SemaDecl.cpp revision f037541d5c7dcf3553cf26e4b047be869980c23a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo,
74                             IdentifierInfo **CorrectedII) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149    if (CorrectedII) {
150      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151                                              Kind, S, SS, 0, false,
152                                              Sema::CTC_Type);
153      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154      TemplateTy Template;
155      bool MemberOfUnknownSpecialization;
156      UnqualifiedId TemplateName;
157      TemplateName.setIdentifier(NewII, NameLoc);
158      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159      CXXScopeSpec NewSS, *NewSSPtr = SS;
160      if (SS && NNS) {
161        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162        NewSSPtr = &NewSS;
163      }
164      if (Correction && (NNS || NewII != &II) &&
165          // Ignore a correction to a template type as the to-be-corrected
166          // identifier is not a template (typo correction for template names
167          // is handled elsewhere).
168          !(getLangOptions().CPlusPlus && NewSSPtr &&
169            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
170                           false, Template, MemberOfUnknownSpecialization))) {
171        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172                                    isClassName, HasTrailingDot, ObjectTypePtr,
173                                    WantNontrivialTypeSourceInfo);
174        if (Ty) {
175          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176          std::string CorrectedQuotedStr(
177              Correction.getQuoted(getLangOptions()));
178          Diag(NameLoc, diag::err_unknown_typename_suggest)
179              << Result.getLookupName() << CorrectedQuotedStr
180              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181                                              CorrectedStr);
182          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
183            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184              << CorrectedQuotedStr;
185
186          if (SS && NNS)
187            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
188          *CorrectedII = NewII;
189          return Ty;
190        }
191      }
192    }
193    // If typo correction failed or was not performed, fall through
194  case LookupResult::FoundOverloaded:
195  case LookupResult::FoundUnresolvedValue:
196    Result.suppressDiagnostics();
197    return ParsedType();
198
199  case LookupResult::Ambiguous:
200    // Recover from type-hiding ambiguities by hiding the type.  We'll
201    // do the lookup again when looking for an object, and we can
202    // diagnose the error then.  If we don't do this, then the error
203    // about hiding the type will be immediately followed by an error
204    // that only makes sense if the identifier was treated like a type.
205    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
206      Result.suppressDiagnostics();
207      return ParsedType();
208    }
209
210    // Look to see if we have a type anywhere in the list of results.
211    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212         Res != ResEnd; ++Res) {
213      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214        if (!IIDecl ||
215            (*Res)->getLocation().getRawEncoding() <
216              IIDecl->getLocation().getRawEncoding())
217          IIDecl = *Res;
218      }
219    }
220
221    if (!IIDecl) {
222      // None of the entities we found is a type, so there is no way
223      // to even assume that the result is a type. In this case, don't
224      // complain about the ambiguity. The parser will either try to
225      // perform this lookup again (e.g., as an object name), which
226      // will produce the ambiguity, or will complain that it expected
227      // a type name.
228      Result.suppressDiagnostics();
229      return ParsedType();
230    }
231
232    // We found a type within the ambiguous lookup; diagnose the
233    // ambiguity and then return that type. This might be the right
234    // answer, or it might not be, but it suppresses any attempt to
235    // perform the name lookup again.
236    break;
237
238  case LookupResult::Found:
239    IIDecl = Result.getFoundDecl();
240    break;
241  }
242
243  assert(IIDecl && "Didn't find decl");
244
245  QualType T;
246  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
247    DiagnoseUseOfDecl(IIDecl, NameLoc);
248
249    if (T.isNull())
250      T = Context.getTypeDeclType(TD);
251
252    if (SS && SS->isNotEmpty()) {
253      if (WantNontrivialTypeSourceInfo) {
254        // Construct a type with type-source information.
255        TypeLocBuilder Builder;
256        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257
258        T = getElaboratedType(ETK_None, *SS, T);
259        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260        ElabTL.setKeywordLoc(SourceLocation());
261        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263      } else {
264        T = getElaboratedType(ETK_None, *SS, T);
265      }
266    }
267  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269    if (!HasTrailingDot)
270      T = Context.getObjCInterfaceType(IDecl);
271  }
272
273  if (T.isNull()) {
274    // If it's not plausibly a type, suppress diagnostics.
275    Result.suppressDiagnostics();
276    return ParsedType();
277  }
278  return ParsedType::make(T);
279}
280
281/// isTagName() - This method is called *for error recovery purposes only*
282/// to determine if the specified name is a valid tag name ("struct foo").  If
283/// so, this returns the TST for the tag corresponding to it (TST_enum,
284/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285/// where the user forgot to specify the tag.
286DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287  // Do a tag name lookup in this scope.
288  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
289  LookupName(R, S, false);
290  R.suppressDiagnostics();
291  if (R.getResultKind() == LookupResult::Found)
292    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293      switch (TD->getTagKind()) {
294      default:         return DeclSpec::TST_unspecified;
295      case TTK_Struct: return DeclSpec::TST_struct;
296      case TTK_Union:  return DeclSpec::TST_union;
297      case TTK_Class:  return DeclSpec::TST_class;
298      case TTK_Enum:   return DeclSpec::TST_enum;
299      }
300    }
301
302  return DeclSpec::TST_unspecified;
303}
304
305/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
306/// if a CXXScopeSpec's type is equal to the type of one of the base classes
307/// then downgrade the missing typename error to a warning.
308/// This is needed for MSVC compatibility; Example:
309/// @code
310/// template<class T> class A {
311/// public:
312///   typedef int TYPE;
313/// };
314/// template<class T> class B : public A<T> {
315/// public:
316///   A<T>::TYPE a; // no typename required because A<T> is a base class.
317/// };
318/// @endcode
319bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
320  if (CurContext->isRecord()) {
321    const Type *Ty = SS->getScopeRep()->getAsType();
322
323    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
324    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
325          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
326      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
327        return true;
328    return S->isFunctionPrototypeScope();
329  }
330  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
331}
332
333bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
334                                   SourceLocation IILoc,
335                                   Scope *S,
336                                   CXXScopeSpec *SS,
337                                   ParsedType &SuggestedType) {
338  // We don't have anything to suggest (yet).
339  SuggestedType = ParsedType();
340
341  // There may have been a typo in the name of the type. Look up typo
342  // results, in case we have something that we can suggest.
343  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
344                                             LookupOrdinaryName, S, SS, NULL,
345                                             false, CTC_Type)) {
346    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
347    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
348
349    if (Corrected.isKeyword()) {
350      // We corrected to a keyword.
351      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
352      Diag(IILoc, diag::err_unknown_typename_suggest)
353        << &II << CorrectedQuotedStr;
354      return true;
355    } else {
356      NamedDecl *Result = Corrected.getCorrectionDecl();
357      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
358          !Result->isInvalidDecl()) {
359        // We found a similarly-named type or interface; suggest that.
360        if (!SS || !SS->isSet())
361          Diag(IILoc, diag::err_unknown_typename_suggest)
362            << &II << CorrectedQuotedStr
363            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
364        else if (DeclContext *DC = computeDeclContext(*SS, false))
365          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
366            << &II << DC << CorrectedQuotedStr << SS->getRange()
367            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
368        else
369          llvm_unreachable("could not have corrected a typo here");
370
371        Diag(Result->getLocation(), diag::note_previous_decl)
372          << CorrectedQuotedStr;
373
374        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
375                                    false, false, ParsedType(),
376                                    /*NonTrivialTypeSourceInfo=*/true);
377        return true;
378      }
379    }
380  }
381
382  if (getLangOptions().CPlusPlus) {
383    // See if II is a class template that the user forgot to pass arguments to.
384    UnqualifiedId Name;
385    Name.setIdentifier(&II, IILoc);
386    CXXScopeSpec EmptySS;
387    TemplateTy TemplateResult;
388    bool MemberOfUnknownSpecialization;
389    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
390                       Name, ParsedType(), true, TemplateResult,
391                       MemberOfUnknownSpecialization) == TNK_Type_template) {
392      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
393      Diag(IILoc, diag::err_template_missing_args) << TplName;
394      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
395        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
396          << TplDecl->getTemplateParameters()->getSourceRange();
397      }
398      return true;
399    }
400  }
401
402  // FIXME: Should we move the logic that tries to recover from a missing tag
403  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
404
405  if (!SS || (!SS->isSet() && !SS->isInvalid()))
406    Diag(IILoc, diag::err_unknown_typename) << &II;
407  else if (DeclContext *DC = computeDeclContext(*SS, false))
408    Diag(IILoc, diag::err_typename_nested_not_found)
409      << &II << DC << SS->getRange();
410  else if (isDependentScopeSpecifier(*SS)) {
411    unsigned DiagID = diag::err_typename_missing;
412    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
413      DiagID = diag::warn_typename_missing;
414
415    Diag(SS->getRange().getBegin(), DiagID)
416      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
417      << SourceRange(SS->getRange().getBegin(), IILoc)
418      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
419    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
420                                                                         .get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S,
552                                                 &SS)) {
553        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
554        unsigned QualifiedDiag = diag::err_no_member_suggest;
555        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
556        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
557
558        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
559        NamedDecl *UnderlyingFirstDecl
560          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
561        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
562            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
563          UnqualifiedDiag = diag::err_no_template_suggest;
564          QualifiedDiag = diag::err_no_member_template_suggest;
565        } else if (UnderlyingFirstDecl &&
566                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
569           UnqualifiedDiag = diag::err_unknown_typename_suggest;
570           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
571         }
572
573        if (SS.isEmpty())
574          Diag(NameLoc, UnqualifiedDiag)
575            << Name << CorrectedQuotedStr
576            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
577        else
578          Diag(NameLoc, QualifiedDiag)
579            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
580            << SS.getRange()
581            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
582
583        // Update the name, so that the caller has the new name.
584        Name = Corrected.getCorrectionAsIdentifierInfo();
585
586        // Also update the LookupResult...
587        // FIXME: This should probably go away at some point
588        Result.clear();
589        Result.setLookupName(Corrected.getCorrection());
590        if (FirstDecl) Result.addDecl(FirstDecl);
591
592        // Typo correction corrected to a keyword.
593        if (Corrected.isKeyword())
594          return Corrected.getCorrectionAsIdentifierInfo();
595
596        if (FirstDecl)
597          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
598            << CorrectedQuotedStr;
599
600        // If we found an Objective-C instance variable, let
601        // LookupInObjCMethod build the appropriate expression to
602        // reference the ivar.
603        // FIXME: This is a gross hack.
604        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
605          Result.clear();
606          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
607          return move(E);
608        }
609
610        goto Corrected;
611      }
612    }
613
614    // We failed to correct; just fall through and let the parser deal with it.
615    Result.suppressDiagnostics();
616    return NameClassification::Unknown();
617
618  case LookupResult::NotFoundInCurrentInstantiation:
619    // We performed name lookup into the current instantiation, and there were
620    // dependent bases, so we treat this result the same way as any other
621    // dependent nested-name-specifier.
622
623    // C++ [temp.res]p2:
624    //   A name used in a template declaration or definition and that is
625    //   dependent on a template-parameter is assumed not to name a type
626    //   unless the applicable name lookup finds a type name or the name is
627    //   qualified by the keyword typename.
628    //
629    // FIXME: If the next token is '<', we might want to ask the parser to
630    // perform some heroics to see if we actually have a
631    // template-argument-list, which would indicate a missing 'template'
632    // keyword here.
633    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
634
635  case LookupResult::Found:
636  case LookupResult::FoundOverloaded:
637  case LookupResult::FoundUnresolvedValue:
638    break;
639
640  case LookupResult::Ambiguous:
641    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
642        hasAnyAcceptableTemplateNames(Result)) {
643      // C++ [temp.local]p3:
644      //   A lookup that finds an injected-class-name (10.2) can result in an
645      //   ambiguity in certain cases (for example, if it is found in more than
646      //   one base class). If all of the injected-class-names that are found
647      //   refer to specializations of the same class template, and if the name
648      //   is followed by a template-argument-list, the reference refers to the
649      //   class template itself and not a specialization thereof, and is not
650      //   ambiguous.
651      //
652      // This filtering can make an ambiguous result into an unambiguous one,
653      // so try again after filtering out template names.
654      FilterAcceptableTemplateNames(Result);
655      if (!Result.isAmbiguous()) {
656        IsFilteredTemplateName = true;
657        break;
658      }
659    }
660
661    // Diagnose the ambiguity and return an error.
662    return NameClassification::Error();
663  }
664
665  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
666      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
667    // C++ [temp.names]p3:
668    //   After name lookup (3.4) finds that a name is a template-name or that
669    //   an operator-function-id or a literal- operator-id refers to a set of
670    //   overloaded functions any member of which is a function template if
671    //   this is followed by a <, the < is always taken as the delimiter of a
672    //   template-argument-list and never as the less-than operator.
673    if (!IsFilteredTemplateName)
674      FilterAcceptableTemplateNames(Result);
675
676    if (!Result.empty()) {
677      bool IsFunctionTemplate;
678      TemplateName Template;
679      if (Result.end() - Result.begin() > 1) {
680        IsFunctionTemplate = true;
681        Template = Context.getOverloadedTemplateName(Result.begin(),
682                                                     Result.end());
683      } else {
684        TemplateDecl *TD
685          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
686        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
687
688        if (SS.isSet() && !SS.isInvalid())
689          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
690                                                    /*TemplateKeyword=*/false,
691                                                      TD);
692        else
693          Template = TemplateName(TD);
694      }
695
696      if (IsFunctionTemplate) {
697        // Function templates always go through overload resolution, at which
698        // point we'll perform the various checks (e.g., accessibility) we need
699        // to based on which function we selected.
700        Result.suppressDiagnostics();
701
702        return NameClassification::FunctionTemplate(Template);
703      }
704
705      return NameClassification::TypeTemplate(Template);
706    }
707  }
708
709  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
710  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
711    DiagnoseUseOfDecl(Type, NameLoc);
712    QualType T = Context.getTypeDeclType(Type);
713    return ParsedType::make(T);
714  }
715
716  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
717  if (!Class) {
718    // FIXME: It's unfortunate that we don't have a Type node for handling this.
719    if (ObjCCompatibleAliasDecl *Alias
720                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
721      Class = Alias->getClassInterface();
722  }
723
724  if (Class) {
725    DiagnoseUseOfDecl(Class, NameLoc);
726
727    if (NextToken.is(tok::period)) {
728      // Interface. <something> is parsed as a property reference expression.
729      // Just return "unknown" as a fall-through for now.
730      Result.suppressDiagnostics();
731      return NameClassification::Unknown();
732    }
733
734    QualType T = Context.getObjCInterfaceType(Class);
735    return ParsedType::make(T);
736  }
737
738  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
739    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
740
741  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
742  return BuildDeclarationNameExpr(SS, Result, ADL);
743}
744
745// Determines the context to return to after temporarily entering a
746// context.  This depends in an unnecessarily complicated way on the
747// exact ordering of callbacks from the parser.
748DeclContext *Sema::getContainingDC(DeclContext *DC) {
749
750  // Functions defined inline within classes aren't parsed until we've
751  // finished parsing the top-level class, so the top-level class is
752  // the context we'll need to return to.
753  if (isa<FunctionDecl>(DC)) {
754    DC = DC->getLexicalParent();
755
756    // A function not defined within a class will always return to its
757    // lexical context.
758    if (!isa<CXXRecordDecl>(DC))
759      return DC;
760
761    // A C++ inline method/friend is parsed *after* the topmost class
762    // it was declared in is fully parsed ("complete");  the topmost
763    // class is the context we need to return to.
764    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
765      DC = RD;
766
767    // Return the declaration context of the topmost class the inline method is
768    // declared in.
769    return DC;
770  }
771
772  return DC->getLexicalParent();
773}
774
775void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
776  assert(getContainingDC(DC) == CurContext &&
777      "The next DeclContext should be lexically contained in the current one.");
778  CurContext = DC;
779  S->setEntity(DC);
780}
781
782void Sema::PopDeclContext() {
783  assert(CurContext && "DeclContext imbalance!");
784
785  CurContext = getContainingDC(CurContext);
786  assert(CurContext && "Popped translation unit!");
787}
788
789/// EnterDeclaratorContext - Used when we must lookup names in the context
790/// of a declarator's nested name specifier.
791///
792void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
793  // C++0x [basic.lookup.unqual]p13:
794  //   A name used in the definition of a static data member of class
795  //   X (after the qualified-id of the static member) is looked up as
796  //   if the name was used in a member function of X.
797  // C++0x [basic.lookup.unqual]p14:
798  //   If a variable member of a namespace is defined outside of the
799  //   scope of its namespace then any name used in the definition of
800  //   the variable member (after the declarator-id) is looked up as
801  //   if the definition of the variable member occurred in its
802  //   namespace.
803  // Both of these imply that we should push a scope whose context
804  // is the semantic context of the declaration.  We can't use
805  // PushDeclContext here because that context is not necessarily
806  // lexically contained in the current context.  Fortunately,
807  // the containing scope should have the appropriate information.
808
809  assert(!S->getEntity() && "scope already has entity");
810
811#ifndef NDEBUG
812  Scope *Ancestor = S->getParent();
813  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
814  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
815#endif
816
817  CurContext = DC;
818  S->setEntity(DC);
819}
820
821void Sema::ExitDeclaratorContext(Scope *S) {
822  assert(S->getEntity() == CurContext && "Context imbalance!");
823
824  // Switch back to the lexical context.  The safety of this is
825  // enforced by an assert in EnterDeclaratorContext.
826  Scope *Ancestor = S->getParent();
827  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
828  CurContext = (DeclContext*) Ancestor->getEntity();
829
830  // We don't need to do anything with the scope, which is going to
831  // disappear.
832}
833
834
835void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
836  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
837  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
838    // We assume that the caller has already called
839    // ActOnReenterTemplateScope
840    FD = TFD->getTemplatedDecl();
841  }
842  if (!FD)
843    return;
844
845  PushDeclContext(S, FD);
846  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
847    ParmVarDecl *Param = FD->getParamDecl(P);
848    // If the parameter has an identifier, then add it to the scope
849    if (Param->getIdentifier()) {
850      S->AddDecl(Param);
851      IdResolver.AddDecl(Param);
852    }
853  }
854}
855
856
857/// \brief Determine whether we allow overloading of the function
858/// PrevDecl with another declaration.
859///
860/// This routine determines whether overloading is possible, not
861/// whether some new function is actually an overload. It will return
862/// true in C++ (where we can always provide overloads) or, as an
863/// extension, in C when the previous function is already an
864/// overloaded function declaration or has the "overloadable"
865/// attribute.
866static bool AllowOverloadingOfFunction(LookupResult &Previous,
867                                       ASTContext &Context) {
868  if (Context.getLangOptions().CPlusPlus)
869    return true;
870
871  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
872    return true;
873
874  return (Previous.getResultKind() == LookupResult::Found
875          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
876}
877
878/// Add this decl to the scope shadowed decl chains.
879void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
880  // Move up the scope chain until we find the nearest enclosing
881  // non-transparent context. The declaration will be introduced into this
882  // scope.
883  while (S->getEntity() &&
884         ((DeclContext *)S->getEntity())->isTransparentContext())
885    S = S->getParent();
886
887  // Add scoped declarations into their context, so that they can be
888  // found later. Declarations without a context won't be inserted
889  // into any context.
890  if (AddToContext)
891    CurContext->addDecl(D);
892
893  // Out-of-line definitions shouldn't be pushed into scope in C++.
894  // Out-of-line variable and function definitions shouldn't even in C.
895  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
896      D->isOutOfLine() &&
897      !D->getDeclContext()->getRedeclContext()->Equals(
898        D->getLexicalDeclContext()->getRedeclContext()))
899    return;
900
901  // Template instantiations should also not be pushed into scope.
902  if (isa<FunctionDecl>(D) &&
903      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
904    return;
905
906  // If this replaces anything in the current scope,
907  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
908                               IEnd = IdResolver.end();
909  for (; I != IEnd; ++I) {
910    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
911      S->RemoveDecl(*I);
912      IdResolver.RemoveDecl(*I);
913
914      // Should only need to replace one decl.
915      break;
916    }
917  }
918
919  S->AddDecl(D);
920
921  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
922    // Implicitly-generated labels may end up getting generated in an order that
923    // isn't strictly lexical, which breaks name lookup. Be careful to insert
924    // the label at the appropriate place in the identifier chain.
925    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
926      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
927      if (IDC == CurContext) {
928        if (!S->isDeclScope(*I))
929          continue;
930      } else if (IDC->Encloses(CurContext))
931        break;
932    }
933
934    IdResolver.InsertDeclAfter(I, D);
935  } else {
936    IdResolver.AddDecl(D);
937  }
938}
939
940void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
941  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
942    TUScope->AddDecl(D);
943}
944
945bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
946                         bool ExplicitInstantiationOrSpecialization) {
947  return IdResolver.isDeclInScope(D, Ctx, Context, S,
948                                  ExplicitInstantiationOrSpecialization);
949}
950
951Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
952  DeclContext *TargetDC = DC->getPrimaryContext();
953  do {
954    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
955      if (ScopeDC->getPrimaryContext() == TargetDC)
956        return S;
957  } while ((S = S->getParent()));
958
959  return 0;
960}
961
962static bool isOutOfScopePreviousDeclaration(NamedDecl *,
963                                            DeclContext*,
964                                            ASTContext&);
965
966/// Filters out lookup results that don't fall within the given scope
967/// as determined by isDeclInScope.
968void Sema::FilterLookupForScope(LookupResult &R,
969                                DeclContext *Ctx, Scope *S,
970                                bool ConsiderLinkage,
971                                bool ExplicitInstantiationOrSpecialization) {
972  LookupResult::Filter F = R.makeFilter();
973  while (F.hasNext()) {
974    NamedDecl *D = F.next();
975
976    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
977      continue;
978
979    if (ConsiderLinkage &&
980        isOutOfScopePreviousDeclaration(D, Ctx, Context))
981      continue;
982
983    F.erase();
984  }
985
986  F.done();
987}
988
989static bool isUsingDecl(NamedDecl *D) {
990  return isa<UsingShadowDecl>(D) ||
991         isa<UnresolvedUsingTypenameDecl>(D) ||
992         isa<UnresolvedUsingValueDecl>(D);
993}
994
995/// Removes using shadow declarations from the lookup results.
996static void RemoveUsingDecls(LookupResult &R) {
997  LookupResult::Filter F = R.makeFilter();
998  while (F.hasNext())
999    if (isUsingDecl(F.next()))
1000      F.erase();
1001
1002  F.done();
1003}
1004
1005/// \brief Check for this common pattern:
1006/// @code
1007/// class S {
1008///   S(const S&); // DO NOT IMPLEMENT
1009///   void operator=(const S&); // DO NOT IMPLEMENT
1010/// };
1011/// @endcode
1012static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1013  // FIXME: Should check for private access too but access is set after we get
1014  // the decl here.
1015  if (D->doesThisDeclarationHaveABody())
1016    return false;
1017
1018  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1019    return CD->isCopyConstructor();
1020  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1021    return Method->isCopyAssignmentOperator();
1022  return false;
1023}
1024
1025bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1026  assert(D);
1027
1028  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1029    return false;
1030
1031  // Ignore class templates.
1032  if (D->getDeclContext()->isDependentContext() ||
1033      D->getLexicalDeclContext()->isDependentContext())
1034    return false;
1035
1036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1037    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1038      return false;
1039
1040    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1041      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1042        return false;
1043    } else {
1044      // 'static inline' functions are used in headers; don't warn.
1045      if (FD->getStorageClass() == SC_Static &&
1046          FD->isInlineSpecified())
1047        return false;
1048    }
1049
1050    if (FD->doesThisDeclarationHaveABody() &&
1051        Context.DeclMustBeEmitted(FD))
1052      return false;
1053  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1054    if (!VD->isFileVarDecl() ||
1055        VD->getType().isConstant(Context) ||
1056        Context.DeclMustBeEmitted(VD))
1057      return false;
1058
1059    if (VD->isStaticDataMember() &&
1060        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1061      return false;
1062
1063  } else {
1064    return false;
1065  }
1066
1067  // Only warn for unused decls internal to the translation unit.
1068  if (D->getLinkage() == ExternalLinkage)
1069    return false;
1070
1071  return true;
1072}
1073
1074void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1075  if (!D)
1076    return;
1077
1078  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1079    const FunctionDecl *First = FD->getFirstDeclaration();
1080    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1085    const VarDecl *First = VD->getFirstDeclaration();
1086    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1087      return; // First should already be in the vector.
1088  }
1089
1090   if (ShouldWarnIfUnusedFileScopedDecl(D))
1091     UnusedFileScopedDecls.push_back(D);
1092 }
1093
1094static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1095  if (D->isInvalidDecl())
1096    return false;
1097
1098  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1099    return false;
1100
1101  if (isa<LabelDecl>(D))
1102    return true;
1103
1104  // White-list anything that isn't a local variable.
1105  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1106      !D->getDeclContext()->isFunctionOrMethod())
1107    return false;
1108
1109  // Types of valid local variables should be complete, so this should succeed.
1110  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1111
1112    // White-list anything with an __attribute__((unused)) type.
1113    QualType Ty = VD->getType();
1114
1115    // Only look at the outermost level of typedef.
1116    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1117      if (TT->getDecl()->hasAttr<UnusedAttr>())
1118        return false;
1119    }
1120
1121    // If we failed to complete the type for some reason, or if the type is
1122    // dependent, don't diagnose the variable.
1123    if (Ty->isIncompleteType() || Ty->isDependentType())
1124      return false;
1125
1126    if (const TagType *TT = Ty->getAs<TagType>()) {
1127      const TagDecl *Tag = TT->getDecl();
1128      if (Tag->hasAttr<UnusedAttr>())
1129        return false;
1130
1131      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1132        if (!RD->hasTrivialDestructor())
1133          return false;
1134
1135        if (const Expr *Init = VD->getInit()) {
1136          const CXXConstructExpr *Construct =
1137            dyn_cast<CXXConstructExpr>(Init);
1138          if (Construct && !Construct->isElidable()) {
1139            CXXConstructorDecl *CD = Construct->getConstructor();
1140            if (!CD->isTrivial())
1141              return false;
1142          }
1143        }
1144      }
1145    }
1146
1147    // TODO: __attribute__((unused)) templates?
1148  }
1149
1150  return true;
1151}
1152
1153static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1154                                     FixItHint &Hint) {
1155  if (isa<LabelDecl>(D)) {
1156    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1157                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1158    if (AfterColon.isInvalid())
1159      return;
1160    Hint = FixItHint::CreateRemoval(CharSourceRange::
1161                                    getCharRange(D->getLocStart(), AfterColon));
1162  }
1163  return;
1164}
1165
1166/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1167/// unless they are marked attr(unused).
1168void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1169  FixItHint Hint;
1170  if (!ShouldDiagnoseUnusedDecl(D))
1171    return;
1172
1173  GenerateFixForUnusedDecl(D, Context, Hint);
1174
1175  unsigned DiagID;
1176  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1177    DiagID = diag::warn_unused_exception_param;
1178  else if (isa<LabelDecl>(D))
1179    DiagID = diag::warn_unused_label;
1180  else
1181    DiagID = diag::warn_unused_variable;
1182
1183  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1184}
1185
1186static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1187  // Verify that we have no forward references left.  If so, there was a goto
1188  // or address of a label taken, but no definition of it.  Label fwd
1189  // definitions are indicated with a null substmt.
1190  if (L->getStmt() == 0)
1191    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1192}
1193
1194void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1195  if (S->decl_empty()) return;
1196  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1197         "Scope shouldn't contain decls!");
1198
1199  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1200       I != E; ++I) {
1201    Decl *TmpD = (*I);
1202    assert(TmpD && "This decl didn't get pushed??");
1203
1204    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1205    NamedDecl *D = cast<NamedDecl>(TmpD);
1206
1207    if (!D->getDeclName()) continue;
1208
1209    // Diagnose unused variables in this scope.
1210    if (!S->hasErrorOccurred())
1211      DiagnoseUnusedDecl(D);
1212
1213    // If this was a forward reference to a label, verify it was defined.
1214    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1215      CheckPoppedLabel(LD, *this);
1216
1217    // Remove this name from our lexical scope.
1218    IdResolver.RemoveDecl(D);
1219  }
1220}
1221
1222/// \brief Look for an Objective-C class in the translation unit.
1223///
1224/// \param Id The name of the Objective-C class we're looking for. If
1225/// typo-correction fixes this name, the Id will be updated
1226/// to the fixed name.
1227///
1228/// \param IdLoc The location of the name in the translation unit.
1229///
1230/// \param TypoCorrection If true, this routine will attempt typo correction
1231/// if there is no class with the given name.
1232///
1233/// \returns The declaration of the named Objective-C class, or NULL if the
1234/// class could not be found.
1235ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1236                                              SourceLocation IdLoc,
1237                                              bool DoTypoCorrection) {
1238  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1239  // creation from this context.
1240  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1241
1242  if (!IDecl && DoTypoCorrection) {
1243    // Perform typo correction at the given location, but only if we
1244    // find an Objective-C class name.
1245    TypoCorrection C;
1246    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1247                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1248        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1249      Diag(IdLoc, diag::err_undef_interface_suggest)
1250        << Id << IDecl->getDeclName()
1251        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1252      Diag(IDecl->getLocation(), diag::note_previous_decl)
1253        << IDecl->getDeclName();
1254
1255      Id = IDecl->getIdentifier();
1256    }
1257  }
1258  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1259  // This routine must always return a class definition, if any.
1260  if (Def && Def->getDefinition())
1261      Def = Def->getDefinition();
1262  return Def;
1263}
1264
1265/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1266/// from S, where a non-field would be declared. This routine copes
1267/// with the difference between C and C++ scoping rules in structs and
1268/// unions. For example, the following code is well-formed in C but
1269/// ill-formed in C++:
1270/// @code
1271/// struct S6 {
1272///   enum { BAR } e;
1273/// };
1274///
1275/// void test_S6() {
1276///   struct S6 a;
1277///   a.e = BAR;
1278/// }
1279/// @endcode
1280/// For the declaration of BAR, this routine will return a different
1281/// scope. The scope S will be the scope of the unnamed enumeration
1282/// within S6. In C++, this routine will return the scope associated
1283/// with S6, because the enumeration's scope is a transparent
1284/// context but structures can contain non-field names. In C, this
1285/// routine will return the translation unit scope, since the
1286/// enumeration's scope is a transparent context and structures cannot
1287/// contain non-field names.
1288Scope *Sema::getNonFieldDeclScope(Scope *S) {
1289  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1290         (S->getEntity() &&
1291          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1292         (S->isClassScope() && !getLangOptions().CPlusPlus))
1293    S = S->getParent();
1294  return S;
1295}
1296
1297/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1298/// file scope.  lazily create a decl for it. ForRedeclaration is true
1299/// if we're creating this built-in in anticipation of redeclaring the
1300/// built-in.
1301NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1302                                     Scope *S, bool ForRedeclaration,
1303                                     SourceLocation Loc) {
1304  Builtin::ID BID = (Builtin::ID)bid;
1305
1306  ASTContext::GetBuiltinTypeError Error;
1307  QualType R = Context.GetBuiltinType(BID, Error);
1308  switch (Error) {
1309  case ASTContext::GE_None:
1310    // Okay
1311    break;
1312
1313  case ASTContext::GE_Missing_stdio:
1314    if (ForRedeclaration)
1315      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1316        << Context.BuiltinInfo.GetName(BID);
1317    return 0;
1318
1319  case ASTContext::GE_Missing_setjmp:
1320    if (ForRedeclaration)
1321      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1322        << Context.BuiltinInfo.GetName(BID);
1323    return 0;
1324
1325  case ASTContext::GE_Missing_ucontext:
1326    if (ForRedeclaration)
1327      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1328        << Context.BuiltinInfo.GetName(BID);
1329    return 0;
1330  }
1331
1332  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1333    Diag(Loc, diag::ext_implicit_lib_function_decl)
1334      << Context.BuiltinInfo.GetName(BID)
1335      << R;
1336    if (Context.BuiltinInfo.getHeaderName(BID) &&
1337        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1338          != DiagnosticsEngine::Ignored)
1339      Diag(Loc, diag::note_please_include_header)
1340        << Context.BuiltinInfo.getHeaderName(BID)
1341        << Context.BuiltinInfo.GetName(BID);
1342  }
1343
1344  FunctionDecl *New = FunctionDecl::Create(Context,
1345                                           Context.getTranslationUnitDecl(),
1346                                           Loc, Loc, II, R, /*TInfo=*/0,
1347                                           SC_Extern,
1348                                           SC_None, false,
1349                                           /*hasPrototype=*/true);
1350  New->setImplicit();
1351
1352  // Create Decl objects for each parameter, adding them to the
1353  // FunctionDecl.
1354  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1355    SmallVector<ParmVarDecl*, 16> Params;
1356    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1357      ParmVarDecl *parm =
1358        ParmVarDecl::Create(Context, New, SourceLocation(),
1359                            SourceLocation(), 0,
1360                            FT->getArgType(i), /*TInfo=*/0,
1361                            SC_None, SC_None, 0);
1362      parm->setScopeInfo(0, i);
1363      Params.push_back(parm);
1364    }
1365    New->setParams(Params);
1366  }
1367
1368  AddKnownFunctionAttributes(New);
1369
1370  // TUScope is the translation-unit scope to insert this function into.
1371  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1372  // relate Scopes to DeclContexts, and probably eliminate CurContext
1373  // entirely, but we're not there yet.
1374  DeclContext *SavedContext = CurContext;
1375  CurContext = Context.getTranslationUnitDecl();
1376  PushOnScopeChains(New, TUScope);
1377  CurContext = SavedContext;
1378  return New;
1379}
1380
1381bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1382  QualType OldType;
1383  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1384    OldType = OldTypedef->getUnderlyingType();
1385  else
1386    OldType = Context.getTypeDeclType(Old);
1387  QualType NewType = New->getUnderlyingType();
1388
1389  if (NewType->isVariablyModifiedType()) {
1390    // Must not redefine a typedef with a variably-modified type.
1391    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1392    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1393      << Kind << NewType;
1394    if (Old->getLocation().isValid())
1395      Diag(Old->getLocation(), diag::note_previous_definition);
1396    New->setInvalidDecl();
1397    return true;
1398  }
1399
1400  if (OldType != NewType &&
1401      !OldType->isDependentType() &&
1402      !NewType->isDependentType() &&
1403      !Context.hasSameType(OldType, NewType)) {
1404    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1405    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1406      << Kind << NewType << OldType;
1407    if (Old->getLocation().isValid())
1408      Diag(Old->getLocation(), diag::note_previous_definition);
1409    New->setInvalidDecl();
1410    return true;
1411  }
1412  return false;
1413}
1414
1415/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1416/// same name and scope as a previous declaration 'Old'.  Figure out
1417/// how to resolve this situation, merging decls or emitting
1418/// diagnostics as appropriate. If there was an error, set New to be invalid.
1419///
1420void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1421  // If the new decl is known invalid already, don't bother doing any
1422  // merging checks.
1423  if (New->isInvalidDecl()) return;
1424
1425  // Allow multiple definitions for ObjC built-in typedefs.
1426  // FIXME: Verify the underlying types are equivalent!
1427  if (getLangOptions().ObjC1) {
1428    const IdentifierInfo *TypeID = New->getIdentifier();
1429    switch (TypeID->getLength()) {
1430    default: break;
1431    case 2:
1432      if (!TypeID->isStr("id"))
1433        break;
1434      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1435      // Install the built-in type for 'id', ignoring the current definition.
1436      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1437      return;
1438    case 5:
1439      if (!TypeID->isStr("Class"))
1440        break;
1441      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1442      // Install the built-in type for 'Class', ignoring the current definition.
1443      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1444      return;
1445    case 3:
1446      if (!TypeID->isStr("SEL"))
1447        break;
1448      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1449      // Install the built-in type for 'SEL', ignoring the current definition.
1450      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1451      return;
1452    }
1453    // Fall through - the typedef name was not a builtin type.
1454  }
1455
1456  // Verify the old decl was also a type.
1457  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1458  if (!Old) {
1459    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1460      << New->getDeclName();
1461
1462    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1463    if (OldD->getLocation().isValid())
1464      Diag(OldD->getLocation(), diag::note_previous_definition);
1465
1466    return New->setInvalidDecl();
1467  }
1468
1469  // If the old declaration is invalid, just give up here.
1470  if (Old->isInvalidDecl())
1471    return New->setInvalidDecl();
1472
1473  // If the typedef types are not identical, reject them in all languages and
1474  // with any extensions enabled.
1475  if (isIncompatibleTypedef(Old, New))
1476    return;
1477
1478  // The types match.  Link up the redeclaration chain if the old
1479  // declaration was a typedef.
1480  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1481    New->setPreviousDeclaration(Typedef);
1482
1483  if (getLangOptions().MicrosoftExt)
1484    return;
1485
1486  if (getLangOptions().CPlusPlus) {
1487    // C++ [dcl.typedef]p2:
1488    //   In a given non-class scope, a typedef specifier can be used to
1489    //   redefine the name of any type declared in that scope to refer
1490    //   to the type to which it already refers.
1491    if (!isa<CXXRecordDecl>(CurContext))
1492      return;
1493
1494    // C++0x [dcl.typedef]p4:
1495    //   In a given class scope, a typedef specifier can be used to redefine
1496    //   any class-name declared in that scope that is not also a typedef-name
1497    //   to refer to the type to which it already refers.
1498    //
1499    // This wording came in via DR424, which was a correction to the
1500    // wording in DR56, which accidentally banned code like:
1501    //
1502    //   struct S {
1503    //     typedef struct A { } A;
1504    //   };
1505    //
1506    // in the C++03 standard. We implement the C++0x semantics, which
1507    // allow the above but disallow
1508    //
1509    //   struct S {
1510    //     typedef int I;
1511    //     typedef int I;
1512    //   };
1513    //
1514    // since that was the intent of DR56.
1515    if (!isa<TypedefNameDecl>(Old))
1516      return;
1517
1518    Diag(New->getLocation(), diag::err_redefinition)
1519      << New->getDeclName();
1520    Diag(Old->getLocation(), diag::note_previous_definition);
1521    return New->setInvalidDecl();
1522  }
1523
1524  // Modules always permit redefinition of typedefs, as does C11.
1525  if (getLangOptions().Modules || getLangOptions().C11)
1526    return;
1527
1528  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1529  // is normally mapped to an error, but can be controlled with
1530  // -Wtypedef-redefinition.  If either the original or the redefinition is
1531  // in a system header, don't emit this for compatibility with GCC.
1532  if (getDiagnostics().getSuppressSystemWarnings() &&
1533      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1534       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1535    return;
1536
1537  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1538    << New->getDeclName();
1539  Diag(Old->getLocation(), diag::note_previous_definition);
1540  return;
1541}
1542
1543/// DeclhasAttr - returns true if decl Declaration already has the target
1544/// attribute.
1545static bool
1546DeclHasAttr(const Decl *D, const Attr *A) {
1547  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1548  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1549  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1550    if ((*i)->getKind() == A->getKind()) {
1551      if (Ann) {
1552        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1553          return true;
1554        continue;
1555      }
1556      // FIXME: Don't hardcode this check
1557      if (OA && isa<OwnershipAttr>(*i))
1558        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1559      return true;
1560    }
1561
1562  return false;
1563}
1564
1565/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1566void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1567                               bool MergeDeprecation) {
1568  if (!Old->hasAttrs())
1569    return;
1570
1571  bool foundAny = New->hasAttrs();
1572
1573  // Ensure that any moving of objects within the allocated map is done before
1574  // we process them.
1575  if (!foundAny) New->setAttrs(AttrVec());
1576
1577  for (specific_attr_iterator<InheritableAttr>
1578         i = Old->specific_attr_begin<InheritableAttr>(),
1579         e = Old->specific_attr_end<InheritableAttr>();
1580       i != e; ++i) {
1581    // Ignore deprecated/unavailable/availability attributes if requested.
1582    if (!MergeDeprecation &&
1583        (isa<DeprecatedAttr>(*i) ||
1584         isa<UnavailableAttr>(*i) ||
1585         isa<AvailabilityAttr>(*i)))
1586      continue;
1587
1588    if (!DeclHasAttr(New, *i)) {
1589      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1590      newAttr->setInherited(true);
1591      New->addAttr(newAttr);
1592      foundAny = true;
1593    }
1594  }
1595
1596  if (!foundAny) New->dropAttrs();
1597}
1598
1599/// mergeParamDeclAttributes - Copy attributes from the old parameter
1600/// to the new one.
1601static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1602                                     const ParmVarDecl *oldDecl,
1603                                     ASTContext &C) {
1604  if (!oldDecl->hasAttrs())
1605    return;
1606
1607  bool foundAny = newDecl->hasAttrs();
1608
1609  // Ensure that any moving of objects within the allocated map is
1610  // done before we process them.
1611  if (!foundAny) newDecl->setAttrs(AttrVec());
1612
1613  for (specific_attr_iterator<InheritableParamAttr>
1614       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1615       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1616    if (!DeclHasAttr(newDecl, *i)) {
1617      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1618      newAttr->setInherited(true);
1619      newDecl->addAttr(newAttr);
1620      foundAny = true;
1621    }
1622  }
1623
1624  if (!foundAny) newDecl->dropAttrs();
1625}
1626
1627namespace {
1628
1629/// Used in MergeFunctionDecl to keep track of function parameters in
1630/// C.
1631struct GNUCompatibleParamWarning {
1632  ParmVarDecl *OldParm;
1633  ParmVarDecl *NewParm;
1634  QualType PromotedType;
1635};
1636
1637}
1638
1639/// getSpecialMember - get the special member enum for a method.
1640Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1641  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1642    if (Ctor->isDefaultConstructor())
1643      return Sema::CXXDefaultConstructor;
1644
1645    if (Ctor->isCopyConstructor())
1646      return Sema::CXXCopyConstructor;
1647
1648    if (Ctor->isMoveConstructor())
1649      return Sema::CXXMoveConstructor;
1650  } else if (isa<CXXDestructorDecl>(MD)) {
1651    return Sema::CXXDestructor;
1652  } else if (MD->isCopyAssignmentOperator()) {
1653    return Sema::CXXCopyAssignment;
1654  } else if (MD->isMoveAssignmentOperator()) {
1655    return Sema::CXXMoveAssignment;
1656  }
1657
1658  return Sema::CXXInvalid;
1659}
1660
1661/// canRedefineFunction - checks if a function can be redefined. Currently,
1662/// only extern inline functions can be redefined, and even then only in
1663/// GNU89 mode.
1664static bool canRedefineFunction(const FunctionDecl *FD,
1665                                const LangOptions& LangOpts) {
1666  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1667          !LangOpts.CPlusPlus &&
1668          FD->isInlineSpecified() &&
1669          FD->getStorageClass() == SC_Extern);
1670}
1671
1672/// MergeFunctionDecl - We just parsed a function 'New' from
1673/// declarator D which has the same name and scope as a previous
1674/// declaration 'Old'.  Figure out how to resolve this situation,
1675/// merging decls or emitting diagnostics as appropriate.
1676///
1677/// In C++, New and Old must be declarations that are not
1678/// overloaded. Use IsOverload to determine whether New and Old are
1679/// overloaded, and to select the Old declaration that New should be
1680/// merged with.
1681///
1682/// Returns true if there was an error, false otherwise.
1683bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1684  // Verify the old decl was also a function.
1685  FunctionDecl *Old = 0;
1686  if (FunctionTemplateDecl *OldFunctionTemplate
1687        = dyn_cast<FunctionTemplateDecl>(OldD))
1688    Old = OldFunctionTemplate->getTemplatedDecl();
1689  else
1690    Old = dyn_cast<FunctionDecl>(OldD);
1691  if (!Old) {
1692    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1693      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1694      Diag(Shadow->getTargetDecl()->getLocation(),
1695           diag::note_using_decl_target);
1696      Diag(Shadow->getUsingDecl()->getLocation(),
1697           diag::note_using_decl) << 0;
1698      return true;
1699    }
1700
1701    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1702      << New->getDeclName();
1703    Diag(OldD->getLocation(), diag::note_previous_definition);
1704    return true;
1705  }
1706
1707  // Determine whether the previous declaration was a definition,
1708  // implicit declaration, or a declaration.
1709  diag::kind PrevDiag;
1710  if (Old->isThisDeclarationADefinition())
1711    PrevDiag = diag::note_previous_definition;
1712  else if (Old->isImplicit())
1713    PrevDiag = diag::note_previous_implicit_declaration;
1714  else
1715    PrevDiag = diag::note_previous_declaration;
1716
1717  QualType OldQType = Context.getCanonicalType(Old->getType());
1718  QualType NewQType = Context.getCanonicalType(New->getType());
1719
1720  // Don't complain about this if we're in GNU89 mode and the old function
1721  // is an extern inline function.
1722  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1723      New->getStorageClass() == SC_Static &&
1724      Old->getStorageClass() != SC_Static &&
1725      !canRedefineFunction(Old, getLangOptions())) {
1726    if (getLangOptions().MicrosoftExt) {
1727      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1728      Diag(Old->getLocation(), PrevDiag);
1729    } else {
1730      Diag(New->getLocation(), diag::err_static_non_static) << New;
1731      Diag(Old->getLocation(), PrevDiag);
1732      return true;
1733    }
1734  }
1735
1736  // If a function is first declared with a calling convention, but is
1737  // later declared or defined without one, the second decl assumes the
1738  // calling convention of the first.
1739  //
1740  // For the new decl, we have to look at the NON-canonical type to tell the
1741  // difference between a function that really doesn't have a calling
1742  // convention and one that is declared cdecl. That's because in
1743  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1744  // because it is the default calling convention.
1745  //
1746  // Note also that we DO NOT return at this point, because we still have
1747  // other tests to run.
1748  const FunctionType *OldType = cast<FunctionType>(OldQType);
1749  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1750  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1751  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1752  bool RequiresAdjustment = false;
1753  if (OldTypeInfo.getCC() != CC_Default &&
1754      NewTypeInfo.getCC() == CC_Default) {
1755    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1756    RequiresAdjustment = true;
1757  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1758                                     NewTypeInfo.getCC())) {
1759    // Calling conventions really aren't compatible, so complain.
1760    Diag(New->getLocation(), diag::err_cconv_change)
1761      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1762      << (OldTypeInfo.getCC() == CC_Default)
1763      << (OldTypeInfo.getCC() == CC_Default ? "" :
1764          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1765    Diag(Old->getLocation(), diag::note_previous_declaration);
1766    return true;
1767  }
1768
1769  // FIXME: diagnose the other way around?
1770  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1771    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1772    RequiresAdjustment = true;
1773  }
1774
1775  // Merge regparm attribute.
1776  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1777      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1778    if (NewTypeInfo.getHasRegParm()) {
1779      Diag(New->getLocation(), diag::err_regparm_mismatch)
1780        << NewType->getRegParmType()
1781        << OldType->getRegParmType();
1782      Diag(Old->getLocation(), diag::note_previous_declaration);
1783      return true;
1784    }
1785
1786    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1787    RequiresAdjustment = true;
1788  }
1789
1790  // Merge ns_returns_retained attribute.
1791  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1792    if (NewTypeInfo.getProducesResult()) {
1793      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1794      Diag(Old->getLocation(), diag::note_previous_declaration);
1795      return true;
1796    }
1797
1798    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1799    RequiresAdjustment = true;
1800  }
1801
1802  if (RequiresAdjustment) {
1803    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1804    New->setType(QualType(NewType, 0));
1805    NewQType = Context.getCanonicalType(New->getType());
1806  }
1807
1808  if (getLangOptions().CPlusPlus) {
1809    // (C++98 13.1p2):
1810    //   Certain function declarations cannot be overloaded:
1811    //     -- Function declarations that differ only in the return type
1812    //        cannot be overloaded.
1813    QualType OldReturnType = OldType->getResultType();
1814    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1815    QualType ResQT;
1816    if (OldReturnType != NewReturnType) {
1817      if (NewReturnType->isObjCObjectPointerType()
1818          && OldReturnType->isObjCObjectPointerType())
1819        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1820      if (ResQT.isNull()) {
1821        if (New->isCXXClassMember() && New->isOutOfLine())
1822          Diag(New->getLocation(),
1823               diag::err_member_def_does_not_match_ret_type) << New;
1824        else
1825          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1826        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1827        return true;
1828      }
1829      else
1830        NewQType = ResQT;
1831    }
1832
1833    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1834    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1835    if (OldMethod && NewMethod) {
1836      // Preserve triviality.
1837      NewMethod->setTrivial(OldMethod->isTrivial());
1838
1839      // MSVC allows explicit template specialization at class scope:
1840      // 2 CXMethodDecls referring to the same function will be injected.
1841      // We don't want a redeclartion error.
1842      bool IsClassScopeExplicitSpecialization =
1843                              OldMethod->isFunctionTemplateSpecialization() &&
1844                              NewMethod->isFunctionTemplateSpecialization();
1845      bool isFriend = NewMethod->getFriendObjectKind();
1846
1847      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1848          !IsClassScopeExplicitSpecialization) {
1849        //    -- Member function declarations with the same name and the
1850        //       same parameter types cannot be overloaded if any of them
1851        //       is a static member function declaration.
1852        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1853          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1854          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1855          return true;
1856        }
1857
1858        // C++ [class.mem]p1:
1859        //   [...] A member shall not be declared twice in the
1860        //   member-specification, except that a nested class or member
1861        //   class template can be declared and then later defined.
1862        unsigned NewDiag;
1863        if (isa<CXXConstructorDecl>(OldMethod))
1864          NewDiag = diag::err_constructor_redeclared;
1865        else if (isa<CXXDestructorDecl>(NewMethod))
1866          NewDiag = diag::err_destructor_redeclared;
1867        else if (isa<CXXConversionDecl>(NewMethod))
1868          NewDiag = diag::err_conv_function_redeclared;
1869        else
1870          NewDiag = diag::err_member_redeclared;
1871
1872        Diag(New->getLocation(), NewDiag);
1873        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1874
1875      // Complain if this is an explicit declaration of a special
1876      // member that was initially declared implicitly.
1877      //
1878      // As an exception, it's okay to befriend such methods in order
1879      // to permit the implicit constructor/destructor/operator calls.
1880      } else if (OldMethod->isImplicit()) {
1881        if (isFriend) {
1882          NewMethod->setImplicit();
1883        } else {
1884          Diag(NewMethod->getLocation(),
1885               diag::err_definition_of_implicitly_declared_member)
1886            << New << getSpecialMember(OldMethod);
1887          return true;
1888        }
1889      } else if (OldMethod->isExplicitlyDefaulted()) {
1890        Diag(NewMethod->getLocation(),
1891             diag::err_definition_of_explicitly_defaulted_member)
1892          << getSpecialMember(OldMethod);
1893        return true;
1894      }
1895    }
1896
1897    // (C++98 8.3.5p3):
1898    //   All declarations for a function shall agree exactly in both the
1899    //   return type and the parameter-type-list.
1900    // We also want to respect all the extended bits except noreturn.
1901
1902    // noreturn should now match unless the old type info didn't have it.
1903    QualType OldQTypeForComparison = OldQType;
1904    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1905      assert(OldQType == QualType(OldType, 0));
1906      const FunctionType *OldTypeForComparison
1907        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1908      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1909      assert(OldQTypeForComparison.isCanonical());
1910    }
1911
1912    if (OldQTypeForComparison == NewQType)
1913      return MergeCompatibleFunctionDecls(New, Old);
1914
1915    // Fall through for conflicting redeclarations and redefinitions.
1916  }
1917
1918  // C: Function types need to be compatible, not identical. This handles
1919  // duplicate function decls like "void f(int); void f(enum X);" properly.
1920  if (!getLangOptions().CPlusPlus &&
1921      Context.typesAreCompatible(OldQType, NewQType)) {
1922    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1923    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1924    const FunctionProtoType *OldProto = 0;
1925    if (isa<FunctionNoProtoType>(NewFuncType) &&
1926        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1927      // The old declaration provided a function prototype, but the
1928      // new declaration does not. Merge in the prototype.
1929      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1930      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1931                                                 OldProto->arg_type_end());
1932      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1933                                         ParamTypes.data(), ParamTypes.size(),
1934                                         OldProto->getExtProtoInfo());
1935      New->setType(NewQType);
1936      New->setHasInheritedPrototype();
1937
1938      // Synthesize a parameter for each argument type.
1939      SmallVector<ParmVarDecl*, 16> Params;
1940      for (FunctionProtoType::arg_type_iterator
1941             ParamType = OldProto->arg_type_begin(),
1942             ParamEnd = OldProto->arg_type_end();
1943           ParamType != ParamEnd; ++ParamType) {
1944        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1945                                                 SourceLocation(),
1946                                                 SourceLocation(), 0,
1947                                                 *ParamType, /*TInfo=*/0,
1948                                                 SC_None, SC_None,
1949                                                 0);
1950        Param->setScopeInfo(0, Params.size());
1951        Param->setImplicit();
1952        Params.push_back(Param);
1953      }
1954
1955      New->setParams(Params);
1956    }
1957
1958    return MergeCompatibleFunctionDecls(New, Old);
1959  }
1960
1961  // GNU C permits a K&R definition to follow a prototype declaration
1962  // if the declared types of the parameters in the K&R definition
1963  // match the types in the prototype declaration, even when the
1964  // promoted types of the parameters from the K&R definition differ
1965  // from the types in the prototype. GCC then keeps the types from
1966  // the prototype.
1967  //
1968  // If a variadic prototype is followed by a non-variadic K&R definition,
1969  // the K&R definition becomes variadic.  This is sort of an edge case, but
1970  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1971  // C99 6.9.1p8.
1972  if (!getLangOptions().CPlusPlus &&
1973      Old->hasPrototype() && !New->hasPrototype() &&
1974      New->getType()->getAs<FunctionProtoType>() &&
1975      Old->getNumParams() == New->getNumParams()) {
1976    SmallVector<QualType, 16> ArgTypes;
1977    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1978    const FunctionProtoType *OldProto
1979      = Old->getType()->getAs<FunctionProtoType>();
1980    const FunctionProtoType *NewProto
1981      = New->getType()->getAs<FunctionProtoType>();
1982
1983    // Determine whether this is the GNU C extension.
1984    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1985                                               NewProto->getResultType());
1986    bool LooseCompatible = !MergedReturn.isNull();
1987    for (unsigned Idx = 0, End = Old->getNumParams();
1988         LooseCompatible && Idx != End; ++Idx) {
1989      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1990      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1991      if (Context.typesAreCompatible(OldParm->getType(),
1992                                     NewProto->getArgType(Idx))) {
1993        ArgTypes.push_back(NewParm->getType());
1994      } else if (Context.typesAreCompatible(OldParm->getType(),
1995                                            NewParm->getType(),
1996                                            /*CompareUnqualified=*/true)) {
1997        GNUCompatibleParamWarning Warn
1998          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1999        Warnings.push_back(Warn);
2000        ArgTypes.push_back(NewParm->getType());
2001      } else
2002        LooseCompatible = false;
2003    }
2004
2005    if (LooseCompatible) {
2006      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2007        Diag(Warnings[Warn].NewParm->getLocation(),
2008             diag::ext_param_promoted_not_compatible_with_prototype)
2009          << Warnings[Warn].PromotedType
2010          << Warnings[Warn].OldParm->getType();
2011        if (Warnings[Warn].OldParm->getLocation().isValid())
2012          Diag(Warnings[Warn].OldParm->getLocation(),
2013               diag::note_previous_declaration);
2014      }
2015
2016      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2017                                           ArgTypes.size(),
2018                                           OldProto->getExtProtoInfo()));
2019      return MergeCompatibleFunctionDecls(New, Old);
2020    }
2021
2022    // Fall through to diagnose conflicting types.
2023  }
2024
2025  // A function that has already been declared has been redeclared or defined
2026  // with a different type- show appropriate diagnostic
2027  if (unsigned BuiltinID = Old->getBuiltinID()) {
2028    // The user has declared a builtin function with an incompatible
2029    // signature.
2030    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2031      // The function the user is redeclaring is a library-defined
2032      // function like 'malloc' or 'printf'. Warn about the
2033      // redeclaration, then pretend that we don't know about this
2034      // library built-in.
2035      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2036      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2037        << Old << Old->getType();
2038      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2039      Old->setInvalidDecl();
2040      return false;
2041    }
2042
2043    PrevDiag = diag::note_previous_builtin_declaration;
2044  }
2045
2046  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2047  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2048  return true;
2049}
2050
2051/// \brief Completes the merge of two function declarations that are
2052/// known to be compatible.
2053///
2054/// This routine handles the merging of attributes and other
2055/// properties of function declarations form the old declaration to
2056/// the new declaration, once we know that New is in fact a
2057/// redeclaration of Old.
2058///
2059/// \returns false
2060bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2061  // Merge the attributes
2062  mergeDeclAttributes(New, Old);
2063
2064  // Merge the storage class.
2065  if (Old->getStorageClass() != SC_Extern &&
2066      Old->getStorageClass() != SC_None)
2067    New->setStorageClass(Old->getStorageClass());
2068
2069  // Merge "pure" flag.
2070  if (Old->isPure())
2071    New->setPure();
2072
2073  // Merge attributes from the parameters.  These can mismatch with K&R
2074  // declarations.
2075  if (New->getNumParams() == Old->getNumParams())
2076    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2077      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2078                               Context);
2079
2080  if (getLangOptions().CPlusPlus)
2081    return MergeCXXFunctionDecl(New, Old);
2082
2083  return false;
2084}
2085
2086
2087void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2088                                ObjCMethodDecl *oldMethod) {
2089  // We don't want to merge unavailable and deprecated attributes
2090  // except from interface to implementation.
2091  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2092
2093  // Merge the attributes.
2094  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2095
2096  // Merge attributes from the parameters.
2097  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2098  for (ObjCMethodDecl::param_iterator
2099         ni = newMethod->param_begin(), ne = newMethod->param_end();
2100       ni != ne; ++ni, ++oi)
2101    mergeParamDeclAttributes(*ni, *oi, Context);
2102
2103  CheckObjCMethodOverride(newMethod, oldMethod, true);
2104}
2105
2106/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2107/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2108/// emitting diagnostics as appropriate.
2109///
2110/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2111/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2112/// check them before the initializer is attached.
2113///
2114void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2115  if (New->isInvalidDecl() || Old->isInvalidDecl())
2116    return;
2117
2118  QualType MergedT;
2119  if (getLangOptions().CPlusPlus) {
2120    AutoType *AT = New->getType()->getContainedAutoType();
2121    if (AT && !AT->isDeduced()) {
2122      // We don't know what the new type is until the initializer is attached.
2123      return;
2124    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2125      // These could still be something that needs exception specs checked.
2126      return MergeVarDeclExceptionSpecs(New, Old);
2127    }
2128    // C++ [basic.link]p10:
2129    //   [...] the types specified by all declarations referring to a given
2130    //   object or function shall be identical, except that declarations for an
2131    //   array object can specify array types that differ by the presence or
2132    //   absence of a major array bound (8.3.4).
2133    else if (Old->getType()->isIncompleteArrayType() &&
2134             New->getType()->isArrayType()) {
2135      CanQual<ArrayType> OldArray
2136        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2137      CanQual<ArrayType> NewArray
2138        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2139      if (OldArray->getElementType() == NewArray->getElementType())
2140        MergedT = New->getType();
2141    } else if (Old->getType()->isArrayType() &&
2142             New->getType()->isIncompleteArrayType()) {
2143      CanQual<ArrayType> OldArray
2144        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2145      CanQual<ArrayType> NewArray
2146        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2147      if (OldArray->getElementType() == NewArray->getElementType())
2148        MergedT = Old->getType();
2149    } else if (New->getType()->isObjCObjectPointerType()
2150               && Old->getType()->isObjCObjectPointerType()) {
2151        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2152                                                        Old->getType());
2153    }
2154  } else {
2155    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2156  }
2157  if (MergedT.isNull()) {
2158    Diag(New->getLocation(), diag::err_redefinition_different_type)
2159      << New->getDeclName();
2160    Diag(Old->getLocation(), diag::note_previous_definition);
2161    return New->setInvalidDecl();
2162  }
2163  New->setType(MergedT);
2164}
2165
2166/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2167/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2168/// situation, merging decls or emitting diagnostics as appropriate.
2169///
2170/// Tentative definition rules (C99 6.9.2p2) are checked by
2171/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2172/// definitions here, since the initializer hasn't been attached.
2173///
2174void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2175  // If the new decl is already invalid, don't do any other checking.
2176  if (New->isInvalidDecl())
2177    return;
2178
2179  // Verify the old decl was also a variable.
2180  VarDecl *Old = 0;
2181  if (!Previous.isSingleResult() ||
2182      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2183    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2184      << New->getDeclName();
2185    Diag(Previous.getRepresentativeDecl()->getLocation(),
2186         diag::note_previous_definition);
2187    return New->setInvalidDecl();
2188  }
2189
2190  // C++ [class.mem]p1:
2191  //   A member shall not be declared twice in the member-specification [...]
2192  //
2193  // Here, we need only consider static data members.
2194  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2195    Diag(New->getLocation(), diag::err_duplicate_member)
2196      << New->getIdentifier();
2197    Diag(Old->getLocation(), diag::note_previous_declaration);
2198    New->setInvalidDecl();
2199  }
2200
2201  mergeDeclAttributes(New, Old);
2202  // Warn if an already-declared variable is made a weak_import in a subsequent
2203  // declaration
2204  if (New->getAttr<WeakImportAttr>() &&
2205      Old->getStorageClass() == SC_None &&
2206      !Old->getAttr<WeakImportAttr>()) {
2207    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2208    Diag(Old->getLocation(), diag::note_previous_definition);
2209    // Remove weak_import attribute on new declaration.
2210    New->dropAttr<WeakImportAttr>();
2211  }
2212
2213  // Merge the types.
2214  MergeVarDeclTypes(New, Old);
2215  if (New->isInvalidDecl())
2216    return;
2217
2218  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2219  if (New->getStorageClass() == SC_Static &&
2220      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2221    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2222    Diag(Old->getLocation(), diag::note_previous_definition);
2223    return New->setInvalidDecl();
2224  }
2225  // C99 6.2.2p4:
2226  //   For an identifier declared with the storage-class specifier
2227  //   extern in a scope in which a prior declaration of that
2228  //   identifier is visible,23) if the prior declaration specifies
2229  //   internal or external linkage, the linkage of the identifier at
2230  //   the later declaration is the same as the linkage specified at
2231  //   the prior declaration. If no prior declaration is visible, or
2232  //   if the prior declaration specifies no linkage, then the
2233  //   identifier has external linkage.
2234  if (New->hasExternalStorage() && Old->hasLinkage())
2235    /* Okay */;
2236  else if (New->getStorageClass() != SC_Static &&
2237           Old->getStorageClass() == SC_Static) {
2238    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2239    Diag(Old->getLocation(), diag::note_previous_definition);
2240    return New->setInvalidDecl();
2241  }
2242
2243  // Check if extern is followed by non-extern and vice-versa.
2244  if (New->hasExternalStorage() &&
2245      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2246    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2247    Diag(Old->getLocation(), diag::note_previous_definition);
2248    return New->setInvalidDecl();
2249  }
2250  if (Old->hasExternalStorage() &&
2251      !New->hasLinkage() && New->isLocalVarDecl()) {
2252    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2253    Diag(Old->getLocation(), diag::note_previous_definition);
2254    return New->setInvalidDecl();
2255  }
2256
2257  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2258
2259  // FIXME: The test for external storage here seems wrong? We still
2260  // need to check for mismatches.
2261  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2262      // Don't complain about out-of-line definitions of static members.
2263      !(Old->getLexicalDeclContext()->isRecord() &&
2264        !New->getLexicalDeclContext()->isRecord())) {
2265    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2266    Diag(Old->getLocation(), diag::note_previous_definition);
2267    return New->setInvalidDecl();
2268  }
2269
2270  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2271    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2272    Diag(Old->getLocation(), diag::note_previous_definition);
2273  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2274    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2275    Diag(Old->getLocation(), diag::note_previous_definition);
2276  }
2277
2278  // C++ doesn't have tentative definitions, so go right ahead and check here.
2279  const VarDecl *Def;
2280  if (getLangOptions().CPlusPlus &&
2281      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2282      (Def = Old->getDefinition())) {
2283    Diag(New->getLocation(), diag::err_redefinition)
2284      << New->getDeclName();
2285    Diag(Def->getLocation(), diag::note_previous_definition);
2286    New->setInvalidDecl();
2287    return;
2288  }
2289  // c99 6.2.2 P4.
2290  // For an identifier declared with the storage-class specifier extern in a
2291  // scope in which a prior declaration of that identifier is visible, if
2292  // the prior declaration specifies internal or external linkage, the linkage
2293  // of the identifier at the later declaration is the same as the linkage
2294  // specified at the prior declaration.
2295  // FIXME. revisit this code.
2296  if (New->hasExternalStorage() &&
2297      Old->getLinkage() == InternalLinkage &&
2298      New->getDeclContext() == Old->getDeclContext())
2299    New->setStorageClass(Old->getStorageClass());
2300
2301  // Keep a chain of previous declarations.
2302  New->setPreviousDeclaration(Old);
2303
2304  // Inherit access appropriately.
2305  New->setAccess(Old->getAccess());
2306}
2307
2308/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2309/// no declarator (e.g. "struct foo;") is parsed.
2310Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2311                                       DeclSpec &DS) {
2312  return ParsedFreeStandingDeclSpec(S, AS, DS,
2313                                    MultiTemplateParamsArg(*this, 0, 0));
2314}
2315
2316/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2317/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2318/// parameters to cope with template friend declarations.
2319Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2320                                       DeclSpec &DS,
2321                                       MultiTemplateParamsArg TemplateParams) {
2322  Decl *TagD = 0;
2323  TagDecl *Tag = 0;
2324  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2325      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2326      DS.getTypeSpecType() == DeclSpec::TST_union ||
2327      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2328    TagD = DS.getRepAsDecl();
2329
2330    if (!TagD) // We probably had an error
2331      return 0;
2332
2333    // Note that the above type specs guarantee that the
2334    // type rep is a Decl, whereas in many of the others
2335    // it's a Type.
2336    if (isa<TagDecl>(TagD))
2337      Tag = cast<TagDecl>(TagD);
2338    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2339      Tag = CTD->getTemplatedDecl();
2340  }
2341
2342  if (Tag)
2343    Tag->setFreeStanding();
2344
2345  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2346    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2347    // or incomplete types shall not be restrict-qualified."
2348    if (TypeQuals & DeclSpec::TQ_restrict)
2349      Diag(DS.getRestrictSpecLoc(),
2350           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2351           << DS.getSourceRange();
2352  }
2353
2354  if (DS.isConstexprSpecified()) {
2355    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2356    // and definitions of functions and variables.
2357    if (Tag)
2358      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2359        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2360            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2361            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2362    else
2363      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2364    // Don't emit warnings after this error.
2365    return TagD;
2366  }
2367
2368  if (DS.isFriendSpecified()) {
2369    // If we're dealing with a decl but not a TagDecl, assume that
2370    // whatever routines created it handled the friendship aspect.
2371    if (TagD && !Tag)
2372      return 0;
2373    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2374  }
2375
2376  // Track whether we warned about the fact that there aren't any
2377  // declarators.
2378  bool emittedWarning = false;
2379
2380  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2381    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2382        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2383      if (getLangOptions().CPlusPlus ||
2384          Record->getDeclContext()->isRecord())
2385        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2386
2387      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2388        << DS.getSourceRange();
2389      emittedWarning = true;
2390    }
2391  }
2392
2393  // Check for Microsoft C extension: anonymous struct.
2394  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2395      CurContext->isRecord() &&
2396      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2397    // Handle 2 kinds of anonymous struct:
2398    //   struct STRUCT;
2399    // and
2400    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2401    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2402    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2403        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2404         DS.getRepAsType().get()->isStructureType())) {
2405      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2406        << DS.getSourceRange();
2407      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2408    }
2409  }
2410
2411  if (getLangOptions().CPlusPlus &&
2412      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2413    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2414      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2415          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2416        Diag(Enum->getLocation(), diag::ext_no_declarators)
2417          << DS.getSourceRange();
2418        emittedWarning = true;
2419      }
2420
2421  // Skip all the checks below if we have a type error.
2422  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2423
2424  if (!DS.isMissingDeclaratorOk()) {
2425    // Warn about typedefs of enums without names, since this is an
2426    // extension in both Microsoft and GNU.
2427    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2428        Tag && isa<EnumDecl>(Tag)) {
2429      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2430        << DS.getSourceRange();
2431      return Tag;
2432    }
2433
2434    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2435      << DS.getSourceRange();
2436    emittedWarning = true;
2437  }
2438
2439  // We're going to complain about a bunch of spurious specifiers;
2440  // only do this if we're declaring a tag, because otherwise we
2441  // should be getting diag::ext_no_declarators.
2442  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2443    return TagD;
2444
2445  // Note that a linkage-specification sets a storage class, but
2446  // 'extern "C" struct foo;' is actually valid and not theoretically
2447  // useless.
2448  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2449    if (!DS.isExternInLinkageSpec())
2450      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2451        << DeclSpec::getSpecifierName(scs);
2452
2453  if (DS.isThreadSpecified())
2454    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2455  if (DS.getTypeQualifiers()) {
2456    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2457      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2458    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2459      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2460    // Restrict is covered above.
2461  }
2462  if (DS.isInlineSpecified())
2463    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2464  if (DS.isVirtualSpecified())
2465    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2466  if (DS.isExplicitSpecified())
2467    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2468
2469  if (DS.isModulePrivateSpecified() &&
2470      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2471    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2472      << Tag->getTagKind()
2473      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2474
2475  // Warn about ignored type attributes, for example:
2476  // __attribute__((aligned)) struct A;
2477  // Attributes should be placed after tag to apply to type declaration.
2478  if (!DS.getAttributes().empty()) {
2479    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2480    if (TypeSpecType == DeclSpec::TST_class ||
2481        TypeSpecType == DeclSpec::TST_struct ||
2482        TypeSpecType == DeclSpec::TST_union ||
2483        TypeSpecType == DeclSpec::TST_enum) {
2484      AttributeList* attrs = DS.getAttributes().getList();
2485      while (attrs) {
2486        Diag(attrs->getScopeLoc(),
2487             diag::warn_declspec_attribute_ignored)
2488        << attrs->getName()
2489        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2490            TypeSpecType == DeclSpec::TST_struct ? 1 :
2491            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2492        attrs = attrs->getNext();
2493      }
2494    }
2495  }
2496
2497  return TagD;
2498}
2499
2500/// We are trying to inject an anonymous member into the given scope;
2501/// check if there's an existing declaration that can't be overloaded.
2502///
2503/// \return true if this is a forbidden redeclaration
2504static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2505                                         Scope *S,
2506                                         DeclContext *Owner,
2507                                         DeclarationName Name,
2508                                         SourceLocation NameLoc,
2509                                         unsigned diagnostic) {
2510  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2511                 Sema::ForRedeclaration);
2512  if (!SemaRef.LookupName(R, S)) return false;
2513
2514  if (R.getAsSingle<TagDecl>())
2515    return false;
2516
2517  // Pick a representative declaration.
2518  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2519  assert(PrevDecl && "Expected a non-null Decl");
2520
2521  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2522    return false;
2523
2524  SemaRef.Diag(NameLoc, diagnostic) << Name;
2525  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2526
2527  return true;
2528}
2529
2530/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2531/// anonymous struct or union AnonRecord into the owning context Owner
2532/// and scope S. This routine will be invoked just after we realize
2533/// that an unnamed union or struct is actually an anonymous union or
2534/// struct, e.g.,
2535///
2536/// @code
2537/// union {
2538///   int i;
2539///   float f;
2540/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2541///    // f into the surrounding scope.x
2542/// @endcode
2543///
2544/// This routine is recursive, injecting the names of nested anonymous
2545/// structs/unions into the owning context and scope as well.
2546static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2547                                                DeclContext *Owner,
2548                                                RecordDecl *AnonRecord,
2549                                                AccessSpecifier AS,
2550                              SmallVector<NamedDecl*, 2> &Chaining,
2551                                                      bool MSAnonStruct) {
2552  unsigned diagKind
2553    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2554                            : diag::err_anonymous_struct_member_redecl;
2555
2556  bool Invalid = false;
2557
2558  // Look every FieldDecl and IndirectFieldDecl with a name.
2559  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2560                               DEnd = AnonRecord->decls_end();
2561       D != DEnd; ++D) {
2562    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2563        cast<NamedDecl>(*D)->getDeclName()) {
2564      ValueDecl *VD = cast<ValueDecl>(*D);
2565      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2566                                       VD->getLocation(), diagKind)) {
2567        // C++ [class.union]p2:
2568        //   The names of the members of an anonymous union shall be
2569        //   distinct from the names of any other entity in the
2570        //   scope in which the anonymous union is declared.
2571        Invalid = true;
2572      } else {
2573        // C++ [class.union]p2:
2574        //   For the purpose of name lookup, after the anonymous union
2575        //   definition, the members of the anonymous union are
2576        //   considered to have been defined in the scope in which the
2577        //   anonymous union is declared.
2578        unsigned OldChainingSize = Chaining.size();
2579        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2580          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2581               PE = IF->chain_end(); PI != PE; ++PI)
2582            Chaining.push_back(*PI);
2583        else
2584          Chaining.push_back(VD);
2585
2586        assert(Chaining.size() >= 2);
2587        NamedDecl **NamedChain =
2588          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2589        for (unsigned i = 0; i < Chaining.size(); i++)
2590          NamedChain[i] = Chaining[i];
2591
2592        IndirectFieldDecl* IndirectField =
2593          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2594                                    VD->getIdentifier(), VD->getType(),
2595                                    NamedChain, Chaining.size());
2596
2597        IndirectField->setAccess(AS);
2598        IndirectField->setImplicit();
2599        SemaRef.PushOnScopeChains(IndirectField, S);
2600
2601        // That includes picking up the appropriate access specifier.
2602        if (AS != AS_none) IndirectField->setAccess(AS);
2603
2604        Chaining.resize(OldChainingSize);
2605      }
2606    }
2607  }
2608
2609  return Invalid;
2610}
2611
2612/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2613/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2614/// illegal input values are mapped to SC_None.
2615static StorageClass
2616StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2617  switch (StorageClassSpec) {
2618  case DeclSpec::SCS_unspecified:    return SC_None;
2619  case DeclSpec::SCS_extern:         return SC_Extern;
2620  case DeclSpec::SCS_static:         return SC_Static;
2621  case DeclSpec::SCS_auto:           return SC_Auto;
2622  case DeclSpec::SCS_register:       return SC_Register;
2623  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2624    // Illegal SCSs map to None: error reporting is up to the caller.
2625  case DeclSpec::SCS_mutable:        // Fall through.
2626  case DeclSpec::SCS_typedef:        return SC_None;
2627  }
2628  llvm_unreachable("unknown storage class specifier");
2629}
2630
2631/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2632/// a StorageClass. Any error reporting is up to the caller:
2633/// illegal input values are mapped to SC_None.
2634static StorageClass
2635StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2636  switch (StorageClassSpec) {
2637  case DeclSpec::SCS_unspecified:    return SC_None;
2638  case DeclSpec::SCS_extern:         return SC_Extern;
2639  case DeclSpec::SCS_static:         return SC_Static;
2640  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2641    // Illegal SCSs map to None: error reporting is up to the caller.
2642  case DeclSpec::SCS_auto:           // Fall through.
2643  case DeclSpec::SCS_mutable:        // Fall through.
2644  case DeclSpec::SCS_register:       // Fall through.
2645  case DeclSpec::SCS_typedef:        return SC_None;
2646  }
2647  llvm_unreachable("unknown storage class specifier");
2648}
2649
2650/// BuildAnonymousStructOrUnion - Handle the declaration of an
2651/// anonymous structure or union. Anonymous unions are a C++ feature
2652/// (C++ [class.union]) and a GNU C extension; anonymous structures
2653/// are a GNU C and GNU C++ extension.
2654Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2655                                             AccessSpecifier AS,
2656                                             RecordDecl *Record) {
2657  DeclContext *Owner = Record->getDeclContext();
2658
2659  // Diagnose whether this anonymous struct/union is an extension.
2660  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2661    Diag(Record->getLocation(), diag::ext_anonymous_union);
2662  else if (!Record->isUnion())
2663    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2664
2665  // C and C++ require different kinds of checks for anonymous
2666  // structs/unions.
2667  bool Invalid = false;
2668  if (getLangOptions().CPlusPlus) {
2669    const char* PrevSpec = 0;
2670    unsigned DiagID;
2671    if (Record->isUnion()) {
2672      // C++ [class.union]p6:
2673      //   Anonymous unions declared in a named namespace or in the
2674      //   global namespace shall be declared static.
2675      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2676          (isa<TranslationUnitDecl>(Owner) ||
2677           (isa<NamespaceDecl>(Owner) &&
2678            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2679        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2680          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2681
2682        // Recover by adding 'static'.
2683        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2684                               PrevSpec, DiagID);
2685      }
2686      // C++ [class.union]p6:
2687      //   A storage class is not allowed in a declaration of an
2688      //   anonymous union in a class scope.
2689      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2690               isa<RecordDecl>(Owner)) {
2691        Diag(DS.getStorageClassSpecLoc(),
2692             diag::err_anonymous_union_with_storage_spec)
2693          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2694
2695        // Recover by removing the storage specifier.
2696        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2697                               SourceLocation(),
2698                               PrevSpec, DiagID);
2699      }
2700    }
2701
2702    // Ignore const/volatile/restrict qualifiers.
2703    if (DS.getTypeQualifiers()) {
2704      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2705        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2706          << Record->isUnion() << 0
2707          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2708      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2709        Diag(DS.getVolatileSpecLoc(),
2710             diag::ext_anonymous_struct_union_qualified)
2711          << Record->isUnion() << 1
2712          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2713      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2714        Diag(DS.getRestrictSpecLoc(),
2715             diag::ext_anonymous_struct_union_qualified)
2716          << Record->isUnion() << 2
2717          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2718
2719      DS.ClearTypeQualifiers();
2720    }
2721
2722    // C++ [class.union]p2:
2723    //   The member-specification of an anonymous union shall only
2724    //   define non-static data members. [Note: nested types and
2725    //   functions cannot be declared within an anonymous union. ]
2726    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2727                                 MemEnd = Record->decls_end();
2728         Mem != MemEnd; ++Mem) {
2729      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2730        // C++ [class.union]p3:
2731        //   An anonymous union shall not have private or protected
2732        //   members (clause 11).
2733        assert(FD->getAccess() != AS_none);
2734        if (FD->getAccess() != AS_public) {
2735          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2736            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2737          Invalid = true;
2738        }
2739
2740        // C++ [class.union]p1
2741        //   An object of a class with a non-trivial constructor, a non-trivial
2742        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2743        //   assignment operator cannot be a member of a union, nor can an
2744        //   array of such objects.
2745        if (CheckNontrivialField(FD))
2746          Invalid = true;
2747      } else if ((*Mem)->isImplicit()) {
2748        // Any implicit members are fine.
2749      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2750        // This is a type that showed up in an
2751        // elaborated-type-specifier inside the anonymous struct or
2752        // union, but which actually declares a type outside of the
2753        // anonymous struct or union. It's okay.
2754      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2755        if (!MemRecord->isAnonymousStructOrUnion() &&
2756            MemRecord->getDeclName()) {
2757          // Visual C++ allows type definition in anonymous struct or union.
2758          if (getLangOptions().MicrosoftExt)
2759            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2760              << (int)Record->isUnion();
2761          else {
2762            // This is a nested type declaration.
2763            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2764              << (int)Record->isUnion();
2765            Invalid = true;
2766          }
2767        }
2768      } else if (isa<AccessSpecDecl>(*Mem)) {
2769        // Any access specifier is fine.
2770      } else {
2771        // We have something that isn't a non-static data
2772        // member. Complain about it.
2773        unsigned DK = diag::err_anonymous_record_bad_member;
2774        if (isa<TypeDecl>(*Mem))
2775          DK = diag::err_anonymous_record_with_type;
2776        else if (isa<FunctionDecl>(*Mem))
2777          DK = diag::err_anonymous_record_with_function;
2778        else if (isa<VarDecl>(*Mem))
2779          DK = diag::err_anonymous_record_with_static;
2780
2781        // Visual C++ allows type definition in anonymous struct or union.
2782        if (getLangOptions().MicrosoftExt &&
2783            DK == diag::err_anonymous_record_with_type)
2784          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2785            << (int)Record->isUnion();
2786        else {
2787          Diag((*Mem)->getLocation(), DK)
2788              << (int)Record->isUnion();
2789          Invalid = true;
2790        }
2791      }
2792    }
2793  }
2794
2795  if (!Record->isUnion() && !Owner->isRecord()) {
2796    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2797      << (int)getLangOptions().CPlusPlus;
2798    Invalid = true;
2799  }
2800
2801  // Mock up a declarator.
2802  Declarator Dc(DS, Declarator::MemberContext);
2803  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2804  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2805
2806  // Create a declaration for this anonymous struct/union.
2807  NamedDecl *Anon = 0;
2808  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2809    Anon = FieldDecl::Create(Context, OwningClass,
2810                             DS.getSourceRange().getBegin(),
2811                             Record->getLocation(),
2812                             /*IdentifierInfo=*/0,
2813                             Context.getTypeDeclType(Record),
2814                             TInfo,
2815                             /*BitWidth=*/0, /*Mutable=*/false,
2816                             /*HasInit=*/false);
2817    Anon->setAccess(AS);
2818    if (getLangOptions().CPlusPlus)
2819      FieldCollector->Add(cast<FieldDecl>(Anon));
2820  } else {
2821    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2822    assert(SCSpec != DeclSpec::SCS_typedef &&
2823           "Parser allowed 'typedef' as storage class VarDecl.");
2824    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2825    if (SCSpec == DeclSpec::SCS_mutable) {
2826      // mutable can only appear on non-static class members, so it's always
2827      // an error here
2828      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2829      Invalid = true;
2830      SC = SC_None;
2831    }
2832    SCSpec = DS.getStorageClassSpecAsWritten();
2833    VarDecl::StorageClass SCAsWritten
2834      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2835
2836    Anon = VarDecl::Create(Context, Owner,
2837                           DS.getSourceRange().getBegin(),
2838                           Record->getLocation(), /*IdentifierInfo=*/0,
2839                           Context.getTypeDeclType(Record),
2840                           TInfo, SC, SCAsWritten);
2841
2842    // Default-initialize the implicit variable. This initialization will be
2843    // trivial in almost all cases, except if a union member has an in-class
2844    // initializer:
2845    //   union { int n = 0; };
2846    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2847  }
2848  Anon->setImplicit();
2849
2850  // Add the anonymous struct/union object to the current
2851  // context. We'll be referencing this object when we refer to one of
2852  // its members.
2853  Owner->addDecl(Anon);
2854
2855  // Inject the members of the anonymous struct/union into the owning
2856  // context and into the identifier resolver chain for name lookup
2857  // purposes.
2858  SmallVector<NamedDecl*, 2> Chain;
2859  Chain.push_back(Anon);
2860
2861  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2862                                          Chain, false))
2863    Invalid = true;
2864
2865  // Mark this as an anonymous struct/union type. Note that we do not
2866  // do this until after we have already checked and injected the
2867  // members of this anonymous struct/union type, because otherwise
2868  // the members could be injected twice: once by DeclContext when it
2869  // builds its lookup table, and once by
2870  // InjectAnonymousStructOrUnionMembers.
2871  Record->setAnonymousStructOrUnion(true);
2872
2873  if (Invalid)
2874    Anon->setInvalidDecl();
2875
2876  return Anon;
2877}
2878
2879/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2880/// Microsoft C anonymous structure.
2881/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2882/// Example:
2883///
2884/// struct A { int a; };
2885/// struct B { struct A; int b; };
2886///
2887/// void foo() {
2888///   B var;
2889///   var.a = 3;
2890/// }
2891///
2892Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2893                                           RecordDecl *Record) {
2894
2895  // If there is no Record, get the record via the typedef.
2896  if (!Record)
2897    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2898
2899  // Mock up a declarator.
2900  Declarator Dc(DS, Declarator::TypeNameContext);
2901  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2902  assert(TInfo && "couldn't build declarator info for anonymous struct");
2903
2904  // Create a declaration for this anonymous struct.
2905  NamedDecl* Anon = FieldDecl::Create(Context,
2906                             cast<RecordDecl>(CurContext),
2907                             DS.getSourceRange().getBegin(),
2908                             DS.getSourceRange().getBegin(),
2909                             /*IdentifierInfo=*/0,
2910                             Context.getTypeDeclType(Record),
2911                             TInfo,
2912                             /*BitWidth=*/0, /*Mutable=*/false,
2913                             /*HasInit=*/false);
2914  Anon->setImplicit();
2915
2916  // Add the anonymous struct object to the current context.
2917  CurContext->addDecl(Anon);
2918
2919  // Inject the members of the anonymous struct into the current
2920  // context and into the identifier resolver chain for name lookup
2921  // purposes.
2922  SmallVector<NamedDecl*, 2> Chain;
2923  Chain.push_back(Anon);
2924
2925  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2926                                          Record->getDefinition(),
2927                                          AS_none, Chain, true))
2928    Anon->setInvalidDecl();
2929
2930  return Anon;
2931}
2932
2933/// GetNameForDeclarator - Determine the full declaration name for the
2934/// given Declarator.
2935DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2936  return GetNameFromUnqualifiedId(D.getName());
2937}
2938
2939/// \brief Retrieves the declaration name from a parsed unqualified-id.
2940DeclarationNameInfo
2941Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2942  DeclarationNameInfo NameInfo;
2943  NameInfo.setLoc(Name.StartLocation);
2944
2945  switch (Name.getKind()) {
2946
2947  case UnqualifiedId::IK_ImplicitSelfParam:
2948  case UnqualifiedId::IK_Identifier:
2949    NameInfo.setName(Name.Identifier);
2950    NameInfo.setLoc(Name.StartLocation);
2951    return NameInfo;
2952
2953  case UnqualifiedId::IK_OperatorFunctionId:
2954    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2955                                           Name.OperatorFunctionId.Operator));
2956    NameInfo.setLoc(Name.StartLocation);
2957    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2958      = Name.OperatorFunctionId.SymbolLocations[0];
2959    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2960      = Name.EndLocation.getRawEncoding();
2961    return NameInfo;
2962
2963  case UnqualifiedId::IK_LiteralOperatorId:
2964    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2965                                                           Name.Identifier));
2966    NameInfo.setLoc(Name.StartLocation);
2967    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2968    return NameInfo;
2969
2970  case UnqualifiedId::IK_ConversionFunctionId: {
2971    TypeSourceInfo *TInfo;
2972    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2973    if (Ty.isNull())
2974      return DeclarationNameInfo();
2975    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2976                                               Context.getCanonicalType(Ty)));
2977    NameInfo.setLoc(Name.StartLocation);
2978    NameInfo.setNamedTypeInfo(TInfo);
2979    return NameInfo;
2980  }
2981
2982  case UnqualifiedId::IK_ConstructorName: {
2983    TypeSourceInfo *TInfo;
2984    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2985    if (Ty.isNull())
2986      return DeclarationNameInfo();
2987    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2988                                              Context.getCanonicalType(Ty)));
2989    NameInfo.setLoc(Name.StartLocation);
2990    NameInfo.setNamedTypeInfo(TInfo);
2991    return NameInfo;
2992  }
2993
2994  case UnqualifiedId::IK_ConstructorTemplateId: {
2995    // In well-formed code, we can only have a constructor
2996    // template-id that refers to the current context, so go there
2997    // to find the actual type being constructed.
2998    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2999    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3000      return DeclarationNameInfo();
3001
3002    // Determine the type of the class being constructed.
3003    QualType CurClassType = Context.getTypeDeclType(CurClass);
3004
3005    // FIXME: Check two things: that the template-id names the same type as
3006    // CurClassType, and that the template-id does not occur when the name
3007    // was qualified.
3008
3009    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3010                                    Context.getCanonicalType(CurClassType)));
3011    NameInfo.setLoc(Name.StartLocation);
3012    // FIXME: should we retrieve TypeSourceInfo?
3013    NameInfo.setNamedTypeInfo(0);
3014    return NameInfo;
3015  }
3016
3017  case UnqualifiedId::IK_DestructorName: {
3018    TypeSourceInfo *TInfo;
3019    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3020    if (Ty.isNull())
3021      return DeclarationNameInfo();
3022    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3023                                              Context.getCanonicalType(Ty)));
3024    NameInfo.setLoc(Name.StartLocation);
3025    NameInfo.setNamedTypeInfo(TInfo);
3026    return NameInfo;
3027  }
3028
3029  case UnqualifiedId::IK_TemplateId: {
3030    TemplateName TName = Name.TemplateId->Template.get();
3031    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3032    return Context.getNameForTemplate(TName, TNameLoc);
3033  }
3034
3035  } // switch (Name.getKind())
3036
3037  llvm_unreachable("Unknown name kind");
3038}
3039
3040static QualType getCoreType(QualType Ty) {
3041  do {
3042    if (Ty->isPointerType() || Ty->isReferenceType())
3043      Ty = Ty->getPointeeType();
3044    else if (Ty->isArrayType())
3045      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3046    else
3047      return Ty.withoutLocalFastQualifiers();
3048  } while (true);
3049}
3050
3051/// hasSimilarParameters - Determine whether the C++ functions Declaration
3052/// and Definition have "nearly" matching parameters. This heuristic is
3053/// used to improve diagnostics in the case where an out-of-line function
3054/// definition doesn't match any declaration within the class or namespace.
3055/// Also sets Params to the list of indices to the parameters that differ
3056/// between the declaration and the definition. If hasSimilarParameters
3057/// returns true and Params is empty, then all of the parameters match.
3058static bool hasSimilarParameters(ASTContext &Context,
3059                                     FunctionDecl *Declaration,
3060                                     FunctionDecl *Definition,
3061                                     llvm::SmallVectorImpl<unsigned> &Params) {
3062  Params.clear();
3063  if (Declaration->param_size() != Definition->param_size())
3064    return false;
3065  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3066    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3067    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3068
3069    // The parameter types are identical
3070    if (Context.hasSameType(DefParamTy, DeclParamTy))
3071      continue;
3072
3073    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3074    QualType DefParamBaseTy = getCoreType(DefParamTy);
3075    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3076    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3077
3078    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3079        (DeclTyName && DeclTyName == DefTyName))
3080      Params.push_back(Idx);
3081    else  // The two parameters aren't even close
3082      return false;
3083  }
3084
3085  return true;
3086}
3087
3088/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3089/// declarator needs to be rebuilt in the current instantiation.
3090/// Any bits of declarator which appear before the name are valid for
3091/// consideration here.  That's specifically the type in the decl spec
3092/// and the base type in any member-pointer chunks.
3093static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3094                                                    DeclarationName Name) {
3095  // The types we specifically need to rebuild are:
3096  //   - typenames, typeofs, and decltypes
3097  //   - types which will become injected class names
3098  // Of course, we also need to rebuild any type referencing such a
3099  // type.  It's safest to just say "dependent", but we call out a
3100  // few cases here.
3101
3102  DeclSpec &DS = D.getMutableDeclSpec();
3103  switch (DS.getTypeSpecType()) {
3104  case DeclSpec::TST_typename:
3105  case DeclSpec::TST_typeofType:
3106  case DeclSpec::TST_decltype:
3107  case DeclSpec::TST_underlyingType:
3108  case DeclSpec::TST_atomic: {
3109    // Grab the type from the parser.
3110    TypeSourceInfo *TSI = 0;
3111    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3112    if (T.isNull() || !T->isDependentType()) break;
3113
3114    // Make sure there's a type source info.  This isn't really much
3115    // of a waste; most dependent types should have type source info
3116    // attached already.
3117    if (!TSI)
3118      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3119
3120    // Rebuild the type in the current instantiation.
3121    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3122    if (!TSI) return true;
3123
3124    // Store the new type back in the decl spec.
3125    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3126    DS.UpdateTypeRep(LocType);
3127    break;
3128  }
3129
3130  case DeclSpec::TST_typeofExpr: {
3131    Expr *E = DS.getRepAsExpr();
3132    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3133    if (Result.isInvalid()) return true;
3134    DS.UpdateExprRep(Result.get());
3135    break;
3136  }
3137
3138  default:
3139    // Nothing to do for these decl specs.
3140    break;
3141  }
3142
3143  // It doesn't matter what order we do this in.
3144  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3145    DeclaratorChunk &Chunk = D.getTypeObject(I);
3146
3147    // The only type information in the declarator which can come
3148    // before the declaration name is the base type of a member
3149    // pointer.
3150    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3151      continue;
3152
3153    // Rebuild the scope specifier in-place.
3154    CXXScopeSpec &SS = Chunk.Mem.Scope();
3155    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3156      return true;
3157  }
3158
3159  return false;
3160}
3161
3162Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3163  D.setFunctionDefinitionKind(FDK_Declaration);
3164  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3165
3166  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3167      Dcl->getDeclContext()->isFileContext())
3168    Dcl->setTopLevelDeclInObjCContainer();
3169
3170  return Dcl;
3171}
3172
3173/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3174///   If T is the name of a class, then each of the following shall have a
3175///   name different from T:
3176///     - every static data member of class T;
3177///     - every member function of class T
3178///     - every member of class T that is itself a type;
3179/// \returns true if the declaration name violates these rules.
3180bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3181                                   DeclarationNameInfo NameInfo) {
3182  DeclarationName Name = NameInfo.getName();
3183
3184  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3185    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3186      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3187      return true;
3188    }
3189
3190  return false;
3191}
3192
3193Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3194                             MultiTemplateParamsArg TemplateParamLists) {
3195  // TODO: consider using NameInfo for diagnostic.
3196  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3197  DeclarationName Name = NameInfo.getName();
3198
3199  // All of these full declarators require an identifier.  If it doesn't have
3200  // one, the ParsedFreeStandingDeclSpec action should be used.
3201  if (!Name) {
3202    if (!D.isInvalidType())  // Reject this if we think it is valid.
3203      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3204           diag::err_declarator_need_ident)
3205        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3206    return 0;
3207  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3208    return 0;
3209
3210  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3211  // we find one that is.
3212  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3213         (S->getFlags() & Scope::TemplateParamScope) != 0)
3214    S = S->getParent();
3215
3216  DeclContext *DC = CurContext;
3217  if (D.getCXXScopeSpec().isInvalid())
3218    D.setInvalidType();
3219  else if (D.getCXXScopeSpec().isSet()) {
3220    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3221                                        UPPC_DeclarationQualifier))
3222      return 0;
3223
3224    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3225    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3226    if (!DC) {
3227      // If we could not compute the declaration context, it's because the
3228      // declaration context is dependent but does not refer to a class,
3229      // class template, or class template partial specialization. Complain
3230      // and return early, to avoid the coming semantic disaster.
3231      Diag(D.getIdentifierLoc(),
3232           diag::err_template_qualified_declarator_no_match)
3233        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3234        << D.getCXXScopeSpec().getRange();
3235      return 0;
3236    }
3237    bool IsDependentContext = DC->isDependentContext();
3238
3239    if (!IsDependentContext &&
3240        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3241      return 0;
3242
3243    if (isa<CXXRecordDecl>(DC)) {
3244      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3245        Diag(D.getIdentifierLoc(),
3246             diag::err_member_def_undefined_record)
3247          << Name << DC << D.getCXXScopeSpec().getRange();
3248        D.setInvalidType();
3249      } else if (isa<CXXRecordDecl>(CurContext) &&
3250                 !D.getDeclSpec().isFriendSpecified()) {
3251        // The user provided a superfluous scope specifier inside a class
3252        // definition:
3253        //
3254        // class X {
3255        //   void X::f();
3256        // };
3257        if (CurContext->Equals(DC)) {
3258          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3259            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3260        } else {
3261          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3262            << Name << D.getCXXScopeSpec().getRange();
3263
3264          // C++ constructors and destructors with incorrect scopes can break
3265          // our AST invariants by having the wrong underlying types. If
3266          // that's the case, then drop this declaration entirely.
3267          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3268               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3269              !Context.hasSameType(Name.getCXXNameType(),
3270                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3271            return 0;
3272        }
3273
3274        // Pretend that this qualifier was not here.
3275        D.getCXXScopeSpec().clear();
3276      }
3277    }
3278
3279    // Check whether we need to rebuild the type of the given
3280    // declaration in the current instantiation.
3281    if (EnteringContext && IsDependentContext &&
3282        TemplateParamLists.size() != 0) {
3283      ContextRAII SavedContext(*this, DC);
3284      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3285        D.setInvalidType();
3286    }
3287  }
3288
3289  if (DiagnoseClassNameShadow(DC, NameInfo))
3290    // If this is a typedef, we'll end up spewing multiple diagnostics.
3291    // Just return early; it's safer.
3292    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3293      return 0;
3294
3295  NamedDecl *New;
3296
3297  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3298  QualType R = TInfo->getType();
3299
3300  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3301                                      UPPC_DeclarationType))
3302    D.setInvalidType();
3303
3304  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3305                        ForRedeclaration);
3306
3307  // See if this is a redefinition of a variable in the same scope.
3308  if (!D.getCXXScopeSpec().isSet()) {
3309    bool IsLinkageLookup = false;
3310
3311    // If the declaration we're planning to build will be a function
3312    // or object with linkage, then look for another declaration with
3313    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3314    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3315      /* Do nothing*/;
3316    else if (R->isFunctionType()) {
3317      if (CurContext->isFunctionOrMethod() ||
3318          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3319        IsLinkageLookup = true;
3320    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3321      IsLinkageLookup = true;
3322    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3323             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3324      IsLinkageLookup = true;
3325
3326    if (IsLinkageLookup)
3327      Previous.clear(LookupRedeclarationWithLinkage);
3328
3329    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3330  } else { // Something like "int foo::x;"
3331    LookupQualifiedName(Previous, DC);
3332
3333    // Don't consider using declarations as previous declarations for
3334    // out-of-line members.
3335    RemoveUsingDecls(Previous);
3336
3337    // C++ 7.3.1.2p2:
3338    // Members (including explicit specializations of templates) of a named
3339    // namespace can also be defined outside that namespace by explicit
3340    // qualification of the name being defined, provided that the entity being
3341    // defined was already declared in the namespace and the definition appears
3342    // after the point of declaration in a namespace that encloses the
3343    // declarations namespace.
3344    //
3345    // Note that we only check the context at this point. We don't yet
3346    // have enough information to make sure that PrevDecl is actually
3347    // the declaration we want to match. For example, given:
3348    //
3349    //   class X {
3350    //     void f();
3351    //     void f(float);
3352    //   };
3353    //
3354    //   void X::f(int) { } // ill-formed
3355    //
3356    // In this case, PrevDecl will point to the overload set
3357    // containing the two f's declared in X, but neither of them
3358    // matches.
3359
3360    // First check whether we named the global scope.
3361    if (isa<TranslationUnitDecl>(DC)) {
3362      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3363        << Name << D.getCXXScopeSpec().getRange();
3364    } else {
3365      DeclContext *Cur = CurContext;
3366      while (isa<LinkageSpecDecl>(Cur))
3367        Cur = Cur->getParent();
3368      if (!Cur->Encloses(DC)) {
3369        // The qualifying scope doesn't enclose the original declaration.
3370        // Emit diagnostic based on current scope.
3371        SourceLocation L = D.getIdentifierLoc();
3372        SourceRange R = D.getCXXScopeSpec().getRange();
3373        if (isa<FunctionDecl>(Cur))
3374          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3375        else
3376          Diag(L, diag::err_invalid_declarator_scope)
3377            << Name << cast<NamedDecl>(DC) << R;
3378        D.setInvalidType();
3379      }
3380
3381      // C++11 8.3p1:
3382      // ... "The nested-name-specifier of the qualified declarator-id shall
3383      // not begin with a decltype-specifer"
3384      NestedNameSpecifierLoc SpecLoc =
3385            D.getCXXScopeSpec().getWithLocInContext(Context);
3386      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3387                        "NestedNameSpecifierLoc");
3388      while (SpecLoc.getPrefix())
3389        SpecLoc = SpecLoc.getPrefix();
3390      if (dyn_cast_or_null<DecltypeType>(
3391            SpecLoc.getNestedNameSpecifier()->getAsType()))
3392        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3393          << SpecLoc.getTypeLoc().getSourceRange();
3394    }
3395  }
3396
3397  if (Previous.isSingleResult() &&
3398      Previous.getFoundDecl()->isTemplateParameter()) {
3399    // Maybe we will complain about the shadowed template parameter.
3400    if (!D.isInvalidType())
3401      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3402                                      Previous.getFoundDecl());
3403
3404    // Just pretend that we didn't see the previous declaration.
3405    Previous.clear();
3406  }
3407
3408  // In C++, the previous declaration we find might be a tag type
3409  // (class or enum). In this case, the new declaration will hide the
3410  // tag type. Note that this does does not apply if we're declaring a
3411  // typedef (C++ [dcl.typedef]p4).
3412  if (Previous.isSingleTagDecl() &&
3413      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3414    Previous.clear();
3415
3416  bool AddToScope = true;
3417  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3418    if (TemplateParamLists.size()) {
3419      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3420      return 0;
3421    }
3422
3423    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3424  } else if (R->isFunctionType()) {
3425    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3426                                  move(TemplateParamLists),
3427                                  AddToScope);
3428  } else {
3429    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3430                                  move(TemplateParamLists));
3431  }
3432
3433  if (New == 0)
3434    return 0;
3435
3436  // If this has an identifier and is not an invalid redeclaration or
3437  // function template specialization, add it to the scope stack.
3438  if (New->getDeclName() && AddToScope &&
3439       !(D.isRedeclaration() && New->isInvalidDecl()))
3440    PushOnScopeChains(New, S);
3441
3442  return New;
3443}
3444
3445/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3446/// types into constant array types in certain situations which would otherwise
3447/// be errors (for GCC compatibility).
3448static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3449                                                    ASTContext &Context,
3450                                                    bool &SizeIsNegative,
3451                                                    llvm::APSInt &Oversized) {
3452  // This method tries to turn a variable array into a constant
3453  // array even when the size isn't an ICE.  This is necessary
3454  // for compatibility with code that depends on gcc's buggy
3455  // constant expression folding, like struct {char x[(int)(char*)2];}
3456  SizeIsNegative = false;
3457  Oversized = 0;
3458
3459  if (T->isDependentType())
3460    return QualType();
3461
3462  QualifierCollector Qs;
3463  const Type *Ty = Qs.strip(T);
3464
3465  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3466    QualType Pointee = PTy->getPointeeType();
3467    QualType FixedType =
3468        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3469                                            Oversized);
3470    if (FixedType.isNull()) return FixedType;
3471    FixedType = Context.getPointerType(FixedType);
3472    return Qs.apply(Context, FixedType);
3473  }
3474  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3475    QualType Inner = PTy->getInnerType();
3476    QualType FixedType =
3477        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3478                                            Oversized);
3479    if (FixedType.isNull()) return FixedType;
3480    FixedType = Context.getParenType(FixedType);
3481    return Qs.apply(Context, FixedType);
3482  }
3483
3484  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3485  if (!VLATy)
3486    return QualType();
3487  // FIXME: We should probably handle this case
3488  if (VLATy->getElementType()->isVariablyModifiedType())
3489    return QualType();
3490
3491  llvm::APSInt Res;
3492  if (!VLATy->getSizeExpr() ||
3493      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3494    return QualType();
3495
3496  // Check whether the array size is negative.
3497  if (Res.isSigned() && Res.isNegative()) {
3498    SizeIsNegative = true;
3499    return QualType();
3500  }
3501
3502  // Check whether the array is too large to be addressed.
3503  unsigned ActiveSizeBits
3504    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3505                                              Res);
3506  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3507    Oversized = Res;
3508    return QualType();
3509  }
3510
3511  return Context.getConstantArrayType(VLATy->getElementType(),
3512                                      Res, ArrayType::Normal, 0);
3513}
3514
3515/// \brief Register the given locally-scoped external C declaration so
3516/// that it can be found later for redeclarations
3517void
3518Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3519                                       const LookupResult &Previous,
3520                                       Scope *S) {
3521  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3522         "Decl is not a locally-scoped decl!");
3523  // Note that we have a locally-scoped external with this name.
3524  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3525
3526  if (!Previous.isSingleResult())
3527    return;
3528
3529  NamedDecl *PrevDecl = Previous.getFoundDecl();
3530
3531  // If there was a previous declaration of this variable, it may be
3532  // in our identifier chain. Update the identifier chain with the new
3533  // declaration.
3534  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3535    // The previous declaration was found on the identifer resolver
3536    // chain, so remove it from its scope.
3537
3538    if (S->isDeclScope(PrevDecl)) {
3539      // Special case for redeclarations in the SAME scope.
3540      // Because this declaration is going to be added to the identifier chain
3541      // later, we should temporarily take it OFF the chain.
3542      IdResolver.RemoveDecl(ND);
3543
3544    } else {
3545      // Find the scope for the original declaration.
3546      while (S && !S->isDeclScope(PrevDecl))
3547        S = S->getParent();
3548    }
3549
3550    if (S)
3551      S->RemoveDecl(PrevDecl);
3552  }
3553}
3554
3555llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3556Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3557  if (ExternalSource) {
3558    // Load locally-scoped external decls from the external source.
3559    SmallVector<NamedDecl *, 4> Decls;
3560    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3561    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3562      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3563        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3564      if (Pos == LocallyScopedExternalDecls.end())
3565        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3566    }
3567  }
3568
3569  return LocallyScopedExternalDecls.find(Name);
3570}
3571
3572/// \brief Diagnose function specifiers on a declaration of an identifier that
3573/// does not identify a function.
3574void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3575  // FIXME: We should probably indicate the identifier in question to avoid
3576  // confusion for constructs like "inline int a(), b;"
3577  if (D.getDeclSpec().isInlineSpecified())
3578    Diag(D.getDeclSpec().getInlineSpecLoc(),
3579         diag::err_inline_non_function);
3580
3581  if (D.getDeclSpec().isVirtualSpecified())
3582    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3583         diag::err_virtual_non_function);
3584
3585  if (D.getDeclSpec().isExplicitSpecified())
3586    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3587         diag::err_explicit_non_function);
3588}
3589
3590NamedDecl*
3591Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3592                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3593  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3594  if (D.getCXXScopeSpec().isSet()) {
3595    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3596      << D.getCXXScopeSpec().getRange();
3597    D.setInvalidType();
3598    // Pretend we didn't see the scope specifier.
3599    DC = CurContext;
3600    Previous.clear();
3601  }
3602
3603  if (getLangOptions().CPlusPlus) {
3604    // Check that there are no default arguments (C++ only).
3605    CheckExtraCXXDefaultArguments(D);
3606  }
3607
3608  DiagnoseFunctionSpecifiers(D);
3609
3610  if (D.getDeclSpec().isThreadSpecified())
3611    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3612  if (D.getDeclSpec().isConstexprSpecified())
3613    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3614      << 1;
3615
3616  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3617    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3618      << D.getName().getSourceRange();
3619    return 0;
3620  }
3621
3622  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3623  if (!NewTD) return 0;
3624
3625  // Handle attributes prior to checking for duplicates in MergeVarDecl
3626  ProcessDeclAttributes(S, NewTD, D);
3627
3628  CheckTypedefForVariablyModifiedType(S, NewTD);
3629
3630  bool Redeclaration = D.isRedeclaration();
3631  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3632  D.setRedeclaration(Redeclaration);
3633  return ND;
3634}
3635
3636void
3637Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3638  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3639  // then it shall have block scope.
3640  // Note that variably modified types must be fixed before merging the decl so
3641  // that redeclarations will match.
3642  QualType T = NewTD->getUnderlyingType();
3643  if (T->isVariablyModifiedType()) {
3644    getCurFunction()->setHasBranchProtectedScope();
3645
3646    if (S->getFnParent() == 0) {
3647      bool SizeIsNegative;
3648      llvm::APSInt Oversized;
3649      QualType FixedTy =
3650          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3651                                              Oversized);
3652      if (!FixedTy.isNull()) {
3653        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3654        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3655      } else {
3656        if (SizeIsNegative)
3657          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3658        else if (T->isVariableArrayType())
3659          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3660        else if (Oversized.getBoolValue())
3661          Diag(NewTD->getLocation(), diag::err_array_too_large)
3662            << Oversized.toString(10);
3663        else
3664          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3665        NewTD->setInvalidDecl();
3666      }
3667    }
3668  }
3669}
3670
3671
3672/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3673/// declares a typedef-name, either using the 'typedef' type specifier or via
3674/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3675NamedDecl*
3676Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3677                           LookupResult &Previous, bool &Redeclaration) {
3678  // Merge the decl with the existing one if appropriate. If the decl is
3679  // in an outer scope, it isn't the same thing.
3680  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3681                       /*ExplicitInstantiationOrSpecialization=*/false);
3682  if (!Previous.empty()) {
3683    Redeclaration = true;
3684    MergeTypedefNameDecl(NewTD, Previous);
3685  }
3686
3687  // If this is the C FILE type, notify the AST context.
3688  if (IdentifierInfo *II = NewTD->getIdentifier())
3689    if (!NewTD->isInvalidDecl() &&
3690        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3691      if (II->isStr("FILE"))
3692        Context.setFILEDecl(NewTD);
3693      else if (II->isStr("jmp_buf"))
3694        Context.setjmp_bufDecl(NewTD);
3695      else if (II->isStr("sigjmp_buf"))
3696        Context.setsigjmp_bufDecl(NewTD);
3697      else if (II->isStr("ucontext_t"))
3698        Context.setucontext_tDecl(NewTD);
3699      else if (II->isStr("__builtin_va_list"))
3700        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3701    }
3702
3703  return NewTD;
3704}
3705
3706/// \brief Determines whether the given declaration is an out-of-scope
3707/// previous declaration.
3708///
3709/// This routine should be invoked when name lookup has found a
3710/// previous declaration (PrevDecl) that is not in the scope where a
3711/// new declaration by the same name is being introduced. If the new
3712/// declaration occurs in a local scope, previous declarations with
3713/// linkage may still be considered previous declarations (C99
3714/// 6.2.2p4-5, C++ [basic.link]p6).
3715///
3716/// \param PrevDecl the previous declaration found by name
3717/// lookup
3718///
3719/// \param DC the context in which the new declaration is being
3720/// declared.
3721///
3722/// \returns true if PrevDecl is an out-of-scope previous declaration
3723/// for a new delcaration with the same name.
3724static bool
3725isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3726                                ASTContext &Context) {
3727  if (!PrevDecl)
3728    return false;
3729
3730  if (!PrevDecl->hasLinkage())
3731    return false;
3732
3733  if (Context.getLangOptions().CPlusPlus) {
3734    // C++ [basic.link]p6:
3735    //   If there is a visible declaration of an entity with linkage
3736    //   having the same name and type, ignoring entities declared
3737    //   outside the innermost enclosing namespace scope, the block
3738    //   scope declaration declares that same entity and receives the
3739    //   linkage of the previous declaration.
3740    DeclContext *OuterContext = DC->getRedeclContext();
3741    if (!OuterContext->isFunctionOrMethod())
3742      // This rule only applies to block-scope declarations.
3743      return false;
3744
3745    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3746    if (PrevOuterContext->isRecord())
3747      // We found a member function: ignore it.
3748      return false;
3749
3750    // Find the innermost enclosing namespace for the new and
3751    // previous declarations.
3752    OuterContext = OuterContext->getEnclosingNamespaceContext();
3753    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3754
3755    // The previous declaration is in a different namespace, so it
3756    // isn't the same function.
3757    if (!OuterContext->Equals(PrevOuterContext))
3758      return false;
3759  }
3760
3761  return true;
3762}
3763
3764static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3765  CXXScopeSpec &SS = D.getCXXScopeSpec();
3766  if (!SS.isSet()) return;
3767  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3768}
3769
3770bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3771  QualType type = decl->getType();
3772  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3773  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3774    // Various kinds of declaration aren't allowed to be __autoreleasing.
3775    unsigned kind = -1U;
3776    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3777      if (var->hasAttr<BlocksAttr>())
3778        kind = 0; // __block
3779      else if (!var->hasLocalStorage())
3780        kind = 1; // global
3781    } else if (isa<ObjCIvarDecl>(decl)) {
3782      kind = 3; // ivar
3783    } else if (isa<FieldDecl>(decl)) {
3784      kind = 2; // field
3785    }
3786
3787    if (kind != -1U) {
3788      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3789        << kind;
3790    }
3791  } else if (lifetime == Qualifiers::OCL_None) {
3792    // Try to infer lifetime.
3793    if (!type->isObjCLifetimeType())
3794      return false;
3795
3796    lifetime = type->getObjCARCImplicitLifetime();
3797    type = Context.getLifetimeQualifiedType(type, lifetime);
3798    decl->setType(type);
3799  }
3800
3801  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3802    // Thread-local variables cannot have lifetime.
3803    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3804        var->isThreadSpecified()) {
3805      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3806        << var->getType();
3807      return true;
3808    }
3809  }
3810
3811  return false;
3812}
3813
3814NamedDecl*
3815Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3816                              TypeSourceInfo *TInfo, LookupResult &Previous,
3817                              MultiTemplateParamsArg TemplateParamLists) {
3818  QualType R = TInfo->getType();
3819  DeclarationName Name = GetNameForDeclarator(D).getName();
3820
3821  // Check that there are no default arguments (C++ only).
3822  if (getLangOptions().CPlusPlus)
3823    CheckExtraCXXDefaultArguments(D);
3824
3825  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3826  assert(SCSpec != DeclSpec::SCS_typedef &&
3827         "Parser allowed 'typedef' as storage class VarDecl.");
3828  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3829  if (SCSpec == DeclSpec::SCS_mutable) {
3830    // mutable can only appear on non-static class members, so it's always
3831    // an error here
3832    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3833    D.setInvalidType();
3834    SC = SC_None;
3835  }
3836  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3837  VarDecl::StorageClass SCAsWritten
3838    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3839
3840  IdentifierInfo *II = Name.getAsIdentifierInfo();
3841  if (!II) {
3842    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3843      << Name;
3844    return 0;
3845  }
3846
3847  DiagnoseFunctionSpecifiers(D);
3848
3849  if (!DC->isRecord() && S->getFnParent() == 0) {
3850    // C99 6.9p2: The storage-class specifiers auto and register shall not
3851    // appear in the declaration specifiers in an external declaration.
3852    if (SC == SC_Auto || SC == SC_Register) {
3853
3854      // If this is a register variable with an asm label specified, then this
3855      // is a GNU extension.
3856      if (SC == SC_Register && D.getAsmLabel())
3857        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3858      else
3859        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3860      D.setInvalidType();
3861    }
3862  }
3863
3864  if (getLangOptions().OpenCL) {
3865    // Set up the special work-group-local storage class for variables in the
3866    // OpenCL __local address space.
3867    if (R.getAddressSpace() == LangAS::opencl_local)
3868      SC = SC_OpenCLWorkGroupLocal;
3869  }
3870
3871  bool isExplicitSpecialization = false;
3872  VarDecl *NewVD;
3873  if (!getLangOptions().CPlusPlus) {
3874    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3875                            D.getIdentifierLoc(), II,
3876                            R, TInfo, SC, SCAsWritten);
3877
3878    if (D.isInvalidType())
3879      NewVD->setInvalidDecl();
3880  } else {
3881    if (DC->isRecord() && !CurContext->isRecord()) {
3882      // This is an out-of-line definition of a static data member.
3883      if (SC == SC_Static) {
3884        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3885             diag::err_static_out_of_line)
3886          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3887      } else if (SC == SC_None)
3888        SC = SC_Static;
3889    }
3890    if (SC == SC_Static) {
3891      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3892        if (RD->isLocalClass())
3893          Diag(D.getIdentifierLoc(),
3894               diag::err_static_data_member_not_allowed_in_local_class)
3895            << Name << RD->getDeclName();
3896
3897        // C++ [class.union]p1: If a union contains a static data member,
3898        // the program is ill-formed.
3899        //
3900        // We also disallow static data members in anonymous structs.
3901        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3902          Diag(D.getIdentifierLoc(),
3903               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3904            << Name << RD->isUnion();
3905      }
3906    }
3907
3908    // Match up the template parameter lists with the scope specifier, then
3909    // determine whether we have a template or a template specialization.
3910    isExplicitSpecialization = false;
3911    bool Invalid = false;
3912    if (TemplateParameterList *TemplateParams
3913        = MatchTemplateParametersToScopeSpecifier(
3914                                  D.getDeclSpec().getSourceRange().getBegin(),
3915                                                  D.getIdentifierLoc(),
3916                                                  D.getCXXScopeSpec(),
3917                                                  TemplateParamLists.get(),
3918                                                  TemplateParamLists.size(),
3919                                                  /*never a friend*/ false,
3920                                                  isExplicitSpecialization,
3921                                                  Invalid)) {
3922      if (TemplateParams->size() > 0) {
3923        // There is no such thing as a variable template.
3924        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3925          << II
3926          << SourceRange(TemplateParams->getTemplateLoc(),
3927                         TemplateParams->getRAngleLoc());
3928        return 0;
3929      } else {
3930        // There is an extraneous 'template<>' for this variable. Complain
3931        // about it, but allow the declaration of the variable.
3932        Diag(TemplateParams->getTemplateLoc(),
3933             diag::err_template_variable_noparams)
3934          << II
3935          << SourceRange(TemplateParams->getTemplateLoc(),
3936                         TemplateParams->getRAngleLoc());
3937      }
3938    }
3939
3940    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3941                            D.getIdentifierLoc(), II,
3942                            R, TInfo, SC, SCAsWritten);
3943
3944    // If this decl has an auto type in need of deduction, make a note of the
3945    // Decl so we can diagnose uses of it in its own initializer.
3946    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3947        R->getContainedAutoType())
3948      ParsingInitForAutoVars.insert(NewVD);
3949
3950    if (D.isInvalidType() || Invalid)
3951      NewVD->setInvalidDecl();
3952
3953    SetNestedNameSpecifier(NewVD, D);
3954
3955    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3956      NewVD->setTemplateParameterListsInfo(Context,
3957                                           TemplateParamLists.size(),
3958                                           TemplateParamLists.release());
3959    }
3960
3961    if (D.getDeclSpec().isConstexprSpecified())
3962      NewVD->setConstexpr(true);
3963  }
3964
3965  // Set the lexical context. If the declarator has a C++ scope specifier, the
3966  // lexical context will be different from the semantic context.
3967  NewVD->setLexicalDeclContext(CurContext);
3968
3969  if (D.getDeclSpec().isThreadSpecified()) {
3970    if (NewVD->hasLocalStorage())
3971      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3972    else if (!Context.getTargetInfo().isTLSSupported())
3973      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3974    else
3975      NewVD->setThreadSpecified(true);
3976  }
3977
3978  if (D.getDeclSpec().isModulePrivateSpecified()) {
3979    if (isExplicitSpecialization)
3980      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3981        << 2
3982        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3983    else if (NewVD->hasLocalStorage())
3984      Diag(NewVD->getLocation(), diag::err_module_private_local)
3985        << 0 << NewVD->getDeclName()
3986        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3987        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3988    else
3989      NewVD->setModulePrivate();
3990  }
3991
3992  // Handle attributes prior to checking for duplicates in MergeVarDecl
3993  ProcessDeclAttributes(S, NewVD, D);
3994
3995  // In auto-retain/release, infer strong retension for variables of
3996  // retainable type.
3997  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3998    NewVD->setInvalidDecl();
3999
4000  // Handle GNU asm-label extension (encoded as an attribute).
4001  if (Expr *E = (Expr*)D.getAsmLabel()) {
4002    // The parser guarantees this is a string.
4003    StringLiteral *SE = cast<StringLiteral>(E);
4004    StringRef Label = SE->getString();
4005    if (S->getFnParent() != 0) {
4006      switch (SC) {
4007      case SC_None:
4008      case SC_Auto:
4009        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4010        break;
4011      case SC_Register:
4012        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4013          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4014        break;
4015      case SC_Static:
4016      case SC_Extern:
4017      case SC_PrivateExtern:
4018      case SC_OpenCLWorkGroupLocal:
4019        break;
4020      }
4021    }
4022
4023    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4024                                                Context, Label));
4025  }
4026
4027  // Diagnose shadowed variables before filtering for scope.
4028  if (!D.getCXXScopeSpec().isSet())
4029    CheckShadow(S, NewVD, Previous);
4030
4031  // Don't consider existing declarations that are in a different
4032  // scope and are out-of-semantic-context declarations (if the new
4033  // declaration has linkage).
4034  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4035                       isExplicitSpecialization);
4036
4037  if (!getLangOptions().CPlusPlus) {
4038    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4039  } else {
4040    // Merge the decl with the existing one if appropriate.
4041    if (!Previous.empty()) {
4042      if (Previous.isSingleResult() &&
4043          isa<FieldDecl>(Previous.getFoundDecl()) &&
4044          D.getCXXScopeSpec().isSet()) {
4045        // The user tried to define a non-static data member
4046        // out-of-line (C++ [dcl.meaning]p1).
4047        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4048          << D.getCXXScopeSpec().getRange();
4049        Previous.clear();
4050        NewVD->setInvalidDecl();
4051      }
4052    } else if (D.getCXXScopeSpec().isSet()) {
4053      // No previous declaration in the qualifying scope.
4054      Diag(D.getIdentifierLoc(), diag::err_no_member)
4055        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4056        << D.getCXXScopeSpec().getRange();
4057      NewVD->setInvalidDecl();
4058    }
4059
4060    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4061
4062    // This is an explicit specialization of a static data member. Check it.
4063    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4064        CheckMemberSpecialization(NewVD, Previous))
4065      NewVD->setInvalidDecl();
4066  }
4067
4068  // attributes declared post-definition are currently ignored
4069  // FIXME: This should be handled in attribute merging, not
4070  // here.
4071  if (Previous.isSingleResult()) {
4072    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4073    if (Def && (Def = Def->getDefinition()) &&
4074        Def != NewVD && D.hasAttributes()) {
4075      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4076      Diag(Def->getLocation(), diag::note_previous_definition);
4077    }
4078  }
4079
4080  // If this is a locally-scoped extern C variable, update the map of
4081  // such variables.
4082  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4083      !NewVD->isInvalidDecl())
4084    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4085
4086  // If there's a #pragma GCC visibility in scope, and this isn't a class
4087  // member, set the visibility of this variable.
4088  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4089    AddPushedVisibilityAttribute(NewVD);
4090
4091  MarkUnusedFileScopedDecl(NewVD);
4092
4093  return NewVD;
4094}
4095
4096/// \brief Diagnose variable or built-in function shadowing.  Implements
4097/// -Wshadow.
4098///
4099/// This method is called whenever a VarDecl is added to a "useful"
4100/// scope.
4101///
4102/// \param S the scope in which the shadowing name is being declared
4103/// \param R the lookup of the name
4104///
4105void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4106  // Return if warning is ignored.
4107  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4108        DiagnosticsEngine::Ignored)
4109    return;
4110
4111  // Don't diagnose declarations at file scope.
4112  if (D->hasGlobalStorage())
4113    return;
4114
4115  DeclContext *NewDC = D->getDeclContext();
4116
4117  // Only diagnose if we're shadowing an unambiguous field or variable.
4118  if (R.getResultKind() != LookupResult::Found)
4119    return;
4120
4121  NamedDecl* ShadowedDecl = R.getFoundDecl();
4122  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4123    return;
4124
4125  // Fields are not shadowed by variables in C++ static methods.
4126  if (isa<FieldDecl>(ShadowedDecl))
4127    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4128      if (MD->isStatic())
4129        return;
4130
4131  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4132    if (shadowedVar->isExternC()) {
4133      // For shadowing external vars, make sure that we point to the global
4134      // declaration, not a locally scoped extern declaration.
4135      for (VarDecl::redecl_iterator
4136             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4137           I != E; ++I)
4138        if (I->isFileVarDecl()) {
4139          ShadowedDecl = *I;
4140          break;
4141        }
4142    }
4143
4144  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4145
4146  // Only warn about certain kinds of shadowing for class members.
4147  if (NewDC && NewDC->isRecord()) {
4148    // In particular, don't warn about shadowing non-class members.
4149    if (!OldDC->isRecord())
4150      return;
4151
4152    // TODO: should we warn about static data members shadowing
4153    // static data members from base classes?
4154
4155    // TODO: don't diagnose for inaccessible shadowed members.
4156    // This is hard to do perfectly because we might friend the
4157    // shadowing context, but that's just a false negative.
4158  }
4159
4160  // Determine what kind of declaration we're shadowing.
4161  unsigned Kind;
4162  if (isa<RecordDecl>(OldDC)) {
4163    if (isa<FieldDecl>(ShadowedDecl))
4164      Kind = 3; // field
4165    else
4166      Kind = 2; // static data member
4167  } else if (OldDC->isFileContext())
4168    Kind = 1; // global
4169  else
4170    Kind = 0; // local
4171
4172  DeclarationName Name = R.getLookupName();
4173
4174  // Emit warning and note.
4175  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4176  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4177}
4178
4179/// \brief Check -Wshadow without the advantage of a previous lookup.
4180void Sema::CheckShadow(Scope *S, VarDecl *D) {
4181  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4182        DiagnosticsEngine::Ignored)
4183    return;
4184
4185  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4186                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4187  LookupName(R, S);
4188  CheckShadow(S, D, R);
4189}
4190
4191/// \brief Perform semantic checking on a newly-created variable
4192/// declaration.
4193///
4194/// This routine performs all of the type-checking required for a
4195/// variable declaration once it has been built. It is used both to
4196/// check variables after they have been parsed and their declarators
4197/// have been translated into a declaration, and to check variables
4198/// that have been instantiated from a template.
4199///
4200/// Sets NewVD->isInvalidDecl() if an error was encountered.
4201///
4202/// Returns true if the variable declaration is a redeclaration.
4203bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4204                                    LookupResult &Previous) {
4205  // If the decl is already known invalid, don't check it.
4206  if (NewVD->isInvalidDecl())
4207    return false;
4208
4209  QualType T = NewVD->getType();
4210
4211  if (T->isObjCObjectType()) {
4212    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4213      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4214    T = Context.getObjCObjectPointerType(T);
4215    NewVD->setType(T);
4216  }
4217
4218  // Emit an error if an address space was applied to decl with local storage.
4219  // This includes arrays of objects with address space qualifiers, but not
4220  // automatic variables that point to other address spaces.
4221  // ISO/IEC TR 18037 S5.1.2
4222  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4223    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4224    NewVD->setInvalidDecl();
4225    return false;
4226  }
4227
4228  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4229      && !NewVD->hasAttr<BlocksAttr>()) {
4230    if (getLangOptions().getGC() != LangOptions::NonGC)
4231      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4232    else
4233      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4234  }
4235
4236  bool isVM = T->isVariablyModifiedType();
4237  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4238      NewVD->hasAttr<BlocksAttr>())
4239    getCurFunction()->setHasBranchProtectedScope();
4240
4241  if ((isVM && NewVD->hasLinkage()) ||
4242      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4243    bool SizeIsNegative;
4244    llvm::APSInt Oversized;
4245    QualType FixedTy =
4246        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4247                                            Oversized);
4248
4249    if (FixedTy.isNull() && T->isVariableArrayType()) {
4250      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4251      // FIXME: This won't give the correct result for
4252      // int a[10][n];
4253      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4254
4255      if (NewVD->isFileVarDecl())
4256        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4257        << SizeRange;
4258      else if (NewVD->getStorageClass() == SC_Static)
4259        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4260        << SizeRange;
4261      else
4262        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4263        << SizeRange;
4264      NewVD->setInvalidDecl();
4265      return false;
4266    }
4267
4268    if (FixedTy.isNull()) {
4269      if (NewVD->isFileVarDecl())
4270        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4271      else
4272        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4273      NewVD->setInvalidDecl();
4274      return false;
4275    }
4276
4277    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4278    NewVD->setType(FixedTy);
4279  }
4280
4281  if (Previous.empty() && NewVD->isExternC()) {
4282    // Since we did not find anything by this name and we're declaring
4283    // an extern "C" variable, look for a non-visible extern "C"
4284    // declaration with the same name.
4285    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4286      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4287    if (Pos != LocallyScopedExternalDecls.end())
4288      Previous.addDecl(Pos->second);
4289  }
4290
4291  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4292    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4293      << T;
4294    NewVD->setInvalidDecl();
4295    return false;
4296  }
4297
4298  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4299    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4300    NewVD->setInvalidDecl();
4301    return false;
4302  }
4303
4304  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4305    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4306    NewVD->setInvalidDecl();
4307    return false;
4308  }
4309
4310  // Function pointers and references cannot have qualified function type, only
4311  // function pointer-to-members can do that.
4312  QualType Pointee;
4313  unsigned PtrOrRef = 0;
4314  if (const PointerType *Ptr = T->getAs<PointerType>())
4315    Pointee = Ptr->getPointeeType();
4316  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4317    Pointee = Ref->getPointeeType();
4318    PtrOrRef = 1;
4319  }
4320  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4321      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4322    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4323        << PtrOrRef;
4324    NewVD->setInvalidDecl();
4325    return false;
4326  }
4327
4328  if (!Previous.empty()) {
4329    MergeVarDecl(NewVD, Previous);
4330    return true;
4331  }
4332  return false;
4333}
4334
4335/// \brief Data used with FindOverriddenMethod
4336struct FindOverriddenMethodData {
4337  Sema *S;
4338  CXXMethodDecl *Method;
4339};
4340
4341/// \brief Member lookup function that determines whether a given C++
4342/// method overrides a method in a base class, to be used with
4343/// CXXRecordDecl::lookupInBases().
4344static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4345                                 CXXBasePath &Path,
4346                                 void *UserData) {
4347  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4348
4349  FindOverriddenMethodData *Data
4350    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4351
4352  DeclarationName Name = Data->Method->getDeclName();
4353
4354  // FIXME: Do we care about other names here too?
4355  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4356    // We really want to find the base class destructor here.
4357    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4358    CanQualType CT = Data->S->Context.getCanonicalType(T);
4359
4360    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4361  }
4362
4363  for (Path.Decls = BaseRecord->lookup(Name);
4364       Path.Decls.first != Path.Decls.second;
4365       ++Path.Decls.first) {
4366    NamedDecl *D = *Path.Decls.first;
4367    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4368      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4369        return true;
4370    }
4371  }
4372
4373  return false;
4374}
4375
4376/// AddOverriddenMethods - See if a method overrides any in the base classes,
4377/// and if so, check that it's a valid override and remember it.
4378bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4379  // Look for virtual methods in base classes that this method might override.
4380  CXXBasePaths Paths;
4381  FindOverriddenMethodData Data;
4382  Data.Method = MD;
4383  Data.S = this;
4384  bool AddedAny = false;
4385  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4386    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4387         E = Paths.found_decls_end(); I != E; ++I) {
4388      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4389        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4390        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4391            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4392            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4393          AddedAny = true;
4394        }
4395      }
4396    }
4397  }
4398
4399  return AddedAny;
4400}
4401
4402namespace {
4403  // Struct for holding all of the extra arguments needed by
4404  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4405  struct ActOnFDArgs {
4406    Scope *S;
4407    Declarator &D;
4408    MultiTemplateParamsArg TemplateParamLists;
4409    bool AddToScope;
4410  };
4411}
4412
4413/// \brief Generate diagnostics for an invalid function redeclaration.
4414///
4415/// This routine handles generating the diagnostic messages for an invalid
4416/// function redeclaration, including finding possible similar declarations
4417/// or performing typo correction if there are no previous declarations with
4418/// the same name.
4419///
4420/// Returns a NamedDecl iff typo correction was performed and substituting in
4421/// the new declaration name does not cause new errors.
4422static NamedDecl* DiagnoseInvalidRedeclaration(
4423    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4424    ActOnFDArgs &ExtraArgs) {
4425  NamedDecl *Result = NULL;
4426  DeclarationName Name = NewFD->getDeclName();
4427  DeclContext *NewDC = NewFD->getDeclContext();
4428  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4429                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4430  llvm::SmallVector<unsigned, 1> MismatchedParams;
4431  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4432  TypoCorrection Correction;
4433  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4434                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4435  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4436                                  : diag::err_member_def_does_not_match;
4437
4438  NewFD->setInvalidDecl();
4439  SemaRef.LookupQualifiedName(Prev, NewDC);
4440  assert(!Prev.isAmbiguous() &&
4441         "Cannot have an ambiguity in previous-declaration lookup");
4442  if (!Prev.empty()) {
4443    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4444         Func != FuncEnd; ++Func) {
4445      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4446      if (FD &&
4447          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4448        // Add 1 to the index so that 0 can mean the mismatch didn't
4449        // involve a parameter
4450        unsigned ParamNum =
4451            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4452        NearMatches.push_back(std::make_pair(FD, ParamNum));
4453      }
4454    }
4455  // If the qualified name lookup yielded nothing, try typo correction
4456  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4457                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4458             Correction.getCorrection() != Name) {
4459    // Trap errors.
4460    Sema::SFINAETrap Trap(SemaRef);
4461
4462    // Set up everything for the call to ActOnFunctionDeclarator
4463    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4464                              ExtraArgs.D.getIdentifierLoc());
4465    Previous.clear();
4466    Previous.setLookupName(Correction.getCorrection());
4467    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4468                                    CDeclEnd = Correction.end();
4469         CDecl != CDeclEnd; ++CDecl) {
4470      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4471      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4472                                     MismatchedParams)) {
4473        Previous.addDecl(FD);
4474      }
4475    }
4476    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4477    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4478    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4479    // eliminate the need for the parameter pack ExtraArgs.
4480    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4481                                             NewFD->getDeclContext(),
4482                                             NewFD->getTypeSourceInfo(),
4483                                             Previous,
4484                                             ExtraArgs.TemplateParamLists,
4485                                             ExtraArgs.AddToScope);
4486    if (Trap.hasErrorOccurred()) {
4487      // Pretend the typo correction never occurred
4488      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4489                                ExtraArgs.D.getIdentifierLoc());
4490      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4491      Previous.clear();
4492      Previous.setLookupName(Name);
4493      Result = NULL;
4494    } else {
4495      for (LookupResult::iterator Func = Previous.begin(),
4496                               FuncEnd = Previous.end();
4497           Func != FuncEnd; ++Func) {
4498        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4499          NearMatches.push_back(std::make_pair(FD, 0));
4500      }
4501    }
4502    if (NearMatches.empty()) {
4503      // Ignore the correction if it didn't yield any close FunctionDecl matches
4504      Correction = TypoCorrection();
4505    } else {
4506      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4507                             : diag::err_member_def_does_not_match_suggest;
4508    }
4509  }
4510
4511  if (Correction)
4512    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4513        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4514        << FixItHint::CreateReplacement(
4515            NewFD->getLocation(),
4516            Correction.getAsString(SemaRef.getLangOptions()));
4517  else
4518    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4519        << Name << NewDC << NewFD->getLocation();
4520
4521  bool NewFDisConst = false;
4522  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4523    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4524
4525  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4526       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4527       NearMatch != NearMatchEnd; ++NearMatch) {
4528    FunctionDecl *FD = NearMatch->first;
4529    bool FDisConst = false;
4530    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4531      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4532
4533    if (unsigned Idx = NearMatch->second) {
4534      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4535      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4536             diag::note_member_def_close_param_match)
4537          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4538    } else if (Correction) {
4539      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4540          << Correction.getQuoted(SemaRef.getLangOptions());
4541    } else if (FDisConst != NewFDisConst) {
4542      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4543          << NewFDisConst << FD->getSourceRange().getEnd();
4544    } else
4545      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4546  }
4547  return Result;
4548}
4549
4550static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4551                                                          Declarator &D) {
4552  switch (D.getDeclSpec().getStorageClassSpec()) {
4553  default: llvm_unreachable("Unknown storage class!");
4554  case DeclSpec::SCS_auto:
4555  case DeclSpec::SCS_register:
4556  case DeclSpec::SCS_mutable:
4557    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4558                 diag::err_typecheck_sclass_func);
4559    D.setInvalidType();
4560    break;
4561  case DeclSpec::SCS_unspecified: break;
4562  case DeclSpec::SCS_extern: return SC_Extern;
4563  case DeclSpec::SCS_static: {
4564    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4565      // C99 6.7.1p5:
4566      //   The declaration of an identifier for a function that has
4567      //   block scope shall have no explicit storage-class specifier
4568      //   other than extern
4569      // See also (C++ [dcl.stc]p4).
4570      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4571                   diag::err_static_block_func);
4572      break;
4573    } else
4574      return SC_Static;
4575  }
4576  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4577  }
4578
4579  // No explicit storage class has already been returned
4580  return SC_None;
4581}
4582
4583static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4584                                           DeclContext *DC, QualType &R,
4585                                           TypeSourceInfo *TInfo,
4586                                           FunctionDecl::StorageClass SC,
4587                                           bool &IsVirtualOkay) {
4588  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4589  DeclarationName Name = NameInfo.getName();
4590
4591  FunctionDecl *NewFD = 0;
4592  bool isInline = D.getDeclSpec().isInlineSpecified();
4593  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4594  FunctionDecl::StorageClass SCAsWritten
4595    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4596
4597  if (!SemaRef.getLangOptions().CPlusPlus) {
4598    // Determine whether the function was written with a
4599    // prototype. This true when:
4600    //   - there is a prototype in the declarator, or
4601    //   - the type R of the function is some kind of typedef or other reference
4602    //     to a type name (which eventually refers to a function type).
4603    bool HasPrototype =
4604      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4605      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4606
4607    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4608                                 D.getSourceRange().getBegin(), NameInfo, R,
4609                                 TInfo, SC, SCAsWritten, isInline,
4610                                 HasPrototype);
4611    if (D.isInvalidType())
4612      NewFD->setInvalidDecl();
4613
4614    // Set the lexical context.
4615    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4616
4617    return NewFD;
4618  }
4619
4620  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4621  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4622
4623  // Check that the return type is not an abstract class type.
4624  // For record types, this is done by the AbstractClassUsageDiagnoser once
4625  // the class has been completely parsed.
4626  if (!DC->isRecord() &&
4627      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4628                                     R->getAs<FunctionType>()->getResultType(),
4629                                     diag::err_abstract_type_in_decl,
4630                                     SemaRef.AbstractReturnType))
4631    D.setInvalidType();
4632
4633  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4634    // This is a C++ constructor declaration.
4635    assert(DC->isRecord() &&
4636           "Constructors can only be declared in a member context");
4637
4638    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4639    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4640                                      D.getSourceRange().getBegin(), NameInfo,
4641                                      R, TInfo, isExplicit, isInline,
4642                                      /*isImplicitlyDeclared=*/false,
4643                                      isConstexpr);
4644
4645  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4646    // This is a C++ destructor declaration.
4647    if (DC->isRecord()) {
4648      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4649      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4650      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4651                                        SemaRef.Context, Record,
4652                                        D.getSourceRange().getBegin(),
4653                                        NameInfo, R, TInfo, isInline,
4654                                        /*isImplicitlyDeclared=*/false);
4655
4656      // If the class is complete, then we now create the implicit exception
4657      // specification. If the class is incomplete or dependent, we can't do
4658      // it yet.
4659      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4660          Record->getDefinition() && !Record->isBeingDefined() &&
4661          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4662        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4663      }
4664
4665      IsVirtualOkay = true;
4666      return NewDD;
4667
4668    } else {
4669      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4670      D.setInvalidType();
4671
4672      // Create a FunctionDecl to satisfy the function definition parsing
4673      // code path.
4674      return FunctionDecl::Create(SemaRef.Context, DC,
4675                                  D.getSourceRange().getBegin(),
4676                                  D.getIdentifierLoc(), Name, R, TInfo,
4677                                  SC, SCAsWritten, isInline,
4678                                  /*hasPrototype=*/true, isConstexpr);
4679    }
4680
4681  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4682    if (!DC->isRecord()) {
4683      SemaRef.Diag(D.getIdentifierLoc(),
4684           diag::err_conv_function_not_member);
4685      return 0;
4686    }
4687
4688    SemaRef.CheckConversionDeclarator(D, R, SC);
4689    IsVirtualOkay = true;
4690    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4691                                     D.getSourceRange().getBegin(), NameInfo,
4692                                     R, TInfo, isInline, isExplicit,
4693                                     isConstexpr, SourceLocation());
4694
4695  } else if (DC->isRecord()) {
4696    // If the name of the function is the same as the name of the record,
4697    // then this must be an invalid constructor that has a return type.
4698    // (The parser checks for a return type and makes the declarator a
4699    // constructor if it has no return type).
4700    if (Name.getAsIdentifierInfo() &&
4701        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4702      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4703        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4704        << SourceRange(D.getIdentifierLoc());
4705      return 0;
4706    }
4707
4708    bool isStatic = SC == SC_Static;
4709
4710    // [class.free]p1:
4711    // Any allocation function for a class T is a static member
4712    // (even if not explicitly declared static).
4713    if (Name.getCXXOverloadedOperator() == OO_New ||
4714        Name.getCXXOverloadedOperator() == OO_Array_New)
4715      isStatic = true;
4716
4717    // [class.free]p6 Any deallocation function for a class X is a static member
4718    // (even if not explicitly declared static).
4719    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4720        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4721      isStatic = true;
4722
4723    IsVirtualOkay = !isStatic;
4724
4725    // This is a C++ method declaration.
4726    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4727                                 D.getSourceRange().getBegin(), NameInfo, R,
4728                                 TInfo, isStatic, SCAsWritten, isInline,
4729                                 isConstexpr, SourceLocation());
4730
4731  } else {
4732    // Determine whether the function was written with a
4733    // prototype. This true when:
4734    //   - we're in C++ (where every function has a prototype),
4735    return FunctionDecl::Create(SemaRef.Context, DC,
4736                                D.getSourceRange().getBegin(),
4737                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4738                                true/*HasPrototype*/, isConstexpr);
4739  }
4740}
4741
4742NamedDecl*
4743Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4744                              TypeSourceInfo *TInfo, LookupResult &Previous,
4745                              MultiTemplateParamsArg TemplateParamLists,
4746                              bool &AddToScope) {
4747  QualType R = TInfo->getType();
4748
4749  assert(R.getTypePtr()->isFunctionType());
4750
4751  // TODO: consider using NameInfo for diagnostic.
4752  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4753  DeclarationName Name = NameInfo.getName();
4754  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4755
4756  if (D.getDeclSpec().isThreadSpecified())
4757    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4758
4759  // Do not allow returning a objc interface by-value.
4760  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4761    Diag(D.getIdentifierLoc(),
4762         diag::err_object_cannot_be_passed_returned_by_value) << 0
4763    << R->getAs<FunctionType>()->getResultType()
4764    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4765
4766    QualType T = R->getAs<FunctionType>()->getResultType();
4767    T = Context.getObjCObjectPointerType(T);
4768    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4769      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4770      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4771                                  FPT->getNumArgs(), EPI);
4772    }
4773    else if (isa<FunctionNoProtoType>(R))
4774      R = Context.getFunctionNoProtoType(T);
4775  }
4776
4777  bool isFriend = false;
4778  FunctionTemplateDecl *FunctionTemplate = 0;
4779  bool isExplicitSpecialization = false;
4780  bool isFunctionTemplateSpecialization = false;
4781  bool isDependentClassScopeExplicitSpecialization = false;
4782  bool isVirtualOkay = false;
4783
4784  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4785                                              isVirtualOkay);
4786  if (!NewFD) return 0;
4787
4788  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4789    NewFD->setTopLevelDeclInObjCContainer();
4790
4791  if (getLangOptions().CPlusPlus) {
4792    bool isInline = D.getDeclSpec().isInlineSpecified();
4793    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4794    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4795    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4796    isFriend = D.getDeclSpec().isFriendSpecified();
4797    if (isFriend && !isInline && D.isFunctionDefinition()) {
4798      // C++ [class.friend]p5
4799      //   A function can be defined in a friend declaration of a
4800      //   class . . . . Such a function is implicitly inline.
4801      NewFD->setImplicitlyInline();
4802    }
4803
4804    SetNestedNameSpecifier(NewFD, D);
4805    isExplicitSpecialization = false;
4806    isFunctionTemplateSpecialization = false;
4807    if (D.isInvalidType())
4808      NewFD->setInvalidDecl();
4809
4810    // Set the lexical context. If the declarator has a C++
4811    // scope specifier, or is the object of a friend declaration, the
4812    // lexical context will be different from the semantic context.
4813    NewFD->setLexicalDeclContext(CurContext);
4814
4815    // Match up the template parameter lists with the scope specifier, then
4816    // determine whether we have a template or a template specialization.
4817    bool Invalid = false;
4818    if (TemplateParameterList *TemplateParams
4819          = MatchTemplateParametersToScopeSpecifier(
4820                                  D.getDeclSpec().getSourceRange().getBegin(),
4821                                  D.getIdentifierLoc(),
4822                                  D.getCXXScopeSpec(),
4823                                  TemplateParamLists.get(),
4824                                  TemplateParamLists.size(),
4825                                  isFriend,
4826                                  isExplicitSpecialization,
4827                                  Invalid)) {
4828      if (TemplateParams->size() > 0) {
4829        // This is a function template
4830
4831        // Check that we can declare a template here.
4832        if (CheckTemplateDeclScope(S, TemplateParams))
4833          return 0;
4834
4835        // A destructor cannot be a template.
4836        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4837          Diag(NewFD->getLocation(), diag::err_destructor_template);
4838          return 0;
4839        }
4840
4841        // If we're adding a template to a dependent context, we may need to
4842        // rebuilding some of the types used within the template parameter list,
4843        // now that we know what the current instantiation is.
4844        if (DC->isDependentContext()) {
4845          ContextRAII SavedContext(*this, DC);
4846          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4847            Invalid = true;
4848        }
4849
4850
4851        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4852                                                        NewFD->getLocation(),
4853                                                        Name, TemplateParams,
4854                                                        NewFD);
4855        FunctionTemplate->setLexicalDeclContext(CurContext);
4856        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4857
4858        // For source fidelity, store the other template param lists.
4859        if (TemplateParamLists.size() > 1) {
4860          NewFD->setTemplateParameterListsInfo(Context,
4861                                               TemplateParamLists.size() - 1,
4862                                               TemplateParamLists.release());
4863        }
4864      } else {
4865        // This is a function template specialization.
4866        isFunctionTemplateSpecialization = true;
4867        // For source fidelity, store all the template param lists.
4868        NewFD->setTemplateParameterListsInfo(Context,
4869                                             TemplateParamLists.size(),
4870                                             TemplateParamLists.release());
4871
4872        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4873        if (isFriend) {
4874          // We want to remove the "template<>", found here.
4875          SourceRange RemoveRange = TemplateParams->getSourceRange();
4876
4877          // If we remove the template<> and the name is not a
4878          // template-id, we're actually silently creating a problem:
4879          // the friend declaration will refer to an untemplated decl,
4880          // and clearly the user wants a template specialization.  So
4881          // we need to insert '<>' after the name.
4882          SourceLocation InsertLoc;
4883          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4884            InsertLoc = D.getName().getSourceRange().getEnd();
4885            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4886          }
4887
4888          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4889            << Name << RemoveRange
4890            << FixItHint::CreateRemoval(RemoveRange)
4891            << FixItHint::CreateInsertion(InsertLoc, "<>");
4892        }
4893      }
4894    }
4895    else {
4896      // All template param lists were matched against the scope specifier:
4897      // this is NOT (an explicit specialization of) a template.
4898      if (TemplateParamLists.size() > 0)
4899        // For source fidelity, store all the template param lists.
4900        NewFD->setTemplateParameterListsInfo(Context,
4901                                             TemplateParamLists.size(),
4902                                             TemplateParamLists.release());
4903    }
4904
4905    if (Invalid) {
4906      NewFD->setInvalidDecl();
4907      if (FunctionTemplate)
4908        FunctionTemplate->setInvalidDecl();
4909    }
4910
4911    // If we see "T var();" at block scope, where T is a class type, it is
4912    // probably an attempt to initialize a variable, not a function declaration.
4913    // We don't catch this case earlier, since there is no ambiguity here.
4914    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4915        CurContext->isFunctionOrMethod() &&
4916        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4917        D.getDeclSpec().getStorageClassSpecAsWritten()
4918          == DeclSpec::SCS_unspecified) {
4919      QualType T = R->getAs<FunctionType>()->getResultType();
4920      DeclaratorChunk &C = D.getTypeObject(0);
4921      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4922          !C.Fun.TrailingReturnType &&
4923          C.Fun.getExceptionSpecType() == EST_None) {
4924        SourceRange ParenRange(C.Loc, C.EndLoc);
4925        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4926
4927        // If the declaration looks like:
4928        //   T var1,
4929        //   f();
4930        // and name lookup finds a function named 'f', then the ',' was
4931        // probably intended to be a ';'.
4932        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4933          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4934          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4935          if (Comma.getFileID() != Name.getFileID() ||
4936              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4937            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4938                                LookupOrdinaryName);
4939            if (LookupName(Result, S))
4940              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4941                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4942          }
4943        }
4944        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4945        // Empty parens mean value-initialization, and no parens mean default
4946        // initialization. These are equivalent if the default constructor is
4947        // user-provided, or if zero-initialization is a no-op.
4948        if (RD && RD->hasDefinition() &&
4949            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4950          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4951            << FixItHint::CreateRemoval(ParenRange);
4952        else if (const char *Init = getFixItZeroInitializerForType(T))
4953          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4954            << FixItHint::CreateReplacement(ParenRange, Init);
4955        else if (LangOpts.CPlusPlus0x)
4956          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4957            << FixItHint::CreateReplacement(ParenRange, "{}");
4958      }
4959    }
4960
4961    // C++ [dcl.fct.spec]p5:
4962    //   The virtual specifier shall only be used in declarations of
4963    //   nonstatic class member functions that appear within a
4964    //   member-specification of a class declaration; see 10.3.
4965    //
4966    if (isVirtual && !NewFD->isInvalidDecl()) {
4967      if (!isVirtualOkay) {
4968        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4969             diag::err_virtual_non_function);
4970      } else if (!CurContext->isRecord()) {
4971        // 'virtual' was specified outside of the class.
4972        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4973             diag::err_virtual_out_of_class)
4974          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4975      } else if (NewFD->getDescribedFunctionTemplate()) {
4976        // C++ [temp.mem]p3:
4977        //  A member function template shall not be virtual.
4978        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4979             diag::err_virtual_member_function_template)
4980          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4981      } else {
4982        // Okay: Add virtual to the method.
4983        NewFD->setVirtualAsWritten(true);
4984      }
4985    }
4986
4987    // C++ [dcl.fct.spec]p3:
4988    //  The inline specifier shall not appear on a block scope function
4989    //  declaration.
4990    if (isInline && !NewFD->isInvalidDecl()) {
4991      if (CurContext->isFunctionOrMethod()) {
4992        // 'inline' is not allowed on block scope function declaration.
4993        Diag(D.getDeclSpec().getInlineSpecLoc(),
4994             diag::err_inline_declaration_block_scope) << Name
4995          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4996      }
4997    }
4998
4999    // C++ [dcl.fct.spec]p6:
5000    //  The explicit specifier shall be used only in the declaration of a
5001    //  constructor or conversion function within its class definition;
5002    //  see 12.3.1 and 12.3.2.
5003    if (isExplicit && !NewFD->isInvalidDecl()) {
5004      if (!CurContext->isRecord()) {
5005        // 'explicit' was specified outside of the class.
5006        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5007             diag::err_explicit_out_of_class)
5008          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5009      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5010                 !isa<CXXConversionDecl>(NewFD)) {
5011        // 'explicit' was specified on a function that wasn't a constructor
5012        // or conversion function.
5013        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5014             diag::err_explicit_non_ctor_or_conv_function)
5015          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5016      }
5017    }
5018
5019    if (isConstexpr) {
5020      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5021      // are implicitly inline.
5022      NewFD->setImplicitlyInline();
5023
5024      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5025      // be either constructors or to return a literal type. Therefore,
5026      // destructors cannot be declared constexpr.
5027      if (isa<CXXDestructorDecl>(NewFD))
5028        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5029    }
5030
5031    // If __module_private__ was specified, mark the function accordingly.
5032    if (D.getDeclSpec().isModulePrivateSpecified()) {
5033      if (isFunctionTemplateSpecialization) {
5034        SourceLocation ModulePrivateLoc
5035          = D.getDeclSpec().getModulePrivateSpecLoc();
5036        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5037          << 0
5038          << FixItHint::CreateRemoval(ModulePrivateLoc);
5039      } else {
5040        NewFD->setModulePrivate();
5041        if (FunctionTemplate)
5042          FunctionTemplate->setModulePrivate();
5043      }
5044    }
5045
5046    if (isFriend) {
5047      // For now, claim that the objects have no previous declaration.
5048      if (FunctionTemplate) {
5049        FunctionTemplate->setObjectOfFriendDecl(false);
5050        FunctionTemplate->setAccess(AS_public);
5051      }
5052      NewFD->setObjectOfFriendDecl(false);
5053      NewFD->setAccess(AS_public);
5054    }
5055
5056    // If a function is defined as defaulted or deleted, mark it as such now.
5057    switch (D.getFunctionDefinitionKind()) {
5058      case FDK_Declaration:
5059      case FDK_Definition:
5060        break;
5061
5062      case FDK_Defaulted:
5063        NewFD->setDefaulted();
5064        break;
5065
5066      case FDK_Deleted:
5067        NewFD->setDeletedAsWritten();
5068        break;
5069    }
5070
5071    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5072        D.isFunctionDefinition()) {
5073      // C++ [class.mfct]p2:
5074      //   A member function may be defined (8.4) in its class definition, in
5075      //   which case it is an inline member function (7.1.2)
5076      NewFD->setImplicitlyInline();
5077    }
5078
5079    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5080        !CurContext->isRecord()) {
5081      // C++ [class.static]p1:
5082      //   A data or function member of a class may be declared static
5083      //   in a class definition, in which case it is a static member of
5084      //   the class.
5085
5086      // Complain about the 'static' specifier if it's on an out-of-line
5087      // member function definition.
5088      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5089           diag::err_static_out_of_line)
5090        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5091    }
5092  }
5093
5094  // Filter out previous declarations that don't match the scope.
5095  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5096                       isExplicitSpecialization ||
5097                       isFunctionTemplateSpecialization);
5098
5099  // Handle GNU asm-label extension (encoded as an attribute).
5100  if (Expr *E = (Expr*) D.getAsmLabel()) {
5101    // The parser guarantees this is a string.
5102    StringLiteral *SE = cast<StringLiteral>(E);
5103    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5104                                                SE->getString()));
5105  }
5106
5107  // Copy the parameter declarations from the declarator D to the function
5108  // declaration NewFD, if they are available.  First scavenge them into Params.
5109  SmallVector<ParmVarDecl*, 16> Params;
5110  if (D.isFunctionDeclarator()) {
5111    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5112
5113    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5114    // function that takes no arguments, not a function that takes a
5115    // single void argument.
5116    // We let through "const void" here because Sema::GetTypeForDeclarator
5117    // already checks for that case.
5118    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5119        FTI.ArgInfo[0].Param &&
5120        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5121      // Empty arg list, don't push any params.
5122      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5123
5124      // In C++, the empty parameter-type-list must be spelled "void"; a
5125      // typedef of void is not permitted.
5126      if (getLangOptions().CPlusPlus &&
5127          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5128        bool IsTypeAlias = false;
5129        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5130          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5131        else if (const TemplateSpecializationType *TST =
5132                   Param->getType()->getAs<TemplateSpecializationType>())
5133          IsTypeAlias = TST->isTypeAlias();
5134        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5135          << IsTypeAlias;
5136      }
5137    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5138      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5139        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5140        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5141        Param->setDeclContext(NewFD);
5142        Params.push_back(Param);
5143
5144        if (Param->isInvalidDecl())
5145          NewFD->setInvalidDecl();
5146      }
5147    }
5148
5149  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5150    // When we're declaring a function with a typedef, typeof, etc as in the
5151    // following example, we'll need to synthesize (unnamed)
5152    // parameters for use in the declaration.
5153    //
5154    // @code
5155    // typedef void fn(int);
5156    // fn f;
5157    // @endcode
5158
5159    // Synthesize a parameter for each argument type.
5160    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5161         AE = FT->arg_type_end(); AI != AE; ++AI) {
5162      ParmVarDecl *Param =
5163        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5164      Param->setScopeInfo(0, Params.size());
5165      Params.push_back(Param);
5166    }
5167  } else {
5168    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5169           "Should not need args for typedef of non-prototype fn");
5170  }
5171
5172  // Finally, we know we have the right number of parameters, install them.
5173  NewFD->setParams(Params);
5174
5175  // Process the non-inheritable attributes on this declaration.
5176  ProcessDeclAttributes(S, NewFD, D,
5177                        /*NonInheritable=*/true, /*Inheritable=*/false);
5178
5179  if (!getLangOptions().CPlusPlus) {
5180    // Perform semantic checking on the function declaration.
5181    bool isExplicitSpecialization=false;
5182    if (!NewFD->isInvalidDecl()) {
5183      if (NewFD->getResultType()->isVariablyModifiedType()) {
5184        // Functions returning a variably modified type violate C99 6.7.5.2p2
5185        // because all functions have linkage.
5186        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5187        NewFD->setInvalidDecl();
5188      } else {
5189        if (NewFD->isMain())
5190          CheckMain(NewFD, D.getDeclSpec());
5191        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5192                                                    isExplicitSpecialization));
5193      }
5194    }
5195    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5196            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5197           "previous declaration set still overloaded");
5198  } else {
5199    // If the declarator is a template-id, translate the parser's template
5200    // argument list into our AST format.
5201    bool HasExplicitTemplateArgs = false;
5202    TemplateArgumentListInfo TemplateArgs;
5203    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5204      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5205      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5206      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5207      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5208                                         TemplateId->getTemplateArgs(),
5209                                         TemplateId->NumArgs);
5210      translateTemplateArguments(TemplateArgsPtr,
5211                                 TemplateArgs);
5212      TemplateArgsPtr.release();
5213
5214      HasExplicitTemplateArgs = true;
5215
5216      if (NewFD->isInvalidDecl()) {
5217        HasExplicitTemplateArgs = false;
5218      } else if (FunctionTemplate) {
5219        // Function template with explicit template arguments.
5220        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5221          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5222
5223        HasExplicitTemplateArgs = false;
5224      } else if (!isFunctionTemplateSpecialization &&
5225                 !D.getDeclSpec().isFriendSpecified()) {
5226        // We have encountered something that the user meant to be a
5227        // specialization (because it has explicitly-specified template
5228        // arguments) but that was not introduced with a "template<>" (or had
5229        // too few of them).
5230        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5231          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5232          << FixItHint::CreateInsertion(
5233                                    D.getDeclSpec().getSourceRange().getBegin(),
5234                                        "template<> ");
5235        isFunctionTemplateSpecialization = true;
5236      } else {
5237        // "friend void foo<>(int);" is an implicit specialization decl.
5238        isFunctionTemplateSpecialization = true;
5239      }
5240    } else if (isFriend && isFunctionTemplateSpecialization) {
5241      // This combination is only possible in a recovery case;  the user
5242      // wrote something like:
5243      //   template <> friend void foo(int);
5244      // which we're recovering from as if the user had written:
5245      //   friend void foo<>(int);
5246      // Go ahead and fake up a template id.
5247      HasExplicitTemplateArgs = true;
5248        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5249      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5250    }
5251
5252    // If it's a friend (and only if it's a friend), it's possible
5253    // that either the specialized function type or the specialized
5254    // template is dependent, and therefore matching will fail.  In
5255    // this case, don't check the specialization yet.
5256    bool InstantiationDependent = false;
5257    if (isFunctionTemplateSpecialization && isFriend &&
5258        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5259         TemplateSpecializationType::anyDependentTemplateArguments(
5260            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5261            InstantiationDependent))) {
5262      assert(HasExplicitTemplateArgs &&
5263             "friend function specialization without template args");
5264      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5265                                                       Previous))
5266        NewFD->setInvalidDecl();
5267    } else if (isFunctionTemplateSpecialization) {
5268      if (CurContext->isDependentContext() && CurContext->isRecord()
5269          && !isFriend) {
5270        isDependentClassScopeExplicitSpecialization = true;
5271        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5272          diag::ext_function_specialization_in_class :
5273          diag::err_function_specialization_in_class)
5274          << NewFD->getDeclName();
5275      } else if (CheckFunctionTemplateSpecialization(NewFD,
5276                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5277                                                     Previous))
5278        NewFD->setInvalidDecl();
5279
5280      // C++ [dcl.stc]p1:
5281      //   A storage-class-specifier shall not be specified in an explicit
5282      //   specialization (14.7.3)
5283      if (SC != SC_None) {
5284        if (SC != NewFD->getStorageClass())
5285          Diag(NewFD->getLocation(),
5286               diag::err_explicit_specialization_inconsistent_storage_class)
5287            << SC
5288            << FixItHint::CreateRemoval(
5289                                      D.getDeclSpec().getStorageClassSpecLoc());
5290
5291        else
5292          Diag(NewFD->getLocation(),
5293               diag::ext_explicit_specialization_storage_class)
5294            << FixItHint::CreateRemoval(
5295                                      D.getDeclSpec().getStorageClassSpecLoc());
5296      }
5297
5298    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5299      if (CheckMemberSpecialization(NewFD, Previous))
5300          NewFD->setInvalidDecl();
5301    }
5302
5303    // Perform semantic checking on the function declaration.
5304    if (!isDependentClassScopeExplicitSpecialization) {
5305      if (NewFD->isInvalidDecl()) {
5306        // If this is a class member, mark the class invalid immediately.
5307        // This avoids some consistency errors later.
5308        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5309          methodDecl->getParent()->setInvalidDecl();
5310      } else {
5311        if (NewFD->isMain())
5312          CheckMain(NewFD, D.getDeclSpec());
5313        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5314                                                    isExplicitSpecialization));
5315      }
5316    }
5317
5318    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5319            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5320           "previous declaration set still overloaded");
5321
5322    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5323        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5324      NewFD->setInvalidDecl();
5325
5326    NamedDecl *PrincipalDecl = (FunctionTemplate
5327                                ? cast<NamedDecl>(FunctionTemplate)
5328                                : NewFD);
5329
5330    if (isFriend && D.isRedeclaration()) {
5331      AccessSpecifier Access = AS_public;
5332      if (!NewFD->isInvalidDecl())
5333        Access = NewFD->getPreviousDeclaration()->getAccess();
5334
5335      NewFD->setAccess(Access);
5336      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5337
5338      PrincipalDecl->setObjectOfFriendDecl(true);
5339    }
5340
5341    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5342        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5343      PrincipalDecl->setNonMemberOperator();
5344
5345    // If we have a function template, check the template parameter
5346    // list. This will check and merge default template arguments.
5347    if (FunctionTemplate) {
5348      FunctionTemplateDecl *PrevTemplate =
5349                                     FunctionTemplate->getPreviousDeclaration();
5350      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5351                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5352                            D.getDeclSpec().isFriendSpecified()
5353                              ? (D.isFunctionDefinition()
5354                                   ? TPC_FriendFunctionTemplateDefinition
5355                                   : TPC_FriendFunctionTemplate)
5356                              : (D.getCXXScopeSpec().isSet() &&
5357                                 DC && DC->isRecord() &&
5358                                 DC->isDependentContext())
5359                                  ? TPC_ClassTemplateMember
5360                                  : TPC_FunctionTemplate);
5361    }
5362
5363    if (NewFD->isInvalidDecl()) {
5364      // Ignore all the rest of this.
5365    } else if (!D.isRedeclaration()) {
5366      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5367                                       AddToScope };
5368      // Fake up an access specifier if it's supposed to be a class member.
5369      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5370        NewFD->setAccess(AS_public);
5371
5372      // Qualified decls generally require a previous declaration.
5373      if (D.getCXXScopeSpec().isSet()) {
5374        // ...with the major exception of templated-scope or
5375        // dependent-scope friend declarations.
5376
5377        // TODO: we currently also suppress this check in dependent
5378        // contexts because (1) the parameter depth will be off when
5379        // matching friend templates and (2) we might actually be
5380        // selecting a friend based on a dependent factor.  But there
5381        // are situations where these conditions don't apply and we
5382        // can actually do this check immediately.
5383        if (isFriend &&
5384            (TemplateParamLists.size() ||
5385             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5386             CurContext->isDependentContext())) {
5387          // ignore these
5388        } else {
5389          // The user tried to provide an out-of-line definition for a
5390          // function that is a member of a class or namespace, but there
5391          // was no such member function declared (C++ [class.mfct]p2,
5392          // C++ [namespace.memdef]p2). For example:
5393          //
5394          // class X {
5395          //   void f() const;
5396          // };
5397          //
5398          // void X::f() { } // ill-formed
5399          //
5400          // Complain about this problem, and attempt to suggest close
5401          // matches (e.g., those that differ only in cv-qualifiers and
5402          // whether the parameter types are references).
5403
5404          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5405                                                               NewFD,
5406                                                               ExtraArgs)) {
5407            AddToScope = ExtraArgs.AddToScope;
5408            return Result;
5409          }
5410        }
5411
5412        // Unqualified local friend declarations are required to resolve
5413        // to something.
5414      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5415        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5416                                                             NewFD,
5417                                                             ExtraArgs)) {
5418          AddToScope = ExtraArgs.AddToScope;
5419          return Result;
5420        }
5421      }
5422
5423    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5424               !isFriend && !isFunctionTemplateSpecialization &&
5425               !isExplicitSpecialization) {
5426      // An out-of-line member function declaration must also be a
5427      // definition (C++ [dcl.meaning]p1).
5428      // Note that this is not the case for explicit specializations of
5429      // function templates or member functions of class templates, per
5430      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5431      // extension for compatibility with old SWIG code which likes to
5432      // generate them.
5433      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5434        << D.getCXXScopeSpec().getRange();
5435    }
5436  }
5437
5438
5439  // Handle attributes. We need to have merged decls when handling attributes
5440  // (for example to check for conflicts, etc).
5441  // FIXME: This needs to happen before we merge declarations. Then,
5442  // let attribute merging cope with attribute conflicts.
5443  ProcessDeclAttributes(S, NewFD, D,
5444                        /*NonInheritable=*/false, /*Inheritable=*/true);
5445
5446  // attributes declared post-definition are currently ignored
5447  // FIXME: This should happen during attribute merging
5448  if (D.isRedeclaration() && Previous.isSingleResult()) {
5449    const FunctionDecl *Def;
5450    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5451    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5452      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5453      Diag(Def->getLocation(), diag::note_previous_definition);
5454    }
5455  }
5456
5457  AddKnownFunctionAttributes(NewFD);
5458
5459  if (NewFD->hasAttr<OverloadableAttr>() &&
5460      !NewFD->getType()->getAs<FunctionProtoType>()) {
5461    Diag(NewFD->getLocation(),
5462         diag::err_attribute_overloadable_no_prototype)
5463      << NewFD;
5464
5465    // Turn this into a variadic function with no parameters.
5466    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5467    FunctionProtoType::ExtProtoInfo EPI;
5468    EPI.Variadic = true;
5469    EPI.ExtInfo = FT->getExtInfo();
5470
5471    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5472    NewFD->setType(R);
5473  }
5474
5475  // If there's a #pragma GCC visibility in scope, and this isn't a class
5476  // member, set the visibility of this function.
5477  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5478    AddPushedVisibilityAttribute(NewFD);
5479
5480  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5481  // marking the function.
5482  AddCFAuditedAttribute(NewFD);
5483
5484  // If this is a locally-scoped extern C function, update the
5485  // map of such names.
5486  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5487      && !NewFD->isInvalidDecl())
5488    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5489
5490  // Set this FunctionDecl's range up to the right paren.
5491  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5492
5493  if (getLangOptions().CPlusPlus) {
5494    if (FunctionTemplate) {
5495      if (NewFD->isInvalidDecl())
5496        FunctionTemplate->setInvalidDecl();
5497      return FunctionTemplate;
5498    }
5499  }
5500
5501  MarkUnusedFileScopedDecl(NewFD);
5502
5503  if (getLangOptions().CUDA)
5504    if (IdentifierInfo *II = NewFD->getIdentifier())
5505      if (!NewFD->isInvalidDecl() &&
5506          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5507        if (II->isStr("cudaConfigureCall")) {
5508          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5509            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5510
5511          Context.setcudaConfigureCallDecl(NewFD);
5512        }
5513      }
5514
5515  // Here we have an function template explicit specialization at class scope.
5516  // The actually specialization will be postponed to template instatiation
5517  // time via the ClassScopeFunctionSpecializationDecl node.
5518  if (isDependentClassScopeExplicitSpecialization) {
5519    ClassScopeFunctionSpecializationDecl *NewSpec =
5520                         ClassScopeFunctionSpecializationDecl::Create(
5521                                Context, CurContext,  SourceLocation(),
5522                                cast<CXXMethodDecl>(NewFD));
5523    CurContext->addDecl(NewSpec);
5524    AddToScope = false;
5525  }
5526
5527  return NewFD;
5528}
5529
5530/// \brief Perform semantic checking of a new function declaration.
5531///
5532/// Performs semantic analysis of the new function declaration
5533/// NewFD. This routine performs all semantic checking that does not
5534/// require the actual declarator involved in the declaration, and is
5535/// used both for the declaration of functions as they are parsed
5536/// (called via ActOnDeclarator) and for the declaration of functions
5537/// that have been instantiated via C++ template instantiation (called
5538/// via InstantiateDecl).
5539///
5540/// \param IsExplicitSpecialiation whether this new function declaration is
5541/// an explicit specialization of the previous declaration.
5542///
5543/// This sets NewFD->isInvalidDecl() to true if there was an error.
5544///
5545/// Returns true if the function declaration is a redeclaration.
5546bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5547                                    LookupResult &Previous,
5548                                    bool IsExplicitSpecialization) {
5549  assert(!NewFD->getResultType()->isVariablyModifiedType()
5550         && "Variably modified return types are not handled here");
5551
5552  // Check for a previous declaration of this name.
5553  if (Previous.empty() && NewFD->isExternC()) {
5554    // Since we did not find anything by this name and we're declaring
5555    // an extern "C" function, look for a non-visible extern "C"
5556    // declaration with the same name.
5557    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5558      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5559    if (Pos != LocallyScopedExternalDecls.end())
5560      Previous.addDecl(Pos->second);
5561  }
5562
5563  bool Redeclaration = false;
5564
5565  // Merge or overload the declaration with an existing declaration of
5566  // the same name, if appropriate.
5567  if (!Previous.empty()) {
5568    // Determine whether NewFD is an overload of PrevDecl or
5569    // a declaration that requires merging. If it's an overload,
5570    // there's no more work to do here; we'll just add the new
5571    // function to the scope.
5572
5573    NamedDecl *OldDecl = 0;
5574    if (!AllowOverloadingOfFunction(Previous, Context)) {
5575      Redeclaration = true;
5576      OldDecl = Previous.getFoundDecl();
5577    } else {
5578      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5579                            /*NewIsUsingDecl*/ false)) {
5580      case Ovl_Match:
5581        Redeclaration = true;
5582        break;
5583
5584      case Ovl_NonFunction:
5585        Redeclaration = true;
5586        break;
5587
5588      case Ovl_Overload:
5589        Redeclaration = false;
5590        break;
5591      }
5592
5593      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5594        // If a function name is overloadable in C, then every function
5595        // with that name must be marked "overloadable".
5596        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5597          << Redeclaration << NewFD;
5598        NamedDecl *OverloadedDecl = 0;
5599        if (Redeclaration)
5600          OverloadedDecl = OldDecl;
5601        else if (!Previous.empty())
5602          OverloadedDecl = Previous.getRepresentativeDecl();
5603        if (OverloadedDecl)
5604          Diag(OverloadedDecl->getLocation(),
5605               diag::note_attribute_overloadable_prev_overload);
5606        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5607                                                        Context));
5608      }
5609    }
5610
5611    if (Redeclaration) {
5612      // NewFD and OldDecl represent declarations that need to be
5613      // merged.
5614      if (MergeFunctionDecl(NewFD, OldDecl)) {
5615        NewFD->setInvalidDecl();
5616        return Redeclaration;
5617      }
5618
5619      Previous.clear();
5620      Previous.addDecl(OldDecl);
5621
5622      if (FunctionTemplateDecl *OldTemplateDecl
5623                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5624        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5625        FunctionTemplateDecl *NewTemplateDecl
5626          = NewFD->getDescribedFunctionTemplate();
5627        assert(NewTemplateDecl && "Template/non-template mismatch");
5628        if (CXXMethodDecl *Method
5629              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5630          Method->setAccess(OldTemplateDecl->getAccess());
5631          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5632        }
5633
5634        // If this is an explicit specialization of a member that is a function
5635        // template, mark it as a member specialization.
5636        if (IsExplicitSpecialization &&
5637            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5638          NewTemplateDecl->setMemberSpecialization();
5639          assert(OldTemplateDecl->isMemberSpecialization());
5640        }
5641
5642      } else {
5643        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5644          NewFD->setAccess(OldDecl->getAccess());
5645        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5646      }
5647    }
5648  }
5649
5650  // Semantic checking for this function declaration (in isolation).
5651  if (getLangOptions().CPlusPlus) {
5652    // C++-specific checks.
5653    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5654      CheckConstructor(Constructor);
5655    } else if (CXXDestructorDecl *Destructor =
5656                dyn_cast<CXXDestructorDecl>(NewFD)) {
5657      CXXRecordDecl *Record = Destructor->getParent();
5658      QualType ClassType = Context.getTypeDeclType(Record);
5659
5660      // FIXME: Shouldn't we be able to perform this check even when the class
5661      // type is dependent? Both gcc and edg can handle that.
5662      if (!ClassType->isDependentType()) {
5663        DeclarationName Name
5664          = Context.DeclarationNames.getCXXDestructorName(
5665                                        Context.getCanonicalType(ClassType));
5666        if (NewFD->getDeclName() != Name) {
5667          Diag(NewFD->getLocation(), diag::err_destructor_name);
5668          NewFD->setInvalidDecl();
5669          return Redeclaration;
5670        }
5671      }
5672    } else if (CXXConversionDecl *Conversion
5673               = dyn_cast<CXXConversionDecl>(NewFD)) {
5674      ActOnConversionDeclarator(Conversion);
5675    }
5676
5677    // Find any virtual functions that this function overrides.
5678    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5679      if (!Method->isFunctionTemplateSpecialization() &&
5680          !Method->getDescribedFunctionTemplate()) {
5681        if (AddOverriddenMethods(Method->getParent(), Method)) {
5682          // If the function was marked as "static", we have a problem.
5683          if (NewFD->getStorageClass() == SC_Static) {
5684            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5685              << NewFD->getDeclName();
5686            for (CXXMethodDecl::method_iterator
5687                      Overridden = Method->begin_overridden_methods(),
5688                   OverriddenEnd = Method->end_overridden_methods();
5689                 Overridden != OverriddenEnd;
5690                 ++Overridden) {
5691              Diag((*Overridden)->getLocation(),
5692                   diag::note_overridden_virtual_function);
5693            }
5694          }
5695        }
5696      }
5697    }
5698
5699    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5700    if (NewFD->isOverloadedOperator() &&
5701        CheckOverloadedOperatorDeclaration(NewFD)) {
5702      NewFD->setInvalidDecl();
5703      return Redeclaration;
5704    }
5705
5706    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5707    if (NewFD->getLiteralIdentifier() &&
5708        CheckLiteralOperatorDeclaration(NewFD)) {
5709      NewFD->setInvalidDecl();
5710      return Redeclaration;
5711    }
5712
5713    // In C++, check default arguments now that we have merged decls. Unless
5714    // the lexical context is the class, because in this case this is done
5715    // during delayed parsing anyway.
5716    if (!CurContext->isRecord())
5717      CheckCXXDefaultArguments(NewFD);
5718
5719    // If this function declares a builtin function, check the type of this
5720    // declaration against the expected type for the builtin.
5721    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5722      ASTContext::GetBuiltinTypeError Error;
5723      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5724      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5725        // The type of this function differs from the type of the builtin,
5726        // so forget about the builtin entirely.
5727        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5728      }
5729    }
5730  }
5731  return Redeclaration;
5732}
5733
5734void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5735  // C++ [basic.start.main]p3:  A program that declares main to be inline
5736  //   or static is ill-formed.
5737  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5738  //   shall not appear in a declaration of main.
5739  // static main is not an error under C99, but we should warn about it.
5740  if (FD->getStorageClass() == SC_Static)
5741    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5742         ? diag::err_static_main : diag::warn_static_main)
5743      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5744  if (FD->isInlineSpecified())
5745    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5746      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5747
5748  QualType T = FD->getType();
5749  assert(T->isFunctionType() && "function decl is not of function type");
5750  const FunctionType* FT = T->getAs<FunctionType>();
5751
5752  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5753    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5754    FD->setInvalidDecl(true);
5755  }
5756
5757  // Treat protoless main() as nullary.
5758  if (isa<FunctionNoProtoType>(FT)) return;
5759
5760  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5761  unsigned nparams = FTP->getNumArgs();
5762  assert(FD->getNumParams() == nparams);
5763
5764  bool HasExtraParameters = (nparams > 3);
5765
5766  // Darwin passes an undocumented fourth argument of type char**.  If
5767  // other platforms start sprouting these, the logic below will start
5768  // getting shifty.
5769  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5770    HasExtraParameters = false;
5771
5772  if (HasExtraParameters) {
5773    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5774    FD->setInvalidDecl(true);
5775    nparams = 3;
5776  }
5777
5778  // FIXME: a lot of the following diagnostics would be improved
5779  // if we had some location information about types.
5780
5781  QualType CharPP =
5782    Context.getPointerType(Context.getPointerType(Context.CharTy));
5783  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5784
5785  for (unsigned i = 0; i < nparams; ++i) {
5786    QualType AT = FTP->getArgType(i);
5787
5788    bool mismatch = true;
5789
5790    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5791      mismatch = false;
5792    else if (Expected[i] == CharPP) {
5793      // As an extension, the following forms are okay:
5794      //   char const **
5795      //   char const * const *
5796      //   char * const *
5797
5798      QualifierCollector qs;
5799      const PointerType* PT;
5800      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5801          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5802          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5803        qs.removeConst();
5804        mismatch = !qs.empty();
5805      }
5806    }
5807
5808    if (mismatch) {
5809      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5810      // TODO: suggest replacing given type with expected type
5811      FD->setInvalidDecl(true);
5812    }
5813  }
5814
5815  if (nparams == 1 && !FD->isInvalidDecl()) {
5816    Diag(FD->getLocation(), diag::warn_main_one_arg);
5817  }
5818
5819  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5820    Diag(FD->getLocation(), diag::err_main_template_decl);
5821    FD->setInvalidDecl();
5822  }
5823}
5824
5825bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5826  // FIXME: Need strict checking.  In C89, we need to check for
5827  // any assignment, increment, decrement, function-calls, or
5828  // commas outside of a sizeof.  In C99, it's the same list,
5829  // except that the aforementioned are allowed in unevaluated
5830  // expressions.  Everything else falls under the
5831  // "may accept other forms of constant expressions" exception.
5832  // (We never end up here for C++, so the constant expression
5833  // rules there don't matter.)
5834  if (Init->isConstantInitializer(Context, false))
5835    return false;
5836  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5837    << Init->getSourceRange();
5838  return true;
5839}
5840
5841namespace {
5842  // Visits an initialization expression to see if OrigDecl is evaluated in
5843  // its own initialization and throws a warning if it does.
5844  class SelfReferenceChecker
5845      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5846    Sema &S;
5847    Decl *OrigDecl;
5848    bool isRecordType;
5849    bool isPODType;
5850
5851  public:
5852    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5853
5854    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5855                                                    S(S), OrigDecl(OrigDecl) {
5856      isPODType = false;
5857      isRecordType = false;
5858      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5859        isPODType = VD->getType().isPODType(S.Context);
5860        isRecordType = VD->getType()->isRecordType();
5861      }
5862    }
5863
5864    void VisitExpr(Expr *E) {
5865      if (isa<ObjCMessageExpr>(*E)) return;
5866      if (isRecordType) {
5867        Expr *expr = E;
5868        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5869          ValueDecl *VD = ME->getMemberDecl();
5870          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5871          expr = ME->getBase();
5872        }
5873        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5874          HandleDeclRefExpr(DRE);
5875          return;
5876        }
5877      }
5878      Inherited::VisitExpr(E);
5879    }
5880
5881    void VisitMemberExpr(MemberExpr *E) {
5882      if (E->getType()->canDecayToPointerType()) return;
5883      if (isa<FieldDecl>(E->getMemberDecl()))
5884        if (DeclRefExpr *DRE
5885              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5886          HandleDeclRefExpr(DRE);
5887          return;
5888        }
5889      Inherited::VisitMemberExpr(E);
5890    }
5891
5892    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5893      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5894          (isRecordType && E->getCastKind() == CK_NoOp)) {
5895        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5896        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5897          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5898        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5899          HandleDeclRefExpr(DRE);
5900          return;
5901        }
5902      }
5903      Inherited::VisitImplicitCastExpr(E);
5904    }
5905
5906    void VisitUnaryOperator(UnaryOperator *E) {
5907      // For POD record types, addresses of its own members are well-defined.
5908      if (isRecordType && isPODType) return;
5909      Inherited::VisitUnaryOperator(E);
5910    }
5911
5912    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5913      Decl* ReferenceDecl = DRE->getDecl();
5914      if (OrigDecl != ReferenceDecl) return;
5915      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5916                          Sema::NotForRedeclaration);
5917      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5918                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5919                              << Result.getLookupName()
5920                              << OrigDecl->getLocation()
5921                              << DRE->getSourceRange());
5922    }
5923  };
5924}
5925
5926/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5927void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5928  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5929}
5930
5931/// AddInitializerToDecl - Adds the initializer Init to the
5932/// declaration dcl. If DirectInit is true, this is C++ direct
5933/// initialization rather than copy initialization.
5934void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5935                                bool DirectInit, bool TypeMayContainAuto) {
5936  // If there is no declaration, there was an error parsing it.  Just ignore
5937  // the initializer.
5938  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5939    return;
5940
5941  // Check for self-references within variable initializers.
5942  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5943    // Variables declared within a function/method body are handled
5944    // by a dataflow analysis.
5945    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5946      CheckSelfReference(RealDecl, Init);
5947  }
5948  else {
5949    CheckSelfReference(RealDecl, Init);
5950  }
5951
5952  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5953    // With declarators parsed the way they are, the parser cannot
5954    // distinguish between a normal initializer and a pure-specifier.
5955    // Thus this grotesque test.
5956    IntegerLiteral *IL;
5957    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5958        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5959      CheckPureMethod(Method, Init->getSourceRange());
5960    else {
5961      Diag(Method->getLocation(), diag::err_member_function_initialization)
5962        << Method->getDeclName() << Init->getSourceRange();
5963      Method->setInvalidDecl();
5964    }
5965    return;
5966  }
5967
5968  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5969  if (!VDecl) {
5970    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5971    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5972    RealDecl->setInvalidDecl();
5973    return;
5974  }
5975
5976  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5977  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5978    TypeSourceInfo *DeducedType = 0;
5979    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5980      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5981        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5982        << Init->getSourceRange();
5983    if (!DeducedType) {
5984      RealDecl->setInvalidDecl();
5985      return;
5986    }
5987    VDecl->setTypeSourceInfo(DeducedType);
5988    VDecl->setType(DeducedType->getType());
5989
5990    // In ARC, infer lifetime.
5991    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5992      VDecl->setInvalidDecl();
5993
5994    // If this is a redeclaration, check that the type we just deduced matches
5995    // the previously declared type.
5996    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5997      MergeVarDeclTypes(VDecl, Old);
5998  }
5999
6000  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6001    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6002    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6003    VDecl->setInvalidDecl();
6004    return;
6005  }
6006
6007
6008  // A definition must end up with a complete type, which means it must be
6009  // complete with the restriction that an array type might be completed by the
6010  // initializer; note that later code assumes this restriction.
6011  QualType BaseDeclType = VDecl->getType();
6012  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6013    BaseDeclType = Array->getElementType();
6014  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6015                          diag::err_typecheck_decl_incomplete_type)) {
6016    RealDecl->setInvalidDecl();
6017    return;
6018  }
6019
6020  // The variable can not have an abstract class type.
6021  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6022                             diag::err_abstract_type_in_decl,
6023                             AbstractVariableType))
6024    VDecl->setInvalidDecl();
6025
6026  const VarDecl *Def;
6027  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6028    Diag(VDecl->getLocation(), diag::err_redefinition)
6029      << VDecl->getDeclName();
6030    Diag(Def->getLocation(), diag::note_previous_definition);
6031    VDecl->setInvalidDecl();
6032    return;
6033  }
6034
6035  const VarDecl* PrevInit = 0;
6036  if (getLangOptions().CPlusPlus) {
6037    // C++ [class.static.data]p4
6038    //   If a static data member is of const integral or const
6039    //   enumeration type, its declaration in the class definition can
6040    //   specify a constant-initializer which shall be an integral
6041    //   constant expression (5.19). In that case, the member can appear
6042    //   in integral constant expressions. The member shall still be
6043    //   defined in a namespace scope if it is used in the program and the
6044    //   namespace scope definition shall not contain an initializer.
6045    //
6046    // We already performed a redefinition check above, but for static
6047    // data members we also need to check whether there was an in-class
6048    // declaration with an initializer.
6049    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6050      Diag(VDecl->getLocation(), diag::err_redefinition)
6051        << VDecl->getDeclName();
6052      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6053      return;
6054    }
6055
6056    if (VDecl->hasLocalStorage())
6057      getCurFunction()->setHasBranchProtectedScope();
6058
6059    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6060      VDecl->setInvalidDecl();
6061      return;
6062    }
6063  }
6064
6065  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6066  // a kernel function cannot be initialized."
6067  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6068    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6069    VDecl->setInvalidDecl();
6070    return;
6071  }
6072
6073  // Get the decls type and save a reference for later, since
6074  // CheckInitializerTypes may change it.
6075  QualType DclT = VDecl->getType(), SavT = DclT;
6076
6077  // Perform the initialization.
6078  if (!VDecl->isInvalidDecl()) {
6079    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6080    InitializationKind Kind
6081      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6082                                                      Init->getLocStart(),
6083                                                      Init->getLocEnd())
6084                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6085                                                    Init->getLocStart());
6086
6087    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6088    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6089                                              MultiExprArg(*this, &Init, 1),
6090                                              &DclT);
6091    if (Result.isInvalid()) {
6092      VDecl->setInvalidDecl();
6093      return;
6094    }
6095
6096    Init = Result.takeAs<Expr>();
6097  }
6098
6099  // If the type changed, it means we had an incomplete type that was
6100  // completed by the initializer. For example:
6101  //   int ary[] = { 1, 3, 5 };
6102  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6103  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6104    VDecl->setType(DclT);
6105    Init->setType(DclT.getNonReferenceType());
6106  }
6107
6108  // Check any implicit conversions within the expression.
6109  CheckImplicitConversions(Init, VDecl->getLocation());
6110
6111  if (!VDecl->isInvalidDecl())
6112    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6113
6114  Init = MaybeCreateExprWithCleanups(Init);
6115  // Attach the initializer to the decl.
6116  VDecl->setInit(Init);
6117
6118  if (VDecl->isLocalVarDecl()) {
6119    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6120    // static storage duration shall be constant expressions or string literals.
6121    // C++ does not have this restriction.
6122    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6123        VDecl->getStorageClass() == SC_Static)
6124      CheckForConstantInitializer(Init, DclT);
6125  } else if (VDecl->isStaticDataMember() &&
6126             VDecl->getLexicalDeclContext()->isRecord()) {
6127    // This is an in-class initialization for a static data member, e.g.,
6128    //
6129    // struct S {
6130    //   static const int value = 17;
6131    // };
6132
6133    // C++ [class.mem]p4:
6134    //   A member-declarator can contain a constant-initializer only
6135    //   if it declares a static member (9.4) of const integral or
6136    //   const enumeration type, see 9.4.2.
6137    //
6138    // C++11 [class.static.data]p3:
6139    //   If a non-volatile const static data member is of integral or
6140    //   enumeration type, its declaration in the class definition can
6141    //   specify a brace-or-equal-initializer in which every initalizer-clause
6142    //   that is an assignment-expression is a constant expression. A static
6143    //   data member of literal type can be declared in the class definition
6144    //   with the constexpr specifier; if so, its declaration shall specify a
6145    //   brace-or-equal-initializer in which every initializer-clause that is
6146    //   an assignment-expression is a constant expression.
6147
6148    // Do nothing on dependent types.
6149    if (DclT->isDependentType()) {
6150
6151    // Allow any 'static constexpr' members, whether or not they are of literal
6152    // type. We separately check that the initializer is a constant expression,
6153    // which implicitly requires the member to be of literal type.
6154    } else if (VDecl->isConstexpr()) {
6155
6156    // Require constness.
6157    } else if (!DclT.isConstQualified()) {
6158      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6159        << Init->getSourceRange();
6160      VDecl->setInvalidDecl();
6161
6162    // We allow integer constant expressions in all cases.
6163    } else if (DclT->isIntegralOrEnumerationType()) {
6164      // Check whether the expression is a constant expression.
6165      SourceLocation Loc;
6166      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6167        // In C++11, a non-constexpr const static data member with an
6168        // in-class initializer cannot be volatile.
6169        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6170      else if (Init->isValueDependent())
6171        ; // Nothing to check.
6172      else if (Init->isIntegerConstantExpr(Context, &Loc))
6173        ; // Ok, it's an ICE!
6174      else if (Init->isEvaluatable(Context)) {
6175        // If we can constant fold the initializer through heroics, accept it,
6176        // but report this as a use of an extension for -pedantic.
6177        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6178          << Init->getSourceRange();
6179      } else {
6180        // Otherwise, this is some crazy unknown case.  Report the issue at the
6181        // location provided by the isIntegerConstantExpr failed check.
6182        Diag(Loc, diag::err_in_class_initializer_non_constant)
6183          << Init->getSourceRange();
6184        VDecl->setInvalidDecl();
6185      }
6186
6187    // We allow foldable floating-point constants as an extension.
6188    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6189      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6190        << DclT << Init->getSourceRange();
6191      if (getLangOptions().CPlusPlus0x)
6192        Diag(VDecl->getLocation(),
6193             diag::note_in_class_initializer_float_type_constexpr)
6194          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6195
6196      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6197        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6198          << Init->getSourceRange();
6199        VDecl->setInvalidDecl();
6200      }
6201
6202    // Suggest adding 'constexpr' in C++11 for literal types.
6203    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6204      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6205        << DclT << Init->getSourceRange()
6206        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6207      VDecl->setConstexpr(true);
6208
6209    } else {
6210      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6211        << DclT << Init->getSourceRange();
6212      VDecl->setInvalidDecl();
6213    }
6214  } else if (VDecl->isFileVarDecl()) {
6215    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6216        (!getLangOptions().CPlusPlus ||
6217         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6218      Diag(VDecl->getLocation(), diag::warn_extern_init);
6219
6220    // C99 6.7.8p4. All file scoped initializers need to be constant.
6221    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6222      CheckForConstantInitializer(Init, DclT);
6223  }
6224
6225  CheckCompleteVariableDeclaration(VDecl);
6226}
6227
6228/// ActOnInitializerError - Given that there was an error parsing an
6229/// initializer for the given declaration, try to return to some form
6230/// of sanity.
6231void Sema::ActOnInitializerError(Decl *D) {
6232  // Our main concern here is re-establishing invariants like "a
6233  // variable's type is either dependent or complete".
6234  if (!D || D->isInvalidDecl()) return;
6235
6236  VarDecl *VD = dyn_cast<VarDecl>(D);
6237  if (!VD) return;
6238
6239  // Auto types are meaningless if we can't make sense of the initializer.
6240  if (ParsingInitForAutoVars.count(D)) {
6241    D->setInvalidDecl();
6242    return;
6243  }
6244
6245  QualType Ty = VD->getType();
6246  if (Ty->isDependentType()) return;
6247
6248  // Require a complete type.
6249  if (RequireCompleteType(VD->getLocation(),
6250                          Context.getBaseElementType(Ty),
6251                          diag::err_typecheck_decl_incomplete_type)) {
6252    VD->setInvalidDecl();
6253    return;
6254  }
6255
6256  // Require an abstract type.
6257  if (RequireNonAbstractType(VD->getLocation(), Ty,
6258                             diag::err_abstract_type_in_decl,
6259                             AbstractVariableType)) {
6260    VD->setInvalidDecl();
6261    return;
6262  }
6263
6264  // Don't bother complaining about constructors or destructors,
6265  // though.
6266}
6267
6268void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6269                                  bool TypeMayContainAuto) {
6270  // If there is no declaration, there was an error parsing it. Just ignore it.
6271  if (RealDecl == 0)
6272    return;
6273
6274  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6275    QualType Type = Var->getType();
6276
6277    // C++11 [dcl.spec.auto]p3
6278    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6279      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6280        << Var->getDeclName() << Type;
6281      Var->setInvalidDecl();
6282      return;
6283    }
6284
6285    // C++11 [class.static.data]p3: A static data member can be declared with
6286    // the constexpr specifier; if so, its declaration shall specify
6287    // a brace-or-equal-initializer.
6288    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6289    // the definition of a variable [...] or the declaration of a static data
6290    // member.
6291    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6292      if (Var->isStaticDataMember())
6293        Diag(Var->getLocation(),
6294             diag::err_constexpr_static_mem_var_requires_init)
6295          << Var->getDeclName();
6296      else
6297        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6298      Var->setInvalidDecl();
6299      return;
6300    }
6301
6302    switch (Var->isThisDeclarationADefinition()) {
6303    case VarDecl::Definition:
6304      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6305        break;
6306
6307      // We have an out-of-line definition of a static data member
6308      // that has an in-class initializer, so we type-check this like
6309      // a declaration.
6310      //
6311      // Fall through
6312
6313    case VarDecl::DeclarationOnly:
6314      // It's only a declaration.
6315
6316      // Block scope. C99 6.7p7: If an identifier for an object is
6317      // declared with no linkage (C99 6.2.2p6), the type for the
6318      // object shall be complete.
6319      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6320          !Var->getLinkage() && !Var->isInvalidDecl() &&
6321          RequireCompleteType(Var->getLocation(), Type,
6322                              diag::err_typecheck_decl_incomplete_type))
6323        Var->setInvalidDecl();
6324
6325      // Make sure that the type is not abstract.
6326      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6327          RequireNonAbstractType(Var->getLocation(), Type,
6328                                 diag::err_abstract_type_in_decl,
6329                                 AbstractVariableType))
6330        Var->setInvalidDecl();
6331      return;
6332
6333    case VarDecl::TentativeDefinition:
6334      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6335      // object that has file scope without an initializer, and without a
6336      // storage-class specifier or with the storage-class specifier "static",
6337      // constitutes a tentative definition. Note: A tentative definition with
6338      // external linkage is valid (C99 6.2.2p5).
6339      if (!Var->isInvalidDecl()) {
6340        if (const IncompleteArrayType *ArrayT
6341                                    = Context.getAsIncompleteArrayType(Type)) {
6342          if (RequireCompleteType(Var->getLocation(),
6343                                  ArrayT->getElementType(),
6344                                  diag::err_illegal_decl_array_incomplete_type))
6345            Var->setInvalidDecl();
6346        } else if (Var->getStorageClass() == SC_Static) {
6347          // C99 6.9.2p3: If the declaration of an identifier for an object is
6348          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6349          // declared type shall not be an incomplete type.
6350          // NOTE: code such as the following
6351          //     static struct s;
6352          //     struct s { int a; };
6353          // is accepted by gcc. Hence here we issue a warning instead of
6354          // an error and we do not invalidate the static declaration.
6355          // NOTE: to avoid multiple warnings, only check the first declaration.
6356          if (Var->getPreviousDeclaration() == 0)
6357            RequireCompleteType(Var->getLocation(), Type,
6358                                diag::ext_typecheck_decl_incomplete_type);
6359        }
6360      }
6361
6362      // Record the tentative definition; we're done.
6363      if (!Var->isInvalidDecl())
6364        TentativeDefinitions.push_back(Var);
6365      return;
6366    }
6367
6368    // Provide a specific diagnostic for uninitialized variable
6369    // definitions with incomplete array type.
6370    if (Type->isIncompleteArrayType()) {
6371      Diag(Var->getLocation(),
6372           diag::err_typecheck_incomplete_array_needs_initializer);
6373      Var->setInvalidDecl();
6374      return;
6375    }
6376
6377    // Provide a specific diagnostic for uninitialized variable
6378    // definitions with reference type.
6379    if (Type->isReferenceType()) {
6380      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6381        << Var->getDeclName()
6382        << SourceRange(Var->getLocation(), Var->getLocation());
6383      Var->setInvalidDecl();
6384      return;
6385    }
6386
6387    // Do not attempt to type-check the default initializer for a
6388    // variable with dependent type.
6389    if (Type->isDependentType())
6390      return;
6391
6392    if (Var->isInvalidDecl())
6393      return;
6394
6395    if (RequireCompleteType(Var->getLocation(),
6396                            Context.getBaseElementType(Type),
6397                            diag::err_typecheck_decl_incomplete_type)) {
6398      Var->setInvalidDecl();
6399      return;
6400    }
6401
6402    // The variable can not have an abstract class type.
6403    if (RequireNonAbstractType(Var->getLocation(), Type,
6404                               diag::err_abstract_type_in_decl,
6405                               AbstractVariableType)) {
6406      Var->setInvalidDecl();
6407      return;
6408    }
6409
6410    // Check for jumps past the implicit initializer.  C++0x
6411    // clarifies that this applies to a "variable with automatic
6412    // storage duration", not a "local variable".
6413    // C++11 [stmt.dcl]p3
6414    //   A program that jumps from a point where a variable with automatic
6415    //   storage duration is not in scope to a point where it is in scope is
6416    //   ill-formed unless the variable has scalar type, class type with a
6417    //   trivial default constructor and a trivial destructor, a cv-qualified
6418    //   version of one of these types, or an array of one of the preceding
6419    //   types and is declared without an initializer.
6420    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6421      if (const RecordType *Record
6422            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6423        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6424        // Mark the function for further checking even if the looser rules of
6425        // C++11 do not require such checks, so that we can diagnose
6426        // incompatibilities with C++98.
6427        if (!CXXRecord->isPOD())
6428          getCurFunction()->setHasBranchProtectedScope();
6429      }
6430    }
6431
6432    // C++03 [dcl.init]p9:
6433    //   If no initializer is specified for an object, and the
6434    //   object is of (possibly cv-qualified) non-POD class type (or
6435    //   array thereof), the object shall be default-initialized; if
6436    //   the object is of const-qualified type, the underlying class
6437    //   type shall have a user-declared default
6438    //   constructor. Otherwise, if no initializer is specified for
6439    //   a non- static object, the object and its subobjects, if
6440    //   any, have an indeterminate initial value); if the object
6441    //   or any of its subobjects are of const-qualified type, the
6442    //   program is ill-formed.
6443    // C++0x [dcl.init]p11:
6444    //   If no initializer is specified for an object, the object is
6445    //   default-initialized; [...].
6446    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6447    InitializationKind Kind
6448      = InitializationKind::CreateDefault(Var->getLocation());
6449
6450    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6451    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6452                                      MultiExprArg(*this, 0, 0));
6453    if (Init.isInvalid())
6454      Var->setInvalidDecl();
6455    else if (Init.get())
6456      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6457
6458    CheckCompleteVariableDeclaration(Var);
6459  }
6460}
6461
6462void Sema::ActOnCXXForRangeDecl(Decl *D) {
6463  VarDecl *VD = dyn_cast<VarDecl>(D);
6464  if (!VD) {
6465    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6466    D->setInvalidDecl();
6467    return;
6468  }
6469
6470  VD->setCXXForRangeDecl(true);
6471
6472  // for-range-declaration cannot be given a storage class specifier.
6473  int Error = -1;
6474  switch (VD->getStorageClassAsWritten()) {
6475  case SC_None:
6476    break;
6477  case SC_Extern:
6478    Error = 0;
6479    break;
6480  case SC_Static:
6481    Error = 1;
6482    break;
6483  case SC_PrivateExtern:
6484    Error = 2;
6485    break;
6486  case SC_Auto:
6487    Error = 3;
6488    break;
6489  case SC_Register:
6490    Error = 4;
6491    break;
6492  case SC_OpenCLWorkGroupLocal:
6493    llvm_unreachable("Unexpected storage class");
6494  }
6495  if (VD->isConstexpr())
6496    Error = 5;
6497  if (Error != -1) {
6498    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6499      << VD->getDeclName() << Error;
6500    D->setInvalidDecl();
6501  }
6502}
6503
6504void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6505  if (var->isInvalidDecl()) return;
6506
6507  // In ARC, don't allow jumps past the implicit initialization of a
6508  // local retaining variable.
6509  if (getLangOptions().ObjCAutoRefCount &&
6510      var->hasLocalStorage()) {
6511    switch (var->getType().getObjCLifetime()) {
6512    case Qualifiers::OCL_None:
6513    case Qualifiers::OCL_ExplicitNone:
6514    case Qualifiers::OCL_Autoreleasing:
6515      break;
6516
6517    case Qualifiers::OCL_Weak:
6518    case Qualifiers::OCL_Strong:
6519      getCurFunction()->setHasBranchProtectedScope();
6520      break;
6521    }
6522  }
6523
6524  // All the following checks are C++ only.
6525  if (!getLangOptions().CPlusPlus) return;
6526
6527  QualType baseType = Context.getBaseElementType(var->getType());
6528  if (baseType->isDependentType()) return;
6529
6530  // __block variables might require us to capture a copy-initializer.
6531  if (var->hasAttr<BlocksAttr>()) {
6532    // It's currently invalid to ever have a __block variable with an
6533    // array type; should we diagnose that here?
6534
6535    // Regardless, we don't want to ignore array nesting when
6536    // constructing this copy.
6537    QualType type = var->getType();
6538
6539    if (type->isStructureOrClassType()) {
6540      SourceLocation poi = var->getLocation();
6541      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6542      ExprResult result =
6543        PerformCopyInitialization(
6544                        InitializedEntity::InitializeBlock(poi, type, false),
6545                                  poi, Owned(varRef));
6546      if (!result.isInvalid()) {
6547        result = MaybeCreateExprWithCleanups(result);
6548        Expr *init = result.takeAs<Expr>();
6549        Context.setBlockVarCopyInits(var, init);
6550      }
6551    }
6552  }
6553
6554  Expr *Init = var->getInit();
6555  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6556
6557  if (!var->getDeclContext()->isDependentContext() && Init) {
6558    if (IsGlobal && !var->isConstexpr() &&
6559        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6560                                            var->getLocation())
6561          != DiagnosticsEngine::Ignored &&
6562        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6563      Diag(var->getLocation(), diag::warn_global_constructor)
6564        << Init->getSourceRange();
6565
6566    if (var->isConstexpr()) {
6567      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6568      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6569        SourceLocation DiagLoc = var->getLocation();
6570        // If the note doesn't add any useful information other than a source
6571        // location, fold it into the primary diagnostic.
6572        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6573              diag::note_invalid_subexpr_in_const_expr) {
6574          DiagLoc = Notes[0].first;
6575          Notes.clear();
6576        }
6577        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6578          << var << Init->getSourceRange();
6579        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6580          Diag(Notes[I].first, Notes[I].second);
6581      }
6582    } else if (var->isUsableInConstantExpressions()) {
6583      // Check whether the initializer of a const variable of integral or
6584      // enumeration type is an ICE now, since we can't tell whether it was
6585      // initialized by a constant expression if we check later.
6586      var->checkInitIsICE();
6587    }
6588  }
6589
6590  // Require the destructor.
6591  if (const RecordType *recordType = baseType->getAs<RecordType>())
6592    FinalizeVarWithDestructor(var, recordType);
6593}
6594
6595/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6596/// any semantic actions necessary after any initializer has been attached.
6597void
6598Sema::FinalizeDeclaration(Decl *ThisDecl) {
6599  // Note that we are no longer parsing the initializer for this declaration.
6600  ParsingInitForAutoVars.erase(ThisDecl);
6601}
6602
6603Sema::DeclGroupPtrTy
6604Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6605                              Decl **Group, unsigned NumDecls) {
6606  SmallVector<Decl*, 8> Decls;
6607
6608  if (DS.isTypeSpecOwned())
6609    Decls.push_back(DS.getRepAsDecl());
6610
6611  for (unsigned i = 0; i != NumDecls; ++i)
6612    if (Decl *D = Group[i])
6613      Decls.push_back(D);
6614
6615  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6616                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6617}
6618
6619/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6620/// group, performing any necessary semantic checking.
6621Sema::DeclGroupPtrTy
6622Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6623                           bool TypeMayContainAuto) {
6624  // C++0x [dcl.spec.auto]p7:
6625  //   If the type deduced for the template parameter U is not the same in each
6626  //   deduction, the program is ill-formed.
6627  // FIXME: When initializer-list support is added, a distinction is needed
6628  // between the deduced type U and the deduced type which 'auto' stands for.
6629  //   auto a = 0, b = { 1, 2, 3 };
6630  // is legal because the deduced type U is 'int' in both cases.
6631  if (TypeMayContainAuto && NumDecls > 1) {
6632    QualType Deduced;
6633    CanQualType DeducedCanon;
6634    VarDecl *DeducedDecl = 0;
6635    for (unsigned i = 0; i != NumDecls; ++i) {
6636      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6637        AutoType *AT = D->getType()->getContainedAutoType();
6638        // Don't reissue diagnostics when instantiating a template.
6639        if (AT && D->isInvalidDecl())
6640          break;
6641        if (AT && AT->isDeduced()) {
6642          QualType U = AT->getDeducedType();
6643          CanQualType UCanon = Context.getCanonicalType(U);
6644          if (Deduced.isNull()) {
6645            Deduced = U;
6646            DeducedCanon = UCanon;
6647            DeducedDecl = D;
6648          } else if (DeducedCanon != UCanon) {
6649            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6650                 diag::err_auto_different_deductions)
6651              << Deduced << DeducedDecl->getDeclName()
6652              << U << D->getDeclName()
6653              << DeducedDecl->getInit()->getSourceRange()
6654              << D->getInit()->getSourceRange();
6655            D->setInvalidDecl();
6656            break;
6657          }
6658        }
6659      }
6660    }
6661  }
6662
6663  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6664}
6665
6666
6667/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6668/// to introduce parameters into function prototype scope.
6669Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6670  const DeclSpec &DS = D.getDeclSpec();
6671
6672  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6673  // C++03 [dcl.stc]p2 also permits 'auto'.
6674  VarDecl::StorageClass StorageClass = SC_None;
6675  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6676  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6677    StorageClass = SC_Register;
6678    StorageClassAsWritten = SC_Register;
6679  } else if (getLangOptions().CPlusPlus &&
6680             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6681    StorageClass = SC_Auto;
6682    StorageClassAsWritten = SC_Auto;
6683  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6684    Diag(DS.getStorageClassSpecLoc(),
6685         diag::err_invalid_storage_class_in_func_decl);
6686    D.getMutableDeclSpec().ClearStorageClassSpecs();
6687  }
6688
6689  if (D.getDeclSpec().isThreadSpecified())
6690    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6691  if (D.getDeclSpec().isConstexprSpecified())
6692    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6693      << 0;
6694
6695  DiagnoseFunctionSpecifiers(D);
6696
6697  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6698  QualType parmDeclType = TInfo->getType();
6699
6700  if (getLangOptions().CPlusPlus) {
6701    // Check that there are no default arguments inside the type of this
6702    // parameter.
6703    CheckExtraCXXDefaultArguments(D);
6704
6705    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6706    if (D.getCXXScopeSpec().isSet()) {
6707      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6708        << D.getCXXScopeSpec().getRange();
6709      D.getCXXScopeSpec().clear();
6710    }
6711  }
6712
6713  // Ensure we have a valid name
6714  IdentifierInfo *II = 0;
6715  if (D.hasName()) {
6716    II = D.getIdentifier();
6717    if (!II) {
6718      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6719        << GetNameForDeclarator(D).getName().getAsString();
6720      D.setInvalidType(true);
6721    }
6722  }
6723
6724  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6725  if (II) {
6726    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6727                   ForRedeclaration);
6728    LookupName(R, S);
6729    if (R.isSingleResult()) {
6730      NamedDecl *PrevDecl = R.getFoundDecl();
6731      if (PrevDecl->isTemplateParameter()) {
6732        // Maybe we will complain about the shadowed template parameter.
6733        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6734        // Just pretend that we didn't see the previous declaration.
6735        PrevDecl = 0;
6736      } else if (S->isDeclScope(PrevDecl)) {
6737        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6738        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6739
6740        // Recover by removing the name
6741        II = 0;
6742        D.SetIdentifier(0, D.getIdentifierLoc());
6743        D.setInvalidType(true);
6744      }
6745    }
6746  }
6747
6748  // Temporarily put parameter variables in the translation unit, not
6749  // the enclosing context.  This prevents them from accidentally
6750  // looking like class members in C++.
6751  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6752                                    D.getSourceRange().getBegin(),
6753                                    D.getIdentifierLoc(), II,
6754                                    parmDeclType, TInfo,
6755                                    StorageClass, StorageClassAsWritten);
6756
6757  if (D.isInvalidType())
6758    New->setInvalidDecl();
6759
6760  assert(S->isFunctionPrototypeScope());
6761  assert(S->getFunctionPrototypeDepth() >= 1);
6762  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6763                    S->getNextFunctionPrototypeIndex());
6764
6765  // Add the parameter declaration into this scope.
6766  S->AddDecl(New);
6767  if (II)
6768    IdResolver.AddDecl(New);
6769
6770  ProcessDeclAttributes(S, New, D);
6771
6772  if (D.getDeclSpec().isModulePrivateSpecified())
6773    Diag(New->getLocation(), diag::err_module_private_local)
6774      << 1 << New->getDeclName()
6775      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6776      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6777
6778  if (New->hasAttr<BlocksAttr>()) {
6779    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6780  }
6781  return New;
6782}
6783
6784/// \brief Synthesizes a variable for a parameter arising from a
6785/// typedef.
6786ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6787                                              SourceLocation Loc,
6788                                              QualType T) {
6789  /* FIXME: setting StartLoc == Loc.
6790     Would it be worth to modify callers so as to provide proper source
6791     location for the unnamed parameters, embedding the parameter's type? */
6792  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6793                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6794                                           SC_None, SC_None, 0);
6795  Param->setImplicit();
6796  return Param;
6797}
6798
6799void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6800                                    ParmVarDecl * const *ParamEnd) {
6801  // Don't diagnose unused-parameter errors in template instantiations; we
6802  // will already have done so in the template itself.
6803  if (!ActiveTemplateInstantiations.empty())
6804    return;
6805
6806  for (; Param != ParamEnd; ++Param) {
6807    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6808        !(*Param)->hasAttr<UnusedAttr>()) {
6809      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6810        << (*Param)->getDeclName();
6811    }
6812  }
6813}
6814
6815void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6816                                                  ParmVarDecl * const *ParamEnd,
6817                                                  QualType ReturnTy,
6818                                                  NamedDecl *D) {
6819  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6820    return;
6821
6822  // Warn if the return value is pass-by-value and larger than the specified
6823  // threshold.
6824  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6825    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6826    if (Size > LangOpts.NumLargeByValueCopy)
6827      Diag(D->getLocation(), diag::warn_return_value_size)
6828          << D->getDeclName() << Size;
6829  }
6830
6831  // Warn if any parameter is pass-by-value and larger than the specified
6832  // threshold.
6833  for (; Param != ParamEnd; ++Param) {
6834    QualType T = (*Param)->getType();
6835    if (T->isDependentType() || !T.isPODType(Context))
6836      continue;
6837    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6838    if (Size > LangOpts.NumLargeByValueCopy)
6839      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6840          << (*Param)->getDeclName() << Size;
6841  }
6842}
6843
6844ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6845                                  SourceLocation NameLoc, IdentifierInfo *Name,
6846                                  QualType T, TypeSourceInfo *TSInfo,
6847                                  VarDecl::StorageClass StorageClass,
6848                                  VarDecl::StorageClass StorageClassAsWritten) {
6849  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6850  if (getLangOptions().ObjCAutoRefCount &&
6851      T.getObjCLifetime() == Qualifiers::OCL_None &&
6852      T->isObjCLifetimeType()) {
6853
6854    Qualifiers::ObjCLifetime lifetime;
6855
6856    // Special cases for arrays:
6857    //   - if it's const, use __unsafe_unretained
6858    //   - otherwise, it's an error
6859    if (T->isArrayType()) {
6860      if (!T.isConstQualified()) {
6861        DelayedDiagnostics.add(
6862            sema::DelayedDiagnostic::makeForbiddenType(
6863            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6864      }
6865      lifetime = Qualifiers::OCL_ExplicitNone;
6866    } else {
6867      lifetime = T->getObjCARCImplicitLifetime();
6868    }
6869    T = Context.getLifetimeQualifiedType(T, lifetime);
6870  }
6871
6872  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6873                                         Context.getAdjustedParameterType(T),
6874                                         TSInfo,
6875                                         StorageClass, StorageClassAsWritten,
6876                                         0);
6877
6878  // Parameters can not be abstract class types.
6879  // For record types, this is done by the AbstractClassUsageDiagnoser once
6880  // the class has been completely parsed.
6881  if (!CurContext->isRecord() &&
6882      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6883                             AbstractParamType))
6884    New->setInvalidDecl();
6885
6886  // Parameter declarators cannot be interface types. All ObjC objects are
6887  // passed by reference.
6888  if (T->isObjCObjectType()) {
6889    Diag(NameLoc,
6890         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6891      << FixItHint::CreateInsertion(NameLoc, "*");
6892    T = Context.getObjCObjectPointerType(T);
6893    New->setType(T);
6894  }
6895
6896  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6897  // duration shall not be qualified by an address-space qualifier."
6898  // Since all parameters have automatic store duration, they can not have
6899  // an address space.
6900  if (T.getAddressSpace() != 0) {
6901    Diag(NameLoc, diag::err_arg_with_address_space);
6902    New->setInvalidDecl();
6903  }
6904
6905  return New;
6906}
6907
6908void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6909                                           SourceLocation LocAfterDecls) {
6910  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6911
6912  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6913  // for a K&R function.
6914  if (!FTI.hasPrototype) {
6915    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6916      --i;
6917      if (FTI.ArgInfo[i].Param == 0) {
6918        llvm::SmallString<256> Code;
6919        llvm::raw_svector_ostream(Code) << "  int "
6920                                        << FTI.ArgInfo[i].Ident->getName()
6921                                        << ";\n";
6922        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6923          << FTI.ArgInfo[i].Ident
6924          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6925
6926        // Implicitly declare the argument as type 'int' for lack of a better
6927        // type.
6928        AttributeFactory attrs;
6929        DeclSpec DS(attrs);
6930        const char* PrevSpec; // unused
6931        unsigned DiagID; // unused
6932        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6933                           PrevSpec, DiagID);
6934        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6935        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6936        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6937      }
6938    }
6939  }
6940}
6941
6942Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6943                                         Declarator &D) {
6944  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6945  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6946  Scope *ParentScope = FnBodyScope->getParent();
6947
6948  D.setFunctionDefinitionKind(FDK_Definition);
6949  Decl *DP = HandleDeclarator(ParentScope, D,
6950                              MultiTemplateParamsArg(*this));
6951  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6952}
6953
6954static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6955  // Don't warn about invalid declarations.
6956  if (FD->isInvalidDecl())
6957    return false;
6958
6959  // Or declarations that aren't global.
6960  if (!FD->isGlobal())
6961    return false;
6962
6963  // Don't warn about C++ member functions.
6964  if (isa<CXXMethodDecl>(FD))
6965    return false;
6966
6967  // Don't warn about 'main'.
6968  if (FD->isMain())
6969    return false;
6970
6971  // Don't warn about inline functions.
6972  if (FD->isInlined())
6973    return false;
6974
6975  // Don't warn about function templates.
6976  if (FD->getDescribedFunctionTemplate())
6977    return false;
6978
6979  // Don't warn about function template specializations.
6980  if (FD->isFunctionTemplateSpecialization())
6981    return false;
6982
6983  bool MissingPrototype = true;
6984  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6985       Prev; Prev = Prev->getPreviousDeclaration()) {
6986    // Ignore any declarations that occur in function or method
6987    // scope, because they aren't visible from the header.
6988    if (Prev->getDeclContext()->isFunctionOrMethod())
6989      continue;
6990
6991    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6992    break;
6993  }
6994
6995  return MissingPrototype;
6996}
6997
6998void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6999  // Don't complain if we're in GNU89 mode and the previous definition
7000  // was an extern inline function.
7001  const FunctionDecl *Definition;
7002  if (FD->isDefined(Definition) &&
7003      !canRedefineFunction(Definition, getLangOptions())) {
7004    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7005        Definition->getStorageClass() == SC_Extern)
7006      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7007        << FD->getDeclName() << getLangOptions().CPlusPlus;
7008    else
7009      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7010    Diag(Definition->getLocation(), diag::note_previous_definition);
7011  }
7012}
7013
7014Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7015  // Clear the last template instantiation error context.
7016  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7017
7018  if (!D)
7019    return D;
7020  FunctionDecl *FD = 0;
7021
7022  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7023    FD = FunTmpl->getTemplatedDecl();
7024  else
7025    FD = cast<FunctionDecl>(D);
7026
7027  // Enter a new function scope
7028  PushFunctionScope();
7029
7030  // See if this is a redefinition.
7031  if (!FD->isLateTemplateParsed())
7032    CheckForFunctionRedefinition(FD);
7033
7034  // Builtin functions cannot be defined.
7035  if (unsigned BuiltinID = FD->getBuiltinID()) {
7036    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7037      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7038      FD->setInvalidDecl();
7039    }
7040  }
7041
7042  // The return type of a function definition must be complete
7043  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7044  QualType ResultType = FD->getResultType();
7045  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7046      !FD->isInvalidDecl() &&
7047      RequireCompleteType(FD->getLocation(), ResultType,
7048                          diag::err_func_def_incomplete_result))
7049    FD->setInvalidDecl();
7050
7051  // GNU warning -Wmissing-prototypes:
7052  //   Warn if a global function is defined without a previous
7053  //   prototype declaration. This warning is issued even if the
7054  //   definition itself provides a prototype. The aim is to detect
7055  //   global functions that fail to be declared in header files.
7056  if (ShouldWarnAboutMissingPrototype(FD))
7057    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7058
7059  if (FnBodyScope)
7060    PushDeclContext(FnBodyScope, FD);
7061
7062  // Check the validity of our function parameters
7063  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7064                           /*CheckParameterNames=*/true);
7065
7066  // Introduce our parameters into the function scope
7067  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7068    ParmVarDecl *Param = FD->getParamDecl(p);
7069    Param->setOwningFunction(FD);
7070
7071    // If this has an identifier, add it to the scope stack.
7072    if (Param->getIdentifier() && FnBodyScope) {
7073      CheckShadow(FnBodyScope, Param);
7074
7075      PushOnScopeChains(Param, FnBodyScope);
7076    }
7077  }
7078
7079  // Checking attributes of current function definition
7080  // dllimport attribute.
7081  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7082  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7083    // dllimport attribute cannot be directly applied to definition.
7084    // Microsoft accepts dllimport for functions defined within class scope.
7085    if (!DA->isInherited() &&
7086        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7087      Diag(FD->getLocation(),
7088           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7089        << "dllimport";
7090      FD->setInvalidDecl();
7091      return FD;
7092    }
7093
7094    // Visual C++ appears to not think this is an issue, so only issue
7095    // a warning when Microsoft extensions are disabled.
7096    if (!LangOpts.MicrosoftExt) {
7097      // If a symbol previously declared dllimport is later defined, the
7098      // attribute is ignored in subsequent references, and a warning is
7099      // emitted.
7100      Diag(FD->getLocation(),
7101           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7102        << FD->getName() << "dllimport";
7103    }
7104  }
7105  return FD;
7106}
7107
7108/// \brief Given the set of return statements within a function body,
7109/// compute the variables that are subject to the named return value
7110/// optimization.
7111///
7112/// Each of the variables that is subject to the named return value
7113/// optimization will be marked as NRVO variables in the AST, and any
7114/// return statement that has a marked NRVO variable as its NRVO candidate can
7115/// use the named return value optimization.
7116///
7117/// This function applies a very simplistic algorithm for NRVO: if every return
7118/// statement in the function has the same NRVO candidate, that candidate is
7119/// the NRVO variable.
7120///
7121/// FIXME: Employ a smarter algorithm that accounts for multiple return
7122/// statements and the lifetimes of the NRVO candidates. We should be able to
7123/// find a maximal set of NRVO variables.
7124void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7125  ReturnStmt **Returns = Scope->Returns.data();
7126
7127  const VarDecl *NRVOCandidate = 0;
7128  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7129    if (!Returns[I]->getNRVOCandidate())
7130      return;
7131
7132    if (!NRVOCandidate)
7133      NRVOCandidate = Returns[I]->getNRVOCandidate();
7134    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7135      return;
7136  }
7137
7138  if (NRVOCandidate)
7139    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7140}
7141
7142Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7143  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7144}
7145
7146Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7147                                    bool IsInstantiation) {
7148  FunctionDecl *FD = 0;
7149  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7150  if (FunTmpl)
7151    FD = FunTmpl->getTemplatedDecl();
7152  else
7153    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7154
7155  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7156  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7157
7158  if (FD) {
7159    FD->setBody(Body);
7160    if (FD->isMain()) {
7161      // C and C++ allow for main to automagically return 0.
7162      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7163      FD->setHasImplicitReturnZero(true);
7164      WP.disableCheckFallThrough();
7165    } else if (FD->hasAttr<NakedAttr>()) {
7166      // If the function is marked 'naked', don't complain about missing return
7167      // statements.
7168      WP.disableCheckFallThrough();
7169    }
7170
7171    // MSVC permits the use of pure specifier (=0) on function definition,
7172    // defined at class scope, warn about this non standard construct.
7173    if (getLangOptions().MicrosoftExt && FD->isPure())
7174      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7175
7176    if (!FD->isInvalidDecl()) {
7177      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7178      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7179                                             FD->getResultType(), FD);
7180
7181      // If this is a constructor, we need a vtable.
7182      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7183        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7184
7185      computeNRVO(Body, getCurFunction());
7186    }
7187
7188    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7189  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7190    assert(MD == getCurMethodDecl() && "Method parsing confused");
7191    MD->setBody(Body);
7192    if (Body)
7193      MD->setEndLoc(Body->getLocEnd());
7194    if (!MD->isInvalidDecl()) {
7195      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7196      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7197                                             MD->getResultType(), MD);
7198
7199      if (Body)
7200        computeNRVO(Body, getCurFunction());
7201    }
7202    if (ObjCShouldCallSuperDealloc) {
7203      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7204      ObjCShouldCallSuperDealloc = false;
7205    }
7206    if (ObjCShouldCallSuperFinalize) {
7207      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7208      ObjCShouldCallSuperFinalize = false;
7209    }
7210  } else {
7211    return 0;
7212  }
7213
7214  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7215         "ObjC methods, which should have been handled in the block above.");
7216  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7217         "ObjC methods, which should have been handled in the block above.");
7218
7219  // Verify and clean out per-function state.
7220  if (Body) {
7221    // C++ constructors that have function-try-blocks can't have return
7222    // statements in the handlers of that block. (C++ [except.handle]p14)
7223    // Verify this.
7224    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7225      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7226
7227    // Verify that gotos and switch cases don't jump into scopes illegally.
7228    if (getCurFunction()->NeedsScopeChecking() &&
7229        !dcl->isInvalidDecl() &&
7230        !hasAnyUnrecoverableErrorsInThisFunction())
7231      DiagnoseInvalidJumps(Body);
7232
7233    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7234      if (!Destructor->getParent()->isDependentType())
7235        CheckDestructor(Destructor);
7236
7237      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7238                                             Destructor->getParent());
7239    }
7240
7241    // If any errors have occurred, clear out any temporaries that may have
7242    // been leftover. This ensures that these temporaries won't be picked up for
7243    // deletion in some later function.
7244    if (PP.getDiagnostics().hasErrorOccurred() ||
7245        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7246      DiscardCleanupsInEvaluationContext();
7247    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7248      // Since the body is valid, issue any analysis-based warnings that are
7249      // enabled.
7250      ActivePolicy = &WP;
7251    }
7252
7253    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7254        !CheckConstexprFunctionBody(FD, Body))
7255      FD->setInvalidDecl();
7256
7257    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7258    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7259  }
7260
7261  if (!IsInstantiation)
7262    PopDeclContext();
7263
7264  PopFunctionScopeInfo(ActivePolicy, dcl);
7265
7266  // If any errors have occurred, clear out any temporaries that may have
7267  // been leftover. This ensures that these temporaries won't be picked up for
7268  // deletion in some later function.
7269  if (getDiagnostics().hasErrorOccurred()) {
7270    DiscardCleanupsInEvaluationContext();
7271  }
7272
7273  return dcl;
7274}
7275
7276
7277/// When we finish delayed parsing of an attribute, we must attach it to the
7278/// relevant Decl.
7279void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7280                                       ParsedAttributes &Attrs) {
7281  ProcessDeclAttributeList(S, D, Attrs.getList());
7282}
7283
7284
7285/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7286/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7287NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7288                                          IdentifierInfo &II, Scope *S) {
7289  // Before we produce a declaration for an implicitly defined
7290  // function, see whether there was a locally-scoped declaration of
7291  // this name as a function or variable. If so, use that
7292  // (non-visible) declaration, and complain about it.
7293  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7294    = findLocallyScopedExternalDecl(&II);
7295  if (Pos != LocallyScopedExternalDecls.end()) {
7296    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7297    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7298    return Pos->second;
7299  }
7300
7301  // Extension in C99.  Legal in C90, but warn about it.
7302  unsigned diag_id;
7303  if (II.getName().startswith("__builtin_"))
7304    diag_id = diag::warn_builtin_unknown;
7305  else if (getLangOptions().C99)
7306    diag_id = diag::ext_implicit_function_decl;
7307  else
7308    diag_id = diag::warn_implicit_function_decl;
7309  Diag(Loc, diag_id) << &II;
7310
7311  // Because typo correction is expensive, only do it if the implicit
7312  // function declaration is going to be treated as an error.
7313  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7314    TypoCorrection Corrected;
7315    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7316                                      LookupOrdinaryName, S, 0))) {
7317      NamedDecl *Decl = Corrected.getCorrectionDecl();
7318      if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Decl)) {
7319        std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7320        std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7321
7322        Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7323            << FixItHint::CreateReplacement(Loc, CorrectedStr);
7324
7325        if (Func->getLocation().isValid()
7326            && !II.getName().startswith("__builtin_"))
7327          Diag(Func->getLocation(), diag::note_previous_decl)
7328              << CorrectedQuotedStr;
7329      }
7330    }
7331  }
7332
7333  // Set a Declarator for the implicit definition: int foo();
7334  const char *Dummy;
7335  AttributeFactory attrFactory;
7336  DeclSpec DS(attrFactory);
7337  unsigned DiagID;
7338  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7339  (void)Error; // Silence warning.
7340  assert(!Error && "Error setting up implicit decl!");
7341  Declarator D(DS, Declarator::BlockContext);
7342  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7343                                             0, 0, true, SourceLocation(),
7344                                             SourceLocation(), SourceLocation(),
7345                                             SourceLocation(),
7346                                             EST_None, SourceLocation(),
7347                                             0, 0, 0, 0, Loc, Loc, D),
7348                DS.getAttributes(),
7349                SourceLocation());
7350  D.SetIdentifier(&II, Loc);
7351
7352  // Insert this function into translation-unit scope.
7353
7354  DeclContext *PrevDC = CurContext;
7355  CurContext = Context.getTranslationUnitDecl();
7356
7357  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7358  FD->setImplicit();
7359
7360  CurContext = PrevDC;
7361
7362  AddKnownFunctionAttributes(FD);
7363
7364  return FD;
7365}
7366
7367/// \brief Adds any function attributes that we know a priori based on
7368/// the declaration of this function.
7369///
7370/// These attributes can apply both to implicitly-declared builtins
7371/// (like __builtin___printf_chk) or to library-declared functions
7372/// like NSLog or printf.
7373///
7374/// We need to check for duplicate attributes both here and where user-written
7375/// attributes are applied to declarations.
7376void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7377  if (FD->isInvalidDecl())
7378    return;
7379
7380  // If this is a built-in function, map its builtin attributes to
7381  // actual attributes.
7382  if (unsigned BuiltinID = FD->getBuiltinID()) {
7383    // Handle printf-formatting attributes.
7384    unsigned FormatIdx;
7385    bool HasVAListArg;
7386    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7387      if (!FD->getAttr<FormatAttr>())
7388        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7389                                                "printf", FormatIdx+1,
7390                                               HasVAListArg ? 0 : FormatIdx+2));
7391    }
7392    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7393                                             HasVAListArg)) {
7394     if (!FD->getAttr<FormatAttr>())
7395       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7396                                              "scanf", FormatIdx+1,
7397                                              HasVAListArg ? 0 : FormatIdx+2));
7398    }
7399
7400    // Mark const if we don't care about errno and that is the only
7401    // thing preventing the function from being const. This allows
7402    // IRgen to use LLVM intrinsics for such functions.
7403    if (!getLangOptions().MathErrno &&
7404        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7405      if (!FD->getAttr<ConstAttr>())
7406        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7407    }
7408
7409    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7410        !FD->getAttr<ReturnsTwiceAttr>())
7411      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7412    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7413      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7414    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7415      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7416  }
7417
7418  IdentifierInfo *Name = FD->getIdentifier();
7419  if (!Name)
7420    return;
7421  if ((!getLangOptions().CPlusPlus &&
7422       FD->getDeclContext()->isTranslationUnit()) ||
7423      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7424       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7425       LinkageSpecDecl::lang_c)) {
7426    // Okay: this could be a libc/libm/Objective-C function we know
7427    // about.
7428  } else
7429    return;
7430
7431  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7432    // FIXME: NSLog and NSLogv should be target specific
7433    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7434      // FIXME: We known better than our headers.
7435      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7436    } else
7437      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7438                                             "printf", 1,
7439                                             Name->isStr("NSLogv") ? 0 : 2));
7440  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7441    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7442    // target-specific builtins, perhaps?
7443    if (!FD->getAttr<FormatAttr>())
7444      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7445                                             "printf", 2,
7446                                             Name->isStr("vasprintf") ? 0 : 3));
7447  }
7448}
7449
7450TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7451                                    TypeSourceInfo *TInfo) {
7452  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7453  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7454
7455  if (!TInfo) {
7456    assert(D.isInvalidType() && "no declarator info for valid type");
7457    TInfo = Context.getTrivialTypeSourceInfo(T);
7458  }
7459
7460  // Scope manipulation handled by caller.
7461  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7462                                           D.getSourceRange().getBegin(),
7463                                           D.getIdentifierLoc(),
7464                                           D.getIdentifier(),
7465                                           TInfo);
7466
7467  // Bail out immediately if we have an invalid declaration.
7468  if (D.isInvalidType()) {
7469    NewTD->setInvalidDecl();
7470    return NewTD;
7471  }
7472
7473  if (D.getDeclSpec().isModulePrivateSpecified()) {
7474    if (CurContext->isFunctionOrMethod())
7475      Diag(NewTD->getLocation(), diag::err_module_private_local)
7476        << 2 << NewTD->getDeclName()
7477        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7478        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7479    else
7480      NewTD->setModulePrivate();
7481  }
7482
7483  // C++ [dcl.typedef]p8:
7484  //   If the typedef declaration defines an unnamed class (or
7485  //   enum), the first typedef-name declared by the declaration
7486  //   to be that class type (or enum type) is used to denote the
7487  //   class type (or enum type) for linkage purposes only.
7488  // We need to check whether the type was declared in the declaration.
7489  switch (D.getDeclSpec().getTypeSpecType()) {
7490  case TST_enum:
7491  case TST_struct:
7492  case TST_union:
7493  case TST_class: {
7494    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7495
7496    // Do nothing if the tag is not anonymous or already has an
7497    // associated typedef (from an earlier typedef in this decl group).
7498    if (tagFromDeclSpec->getIdentifier()) break;
7499    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7500
7501    // A well-formed anonymous tag must always be a TUK_Definition.
7502    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7503
7504    // The type must match the tag exactly;  no qualifiers allowed.
7505    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7506      break;
7507
7508    // Otherwise, set this is the anon-decl typedef for the tag.
7509    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7510    break;
7511  }
7512
7513  default:
7514    break;
7515  }
7516
7517  return NewTD;
7518}
7519
7520
7521/// \brief Determine whether a tag with a given kind is acceptable
7522/// as a redeclaration of the given tag declaration.
7523///
7524/// \returns true if the new tag kind is acceptable, false otherwise.
7525bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7526                                        TagTypeKind NewTag, bool isDefinition,
7527                                        SourceLocation NewTagLoc,
7528                                        const IdentifierInfo &Name) {
7529  // C++ [dcl.type.elab]p3:
7530  //   The class-key or enum keyword present in the
7531  //   elaborated-type-specifier shall agree in kind with the
7532  //   declaration to which the name in the elaborated-type-specifier
7533  //   refers. This rule also applies to the form of
7534  //   elaborated-type-specifier that declares a class-name or
7535  //   friend class since it can be construed as referring to the
7536  //   definition of the class. Thus, in any
7537  //   elaborated-type-specifier, the enum keyword shall be used to
7538  //   refer to an enumeration (7.2), the union class-key shall be
7539  //   used to refer to a union (clause 9), and either the class or
7540  //   struct class-key shall be used to refer to a class (clause 9)
7541  //   declared using the class or struct class-key.
7542  TagTypeKind OldTag = Previous->getTagKind();
7543  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7544    if (OldTag == NewTag)
7545      return true;
7546
7547  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7548      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7549    // Warn about the struct/class tag mismatch.
7550    bool isTemplate = false;
7551    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7552      isTemplate = Record->getDescribedClassTemplate();
7553
7554    if (!ActiveTemplateInstantiations.empty()) {
7555      // In a template instantiation, do not offer fix-its for tag mismatches
7556      // since they usually mess up the template instead of fixing the problem.
7557      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7558        << (NewTag == TTK_Class) << isTemplate << &Name;
7559      return true;
7560    }
7561
7562    if (isDefinition) {
7563      // On definitions, check previous tags and issue a fix-it for each
7564      // one that doesn't match the current tag.
7565      if (Previous->getDefinition()) {
7566        // Don't suggest fix-its for redefinitions.
7567        return true;
7568      }
7569
7570      bool previousMismatch = false;
7571      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7572           E(Previous->redecls_end()); I != E; ++I) {
7573        if (I->getTagKind() != NewTag) {
7574          if (!previousMismatch) {
7575            previousMismatch = true;
7576            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7577              << (NewTag == TTK_Class) << isTemplate << &Name;
7578          }
7579          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7580            << (NewTag == TTK_Class)
7581            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7582                                            NewTag == TTK_Class?
7583                                            "class" : "struct");
7584        }
7585      }
7586      return true;
7587    }
7588
7589    // Check for a previous definition.  If current tag and definition
7590    // are same type, do nothing.  If no definition, but disagree with
7591    // with previous tag type, give a warning, but no fix-it.
7592    const TagDecl *Redecl = Previous->getDefinition() ?
7593                            Previous->getDefinition() : Previous;
7594    if (Redecl->getTagKind() == NewTag) {
7595      return true;
7596    }
7597
7598    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7599      << (NewTag == TTK_Class)
7600      << isTemplate << &Name;
7601    Diag(Redecl->getLocation(), diag::note_previous_use);
7602
7603    // If there is a previous defintion, suggest a fix-it.
7604    if (Previous->getDefinition()) {
7605        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7606          << (Redecl->getTagKind() == TTK_Class)
7607          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7608                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7609    }
7610
7611    return true;
7612  }
7613  return false;
7614}
7615
7616/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7617/// former case, Name will be non-null.  In the later case, Name will be null.
7618/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7619/// reference/declaration/definition of a tag.
7620Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7621                     SourceLocation KWLoc, CXXScopeSpec &SS,
7622                     IdentifierInfo *Name, SourceLocation NameLoc,
7623                     AttributeList *Attr, AccessSpecifier AS,
7624                     SourceLocation ModulePrivateLoc,
7625                     MultiTemplateParamsArg TemplateParameterLists,
7626                     bool &OwnedDecl, bool &IsDependent,
7627                     SourceLocation ScopedEnumKWLoc,
7628                     bool ScopedEnumUsesClassTag,
7629                     TypeResult UnderlyingType) {
7630  // If this is not a definition, it must have a name.
7631  assert((Name != 0 || TUK == TUK_Definition) &&
7632         "Nameless record must be a definition!");
7633  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7634
7635  OwnedDecl = false;
7636  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7637  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7638
7639  // FIXME: Check explicit specializations more carefully.
7640  bool isExplicitSpecialization = false;
7641  bool Invalid = false;
7642
7643  // We only need to do this matching if we have template parameters
7644  // or a scope specifier, which also conveniently avoids this work
7645  // for non-C++ cases.
7646  if (TemplateParameterLists.size() > 0 ||
7647      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7648    if (TemplateParameterList *TemplateParams
7649          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7650                                                TemplateParameterLists.get(),
7651                                                TemplateParameterLists.size(),
7652                                                    TUK == TUK_Friend,
7653                                                    isExplicitSpecialization,
7654                                                    Invalid)) {
7655      if (TemplateParams->size() > 0) {
7656        // This is a declaration or definition of a class template (which may
7657        // be a member of another template).
7658
7659        if (Invalid)
7660          return 0;
7661
7662        OwnedDecl = false;
7663        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7664                                               SS, Name, NameLoc, Attr,
7665                                               TemplateParams, AS,
7666                                               ModulePrivateLoc,
7667                                           TemplateParameterLists.size() - 1,
7668                 (TemplateParameterList**) TemplateParameterLists.release());
7669        return Result.get();
7670      } else {
7671        // The "template<>" header is extraneous.
7672        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7673          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7674        isExplicitSpecialization = true;
7675      }
7676    }
7677  }
7678
7679  // Figure out the underlying type if this a enum declaration. We need to do
7680  // this early, because it's needed to detect if this is an incompatible
7681  // redeclaration.
7682  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7683
7684  if (Kind == TTK_Enum) {
7685    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7686      // No underlying type explicitly specified, or we failed to parse the
7687      // type, default to int.
7688      EnumUnderlying = Context.IntTy.getTypePtr();
7689    else if (UnderlyingType.get()) {
7690      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7691      // integral type; any cv-qualification is ignored.
7692      TypeSourceInfo *TI = 0;
7693      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7694      EnumUnderlying = TI;
7695
7696      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7697
7698      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7699        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7700          << T;
7701        // Recover by falling back to int.
7702        EnumUnderlying = Context.IntTy.getTypePtr();
7703      }
7704
7705      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7706                                          UPPC_FixedUnderlyingType))
7707        EnumUnderlying = Context.IntTy.getTypePtr();
7708
7709    } else if (getLangOptions().MicrosoftExt)
7710      // Microsoft enums are always of int type.
7711      EnumUnderlying = Context.IntTy.getTypePtr();
7712  }
7713
7714  DeclContext *SearchDC = CurContext;
7715  DeclContext *DC = CurContext;
7716  bool isStdBadAlloc = false;
7717
7718  RedeclarationKind Redecl = ForRedeclaration;
7719  if (TUK == TUK_Friend || TUK == TUK_Reference)
7720    Redecl = NotForRedeclaration;
7721
7722  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7723
7724  if (Name && SS.isNotEmpty()) {
7725    // We have a nested-name tag ('struct foo::bar').
7726
7727    // Check for invalid 'foo::'.
7728    if (SS.isInvalid()) {
7729      Name = 0;
7730      goto CreateNewDecl;
7731    }
7732
7733    // If this is a friend or a reference to a class in a dependent
7734    // context, don't try to make a decl for it.
7735    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7736      DC = computeDeclContext(SS, false);
7737      if (!DC) {
7738        IsDependent = true;
7739        return 0;
7740      }
7741    } else {
7742      DC = computeDeclContext(SS, true);
7743      if (!DC) {
7744        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7745          << SS.getRange();
7746        return 0;
7747      }
7748    }
7749
7750    if (RequireCompleteDeclContext(SS, DC))
7751      return 0;
7752
7753    SearchDC = DC;
7754    // Look-up name inside 'foo::'.
7755    LookupQualifiedName(Previous, DC);
7756
7757    if (Previous.isAmbiguous())
7758      return 0;
7759
7760    if (Previous.empty()) {
7761      // Name lookup did not find anything. However, if the
7762      // nested-name-specifier refers to the current instantiation,
7763      // and that current instantiation has any dependent base
7764      // classes, we might find something at instantiation time: treat
7765      // this as a dependent elaborated-type-specifier.
7766      // But this only makes any sense for reference-like lookups.
7767      if (Previous.wasNotFoundInCurrentInstantiation() &&
7768          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7769        IsDependent = true;
7770        return 0;
7771      }
7772
7773      // A tag 'foo::bar' must already exist.
7774      Diag(NameLoc, diag::err_not_tag_in_scope)
7775        << Kind << Name << DC << SS.getRange();
7776      Name = 0;
7777      Invalid = true;
7778      goto CreateNewDecl;
7779    }
7780  } else if (Name) {
7781    // If this is a named struct, check to see if there was a previous forward
7782    // declaration or definition.
7783    // FIXME: We're looking into outer scopes here, even when we
7784    // shouldn't be. Doing so can result in ambiguities that we
7785    // shouldn't be diagnosing.
7786    LookupName(Previous, S);
7787
7788    if (Previous.isAmbiguous() &&
7789        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7790      LookupResult::Filter F = Previous.makeFilter();
7791      while (F.hasNext()) {
7792        NamedDecl *ND = F.next();
7793        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7794          F.erase();
7795      }
7796      F.done();
7797    }
7798
7799    // Note:  there used to be some attempt at recovery here.
7800    if (Previous.isAmbiguous())
7801      return 0;
7802
7803    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7804      // FIXME: This makes sure that we ignore the contexts associated
7805      // with C structs, unions, and enums when looking for a matching
7806      // tag declaration or definition. See the similar lookup tweak
7807      // in Sema::LookupName; is there a better way to deal with this?
7808      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7809        SearchDC = SearchDC->getParent();
7810    }
7811  } else if (S->isFunctionPrototypeScope()) {
7812    // If this is an enum declaration in function prototype scope, set its
7813    // initial context to the translation unit.
7814    SearchDC = Context.getTranslationUnitDecl();
7815  }
7816
7817  if (Previous.isSingleResult() &&
7818      Previous.getFoundDecl()->isTemplateParameter()) {
7819    // Maybe we will complain about the shadowed template parameter.
7820    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7821    // Just pretend that we didn't see the previous declaration.
7822    Previous.clear();
7823  }
7824
7825  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7826      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7827    // This is a declaration of or a reference to "std::bad_alloc".
7828    isStdBadAlloc = true;
7829
7830    if (Previous.empty() && StdBadAlloc) {
7831      // std::bad_alloc has been implicitly declared (but made invisible to
7832      // name lookup). Fill in this implicit declaration as the previous
7833      // declaration, so that the declarations get chained appropriately.
7834      Previous.addDecl(getStdBadAlloc());
7835    }
7836  }
7837
7838  // If we didn't find a previous declaration, and this is a reference
7839  // (or friend reference), move to the correct scope.  In C++, we
7840  // also need to do a redeclaration lookup there, just in case
7841  // there's a shadow friend decl.
7842  if (Name && Previous.empty() &&
7843      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7844    if (Invalid) goto CreateNewDecl;
7845    assert(SS.isEmpty());
7846
7847    if (TUK == TUK_Reference) {
7848      // C++ [basic.scope.pdecl]p5:
7849      //   -- for an elaborated-type-specifier of the form
7850      //
7851      //          class-key identifier
7852      //
7853      //      if the elaborated-type-specifier is used in the
7854      //      decl-specifier-seq or parameter-declaration-clause of a
7855      //      function defined in namespace scope, the identifier is
7856      //      declared as a class-name in the namespace that contains
7857      //      the declaration; otherwise, except as a friend
7858      //      declaration, the identifier is declared in the smallest
7859      //      non-class, non-function-prototype scope that contains the
7860      //      declaration.
7861      //
7862      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7863      // C structs and unions.
7864      //
7865      // It is an error in C++ to declare (rather than define) an enum
7866      // type, including via an elaborated type specifier.  We'll
7867      // diagnose that later; for now, declare the enum in the same
7868      // scope as we would have picked for any other tag type.
7869      //
7870      // GNU C also supports this behavior as part of its incomplete
7871      // enum types extension, while GNU C++ does not.
7872      //
7873      // Find the context where we'll be declaring the tag.
7874      // FIXME: We would like to maintain the current DeclContext as the
7875      // lexical context,
7876      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7877        SearchDC = SearchDC->getParent();
7878
7879      // Find the scope where we'll be declaring the tag.
7880      while (S->isClassScope() ||
7881             (getLangOptions().CPlusPlus &&
7882              S->isFunctionPrototypeScope()) ||
7883             ((S->getFlags() & Scope::DeclScope) == 0) ||
7884             (S->getEntity() &&
7885              ((DeclContext *)S->getEntity())->isTransparentContext()))
7886        S = S->getParent();
7887    } else {
7888      assert(TUK == TUK_Friend);
7889      // C++ [namespace.memdef]p3:
7890      //   If a friend declaration in a non-local class first declares a
7891      //   class or function, the friend class or function is a member of
7892      //   the innermost enclosing namespace.
7893      SearchDC = SearchDC->getEnclosingNamespaceContext();
7894    }
7895
7896    // In C++, we need to do a redeclaration lookup to properly
7897    // diagnose some problems.
7898    if (getLangOptions().CPlusPlus) {
7899      Previous.setRedeclarationKind(ForRedeclaration);
7900      LookupQualifiedName(Previous, SearchDC);
7901    }
7902  }
7903
7904  if (!Previous.empty()) {
7905    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7906
7907    // It's okay to have a tag decl in the same scope as a typedef
7908    // which hides a tag decl in the same scope.  Finding this
7909    // insanity with a redeclaration lookup can only actually happen
7910    // in C++.
7911    //
7912    // This is also okay for elaborated-type-specifiers, which is
7913    // technically forbidden by the current standard but which is
7914    // okay according to the likely resolution of an open issue;
7915    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7916    if (getLangOptions().CPlusPlus) {
7917      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7918        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7919          TagDecl *Tag = TT->getDecl();
7920          if (Tag->getDeclName() == Name &&
7921              Tag->getDeclContext()->getRedeclContext()
7922                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7923            PrevDecl = Tag;
7924            Previous.clear();
7925            Previous.addDecl(Tag);
7926            Previous.resolveKind();
7927          }
7928        }
7929      }
7930    }
7931
7932    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7933      // If this is a use of a previous tag, or if the tag is already declared
7934      // in the same scope (so that the definition/declaration completes or
7935      // rementions the tag), reuse the decl.
7936      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7937          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7938        // Make sure that this wasn't declared as an enum and now used as a
7939        // struct or something similar.
7940        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7941                                          TUK == TUK_Definition, KWLoc,
7942                                          *Name)) {
7943          bool SafeToContinue
7944            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7945               Kind != TTK_Enum);
7946          if (SafeToContinue)
7947            Diag(KWLoc, diag::err_use_with_wrong_tag)
7948              << Name
7949              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7950                                              PrevTagDecl->getKindName());
7951          else
7952            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7953          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7954
7955          if (SafeToContinue)
7956            Kind = PrevTagDecl->getTagKind();
7957          else {
7958            // Recover by making this an anonymous redefinition.
7959            Name = 0;
7960            Previous.clear();
7961            Invalid = true;
7962          }
7963        }
7964
7965        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7966          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7967
7968          // If this is an elaborated-type-specifier for a scoped enumeration,
7969          // the 'class' keyword is not necessary and not permitted.
7970          if (TUK == TUK_Reference || TUK == TUK_Friend) {
7971            if (ScopedEnum)
7972              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
7973                << PrevEnum->isScoped()
7974                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
7975            return PrevTagDecl;
7976          }
7977
7978          // All conflicts with previous declarations are recovered by
7979          // returning the previous declaration.
7980          if (ScopedEnum != PrevEnum->isScoped()) {
7981            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7982              << PrevEnum->isScoped();
7983            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7984            return PrevTagDecl;
7985          }
7986          else if (EnumUnderlying && PrevEnum->isFixed()) {
7987            QualType T;
7988            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7989                T = TI->getType();
7990            else
7991                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7992
7993            if (!Context.hasSameUnqualifiedType(T,
7994                                                PrevEnum->getIntegerType())) {
7995              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7996                   diag::err_enum_redeclare_type_mismatch)
7997                << T
7998                << PrevEnum->getIntegerType();
7999              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8000              return PrevTagDecl;
8001            }
8002          }
8003          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8004            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8005              << PrevEnum->isFixed();
8006            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8007            return PrevTagDecl;
8008          }
8009        }
8010
8011        if (!Invalid) {
8012          // If this is a use, just return the declaration we found.
8013
8014          // FIXME: In the future, return a variant or some other clue
8015          // for the consumer of this Decl to know it doesn't own it.
8016          // For our current ASTs this shouldn't be a problem, but will
8017          // need to be changed with DeclGroups.
8018          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8019               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8020            return PrevTagDecl;
8021
8022          // Diagnose attempts to redefine a tag.
8023          if (TUK == TUK_Definition) {
8024            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8025              // If we're defining a specialization and the previous definition
8026              // is from an implicit instantiation, don't emit an error
8027              // here; we'll catch this in the general case below.
8028              if (!isExplicitSpecialization ||
8029                  !isa<CXXRecordDecl>(Def) ||
8030                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8031                                               == TSK_ExplicitSpecialization) {
8032                Diag(NameLoc, diag::err_redefinition) << Name;
8033                Diag(Def->getLocation(), diag::note_previous_definition);
8034                // If this is a redefinition, recover by making this
8035                // struct be anonymous, which will make any later
8036                // references get the previous definition.
8037                Name = 0;
8038                Previous.clear();
8039                Invalid = true;
8040              }
8041            } else {
8042              // If the type is currently being defined, complain
8043              // about a nested redefinition.
8044              const TagType *Tag
8045                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8046              if (Tag->isBeingDefined()) {
8047                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8048                Diag(PrevTagDecl->getLocation(),
8049                     diag::note_previous_definition);
8050                Name = 0;
8051                Previous.clear();
8052                Invalid = true;
8053              }
8054            }
8055
8056            // Okay, this is definition of a previously declared or referenced
8057            // tag PrevDecl. We're going to create a new Decl for it.
8058          }
8059        }
8060        // If we get here we have (another) forward declaration or we
8061        // have a definition.  Just create a new decl.
8062
8063      } else {
8064        // If we get here, this is a definition of a new tag type in a nested
8065        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8066        // new decl/type.  We set PrevDecl to NULL so that the entities
8067        // have distinct types.
8068        Previous.clear();
8069      }
8070      // If we get here, we're going to create a new Decl. If PrevDecl
8071      // is non-NULL, it's a definition of the tag declared by
8072      // PrevDecl. If it's NULL, we have a new definition.
8073
8074
8075    // Otherwise, PrevDecl is not a tag, but was found with tag
8076    // lookup.  This is only actually possible in C++, where a few
8077    // things like templates still live in the tag namespace.
8078    } else {
8079      // Use a better diagnostic if an elaborated-type-specifier
8080      // found the wrong kind of type on the first
8081      // (non-redeclaration) lookup.
8082      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8083          !Previous.isForRedeclaration()) {
8084        unsigned Kind = 0;
8085        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8086        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8087        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8088        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8089        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8090        Invalid = true;
8091
8092      // Otherwise, only diagnose if the declaration is in scope.
8093      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8094                                isExplicitSpecialization)) {
8095        // do nothing
8096
8097      // Diagnose implicit declarations introduced by elaborated types.
8098      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8099        unsigned Kind = 0;
8100        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8101        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8102        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8103        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8104        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8105        Invalid = true;
8106
8107      // Otherwise it's a declaration.  Call out a particularly common
8108      // case here.
8109      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8110        unsigned Kind = 0;
8111        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8112        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8113          << Name << Kind << TND->getUnderlyingType();
8114        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8115        Invalid = true;
8116
8117      // Otherwise, diagnose.
8118      } else {
8119        // The tag name clashes with something else in the target scope,
8120        // issue an error and recover by making this tag be anonymous.
8121        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8122        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8123        Name = 0;
8124        Invalid = true;
8125      }
8126
8127      // The existing declaration isn't relevant to us; we're in a
8128      // new scope, so clear out the previous declaration.
8129      Previous.clear();
8130    }
8131  }
8132
8133CreateNewDecl:
8134
8135  TagDecl *PrevDecl = 0;
8136  if (Previous.isSingleResult())
8137    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8138
8139  // If there is an identifier, use the location of the identifier as the
8140  // location of the decl, otherwise use the location of the struct/union
8141  // keyword.
8142  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8143
8144  // Otherwise, create a new declaration. If there is a previous
8145  // declaration of the same entity, the two will be linked via
8146  // PrevDecl.
8147  TagDecl *New;
8148
8149  bool IsForwardReference = false;
8150  if (Kind == TTK_Enum) {
8151    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8152    // enum X { A, B, C } D;    D should chain to X.
8153    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8154                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8155                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8156    // If this is an undefined enum, warn.
8157    if (TUK != TUK_Definition && !Invalid) {
8158      TagDecl *Def;
8159      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8160        // C++0x: 7.2p2: opaque-enum-declaration.
8161        // Conflicts are diagnosed above. Do nothing.
8162      }
8163      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8164        Diag(Loc, diag::ext_forward_ref_enum_def)
8165          << New;
8166        Diag(Def->getLocation(), diag::note_previous_definition);
8167      } else {
8168        unsigned DiagID = diag::ext_forward_ref_enum;
8169        if (getLangOptions().MicrosoftExt)
8170          DiagID = diag::ext_ms_forward_ref_enum;
8171        else if (getLangOptions().CPlusPlus)
8172          DiagID = diag::err_forward_ref_enum;
8173        Diag(Loc, DiagID);
8174
8175        // If this is a forward-declared reference to an enumeration, make a
8176        // note of it; we won't actually be introducing the declaration into
8177        // the declaration context.
8178        if (TUK == TUK_Reference)
8179          IsForwardReference = true;
8180      }
8181    }
8182
8183    if (EnumUnderlying) {
8184      EnumDecl *ED = cast<EnumDecl>(New);
8185      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8186        ED->setIntegerTypeSourceInfo(TI);
8187      else
8188        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8189      ED->setPromotionType(ED->getIntegerType());
8190    }
8191
8192  } else {
8193    // struct/union/class
8194
8195    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8196    // struct X { int A; } D;    D should chain to X.
8197    if (getLangOptions().CPlusPlus) {
8198      // FIXME: Look for a way to use RecordDecl for simple structs.
8199      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8200                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8201
8202      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8203        StdBadAlloc = cast<CXXRecordDecl>(New);
8204    } else
8205      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8206                               cast_or_null<RecordDecl>(PrevDecl));
8207  }
8208
8209  // Maybe add qualifier info.
8210  if (SS.isNotEmpty()) {
8211    if (SS.isSet()) {
8212      New->setQualifierInfo(SS.getWithLocInContext(Context));
8213      if (TemplateParameterLists.size() > 0) {
8214        New->setTemplateParameterListsInfo(Context,
8215                                           TemplateParameterLists.size(),
8216                    (TemplateParameterList**) TemplateParameterLists.release());
8217      }
8218    }
8219    else
8220      Invalid = true;
8221  }
8222
8223  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8224    // Add alignment attributes if necessary; these attributes are checked when
8225    // the ASTContext lays out the structure.
8226    //
8227    // It is important for implementing the correct semantics that this
8228    // happen here (in act on tag decl). The #pragma pack stack is
8229    // maintained as a result of parser callbacks which can occur at
8230    // many points during the parsing of a struct declaration (because
8231    // the #pragma tokens are effectively skipped over during the
8232    // parsing of the struct).
8233    AddAlignmentAttributesForRecord(RD);
8234
8235    AddMsStructLayoutForRecord(RD);
8236  }
8237
8238  if (ModulePrivateLoc.isValid()) {
8239    if (isExplicitSpecialization)
8240      Diag(New->getLocation(), diag::err_module_private_specialization)
8241        << 2
8242        << FixItHint::CreateRemoval(ModulePrivateLoc);
8243    // __module_private__ does not apply to local classes. However, we only
8244    // diagnose this as an error when the declaration specifiers are
8245    // freestanding. Here, we just ignore the __module_private__.
8246    else if (!SearchDC->isFunctionOrMethod())
8247      New->setModulePrivate();
8248  }
8249
8250  // If this is a specialization of a member class (of a class template),
8251  // check the specialization.
8252  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8253    Invalid = true;
8254
8255  if (Invalid)
8256    New->setInvalidDecl();
8257
8258  if (Attr)
8259    ProcessDeclAttributeList(S, New, Attr);
8260
8261  // If we're declaring or defining a tag in function prototype scope
8262  // in C, note that this type can only be used within the function.
8263  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8264    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8265
8266  // Set the lexical context. If the tag has a C++ scope specifier, the
8267  // lexical context will be different from the semantic context.
8268  New->setLexicalDeclContext(CurContext);
8269
8270  // Mark this as a friend decl if applicable.
8271  // In Microsoft mode, a friend declaration also acts as a forward
8272  // declaration so we always pass true to setObjectOfFriendDecl to make
8273  // the tag name visible.
8274  if (TUK == TUK_Friend)
8275    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8276                               getLangOptions().MicrosoftExt);
8277
8278  // Set the access specifier.
8279  if (!Invalid && SearchDC->isRecord())
8280    SetMemberAccessSpecifier(New, PrevDecl, AS);
8281
8282  if (TUK == TUK_Definition)
8283    New->startDefinition();
8284
8285  // If this has an identifier, add it to the scope stack.
8286  if (TUK == TUK_Friend) {
8287    // We might be replacing an existing declaration in the lookup tables;
8288    // if so, borrow its access specifier.
8289    if (PrevDecl)
8290      New->setAccess(PrevDecl->getAccess());
8291
8292    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8293    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8294    if (Name) // can be null along some error paths
8295      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8296        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8297  } else if (Name) {
8298    S = getNonFieldDeclScope(S);
8299    PushOnScopeChains(New, S, !IsForwardReference);
8300    if (IsForwardReference)
8301      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8302
8303  } else {
8304    CurContext->addDecl(New);
8305  }
8306
8307  // If this is the C FILE type, notify the AST context.
8308  if (IdentifierInfo *II = New->getIdentifier())
8309    if (!New->isInvalidDecl() &&
8310        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8311        II->isStr("FILE"))
8312      Context.setFILEDecl(New);
8313
8314  OwnedDecl = true;
8315  return New;
8316}
8317
8318void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8319  AdjustDeclIfTemplate(TagD);
8320  TagDecl *Tag = cast<TagDecl>(TagD);
8321
8322  // Enter the tag context.
8323  PushDeclContext(S, Tag);
8324}
8325
8326Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8327  assert(isa<ObjCContainerDecl>(IDecl) &&
8328         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8329  DeclContext *OCD = cast<DeclContext>(IDecl);
8330  assert(getContainingDC(OCD) == CurContext &&
8331      "The next DeclContext should be lexically contained in the current one.");
8332  CurContext = OCD;
8333  return IDecl;
8334}
8335
8336void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8337                                           SourceLocation FinalLoc,
8338                                           SourceLocation LBraceLoc) {
8339  AdjustDeclIfTemplate(TagD);
8340  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8341
8342  FieldCollector->StartClass();
8343
8344  if (!Record->getIdentifier())
8345    return;
8346
8347  if (FinalLoc.isValid())
8348    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8349
8350  // C++ [class]p2:
8351  //   [...] The class-name is also inserted into the scope of the
8352  //   class itself; this is known as the injected-class-name. For
8353  //   purposes of access checking, the injected-class-name is treated
8354  //   as if it were a public member name.
8355  CXXRecordDecl *InjectedClassName
8356    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8357                            Record->getLocStart(), Record->getLocation(),
8358                            Record->getIdentifier(),
8359                            /*PrevDecl=*/0,
8360                            /*DelayTypeCreation=*/true);
8361  Context.getTypeDeclType(InjectedClassName, Record);
8362  InjectedClassName->setImplicit();
8363  InjectedClassName->setAccess(AS_public);
8364  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8365      InjectedClassName->setDescribedClassTemplate(Template);
8366  PushOnScopeChains(InjectedClassName, S);
8367  assert(InjectedClassName->isInjectedClassName() &&
8368         "Broken injected-class-name");
8369}
8370
8371void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8372                                    SourceLocation RBraceLoc) {
8373  AdjustDeclIfTemplate(TagD);
8374  TagDecl *Tag = cast<TagDecl>(TagD);
8375  Tag->setRBraceLoc(RBraceLoc);
8376
8377  if (isa<CXXRecordDecl>(Tag))
8378    FieldCollector->FinishClass();
8379
8380  // Exit this scope of this tag's definition.
8381  PopDeclContext();
8382
8383  // Notify the consumer that we've defined a tag.
8384  Consumer.HandleTagDeclDefinition(Tag);
8385}
8386
8387void Sema::ActOnObjCContainerFinishDefinition() {
8388  // Exit this scope of this interface definition.
8389  PopDeclContext();
8390}
8391
8392void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8393  assert(DC == CurContext && "Mismatch of container contexts");
8394  OriginalLexicalContext = DC;
8395  ActOnObjCContainerFinishDefinition();
8396}
8397
8398void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8399  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8400  OriginalLexicalContext = 0;
8401}
8402
8403void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8404  AdjustDeclIfTemplate(TagD);
8405  TagDecl *Tag = cast<TagDecl>(TagD);
8406  Tag->setInvalidDecl();
8407
8408  // We're undoing ActOnTagStartDefinition here, not
8409  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8410  // the FieldCollector.
8411
8412  PopDeclContext();
8413}
8414
8415// Note that FieldName may be null for anonymous bitfields.
8416bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8417                          QualType FieldTy, const Expr *BitWidth,
8418                          bool *ZeroWidth) {
8419  // Default to true; that shouldn't confuse checks for emptiness
8420  if (ZeroWidth)
8421    *ZeroWidth = true;
8422
8423  // C99 6.7.2.1p4 - verify the field type.
8424  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8425  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8426    // Handle incomplete types with specific error.
8427    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8428      return true;
8429    if (FieldName)
8430      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8431        << FieldName << FieldTy << BitWidth->getSourceRange();
8432    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8433      << FieldTy << BitWidth->getSourceRange();
8434  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8435                                             UPPC_BitFieldWidth))
8436    return true;
8437
8438  // If the bit-width is type- or value-dependent, don't try to check
8439  // it now.
8440  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8441    return false;
8442
8443  llvm::APSInt Value;
8444  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8445    return true;
8446
8447  if (Value != 0 && ZeroWidth)
8448    *ZeroWidth = false;
8449
8450  // Zero-width bitfield is ok for anonymous field.
8451  if (Value == 0 && FieldName)
8452    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8453
8454  if (Value.isSigned() && Value.isNegative()) {
8455    if (FieldName)
8456      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8457               << FieldName << Value.toString(10);
8458    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8459      << Value.toString(10);
8460  }
8461
8462  if (!FieldTy->isDependentType()) {
8463    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8464    if (Value.getZExtValue() > TypeSize) {
8465      if (!getLangOptions().CPlusPlus) {
8466        if (FieldName)
8467          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8468            << FieldName << (unsigned)Value.getZExtValue()
8469            << (unsigned)TypeSize;
8470
8471        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8472          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8473      }
8474
8475      if (FieldName)
8476        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8477          << FieldName << (unsigned)Value.getZExtValue()
8478          << (unsigned)TypeSize;
8479      else
8480        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8481          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8482    }
8483  }
8484
8485  return false;
8486}
8487
8488/// ActOnField - Each field of a C struct/union is passed into this in order
8489/// to create a FieldDecl object for it.
8490Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8491                       Declarator &D, Expr *BitfieldWidth) {
8492  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8493                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8494                               /*HasInit=*/false, AS_public);
8495  return Res;
8496}
8497
8498/// HandleField - Analyze a field of a C struct or a C++ data member.
8499///
8500FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8501                             SourceLocation DeclStart,
8502                             Declarator &D, Expr *BitWidth, bool HasInit,
8503                             AccessSpecifier AS) {
8504  IdentifierInfo *II = D.getIdentifier();
8505  SourceLocation Loc = DeclStart;
8506  if (II) Loc = D.getIdentifierLoc();
8507
8508  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8509  QualType T = TInfo->getType();
8510  if (getLangOptions().CPlusPlus) {
8511    CheckExtraCXXDefaultArguments(D);
8512
8513    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8514                                        UPPC_DataMemberType)) {
8515      D.setInvalidType();
8516      T = Context.IntTy;
8517      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8518    }
8519  }
8520
8521  DiagnoseFunctionSpecifiers(D);
8522
8523  if (D.getDeclSpec().isThreadSpecified())
8524    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8525  if (D.getDeclSpec().isConstexprSpecified())
8526    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8527      << 2;
8528
8529  // Check to see if this name was declared as a member previously
8530  NamedDecl *PrevDecl = 0;
8531  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8532  LookupName(Previous, S);
8533  switch (Previous.getResultKind()) {
8534    case LookupResult::Found:
8535    case LookupResult::FoundUnresolvedValue:
8536      PrevDecl = Previous.getAsSingle<NamedDecl>();
8537      break;
8538
8539    case LookupResult::FoundOverloaded:
8540      PrevDecl = Previous.getRepresentativeDecl();
8541      break;
8542
8543    case LookupResult::NotFound:
8544    case LookupResult::NotFoundInCurrentInstantiation:
8545    case LookupResult::Ambiguous:
8546      break;
8547  }
8548  Previous.suppressDiagnostics();
8549
8550  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8551    // Maybe we will complain about the shadowed template parameter.
8552    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8553    // Just pretend that we didn't see the previous declaration.
8554    PrevDecl = 0;
8555  }
8556
8557  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8558    PrevDecl = 0;
8559
8560  bool Mutable
8561    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8562  SourceLocation TSSL = D.getSourceRange().getBegin();
8563  FieldDecl *NewFD
8564    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8565                     TSSL, AS, PrevDecl, &D);
8566
8567  if (NewFD->isInvalidDecl())
8568    Record->setInvalidDecl();
8569
8570  if (D.getDeclSpec().isModulePrivateSpecified())
8571    NewFD->setModulePrivate();
8572
8573  if (NewFD->isInvalidDecl() && PrevDecl) {
8574    // Don't introduce NewFD into scope; there's already something
8575    // with the same name in the same scope.
8576  } else if (II) {
8577    PushOnScopeChains(NewFD, S);
8578  } else
8579    Record->addDecl(NewFD);
8580
8581  return NewFD;
8582}
8583
8584/// \brief Build a new FieldDecl and check its well-formedness.
8585///
8586/// This routine builds a new FieldDecl given the fields name, type,
8587/// record, etc. \p PrevDecl should refer to any previous declaration
8588/// with the same name and in the same scope as the field to be
8589/// created.
8590///
8591/// \returns a new FieldDecl.
8592///
8593/// \todo The Declarator argument is a hack. It will be removed once
8594FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8595                                TypeSourceInfo *TInfo,
8596                                RecordDecl *Record, SourceLocation Loc,
8597                                bool Mutable, Expr *BitWidth, bool HasInit,
8598                                SourceLocation TSSL,
8599                                AccessSpecifier AS, NamedDecl *PrevDecl,
8600                                Declarator *D) {
8601  IdentifierInfo *II = Name.getAsIdentifierInfo();
8602  bool InvalidDecl = false;
8603  if (D) InvalidDecl = D->isInvalidType();
8604
8605  // If we receive a broken type, recover by assuming 'int' and
8606  // marking this declaration as invalid.
8607  if (T.isNull()) {
8608    InvalidDecl = true;
8609    T = Context.IntTy;
8610  }
8611
8612  QualType EltTy = Context.getBaseElementType(T);
8613  if (!EltTy->isDependentType() &&
8614      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8615    // Fields of incomplete type force their record to be invalid.
8616    Record->setInvalidDecl();
8617    InvalidDecl = true;
8618  }
8619
8620  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8621  // than a variably modified type.
8622  if (!InvalidDecl && T->isVariablyModifiedType()) {
8623    bool SizeIsNegative;
8624    llvm::APSInt Oversized;
8625    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8626                                                           SizeIsNegative,
8627                                                           Oversized);
8628    if (!FixedTy.isNull()) {
8629      Diag(Loc, diag::warn_illegal_constant_array_size);
8630      T = FixedTy;
8631    } else {
8632      if (SizeIsNegative)
8633        Diag(Loc, diag::err_typecheck_negative_array_size);
8634      else if (Oversized.getBoolValue())
8635        Diag(Loc, diag::err_array_too_large)
8636          << Oversized.toString(10);
8637      else
8638        Diag(Loc, diag::err_typecheck_field_variable_size);
8639      InvalidDecl = true;
8640    }
8641  }
8642
8643  // Fields can not have abstract class types
8644  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8645                                             diag::err_abstract_type_in_decl,
8646                                             AbstractFieldType))
8647    InvalidDecl = true;
8648
8649  bool ZeroWidth = false;
8650  // If this is declared as a bit-field, check the bit-field.
8651  if (!InvalidDecl && BitWidth &&
8652      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8653    InvalidDecl = true;
8654    BitWidth = 0;
8655    ZeroWidth = false;
8656  }
8657
8658  // Check that 'mutable' is consistent with the type of the declaration.
8659  if (!InvalidDecl && Mutable) {
8660    unsigned DiagID = 0;
8661    if (T->isReferenceType())
8662      DiagID = diag::err_mutable_reference;
8663    else if (T.isConstQualified())
8664      DiagID = diag::err_mutable_const;
8665
8666    if (DiagID) {
8667      SourceLocation ErrLoc = Loc;
8668      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8669        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8670      Diag(ErrLoc, DiagID);
8671      Mutable = false;
8672      InvalidDecl = true;
8673    }
8674  }
8675
8676  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8677                                       BitWidth, Mutable, HasInit);
8678  if (InvalidDecl)
8679    NewFD->setInvalidDecl();
8680
8681  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8682    Diag(Loc, diag::err_duplicate_member) << II;
8683    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8684    NewFD->setInvalidDecl();
8685  }
8686
8687  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8688    if (Record->isUnion()) {
8689      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8690        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8691        if (RDecl->getDefinition()) {
8692          // C++ [class.union]p1: An object of a class with a non-trivial
8693          // constructor, a non-trivial copy constructor, a non-trivial
8694          // destructor, or a non-trivial copy assignment operator
8695          // cannot be a member of a union, nor can an array of such
8696          // objects.
8697          if (CheckNontrivialField(NewFD))
8698            NewFD->setInvalidDecl();
8699        }
8700      }
8701
8702      // C++ [class.union]p1: If a union contains a member of reference type,
8703      // the program is ill-formed.
8704      if (EltTy->isReferenceType()) {
8705        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8706          << NewFD->getDeclName() << EltTy;
8707        NewFD->setInvalidDecl();
8708      }
8709    }
8710  }
8711
8712  // FIXME: We need to pass in the attributes given an AST
8713  // representation, not a parser representation.
8714  if (D)
8715    // FIXME: What to pass instead of TUScope?
8716    ProcessDeclAttributes(TUScope, NewFD, *D);
8717
8718  // In auto-retain/release, infer strong retension for fields of
8719  // retainable type.
8720  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8721    NewFD->setInvalidDecl();
8722
8723  if (T.isObjCGCWeak())
8724    Diag(Loc, diag::warn_attribute_weak_on_field);
8725
8726  NewFD->setAccess(AS);
8727  return NewFD;
8728}
8729
8730bool Sema::CheckNontrivialField(FieldDecl *FD) {
8731  assert(FD);
8732  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8733
8734  if (FD->isInvalidDecl())
8735    return true;
8736
8737  QualType EltTy = Context.getBaseElementType(FD->getType());
8738  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8739    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8740    if (RDecl->getDefinition()) {
8741      // We check for copy constructors before constructors
8742      // because otherwise we'll never get complaints about
8743      // copy constructors.
8744
8745      CXXSpecialMember member = CXXInvalid;
8746      if (!RDecl->hasTrivialCopyConstructor())
8747        member = CXXCopyConstructor;
8748      else if (!RDecl->hasTrivialDefaultConstructor())
8749        member = CXXDefaultConstructor;
8750      else if (!RDecl->hasTrivialCopyAssignment())
8751        member = CXXCopyAssignment;
8752      else if (!RDecl->hasTrivialDestructor())
8753        member = CXXDestructor;
8754
8755      if (member != CXXInvalid) {
8756        if (!getLangOptions().CPlusPlus0x &&
8757            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8758          // Objective-C++ ARC: it is an error to have a non-trivial field of
8759          // a union. However, system headers in Objective-C programs
8760          // occasionally have Objective-C lifetime objects within unions,
8761          // and rather than cause the program to fail, we make those
8762          // members unavailable.
8763          SourceLocation Loc = FD->getLocation();
8764          if (getSourceManager().isInSystemHeader(Loc)) {
8765            if (!FD->hasAttr<UnavailableAttr>())
8766              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8767                                  "this system field has retaining ownership"));
8768            return false;
8769          }
8770        }
8771
8772        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8773               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8774               diag::err_illegal_union_or_anon_struct_member)
8775          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8776        DiagnoseNontrivial(RT, member);
8777        return !getLangOptions().CPlusPlus0x;
8778      }
8779    }
8780  }
8781
8782  return false;
8783}
8784
8785/// DiagnoseNontrivial - Given that a class has a non-trivial
8786/// special member, figure out why.
8787void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8788  QualType QT(T, 0U);
8789  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8790
8791  // Check whether the member was user-declared.
8792  switch (member) {
8793  case CXXInvalid:
8794    break;
8795
8796  case CXXDefaultConstructor:
8797    if (RD->hasUserDeclaredConstructor()) {
8798      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8799      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8800        const FunctionDecl *body = 0;
8801        ci->hasBody(body);
8802        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8803          SourceLocation CtorLoc = ci->getLocation();
8804          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8805          return;
8806        }
8807      }
8808
8809      llvm_unreachable("found no user-declared constructors");
8810    }
8811    break;
8812
8813  case CXXCopyConstructor:
8814    if (RD->hasUserDeclaredCopyConstructor()) {
8815      SourceLocation CtorLoc =
8816        RD->getCopyConstructor(0)->getLocation();
8817      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8818      return;
8819    }
8820    break;
8821
8822  case CXXMoveConstructor:
8823    if (RD->hasUserDeclaredMoveConstructor()) {
8824      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8825      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8826      return;
8827    }
8828    break;
8829
8830  case CXXCopyAssignment:
8831    if (RD->hasUserDeclaredCopyAssignment()) {
8832      // FIXME: this should use the location of the copy
8833      // assignment, not the type.
8834      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8835      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8836      return;
8837    }
8838    break;
8839
8840  case CXXMoveAssignment:
8841    if (RD->hasUserDeclaredMoveAssignment()) {
8842      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8843      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8844      return;
8845    }
8846    break;
8847
8848  case CXXDestructor:
8849    if (RD->hasUserDeclaredDestructor()) {
8850      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8851      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8852      return;
8853    }
8854    break;
8855  }
8856
8857  typedef CXXRecordDecl::base_class_iterator base_iter;
8858
8859  // Virtual bases and members inhibit trivial copying/construction,
8860  // but not trivial destruction.
8861  if (member != CXXDestructor) {
8862    // Check for virtual bases.  vbases includes indirect virtual bases,
8863    // so we just iterate through the direct bases.
8864    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8865      if (bi->isVirtual()) {
8866        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8867        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8868        return;
8869      }
8870
8871    // Check for virtual methods.
8872    typedef CXXRecordDecl::method_iterator meth_iter;
8873    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8874         ++mi) {
8875      if (mi->isVirtual()) {
8876        SourceLocation MLoc = mi->getSourceRange().getBegin();
8877        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8878        return;
8879      }
8880    }
8881  }
8882
8883  bool (CXXRecordDecl::*hasTrivial)() const;
8884  switch (member) {
8885  case CXXDefaultConstructor:
8886    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8887  case CXXCopyConstructor:
8888    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8889  case CXXCopyAssignment:
8890    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8891  case CXXDestructor:
8892    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8893  default:
8894    llvm_unreachable("unexpected special member");
8895  }
8896
8897  // Check for nontrivial bases (and recurse).
8898  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8899    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8900    assert(BaseRT && "Don't know how to handle dependent bases");
8901    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8902    if (!(BaseRecTy->*hasTrivial)()) {
8903      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8904      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8905      DiagnoseNontrivial(BaseRT, member);
8906      return;
8907    }
8908  }
8909
8910  // Check for nontrivial members (and recurse).
8911  typedef RecordDecl::field_iterator field_iter;
8912  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8913       ++fi) {
8914    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8915    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8916      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8917
8918      if (!(EltRD->*hasTrivial)()) {
8919        SourceLocation FLoc = (*fi)->getLocation();
8920        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8921        DiagnoseNontrivial(EltRT, member);
8922        return;
8923      }
8924    }
8925
8926    if (EltTy->isObjCLifetimeType()) {
8927      switch (EltTy.getObjCLifetime()) {
8928      case Qualifiers::OCL_None:
8929      case Qualifiers::OCL_ExplicitNone:
8930        break;
8931
8932      case Qualifiers::OCL_Autoreleasing:
8933      case Qualifiers::OCL_Weak:
8934      case Qualifiers::OCL_Strong:
8935        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8936          << QT << EltTy.getObjCLifetime();
8937        return;
8938      }
8939    }
8940  }
8941
8942  llvm_unreachable("found no explanation for non-trivial member");
8943}
8944
8945/// TranslateIvarVisibility - Translate visibility from a token ID to an
8946///  AST enum value.
8947static ObjCIvarDecl::AccessControl
8948TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8949  switch (ivarVisibility) {
8950  default: llvm_unreachable("Unknown visitibility kind");
8951  case tok::objc_private: return ObjCIvarDecl::Private;
8952  case tok::objc_public: return ObjCIvarDecl::Public;
8953  case tok::objc_protected: return ObjCIvarDecl::Protected;
8954  case tok::objc_package: return ObjCIvarDecl::Package;
8955  }
8956}
8957
8958/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8959/// in order to create an IvarDecl object for it.
8960Decl *Sema::ActOnIvar(Scope *S,
8961                                SourceLocation DeclStart,
8962                                Declarator &D, Expr *BitfieldWidth,
8963                                tok::ObjCKeywordKind Visibility) {
8964
8965  IdentifierInfo *II = D.getIdentifier();
8966  Expr *BitWidth = (Expr*)BitfieldWidth;
8967  SourceLocation Loc = DeclStart;
8968  if (II) Loc = D.getIdentifierLoc();
8969
8970  // FIXME: Unnamed fields can be handled in various different ways, for
8971  // example, unnamed unions inject all members into the struct namespace!
8972
8973  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8974  QualType T = TInfo->getType();
8975
8976  if (BitWidth) {
8977    // 6.7.2.1p3, 6.7.2.1p4
8978    if (VerifyBitField(Loc, II, T, BitWidth)) {
8979      D.setInvalidType();
8980      BitWidth = 0;
8981    }
8982  } else {
8983    // Not a bitfield.
8984
8985    // validate II.
8986
8987  }
8988  if (T->isReferenceType()) {
8989    Diag(Loc, diag::err_ivar_reference_type);
8990    D.setInvalidType();
8991  }
8992  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8993  // than a variably modified type.
8994  else if (T->isVariablyModifiedType()) {
8995    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8996    D.setInvalidType();
8997  }
8998
8999  // Get the visibility (access control) for this ivar.
9000  ObjCIvarDecl::AccessControl ac =
9001    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9002                                        : ObjCIvarDecl::None;
9003  // Must set ivar's DeclContext to its enclosing interface.
9004  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9005  ObjCContainerDecl *EnclosingContext;
9006  if (ObjCImplementationDecl *IMPDecl =
9007      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9008    if (!LangOpts.ObjCNonFragileABI2) {
9009    // Case of ivar declared in an implementation. Context is that of its class.
9010      EnclosingContext = IMPDecl->getClassInterface();
9011      assert(EnclosingContext && "Implementation has no class interface!");
9012    }
9013    else
9014      EnclosingContext = EnclosingDecl;
9015  } else {
9016    if (ObjCCategoryDecl *CDecl =
9017        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9018      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9019        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9020        return 0;
9021      }
9022    }
9023    EnclosingContext = EnclosingDecl;
9024  }
9025
9026  // Construct the decl.
9027  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9028                                             DeclStart, Loc, II, T,
9029                                             TInfo, ac, (Expr *)BitfieldWidth);
9030
9031  if (II) {
9032    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9033                                           ForRedeclaration);
9034    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9035        && !isa<TagDecl>(PrevDecl)) {
9036      Diag(Loc, diag::err_duplicate_member) << II;
9037      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9038      NewID->setInvalidDecl();
9039    }
9040  }
9041
9042  // Process attributes attached to the ivar.
9043  ProcessDeclAttributes(S, NewID, D);
9044
9045  if (D.isInvalidType())
9046    NewID->setInvalidDecl();
9047
9048  // In ARC, infer 'retaining' for ivars of retainable type.
9049  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9050    NewID->setInvalidDecl();
9051
9052  if (D.getDeclSpec().isModulePrivateSpecified())
9053    NewID->setModulePrivate();
9054
9055  if (II) {
9056    // FIXME: When interfaces are DeclContexts, we'll need to add
9057    // these to the interface.
9058    S->AddDecl(NewID);
9059    IdResolver.AddDecl(NewID);
9060  }
9061
9062  return NewID;
9063}
9064
9065/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9066/// class and class extensions. For every class @interface and class
9067/// extension @interface, if the last ivar is a bitfield of any type,
9068/// then add an implicit `char :0` ivar to the end of that interface.
9069void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9070                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9071  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9072    return;
9073
9074  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9075  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9076
9077  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9078    return;
9079  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9080  if (!ID) {
9081    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9082      if (!CD->IsClassExtension())
9083        return;
9084    }
9085    // No need to add this to end of @implementation.
9086    else
9087      return;
9088  }
9089  // All conditions are met. Add a new bitfield to the tail end of ivars.
9090  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9091  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9092
9093  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9094                              DeclLoc, DeclLoc, 0,
9095                              Context.CharTy,
9096                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9097                                                               DeclLoc),
9098                              ObjCIvarDecl::Private, BW,
9099                              true);
9100  AllIvarDecls.push_back(Ivar);
9101}
9102
9103void Sema::ActOnFields(Scope* S,
9104                       SourceLocation RecLoc, Decl *EnclosingDecl,
9105                       llvm::ArrayRef<Decl *> Fields,
9106                       SourceLocation LBrac, SourceLocation RBrac,
9107                       AttributeList *Attr) {
9108  assert(EnclosingDecl && "missing record or interface decl");
9109
9110  // If the decl this is being inserted into is invalid, then it may be a
9111  // redeclaration or some other bogus case.  Don't try to add fields to it.
9112  if (EnclosingDecl->isInvalidDecl())
9113    return;
9114
9115  // Verify that all the fields are okay.
9116  unsigned NumNamedMembers = 0;
9117  SmallVector<FieldDecl*, 32> RecFields;
9118
9119  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9120  bool ARCErrReported = false;
9121  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9122       i != end; ++i) {
9123    FieldDecl *FD = cast<FieldDecl>(*i);
9124
9125    // Get the type for the field.
9126    const Type *FDTy = FD->getType().getTypePtr();
9127
9128    if (!FD->isAnonymousStructOrUnion()) {
9129      // Remember all fields written by the user.
9130      RecFields.push_back(FD);
9131    }
9132
9133    // If the field is already invalid for some reason, don't emit more
9134    // diagnostics about it.
9135    if (FD->isInvalidDecl()) {
9136      EnclosingDecl->setInvalidDecl();
9137      continue;
9138    }
9139
9140    // C99 6.7.2.1p2:
9141    //   A structure or union shall not contain a member with
9142    //   incomplete or function type (hence, a structure shall not
9143    //   contain an instance of itself, but may contain a pointer to
9144    //   an instance of itself), except that the last member of a
9145    //   structure with more than one named member may have incomplete
9146    //   array type; such a structure (and any union containing,
9147    //   possibly recursively, a member that is such a structure)
9148    //   shall not be a member of a structure or an element of an
9149    //   array.
9150    if (FDTy->isFunctionType()) {
9151      // Field declared as a function.
9152      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9153        << FD->getDeclName();
9154      FD->setInvalidDecl();
9155      EnclosingDecl->setInvalidDecl();
9156      continue;
9157    } else if (FDTy->isIncompleteArrayType() && Record &&
9158               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9159                ((getLangOptions().MicrosoftExt ||
9160                  getLangOptions().CPlusPlus) &&
9161                 (i + 1 == Fields.end() || Record->isUnion())))) {
9162      // Flexible array member.
9163      // Microsoft and g++ is more permissive regarding flexible array.
9164      // It will accept flexible array in union and also
9165      // as the sole element of a struct/class.
9166      if (getLangOptions().MicrosoftExt) {
9167        if (Record->isUnion())
9168          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9169            << FD->getDeclName();
9170        else if (Fields.size() == 1)
9171          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9172            << FD->getDeclName() << Record->getTagKind();
9173      } else if (getLangOptions().CPlusPlus) {
9174        if (Record->isUnion())
9175          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9176            << FD->getDeclName();
9177        else if (Fields.size() == 1)
9178          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9179            << FD->getDeclName() << Record->getTagKind();
9180      } else if (NumNamedMembers < 1) {
9181        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9182          << FD->getDeclName();
9183        FD->setInvalidDecl();
9184        EnclosingDecl->setInvalidDecl();
9185        continue;
9186      }
9187      if (!FD->getType()->isDependentType() &&
9188          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9189        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9190          << FD->getDeclName() << FD->getType();
9191        FD->setInvalidDecl();
9192        EnclosingDecl->setInvalidDecl();
9193        continue;
9194      }
9195      // Okay, we have a legal flexible array member at the end of the struct.
9196      if (Record)
9197        Record->setHasFlexibleArrayMember(true);
9198    } else if (!FDTy->isDependentType() &&
9199               RequireCompleteType(FD->getLocation(), FD->getType(),
9200                                   diag::err_field_incomplete)) {
9201      // Incomplete type
9202      FD->setInvalidDecl();
9203      EnclosingDecl->setInvalidDecl();
9204      continue;
9205    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9206      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9207        // If this is a member of a union, then entire union becomes "flexible".
9208        if (Record && Record->isUnion()) {
9209          Record->setHasFlexibleArrayMember(true);
9210        } else {
9211          // If this is a struct/class and this is not the last element, reject
9212          // it.  Note that GCC supports variable sized arrays in the middle of
9213          // structures.
9214          if (i + 1 != Fields.end())
9215            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9216              << FD->getDeclName() << FD->getType();
9217          else {
9218            // We support flexible arrays at the end of structs in
9219            // other structs as an extension.
9220            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9221              << FD->getDeclName();
9222            if (Record)
9223              Record->setHasFlexibleArrayMember(true);
9224          }
9225        }
9226      }
9227      if (Record && FDTTy->getDecl()->hasObjectMember())
9228        Record->setHasObjectMember(true);
9229    } else if (FDTy->isObjCObjectType()) {
9230      /// A field cannot be an Objective-c object
9231      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9232        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9233      QualType T = Context.getObjCObjectPointerType(FD->getType());
9234      FD->setType(T);
9235    }
9236    else if (!getLangOptions().CPlusPlus) {
9237      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9238        // It's an error in ARC if a field has lifetime.
9239        // We don't want to report this in a system header, though,
9240        // so we just make the field unavailable.
9241        // FIXME: that's really not sufficient; we need to make the type
9242        // itself invalid to, say, initialize or copy.
9243        QualType T = FD->getType();
9244        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9245        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9246          SourceLocation loc = FD->getLocation();
9247          if (getSourceManager().isInSystemHeader(loc)) {
9248            if (!FD->hasAttr<UnavailableAttr>()) {
9249              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9250                                "this system field has retaining ownership"));
9251            }
9252          } else {
9253            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9254              << T->isBlockPointerType();
9255          }
9256          ARCErrReported = true;
9257        }
9258      }
9259      else if (getLangOptions().ObjC1 &&
9260               getLangOptions().getGC() != LangOptions::NonGC &&
9261               Record && !Record->hasObjectMember()) {
9262        if (FD->getType()->isObjCObjectPointerType() ||
9263            FD->getType().isObjCGCStrong())
9264          Record->setHasObjectMember(true);
9265        else if (Context.getAsArrayType(FD->getType())) {
9266          QualType BaseType = Context.getBaseElementType(FD->getType());
9267          if (BaseType->isRecordType() &&
9268              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9269            Record->setHasObjectMember(true);
9270          else if (BaseType->isObjCObjectPointerType() ||
9271                   BaseType.isObjCGCStrong())
9272                 Record->setHasObjectMember(true);
9273        }
9274      }
9275    }
9276    // Keep track of the number of named members.
9277    if (FD->getIdentifier())
9278      ++NumNamedMembers;
9279  }
9280
9281  // Okay, we successfully defined 'Record'.
9282  if (Record) {
9283    bool Completed = false;
9284    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9285      if (!CXXRecord->isInvalidDecl()) {
9286        // Set access bits correctly on the directly-declared conversions.
9287        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9288        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9289             I != E; ++I)
9290          Convs->setAccess(I, (*I)->getAccess());
9291
9292        if (!CXXRecord->isDependentType()) {
9293          // Objective-C Automatic Reference Counting:
9294          //   If a class has a non-static data member of Objective-C pointer
9295          //   type (or array thereof), it is a non-POD type and its
9296          //   default constructor (if any), copy constructor, copy assignment
9297          //   operator, and destructor are non-trivial.
9298          //
9299          // This rule is also handled by CXXRecordDecl::completeDefinition().
9300          // However, here we check whether this particular class is only
9301          // non-POD because of the presence of an Objective-C pointer member.
9302          // If so, objects of this type cannot be shared between code compiled
9303          // with instant objects and code compiled with manual retain/release.
9304          if (getLangOptions().ObjCAutoRefCount &&
9305              CXXRecord->hasObjectMember() &&
9306              CXXRecord->getLinkage() == ExternalLinkage) {
9307            if (CXXRecord->isPOD()) {
9308              Diag(CXXRecord->getLocation(),
9309                   diag::warn_arc_non_pod_class_with_object_member)
9310               << CXXRecord;
9311            } else {
9312              // FIXME: Fix-Its would be nice here, but finding a good location
9313              // for them is going to be tricky.
9314              if (CXXRecord->hasTrivialCopyConstructor())
9315                Diag(CXXRecord->getLocation(),
9316                     diag::warn_arc_trivial_member_function_with_object_member)
9317                  << CXXRecord << 0;
9318              if (CXXRecord->hasTrivialCopyAssignment())
9319                Diag(CXXRecord->getLocation(),
9320                     diag::warn_arc_trivial_member_function_with_object_member)
9321                << CXXRecord << 1;
9322              if (CXXRecord->hasTrivialDestructor())
9323                Diag(CXXRecord->getLocation(),
9324                     diag::warn_arc_trivial_member_function_with_object_member)
9325                << CXXRecord << 2;
9326            }
9327          }
9328
9329          // Adjust user-defined destructor exception spec.
9330          if (getLangOptions().CPlusPlus0x &&
9331              CXXRecord->hasUserDeclaredDestructor())
9332            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9333
9334          // Add any implicitly-declared members to this class.
9335          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9336
9337          // If we have virtual base classes, we may end up finding multiple
9338          // final overriders for a given virtual function. Check for this
9339          // problem now.
9340          if (CXXRecord->getNumVBases()) {
9341            CXXFinalOverriderMap FinalOverriders;
9342            CXXRecord->getFinalOverriders(FinalOverriders);
9343
9344            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9345                                             MEnd = FinalOverriders.end();
9346                 M != MEnd; ++M) {
9347              for (OverridingMethods::iterator SO = M->second.begin(),
9348                                            SOEnd = M->second.end();
9349                   SO != SOEnd; ++SO) {
9350                assert(SO->second.size() > 0 &&
9351                       "Virtual function without overridding functions?");
9352                if (SO->second.size() == 1)
9353                  continue;
9354
9355                // C++ [class.virtual]p2:
9356                //   In a derived class, if a virtual member function of a base
9357                //   class subobject has more than one final overrider the
9358                //   program is ill-formed.
9359                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9360                  << (NamedDecl *)M->first << Record;
9361                Diag(M->first->getLocation(),
9362                     diag::note_overridden_virtual_function);
9363                for (OverridingMethods::overriding_iterator
9364                          OM = SO->second.begin(),
9365                       OMEnd = SO->second.end();
9366                     OM != OMEnd; ++OM)
9367                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9368                    << (NamedDecl *)M->first << OM->Method->getParent();
9369
9370                Record->setInvalidDecl();
9371              }
9372            }
9373            CXXRecord->completeDefinition(&FinalOverriders);
9374            Completed = true;
9375          }
9376        }
9377      }
9378    }
9379
9380    if (!Completed)
9381      Record->completeDefinition();
9382
9383    // Now that the record is complete, do any delayed exception spec checks
9384    // we were missing.
9385    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9386      const CXXDestructorDecl *Dtor =
9387              DelayedDestructorExceptionSpecChecks.back().first;
9388      if (Dtor->getParent() != Record)
9389        break;
9390
9391      assert(!Dtor->getParent()->isDependentType() &&
9392          "Should not ever add destructors of templates into the list.");
9393      CheckOverridingFunctionExceptionSpec(Dtor,
9394          DelayedDestructorExceptionSpecChecks.back().second);
9395      DelayedDestructorExceptionSpecChecks.pop_back();
9396    }
9397
9398  } else {
9399    ObjCIvarDecl **ClsFields =
9400      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9401    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9402      ID->setEndOfDefinitionLoc(RBrac);
9403      // Add ivar's to class's DeclContext.
9404      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9405        ClsFields[i]->setLexicalDeclContext(ID);
9406        ID->addDecl(ClsFields[i]);
9407      }
9408      // Must enforce the rule that ivars in the base classes may not be
9409      // duplicates.
9410      if (ID->getSuperClass())
9411        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9412    } else if (ObjCImplementationDecl *IMPDecl =
9413                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9414      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9415      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9416        // Ivar declared in @implementation never belongs to the implementation.
9417        // Only it is in implementation's lexical context.
9418        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9419      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9420    } else if (ObjCCategoryDecl *CDecl =
9421                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9422      // case of ivars in class extension; all other cases have been
9423      // reported as errors elsewhere.
9424      // FIXME. Class extension does not have a LocEnd field.
9425      // CDecl->setLocEnd(RBrac);
9426      // Add ivar's to class extension's DeclContext.
9427      // Diagnose redeclaration of private ivars.
9428      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9429      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9430        if (IDecl) {
9431          if (const ObjCIvarDecl *ClsIvar =
9432              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9433            Diag(ClsFields[i]->getLocation(),
9434                 diag::err_duplicate_ivar_declaration);
9435            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9436            continue;
9437          }
9438          for (const ObjCCategoryDecl *ClsExtDecl =
9439                IDecl->getFirstClassExtension();
9440               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9441            if (const ObjCIvarDecl *ClsExtIvar =
9442                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9443              Diag(ClsFields[i]->getLocation(),
9444                   diag::err_duplicate_ivar_declaration);
9445              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9446              continue;
9447            }
9448          }
9449        }
9450        ClsFields[i]->setLexicalDeclContext(CDecl);
9451        CDecl->addDecl(ClsFields[i]);
9452      }
9453    }
9454  }
9455
9456  if (Attr)
9457    ProcessDeclAttributeList(S, Record, Attr);
9458
9459  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9460  // set the visibility of this record.
9461  if (Record && !Record->getDeclContext()->isRecord())
9462    AddPushedVisibilityAttribute(Record);
9463}
9464
9465/// \brief Determine whether the given integral value is representable within
9466/// the given type T.
9467static bool isRepresentableIntegerValue(ASTContext &Context,
9468                                        llvm::APSInt &Value,
9469                                        QualType T) {
9470  assert(T->isIntegralType(Context) && "Integral type required!");
9471  unsigned BitWidth = Context.getIntWidth(T);
9472
9473  if (Value.isUnsigned() || Value.isNonNegative()) {
9474    if (T->isSignedIntegerOrEnumerationType())
9475      --BitWidth;
9476    return Value.getActiveBits() <= BitWidth;
9477  }
9478  return Value.getMinSignedBits() <= BitWidth;
9479}
9480
9481// \brief Given an integral type, return the next larger integral type
9482// (or a NULL type of no such type exists).
9483static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9484  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9485  // enum checking below.
9486  assert(T->isIntegralType(Context) && "Integral type required!");
9487  const unsigned NumTypes = 4;
9488  QualType SignedIntegralTypes[NumTypes] = {
9489    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9490  };
9491  QualType UnsignedIntegralTypes[NumTypes] = {
9492    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9493    Context.UnsignedLongLongTy
9494  };
9495
9496  unsigned BitWidth = Context.getTypeSize(T);
9497  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9498                                                        : UnsignedIntegralTypes;
9499  for (unsigned I = 0; I != NumTypes; ++I)
9500    if (Context.getTypeSize(Types[I]) > BitWidth)
9501      return Types[I];
9502
9503  return QualType();
9504}
9505
9506EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9507                                          EnumConstantDecl *LastEnumConst,
9508                                          SourceLocation IdLoc,
9509                                          IdentifierInfo *Id,
9510                                          Expr *Val) {
9511  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9512  llvm::APSInt EnumVal(IntWidth);
9513  QualType EltTy;
9514
9515  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9516    Val = 0;
9517
9518  if (Val)
9519    Val = DefaultLvalueConversion(Val).take();
9520
9521  if (Val) {
9522    if (Enum->isDependentType() || Val->isTypeDependent())
9523      EltTy = Context.DependentTy;
9524    else {
9525      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9526      SourceLocation ExpLoc;
9527      if (!Val->isValueDependent() &&
9528          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9529        Val = 0;
9530      } else {
9531        if (!getLangOptions().CPlusPlus) {
9532          // C99 6.7.2.2p2:
9533          //   The expression that defines the value of an enumeration constant
9534          //   shall be an integer constant expression that has a value
9535          //   representable as an int.
9536
9537          // Complain if the value is not representable in an int.
9538          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9539            Diag(IdLoc, diag::ext_enum_value_not_int)
9540              << EnumVal.toString(10) << Val->getSourceRange()
9541              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9542          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9543            // Force the type of the expression to 'int'.
9544            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9545          }
9546        }
9547
9548        if (Enum->isFixed()) {
9549          EltTy = Enum->getIntegerType();
9550
9551          // C++0x [dcl.enum]p5:
9552          //   ... if the initializing value of an enumerator cannot be
9553          //   represented by the underlying type, the program is ill-formed.
9554          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9555            if (getLangOptions().MicrosoftExt) {
9556              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9557              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9558            } else
9559              Diag(IdLoc, diag::err_enumerator_too_large)
9560                << EltTy;
9561          } else
9562            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9563        }
9564        else {
9565          // C++0x [dcl.enum]p5:
9566          //   If the underlying type is not fixed, the type of each enumerator
9567          //   is the type of its initializing value:
9568          //     - If an initializer is specified for an enumerator, the
9569          //       initializing value has the same type as the expression.
9570          EltTy = Val->getType();
9571        }
9572      }
9573    }
9574  }
9575
9576  if (!Val) {
9577    if (Enum->isDependentType())
9578      EltTy = Context.DependentTy;
9579    else if (!LastEnumConst) {
9580      // C++0x [dcl.enum]p5:
9581      //   If the underlying type is not fixed, the type of each enumerator
9582      //   is the type of its initializing value:
9583      //     - If no initializer is specified for the first enumerator, the
9584      //       initializing value has an unspecified integral type.
9585      //
9586      // GCC uses 'int' for its unspecified integral type, as does
9587      // C99 6.7.2.2p3.
9588      if (Enum->isFixed()) {
9589        EltTy = Enum->getIntegerType();
9590      }
9591      else {
9592        EltTy = Context.IntTy;
9593      }
9594    } else {
9595      // Assign the last value + 1.
9596      EnumVal = LastEnumConst->getInitVal();
9597      ++EnumVal;
9598      EltTy = LastEnumConst->getType();
9599
9600      // Check for overflow on increment.
9601      if (EnumVal < LastEnumConst->getInitVal()) {
9602        // C++0x [dcl.enum]p5:
9603        //   If the underlying type is not fixed, the type of each enumerator
9604        //   is the type of its initializing value:
9605        //
9606        //     - Otherwise the type of the initializing value is the same as
9607        //       the type of the initializing value of the preceding enumerator
9608        //       unless the incremented value is not representable in that type,
9609        //       in which case the type is an unspecified integral type
9610        //       sufficient to contain the incremented value. If no such type
9611        //       exists, the program is ill-formed.
9612        QualType T = getNextLargerIntegralType(Context, EltTy);
9613        if (T.isNull() || Enum->isFixed()) {
9614          // There is no integral type larger enough to represent this
9615          // value. Complain, then allow the value to wrap around.
9616          EnumVal = LastEnumConst->getInitVal();
9617          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9618          ++EnumVal;
9619          if (Enum->isFixed())
9620            // When the underlying type is fixed, this is ill-formed.
9621            Diag(IdLoc, diag::err_enumerator_wrapped)
9622              << EnumVal.toString(10)
9623              << EltTy;
9624          else
9625            Diag(IdLoc, diag::warn_enumerator_too_large)
9626              << EnumVal.toString(10);
9627        } else {
9628          EltTy = T;
9629        }
9630
9631        // Retrieve the last enumerator's value, extent that type to the
9632        // type that is supposed to be large enough to represent the incremented
9633        // value, then increment.
9634        EnumVal = LastEnumConst->getInitVal();
9635        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9636        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9637        ++EnumVal;
9638
9639        // If we're not in C++, diagnose the overflow of enumerator values,
9640        // which in C99 means that the enumerator value is not representable in
9641        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9642        // permits enumerator values that are representable in some larger
9643        // integral type.
9644        if (!getLangOptions().CPlusPlus && !T.isNull())
9645          Diag(IdLoc, diag::warn_enum_value_overflow);
9646      } else if (!getLangOptions().CPlusPlus &&
9647                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9648        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9649        Diag(IdLoc, diag::ext_enum_value_not_int)
9650          << EnumVal.toString(10) << 1;
9651      }
9652    }
9653  }
9654
9655  if (!EltTy->isDependentType()) {
9656    // Make the enumerator value match the signedness and size of the
9657    // enumerator's type.
9658    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9659    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9660  }
9661
9662  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9663                                  Val, EnumVal);
9664}
9665
9666
9667Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9668                              SourceLocation IdLoc, IdentifierInfo *Id,
9669                              AttributeList *Attr,
9670                              SourceLocation EqualLoc, Expr *val) {
9671  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9672  EnumConstantDecl *LastEnumConst =
9673    cast_or_null<EnumConstantDecl>(lastEnumConst);
9674  Expr *Val = static_cast<Expr*>(val);
9675
9676  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9677  // we find one that is.
9678  S = getNonFieldDeclScope(S);
9679
9680  // Verify that there isn't already something declared with this name in this
9681  // scope.
9682  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9683                                         ForRedeclaration);
9684  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9685    // Maybe we will complain about the shadowed template parameter.
9686    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9687    // Just pretend that we didn't see the previous declaration.
9688    PrevDecl = 0;
9689  }
9690
9691  if (PrevDecl) {
9692    // When in C++, we may get a TagDecl with the same name; in this case the
9693    // enum constant will 'hide' the tag.
9694    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9695           "Received TagDecl when not in C++!");
9696    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9697      if (isa<EnumConstantDecl>(PrevDecl))
9698        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9699      else
9700        Diag(IdLoc, diag::err_redefinition) << Id;
9701      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9702      return 0;
9703    }
9704  }
9705
9706  // C++ [class.mem]p13:
9707  //   If T is the name of a class, then each of the following shall have a
9708  //   name different from T:
9709  //     - every enumerator of every member of class T that is an enumerated
9710  //       type
9711  if (CXXRecordDecl *Record
9712                      = dyn_cast<CXXRecordDecl>(
9713                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9714    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9715      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9716
9717  EnumConstantDecl *New =
9718    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9719
9720  if (New) {
9721    // Process attributes.
9722    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9723
9724    // Register this decl in the current scope stack.
9725    New->setAccess(TheEnumDecl->getAccess());
9726    PushOnScopeChains(New, S);
9727  }
9728
9729  return New;
9730}
9731
9732void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9733                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9734                         Decl **Elements, unsigned NumElements,
9735                         Scope *S, AttributeList *Attr) {
9736  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9737  QualType EnumType = Context.getTypeDeclType(Enum);
9738
9739  if (Attr)
9740    ProcessDeclAttributeList(S, Enum, Attr);
9741
9742  if (Enum->isDependentType()) {
9743    for (unsigned i = 0; i != NumElements; ++i) {
9744      EnumConstantDecl *ECD =
9745        cast_or_null<EnumConstantDecl>(Elements[i]);
9746      if (!ECD) continue;
9747
9748      ECD->setType(EnumType);
9749    }
9750
9751    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9752    return;
9753  }
9754
9755  // TODO: If the result value doesn't fit in an int, it must be a long or long
9756  // long value.  ISO C does not support this, but GCC does as an extension,
9757  // emit a warning.
9758  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9759  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9760  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9761
9762  // Verify that all the values are okay, compute the size of the values, and
9763  // reverse the list.
9764  unsigned NumNegativeBits = 0;
9765  unsigned NumPositiveBits = 0;
9766
9767  // Keep track of whether all elements have type int.
9768  bool AllElementsInt = true;
9769
9770  for (unsigned i = 0; i != NumElements; ++i) {
9771    EnumConstantDecl *ECD =
9772      cast_or_null<EnumConstantDecl>(Elements[i]);
9773    if (!ECD) continue;  // Already issued a diagnostic.
9774
9775    const llvm::APSInt &InitVal = ECD->getInitVal();
9776
9777    // Keep track of the size of positive and negative values.
9778    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9779      NumPositiveBits = std::max(NumPositiveBits,
9780                                 (unsigned)InitVal.getActiveBits());
9781    else
9782      NumNegativeBits = std::max(NumNegativeBits,
9783                                 (unsigned)InitVal.getMinSignedBits());
9784
9785    // Keep track of whether every enum element has type int (very commmon).
9786    if (AllElementsInt)
9787      AllElementsInt = ECD->getType() == Context.IntTy;
9788  }
9789
9790  // Figure out the type that should be used for this enum.
9791  QualType BestType;
9792  unsigned BestWidth;
9793
9794  // C++0x N3000 [conv.prom]p3:
9795  //   An rvalue of an unscoped enumeration type whose underlying
9796  //   type is not fixed can be converted to an rvalue of the first
9797  //   of the following types that can represent all the values of
9798  //   the enumeration: int, unsigned int, long int, unsigned long
9799  //   int, long long int, or unsigned long long int.
9800  // C99 6.4.4.3p2:
9801  //   An identifier declared as an enumeration constant has type int.
9802  // The C99 rule is modified by a gcc extension
9803  QualType BestPromotionType;
9804
9805  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9806  // -fshort-enums is the equivalent to specifying the packed attribute on all
9807  // enum definitions.
9808  if (LangOpts.ShortEnums)
9809    Packed = true;
9810
9811  if (Enum->isFixed()) {
9812    BestType = Enum->getIntegerType();
9813    if (BestType->isPromotableIntegerType())
9814      BestPromotionType = Context.getPromotedIntegerType(BestType);
9815    else
9816      BestPromotionType = BestType;
9817    // We don't need to set BestWidth, because BestType is going to be the type
9818    // of the enumerators, but we do anyway because otherwise some compilers
9819    // warn that it might be used uninitialized.
9820    BestWidth = CharWidth;
9821  }
9822  else if (NumNegativeBits) {
9823    // If there is a negative value, figure out the smallest integer type (of
9824    // int/long/longlong) that fits.
9825    // If it's packed, check also if it fits a char or a short.
9826    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9827      BestType = Context.SignedCharTy;
9828      BestWidth = CharWidth;
9829    } else if (Packed && NumNegativeBits <= ShortWidth &&
9830               NumPositiveBits < ShortWidth) {
9831      BestType = Context.ShortTy;
9832      BestWidth = ShortWidth;
9833    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9834      BestType = Context.IntTy;
9835      BestWidth = IntWidth;
9836    } else {
9837      BestWidth = Context.getTargetInfo().getLongWidth();
9838
9839      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9840        BestType = Context.LongTy;
9841      } else {
9842        BestWidth = Context.getTargetInfo().getLongLongWidth();
9843
9844        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9845          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9846        BestType = Context.LongLongTy;
9847      }
9848    }
9849    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9850  } else {
9851    // If there is no negative value, figure out the smallest type that fits
9852    // all of the enumerator values.
9853    // If it's packed, check also if it fits a char or a short.
9854    if (Packed && NumPositiveBits <= CharWidth) {
9855      BestType = Context.UnsignedCharTy;
9856      BestPromotionType = Context.IntTy;
9857      BestWidth = CharWidth;
9858    } else if (Packed && NumPositiveBits <= ShortWidth) {
9859      BestType = Context.UnsignedShortTy;
9860      BestPromotionType = Context.IntTy;
9861      BestWidth = ShortWidth;
9862    } else if (NumPositiveBits <= IntWidth) {
9863      BestType = Context.UnsignedIntTy;
9864      BestWidth = IntWidth;
9865      BestPromotionType
9866        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9867                           ? Context.UnsignedIntTy : Context.IntTy;
9868    } else if (NumPositiveBits <=
9869               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9870      BestType = Context.UnsignedLongTy;
9871      BestPromotionType
9872        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9873                           ? Context.UnsignedLongTy : Context.LongTy;
9874    } else {
9875      BestWidth = Context.getTargetInfo().getLongLongWidth();
9876      assert(NumPositiveBits <= BestWidth &&
9877             "How could an initializer get larger than ULL?");
9878      BestType = Context.UnsignedLongLongTy;
9879      BestPromotionType
9880        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9881                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9882    }
9883  }
9884
9885  // Loop over all of the enumerator constants, changing their types to match
9886  // the type of the enum if needed.
9887  for (unsigned i = 0; i != NumElements; ++i) {
9888    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9889    if (!ECD) continue;  // Already issued a diagnostic.
9890
9891    // Standard C says the enumerators have int type, but we allow, as an
9892    // extension, the enumerators to be larger than int size.  If each
9893    // enumerator value fits in an int, type it as an int, otherwise type it the
9894    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9895    // that X has type 'int', not 'unsigned'.
9896
9897    // Determine whether the value fits into an int.
9898    llvm::APSInt InitVal = ECD->getInitVal();
9899
9900    // If it fits into an integer type, force it.  Otherwise force it to match
9901    // the enum decl type.
9902    QualType NewTy;
9903    unsigned NewWidth;
9904    bool NewSign;
9905    if (!getLangOptions().CPlusPlus &&
9906        !Enum->isFixed() &&
9907        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9908      NewTy = Context.IntTy;
9909      NewWidth = IntWidth;
9910      NewSign = true;
9911    } else if (ECD->getType() == BestType) {
9912      // Already the right type!
9913      if (getLangOptions().CPlusPlus)
9914        // C++ [dcl.enum]p4: Following the closing brace of an
9915        // enum-specifier, each enumerator has the type of its
9916        // enumeration.
9917        ECD->setType(EnumType);
9918      continue;
9919    } else {
9920      NewTy = BestType;
9921      NewWidth = BestWidth;
9922      NewSign = BestType->isSignedIntegerOrEnumerationType();
9923    }
9924
9925    // Adjust the APSInt value.
9926    InitVal = InitVal.extOrTrunc(NewWidth);
9927    InitVal.setIsSigned(NewSign);
9928    ECD->setInitVal(InitVal);
9929
9930    // Adjust the Expr initializer and type.
9931    if (ECD->getInitExpr() &&
9932        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9933      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9934                                                CK_IntegralCast,
9935                                                ECD->getInitExpr(),
9936                                                /*base paths*/ 0,
9937                                                VK_RValue));
9938    if (getLangOptions().CPlusPlus)
9939      // C++ [dcl.enum]p4: Following the closing brace of an
9940      // enum-specifier, each enumerator has the type of its
9941      // enumeration.
9942      ECD->setType(EnumType);
9943    else
9944      ECD->setType(NewTy);
9945  }
9946
9947  Enum->completeDefinition(BestType, BestPromotionType,
9948                           NumPositiveBits, NumNegativeBits);
9949}
9950
9951Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9952                                  SourceLocation StartLoc,
9953                                  SourceLocation EndLoc) {
9954  StringLiteral *AsmString = cast<StringLiteral>(expr);
9955
9956  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9957                                                   AsmString, StartLoc,
9958                                                   EndLoc);
9959  CurContext->addDecl(New);
9960  return New;
9961}
9962
9963DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
9964                                   SourceLocation ImportLoc,
9965                                   ModuleIdPath Path) {
9966  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
9967                                                Module::AllVisible,
9968                                                /*IsIncludeDirective=*/false);
9969  if (!Mod)
9970    return true;
9971
9972  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
9973  Module *ModCheck = Mod;
9974  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
9975    // If we've run out of module parents, just drop the remaining identifiers.
9976    // We need the length to be consistent.
9977    if (!ModCheck)
9978      break;
9979    ModCheck = ModCheck->Parent;
9980
9981    IdentifierLocs.push_back(Path[I].second);
9982  }
9983
9984  ImportDecl *Import = ImportDecl::Create(Context,
9985                                          Context.getTranslationUnitDecl(),
9986                                          AtLoc.isValid()? AtLoc : ImportLoc,
9987                                          Mod, IdentifierLocs);
9988  Context.getTranslationUnitDecl()->addDecl(Import);
9989  return Import;
9990}
9991
9992void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9993                             SourceLocation PragmaLoc,
9994                             SourceLocation NameLoc) {
9995  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9996
9997  if (PrevDecl) {
9998    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9999  } else {
10000    (void)WeakUndeclaredIdentifiers.insert(
10001      std::pair<IdentifierInfo*,WeakInfo>
10002        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10003  }
10004}
10005
10006void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10007                                IdentifierInfo* AliasName,
10008                                SourceLocation PragmaLoc,
10009                                SourceLocation NameLoc,
10010                                SourceLocation AliasNameLoc) {
10011  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10012                                    LookupOrdinaryName);
10013  WeakInfo W = WeakInfo(Name, NameLoc);
10014
10015  if (PrevDecl) {
10016    if (!PrevDecl->hasAttr<AliasAttr>())
10017      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10018        DeclApplyPragmaWeak(TUScope, ND, W);
10019  } else {
10020    (void)WeakUndeclaredIdentifiers.insert(
10021      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10022  }
10023}
10024
10025Decl *Sema::getObjCDeclContext() const {
10026  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10027}
10028
10029AvailabilityResult Sema::getCurContextAvailability() const {
10030  const Decl *D = cast<Decl>(getCurLexicalContext());
10031  // A category implicitly has the availability of the interface.
10032  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10033    D = CatD->getClassInterface();
10034
10035  return D->getAvailability();
10036}
10037