);
3565
3566  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3567    FieldCollector->StartClass();
3568
3569    if (Record->getIdentifier()) {
3570      // C++ [class]p2:
3571      //   [...] The class-name is also inserted into the scope of the
3572      //   class itself; this is known as the injected-class-name. For
3573      //   purposes of access checking, the injected-class-name is treated
3574      //   as if it were a public member name.
3575      CXXRecordDecl *InjectedClassName
3576        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3577                                CurContext, Record->getLocation(),
3578                                Record->getIdentifier(), Record);
3579      InjectedClassName->setImplicit();
3580      InjectedClassName->setAccess(AS_public);
3581      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3582        InjectedClassName->setDescribedClassTemplate(Template);
3583      PushOnScopeChains(InjectedClassName, S);
3584      assert(InjectedClassName->isInjectedClassName() &&
3585             "Broken injected-class-name");
3586    }
3587  }
3588}
3589
3590void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3591  AdjustDeclIfTemplate(TagD);
3592  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3593
3594  if (isa<CXXRecordDecl>(Tag))
3595    FieldCollector->FinishClass();
3596
3597  // Exit this scope of this tag's definition.
3598  PopDeclContext();
3599
3600  // Notify the consumer that we've defined a tag.
3601  Consumer.HandleTagDeclDefinition(Tag);
3602}
3603
3604// Note that FieldName may be null for anonymous bitfields.
3605bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3606                          QualType FieldTy, const Expr *BitWidth) {
3607
3608  // C99 6.7.2.1p4 - verify the field type.
3609  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3610  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3611    // Handle incomplete types with specific error.
3612    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3613      return true;
3614    if (FieldName)
3615      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3616        << FieldName << FieldTy << BitWidth->getSourceRange();
3617    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3618      << FieldTy << BitWidth->getSourceRange();
3619  }
3620
3621  // If the bit-width is type- or value-dependent, don't try to check
3622  // it now.
3623  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3624    return false;
3625
3626  llvm::APSInt Value;
3627  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3628    return true;
3629
3630  // Zero-width bitfield is ok for anonymous field.
3631  if (Value == 0 && FieldName)
3632    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3633
3634  if (Value.isSigned() && Value.isNegative()) {
3635    if (FieldName)
3636      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3637               << FieldName << Value.toString(10);
3638    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3639      << Value.toString(10);
3640  }
3641
3642  if (!FieldTy->isDependentType()) {
3643    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3644    if (Value.getZExtValue() > TypeSize) {
3645      if (FieldName)
3646        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3647          << FieldName << (unsigned)TypeSize;
3648      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3649        << (unsigned)TypeSize;
3650    }
3651  }
3652
3653  return false;
3654}
3655
3656/// ActOnField - Each field of a struct/union/class is passed into this in order
3657/// to create a FieldDecl object for it.
3658Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3659                                 SourceLocation DeclStart,
3660                                 Declarator &D, ExprTy *BitfieldWidth) {
3661  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3662                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3663                               AS_public);
3664  return DeclPtrTy::make(Res);
3665}
3666
3667/// HandleField - Analyze a field of a C struct or a C++ data member.
3668///
3669FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3670                             SourceLocation DeclStart,
3671                             Declarator &D, Expr *BitWidth,
3672                             AccessSpecifier AS) {
3673  IdentifierInfo *II = D.getIdentifier();
3674  SourceLocation Loc = DeclStart;
3675  if (II) Loc = D.getIdentifierLoc();
3676
3677  QualType T = GetTypeForDeclarator(D, S);
3678  if (getLangOptions().CPlusPlus)
3679    CheckExtraCXXDefaultArguments(D);
3680
3681  DiagnoseFunctionSpecifiers(D);
3682
3683  if (D.getDeclSpec().isThreadSpecified())
3684    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3685
3686  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3687  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3688    PrevDecl = 0;
3689
3690  FieldDecl *NewFD
3691    = CheckFieldDecl(II, T, Record, Loc,
3692               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3693                     BitWidth, AS, PrevDecl, &D);
3694  if (NewFD->isInvalidDecl() && PrevDecl) {
3695    // Don't introduce NewFD into scope; there's already something
3696    // with the same name in the same scope.
3697  } else if (II) {
3698    PushOnScopeChains(NewFD, S);
3699  } else
3700    Record->addDecl(Context, NewFD);
3701
3702  return NewFD;
3703}
3704
3705/// \brief Build a new FieldDecl and check its well-formedness.
3706///
3707/// This routine builds a new FieldDecl given the fields name, type,
3708/// record, etc. \p PrevDecl should refer to any previous declaration
3709/// with the same name and in the same scope as the field to be
3710/// created.
3711///
3712/// \returns a new FieldDecl.
3713///
3714/// \todo The Declarator argument is a hack. It will be removed once
3715FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3716                                RecordDecl *Record, SourceLocation Loc,
3717                                bool Mutable, Expr *BitWidth,
3718                                AccessSpecifier AS, NamedDecl *PrevDecl,
3719                                Declarator *D) {
3720  IdentifierInfo *II = Name.getAsIdentifierInfo();
3721  bool InvalidDecl = false;
3722  if (D) InvalidDecl = D->isInvalidType();
3723
3724  // If we receive a broken type, recover by assuming 'int' and
3725  // marking this declaration as invalid.
3726  if (T.isNull()) {
3727    InvalidDecl = true;
3728    T = Context.IntTy;
3729  }
3730
3731  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3732  // than a variably modified type.
3733  if (T->isVariablyModifiedType()) {
3734    bool SizeIsNegative;
3735    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3736                                                           SizeIsNegative);
3737    if (!FixedTy.isNull()) {
3738      Diag(Loc, diag::warn_illegal_constant_array_size);
3739      T = FixedTy;
3740    } else {
3741      if (SizeIsNegative)
3742        Diag(Loc, diag::err_typecheck_negative_array_size);
3743      else
3744        Diag(Loc, diag::err_typecheck_field_variable_size);
3745      T = Context.IntTy;
3746      InvalidDecl = true;
3747    }
3748  }
3749
3750  // Fields can not have abstract class types
3751  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3752                             AbstractFieldType))
3753    InvalidDecl = true;
3754
3755  // If this is declared as a bit-field, check the bit-field.
3756  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3757    InvalidDecl = true;
3758    DeleteExpr(BitWidth);
3759    BitWidth = 0;
3760  }
3761
3762  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3763                                       Mutable);
3764  if (InvalidDecl)
3765    NewFD->setInvalidDecl();
3766
3767  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3768    Diag(Loc, diag::err_duplicate_member) << II;
3769    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3770    NewFD->setInvalidDecl();
3771  }
3772
3773  if (getLangOptions().CPlusPlus && !T->isPODType())
3774    cast<CXXRecordDecl>(Record)->setPOD(false);
3775
3776  // FIXME: We need to pass in the attributes given an AST
3777  // representation, not a parser representation.
3778  if (D)
3779    ProcessDeclAttributes(NewFD, *D);
3780
3781  if (T.isObjCGCWeak())
3782    Diag(Loc, diag::warn_attribute_weak_on_field);
3783
3784  NewFD->setAccess(AS);
3785
3786  // C++ [dcl.init.aggr]p1:
3787  //   An aggregate is an array or a class (clause 9) with [...] no
3788  //   private or protected non-static data members (clause 11).
3789  // A POD must be an aggregate.
3790  if (getLangOptions().CPlusPlus &&
3791      (AS == AS_private || AS == AS_protected)) {
3792    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3793    CXXRecord->setAggregate(false);
3794    CXXRecord->setPOD(false);
3795  }
3796
3797  return NewFD;
3798}
3799
3800/// TranslateIvarVisibility - Translate visibility from a token ID to an
3801///  AST enum value.
3802static ObjCIvarDecl::AccessControl
3803TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3804  switch (ivarVisibility) {
3805  default: assert(0 && "Unknown visitibility kind");
3806  case tok::objc_private: return ObjCIvarDecl::Private;
3807  case tok::objc_public: return ObjCIvarDecl::Public;
3808  case tok::objc_protected: return ObjCIvarDecl::Protected;
3809  case tok::objc_package: return ObjCIvarDecl::Package;
3810  }
3811}
3812
3813/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3814/// in order to create an IvarDecl object for it.
3815Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3816                                SourceLocation DeclStart,
3817                                Declarator &D, ExprTy *BitfieldWidth,
3818                                tok::ObjCKeywordKind Visibility) {
3819
3820  IdentifierInfo *II = D.getIdentifier();
3821  Expr *BitWidth = (Expr*)BitfieldWidth;
3822  SourceLocation Loc = DeclStart;
3823  if (II) Loc = D.getIdentifierLoc();
3824
3825  // FIXME: Unnamed fields can be handled in various different ways, for
3826  // example, unnamed unions inject all members into the struct namespace!
3827
3828  QualType T = GetTypeForDeclarator(D, S);
3829
3830  if (BitWidth) {
3831    // 6.7.2.1p3, 6.7.2.1p4
3832    if (VerifyBitField(Loc, II, T, BitWidth)) {
3833      D.setInvalidType();
3834      DeleteExpr(BitWidth);
3835      BitWidth = 0;
3836    }
3837  } else {
3838    // Not a bitfield.
3839
3840    // validate II.
3841
3842  }
3843
3844  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3845  // than a variably modified type.
3846  if (T->isVariablyModifiedType()) {
3847    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3848    D.setInvalidType();
3849  }
3850
3851  // Get the visibility (access control) for this ivar.
3852  ObjCIvarDecl::AccessControl ac =
3853    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3854                                        : ObjCIvarDecl::None;
3855
3856  // Construct the decl.
3857  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3858                                             (Expr *)BitfieldWidth);
3859
3860  if (II) {
3861    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3862    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3863        && !isa<TagDecl>(PrevDecl)) {
3864      Diag(Loc, diag::err_duplicate_member) << II;
3865      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3866      NewID->setInvalidDecl();
3867    }
3868  }
3869
3870  // Process attributes attached to the ivar.
3871  ProcessDeclAttributes(NewID, D);
3872
3873  if (D.isInvalidType())
3874    NewID->setInvalidDecl();
3875
3876  if (II) {
3877    // FIXME: When interfaces are DeclContexts, we'll need to add
3878    // these to the interface.
3879    S->AddDecl(DeclPtrTy::make(NewID));
3880    IdResolver.AddDecl(NewID);
3881  }
3882
3883  return DeclPtrTy::make(NewID);
3884}
3885
3886void Sema::ActOnFields(Scope* S,
3887                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3888                       DeclPtrTy *Fields, unsigned NumFields,
3889                       SourceLocation LBrac, SourceLocation RBrac,
3890                       AttributeList *Attr) {
3891  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3892  assert(EnclosingDecl && "missing record or interface decl");
3893
3894  // If the decl this is being inserted into is invalid, then it may be a
3895  // redeclaration or some other bogus case.  Don't try to add fields to it.
3896  if (EnclosingDecl->isInvalidDecl()) {
3897    // FIXME: Deallocate fields?
3898    return;
3899  }
3900
3901
3902  // Verify that all the fields are okay.
3903  unsigned NumNamedMembers = 0;
3904  llvm::SmallVector<FieldDecl*, 32> RecFields;
3905
3906  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3907  for (unsigned i = 0; i != NumFields; ++i) {
3908    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3909
3910    // Get the type for the field.
3911    Type *FDTy = FD->getType().getTypePtr();
3912
3913    if (!FD->isAnonymousStructOrUnion()) {
3914      // Remember all fields written by the user.
3915      RecFields.push_back(FD);
3916    }
3917
3918    // If the field is already invalid for some reason, don't emit more
3919    // diagnostics about it.
3920    if (FD->isInvalidDecl())
3921      continue;
3922
3923    // C99 6.7.2.1p2:
3924    //   A structure or union shall not contain a member with
3925    //   incomplete or function type (hence, a structure shall not
3926    //   contain an instance of itself, but may contain a pointer to
3927    //   an instance of itself), except that the last member of a
3928    //   structure with more than one named member may have incomplete
3929    //   array type; such a structure (and any union containing,
3930    //   possibly recursively, a member that is such a structure)
3931    //   shall not be a member of a structure or an element of an
3932    //   array.
3933    if (FDTy->isFunctionType()) {
3934      // Field declared as a function.
3935      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3936        << FD->getDeclName();
3937      FD->setInvalidDecl();
3938      EnclosingDecl->setInvalidDecl();
3939      continue;
3940    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3941               Record && Record->isStruct()) {
3942      // Flexible array member.
3943      if (NumNamedMembers < 1) {
3944        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3945          << FD->getDeclName();
3946        FD->setInvalidDecl();
3947        EnclosingDecl->setInvalidDecl();
3948        continue;
3949      }
3950      // Okay, we have a legal flexible array member at the end of the struct.
3951      if (Record)
3952        Record->setHasFlexibleArrayMember(true);
3953    } else if (!FDTy->isDependentType() &&
3954               RequireCompleteType(FD->getLocation(), FD->getType(),
3955                                   diag::err_field_incomplete)) {
3956      // Incomplete type
3957      FD->setInvalidDecl();
3958      EnclosingDecl->setInvalidDecl();
3959      continue;
3960    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3961      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3962        // If this is a member of a union, then entire union becomes "flexible".
3963        if (Record && Record->isUnion()) {
3964          Record->setHasFlexibleArrayMember(true);
3965        } else {
3966          // If this is a struct/class and this is not the last element, reject
3967          // it.  Note that GCC supports variable sized arrays in the middle of
3968          // structures.
3969          if (i != NumFields-1)
3970            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3971              << FD->getDeclName() << FD->getType();
3972          else {
3973            // We support flexible arrays at the end of structs in
3974            // other structs as an extension.
3975            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3976              << FD->getDeclName();
3977            if (Record)
3978              Record->setHasFlexibleArrayMember(true);
3979          }
3980        }
3981      }
3982    } else if (FDTy->isObjCInterfaceType()) {
3983      /// A field cannot be an Objective-c object
3984      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3985      FD->setInvalidDecl();
3986      EnclosingDecl->setInvalidDecl();
3987      continue;
3988    }
3989    // Keep track of the number of named members.
3990    if (FD->getIdentifier())
3991      ++NumNamedMembers;
3992  }
3993
3994  // Okay, we successfully defined 'Record'.
3995  if (Record) {
3996    Record->completeDefinition(Context);
3997  } else {
3998    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3999    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4000      ID->setIVarList(ClsFields, RecFields.size(), Context);
4001      ID->setLocEnd(RBrac);
4002
4003      // Must enforce the rule that ivars in the base classes may not be
4004      // duplicates.
4005      if (ID->getSuperClass()) {
4006        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4007             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4008          ObjCIvarDecl* Ivar = (*IVI);
4009
4010          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4011            ObjCIvarDecl* prevIvar =
4012              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4013            if (prevIvar) {
4014              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4015              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4016            }
4017          }
4018        }
4019      }
4020    } else if (ObjCImplementationDecl *IMPDecl =
4021                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4022      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4023      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4024        // FIXME: Set the DeclContext correctly when we build the
4025        // declarations.
4026        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4027        IMPDecl->addDecl(Context, ClsFields[I]);
4028      }
4029      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4030    }
4031  }
4032
4033  if (Attr)
4034    ProcessDeclAttributeList(Record, Attr);
4035}
4036
4037EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4038                                          EnumConstantDecl *LastEnumConst,
4039                                          SourceLocation IdLoc,
4040                                          IdentifierInfo *Id,
4041                                          ExprArg val) {
4042  Expr *Val = (Expr *)val.get();
4043
4044  llvm::APSInt EnumVal(32);
4045  QualType EltTy;
4046  if (Val && !Val->isTypeDependent()) {
4047    // Make sure to promote the operand type to int.
4048    UsualUnaryConversions(Val);
4049    if (Val != val.get()) {
4050      val.release();
4051      val = Val;
4052    }
4053
4054    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4055    SourceLocation ExpLoc;
4056    if (!Val->isValueDependent() &&
4057        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4058      Val = 0;
4059    } else {
4060      EltTy = Val->getType();
4061    }
4062  }
4063
4064  if (!Val) {
4065    if (LastEnumConst) {
4066      // Assign the last value + 1.
4067      EnumVal = LastEnumConst->getInitVal();
4068      ++EnumVal;
4069
4070      // Check for overflow on increment.
4071      if (EnumVal < LastEnumConst->getInitVal())
4072        Diag(IdLoc, diag::warn_enum_value_overflow);
4073
4074      EltTy = LastEnumConst->getType();
4075    } else {
4076      // First value, set to zero.
4077      EltTy = Context.IntTy;
4078      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4079    }
4080  }
4081
4082  val.release();
4083  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4084                                  Val, EnumVal);
4085}
4086
4087
4088Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4089                                        DeclPtrTy lastEnumConst,
4090                                        SourceLocation IdLoc,
4091                                        IdentifierInfo *Id,
4092                                        SourceLocation EqualLoc, ExprTy *val) {
4093  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4094  EnumConstantDecl *LastEnumConst =
4095    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4096  Expr *Val = static_cast<Expr*>(val);
4097
4098  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4099  // we find one that is.
4100  S = getNonFieldDeclScope(S);
4101
4102  // Verify that there isn't already something declared with this name in this
4103  // scope.
4104  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4105  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4106    // Maybe we will complain about the shadowed template parameter.
4107    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4108    // Just pretend that we didn't see the previous declaration.
4109    PrevDecl = 0;
4110  }
4111
4112  if (PrevDecl) {
4113    // When in C++, we may get a TagDecl with the same name; in this case the
4114    // enum constant will 'hide' the tag.
4115    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4116           "Received TagDecl when not in C++!");
4117    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4118      if (isa<EnumConstantDecl>(PrevDecl))
4119        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4120      else
4121        Diag(IdLoc, diag::err_redefinition) << Id;
4122      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4123      if (Val) Val->Destroy(Context);
4124      return DeclPtrTy();
4125    }
4126  }
4127
4128  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4129                                            IdLoc, Id, Owned(Val));
4130
4131  // Register this decl in the current scope stack.
4132  if (New)
4133    PushOnScopeChains(New, S);
4134
4135  return DeclPtrTy::make(New);
4136}
4137
4138// FIXME: For consistency with ActOnFields(), we should have the parser
4139// pass in the source location for the left/right braces.
4140void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4141                         DeclPtrTy *Elements, unsigned NumElements) {
4142  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4143  QualType EnumType = Context.getTypeDeclType(Enum);
4144
4145  // TODO: If the result value doesn't fit in an int, it must be a long or long
4146  // long value.  ISO C does not support this, but GCC does as an extension,
4147  // emit a warning.
4148  unsigned IntWidth = Context.Target.getIntWidth();
4149
4150  // Verify that all the values are okay, compute the size of the values, and
4151  // reverse the list.
4152  unsigned NumNegativeBits = 0;
4153  unsigned NumPositiveBits = 0;
4154
4155  // Keep track of whether all elements have type int.
4156  bool AllElementsInt = true;
4157
4158  for (unsigned i = 0; i != NumElements; ++i) {
4159    EnumConstantDecl *ECD =
4160      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4161    if (!ECD) continue;  // Already issued a diagnostic.
4162
4163    // If the enum value doesn't fit in an int, emit an extension warning.
4164    const llvm::APSInt &InitVal = ECD->getInitVal();
4165    assert(InitVal.getBitWidth() >= IntWidth &&
4166           "Should have promoted value to int");
4167    if (InitVal.getBitWidth() > IntWidth) {
4168      llvm::APSInt V(InitVal);
4169      V.trunc(IntWidth);
4170      V.extend(InitVal.getBitWidth());
4171      if (V != InitVal)
4172        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4173          << InitVal.toString(10);
4174    }
4175
4176    // Keep track of the size of positive and negative values.
4177    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4178      NumPositiveBits = std::max(NumPositiveBits,
4179                                 (unsigned)InitVal.getActiveBits());
4180    else
4181      NumNegativeBits = std::max(NumNegativeBits,
4182                                 (unsigned)InitVal.getMinSignedBits());
4183
4184    // Keep track of whether every enum element has type int (very commmon).
4185    if (AllElementsInt)
4186      AllElementsInt = ECD->getType() == Context.IntTy;
4187  }
4188
4189  // Figure out the type that should be used for this enum.
4190  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4191  QualType BestType;
4192  unsigned BestWidth;
4193
4194  if (NumNegativeBits) {
4195    // If there is a negative value, figure out the smallest integer type (of
4196    // int/long/longlong) that fits.
4197    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4198      BestType = Context.IntTy;
4199      BestWidth = IntWidth;
4200    } else {
4201      BestWidth = Context.Target.getLongWidth();
4202
4203      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4204        BestType = Context.LongTy;
4205      else {
4206        BestWidth = Context.Target.getLongLongWidth();
4207
4208        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4209          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4210        BestType = Context.LongLongTy;
4211      }
4212    }
4213  } else {
4214    // If there is no negative value, figure out which of uint, ulong, ulonglong
4215    // fits.
4216    if (NumPositiveBits <= IntWidth) {
4217      BestType = Context.UnsignedIntTy;
4218      BestWidth = IntWidth;
4219    } else if (NumPositiveBits <=
4220               (BestWidth = Context.Target.getLongWidth())) {
4221      BestType = Context.UnsignedLongTy;
4222    } else {
4223      BestWidth = Context.Target.getLongLongWidth();
4224      assert(NumPositiveBits <= BestWidth &&
4225             "How could an initializer get larger than ULL?");
4226      BestType = Context.UnsignedLongLongTy;
4227    }
4228  }
4229
4230  // Loop over all of the enumerator constants, changing their types to match
4231  // the type of the enum if needed.
4232  for (unsigned i = 0; i != NumElements; ++i) {
4233    EnumConstantDecl *ECD =
4234      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4235    if (!ECD) continue;  // Already issued a diagnostic.
4236
4237    // Standard C says the enumerators have int type, but we allow, as an
4238    // extension, the enumerators to be larger than int size.  If each
4239    // enumerator value fits in an int, type it as an int, otherwise type it the
4240    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4241    // that X has type 'int', not 'unsigned'.
4242    if (ECD->getType() == Context.IntTy) {
4243      // Make sure the init value is signed.
4244      llvm::APSInt IV = ECD->getInitVal();
4245      IV.setIsSigned(true);
4246      ECD->setInitVal(IV);
4247
4248      if (getLangOptions().CPlusPlus)
4249        // C++ [dcl.enum]p4: Following the closing brace of an
4250        // enum-specifier, each enumerator has the type of its
4251        // enumeration.
4252        ECD->setType(EnumType);
4253      continue;  // Already int type.
4254    }
4255
4256    // Determine whether the value fits into an int.
4257    llvm::APSInt InitVal = ECD->getInitVal();
4258    bool FitsInInt;
4259    if (InitVal.isUnsigned() || !InitVal.isNegative())
4260      FitsInInt = InitVal.getActiveBits() < IntWidth;
4261    else
4262      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4263
4264    // If it fits into an integer type, force it.  Otherwise force it to match
4265    // the enum decl type.
4266    QualType NewTy;
4267    unsigned NewWidth;
4268    bool NewSign;
4269    if (FitsInInt) {
4270      NewTy = Context.IntTy;
4271      NewWidth = IntWidth;
4272      NewSign = true;
4273    } else if (ECD->getType() == BestType) {
4274      // Already the right type!
4275      if (getLangOptions().CPlusPlus)
4276        // C++ [dcl.enum]p4: Following the closing brace of an
4277        // enum-specifier, each enumerator has the type of its
4278        // enumeration.
4279        ECD->setType(EnumType);
4280      continue;
4281    } else {
4282      NewTy = BestType;
4283      NewWidth = BestWidth;
4284      NewSign = BestType->isSignedIntegerType();
4285    }
4286
4287    // Adjust the APSInt value.
4288    InitVal.extOrTrunc(NewWidth);
4289    InitVal.setIsSigned(NewSign);
4290    ECD->setInitVal(InitVal);
4291
4292    // Adjust the Expr initializer and type.
4293    if (ECD->getInitExpr())
4294      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4295                                                      /*isLvalue=*/false));
4296    if (getLangOptions().CPlusPlus)
4297      // C++ [dcl.enum]p4: Following the closing brace of an
4298      // enum-specifier, each enumerator has the type of its
4299      // enumeration.
4300      ECD->setType(EnumType);
4301    else
4302      ECD->setType(NewTy);
4303  }
4304
4305  Enum->completeDefinition(Context, BestType);
4306}
4307
4308Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4309                                            ExprArg expr) {
4310  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4311
4312  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4313                                                  Loc, AsmString));
4314}
4315