SemaDecl.cpp revision f30527901f84c9bf223db143b216a9061ee9e342
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->getLinkage() == ExternalLinkage)
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// \brief Looks up the declaration of "struct objc_super" and
1468/// saves it for later use in building builtin declaration of
1469/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1470/// pre-existing declaration exists no action takes place.
1471static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1472                                        IdentifierInfo *II) {
1473  if (!II->isStr("objc_msgSendSuper"))
1474    return;
1475  ASTContext &Context = ThisSema.Context;
1476
1477  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1478                      SourceLocation(), Sema::LookupTagName);
1479  ThisSema.LookupName(Result, S);
1480  if (Result.getResultKind() == LookupResult::Found)
1481    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1482      Context.setObjCSuperType(Context.getTagDeclType(TD));
1483}
1484
1485/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1486/// file scope.  lazily create a decl for it. ForRedeclaration is true
1487/// if we're creating this built-in in anticipation of redeclaring the
1488/// built-in.
1489NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1490                                     Scope *S, bool ForRedeclaration,
1491                                     SourceLocation Loc) {
1492  LookupPredefedObjCSuperType(*this, S, II);
1493
1494  Builtin::ID BID = (Builtin::ID)bid;
1495
1496  ASTContext::GetBuiltinTypeError Error;
1497  QualType R = Context.GetBuiltinType(BID, Error);
1498  switch (Error) {
1499  case ASTContext::GE_None:
1500    // Okay
1501    break;
1502
1503  case ASTContext::GE_Missing_stdio:
1504    if (ForRedeclaration)
1505      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1506        << Context.BuiltinInfo.GetName(BID);
1507    return 0;
1508
1509  case ASTContext::GE_Missing_setjmp:
1510    if (ForRedeclaration)
1511      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1512        << Context.BuiltinInfo.GetName(BID);
1513    return 0;
1514
1515  case ASTContext::GE_Missing_ucontext:
1516    if (ForRedeclaration)
1517      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1518        << Context.BuiltinInfo.GetName(BID);
1519    return 0;
1520  }
1521
1522  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1523    Diag(Loc, diag::ext_implicit_lib_function_decl)
1524      << Context.BuiltinInfo.GetName(BID)
1525      << R;
1526    if (Context.BuiltinInfo.getHeaderName(BID) &&
1527        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1528          != DiagnosticsEngine::Ignored)
1529      Diag(Loc, diag::note_please_include_header)
1530        << Context.BuiltinInfo.getHeaderName(BID)
1531        << Context.BuiltinInfo.GetName(BID);
1532  }
1533
1534  FunctionDecl *New = FunctionDecl::Create(Context,
1535                                           Context.getTranslationUnitDecl(),
1536                                           Loc, Loc, II, R, /*TInfo=*/0,
1537                                           SC_Extern,
1538                                           SC_None, false,
1539                                           /*hasPrototype=*/true);
1540  New->setImplicit();
1541
1542  // Create Decl objects for each parameter, adding them to the
1543  // FunctionDecl.
1544  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1545    SmallVector<ParmVarDecl*, 16> Params;
1546    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1547      ParmVarDecl *parm =
1548        ParmVarDecl::Create(Context, New, SourceLocation(),
1549                            SourceLocation(), 0,
1550                            FT->getArgType(i), /*TInfo=*/0,
1551                            SC_None, SC_None, 0);
1552      parm->setScopeInfo(0, i);
1553      Params.push_back(parm);
1554    }
1555    New->setParams(Params);
1556  }
1557
1558  AddKnownFunctionAttributes(New);
1559
1560  // TUScope is the translation-unit scope to insert this function into.
1561  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1562  // relate Scopes to DeclContexts, and probably eliminate CurContext
1563  // entirely, but we're not there yet.
1564  DeclContext *SavedContext = CurContext;
1565  CurContext = Context.getTranslationUnitDecl();
1566  PushOnScopeChains(New, TUScope);
1567  CurContext = SavedContext;
1568  return New;
1569}
1570
1571/// \brief Filter out any previous declarations that the given declaration
1572/// should not consider because they are not permitted to conflict, e.g.,
1573/// because they come from hidden sub-modules and do not refer to the same
1574/// entity.
1575static void filterNonConflictingPreviousDecls(ASTContext &context,
1576                                              NamedDecl *decl,
1577                                              LookupResult &previous){
1578  // This is only interesting when modules are enabled.
1579  if (!context.getLangOpts().Modules)
1580    return;
1581
1582  // Empty sets are uninteresting.
1583  if (previous.empty())
1584    return;
1585
1586  // If this declaration has external
1587  bool hasExternalLinkage = (decl->getLinkage() == ExternalLinkage);
1588
1589  LookupResult::Filter filter = previous.makeFilter();
1590  while (filter.hasNext()) {
1591    NamedDecl *old = filter.next();
1592
1593    // Non-hidden declarations are never ignored.
1594    if (!old->isHidden())
1595      continue;
1596
1597    // If either has no-external linkage, ignore the old declaration.
1598    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1599      filter.erase();
1600  }
1601
1602  filter.done();
1603}
1604
1605bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1606  QualType OldType;
1607  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1608    OldType = OldTypedef->getUnderlyingType();
1609  else
1610    OldType = Context.getTypeDeclType(Old);
1611  QualType NewType = New->getUnderlyingType();
1612
1613  if (NewType->isVariablyModifiedType()) {
1614    // Must not redefine a typedef with a variably-modified type.
1615    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1616    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1617      << Kind << NewType;
1618    if (Old->getLocation().isValid())
1619      Diag(Old->getLocation(), diag::note_previous_definition);
1620    New->setInvalidDecl();
1621    return true;
1622  }
1623
1624  if (OldType != NewType &&
1625      !OldType->isDependentType() &&
1626      !NewType->isDependentType() &&
1627      !Context.hasSameType(OldType, NewType)) {
1628    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1629    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1630      << Kind << NewType << OldType;
1631    if (Old->getLocation().isValid())
1632      Diag(Old->getLocation(), diag::note_previous_definition);
1633    New->setInvalidDecl();
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1640/// same name and scope as a previous declaration 'Old'.  Figure out
1641/// how to resolve this situation, merging decls or emitting
1642/// diagnostics as appropriate. If there was an error, set New to be invalid.
1643///
1644void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1645  // If the new decl is known invalid already, don't bother doing any
1646  // merging checks.
1647  if (New->isInvalidDecl()) return;
1648
1649  // Allow multiple definitions for ObjC built-in typedefs.
1650  // FIXME: Verify the underlying types are equivalent!
1651  if (getLangOpts().ObjC1) {
1652    const IdentifierInfo *TypeID = New->getIdentifier();
1653    switch (TypeID->getLength()) {
1654    default: break;
1655    case 2:
1656      {
1657        if (!TypeID->isStr("id"))
1658          break;
1659        QualType T = New->getUnderlyingType();
1660        if (!T->isPointerType())
1661          break;
1662        if (!T->isVoidPointerType()) {
1663          QualType PT = T->getAs<PointerType>()->getPointeeType();
1664          if (!PT->isStructureType())
1665            break;
1666        }
1667        Context.setObjCIdRedefinitionType(T);
1668        // Install the built-in type for 'id', ignoring the current definition.
1669        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1670        return;
1671      }
1672    case 5:
1673      if (!TypeID->isStr("Class"))
1674        break;
1675      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1676      // Install the built-in type for 'Class', ignoring the current definition.
1677      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1678      return;
1679    case 3:
1680      if (!TypeID->isStr("SEL"))
1681        break;
1682      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1683      // Install the built-in type for 'SEL', ignoring the current definition.
1684      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1685      return;
1686    }
1687    // Fall through - the typedef name was not a builtin type.
1688  }
1689
1690  // Verify the old decl was also a type.
1691  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1692  if (!Old) {
1693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1694      << New->getDeclName();
1695
1696    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1697    if (OldD->getLocation().isValid())
1698      Diag(OldD->getLocation(), diag::note_previous_definition);
1699
1700    return New->setInvalidDecl();
1701  }
1702
1703  // If the old declaration is invalid, just give up here.
1704  if (Old->isInvalidDecl())
1705    return New->setInvalidDecl();
1706
1707  // If the typedef types are not identical, reject them in all languages and
1708  // with any extensions enabled.
1709  if (isIncompatibleTypedef(Old, New))
1710    return;
1711
1712  // The types match.  Link up the redeclaration chain if the old
1713  // declaration was a typedef.
1714  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1715    New->setPreviousDeclaration(Typedef);
1716
1717  if (getLangOpts().MicrosoftExt)
1718    return;
1719
1720  if (getLangOpts().CPlusPlus) {
1721    // C++ [dcl.typedef]p2:
1722    //   In a given non-class scope, a typedef specifier can be used to
1723    //   redefine the name of any type declared in that scope to refer
1724    //   to the type to which it already refers.
1725    if (!isa<CXXRecordDecl>(CurContext))
1726      return;
1727
1728    // C++0x [dcl.typedef]p4:
1729    //   In a given class scope, a typedef specifier can be used to redefine
1730    //   any class-name declared in that scope that is not also a typedef-name
1731    //   to refer to the type to which it already refers.
1732    //
1733    // This wording came in via DR424, which was a correction to the
1734    // wording in DR56, which accidentally banned code like:
1735    //
1736    //   struct S {
1737    //     typedef struct A { } A;
1738    //   };
1739    //
1740    // in the C++03 standard. We implement the C++0x semantics, which
1741    // allow the above but disallow
1742    //
1743    //   struct S {
1744    //     typedef int I;
1745    //     typedef int I;
1746    //   };
1747    //
1748    // since that was the intent of DR56.
1749    if (!isa<TypedefNameDecl>(Old))
1750      return;
1751
1752    Diag(New->getLocation(), diag::err_redefinition)
1753      << New->getDeclName();
1754    Diag(Old->getLocation(), diag::note_previous_definition);
1755    return New->setInvalidDecl();
1756  }
1757
1758  // Modules always permit redefinition of typedefs, as does C11.
1759  if (getLangOpts().Modules || getLangOpts().C11)
1760    return;
1761
1762  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1763  // is normally mapped to an error, but can be controlled with
1764  // -Wtypedef-redefinition.  If either the original or the redefinition is
1765  // in a system header, don't emit this for compatibility with GCC.
1766  if (getDiagnostics().getSuppressSystemWarnings() &&
1767      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1768       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1769    return;
1770
1771  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1772    << New->getDeclName();
1773  Diag(Old->getLocation(), diag::note_previous_definition);
1774  return;
1775}
1776
1777/// DeclhasAttr - returns true if decl Declaration already has the target
1778/// attribute.
1779static bool
1780DeclHasAttr(const Decl *D, const Attr *A) {
1781  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1782  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1783  // responsible for making sure they are consistent.
1784  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1785  if (AA)
1786    return false;
1787
1788  // The following thread safety attributes can also be duplicated.
1789  switch (A->getKind()) {
1790    case attr::ExclusiveLocksRequired:
1791    case attr::SharedLocksRequired:
1792    case attr::LocksExcluded:
1793    case attr::ExclusiveLockFunction:
1794    case attr::SharedLockFunction:
1795    case attr::UnlockFunction:
1796    case attr::ExclusiveTrylockFunction:
1797    case attr::SharedTrylockFunction:
1798    case attr::GuardedBy:
1799    case attr::PtGuardedBy:
1800    case attr::AcquiredBefore:
1801    case attr::AcquiredAfter:
1802      return false;
1803    default:
1804      ;
1805  }
1806
1807  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1808  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1809  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1810    if ((*i)->getKind() == A->getKind()) {
1811      if (Ann) {
1812        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1813          return true;
1814        continue;
1815      }
1816      // FIXME: Don't hardcode this check
1817      if (OA && isa<OwnershipAttr>(*i))
1818        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1819      return true;
1820    }
1821
1822  return false;
1823}
1824
1825bool Sema::mergeDeclAttribute(NamedDecl *D, InheritableAttr *Attr,
1826                              bool Override) {
1827  InheritableAttr *NewAttr = NULL;
1828  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1829    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1830                                    AA->getIntroduced(), AA->getDeprecated(),
1831                                    AA->getObsoleted(), AA->getUnavailable(),
1832                                    AA->getMessage(), Override);
1833  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1834    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1835  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1836    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1837  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1838    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1839  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1840    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1841                              FA->getFormatIdx(), FA->getFirstArg());
1842  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1843    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1844  else if (!DeclHasAttr(D, Attr))
1845    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1846
1847  if (NewAttr) {
1848    NewAttr->setInherited(true);
1849    D->addAttr(NewAttr);
1850    return true;
1851  }
1852
1853  return false;
1854}
1855
1856static const Decl *getDefinition(const Decl *D) {
1857  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1858    return TD->getDefinition();
1859  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1860    return VD->getDefinition();
1861  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1862    const FunctionDecl* Def;
1863    if (FD->hasBody(Def))
1864      return Def;
1865  }
1866  return NULL;
1867}
1868
1869static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1870  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1871       I != E; ++I) {
1872    Attr *Attribute = *I;
1873    if (Attribute->getKind() == Kind)
1874      return true;
1875  }
1876  return false;
1877}
1878
1879/// checkNewAttributesAfterDef - If we already have a definition, check that
1880/// there are no new attributes in this declaration.
1881static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1882  if (!New->hasAttrs())
1883    return;
1884
1885  const Decl *Def = getDefinition(Old);
1886  if (!Def || Def == New)
1887    return;
1888
1889  AttrVec &NewAttributes = New->getAttrs();
1890  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1891    const Attr *NewAttribute = NewAttributes[I];
1892    if (hasAttribute(Def, NewAttribute->getKind())) {
1893      ++I;
1894      continue; // regular attr merging will take care of validating this.
1895    }
1896    S.Diag(NewAttribute->getLocation(),
1897           diag::warn_attribute_precede_definition);
1898    S.Diag(Def->getLocation(), diag::note_previous_definition);
1899    NewAttributes.erase(NewAttributes.begin() + I);
1900    --E;
1901  }
1902}
1903
1904/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1905void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
1906                               AvailabilityMergeKind AMK) {
1907  // attributes declared post-definition are currently ignored
1908  checkNewAttributesAfterDef(*this, New, Old);
1909
1910  if (!Old->hasAttrs())
1911    return;
1912
1913  bool foundAny = New->hasAttrs();
1914
1915  // Ensure that any moving of objects within the allocated map is done before
1916  // we process them.
1917  if (!foundAny) New->setAttrs(AttrVec());
1918
1919  for (specific_attr_iterator<InheritableAttr>
1920         i = Old->specific_attr_begin<InheritableAttr>(),
1921         e = Old->specific_attr_end<InheritableAttr>();
1922       i != e; ++i) {
1923    bool Override = false;
1924    // Ignore deprecated/unavailable/availability attributes if requested.
1925    if (isa<DeprecatedAttr>(*i) ||
1926        isa<UnavailableAttr>(*i) ||
1927        isa<AvailabilityAttr>(*i)) {
1928      switch (AMK) {
1929      case AMK_None:
1930        continue;
1931
1932      case AMK_Redeclaration:
1933        break;
1934
1935      case AMK_Override:
1936        Override = true;
1937        break;
1938      }
1939    }
1940
1941    if (mergeDeclAttribute(New, *i, Override))
1942      foundAny = true;
1943  }
1944
1945  if (!foundAny) New->dropAttrs();
1946}
1947
1948/// mergeParamDeclAttributes - Copy attributes from the old parameter
1949/// to the new one.
1950static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1951                                     const ParmVarDecl *oldDecl,
1952                                     ASTContext &C) {
1953  if (!oldDecl->hasAttrs())
1954    return;
1955
1956  bool foundAny = newDecl->hasAttrs();
1957
1958  // Ensure that any moving of objects within the allocated map is
1959  // done before we process them.
1960  if (!foundAny) newDecl->setAttrs(AttrVec());
1961
1962  for (specific_attr_iterator<InheritableParamAttr>
1963       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1964       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1965    if (!DeclHasAttr(newDecl, *i)) {
1966      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1967      newAttr->setInherited(true);
1968      newDecl->addAttr(newAttr);
1969      foundAny = true;
1970    }
1971  }
1972
1973  if (!foundAny) newDecl->dropAttrs();
1974}
1975
1976namespace {
1977
1978/// Used in MergeFunctionDecl to keep track of function parameters in
1979/// C.
1980struct GNUCompatibleParamWarning {
1981  ParmVarDecl *OldParm;
1982  ParmVarDecl *NewParm;
1983  QualType PromotedType;
1984};
1985
1986}
1987
1988/// getSpecialMember - get the special member enum for a method.
1989Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1990  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1991    if (Ctor->isDefaultConstructor())
1992      return Sema::CXXDefaultConstructor;
1993
1994    if (Ctor->isCopyConstructor())
1995      return Sema::CXXCopyConstructor;
1996
1997    if (Ctor->isMoveConstructor())
1998      return Sema::CXXMoveConstructor;
1999  } else if (isa<CXXDestructorDecl>(MD)) {
2000    return Sema::CXXDestructor;
2001  } else if (MD->isCopyAssignmentOperator()) {
2002    return Sema::CXXCopyAssignment;
2003  } else if (MD->isMoveAssignmentOperator()) {
2004    return Sema::CXXMoveAssignment;
2005  }
2006
2007  return Sema::CXXInvalid;
2008}
2009
2010/// canRedefineFunction - checks if a function can be redefined. Currently,
2011/// only extern inline functions can be redefined, and even then only in
2012/// GNU89 mode.
2013static bool canRedefineFunction(const FunctionDecl *FD,
2014                                const LangOptions& LangOpts) {
2015  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2016          !LangOpts.CPlusPlus &&
2017          FD->isInlineSpecified() &&
2018          FD->getStorageClass() == SC_Extern);
2019}
2020
2021/// Is the given calling convention the ABI default for the given
2022/// declaration?
2023static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2024  CallingConv ABIDefaultCC;
2025  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2026    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2027  } else {
2028    // Free C function or a static method.
2029    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2030  }
2031  return ABIDefaultCC == CC;
2032}
2033
2034/// MergeFunctionDecl - We just parsed a function 'New' from
2035/// declarator D which has the same name and scope as a previous
2036/// declaration 'Old'.  Figure out how to resolve this situation,
2037/// merging decls or emitting diagnostics as appropriate.
2038///
2039/// In C++, New and Old must be declarations that are not
2040/// overloaded. Use IsOverload to determine whether New and Old are
2041/// overloaded, and to select the Old declaration that New should be
2042/// merged with.
2043///
2044/// Returns true if there was an error, false otherwise.
2045bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2046  // Verify the old decl was also a function.
2047  FunctionDecl *Old = 0;
2048  if (FunctionTemplateDecl *OldFunctionTemplate
2049        = dyn_cast<FunctionTemplateDecl>(OldD))
2050    Old = OldFunctionTemplate->getTemplatedDecl();
2051  else
2052    Old = dyn_cast<FunctionDecl>(OldD);
2053  if (!Old) {
2054    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2055      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2056      Diag(Shadow->getTargetDecl()->getLocation(),
2057           diag::note_using_decl_target);
2058      Diag(Shadow->getUsingDecl()->getLocation(),
2059           diag::note_using_decl) << 0;
2060      return true;
2061    }
2062
2063    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2064      << New->getDeclName();
2065    Diag(OldD->getLocation(), diag::note_previous_definition);
2066    return true;
2067  }
2068
2069  // Determine whether the previous declaration was a definition,
2070  // implicit declaration, or a declaration.
2071  diag::kind PrevDiag;
2072  if (Old->isThisDeclarationADefinition())
2073    PrevDiag = diag::note_previous_definition;
2074  else if (Old->isImplicit())
2075    PrevDiag = diag::note_previous_implicit_declaration;
2076  else
2077    PrevDiag = diag::note_previous_declaration;
2078
2079  QualType OldQType = Context.getCanonicalType(Old->getType());
2080  QualType NewQType = Context.getCanonicalType(New->getType());
2081
2082  // Don't complain about this if we're in GNU89 mode and the old function
2083  // is an extern inline function.
2084  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2085      New->getStorageClass() == SC_Static &&
2086      Old->getStorageClass() != SC_Static &&
2087      !canRedefineFunction(Old, getLangOpts())) {
2088    if (getLangOpts().MicrosoftExt) {
2089      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2090      Diag(Old->getLocation(), PrevDiag);
2091    } else {
2092      Diag(New->getLocation(), diag::err_static_non_static) << New;
2093      Diag(Old->getLocation(), PrevDiag);
2094      return true;
2095    }
2096  }
2097
2098  // If a function is first declared with a calling convention, but is
2099  // later declared or defined without one, the second decl assumes the
2100  // calling convention of the first.
2101  //
2102  // It's OK if a function is first declared without a calling convention,
2103  // but is later declared or defined with the default calling convention.
2104  //
2105  // For the new decl, we have to look at the NON-canonical type to tell the
2106  // difference between a function that really doesn't have a calling
2107  // convention and one that is declared cdecl. That's because in
2108  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2109  // because it is the default calling convention.
2110  //
2111  // Note also that we DO NOT return at this point, because we still have
2112  // other tests to run.
2113  const FunctionType *OldType = cast<FunctionType>(OldQType);
2114  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2115  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2116  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2117  bool RequiresAdjustment = false;
2118  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2119    // Fast path: nothing to do.
2120
2121  // Inherit the CC from the previous declaration if it was specified
2122  // there but not here.
2123  } else if (NewTypeInfo.getCC() == CC_Default) {
2124    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2125    RequiresAdjustment = true;
2126
2127  // Don't complain about mismatches when the default CC is
2128  // effectively the same as the explict one.
2129  } else if (OldTypeInfo.getCC() == CC_Default &&
2130             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2131    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2132    RequiresAdjustment = true;
2133
2134  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2135                                     NewTypeInfo.getCC())) {
2136    // Calling conventions really aren't compatible, so complain.
2137    Diag(New->getLocation(), diag::err_cconv_change)
2138      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2139      << (OldTypeInfo.getCC() == CC_Default)
2140      << (OldTypeInfo.getCC() == CC_Default ? "" :
2141          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2142    Diag(Old->getLocation(), diag::note_previous_declaration);
2143    return true;
2144  }
2145
2146  // FIXME: diagnose the other way around?
2147  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2148    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2149    RequiresAdjustment = true;
2150  }
2151
2152  // Merge regparm attribute.
2153  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2154      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2155    if (NewTypeInfo.getHasRegParm()) {
2156      Diag(New->getLocation(), diag::err_regparm_mismatch)
2157        << NewType->getRegParmType()
2158        << OldType->getRegParmType();
2159      Diag(Old->getLocation(), diag::note_previous_declaration);
2160      return true;
2161    }
2162
2163    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2164    RequiresAdjustment = true;
2165  }
2166
2167  // Merge ns_returns_retained attribute.
2168  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2169    if (NewTypeInfo.getProducesResult()) {
2170      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2171      Diag(Old->getLocation(), diag::note_previous_declaration);
2172      return true;
2173    }
2174
2175    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2176    RequiresAdjustment = true;
2177  }
2178
2179  if (RequiresAdjustment) {
2180    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2181    New->setType(QualType(NewType, 0));
2182    NewQType = Context.getCanonicalType(New->getType());
2183  }
2184
2185  if (getLangOpts().CPlusPlus) {
2186    // (C++98 13.1p2):
2187    //   Certain function declarations cannot be overloaded:
2188    //     -- Function declarations that differ only in the return type
2189    //        cannot be overloaded.
2190    QualType OldReturnType = OldType->getResultType();
2191    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2192    QualType ResQT;
2193    if (OldReturnType != NewReturnType) {
2194      if (NewReturnType->isObjCObjectPointerType()
2195          && OldReturnType->isObjCObjectPointerType())
2196        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2197      if (ResQT.isNull()) {
2198        if (New->isCXXClassMember() && New->isOutOfLine())
2199          Diag(New->getLocation(),
2200               diag::err_member_def_does_not_match_ret_type) << New;
2201        else
2202          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2203        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2204        return true;
2205      }
2206      else
2207        NewQType = ResQT;
2208    }
2209
2210    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2211    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2212    if (OldMethod && NewMethod) {
2213      // Preserve triviality.
2214      NewMethod->setTrivial(OldMethod->isTrivial());
2215
2216      // MSVC allows explicit template specialization at class scope:
2217      // 2 CXMethodDecls referring to the same function will be injected.
2218      // We don't want a redeclartion error.
2219      bool IsClassScopeExplicitSpecialization =
2220                              OldMethod->isFunctionTemplateSpecialization() &&
2221                              NewMethod->isFunctionTemplateSpecialization();
2222      bool isFriend = NewMethod->getFriendObjectKind();
2223
2224      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2225          !IsClassScopeExplicitSpecialization) {
2226        //    -- Member function declarations with the same name and the
2227        //       same parameter types cannot be overloaded if any of them
2228        //       is a static member function declaration.
2229        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2230          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2231          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2232          return true;
2233        }
2234
2235        // C++ [class.mem]p1:
2236        //   [...] A member shall not be declared twice in the
2237        //   member-specification, except that a nested class or member
2238        //   class template can be declared and then later defined.
2239        if (ActiveTemplateInstantiations.empty()) {
2240          unsigned NewDiag;
2241          if (isa<CXXConstructorDecl>(OldMethod))
2242            NewDiag = diag::err_constructor_redeclared;
2243          else if (isa<CXXDestructorDecl>(NewMethod))
2244            NewDiag = diag::err_destructor_redeclared;
2245          else if (isa<CXXConversionDecl>(NewMethod))
2246            NewDiag = diag::err_conv_function_redeclared;
2247          else
2248            NewDiag = diag::err_member_redeclared;
2249
2250          Diag(New->getLocation(), NewDiag);
2251        } else {
2252          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2253            << New << New->getType();
2254        }
2255        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2256
2257      // Complain if this is an explicit declaration of a special
2258      // member that was initially declared implicitly.
2259      //
2260      // As an exception, it's okay to befriend such methods in order
2261      // to permit the implicit constructor/destructor/operator calls.
2262      } else if (OldMethod->isImplicit()) {
2263        if (isFriend) {
2264          NewMethod->setImplicit();
2265        } else {
2266          Diag(NewMethod->getLocation(),
2267               diag::err_definition_of_implicitly_declared_member)
2268            << New << getSpecialMember(OldMethod);
2269          return true;
2270        }
2271      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2272        Diag(NewMethod->getLocation(),
2273             diag::err_definition_of_explicitly_defaulted_member)
2274          << getSpecialMember(OldMethod);
2275        return true;
2276      }
2277    }
2278
2279    // C++11 [dcl.attr.noreturn]p1:
2280    //   The first declaration of a function shall specify the noreturn
2281    //   attribute if any declaration of that function specifies the noreturn
2282    //   attribute.
2283    if (New->hasAttr<CXX11NoReturnAttr>() &&
2284        !Old->hasAttr<CXX11NoReturnAttr>()) {
2285      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2286           diag::err_noreturn_missing_on_first_decl);
2287      Diag(Old->getFirstDeclaration()->getLocation(),
2288           diag::note_noreturn_missing_first_decl);
2289    }
2290
2291    // (C++98 8.3.5p3):
2292    //   All declarations for a function shall agree exactly in both the
2293    //   return type and the parameter-type-list.
2294    // We also want to respect all the extended bits except noreturn.
2295
2296    // noreturn should now match unless the old type info didn't have it.
2297    QualType OldQTypeForComparison = OldQType;
2298    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2299      assert(OldQType == QualType(OldType, 0));
2300      const FunctionType *OldTypeForComparison
2301        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2302      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2303      assert(OldQTypeForComparison.isCanonical());
2304    }
2305
2306    if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2307      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2308      Diag(Old->getLocation(), PrevDiag);
2309      return true;
2310    }
2311
2312    if (OldQTypeForComparison == NewQType)
2313      return MergeCompatibleFunctionDecls(New, Old, S);
2314
2315    // Fall through for conflicting redeclarations and redefinitions.
2316  }
2317
2318  // C: Function types need to be compatible, not identical. This handles
2319  // duplicate function decls like "void f(int); void f(enum X);" properly.
2320  if (!getLangOpts().CPlusPlus &&
2321      Context.typesAreCompatible(OldQType, NewQType)) {
2322    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2323    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2324    const FunctionProtoType *OldProto = 0;
2325    if (isa<FunctionNoProtoType>(NewFuncType) &&
2326        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2327      // The old declaration provided a function prototype, but the
2328      // new declaration does not. Merge in the prototype.
2329      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2330      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2331                                                 OldProto->arg_type_end());
2332      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2333                                         ParamTypes.data(), ParamTypes.size(),
2334                                         OldProto->getExtProtoInfo());
2335      New->setType(NewQType);
2336      New->setHasInheritedPrototype();
2337
2338      // Synthesize a parameter for each argument type.
2339      SmallVector<ParmVarDecl*, 16> Params;
2340      for (FunctionProtoType::arg_type_iterator
2341             ParamType = OldProto->arg_type_begin(),
2342             ParamEnd = OldProto->arg_type_end();
2343           ParamType != ParamEnd; ++ParamType) {
2344        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2345                                                 SourceLocation(),
2346                                                 SourceLocation(), 0,
2347                                                 *ParamType, /*TInfo=*/0,
2348                                                 SC_None, SC_None,
2349                                                 0);
2350        Param->setScopeInfo(0, Params.size());
2351        Param->setImplicit();
2352        Params.push_back(Param);
2353      }
2354
2355      New->setParams(Params);
2356    }
2357
2358    return MergeCompatibleFunctionDecls(New, Old, S);
2359  }
2360
2361  // GNU C permits a K&R definition to follow a prototype declaration
2362  // if the declared types of the parameters in the K&R definition
2363  // match the types in the prototype declaration, even when the
2364  // promoted types of the parameters from the K&R definition differ
2365  // from the types in the prototype. GCC then keeps the types from
2366  // the prototype.
2367  //
2368  // If a variadic prototype is followed by a non-variadic K&R definition,
2369  // the K&R definition becomes variadic.  This is sort of an edge case, but
2370  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2371  // C99 6.9.1p8.
2372  if (!getLangOpts().CPlusPlus &&
2373      Old->hasPrototype() && !New->hasPrototype() &&
2374      New->getType()->getAs<FunctionProtoType>() &&
2375      Old->getNumParams() == New->getNumParams()) {
2376    SmallVector<QualType, 16> ArgTypes;
2377    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2378    const FunctionProtoType *OldProto
2379      = Old->getType()->getAs<FunctionProtoType>();
2380    const FunctionProtoType *NewProto
2381      = New->getType()->getAs<FunctionProtoType>();
2382
2383    // Determine whether this is the GNU C extension.
2384    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2385                                               NewProto->getResultType());
2386    bool LooseCompatible = !MergedReturn.isNull();
2387    for (unsigned Idx = 0, End = Old->getNumParams();
2388         LooseCompatible && Idx != End; ++Idx) {
2389      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2390      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2391      if (Context.typesAreCompatible(OldParm->getType(),
2392                                     NewProto->getArgType(Idx))) {
2393        ArgTypes.push_back(NewParm->getType());
2394      } else if (Context.typesAreCompatible(OldParm->getType(),
2395                                            NewParm->getType(),
2396                                            /*CompareUnqualified=*/true)) {
2397        GNUCompatibleParamWarning Warn
2398          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2399        Warnings.push_back(Warn);
2400        ArgTypes.push_back(NewParm->getType());
2401      } else
2402        LooseCompatible = false;
2403    }
2404
2405    if (LooseCompatible) {
2406      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2407        Diag(Warnings[Warn].NewParm->getLocation(),
2408             diag::ext_param_promoted_not_compatible_with_prototype)
2409          << Warnings[Warn].PromotedType
2410          << Warnings[Warn].OldParm->getType();
2411        if (Warnings[Warn].OldParm->getLocation().isValid())
2412          Diag(Warnings[Warn].OldParm->getLocation(),
2413               diag::note_previous_declaration);
2414      }
2415
2416      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2417                                           ArgTypes.size(),
2418                                           OldProto->getExtProtoInfo()));
2419      return MergeCompatibleFunctionDecls(New, Old, S);
2420    }
2421
2422    // Fall through to diagnose conflicting types.
2423  }
2424
2425  // A function that has already been declared has been redeclared or defined
2426  // with a different type- show appropriate diagnostic
2427  if (unsigned BuiltinID = Old->getBuiltinID()) {
2428    // The user has declared a builtin function with an incompatible
2429    // signature.
2430    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2431      // The function the user is redeclaring is a library-defined
2432      // function like 'malloc' or 'printf'. Warn about the
2433      // redeclaration, then pretend that we don't know about this
2434      // library built-in.
2435      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2436      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2437        << Old << Old->getType();
2438      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2439      Old->setInvalidDecl();
2440      return false;
2441    }
2442
2443    PrevDiag = diag::note_previous_builtin_declaration;
2444  }
2445
2446  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2447  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2448  return true;
2449}
2450
2451/// \brief Completes the merge of two function declarations that are
2452/// known to be compatible.
2453///
2454/// This routine handles the merging of attributes and other
2455/// properties of function declarations form the old declaration to
2456/// the new declaration, once we know that New is in fact a
2457/// redeclaration of Old.
2458///
2459/// \returns false
2460bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2461                                        Scope *S) {
2462  // Merge the attributes
2463  mergeDeclAttributes(New, Old);
2464
2465  // Merge the storage class.
2466  if (Old->getStorageClass() != SC_Extern &&
2467      Old->getStorageClass() != SC_None)
2468    New->setStorageClass(Old->getStorageClass());
2469
2470  // Merge "pure" flag.
2471  if (Old->isPure())
2472    New->setPure();
2473
2474  // Merge "used" flag.
2475  if (Old->isUsed(false))
2476    New->setUsed();
2477
2478  // Merge attributes from the parameters.  These can mismatch with K&R
2479  // declarations.
2480  if (New->getNumParams() == Old->getNumParams())
2481    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2482      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2483                               Context);
2484
2485  if (getLangOpts().CPlusPlus)
2486    return MergeCXXFunctionDecl(New, Old, S);
2487
2488  // Merge the function types so the we get the composite types for the return
2489  // and argument types.
2490  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2491  if (!Merged.isNull())
2492    New->setType(Merged);
2493
2494  return false;
2495}
2496
2497
2498void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2499                                ObjCMethodDecl *oldMethod) {
2500
2501  // Merge the attributes, including deprecated/unavailable
2502  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2503
2504  // Merge attributes from the parameters.
2505  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2506                                       oe = oldMethod->param_end();
2507  for (ObjCMethodDecl::param_iterator
2508         ni = newMethod->param_begin(), ne = newMethod->param_end();
2509       ni != ne && oi != oe; ++ni, ++oi)
2510    mergeParamDeclAttributes(*ni, *oi, Context);
2511
2512  CheckObjCMethodOverride(newMethod, oldMethod);
2513}
2514
2515/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2516/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2517/// emitting diagnostics as appropriate.
2518///
2519/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2520/// to here in AddInitializerToDecl. We can't check them before the initializer
2521/// is attached.
2522void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2523  if (New->isInvalidDecl() || Old->isInvalidDecl())
2524    return;
2525
2526  QualType MergedT;
2527  if (getLangOpts().CPlusPlus) {
2528    AutoType *AT = New->getType()->getContainedAutoType();
2529    if (AT && !AT->isDeduced()) {
2530      // We don't know what the new type is until the initializer is attached.
2531      return;
2532    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2533      // These could still be something that needs exception specs checked.
2534      return MergeVarDeclExceptionSpecs(New, Old);
2535    }
2536    // C++ [basic.link]p10:
2537    //   [...] the types specified by all declarations referring to a given
2538    //   object or function shall be identical, except that declarations for an
2539    //   array object can specify array types that differ by the presence or
2540    //   absence of a major array bound (8.3.4).
2541    else if (Old->getType()->isIncompleteArrayType() &&
2542             New->getType()->isArrayType()) {
2543      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2544      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2545      if (Context.hasSameType(OldArray->getElementType(),
2546                              NewArray->getElementType()))
2547        MergedT = New->getType();
2548    } else if (Old->getType()->isArrayType() &&
2549             New->getType()->isIncompleteArrayType()) {
2550      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2551      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2552      if (Context.hasSameType(OldArray->getElementType(),
2553                              NewArray->getElementType()))
2554        MergedT = Old->getType();
2555    } else if (New->getType()->isObjCObjectPointerType()
2556               && Old->getType()->isObjCObjectPointerType()) {
2557        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2558                                                        Old->getType());
2559    }
2560  } else {
2561    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2562  }
2563  if (MergedT.isNull()) {
2564    Diag(New->getLocation(), diag::err_redefinition_different_type)
2565      << New->getDeclName() << New->getType() << Old->getType();
2566    Diag(Old->getLocation(), diag::note_previous_definition);
2567    return New->setInvalidDecl();
2568  }
2569  New->setType(MergedT);
2570}
2571
2572/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2573/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2574/// situation, merging decls or emitting diagnostics as appropriate.
2575///
2576/// Tentative definition rules (C99 6.9.2p2) are checked by
2577/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2578/// definitions here, since the initializer hasn't been attached.
2579///
2580void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2581  // If the new decl is already invalid, don't do any other checking.
2582  if (New->isInvalidDecl())
2583    return;
2584
2585  // Verify the old decl was also a variable.
2586  VarDecl *Old = 0;
2587  if (!Previous.isSingleResult() ||
2588      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2589    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2590      << New->getDeclName();
2591    Diag(Previous.getRepresentativeDecl()->getLocation(),
2592         diag::note_previous_definition);
2593    return New->setInvalidDecl();
2594  }
2595
2596  // C++ [class.mem]p1:
2597  //   A member shall not be declared twice in the member-specification [...]
2598  //
2599  // Here, we need only consider static data members.
2600  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2601    Diag(New->getLocation(), diag::err_duplicate_member)
2602      << New->getIdentifier();
2603    Diag(Old->getLocation(), diag::note_previous_declaration);
2604    New->setInvalidDecl();
2605  }
2606
2607  mergeDeclAttributes(New, Old);
2608  // Warn if an already-declared variable is made a weak_import in a subsequent
2609  // declaration
2610  if (New->getAttr<WeakImportAttr>() &&
2611      Old->getStorageClass() == SC_None &&
2612      !Old->getAttr<WeakImportAttr>()) {
2613    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2614    Diag(Old->getLocation(), diag::note_previous_definition);
2615    // Remove weak_import attribute on new declaration.
2616    New->dropAttr<WeakImportAttr>();
2617  }
2618
2619  // Merge the types.
2620  MergeVarDeclTypes(New, Old);
2621  if (New->isInvalidDecl())
2622    return;
2623
2624  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2625  if (New->getStorageClass() == SC_Static &&
2626      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2627    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2628    Diag(Old->getLocation(), diag::note_previous_definition);
2629    return New->setInvalidDecl();
2630  }
2631  // C99 6.2.2p4:
2632  //   For an identifier declared with the storage-class specifier
2633  //   extern in a scope in which a prior declaration of that
2634  //   identifier is visible,23) if the prior declaration specifies
2635  //   internal or external linkage, the linkage of the identifier at
2636  //   the later declaration is the same as the linkage specified at
2637  //   the prior declaration. If no prior declaration is visible, or
2638  //   if the prior declaration specifies no linkage, then the
2639  //   identifier has external linkage.
2640  if (New->hasExternalStorage() && Old->hasLinkage())
2641    /* Okay */;
2642  else if (New->getStorageClass() != SC_Static &&
2643           Old->getStorageClass() == SC_Static) {
2644    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2645    Diag(Old->getLocation(), diag::note_previous_definition);
2646    return New->setInvalidDecl();
2647  }
2648
2649  // Check if extern is followed by non-extern and vice-versa.
2650  if (New->hasExternalStorage() &&
2651      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2652    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2653    Diag(Old->getLocation(), diag::note_previous_definition);
2654    return New->setInvalidDecl();
2655  }
2656  if (Old->hasExternalStorage() &&
2657      !New->hasLinkage() && New->isLocalVarDecl()) {
2658    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2659    Diag(Old->getLocation(), diag::note_previous_definition);
2660    return New->setInvalidDecl();
2661  }
2662
2663  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2664
2665  // FIXME: The test for external storage here seems wrong? We still
2666  // need to check for mismatches.
2667  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2668      // Don't complain about out-of-line definitions of static members.
2669      !(Old->getLexicalDeclContext()->isRecord() &&
2670        !New->getLexicalDeclContext()->isRecord())) {
2671    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2672    Diag(Old->getLocation(), diag::note_previous_definition);
2673    return New->setInvalidDecl();
2674  }
2675
2676  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2677    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2678    Diag(Old->getLocation(), diag::note_previous_definition);
2679  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2680    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2681    Diag(Old->getLocation(), diag::note_previous_definition);
2682  }
2683
2684  // C++ doesn't have tentative definitions, so go right ahead and check here.
2685  const VarDecl *Def;
2686  if (getLangOpts().CPlusPlus &&
2687      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2688      (Def = Old->getDefinition())) {
2689    Diag(New->getLocation(), diag::err_redefinition)
2690      << New->getDeclName();
2691    Diag(Def->getLocation(), diag::note_previous_definition);
2692    New->setInvalidDecl();
2693    return;
2694  }
2695
2696  if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2697    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2698    Diag(Old->getLocation(), diag::note_previous_definition);
2699    New->setInvalidDecl();
2700    return;
2701  }
2702
2703  // c99 6.2.2 P4.
2704  // For an identifier declared with the storage-class specifier extern in a
2705  // scope in which a prior declaration of that identifier is visible, if
2706  // the prior declaration specifies internal or external linkage, the linkage
2707  // of the identifier at the later declaration is the same as the linkage
2708  // specified at the prior declaration.
2709  // FIXME. revisit this code.
2710  if (New->hasExternalStorage() &&
2711      Old->getLinkage() == InternalLinkage)
2712    New->setStorageClass(Old->getStorageClass());
2713
2714  // Merge "used" flag.
2715  if (Old->isUsed(false))
2716    New->setUsed();
2717
2718  // Keep a chain of previous declarations.
2719  New->setPreviousDeclaration(Old);
2720
2721  // Inherit access appropriately.
2722  New->setAccess(Old->getAccess());
2723}
2724
2725/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2726/// no declarator (e.g. "struct foo;") is parsed.
2727Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2728                                       DeclSpec &DS) {
2729  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2730}
2731
2732/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2733/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2734/// parameters to cope with template friend declarations.
2735Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2736                                       DeclSpec &DS,
2737                                       MultiTemplateParamsArg TemplateParams) {
2738  Decl *TagD = 0;
2739  TagDecl *Tag = 0;
2740  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2741      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2742      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2743      DS.getTypeSpecType() == DeclSpec::TST_union ||
2744      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2745    TagD = DS.getRepAsDecl();
2746
2747    if (!TagD) // We probably had an error
2748      return 0;
2749
2750    // Note that the above type specs guarantee that the
2751    // type rep is a Decl, whereas in many of the others
2752    // it's a Type.
2753    if (isa<TagDecl>(TagD))
2754      Tag = cast<TagDecl>(TagD);
2755    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2756      Tag = CTD->getTemplatedDecl();
2757  }
2758
2759  if (Tag) {
2760    getASTContext().addUnnamedTag(Tag);
2761    Tag->setFreeStanding();
2762    if (Tag->isInvalidDecl())
2763      return Tag;
2764  }
2765
2766  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2767    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2768    // or incomplete types shall not be restrict-qualified."
2769    if (TypeQuals & DeclSpec::TQ_restrict)
2770      Diag(DS.getRestrictSpecLoc(),
2771           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2772           << DS.getSourceRange();
2773  }
2774
2775  if (DS.isConstexprSpecified()) {
2776    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2777    // and definitions of functions and variables.
2778    if (Tag)
2779      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2780        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2781            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2782            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2783            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2784    else
2785      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2786    // Don't emit warnings after this error.
2787    return TagD;
2788  }
2789
2790  if (DS.isFriendSpecified()) {
2791    // If we're dealing with a decl but not a TagDecl, assume that
2792    // whatever routines created it handled the friendship aspect.
2793    if (TagD && !Tag)
2794      return 0;
2795    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2796  }
2797
2798  // Track whether we warned about the fact that there aren't any
2799  // declarators.
2800  bool emittedWarning = false;
2801
2802  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2803    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2804        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2805      if (getLangOpts().CPlusPlus ||
2806          Record->getDeclContext()->isRecord())
2807        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2808
2809      Diag(DS.getLocStart(), diag::ext_no_declarators)
2810        << DS.getSourceRange();
2811      emittedWarning = true;
2812    }
2813  }
2814
2815  // Check for Microsoft C extension: anonymous struct.
2816  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2817      CurContext->isRecord() &&
2818      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2819    // Handle 2 kinds of anonymous struct:
2820    //   struct STRUCT;
2821    // and
2822    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2823    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2824    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2825        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2826         DS.getRepAsType().get()->isStructureType())) {
2827      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2828        << DS.getSourceRange();
2829      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2830    }
2831  }
2832
2833  if (getLangOpts().CPlusPlus &&
2834      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2835    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2836      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2837          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2838        Diag(Enum->getLocation(), diag::ext_no_declarators)
2839          << DS.getSourceRange();
2840        emittedWarning = true;
2841      }
2842
2843  // Skip all the checks below if we have a type error.
2844  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2845
2846  if (!DS.isMissingDeclaratorOk()) {
2847    // Warn about typedefs of enums without names, since this is an
2848    // extension in both Microsoft and GNU.
2849    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2850        Tag && isa<EnumDecl>(Tag)) {
2851      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2852        << DS.getSourceRange();
2853      return Tag;
2854    }
2855
2856    Diag(DS.getLocStart(), diag::ext_no_declarators)
2857      << DS.getSourceRange();
2858    emittedWarning = true;
2859  }
2860
2861  // We're going to complain about a bunch of spurious specifiers;
2862  // only do this if we're declaring a tag, because otherwise we
2863  // should be getting diag::ext_no_declarators.
2864  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2865    return TagD;
2866
2867  // Note that a linkage-specification sets a storage class, but
2868  // 'extern "C" struct foo;' is actually valid and not theoretically
2869  // useless.
2870  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2871    if (!DS.isExternInLinkageSpec())
2872      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2873        << DeclSpec::getSpecifierName(scs);
2874
2875  if (DS.isThreadSpecified())
2876    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2877  if (DS.getTypeQualifiers()) {
2878    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2879      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2880    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2881      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2882    // Restrict is covered above.
2883  }
2884  if (DS.isInlineSpecified())
2885    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2886  if (DS.isVirtualSpecified())
2887    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2888  if (DS.isExplicitSpecified())
2889    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2890
2891  if (DS.isModulePrivateSpecified() &&
2892      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2893    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2894      << Tag->getTagKind()
2895      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2896
2897  // Warn about ignored type attributes, for example:
2898  // __attribute__((aligned)) struct A;
2899  // Attributes should be placed after tag to apply to type declaration.
2900  if (!DS.getAttributes().empty()) {
2901    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2902    if (TypeSpecType == DeclSpec::TST_class ||
2903        TypeSpecType == DeclSpec::TST_struct ||
2904        TypeSpecType == DeclSpec::TST_interface ||
2905        TypeSpecType == DeclSpec::TST_union ||
2906        TypeSpecType == DeclSpec::TST_enum) {
2907      AttributeList* attrs = DS.getAttributes().getList();
2908      while (attrs) {
2909        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2910        << attrs->getName()
2911        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2912            TypeSpecType == DeclSpec::TST_struct ? 1 :
2913            TypeSpecType == DeclSpec::TST_union ? 2 :
2914            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2915        attrs = attrs->getNext();
2916      }
2917    }
2918  }
2919
2920  ActOnDocumentableDecl(TagD);
2921
2922  return TagD;
2923}
2924
2925/// We are trying to inject an anonymous member into the given scope;
2926/// check if there's an existing declaration that can't be overloaded.
2927///
2928/// \return true if this is a forbidden redeclaration
2929static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2930                                         Scope *S,
2931                                         DeclContext *Owner,
2932                                         DeclarationName Name,
2933                                         SourceLocation NameLoc,
2934                                         unsigned diagnostic) {
2935  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2936                 Sema::ForRedeclaration);
2937  if (!SemaRef.LookupName(R, S)) return false;
2938
2939  if (R.getAsSingle<TagDecl>())
2940    return false;
2941
2942  // Pick a representative declaration.
2943  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2944  assert(PrevDecl && "Expected a non-null Decl");
2945
2946  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2947    return false;
2948
2949  SemaRef.Diag(NameLoc, diagnostic) << Name;
2950  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2951
2952  return true;
2953}
2954
2955/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2956/// anonymous struct or union AnonRecord into the owning context Owner
2957/// and scope S. This routine will be invoked just after we realize
2958/// that an unnamed union or struct is actually an anonymous union or
2959/// struct, e.g.,
2960///
2961/// @code
2962/// union {
2963///   int i;
2964///   float f;
2965/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2966///    // f into the surrounding scope.x
2967/// @endcode
2968///
2969/// This routine is recursive, injecting the names of nested anonymous
2970/// structs/unions into the owning context and scope as well.
2971static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2972                                                DeclContext *Owner,
2973                                                RecordDecl *AnonRecord,
2974                                                AccessSpecifier AS,
2975                              SmallVector<NamedDecl*, 2> &Chaining,
2976                                                      bool MSAnonStruct) {
2977  unsigned diagKind
2978    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2979                            : diag::err_anonymous_struct_member_redecl;
2980
2981  bool Invalid = false;
2982
2983  // Look every FieldDecl and IndirectFieldDecl with a name.
2984  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2985                               DEnd = AnonRecord->decls_end();
2986       D != DEnd; ++D) {
2987    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2988        cast<NamedDecl>(*D)->getDeclName()) {
2989      ValueDecl *VD = cast<ValueDecl>(*D);
2990      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2991                                       VD->getLocation(), diagKind)) {
2992        // C++ [class.union]p2:
2993        //   The names of the members of an anonymous union shall be
2994        //   distinct from the names of any other entity in the
2995        //   scope in which the anonymous union is declared.
2996        Invalid = true;
2997      } else {
2998        // C++ [class.union]p2:
2999        //   For the purpose of name lookup, after the anonymous union
3000        //   definition, the members of the anonymous union are
3001        //   considered to have been defined in the scope in which the
3002        //   anonymous union is declared.
3003        unsigned OldChainingSize = Chaining.size();
3004        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3005          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3006               PE = IF->chain_end(); PI != PE; ++PI)
3007            Chaining.push_back(*PI);
3008        else
3009          Chaining.push_back(VD);
3010
3011        assert(Chaining.size() >= 2);
3012        NamedDecl **NamedChain =
3013          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3014        for (unsigned i = 0; i < Chaining.size(); i++)
3015          NamedChain[i] = Chaining[i];
3016
3017        IndirectFieldDecl* IndirectField =
3018          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3019                                    VD->getIdentifier(), VD->getType(),
3020                                    NamedChain, Chaining.size());
3021
3022        IndirectField->setAccess(AS);
3023        IndirectField->setImplicit();
3024        SemaRef.PushOnScopeChains(IndirectField, S);
3025
3026        // That includes picking up the appropriate access specifier.
3027        if (AS != AS_none) IndirectField->setAccess(AS);
3028
3029        Chaining.resize(OldChainingSize);
3030      }
3031    }
3032  }
3033
3034  return Invalid;
3035}
3036
3037/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3038/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3039/// illegal input values are mapped to SC_None.
3040static StorageClass
3041StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3042  switch (StorageClassSpec) {
3043  case DeclSpec::SCS_unspecified:    return SC_None;
3044  case DeclSpec::SCS_extern:         return SC_Extern;
3045  case DeclSpec::SCS_static:         return SC_Static;
3046  case DeclSpec::SCS_auto:           return SC_Auto;
3047  case DeclSpec::SCS_register:       return SC_Register;
3048  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3049    // Illegal SCSs map to None: error reporting is up to the caller.
3050  case DeclSpec::SCS_mutable:        // Fall through.
3051  case DeclSpec::SCS_typedef:        return SC_None;
3052  }
3053  llvm_unreachable("unknown storage class specifier");
3054}
3055
3056/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3057/// a StorageClass. Any error reporting is up to the caller:
3058/// illegal input values are mapped to SC_None.
3059static StorageClass
3060StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3061  switch (StorageClassSpec) {
3062  case DeclSpec::SCS_unspecified:    return SC_None;
3063  case DeclSpec::SCS_extern:         return SC_Extern;
3064  case DeclSpec::SCS_static:         return SC_Static;
3065  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3066    // Illegal SCSs map to None: error reporting is up to the caller.
3067  case DeclSpec::SCS_auto:           // Fall through.
3068  case DeclSpec::SCS_mutable:        // Fall through.
3069  case DeclSpec::SCS_register:       // Fall through.
3070  case DeclSpec::SCS_typedef:        return SC_None;
3071  }
3072  llvm_unreachable("unknown storage class specifier");
3073}
3074
3075/// BuildAnonymousStructOrUnion - Handle the declaration of an
3076/// anonymous structure or union. Anonymous unions are a C++ feature
3077/// (C++ [class.union]) and a C11 feature; anonymous structures
3078/// are a C11 feature and GNU C++ extension.
3079Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3080                                             AccessSpecifier AS,
3081                                             RecordDecl *Record) {
3082  DeclContext *Owner = Record->getDeclContext();
3083
3084  // Diagnose whether this anonymous struct/union is an extension.
3085  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3086    Diag(Record->getLocation(), diag::ext_anonymous_union);
3087  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3088    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3089  else if (!Record->isUnion() && !getLangOpts().C11)
3090    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3091
3092  // C and C++ require different kinds of checks for anonymous
3093  // structs/unions.
3094  bool Invalid = false;
3095  if (getLangOpts().CPlusPlus) {
3096    const char* PrevSpec = 0;
3097    unsigned DiagID;
3098    if (Record->isUnion()) {
3099      // C++ [class.union]p6:
3100      //   Anonymous unions declared in a named namespace or in the
3101      //   global namespace shall be declared static.
3102      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3103          (isa<TranslationUnitDecl>(Owner) ||
3104           (isa<NamespaceDecl>(Owner) &&
3105            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3106        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3107          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3108
3109        // Recover by adding 'static'.
3110        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3111                               PrevSpec, DiagID);
3112      }
3113      // C++ [class.union]p6:
3114      //   A storage class is not allowed in a declaration of an
3115      //   anonymous union in a class scope.
3116      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3117               isa<RecordDecl>(Owner)) {
3118        Diag(DS.getStorageClassSpecLoc(),
3119             diag::err_anonymous_union_with_storage_spec)
3120          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3121
3122        // Recover by removing the storage specifier.
3123        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3124                               SourceLocation(),
3125                               PrevSpec, DiagID);
3126      }
3127    }
3128
3129    // Ignore const/volatile/restrict qualifiers.
3130    if (DS.getTypeQualifiers()) {
3131      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3132        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3133          << Record->isUnion() << 0
3134          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3135      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3136        Diag(DS.getVolatileSpecLoc(),
3137             diag::ext_anonymous_struct_union_qualified)
3138          << Record->isUnion() << 1
3139          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3140      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3141        Diag(DS.getRestrictSpecLoc(),
3142             diag::ext_anonymous_struct_union_qualified)
3143          << Record->isUnion() << 2
3144          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3145
3146      DS.ClearTypeQualifiers();
3147    }
3148
3149    // C++ [class.union]p2:
3150    //   The member-specification of an anonymous union shall only
3151    //   define non-static data members. [Note: nested types and
3152    //   functions cannot be declared within an anonymous union. ]
3153    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3154                                 MemEnd = Record->decls_end();
3155         Mem != MemEnd; ++Mem) {
3156      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3157        // C++ [class.union]p3:
3158        //   An anonymous union shall not have private or protected
3159        //   members (clause 11).
3160        assert(FD->getAccess() != AS_none);
3161        if (FD->getAccess() != AS_public) {
3162          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3163            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3164          Invalid = true;
3165        }
3166
3167        // C++ [class.union]p1
3168        //   An object of a class with a non-trivial constructor, a non-trivial
3169        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3170        //   assignment operator cannot be a member of a union, nor can an
3171        //   array of such objects.
3172        if (CheckNontrivialField(FD))
3173          Invalid = true;
3174      } else if ((*Mem)->isImplicit()) {
3175        // Any implicit members are fine.
3176      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3177        // This is a type that showed up in an
3178        // elaborated-type-specifier inside the anonymous struct or
3179        // union, but which actually declares a type outside of the
3180        // anonymous struct or union. It's okay.
3181      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3182        if (!MemRecord->isAnonymousStructOrUnion() &&
3183            MemRecord->getDeclName()) {
3184          // Visual C++ allows type definition in anonymous struct or union.
3185          if (getLangOpts().MicrosoftExt)
3186            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3187              << (int)Record->isUnion();
3188          else {
3189            // This is a nested type declaration.
3190            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3191              << (int)Record->isUnion();
3192            Invalid = true;
3193          }
3194        }
3195      } else if (isa<AccessSpecDecl>(*Mem)) {
3196        // Any access specifier is fine.
3197      } else {
3198        // We have something that isn't a non-static data
3199        // member. Complain about it.
3200        unsigned DK = diag::err_anonymous_record_bad_member;
3201        if (isa<TypeDecl>(*Mem))
3202          DK = diag::err_anonymous_record_with_type;
3203        else if (isa<FunctionDecl>(*Mem))
3204          DK = diag::err_anonymous_record_with_function;
3205        else if (isa<VarDecl>(*Mem))
3206          DK = diag::err_anonymous_record_with_static;
3207
3208        // Visual C++ allows type definition in anonymous struct or union.
3209        if (getLangOpts().MicrosoftExt &&
3210            DK == diag::err_anonymous_record_with_type)
3211          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3212            << (int)Record->isUnion();
3213        else {
3214          Diag((*Mem)->getLocation(), DK)
3215              << (int)Record->isUnion();
3216          Invalid = true;
3217        }
3218      }
3219    }
3220  }
3221
3222  if (!Record->isUnion() && !Owner->isRecord()) {
3223    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3224      << (int)getLangOpts().CPlusPlus;
3225    Invalid = true;
3226  }
3227
3228  // Mock up a declarator.
3229  Declarator Dc(DS, Declarator::MemberContext);
3230  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3231  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3232
3233  // Create a declaration for this anonymous struct/union.
3234  NamedDecl *Anon = 0;
3235  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3236    Anon = FieldDecl::Create(Context, OwningClass,
3237                             DS.getLocStart(),
3238                             Record->getLocation(),
3239                             /*IdentifierInfo=*/0,
3240                             Context.getTypeDeclType(Record),
3241                             TInfo,
3242                             /*BitWidth=*/0, /*Mutable=*/false,
3243                             /*InitStyle=*/ICIS_NoInit);
3244    Anon->setAccess(AS);
3245    if (getLangOpts().CPlusPlus)
3246      FieldCollector->Add(cast<FieldDecl>(Anon));
3247  } else {
3248    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3249    assert(SCSpec != DeclSpec::SCS_typedef &&
3250           "Parser allowed 'typedef' as storage class VarDecl.");
3251    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3252    if (SCSpec == DeclSpec::SCS_mutable) {
3253      // mutable can only appear on non-static class members, so it's always
3254      // an error here
3255      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3256      Invalid = true;
3257      SC = SC_None;
3258    }
3259    SCSpec = DS.getStorageClassSpecAsWritten();
3260    VarDecl::StorageClass SCAsWritten
3261      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3262
3263    Anon = VarDecl::Create(Context, Owner,
3264                           DS.getLocStart(),
3265                           Record->getLocation(), /*IdentifierInfo=*/0,
3266                           Context.getTypeDeclType(Record),
3267                           TInfo, SC, SCAsWritten);
3268
3269    // Default-initialize the implicit variable. This initialization will be
3270    // trivial in almost all cases, except if a union member has an in-class
3271    // initializer:
3272    //   union { int n = 0; };
3273    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3274  }
3275  Anon->setImplicit();
3276
3277  // Add the anonymous struct/union object to the current
3278  // context. We'll be referencing this object when we refer to one of
3279  // its members.
3280  Owner->addDecl(Anon);
3281
3282  // Inject the members of the anonymous struct/union into the owning
3283  // context and into the identifier resolver chain for name lookup
3284  // purposes.
3285  SmallVector<NamedDecl*, 2> Chain;
3286  Chain.push_back(Anon);
3287
3288  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3289                                          Chain, false))
3290    Invalid = true;
3291
3292  // Mark this as an anonymous struct/union type. Note that we do not
3293  // do this until after we have already checked and injected the
3294  // members of this anonymous struct/union type, because otherwise
3295  // the members could be injected twice: once by DeclContext when it
3296  // builds its lookup table, and once by
3297  // InjectAnonymousStructOrUnionMembers.
3298  Record->setAnonymousStructOrUnion(true);
3299
3300  if (Invalid)
3301    Anon->setInvalidDecl();
3302
3303  return Anon;
3304}
3305
3306/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3307/// Microsoft C anonymous structure.
3308/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3309/// Example:
3310///
3311/// struct A { int a; };
3312/// struct B { struct A; int b; };
3313///
3314/// void foo() {
3315///   B var;
3316///   var.a = 3;
3317/// }
3318///
3319Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3320                                           RecordDecl *Record) {
3321
3322  // If there is no Record, get the record via the typedef.
3323  if (!Record)
3324    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3325
3326  // Mock up a declarator.
3327  Declarator Dc(DS, Declarator::TypeNameContext);
3328  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3329  assert(TInfo && "couldn't build declarator info for anonymous struct");
3330
3331  // Create a declaration for this anonymous struct.
3332  NamedDecl* Anon = FieldDecl::Create(Context,
3333                             cast<RecordDecl>(CurContext),
3334                             DS.getLocStart(),
3335                             DS.getLocStart(),
3336                             /*IdentifierInfo=*/0,
3337                             Context.getTypeDeclType(Record),
3338                             TInfo,
3339                             /*BitWidth=*/0, /*Mutable=*/false,
3340                             /*InitStyle=*/ICIS_NoInit);
3341  Anon->setImplicit();
3342
3343  // Add the anonymous struct object to the current context.
3344  CurContext->addDecl(Anon);
3345
3346  // Inject the members of the anonymous struct into the current
3347  // context and into the identifier resolver chain for name lookup
3348  // purposes.
3349  SmallVector<NamedDecl*, 2> Chain;
3350  Chain.push_back(Anon);
3351
3352  RecordDecl *RecordDef = Record->getDefinition();
3353  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3354                                                        RecordDef, AS_none,
3355                                                        Chain, true))
3356    Anon->setInvalidDecl();
3357
3358  return Anon;
3359}
3360
3361/// GetNameForDeclarator - Determine the full declaration name for the
3362/// given Declarator.
3363DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3364  return GetNameFromUnqualifiedId(D.getName());
3365}
3366
3367/// \brief Retrieves the declaration name from a parsed unqualified-id.
3368DeclarationNameInfo
3369Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3370  DeclarationNameInfo NameInfo;
3371  NameInfo.setLoc(Name.StartLocation);
3372
3373  switch (Name.getKind()) {
3374
3375  case UnqualifiedId::IK_ImplicitSelfParam:
3376  case UnqualifiedId::IK_Identifier:
3377    NameInfo.setName(Name.Identifier);
3378    NameInfo.setLoc(Name.StartLocation);
3379    return NameInfo;
3380
3381  case UnqualifiedId::IK_OperatorFunctionId:
3382    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3383                                           Name.OperatorFunctionId.Operator));
3384    NameInfo.setLoc(Name.StartLocation);
3385    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3386      = Name.OperatorFunctionId.SymbolLocations[0];
3387    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3388      = Name.EndLocation.getRawEncoding();
3389    return NameInfo;
3390
3391  case UnqualifiedId::IK_LiteralOperatorId:
3392    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3393                                                           Name.Identifier));
3394    NameInfo.setLoc(Name.StartLocation);
3395    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3396    return NameInfo;
3397
3398  case UnqualifiedId::IK_ConversionFunctionId: {
3399    TypeSourceInfo *TInfo;
3400    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3401    if (Ty.isNull())
3402      return DeclarationNameInfo();
3403    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3404                                               Context.getCanonicalType(Ty)));
3405    NameInfo.setLoc(Name.StartLocation);
3406    NameInfo.setNamedTypeInfo(TInfo);
3407    return NameInfo;
3408  }
3409
3410  case UnqualifiedId::IK_ConstructorName: {
3411    TypeSourceInfo *TInfo;
3412    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3413    if (Ty.isNull())
3414      return DeclarationNameInfo();
3415    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3416                                              Context.getCanonicalType(Ty)));
3417    NameInfo.setLoc(Name.StartLocation);
3418    NameInfo.setNamedTypeInfo(TInfo);
3419    return NameInfo;
3420  }
3421
3422  case UnqualifiedId::IK_ConstructorTemplateId: {
3423    // In well-formed code, we can only have a constructor
3424    // template-id that refers to the current context, so go there
3425    // to find the actual type being constructed.
3426    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3427    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3428      return DeclarationNameInfo();
3429
3430    // Determine the type of the class being constructed.
3431    QualType CurClassType = Context.getTypeDeclType(CurClass);
3432
3433    // FIXME: Check two things: that the template-id names the same type as
3434    // CurClassType, and that the template-id does not occur when the name
3435    // was qualified.
3436
3437    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3438                                    Context.getCanonicalType(CurClassType)));
3439    NameInfo.setLoc(Name.StartLocation);
3440    // FIXME: should we retrieve TypeSourceInfo?
3441    NameInfo.setNamedTypeInfo(0);
3442    return NameInfo;
3443  }
3444
3445  case UnqualifiedId::IK_DestructorName: {
3446    TypeSourceInfo *TInfo;
3447    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3448    if (Ty.isNull())
3449      return DeclarationNameInfo();
3450    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3451                                              Context.getCanonicalType(Ty)));
3452    NameInfo.setLoc(Name.StartLocation);
3453    NameInfo.setNamedTypeInfo(TInfo);
3454    return NameInfo;
3455  }
3456
3457  case UnqualifiedId::IK_TemplateId: {
3458    TemplateName TName = Name.TemplateId->Template.get();
3459    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3460    return Context.getNameForTemplate(TName, TNameLoc);
3461  }
3462
3463  } // switch (Name.getKind())
3464
3465  llvm_unreachable("Unknown name kind");
3466}
3467
3468static QualType getCoreType(QualType Ty) {
3469  do {
3470    if (Ty->isPointerType() || Ty->isReferenceType())
3471      Ty = Ty->getPointeeType();
3472    else if (Ty->isArrayType())
3473      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3474    else
3475      return Ty.withoutLocalFastQualifiers();
3476  } while (true);
3477}
3478
3479/// hasSimilarParameters - Determine whether the C++ functions Declaration
3480/// and Definition have "nearly" matching parameters. This heuristic is
3481/// used to improve diagnostics in the case where an out-of-line function
3482/// definition doesn't match any declaration within the class or namespace.
3483/// Also sets Params to the list of indices to the parameters that differ
3484/// between the declaration and the definition. If hasSimilarParameters
3485/// returns true and Params is empty, then all of the parameters match.
3486static bool hasSimilarParameters(ASTContext &Context,
3487                                     FunctionDecl *Declaration,
3488                                     FunctionDecl *Definition,
3489                                     SmallVectorImpl<unsigned> &Params) {
3490  Params.clear();
3491  if (Declaration->param_size() != Definition->param_size())
3492    return false;
3493  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3494    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3495    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3496
3497    // The parameter types are identical
3498    if (Context.hasSameType(DefParamTy, DeclParamTy))
3499      continue;
3500
3501    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3502    QualType DefParamBaseTy = getCoreType(DefParamTy);
3503    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3504    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3505
3506    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3507        (DeclTyName && DeclTyName == DefTyName))
3508      Params.push_back(Idx);
3509    else  // The two parameters aren't even close
3510      return false;
3511  }
3512
3513  return true;
3514}
3515
3516/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3517/// declarator needs to be rebuilt in the current instantiation.
3518/// Any bits of declarator which appear before the name are valid for
3519/// consideration here.  That's specifically the type in the decl spec
3520/// and the base type in any member-pointer chunks.
3521static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3522                                                    DeclarationName Name) {
3523  // The types we specifically need to rebuild are:
3524  //   - typenames, typeofs, and decltypes
3525  //   - types which will become injected class names
3526  // Of course, we also need to rebuild any type referencing such a
3527  // type.  It's safest to just say "dependent", but we call out a
3528  // few cases here.
3529
3530  DeclSpec &DS = D.getMutableDeclSpec();
3531  switch (DS.getTypeSpecType()) {
3532  case DeclSpec::TST_typename:
3533  case DeclSpec::TST_typeofType:
3534  case DeclSpec::TST_underlyingType:
3535  case DeclSpec::TST_atomic: {
3536    // Grab the type from the parser.
3537    TypeSourceInfo *TSI = 0;
3538    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3539    if (T.isNull() || !T->isDependentType()) break;
3540
3541    // Make sure there's a type source info.  This isn't really much
3542    // of a waste; most dependent types should have type source info
3543    // attached already.
3544    if (!TSI)
3545      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3546
3547    // Rebuild the type in the current instantiation.
3548    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3549    if (!TSI) return true;
3550
3551    // Store the new type back in the decl spec.
3552    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3553    DS.UpdateTypeRep(LocType);
3554    break;
3555  }
3556
3557  case DeclSpec::TST_decltype:
3558  case DeclSpec::TST_typeofExpr: {
3559    Expr *E = DS.getRepAsExpr();
3560    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3561    if (Result.isInvalid()) return true;
3562    DS.UpdateExprRep(Result.get());
3563    break;
3564  }
3565
3566  default:
3567    // Nothing to do for these decl specs.
3568    break;
3569  }
3570
3571  // It doesn't matter what order we do this in.
3572  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3573    DeclaratorChunk &Chunk = D.getTypeObject(I);
3574
3575    // The only type information in the declarator which can come
3576    // before the declaration name is the base type of a member
3577    // pointer.
3578    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3579      continue;
3580
3581    // Rebuild the scope specifier in-place.
3582    CXXScopeSpec &SS = Chunk.Mem.Scope();
3583    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3584      return true;
3585  }
3586
3587  return false;
3588}
3589
3590Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3591  D.setFunctionDefinitionKind(FDK_Declaration);
3592  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3593
3594  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3595      Dcl && Dcl->getDeclContext()->isFileContext())
3596    Dcl->setTopLevelDeclInObjCContainer();
3597
3598  return Dcl;
3599}
3600
3601/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3602///   If T is the name of a class, then each of the following shall have a
3603///   name different from T:
3604///     - every static data member of class T;
3605///     - every member function of class T
3606///     - every member of class T that is itself a type;
3607/// \returns true if the declaration name violates these rules.
3608bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3609                                   DeclarationNameInfo NameInfo) {
3610  DeclarationName Name = NameInfo.getName();
3611
3612  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3613    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3614      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3615      return true;
3616    }
3617
3618  return false;
3619}
3620
3621/// \brief Diagnose a declaration whose declarator-id has the given
3622/// nested-name-specifier.
3623///
3624/// \param SS The nested-name-specifier of the declarator-id.
3625///
3626/// \param DC The declaration context to which the nested-name-specifier
3627/// resolves.
3628///
3629/// \param Name The name of the entity being declared.
3630///
3631/// \param Loc The location of the name of the entity being declared.
3632///
3633/// \returns true if we cannot safely recover from this error, false otherwise.
3634bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3635                                        DeclarationName Name,
3636                                      SourceLocation Loc) {
3637  DeclContext *Cur = CurContext;
3638  while (isa<LinkageSpecDecl>(Cur))
3639    Cur = Cur->getParent();
3640
3641  // C++ [dcl.meaning]p1:
3642  //   A declarator-id shall not be qualified except for the definition
3643  //   of a member function (9.3) or static data member (9.4) outside of
3644  //   its class, the definition or explicit instantiation of a function
3645  //   or variable member of a namespace outside of its namespace, or the
3646  //   definition of an explicit specialization outside of its namespace,
3647  //   or the declaration of a friend function that is a member of
3648  //   another class or namespace (11.3). [...]
3649
3650  // The user provided a superfluous scope specifier that refers back to the
3651  // class or namespaces in which the entity is already declared.
3652  //
3653  // class X {
3654  //   void X::f();
3655  // };
3656  if (Cur->Equals(DC)) {
3657    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3658                                   : diag::err_member_extra_qualification)
3659      << Name << FixItHint::CreateRemoval(SS.getRange());
3660    SS.clear();
3661    return false;
3662  }
3663
3664  // Check whether the qualifying scope encloses the scope of the original
3665  // declaration.
3666  if (!Cur->Encloses(DC)) {
3667    if (Cur->isRecord())
3668      Diag(Loc, diag::err_member_qualification)
3669        << Name << SS.getRange();
3670    else if (isa<TranslationUnitDecl>(DC))
3671      Diag(Loc, diag::err_invalid_declarator_global_scope)
3672        << Name << SS.getRange();
3673    else if (isa<FunctionDecl>(Cur))
3674      Diag(Loc, diag::err_invalid_declarator_in_function)
3675        << Name << SS.getRange();
3676    else
3677      Diag(Loc, diag::err_invalid_declarator_scope)
3678      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3679
3680    return true;
3681  }
3682
3683  if (Cur->isRecord()) {
3684    // Cannot qualify members within a class.
3685    Diag(Loc, diag::err_member_qualification)
3686      << Name << SS.getRange();
3687    SS.clear();
3688
3689    // C++ constructors and destructors with incorrect scopes can break
3690    // our AST invariants by having the wrong underlying types. If
3691    // that's the case, then drop this declaration entirely.
3692    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3693         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3694        !Context.hasSameType(Name.getCXXNameType(),
3695                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3696      return true;
3697
3698    return false;
3699  }
3700
3701  // C++11 [dcl.meaning]p1:
3702  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3703  //   not begin with a decltype-specifer"
3704  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3705  while (SpecLoc.getPrefix())
3706    SpecLoc = SpecLoc.getPrefix();
3707  if (dyn_cast_or_null<DecltypeType>(
3708        SpecLoc.getNestedNameSpecifier()->getAsType()))
3709    Diag(Loc, diag::err_decltype_in_declarator)
3710      << SpecLoc.getTypeLoc().getSourceRange();
3711
3712  return false;
3713}
3714
3715NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3716                                  MultiTemplateParamsArg TemplateParamLists) {
3717  // TODO: consider using NameInfo for diagnostic.
3718  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3719  DeclarationName Name = NameInfo.getName();
3720
3721  // All of these full declarators require an identifier.  If it doesn't have
3722  // one, the ParsedFreeStandingDeclSpec action should be used.
3723  if (!Name) {
3724    if (!D.isInvalidType())  // Reject this if we think it is valid.
3725      Diag(D.getDeclSpec().getLocStart(),
3726           diag::err_declarator_need_ident)
3727        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3728    return 0;
3729  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3730    return 0;
3731
3732  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3733  // we find one that is.
3734  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3735         (S->getFlags() & Scope::TemplateParamScope) != 0)
3736    S = S->getParent();
3737
3738  DeclContext *DC = CurContext;
3739  if (D.getCXXScopeSpec().isInvalid())
3740    D.setInvalidType();
3741  else if (D.getCXXScopeSpec().isSet()) {
3742    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3743                                        UPPC_DeclarationQualifier))
3744      return 0;
3745
3746    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3747    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3748    if (!DC) {
3749      // If we could not compute the declaration context, it's because the
3750      // declaration context is dependent but does not refer to a class,
3751      // class template, or class template partial specialization. Complain
3752      // and return early, to avoid the coming semantic disaster.
3753      Diag(D.getIdentifierLoc(),
3754           diag::err_template_qualified_declarator_no_match)
3755        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3756        << D.getCXXScopeSpec().getRange();
3757      return 0;
3758    }
3759    bool IsDependentContext = DC->isDependentContext();
3760
3761    if (!IsDependentContext &&
3762        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3763      return 0;
3764
3765    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3766      Diag(D.getIdentifierLoc(),
3767           diag::err_member_def_undefined_record)
3768        << Name << DC << D.getCXXScopeSpec().getRange();
3769      D.setInvalidType();
3770    } else if (!D.getDeclSpec().isFriendSpecified()) {
3771      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3772                                      Name, D.getIdentifierLoc())) {
3773        if (DC->isRecord())
3774          return 0;
3775
3776        D.setInvalidType();
3777      }
3778    }
3779
3780    // Check whether we need to rebuild the type of the given
3781    // declaration in the current instantiation.
3782    if (EnteringContext && IsDependentContext &&
3783        TemplateParamLists.size() != 0) {
3784      ContextRAII SavedContext(*this, DC);
3785      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3786        D.setInvalidType();
3787    }
3788  }
3789
3790  if (DiagnoseClassNameShadow(DC, NameInfo))
3791    // If this is a typedef, we'll end up spewing multiple diagnostics.
3792    // Just return early; it's safer.
3793    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3794      return 0;
3795
3796  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3797  QualType R = TInfo->getType();
3798
3799  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3800                                      UPPC_DeclarationType))
3801    D.setInvalidType();
3802
3803  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3804                        ForRedeclaration);
3805
3806  // See if this is a redefinition of a variable in the same scope.
3807  if (!D.getCXXScopeSpec().isSet()) {
3808    bool IsLinkageLookup = false;
3809
3810    // If the declaration we're planning to build will be a function
3811    // or object with linkage, then look for another declaration with
3812    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3813    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3814      /* Do nothing*/;
3815    else if (R->isFunctionType()) {
3816      if (CurContext->isFunctionOrMethod() ||
3817          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3818        IsLinkageLookup = true;
3819    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3820      IsLinkageLookup = true;
3821    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3822             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3823      IsLinkageLookup = true;
3824
3825    if (IsLinkageLookup)
3826      Previous.clear(LookupRedeclarationWithLinkage);
3827
3828    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3829  } else { // Something like "int foo::x;"
3830    LookupQualifiedName(Previous, DC);
3831
3832    // C++ [dcl.meaning]p1:
3833    //   When the declarator-id is qualified, the declaration shall refer to a
3834    //  previously declared member of the class or namespace to which the
3835    //  qualifier refers (or, in the case of a namespace, of an element of the
3836    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3837    //  thereof; [...]
3838    //
3839    // Note that we already checked the context above, and that we do not have
3840    // enough information to make sure that Previous contains the declaration
3841    // we want to match. For example, given:
3842    //
3843    //   class X {
3844    //     void f();
3845    //     void f(float);
3846    //   };
3847    //
3848    //   void X::f(int) { } // ill-formed
3849    //
3850    // In this case, Previous will point to the overload set
3851    // containing the two f's declared in X, but neither of them
3852    // matches.
3853
3854    // C++ [dcl.meaning]p1:
3855    //   [...] the member shall not merely have been introduced by a
3856    //   using-declaration in the scope of the class or namespace nominated by
3857    //   the nested-name-specifier of the declarator-id.
3858    RemoveUsingDecls(Previous);
3859  }
3860
3861  if (Previous.isSingleResult() &&
3862      Previous.getFoundDecl()->isTemplateParameter()) {
3863    // Maybe we will complain about the shadowed template parameter.
3864    if (!D.isInvalidType())
3865      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3866                                      Previous.getFoundDecl());
3867
3868    // Just pretend that we didn't see the previous declaration.
3869    Previous.clear();
3870  }
3871
3872  // In C++, the previous declaration we find might be a tag type
3873  // (class or enum). In this case, the new declaration will hide the
3874  // tag type. Note that this does does not apply if we're declaring a
3875  // typedef (C++ [dcl.typedef]p4).
3876  if (Previous.isSingleTagDecl() &&
3877      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3878    Previous.clear();
3879
3880  NamedDecl *New;
3881
3882  bool AddToScope = true;
3883  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3884    if (TemplateParamLists.size()) {
3885      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3886      return 0;
3887    }
3888
3889    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3890  } else if (R->isFunctionType()) {
3891    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3892                                  TemplateParamLists,
3893                                  AddToScope);
3894  } else {
3895    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3896                                  TemplateParamLists);
3897  }
3898
3899  if (New == 0)
3900    return 0;
3901
3902  // If this has an identifier and is not an invalid redeclaration or
3903  // function template specialization, add it to the scope stack.
3904  if (New->getDeclName() && AddToScope &&
3905       !(D.isRedeclaration() && New->isInvalidDecl()))
3906    PushOnScopeChains(New, S);
3907
3908  return New;
3909}
3910
3911/// Helper method to turn variable array types into constant array
3912/// types in certain situations which would otherwise be errors (for
3913/// GCC compatibility).
3914static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3915                                                    ASTContext &Context,
3916                                                    bool &SizeIsNegative,
3917                                                    llvm::APSInt &Oversized) {
3918  // This method tries to turn a variable array into a constant
3919  // array even when the size isn't an ICE.  This is necessary
3920  // for compatibility with code that depends on gcc's buggy
3921  // constant expression folding, like struct {char x[(int)(char*)2];}
3922  SizeIsNegative = false;
3923  Oversized = 0;
3924
3925  if (T->isDependentType())
3926    return QualType();
3927
3928  QualifierCollector Qs;
3929  const Type *Ty = Qs.strip(T);
3930
3931  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3932    QualType Pointee = PTy->getPointeeType();
3933    QualType FixedType =
3934        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3935                                            Oversized);
3936    if (FixedType.isNull()) return FixedType;
3937    FixedType = Context.getPointerType(FixedType);
3938    return Qs.apply(Context, FixedType);
3939  }
3940  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3941    QualType Inner = PTy->getInnerType();
3942    QualType FixedType =
3943        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3944                                            Oversized);
3945    if (FixedType.isNull()) return FixedType;
3946    FixedType = Context.getParenType(FixedType);
3947    return Qs.apply(Context, FixedType);
3948  }
3949
3950  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3951  if (!VLATy)
3952    return QualType();
3953  // FIXME: We should probably handle this case
3954  if (VLATy->getElementType()->isVariablyModifiedType())
3955    return QualType();
3956
3957  llvm::APSInt Res;
3958  if (!VLATy->getSizeExpr() ||
3959      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3960    return QualType();
3961
3962  // Check whether the array size is negative.
3963  if (Res.isSigned() && Res.isNegative()) {
3964    SizeIsNegative = true;
3965    return QualType();
3966  }
3967
3968  // Check whether the array is too large to be addressed.
3969  unsigned ActiveSizeBits
3970    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3971                                              Res);
3972  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3973    Oversized = Res;
3974    return QualType();
3975  }
3976
3977  return Context.getConstantArrayType(VLATy->getElementType(),
3978                                      Res, ArrayType::Normal, 0);
3979}
3980
3981static void
3982FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
3983  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
3984    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
3985    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
3986                                      DstPTL->getPointeeLoc());
3987    DstPTL->setStarLoc(SrcPTL->getStarLoc());
3988    return;
3989  }
3990  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
3991    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
3992    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
3993                                      DstPTL->getInnerLoc());
3994    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
3995    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
3996    return;
3997  }
3998  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
3999  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
4000  TypeLoc SrcElemTL = SrcATL->getElementLoc();
4001  TypeLoc DstElemTL = DstATL->getElementLoc();
4002  DstElemTL.initializeFullCopy(SrcElemTL);
4003  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
4004  DstATL->setSizeExpr(SrcATL->getSizeExpr());
4005  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
4006}
4007
4008/// Helper method to turn variable array types into constant array
4009/// types in certain situations which would otherwise be errors (for
4010/// GCC compatibility).
4011static TypeSourceInfo*
4012TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4013                                              ASTContext &Context,
4014                                              bool &SizeIsNegative,
4015                                              llvm::APSInt &Oversized) {
4016  QualType FixedTy
4017    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4018                                          SizeIsNegative, Oversized);
4019  if (FixedTy.isNull())
4020    return 0;
4021  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4022  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4023                                    FixedTInfo->getTypeLoc());
4024  return FixedTInfo;
4025}
4026
4027/// \brief Register the given locally-scoped extern "C" declaration so
4028/// that it can be found later for redeclarations
4029void
4030Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4031                                       const LookupResult &Previous,
4032                                       Scope *S) {
4033  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4034         "Decl is not a locally-scoped decl!");
4035  // Note that we have a locally-scoped external with this name.
4036  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4037
4038  if (!Previous.isSingleResult())
4039    return;
4040
4041  NamedDecl *PrevDecl = Previous.getFoundDecl();
4042
4043  // If there was a previous declaration of this entity, it may be in
4044  // our identifier chain. Update the identifier chain with the new
4045  // declaration.
4046  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4047    // The previous declaration was found on the identifer resolver
4048    // chain, so remove it from its scope.
4049
4050    if (S->isDeclScope(PrevDecl)) {
4051      // Special case for redeclarations in the SAME scope.
4052      // Because this declaration is going to be added to the identifier chain
4053      // later, we should temporarily take it OFF the chain.
4054      IdResolver.RemoveDecl(ND);
4055
4056    } else {
4057      // Find the scope for the original declaration.
4058      while (S && !S->isDeclScope(PrevDecl))
4059        S = S->getParent();
4060    }
4061
4062    if (S)
4063      S->RemoveDecl(PrevDecl);
4064  }
4065}
4066
4067llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4068Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4069  if (ExternalSource) {
4070    // Load locally-scoped external decls from the external source.
4071    SmallVector<NamedDecl *, 4> Decls;
4072    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4073    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4074      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4075        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4076      if (Pos == LocallyScopedExternCDecls.end())
4077        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4078    }
4079  }
4080
4081  return LocallyScopedExternCDecls.find(Name);
4082}
4083
4084/// \brief Diagnose function specifiers on a declaration of an identifier that
4085/// does not identify a function.
4086void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4087  // FIXME: We should probably indicate the identifier in question to avoid
4088  // confusion for constructs like "inline int a(), b;"
4089  if (D.getDeclSpec().isInlineSpecified())
4090    Diag(D.getDeclSpec().getInlineSpecLoc(),
4091         diag::err_inline_non_function);
4092
4093  if (D.getDeclSpec().isVirtualSpecified())
4094    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4095         diag::err_virtual_non_function);
4096
4097  if (D.getDeclSpec().isExplicitSpecified())
4098    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4099         diag::err_explicit_non_function);
4100
4101  if (D.getDeclSpec().isNoreturnSpecified())
4102    Diag(D.getDeclSpec().getNoreturnSpecLoc(),
4103         diag::err_noreturn_non_function);
4104}
4105
4106NamedDecl*
4107Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4108                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4109  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4110  if (D.getCXXScopeSpec().isSet()) {
4111    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4112      << D.getCXXScopeSpec().getRange();
4113    D.setInvalidType();
4114    // Pretend we didn't see the scope specifier.
4115    DC = CurContext;
4116    Previous.clear();
4117  }
4118
4119  if (getLangOpts().CPlusPlus) {
4120    // Check that there are no default arguments (C++ only).
4121    CheckExtraCXXDefaultArguments(D);
4122  }
4123
4124  DiagnoseFunctionSpecifiers(D);
4125
4126  if (D.getDeclSpec().isThreadSpecified())
4127    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4128  if (D.getDeclSpec().isConstexprSpecified())
4129    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4130      << 1;
4131
4132  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4133    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4134      << D.getName().getSourceRange();
4135    return 0;
4136  }
4137
4138  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4139  if (!NewTD) return 0;
4140
4141  // Handle attributes prior to checking for duplicates in MergeVarDecl
4142  ProcessDeclAttributes(S, NewTD, D);
4143
4144  CheckTypedefForVariablyModifiedType(S, NewTD);
4145
4146  bool Redeclaration = D.isRedeclaration();
4147  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4148  D.setRedeclaration(Redeclaration);
4149  return ND;
4150}
4151
4152void
4153Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4154  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4155  // then it shall have block scope.
4156  // Note that variably modified types must be fixed before merging the decl so
4157  // that redeclarations will match.
4158  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4159  QualType T = TInfo->getType();
4160  if (T->isVariablyModifiedType()) {
4161    getCurFunction()->setHasBranchProtectedScope();
4162
4163    if (S->getFnParent() == 0) {
4164      bool SizeIsNegative;
4165      llvm::APSInt Oversized;
4166      TypeSourceInfo *FixedTInfo =
4167        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4168                                                      SizeIsNegative,
4169                                                      Oversized);
4170      if (FixedTInfo) {
4171        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4172        NewTD->setTypeSourceInfo(FixedTInfo);
4173      } else {
4174        if (SizeIsNegative)
4175          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4176        else if (T->isVariableArrayType())
4177          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4178        else if (Oversized.getBoolValue())
4179          Diag(NewTD->getLocation(), diag::err_array_too_large)
4180            << Oversized.toString(10);
4181        else
4182          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4183        NewTD->setInvalidDecl();
4184      }
4185    }
4186  }
4187}
4188
4189
4190/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4191/// declares a typedef-name, either using the 'typedef' type specifier or via
4192/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4193NamedDecl*
4194Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4195                           LookupResult &Previous, bool &Redeclaration) {
4196  // Merge the decl with the existing one if appropriate. If the decl is
4197  // in an outer scope, it isn't the same thing.
4198  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4199                       /*ExplicitInstantiationOrSpecialization=*/false);
4200  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4201  if (!Previous.empty()) {
4202    Redeclaration = true;
4203    MergeTypedefNameDecl(NewTD, Previous);
4204  }
4205
4206  // If this is the C FILE type, notify the AST context.
4207  if (IdentifierInfo *II = NewTD->getIdentifier())
4208    if (!NewTD->isInvalidDecl() &&
4209        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4210      if (II->isStr("FILE"))
4211        Context.setFILEDecl(NewTD);
4212      else if (II->isStr("jmp_buf"))
4213        Context.setjmp_bufDecl(NewTD);
4214      else if (II->isStr("sigjmp_buf"))
4215        Context.setsigjmp_bufDecl(NewTD);
4216      else if (II->isStr("ucontext_t"))
4217        Context.setucontext_tDecl(NewTD);
4218    }
4219
4220  return NewTD;
4221}
4222
4223/// \brief Determines whether the given declaration is an out-of-scope
4224/// previous declaration.
4225///
4226/// This routine should be invoked when name lookup has found a
4227/// previous declaration (PrevDecl) that is not in the scope where a
4228/// new declaration by the same name is being introduced. If the new
4229/// declaration occurs in a local scope, previous declarations with
4230/// linkage may still be considered previous declarations (C99
4231/// 6.2.2p4-5, C++ [basic.link]p6).
4232///
4233/// \param PrevDecl the previous declaration found by name
4234/// lookup
4235///
4236/// \param DC the context in which the new declaration is being
4237/// declared.
4238///
4239/// \returns true if PrevDecl is an out-of-scope previous declaration
4240/// for a new delcaration with the same name.
4241static bool
4242isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4243                                ASTContext &Context) {
4244  if (!PrevDecl)
4245    return false;
4246
4247  if (!PrevDecl->hasLinkage())
4248    return false;
4249
4250  if (Context.getLangOpts().CPlusPlus) {
4251    // C++ [basic.link]p6:
4252    //   If there is a visible declaration of an entity with linkage
4253    //   having the same name and type, ignoring entities declared
4254    //   outside the innermost enclosing namespace scope, the block
4255    //   scope declaration declares that same entity and receives the
4256    //   linkage of the previous declaration.
4257    DeclContext *OuterContext = DC->getRedeclContext();
4258    if (!OuterContext->isFunctionOrMethod())
4259      // This rule only applies to block-scope declarations.
4260      return false;
4261
4262    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4263    if (PrevOuterContext->isRecord())
4264      // We found a member function: ignore it.
4265      return false;
4266
4267    // Find the innermost enclosing namespace for the new and
4268    // previous declarations.
4269    OuterContext = OuterContext->getEnclosingNamespaceContext();
4270    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4271
4272    // The previous declaration is in a different namespace, so it
4273    // isn't the same function.
4274    if (!OuterContext->Equals(PrevOuterContext))
4275      return false;
4276  }
4277
4278  return true;
4279}
4280
4281static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4282  CXXScopeSpec &SS = D.getCXXScopeSpec();
4283  if (!SS.isSet()) return;
4284  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4285}
4286
4287bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4288  QualType type = decl->getType();
4289  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4290  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4291    // Various kinds of declaration aren't allowed to be __autoreleasing.
4292    unsigned kind = -1U;
4293    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4294      if (var->hasAttr<BlocksAttr>())
4295        kind = 0; // __block
4296      else if (!var->hasLocalStorage())
4297        kind = 1; // global
4298    } else if (isa<ObjCIvarDecl>(decl)) {
4299      kind = 3; // ivar
4300    } else if (isa<FieldDecl>(decl)) {
4301      kind = 2; // field
4302    }
4303
4304    if (kind != -1U) {
4305      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4306        << kind;
4307    }
4308  } else if (lifetime == Qualifiers::OCL_None) {
4309    // Try to infer lifetime.
4310    if (!type->isObjCLifetimeType())
4311      return false;
4312
4313    lifetime = type->getObjCARCImplicitLifetime();
4314    type = Context.getLifetimeQualifiedType(type, lifetime);
4315    decl->setType(type);
4316  }
4317
4318  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4319    // Thread-local variables cannot have lifetime.
4320    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4321        var->isThreadSpecified()) {
4322      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4323        << var->getType();
4324      return true;
4325    }
4326  }
4327
4328  return false;
4329}
4330
4331static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4332  // 'weak' only applies to declarations with external linkage.
4333  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4334    if (ND.getLinkage() != ExternalLinkage) {
4335      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4336      ND.dropAttr<WeakAttr>();
4337    }
4338  }
4339  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4340    if (ND.getLinkage() == ExternalLinkage) {
4341      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4342      ND.dropAttr<WeakRefAttr>();
4343    }
4344  }
4345}
4346
4347NamedDecl*
4348Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4349                              TypeSourceInfo *TInfo, LookupResult &Previous,
4350                              MultiTemplateParamsArg TemplateParamLists) {
4351  QualType R = TInfo->getType();
4352  DeclarationName Name = GetNameForDeclarator(D).getName();
4353
4354  // Check that there are no default arguments (C++ only).
4355  if (getLangOpts().CPlusPlus)
4356    CheckExtraCXXDefaultArguments(D);
4357
4358  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4359  assert(SCSpec != DeclSpec::SCS_typedef &&
4360         "Parser allowed 'typedef' as storage class VarDecl.");
4361  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4362  if (SCSpec == DeclSpec::SCS_mutable) {
4363    // mutable can only appear on non-static class members, so it's always
4364    // an error here
4365    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4366    D.setInvalidType();
4367    SC = SC_None;
4368  }
4369  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4370  VarDecl::StorageClass SCAsWritten
4371    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4372
4373  IdentifierInfo *II = Name.getAsIdentifierInfo();
4374  if (!II) {
4375    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4376      << Name;
4377    return 0;
4378  }
4379
4380  DiagnoseFunctionSpecifiers(D);
4381
4382  if (!DC->isRecord() && S->getFnParent() == 0) {
4383    // C99 6.9p2: The storage-class specifiers auto and register shall not
4384    // appear in the declaration specifiers in an external declaration.
4385    if (SC == SC_Auto || SC == SC_Register) {
4386
4387      // If this is a register variable with an asm label specified, then this
4388      // is a GNU extension.
4389      if (SC == SC_Register && D.getAsmLabel())
4390        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4391      else
4392        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4393      D.setInvalidType();
4394    }
4395  }
4396
4397  if (getLangOpts().OpenCL) {
4398    // Set up the special work-group-local storage class for variables in the
4399    // OpenCL __local address space.
4400    if (R.getAddressSpace() == LangAS::opencl_local) {
4401      SC = SC_OpenCLWorkGroupLocal;
4402      SCAsWritten = SC_OpenCLWorkGroupLocal;
4403    }
4404  }
4405
4406  bool isExplicitSpecialization = false;
4407  VarDecl *NewVD;
4408  if (!getLangOpts().CPlusPlus) {
4409    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4410                            D.getIdentifierLoc(), II,
4411                            R, TInfo, SC, SCAsWritten);
4412
4413    if (D.isInvalidType())
4414      NewVD->setInvalidDecl();
4415  } else {
4416    if (DC->isRecord() && !CurContext->isRecord()) {
4417      // This is an out-of-line definition of a static data member.
4418      if (SC == SC_Static) {
4419        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4420             diag::err_static_out_of_line)
4421          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4422      } else if (SC == SC_None)
4423        SC = SC_Static;
4424    }
4425    if (SC == SC_Static && CurContext->isRecord()) {
4426      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4427        if (RD->isLocalClass())
4428          Diag(D.getIdentifierLoc(),
4429               diag::err_static_data_member_not_allowed_in_local_class)
4430            << Name << RD->getDeclName();
4431
4432        // C++98 [class.union]p1: If a union contains a static data member,
4433        // the program is ill-formed. C++11 drops this restriction.
4434        if (RD->isUnion())
4435          Diag(D.getIdentifierLoc(),
4436               getLangOpts().CPlusPlus11
4437                 ? diag::warn_cxx98_compat_static_data_member_in_union
4438                 : diag::ext_static_data_member_in_union) << Name;
4439        // We conservatively disallow static data members in anonymous structs.
4440        else if (!RD->getDeclName())
4441          Diag(D.getIdentifierLoc(),
4442               diag::err_static_data_member_not_allowed_in_anon_struct)
4443            << Name << RD->isUnion();
4444      }
4445    }
4446
4447    // Match up the template parameter lists with the scope specifier, then
4448    // determine whether we have a template or a template specialization.
4449    isExplicitSpecialization = false;
4450    bool Invalid = false;
4451    if (TemplateParameterList *TemplateParams
4452        = MatchTemplateParametersToScopeSpecifier(
4453                                  D.getDeclSpec().getLocStart(),
4454                                                  D.getIdentifierLoc(),
4455                                                  D.getCXXScopeSpec(),
4456                                                  TemplateParamLists.data(),
4457                                                  TemplateParamLists.size(),
4458                                                  /*never a friend*/ false,
4459                                                  isExplicitSpecialization,
4460                                                  Invalid)) {
4461      if (TemplateParams->size() > 0) {
4462        // There is no such thing as a variable template.
4463        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4464          << II
4465          << SourceRange(TemplateParams->getTemplateLoc(),
4466                         TemplateParams->getRAngleLoc());
4467        return 0;
4468      } else {
4469        // There is an extraneous 'template<>' for this variable. Complain
4470        // about it, but allow the declaration of the variable.
4471        Diag(TemplateParams->getTemplateLoc(),
4472             diag::err_template_variable_noparams)
4473          << II
4474          << SourceRange(TemplateParams->getTemplateLoc(),
4475                         TemplateParams->getRAngleLoc());
4476      }
4477    }
4478
4479    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4480                            D.getIdentifierLoc(), II,
4481                            R, TInfo, SC, SCAsWritten);
4482
4483    // If this decl has an auto type in need of deduction, make a note of the
4484    // Decl so we can diagnose uses of it in its own initializer.
4485    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4486        R->getContainedAutoType())
4487      ParsingInitForAutoVars.insert(NewVD);
4488
4489    if (D.isInvalidType() || Invalid)
4490      NewVD->setInvalidDecl();
4491
4492    SetNestedNameSpecifier(NewVD, D);
4493
4494    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4495      NewVD->setTemplateParameterListsInfo(Context,
4496                                           TemplateParamLists.size(),
4497                                           TemplateParamLists.data());
4498    }
4499
4500    if (D.getDeclSpec().isConstexprSpecified())
4501      NewVD->setConstexpr(true);
4502  }
4503
4504  // Set the lexical context. If the declarator has a C++ scope specifier, the
4505  // lexical context will be different from the semantic context.
4506  NewVD->setLexicalDeclContext(CurContext);
4507
4508  if (D.getDeclSpec().isThreadSpecified()) {
4509    if (NewVD->hasLocalStorage())
4510      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4511    else if (!Context.getTargetInfo().isTLSSupported())
4512      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4513    else
4514      NewVD->setThreadSpecified(true);
4515  }
4516
4517  if (D.getDeclSpec().isModulePrivateSpecified()) {
4518    if (isExplicitSpecialization)
4519      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4520        << 2
4521        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4522    else if (NewVD->hasLocalStorage())
4523      Diag(NewVD->getLocation(), diag::err_module_private_local)
4524        << 0 << NewVD->getDeclName()
4525        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4526        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4527    else
4528      NewVD->setModulePrivate();
4529  }
4530
4531  // Handle attributes prior to checking for duplicates in MergeVarDecl
4532  ProcessDeclAttributes(S, NewVD, D);
4533
4534  if (getLangOpts().CUDA) {
4535    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4536    // storage [duration]."
4537    if (SC == SC_None && S->getFnParent() != 0 &&
4538        (NewVD->hasAttr<CUDASharedAttr>() ||
4539         NewVD->hasAttr<CUDAConstantAttr>())) {
4540      NewVD->setStorageClass(SC_Static);
4541      NewVD->setStorageClassAsWritten(SC_Static);
4542    }
4543  }
4544
4545  // In auto-retain/release, infer strong retension for variables of
4546  // retainable type.
4547  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4548    NewVD->setInvalidDecl();
4549
4550  // Handle GNU asm-label extension (encoded as an attribute).
4551  if (Expr *E = (Expr*)D.getAsmLabel()) {
4552    // The parser guarantees this is a string.
4553    StringLiteral *SE = cast<StringLiteral>(E);
4554    StringRef Label = SE->getString();
4555    if (S->getFnParent() != 0) {
4556      switch (SC) {
4557      case SC_None:
4558      case SC_Auto:
4559        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4560        break;
4561      case SC_Register:
4562        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4563          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4564        break;
4565      case SC_Static:
4566      case SC_Extern:
4567      case SC_PrivateExtern:
4568      case SC_OpenCLWorkGroupLocal:
4569        break;
4570      }
4571    }
4572
4573    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4574                                                Context, Label));
4575  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4576    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4577      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4578    if (I != ExtnameUndeclaredIdentifiers.end()) {
4579      NewVD->addAttr(I->second);
4580      ExtnameUndeclaredIdentifiers.erase(I);
4581    }
4582  }
4583
4584  // Diagnose shadowed variables before filtering for scope.
4585  if (!D.getCXXScopeSpec().isSet())
4586    CheckShadow(S, NewVD, Previous);
4587
4588  // Don't consider existing declarations that are in a different
4589  // scope and are out-of-semantic-context declarations (if the new
4590  // declaration has linkage).
4591  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4592                       isExplicitSpecialization);
4593
4594  if (!getLangOpts().CPlusPlus) {
4595    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4596  } else {
4597    // Merge the decl with the existing one if appropriate.
4598    if (!Previous.empty()) {
4599      if (Previous.isSingleResult() &&
4600          isa<FieldDecl>(Previous.getFoundDecl()) &&
4601          D.getCXXScopeSpec().isSet()) {
4602        // The user tried to define a non-static data member
4603        // out-of-line (C++ [dcl.meaning]p1).
4604        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4605          << D.getCXXScopeSpec().getRange();
4606        Previous.clear();
4607        NewVD->setInvalidDecl();
4608      }
4609    } else if (D.getCXXScopeSpec().isSet()) {
4610      // No previous declaration in the qualifying scope.
4611      Diag(D.getIdentifierLoc(), diag::err_no_member)
4612        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4613        << D.getCXXScopeSpec().getRange();
4614      NewVD->setInvalidDecl();
4615    }
4616
4617    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4618
4619    // This is an explicit specialization of a static data member. Check it.
4620    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4621        CheckMemberSpecialization(NewVD, Previous))
4622      NewVD->setInvalidDecl();
4623  }
4624
4625  checkAttributesAfterMerging(*this, *NewVD);
4626
4627  // If this is a locally-scoped extern C variable, update the map of
4628  // such variables.
4629  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4630      !NewVD->isInvalidDecl())
4631    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4632
4633  // If there's a #pragma GCC visibility in scope, and this isn't a class
4634  // member, set the visibility of this variable.
4635  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4636    AddPushedVisibilityAttribute(NewVD);
4637
4638  return NewVD;
4639}
4640
4641/// \brief Diagnose variable or built-in function shadowing.  Implements
4642/// -Wshadow.
4643///
4644/// This method is called whenever a VarDecl is added to a "useful"
4645/// scope.
4646///
4647/// \param S the scope in which the shadowing name is being declared
4648/// \param R the lookup of the name
4649///
4650void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4651  // Return if warning is ignored.
4652  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4653        DiagnosticsEngine::Ignored)
4654    return;
4655
4656  // Don't diagnose declarations at file scope.
4657  if (D->hasGlobalStorage())
4658    return;
4659
4660  DeclContext *NewDC = D->getDeclContext();
4661
4662  // Only diagnose if we're shadowing an unambiguous field or variable.
4663  if (R.getResultKind() != LookupResult::Found)
4664    return;
4665
4666  NamedDecl* ShadowedDecl = R.getFoundDecl();
4667  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4668    return;
4669
4670  // Fields are not shadowed by variables in C++ static methods.
4671  if (isa<FieldDecl>(ShadowedDecl))
4672    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4673      if (MD->isStatic())
4674        return;
4675
4676  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4677    if (shadowedVar->isExternC()) {
4678      // For shadowing external vars, make sure that we point to the global
4679      // declaration, not a locally scoped extern declaration.
4680      for (VarDecl::redecl_iterator
4681             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4682           I != E; ++I)
4683        if (I->isFileVarDecl()) {
4684          ShadowedDecl = *I;
4685          break;
4686        }
4687    }
4688
4689  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4690
4691  // Only warn about certain kinds of shadowing for class members.
4692  if (NewDC && NewDC->isRecord()) {
4693    // In particular, don't warn about shadowing non-class members.
4694    if (!OldDC->isRecord())
4695      return;
4696
4697    // TODO: should we warn about static data members shadowing
4698    // static data members from base classes?
4699
4700    // TODO: don't diagnose for inaccessible shadowed members.
4701    // This is hard to do perfectly because we might friend the
4702    // shadowing context, but that's just a false negative.
4703  }
4704
4705  // Determine what kind of declaration we're shadowing.
4706  unsigned Kind;
4707  if (isa<RecordDecl>(OldDC)) {
4708    if (isa<FieldDecl>(ShadowedDecl))
4709      Kind = 3; // field
4710    else
4711      Kind = 2; // static data member
4712  } else if (OldDC->isFileContext())
4713    Kind = 1; // global
4714  else
4715    Kind = 0; // local
4716
4717  DeclarationName Name = R.getLookupName();
4718
4719  // Emit warning and note.
4720  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4721  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4722}
4723
4724/// \brief Check -Wshadow without the advantage of a previous lookup.
4725void Sema::CheckShadow(Scope *S, VarDecl *D) {
4726  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4727        DiagnosticsEngine::Ignored)
4728    return;
4729
4730  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4731                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4732  LookupName(R, S);
4733  CheckShadow(S, D, R);
4734}
4735
4736template<typename T>
4737static bool mayConflictWithNonVisibleExternC(const T *ND) {
4738  VarDecl::StorageClass SC = ND->getStorageClass();
4739  if (ND->hasCLanguageLinkage() && (SC == SC_Extern || SC == SC_PrivateExtern))
4740    return true;
4741  return ND->getDeclContext()->isTranslationUnit();
4742}
4743
4744/// \brief Perform semantic checking on a newly-created variable
4745/// declaration.
4746///
4747/// This routine performs all of the type-checking required for a
4748/// variable declaration once it has been built. It is used both to
4749/// check variables after they have been parsed and their declarators
4750/// have been translated into a declaration, and to check variables
4751/// that have been instantiated from a template.
4752///
4753/// Sets NewVD->isInvalidDecl() if an error was encountered.
4754///
4755/// Returns true if the variable declaration is a redeclaration.
4756bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4757                                    LookupResult &Previous) {
4758  // If the decl is already known invalid, don't check it.
4759  if (NewVD->isInvalidDecl())
4760    return false;
4761
4762  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4763  QualType T = TInfo->getType();
4764
4765  if (T->isObjCObjectType()) {
4766    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4767      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4768    T = Context.getObjCObjectPointerType(T);
4769    NewVD->setType(T);
4770  }
4771
4772  // Emit an error if an address space was applied to decl with local storage.
4773  // This includes arrays of objects with address space qualifiers, but not
4774  // automatic variables that point to other address spaces.
4775  // ISO/IEC TR 18037 S5.1.2
4776  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4777    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4778    NewVD->setInvalidDecl();
4779    return false;
4780  }
4781
4782  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4783  // scope.
4784  if ((getLangOpts().OpenCLVersion >= 120)
4785      && NewVD->isStaticLocal()) {
4786    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4787    NewVD->setInvalidDecl();
4788    return false;
4789  }
4790
4791  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4792      && !NewVD->hasAttr<BlocksAttr>()) {
4793    if (getLangOpts().getGC() != LangOptions::NonGC)
4794      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4795    else {
4796      assert(!getLangOpts().ObjCAutoRefCount);
4797      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4798    }
4799  }
4800
4801  bool isVM = T->isVariablyModifiedType();
4802  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4803      NewVD->hasAttr<BlocksAttr>())
4804    getCurFunction()->setHasBranchProtectedScope();
4805
4806  if ((isVM && NewVD->hasLinkage()) ||
4807      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4808    bool SizeIsNegative;
4809    llvm::APSInt Oversized;
4810    TypeSourceInfo *FixedTInfo =
4811      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4812                                                    SizeIsNegative, Oversized);
4813    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4814      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4815      // FIXME: This won't give the correct result for
4816      // int a[10][n];
4817      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4818
4819      if (NewVD->isFileVarDecl())
4820        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4821        << SizeRange;
4822      else if (NewVD->getStorageClass() == SC_Static)
4823        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4824        << SizeRange;
4825      else
4826        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4827        << SizeRange;
4828      NewVD->setInvalidDecl();
4829      return false;
4830    }
4831
4832    if (FixedTInfo == 0) {
4833      if (NewVD->isFileVarDecl())
4834        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4835      else
4836        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4837      NewVD->setInvalidDecl();
4838      return false;
4839    }
4840
4841    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4842    NewVD->setType(FixedTInfo->getType());
4843    NewVD->setTypeSourceInfo(FixedTInfo);
4844  }
4845
4846  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
4847    // Since we did not find anything by this name, look for a non-visible
4848    // extern "C" declaration with the same name.
4849    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4850      = findLocallyScopedExternCDecl(NewVD->getDeclName());
4851    if (Pos != LocallyScopedExternCDecls.end())
4852      Previous.addDecl(Pos->second);
4853  }
4854
4855  // Filter out any non-conflicting previous declarations.
4856  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
4857
4858  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4859    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4860      << T;
4861    NewVD->setInvalidDecl();
4862    return false;
4863  }
4864
4865  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4866    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4867    NewVD->setInvalidDecl();
4868    return false;
4869  }
4870
4871  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4872    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4873    NewVD->setInvalidDecl();
4874    return false;
4875  }
4876
4877  if (NewVD->isConstexpr() && !T->isDependentType() &&
4878      RequireLiteralType(NewVD->getLocation(), T,
4879                         diag::err_constexpr_var_non_literal)) {
4880    NewVD->setInvalidDecl();
4881    return false;
4882  }
4883
4884  if (!Previous.empty()) {
4885    MergeVarDecl(NewVD, Previous);
4886    return true;
4887  }
4888  return false;
4889}
4890
4891/// \brief Data used with FindOverriddenMethod
4892struct FindOverriddenMethodData {
4893  Sema *S;
4894  CXXMethodDecl *Method;
4895};
4896
4897/// \brief Member lookup function that determines whether a given C++
4898/// method overrides a method in a base class, to be used with
4899/// CXXRecordDecl::lookupInBases().
4900static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4901                                 CXXBasePath &Path,
4902                                 void *UserData) {
4903  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4904
4905  FindOverriddenMethodData *Data
4906    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4907
4908  DeclarationName Name = Data->Method->getDeclName();
4909
4910  // FIXME: Do we care about other names here too?
4911  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4912    // We really want to find the base class destructor here.
4913    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4914    CanQualType CT = Data->S->Context.getCanonicalType(T);
4915
4916    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4917  }
4918
4919  for (Path.Decls = BaseRecord->lookup(Name);
4920       !Path.Decls.empty();
4921       Path.Decls = Path.Decls.slice(1)) {
4922    NamedDecl *D = Path.Decls.front();
4923    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4924      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4925        return true;
4926    }
4927  }
4928
4929  return false;
4930}
4931
4932namespace {
4933  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
4934}
4935/// \brief Report an error regarding overriding, along with any relevant
4936/// overriden methods.
4937///
4938/// \param DiagID the primary error to report.
4939/// \param MD the overriding method.
4940/// \param OEK which overrides to include as notes.
4941static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
4942                            OverrideErrorKind OEK = OEK_All) {
4943  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
4944  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4945                                      E = MD->end_overridden_methods();
4946       I != E; ++I) {
4947    // This check (& the OEK parameter) could be replaced by a predicate, but
4948    // without lambdas that would be overkill. This is still nicer than writing
4949    // out the diag loop 3 times.
4950    if ((OEK == OEK_All) ||
4951        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
4952        (OEK == OEK_Deleted && (*I)->isDeleted()))
4953      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
4954  }
4955}
4956
4957/// AddOverriddenMethods - See if a method overrides any in the base classes,
4958/// and if so, check that it's a valid override and remember it.
4959bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4960  // Look for virtual methods in base classes that this method might override.
4961  CXXBasePaths Paths;
4962  FindOverriddenMethodData Data;
4963  Data.Method = MD;
4964  Data.S = this;
4965  bool hasDeletedOverridenMethods = false;
4966  bool hasNonDeletedOverridenMethods = false;
4967  bool AddedAny = false;
4968  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4969    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4970         E = Paths.found_decls_end(); I != E; ++I) {
4971      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4972        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4973        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4974            !CheckOverridingFunctionAttributes(MD, OldMD) &&
4975            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4976            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4977          hasDeletedOverridenMethods |= OldMD->isDeleted();
4978          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
4979          AddedAny = true;
4980        }
4981      }
4982    }
4983  }
4984
4985  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
4986    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
4987  }
4988  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
4989    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
4990  }
4991
4992  return AddedAny;
4993}
4994
4995namespace {
4996  // Struct for holding all of the extra arguments needed by
4997  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4998  struct ActOnFDArgs {
4999    Scope *S;
5000    Declarator &D;
5001    MultiTemplateParamsArg TemplateParamLists;
5002    bool AddToScope;
5003  };
5004}
5005
5006namespace {
5007
5008// Callback to only accept typo corrections that have a non-zero edit distance.
5009// Also only accept corrections that have the same parent decl.
5010class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5011 public:
5012  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5013                            CXXRecordDecl *Parent)
5014      : Context(Context), OriginalFD(TypoFD),
5015        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5016
5017  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5018    if (candidate.getEditDistance() == 0)
5019      return false;
5020
5021    SmallVector<unsigned, 1> MismatchedParams;
5022    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5023                                          CDeclEnd = candidate.end();
5024         CDecl != CDeclEnd; ++CDecl) {
5025      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5026
5027      if (FD && !FD->hasBody() &&
5028          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5029        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5030          CXXRecordDecl *Parent = MD->getParent();
5031          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5032            return true;
5033        } else if (!ExpectedParent) {
5034          return true;
5035        }
5036      }
5037    }
5038
5039    return false;
5040  }
5041
5042 private:
5043  ASTContext &Context;
5044  FunctionDecl *OriginalFD;
5045  CXXRecordDecl *ExpectedParent;
5046};
5047
5048}
5049
5050/// \brief Generate diagnostics for an invalid function redeclaration.
5051///
5052/// This routine handles generating the diagnostic messages for an invalid
5053/// function redeclaration, including finding possible similar declarations
5054/// or performing typo correction if there are no previous declarations with
5055/// the same name.
5056///
5057/// Returns a NamedDecl iff typo correction was performed and substituting in
5058/// the new declaration name does not cause new errors.
5059static NamedDecl* DiagnoseInvalidRedeclaration(
5060    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5061    ActOnFDArgs &ExtraArgs) {
5062  NamedDecl *Result = NULL;
5063  DeclarationName Name = NewFD->getDeclName();
5064  DeclContext *NewDC = NewFD->getDeclContext();
5065  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5066                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5067  SmallVector<unsigned, 1> MismatchedParams;
5068  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5069  TypoCorrection Correction;
5070  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5071                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5072  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5073                                  : diag::err_member_def_does_not_match;
5074
5075  NewFD->setInvalidDecl();
5076  SemaRef.LookupQualifiedName(Prev, NewDC);
5077  assert(!Prev.isAmbiguous() &&
5078         "Cannot have an ambiguity in previous-declaration lookup");
5079  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5080  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5081                                      MD ? MD->getParent() : 0);
5082  if (!Prev.empty()) {
5083    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5084         Func != FuncEnd; ++Func) {
5085      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5086      if (FD &&
5087          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5088        // Add 1 to the index so that 0 can mean the mismatch didn't
5089        // involve a parameter
5090        unsigned ParamNum =
5091            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5092        NearMatches.push_back(std::make_pair(FD, ParamNum));
5093      }
5094    }
5095  // If the qualified name lookup yielded nothing, try typo correction
5096  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5097                                         Prev.getLookupKind(), 0, 0,
5098                                         Validator, NewDC))) {
5099    // Trap errors.
5100    Sema::SFINAETrap Trap(SemaRef);
5101
5102    // Set up everything for the call to ActOnFunctionDeclarator
5103    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5104                              ExtraArgs.D.getIdentifierLoc());
5105    Previous.clear();
5106    Previous.setLookupName(Correction.getCorrection());
5107    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5108                                    CDeclEnd = Correction.end();
5109         CDecl != CDeclEnd; ++CDecl) {
5110      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5111      if (FD && !FD->hasBody() &&
5112          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5113        Previous.addDecl(FD);
5114      }
5115    }
5116    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5117    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5118    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5119    // eliminate the need for the parameter pack ExtraArgs.
5120    Result = SemaRef.ActOnFunctionDeclarator(
5121        ExtraArgs.S, ExtraArgs.D,
5122        Correction.getCorrectionDecl()->getDeclContext(),
5123        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5124        ExtraArgs.AddToScope);
5125    if (Trap.hasErrorOccurred()) {
5126      // Pretend the typo correction never occurred
5127      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5128                                ExtraArgs.D.getIdentifierLoc());
5129      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5130      Previous.clear();
5131      Previous.setLookupName(Name);
5132      Result = NULL;
5133    } else {
5134      for (LookupResult::iterator Func = Previous.begin(),
5135                               FuncEnd = Previous.end();
5136           Func != FuncEnd; ++Func) {
5137        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5138          NearMatches.push_back(std::make_pair(FD, 0));
5139      }
5140    }
5141    if (NearMatches.empty()) {
5142      // Ignore the correction if it didn't yield any close FunctionDecl matches
5143      Correction = TypoCorrection();
5144    } else {
5145      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5146                             : diag::err_member_def_does_not_match_suggest;
5147    }
5148  }
5149
5150  if (Correction) {
5151    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5152    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5153    // turn causes the correction to fully qualify the name. If we fix
5154    // CorrectTypo to minimally qualify then this change should be good.
5155    SourceRange FixItLoc(NewFD->getLocation());
5156    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5157    if (Correction.getCorrectionSpecifier() && SS.isValid())
5158      FixItLoc.setBegin(SS.getBeginLoc());
5159    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5160        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5161        << FixItHint::CreateReplacement(
5162            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5163  } else {
5164    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5165        << Name << NewDC << NewFD->getLocation();
5166  }
5167
5168  bool NewFDisConst = false;
5169  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5170    NewFDisConst = NewMD->isConst();
5171
5172  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5173       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5174       NearMatch != NearMatchEnd; ++NearMatch) {
5175    FunctionDecl *FD = NearMatch->first;
5176    bool FDisConst = false;
5177    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5178      FDisConst = MD->isConst();
5179
5180    if (unsigned Idx = NearMatch->second) {
5181      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5182      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5183      if (Loc.isInvalid()) Loc = FD->getLocation();
5184      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5185          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5186    } else if (Correction) {
5187      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5188          << Correction.getQuoted(SemaRef.getLangOpts());
5189    } else if (FDisConst != NewFDisConst) {
5190      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5191          << NewFDisConst << FD->getSourceRange().getEnd();
5192    } else
5193      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5194  }
5195  return Result;
5196}
5197
5198static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5199                                                          Declarator &D) {
5200  switch (D.getDeclSpec().getStorageClassSpec()) {
5201  default: llvm_unreachable("Unknown storage class!");
5202  case DeclSpec::SCS_auto:
5203  case DeclSpec::SCS_register:
5204  case DeclSpec::SCS_mutable:
5205    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5206                 diag::err_typecheck_sclass_func);
5207    D.setInvalidType();
5208    break;
5209  case DeclSpec::SCS_unspecified: break;
5210  case DeclSpec::SCS_extern: return SC_Extern;
5211  case DeclSpec::SCS_static: {
5212    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5213      // C99 6.7.1p5:
5214      //   The declaration of an identifier for a function that has
5215      //   block scope shall have no explicit storage-class specifier
5216      //   other than extern
5217      // See also (C++ [dcl.stc]p4).
5218      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5219                   diag::err_static_block_func);
5220      break;
5221    } else
5222      return SC_Static;
5223  }
5224  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5225  }
5226
5227  // No explicit storage class has already been returned
5228  return SC_None;
5229}
5230
5231static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5232                                           DeclContext *DC, QualType &R,
5233                                           TypeSourceInfo *TInfo,
5234                                           FunctionDecl::StorageClass SC,
5235                                           bool &IsVirtualOkay) {
5236  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5237  DeclarationName Name = NameInfo.getName();
5238
5239  FunctionDecl *NewFD = 0;
5240  bool isInline = D.getDeclSpec().isInlineSpecified();
5241  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5242  FunctionDecl::StorageClass SCAsWritten
5243    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5244
5245  if (!SemaRef.getLangOpts().CPlusPlus) {
5246    // Determine whether the function was written with a
5247    // prototype. This true when:
5248    //   - there is a prototype in the declarator, or
5249    //   - the type R of the function is some kind of typedef or other reference
5250    //     to a type name (which eventually refers to a function type).
5251    bool HasPrototype =
5252      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5253      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5254
5255    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5256                                 D.getLocStart(), NameInfo, R,
5257                                 TInfo, SC, SCAsWritten, isInline,
5258                                 HasPrototype);
5259    if (D.isInvalidType())
5260      NewFD->setInvalidDecl();
5261
5262    // Set the lexical context.
5263    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5264
5265    return NewFD;
5266  }
5267
5268  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5269  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5270
5271  // Check that the return type is not an abstract class type.
5272  // For record types, this is done by the AbstractClassUsageDiagnoser once
5273  // the class has been completely parsed.
5274  if (!DC->isRecord() &&
5275      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5276                                     R->getAs<FunctionType>()->getResultType(),
5277                                     diag::err_abstract_type_in_decl,
5278                                     SemaRef.AbstractReturnType))
5279    D.setInvalidType();
5280
5281  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5282    // This is a C++ constructor declaration.
5283    assert(DC->isRecord() &&
5284           "Constructors can only be declared in a member context");
5285
5286    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5287    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5288                                      D.getLocStart(), NameInfo,
5289                                      R, TInfo, isExplicit, isInline,
5290                                      /*isImplicitlyDeclared=*/false,
5291                                      isConstexpr);
5292
5293  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5294    // This is a C++ destructor declaration.
5295    if (DC->isRecord()) {
5296      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5297      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5298      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5299                                        SemaRef.Context, Record,
5300                                        D.getLocStart(),
5301                                        NameInfo, R, TInfo, isInline,
5302                                        /*isImplicitlyDeclared=*/false);
5303
5304      // If the class is complete, then we now create the implicit exception
5305      // specification. If the class is incomplete or dependent, we can't do
5306      // it yet.
5307      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5308          Record->getDefinition() && !Record->isBeingDefined() &&
5309          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5310        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5311      }
5312
5313      IsVirtualOkay = true;
5314      return NewDD;
5315
5316    } else {
5317      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5318      D.setInvalidType();
5319
5320      // Create a FunctionDecl to satisfy the function definition parsing
5321      // code path.
5322      return FunctionDecl::Create(SemaRef.Context, DC,
5323                                  D.getLocStart(),
5324                                  D.getIdentifierLoc(), Name, R, TInfo,
5325                                  SC, SCAsWritten, isInline,
5326                                  /*hasPrototype=*/true, isConstexpr);
5327    }
5328
5329  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5330    if (!DC->isRecord()) {
5331      SemaRef.Diag(D.getIdentifierLoc(),
5332           diag::err_conv_function_not_member);
5333      return 0;
5334    }
5335
5336    SemaRef.CheckConversionDeclarator(D, R, SC);
5337    IsVirtualOkay = true;
5338    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5339                                     D.getLocStart(), NameInfo,
5340                                     R, TInfo, isInline, isExplicit,
5341                                     isConstexpr, SourceLocation());
5342
5343  } else if (DC->isRecord()) {
5344    // If the name of the function is the same as the name of the record,
5345    // then this must be an invalid constructor that has a return type.
5346    // (The parser checks for a return type and makes the declarator a
5347    // constructor if it has no return type).
5348    if (Name.getAsIdentifierInfo() &&
5349        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5350      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5351        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5352        << SourceRange(D.getIdentifierLoc());
5353      return 0;
5354    }
5355
5356    bool isStatic = SC == SC_Static;
5357
5358    // [class.free]p1:
5359    // Any allocation function for a class T is a static member
5360    // (even if not explicitly declared static).
5361    if (Name.getCXXOverloadedOperator() == OO_New ||
5362        Name.getCXXOverloadedOperator() == OO_Array_New)
5363      isStatic = true;
5364
5365    // [class.free]p6 Any deallocation function for a class X is a static member
5366    // (even if not explicitly declared static).
5367    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5368        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5369      isStatic = true;
5370
5371    IsVirtualOkay = !isStatic;
5372
5373    // This is a C++ method declaration.
5374    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5375                                 D.getLocStart(), NameInfo, R,
5376                                 TInfo, isStatic, SCAsWritten, isInline,
5377                                 isConstexpr, SourceLocation());
5378
5379  } else {
5380    // Determine whether the function was written with a
5381    // prototype. This true when:
5382    //   - we're in C++ (where every function has a prototype),
5383    return FunctionDecl::Create(SemaRef.Context, DC,
5384                                D.getLocStart(),
5385                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5386                                true/*HasPrototype*/, isConstexpr);
5387  }
5388}
5389
5390void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5391  // In C++, the empty parameter-type-list must be spelled "void"; a
5392  // typedef of void is not permitted.
5393  if (getLangOpts().CPlusPlus &&
5394      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5395    bool IsTypeAlias = false;
5396    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5397      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5398    else if (const TemplateSpecializationType *TST =
5399               Param->getType()->getAs<TemplateSpecializationType>())
5400      IsTypeAlias = TST->isTypeAlias();
5401    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5402      << IsTypeAlias;
5403  }
5404}
5405
5406NamedDecl*
5407Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5408                              TypeSourceInfo *TInfo, LookupResult &Previous,
5409                              MultiTemplateParamsArg TemplateParamLists,
5410                              bool &AddToScope) {
5411  QualType R = TInfo->getType();
5412
5413  assert(R.getTypePtr()->isFunctionType());
5414
5415  // TODO: consider using NameInfo for diagnostic.
5416  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5417  DeclarationName Name = NameInfo.getName();
5418  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5419
5420  if (D.getDeclSpec().isThreadSpecified())
5421    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5422
5423  // Do not allow returning a objc interface by-value.
5424  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5425    Diag(D.getIdentifierLoc(),
5426         diag::err_object_cannot_be_passed_returned_by_value) << 0
5427    << R->getAs<FunctionType>()->getResultType()
5428    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5429
5430    QualType T = R->getAs<FunctionType>()->getResultType();
5431    T = Context.getObjCObjectPointerType(T);
5432    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5433      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5434      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5435                                  FPT->getNumArgs(), EPI);
5436    }
5437    else if (isa<FunctionNoProtoType>(R))
5438      R = Context.getFunctionNoProtoType(T);
5439  }
5440
5441  bool isFriend = false;
5442  FunctionTemplateDecl *FunctionTemplate = 0;
5443  bool isExplicitSpecialization = false;
5444  bool isFunctionTemplateSpecialization = false;
5445
5446  bool isDependentClassScopeExplicitSpecialization = false;
5447  bool HasExplicitTemplateArgs = false;
5448  TemplateArgumentListInfo TemplateArgs;
5449
5450  bool isVirtualOkay = false;
5451
5452  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5453                                              isVirtualOkay);
5454  if (!NewFD) return 0;
5455
5456  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5457    NewFD->setTopLevelDeclInObjCContainer();
5458
5459  if (getLangOpts().CPlusPlus) {
5460    bool isInline = D.getDeclSpec().isInlineSpecified();
5461    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5462    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5463    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5464    isFriend = D.getDeclSpec().isFriendSpecified();
5465    if (isFriend && !isInline && D.isFunctionDefinition()) {
5466      // C++ [class.friend]p5
5467      //   A function can be defined in a friend declaration of a
5468      //   class . . . . Such a function is implicitly inline.
5469      NewFD->setImplicitlyInline();
5470    }
5471
5472    // If this is a method defined in an __interface, and is not a constructor
5473    // or an overloaded operator, then set the pure flag (isVirtual will already
5474    // return true).
5475    if (const CXXRecordDecl *Parent =
5476          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5477      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5478        NewFD->setPure(true);
5479    }
5480
5481    SetNestedNameSpecifier(NewFD, D);
5482    isExplicitSpecialization = false;
5483    isFunctionTemplateSpecialization = false;
5484    if (D.isInvalidType())
5485      NewFD->setInvalidDecl();
5486
5487    // Set the lexical context. If the declarator has a C++
5488    // scope specifier, or is the object of a friend declaration, the
5489    // lexical context will be different from the semantic context.
5490    NewFD->setLexicalDeclContext(CurContext);
5491
5492    // Match up the template parameter lists with the scope specifier, then
5493    // determine whether we have a template or a template specialization.
5494    bool Invalid = false;
5495    if (TemplateParameterList *TemplateParams
5496          = MatchTemplateParametersToScopeSpecifier(
5497                                  D.getDeclSpec().getLocStart(),
5498                                  D.getIdentifierLoc(),
5499                                  D.getCXXScopeSpec(),
5500                                  TemplateParamLists.data(),
5501                                  TemplateParamLists.size(),
5502                                  isFriend,
5503                                  isExplicitSpecialization,
5504                                  Invalid)) {
5505      if (TemplateParams->size() > 0) {
5506        // This is a function template
5507
5508        // Check that we can declare a template here.
5509        if (CheckTemplateDeclScope(S, TemplateParams))
5510          return 0;
5511
5512        // A destructor cannot be a template.
5513        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5514          Diag(NewFD->getLocation(), diag::err_destructor_template);
5515          return 0;
5516        }
5517
5518        // If we're adding a template to a dependent context, we may need to
5519        // rebuilding some of the types used within the template parameter list,
5520        // now that we know what the current instantiation is.
5521        if (DC->isDependentContext()) {
5522          ContextRAII SavedContext(*this, DC);
5523          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5524            Invalid = true;
5525        }
5526
5527
5528        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5529                                                        NewFD->getLocation(),
5530                                                        Name, TemplateParams,
5531                                                        NewFD);
5532        FunctionTemplate->setLexicalDeclContext(CurContext);
5533        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5534
5535        // For source fidelity, store the other template param lists.
5536        if (TemplateParamLists.size() > 1) {
5537          NewFD->setTemplateParameterListsInfo(Context,
5538                                               TemplateParamLists.size() - 1,
5539                                               TemplateParamLists.data());
5540        }
5541      } else {
5542        // This is a function template specialization.
5543        isFunctionTemplateSpecialization = true;
5544        // For source fidelity, store all the template param lists.
5545        NewFD->setTemplateParameterListsInfo(Context,
5546                                             TemplateParamLists.size(),
5547                                             TemplateParamLists.data());
5548
5549        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5550        if (isFriend) {
5551          // We want to remove the "template<>", found here.
5552          SourceRange RemoveRange = TemplateParams->getSourceRange();
5553
5554          // If we remove the template<> and the name is not a
5555          // template-id, we're actually silently creating a problem:
5556          // the friend declaration will refer to an untemplated decl,
5557          // and clearly the user wants a template specialization.  So
5558          // we need to insert '<>' after the name.
5559          SourceLocation InsertLoc;
5560          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5561            InsertLoc = D.getName().getSourceRange().getEnd();
5562            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5563          }
5564
5565          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5566            << Name << RemoveRange
5567            << FixItHint::CreateRemoval(RemoveRange)
5568            << FixItHint::CreateInsertion(InsertLoc, "<>");
5569        }
5570      }
5571    }
5572    else {
5573      // All template param lists were matched against the scope specifier:
5574      // this is NOT (an explicit specialization of) a template.
5575      if (TemplateParamLists.size() > 0)
5576        // For source fidelity, store all the template param lists.
5577        NewFD->setTemplateParameterListsInfo(Context,
5578                                             TemplateParamLists.size(),
5579                                             TemplateParamLists.data());
5580    }
5581
5582    if (Invalid) {
5583      NewFD->setInvalidDecl();
5584      if (FunctionTemplate)
5585        FunctionTemplate->setInvalidDecl();
5586    }
5587
5588    // C++ [dcl.fct.spec]p5:
5589    //   The virtual specifier shall only be used in declarations of
5590    //   nonstatic class member functions that appear within a
5591    //   member-specification of a class declaration; see 10.3.
5592    //
5593    if (isVirtual && !NewFD->isInvalidDecl()) {
5594      if (!isVirtualOkay) {
5595        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5596             diag::err_virtual_non_function);
5597      } else if (!CurContext->isRecord()) {
5598        // 'virtual' was specified outside of the class.
5599        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5600             diag::err_virtual_out_of_class)
5601          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5602      } else if (NewFD->getDescribedFunctionTemplate()) {
5603        // C++ [temp.mem]p3:
5604        //  A member function template shall not be virtual.
5605        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5606             diag::err_virtual_member_function_template)
5607          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5608      } else {
5609        // Okay: Add virtual to the method.
5610        NewFD->setVirtualAsWritten(true);
5611      }
5612    }
5613
5614    // C++ [dcl.fct.spec]p3:
5615    //  The inline specifier shall not appear on a block scope function
5616    //  declaration.
5617    if (isInline && !NewFD->isInvalidDecl()) {
5618      if (CurContext->isFunctionOrMethod()) {
5619        // 'inline' is not allowed on block scope function declaration.
5620        Diag(D.getDeclSpec().getInlineSpecLoc(),
5621             diag::err_inline_declaration_block_scope) << Name
5622          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5623      }
5624    }
5625
5626    // C++ [dcl.fct.spec]p6:
5627    //  The explicit specifier shall be used only in the declaration of a
5628    //  constructor or conversion function within its class definition;
5629    //  see 12.3.1 and 12.3.2.
5630    if (isExplicit && !NewFD->isInvalidDecl()) {
5631      if (!CurContext->isRecord()) {
5632        // 'explicit' was specified outside of the class.
5633        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5634             diag::err_explicit_out_of_class)
5635          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5636      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5637                 !isa<CXXConversionDecl>(NewFD)) {
5638        // 'explicit' was specified on a function that wasn't a constructor
5639        // or conversion function.
5640        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5641             diag::err_explicit_non_ctor_or_conv_function)
5642          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5643      }
5644    }
5645
5646    if (isConstexpr) {
5647      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
5648      // are implicitly inline.
5649      NewFD->setImplicitlyInline();
5650
5651      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
5652      // be either constructors or to return a literal type. Therefore,
5653      // destructors cannot be declared constexpr.
5654      if (isa<CXXDestructorDecl>(NewFD))
5655        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5656    }
5657
5658    // If __module_private__ was specified, mark the function accordingly.
5659    if (D.getDeclSpec().isModulePrivateSpecified()) {
5660      if (isFunctionTemplateSpecialization) {
5661        SourceLocation ModulePrivateLoc
5662          = D.getDeclSpec().getModulePrivateSpecLoc();
5663        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5664          << 0
5665          << FixItHint::CreateRemoval(ModulePrivateLoc);
5666      } else {
5667        NewFD->setModulePrivate();
5668        if (FunctionTemplate)
5669          FunctionTemplate->setModulePrivate();
5670      }
5671    }
5672
5673    if (isFriend) {
5674      // For now, claim that the objects have no previous declaration.
5675      if (FunctionTemplate) {
5676        FunctionTemplate->setObjectOfFriendDecl(false);
5677        FunctionTemplate->setAccess(AS_public);
5678      }
5679      NewFD->setObjectOfFriendDecl(false);
5680      NewFD->setAccess(AS_public);
5681    }
5682
5683    // If a function is defined as defaulted or deleted, mark it as such now.
5684    switch (D.getFunctionDefinitionKind()) {
5685      case FDK_Declaration:
5686      case FDK_Definition:
5687        break;
5688
5689      case FDK_Defaulted:
5690        NewFD->setDefaulted();
5691        break;
5692
5693      case FDK_Deleted:
5694        NewFD->setDeletedAsWritten();
5695        break;
5696    }
5697
5698    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5699        D.isFunctionDefinition()) {
5700      // C++ [class.mfct]p2:
5701      //   A member function may be defined (8.4) in its class definition, in
5702      //   which case it is an inline member function (7.1.2)
5703      NewFD->setImplicitlyInline();
5704    }
5705
5706    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5707        !CurContext->isRecord()) {
5708      // C++ [class.static]p1:
5709      //   A data or function member of a class may be declared static
5710      //   in a class definition, in which case it is a static member of
5711      //   the class.
5712
5713      // Complain about the 'static' specifier if it's on an out-of-line
5714      // member function definition.
5715      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5716           diag::err_static_out_of_line)
5717        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5718    }
5719
5720    // C++11 [except.spec]p15:
5721    //   A deallocation function with no exception-specification is treated
5722    //   as if it were specified with noexcept(true).
5723    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5724    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5725         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5726        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5727      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5728      EPI.ExceptionSpecType = EST_BasicNoexcept;
5729      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5730                                             FPT->arg_type_begin(),
5731                                             FPT->getNumArgs(), EPI));
5732    }
5733  }
5734
5735  // Filter out previous declarations that don't match the scope.
5736  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5737                       isExplicitSpecialization ||
5738                       isFunctionTemplateSpecialization);
5739
5740  // Handle GNU asm-label extension (encoded as an attribute).
5741  if (Expr *E = (Expr*) D.getAsmLabel()) {
5742    // The parser guarantees this is a string.
5743    StringLiteral *SE = cast<StringLiteral>(E);
5744    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5745                                                SE->getString()));
5746  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5747    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5748      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5749    if (I != ExtnameUndeclaredIdentifiers.end()) {
5750      NewFD->addAttr(I->second);
5751      ExtnameUndeclaredIdentifiers.erase(I);
5752    }
5753  }
5754
5755  // Copy the parameter declarations from the declarator D to the function
5756  // declaration NewFD, if they are available.  First scavenge them into Params.
5757  SmallVector<ParmVarDecl*, 16> Params;
5758  if (D.isFunctionDeclarator()) {
5759    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5760
5761    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5762    // function that takes no arguments, not a function that takes a
5763    // single void argument.
5764    // We let through "const void" here because Sema::GetTypeForDeclarator
5765    // already checks for that case.
5766    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5767        FTI.ArgInfo[0].Param &&
5768        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5769      // Empty arg list, don't push any params.
5770      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5771    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5772      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5773        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5774        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5775        Param->setDeclContext(NewFD);
5776        Params.push_back(Param);
5777
5778        if (Param->isInvalidDecl())
5779          NewFD->setInvalidDecl();
5780      }
5781    }
5782
5783  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5784    // When we're declaring a function with a typedef, typeof, etc as in the
5785    // following example, we'll need to synthesize (unnamed)
5786    // parameters for use in the declaration.
5787    //
5788    // @code
5789    // typedef void fn(int);
5790    // fn f;
5791    // @endcode
5792
5793    // Synthesize a parameter for each argument type.
5794    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5795         AE = FT->arg_type_end(); AI != AE; ++AI) {
5796      ParmVarDecl *Param =
5797        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5798      Param->setScopeInfo(0, Params.size());
5799      Params.push_back(Param);
5800    }
5801  } else {
5802    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5803           "Should not need args for typedef of non-prototype fn");
5804  }
5805
5806  // Finally, we know we have the right number of parameters, install them.
5807  NewFD->setParams(Params);
5808
5809  // Find all anonymous symbols defined during the declaration of this function
5810  // and add to NewFD. This lets us track decls such 'enum Y' in:
5811  //
5812  //   void f(enum Y {AA} x) {}
5813  //
5814  // which would otherwise incorrectly end up in the translation unit scope.
5815  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5816  DeclsInPrototypeScope.clear();
5817
5818  // Process the non-inheritable attributes on this declaration.
5819  ProcessDeclAttributes(S, NewFD, D,
5820                        /*NonInheritable=*/true, /*Inheritable=*/false);
5821
5822  // Functions returning a variably modified type violate C99 6.7.5.2p2
5823  // because all functions have linkage.
5824  if (!NewFD->isInvalidDecl() &&
5825      NewFD->getResultType()->isVariablyModifiedType()) {
5826    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5827    NewFD->setInvalidDecl();
5828  }
5829
5830  // Handle attributes.
5831  ProcessDeclAttributes(S, NewFD, D,
5832                        /*NonInheritable=*/false, /*Inheritable=*/true);
5833
5834  QualType RetType = NewFD->getResultType();
5835  const CXXRecordDecl *Ret = RetType->isRecordType() ?
5836      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
5837  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
5838      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
5839    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5840    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
5841      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
5842                                                        Context));
5843    }
5844  }
5845
5846  if (!getLangOpts().CPlusPlus) {
5847    // Perform semantic checking on the function declaration.
5848    bool isExplicitSpecialization=false;
5849    if (!NewFD->isInvalidDecl()) {
5850      if (NewFD->isMain())
5851        CheckMain(NewFD, D.getDeclSpec());
5852      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5853                                                  isExplicitSpecialization));
5854    }
5855    // Make graceful recovery from an invalid redeclaration.
5856    else if (!Previous.empty())
5857           D.setRedeclaration(true);
5858    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5859            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5860           "previous declaration set still overloaded");
5861  } else {
5862    // If the declarator is a template-id, translate the parser's template
5863    // argument list into our AST format.
5864    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5865      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5866      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5867      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5868      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5869                                         TemplateId->NumArgs);
5870      translateTemplateArguments(TemplateArgsPtr,
5871                                 TemplateArgs);
5872
5873      HasExplicitTemplateArgs = true;
5874
5875      if (NewFD->isInvalidDecl()) {
5876        HasExplicitTemplateArgs = false;
5877      } else if (FunctionTemplate) {
5878        // Function template with explicit template arguments.
5879        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5880          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5881
5882        HasExplicitTemplateArgs = false;
5883      } else if (!isFunctionTemplateSpecialization &&
5884                 !D.getDeclSpec().isFriendSpecified()) {
5885        // We have encountered something that the user meant to be a
5886        // specialization (because it has explicitly-specified template
5887        // arguments) but that was not introduced with a "template<>" (or had
5888        // too few of them).
5889        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5890          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5891          << FixItHint::CreateInsertion(
5892                                    D.getDeclSpec().getLocStart(),
5893                                        "template<> ");
5894        isFunctionTemplateSpecialization = true;
5895      } else {
5896        // "friend void foo<>(int);" is an implicit specialization decl.
5897        isFunctionTemplateSpecialization = true;
5898      }
5899    } else if (isFriend && isFunctionTemplateSpecialization) {
5900      // This combination is only possible in a recovery case;  the user
5901      // wrote something like:
5902      //   template <> friend void foo(int);
5903      // which we're recovering from as if the user had written:
5904      //   friend void foo<>(int);
5905      // Go ahead and fake up a template id.
5906      HasExplicitTemplateArgs = true;
5907        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5908      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5909    }
5910
5911    // If it's a friend (and only if it's a friend), it's possible
5912    // that either the specialized function type or the specialized
5913    // template is dependent, and therefore matching will fail.  In
5914    // this case, don't check the specialization yet.
5915    bool InstantiationDependent = false;
5916    if (isFunctionTemplateSpecialization && isFriend &&
5917        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5918         TemplateSpecializationType::anyDependentTemplateArguments(
5919            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5920            InstantiationDependent))) {
5921      assert(HasExplicitTemplateArgs &&
5922             "friend function specialization without template args");
5923      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5924                                                       Previous))
5925        NewFD->setInvalidDecl();
5926    } else if (isFunctionTemplateSpecialization) {
5927      if (CurContext->isDependentContext() && CurContext->isRecord()
5928          && !isFriend) {
5929        isDependentClassScopeExplicitSpecialization = true;
5930        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5931          diag::ext_function_specialization_in_class :
5932          diag::err_function_specialization_in_class)
5933          << NewFD->getDeclName();
5934      } else if (CheckFunctionTemplateSpecialization(NewFD,
5935                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5936                                                     Previous))
5937        NewFD->setInvalidDecl();
5938
5939      // C++ [dcl.stc]p1:
5940      //   A storage-class-specifier shall not be specified in an explicit
5941      //   specialization (14.7.3)
5942      if (SC != SC_None) {
5943        if (SC != NewFD->getStorageClass())
5944          Diag(NewFD->getLocation(),
5945               diag::err_explicit_specialization_inconsistent_storage_class)
5946            << SC
5947            << FixItHint::CreateRemoval(
5948                                      D.getDeclSpec().getStorageClassSpecLoc());
5949
5950        else
5951          Diag(NewFD->getLocation(),
5952               diag::ext_explicit_specialization_storage_class)
5953            << FixItHint::CreateRemoval(
5954                                      D.getDeclSpec().getStorageClassSpecLoc());
5955      }
5956
5957    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5958      if (CheckMemberSpecialization(NewFD, Previous))
5959          NewFD->setInvalidDecl();
5960    }
5961
5962    // Perform semantic checking on the function declaration.
5963    if (!isDependentClassScopeExplicitSpecialization) {
5964      if (NewFD->isInvalidDecl()) {
5965        // If this is a class member, mark the class invalid immediately.
5966        // This avoids some consistency errors later.
5967        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5968          methodDecl->getParent()->setInvalidDecl();
5969      } else {
5970        if (NewFD->isMain())
5971          CheckMain(NewFD, D.getDeclSpec());
5972        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5973                                                    isExplicitSpecialization));
5974      }
5975    }
5976
5977    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5978            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5979           "previous declaration set still overloaded");
5980
5981    NamedDecl *PrincipalDecl = (FunctionTemplate
5982                                ? cast<NamedDecl>(FunctionTemplate)
5983                                : NewFD);
5984
5985    if (isFriend && D.isRedeclaration()) {
5986      AccessSpecifier Access = AS_public;
5987      if (!NewFD->isInvalidDecl())
5988        Access = NewFD->getPreviousDecl()->getAccess();
5989
5990      NewFD->setAccess(Access);
5991      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5992
5993      PrincipalDecl->setObjectOfFriendDecl(true);
5994    }
5995
5996    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5997        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5998      PrincipalDecl->setNonMemberOperator();
5999
6000    // If we have a function template, check the template parameter
6001    // list. This will check and merge default template arguments.
6002    if (FunctionTemplate) {
6003      FunctionTemplateDecl *PrevTemplate =
6004                                     FunctionTemplate->getPreviousDecl();
6005      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6006                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6007                            D.getDeclSpec().isFriendSpecified()
6008                              ? (D.isFunctionDefinition()
6009                                   ? TPC_FriendFunctionTemplateDefinition
6010                                   : TPC_FriendFunctionTemplate)
6011                              : (D.getCXXScopeSpec().isSet() &&
6012                                 DC && DC->isRecord() &&
6013                                 DC->isDependentContext())
6014                                  ? TPC_ClassTemplateMember
6015                                  : TPC_FunctionTemplate);
6016    }
6017
6018    if (NewFD->isInvalidDecl()) {
6019      // Ignore all the rest of this.
6020    } else if (!D.isRedeclaration()) {
6021      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6022                                       AddToScope };
6023      // Fake up an access specifier if it's supposed to be a class member.
6024      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6025        NewFD->setAccess(AS_public);
6026
6027      // Qualified decls generally require a previous declaration.
6028      if (D.getCXXScopeSpec().isSet()) {
6029        // ...with the major exception of templated-scope or
6030        // dependent-scope friend declarations.
6031
6032        // TODO: we currently also suppress this check in dependent
6033        // contexts because (1) the parameter depth will be off when
6034        // matching friend templates and (2) we might actually be
6035        // selecting a friend based on a dependent factor.  But there
6036        // are situations where these conditions don't apply and we
6037        // can actually do this check immediately.
6038        if (isFriend &&
6039            (TemplateParamLists.size() ||
6040             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6041             CurContext->isDependentContext())) {
6042          // ignore these
6043        } else {
6044          // The user tried to provide an out-of-line definition for a
6045          // function that is a member of a class or namespace, but there
6046          // was no such member function declared (C++ [class.mfct]p2,
6047          // C++ [namespace.memdef]p2). For example:
6048          //
6049          // class X {
6050          //   void f() const;
6051          // };
6052          //
6053          // void X::f() { } // ill-formed
6054          //
6055          // Complain about this problem, and attempt to suggest close
6056          // matches (e.g., those that differ only in cv-qualifiers and
6057          // whether the parameter types are references).
6058
6059          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6060                                                               NewFD,
6061                                                               ExtraArgs)) {
6062            AddToScope = ExtraArgs.AddToScope;
6063            return Result;
6064          }
6065        }
6066
6067        // Unqualified local friend declarations are required to resolve
6068        // to something.
6069      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6070        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6071                                                             NewFD,
6072                                                             ExtraArgs)) {
6073          AddToScope = ExtraArgs.AddToScope;
6074          return Result;
6075        }
6076      }
6077
6078    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6079               !isFriend && !isFunctionTemplateSpecialization &&
6080               !isExplicitSpecialization) {
6081      // An out-of-line member function declaration must also be a
6082      // definition (C++ [dcl.meaning]p1).
6083      // Note that this is not the case for explicit specializations of
6084      // function templates or member functions of class templates, per
6085      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6086      // extension for compatibility with old SWIG code which likes to
6087      // generate them.
6088      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6089        << D.getCXXScopeSpec().getRange();
6090    }
6091  }
6092
6093  checkAttributesAfterMerging(*this, *NewFD);
6094
6095  AddKnownFunctionAttributes(NewFD);
6096
6097  if (NewFD->hasAttr<OverloadableAttr>() &&
6098      !NewFD->getType()->getAs<FunctionProtoType>()) {
6099    Diag(NewFD->getLocation(),
6100         diag::err_attribute_overloadable_no_prototype)
6101      << NewFD;
6102
6103    // Turn this into a variadic function with no parameters.
6104    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6105    FunctionProtoType::ExtProtoInfo EPI;
6106    EPI.Variadic = true;
6107    EPI.ExtInfo = FT->getExtInfo();
6108
6109    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
6110    NewFD->setType(R);
6111  }
6112
6113  // If there's a #pragma GCC visibility in scope, and this isn't a class
6114  // member, set the visibility of this function.
6115  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
6116    AddPushedVisibilityAttribute(NewFD);
6117
6118  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6119  // marking the function.
6120  AddCFAuditedAttribute(NewFD);
6121
6122  // If this is a locally-scoped extern C function, update the
6123  // map of such names.
6124  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6125      && !NewFD->isInvalidDecl())
6126    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6127
6128  // Set this FunctionDecl's range up to the right paren.
6129  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6130
6131  if (getLangOpts().CPlusPlus) {
6132    if (FunctionTemplate) {
6133      if (NewFD->isInvalidDecl())
6134        FunctionTemplate->setInvalidDecl();
6135      return FunctionTemplate;
6136    }
6137  }
6138
6139  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6140  if ((getLangOpts().OpenCLVersion >= 120)
6141      && NewFD->hasAttr<OpenCLKernelAttr>()
6142      && (SC == SC_Static)) {
6143    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6144    D.setInvalidType();
6145  }
6146
6147  MarkUnusedFileScopedDecl(NewFD);
6148
6149  if (getLangOpts().CUDA)
6150    if (IdentifierInfo *II = NewFD->getIdentifier())
6151      if (!NewFD->isInvalidDecl() &&
6152          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6153        if (II->isStr("cudaConfigureCall")) {
6154          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6155            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6156
6157          Context.setcudaConfigureCallDecl(NewFD);
6158        }
6159      }
6160
6161  // Here we have an function template explicit specialization at class scope.
6162  // The actually specialization will be postponed to template instatiation
6163  // time via the ClassScopeFunctionSpecializationDecl node.
6164  if (isDependentClassScopeExplicitSpecialization) {
6165    ClassScopeFunctionSpecializationDecl *NewSpec =
6166                         ClassScopeFunctionSpecializationDecl::Create(
6167                                Context, CurContext, SourceLocation(),
6168                                cast<CXXMethodDecl>(NewFD),
6169                                HasExplicitTemplateArgs, TemplateArgs);
6170    CurContext->addDecl(NewSpec);
6171    AddToScope = false;
6172  }
6173
6174  return NewFD;
6175}
6176
6177/// \brief Perform semantic checking of a new function declaration.
6178///
6179/// Performs semantic analysis of the new function declaration
6180/// NewFD. This routine performs all semantic checking that does not
6181/// require the actual declarator involved in the declaration, and is
6182/// used both for the declaration of functions as they are parsed
6183/// (called via ActOnDeclarator) and for the declaration of functions
6184/// that have been instantiated via C++ template instantiation (called
6185/// via InstantiateDecl).
6186///
6187/// \param IsExplicitSpecialization whether this new function declaration is
6188/// an explicit specialization of the previous declaration.
6189///
6190/// This sets NewFD->isInvalidDecl() to true if there was an error.
6191///
6192/// \returns true if the function declaration is a redeclaration.
6193bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6194                                    LookupResult &Previous,
6195                                    bool IsExplicitSpecialization) {
6196  assert(!NewFD->getResultType()->isVariablyModifiedType()
6197         && "Variably modified return types are not handled here");
6198
6199  // Check for a previous declaration of this name.
6200  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6201    // Since we did not find anything by this name, look for a non-visible
6202    // extern "C" declaration with the same name.
6203    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6204      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6205    if (Pos != LocallyScopedExternCDecls.end())
6206      Previous.addDecl(Pos->second);
6207  }
6208
6209  // Filter out any non-conflicting previous declarations.
6210  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6211
6212  bool Redeclaration = false;
6213  NamedDecl *OldDecl = 0;
6214
6215  // Merge or overload the declaration with an existing declaration of
6216  // the same name, if appropriate.
6217  if (!Previous.empty()) {
6218    // Determine whether NewFD is an overload of PrevDecl or
6219    // a declaration that requires merging. If it's an overload,
6220    // there's no more work to do here; we'll just add the new
6221    // function to the scope.
6222    if (!AllowOverloadingOfFunction(Previous, Context)) {
6223      Redeclaration = true;
6224      OldDecl = Previous.getFoundDecl();
6225    } else {
6226      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6227                            /*NewIsUsingDecl*/ false)) {
6228      case Ovl_Match:
6229        Redeclaration = true;
6230        break;
6231
6232      case Ovl_NonFunction:
6233        Redeclaration = true;
6234        break;
6235
6236      case Ovl_Overload:
6237        Redeclaration = false;
6238        break;
6239      }
6240
6241      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6242        // If a function name is overloadable in C, then every function
6243        // with that name must be marked "overloadable".
6244        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6245          << Redeclaration << NewFD;
6246        NamedDecl *OverloadedDecl = 0;
6247        if (Redeclaration)
6248          OverloadedDecl = OldDecl;
6249        else if (!Previous.empty())
6250          OverloadedDecl = Previous.getRepresentativeDecl();
6251        if (OverloadedDecl)
6252          Diag(OverloadedDecl->getLocation(),
6253               diag::note_attribute_overloadable_prev_overload);
6254        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6255                                                        Context));
6256      }
6257    }
6258  }
6259
6260  // C++11 [dcl.constexpr]p8:
6261  //   A constexpr specifier for a non-static member function that is not
6262  //   a constructor declares that member function to be const.
6263  //
6264  // This needs to be delayed until we know whether this is an out-of-line
6265  // definition of a static member function.
6266  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6267  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6268      !isa<CXXConstructorDecl>(MD) &&
6269      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6270    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6271    if (FunctionTemplateDecl *OldTD =
6272          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6273      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6274    if (!OldMD || !OldMD->isStatic()) {
6275      const FunctionProtoType *FPT =
6276        MD->getType()->castAs<FunctionProtoType>();
6277      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6278      EPI.TypeQuals |= Qualifiers::Const;
6279      MD->setType(Context.getFunctionType(FPT->getResultType(),
6280                                          FPT->arg_type_begin(),
6281                                          FPT->getNumArgs(), EPI));
6282    }
6283  }
6284
6285  if (Redeclaration) {
6286    // NewFD and OldDecl represent declarations that need to be
6287    // merged.
6288    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6289      NewFD->setInvalidDecl();
6290      return Redeclaration;
6291    }
6292
6293    Previous.clear();
6294    Previous.addDecl(OldDecl);
6295
6296    if (FunctionTemplateDecl *OldTemplateDecl
6297                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6298      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6299      FunctionTemplateDecl *NewTemplateDecl
6300        = NewFD->getDescribedFunctionTemplate();
6301      assert(NewTemplateDecl && "Template/non-template mismatch");
6302      if (CXXMethodDecl *Method
6303            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6304        Method->setAccess(OldTemplateDecl->getAccess());
6305        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6306      }
6307
6308      // If this is an explicit specialization of a member that is a function
6309      // template, mark it as a member specialization.
6310      if (IsExplicitSpecialization &&
6311          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6312        NewTemplateDecl->setMemberSpecialization();
6313        assert(OldTemplateDecl->isMemberSpecialization());
6314      }
6315
6316    } else {
6317      if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6318        NewFD->setAccess(OldDecl->getAccess());
6319      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6320    }
6321  }
6322
6323  // Semantic checking for this function declaration (in isolation).
6324  if (getLangOpts().CPlusPlus) {
6325    // C++-specific checks.
6326    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6327      CheckConstructor(Constructor);
6328    } else if (CXXDestructorDecl *Destructor =
6329                dyn_cast<CXXDestructorDecl>(NewFD)) {
6330      CXXRecordDecl *Record = Destructor->getParent();
6331      QualType ClassType = Context.getTypeDeclType(Record);
6332
6333      // FIXME: Shouldn't we be able to perform this check even when the class
6334      // type is dependent? Both gcc and edg can handle that.
6335      if (!ClassType->isDependentType()) {
6336        DeclarationName Name
6337          = Context.DeclarationNames.getCXXDestructorName(
6338                                        Context.getCanonicalType(ClassType));
6339        if (NewFD->getDeclName() != Name) {
6340          Diag(NewFD->getLocation(), diag::err_destructor_name);
6341          NewFD->setInvalidDecl();
6342          return Redeclaration;
6343        }
6344      }
6345    } else if (CXXConversionDecl *Conversion
6346               = dyn_cast<CXXConversionDecl>(NewFD)) {
6347      ActOnConversionDeclarator(Conversion);
6348    }
6349
6350    // Find any virtual functions that this function overrides.
6351    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6352      if (!Method->isFunctionTemplateSpecialization() &&
6353          !Method->getDescribedFunctionTemplate() &&
6354          Method->isCanonicalDecl()) {
6355        if (AddOverriddenMethods(Method->getParent(), Method)) {
6356          // If the function was marked as "static", we have a problem.
6357          if (NewFD->getStorageClass() == SC_Static) {
6358            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6359          }
6360        }
6361      }
6362
6363      if (Method->isStatic())
6364        checkThisInStaticMemberFunctionType(Method);
6365    }
6366
6367    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6368    if (NewFD->isOverloadedOperator() &&
6369        CheckOverloadedOperatorDeclaration(NewFD)) {
6370      NewFD->setInvalidDecl();
6371      return Redeclaration;
6372    }
6373
6374    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6375    if (NewFD->getLiteralIdentifier() &&
6376        CheckLiteralOperatorDeclaration(NewFD)) {
6377      NewFD->setInvalidDecl();
6378      return Redeclaration;
6379    }
6380
6381    // In C++, check default arguments now that we have merged decls. Unless
6382    // the lexical context is the class, because in this case this is done
6383    // during delayed parsing anyway.
6384    if (!CurContext->isRecord())
6385      CheckCXXDefaultArguments(NewFD);
6386
6387    // If this function declares a builtin function, check the type of this
6388    // declaration against the expected type for the builtin.
6389    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6390      ASTContext::GetBuiltinTypeError Error;
6391      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6392      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6393      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6394        // The type of this function differs from the type of the builtin,
6395        // so forget about the builtin entirely.
6396        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6397      }
6398    }
6399
6400    // If this function is declared as being extern "C", then check to see if
6401    // the function returns a UDT (class, struct, or union type) that is not C
6402    // compatible, and if it does, warn the user.
6403    if (NewFD->hasCLanguageLinkage()) {
6404      QualType R = NewFD->getResultType();
6405      if (R->isIncompleteType() && !R->isVoidType())
6406        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6407            << NewFD << R;
6408      else if (!R.isPODType(Context) && !R->isVoidType() &&
6409               !R->isObjCObjectPointerType())
6410        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6411    }
6412  }
6413  return Redeclaration;
6414}
6415
6416static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6417  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6418  if (!TSI)
6419    return SourceRange();
6420
6421  TypeLoc TL = TSI->getTypeLoc();
6422  FunctionTypeLoc *FunctionTL = dyn_cast<FunctionTypeLoc>(&TL);
6423  if (!FunctionTL)
6424    return SourceRange();
6425
6426  TypeLoc ResultTL = FunctionTL->getResultLoc();
6427  if (isa<BuiltinTypeLoc>(ResultTL.getUnqualifiedLoc()))
6428    return ResultTL.getSourceRange();
6429
6430  return SourceRange();
6431}
6432
6433void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6434  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6435  //   static or constexpr is ill-formed.
6436  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6437  //   appear in a declaration of main.
6438  // static main is not an error under C99, but we should warn about it.
6439  // We accept _Noreturn main as an extension.
6440  if (FD->getStorageClass() == SC_Static)
6441    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6442         ? diag::err_static_main : diag::warn_static_main)
6443      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6444  if (FD->isInlineSpecified())
6445    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6446      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6447  if (DS.isNoreturnSpecified())
6448    Diag(DS.getNoreturnSpecLoc(), diag::ext_noreturn_main);
6449  if (FD->isConstexpr()) {
6450    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6451      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6452    FD->setConstexpr(false);
6453  }
6454
6455  QualType T = FD->getType();
6456  assert(T->isFunctionType() && "function decl is not of function type");
6457  const FunctionType* FT = T->castAs<FunctionType>();
6458
6459  // All the standards say that main() should should return 'int'.
6460  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6461    // In C and C++, main magically returns 0 if you fall off the end;
6462    // set the flag which tells us that.
6463    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6464    FD->setHasImplicitReturnZero(true);
6465
6466  // In C with GNU extensions we allow main() to have non-integer return
6467  // type, but we should warn about the extension, and we disable the
6468  // implicit-return-zero rule.
6469  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6470    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6471
6472    SourceRange ResultRange = getResultSourceRange(FD);
6473    if (ResultRange.isValid())
6474      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6475          << FixItHint::CreateReplacement(ResultRange, "int");
6476
6477  // Otherwise, this is just a flat-out error.
6478  } else {
6479    SourceRange ResultRange = getResultSourceRange(FD);
6480    if (ResultRange.isValid())
6481      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6482          << FixItHint::CreateReplacement(ResultRange, "int");
6483    else
6484      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6485
6486    FD->setInvalidDecl(true);
6487  }
6488
6489  // Treat protoless main() as nullary.
6490  if (isa<FunctionNoProtoType>(FT)) return;
6491
6492  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6493  unsigned nparams = FTP->getNumArgs();
6494  assert(FD->getNumParams() == nparams);
6495
6496  bool HasExtraParameters = (nparams > 3);
6497
6498  // Darwin passes an undocumented fourth argument of type char**.  If
6499  // other platforms start sprouting these, the logic below will start
6500  // getting shifty.
6501  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6502    HasExtraParameters = false;
6503
6504  if (HasExtraParameters) {
6505    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6506    FD->setInvalidDecl(true);
6507    nparams = 3;
6508  }
6509
6510  // FIXME: a lot of the following diagnostics would be improved
6511  // if we had some location information about types.
6512
6513  QualType CharPP =
6514    Context.getPointerType(Context.getPointerType(Context.CharTy));
6515  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6516
6517  for (unsigned i = 0; i < nparams; ++i) {
6518    QualType AT = FTP->getArgType(i);
6519
6520    bool mismatch = true;
6521
6522    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6523      mismatch = false;
6524    else if (Expected[i] == CharPP) {
6525      // As an extension, the following forms are okay:
6526      //   char const **
6527      //   char const * const *
6528      //   char * const *
6529
6530      QualifierCollector qs;
6531      const PointerType* PT;
6532      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6533          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6534          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6535        qs.removeConst();
6536        mismatch = !qs.empty();
6537      }
6538    }
6539
6540    if (mismatch) {
6541      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6542      // TODO: suggest replacing given type with expected type
6543      FD->setInvalidDecl(true);
6544    }
6545  }
6546
6547  if (nparams == 1 && !FD->isInvalidDecl()) {
6548    Diag(FD->getLocation(), diag::warn_main_one_arg);
6549  }
6550
6551  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6552    Diag(FD->getLocation(), diag::err_main_template_decl);
6553    FD->setInvalidDecl();
6554  }
6555}
6556
6557bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6558  // FIXME: Need strict checking.  In C89, we need to check for
6559  // any assignment, increment, decrement, function-calls, or
6560  // commas outside of a sizeof.  In C99, it's the same list,
6561  // except that the aforementioned are allowed in unevaluated
6562  // expressions.  Everything else falls under the
6563  // "may accept other forms of constant expressions" exception.
6564  // (We never end up here for C++, so the constant expression
6565  // rules there don't matter.)
6566  if (Init->isConstantInitializer(Context, false))
6567    return false;
6568  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6569    << Init->getSourceRange();
6570  return true;
6571}
6572
6573namespace {
6574  // Visits an initialization expression to see if OrigDecl is evaluated in
6575  // its own initialization and throws a warning if it does.
6576  class SelfReferenceChecker
6577      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6578    Sema &S;
6579    Decl *OrigDecl;
6580    bool isRecordType;
6581    bool isPODType;
6582    bool isReferenceType;
6583
6584  public:
6585    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6586
6587    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6588                                                    S(S), OrigDecl(OrigDecl) {
6589      isPODType = false;
6590      isRecordType = false;
6591      isReferenceType = false;
6592      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6593        isPODType = VD->getType().isPODType(S.Context);
6594        isRecordType = VD->getType()->isRecordType();
6595        isReferenceType = VD->getType()->isReferenceType();
6596      }
6597    }
6598
6599    // For most expressions, the cast is directly above the DeclRefExpr.
6600    // For conditional operators, the cast can be outside the conditional
6601    // operator if both expressions are DeclRefExpr's.
6602    void HandleValue(Expr *E) {
6603      if (isReferenceType)
6604        return;
6605      E = E->IgnoreParenImpCasts();
6606      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6607        HandleDeclRefExpr(DRE);
6608        return;
6609      }
6610
6611      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6612        HandleValue(CO->getTrueExpr());
6613        HandleValue(CO->getFalseExpr());
6614        return;
6615      }
6616
6617      if (isa<MemberExpr>(E)) {
6618        Expr *Base = E->IgnoreParenImpCasts();
6619        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6620          // Check for static member variables and don't warn on them.
6621          if (!isa<FieldDecl>(ME->getMemberDecl()))
6622            return;
6623          Base = ME->getBase()->IgnoreParenImpCasts();
6624        }
6625        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6626          HandleDeclRefExpr(DRE);
6627        return;
6628      }
6629    }
6630
6631    // Reference types are handled here since all uses of references are
6632    // bad, not just r-value uses.
6633    void VisitDeclRefExpr(DeclRefExpr *E) {
6634      if (isReferenceType)
6635        HandleDeclRefExpr(E);
6636    }
6637
6638    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6639      if (E->getCastKind() == CK_LValueToRValue ||
6640          (isRecordType && E->getCastKind() == CK_NoOp))
6641        HandleValue(E->getSubExpr());
6642
6643      Inherited::VisitImplicitCastExpr(E);
6644    }
6645
6646    void VisitMemberExpr(MemberExpr *E) {
6647      // Don't warn on arrays since they can be treated as pointers.
6648      if (E->getType()->canDecayToPointerType()) return;
6649
6650      // Warn when a non-static method call is followed by non-static member
6651      // field accesses, which is followed by a DeclRefExpr.
6652      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6653      bool Warn = (MD && !MD->isStatic());
6654      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6655      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6656        if (!isa<FieldDecl>(ME->getMemberDecl()))
6657          Warn = false;
6658        Base = ME->getBase()->IgnoreParenImpCasts();
6659      }
6660
6661      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6662        if (Warn)
6663          HandleDeclRefExpr(DRE);
6664        return;
6665      }
6666
6667      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6668      // Visit that expression.
6669      Visit(Base);
6670    }
6671
6672    void VisitUnaryOperator(UnaryOperator *E) {
6673      // For POD record types, addresses of its own members are well-defined.
6674      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6675          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6676        if (!isPODType)
6677          HandleValue(E->getSubExpr());
6678        return;
6679      }
6680      Inherited::VisitUnaryOperator(E);
6681    }
6682
6683    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6684
6685    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6686      Decl* ReferenceDecl = DRE->getDecl();
6687      if (OrigDecl != ReferenceDecl) return;
6688      unsigned diag = isReferenceType
6689          ? diag::warn_uninit_self_reference_in_reference_init
6690          : diag::warn_uninit_self_reference_in_init;
6691      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6692                            S.PDiag(diag)
6693                              << DRE->getNameInfo().getName()
6694                              << OrigDecl->getLocation()
6695                              << DRE->getSourceRange());
6696    }
6697  };
6698
6699  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6700  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6701                                 bool DirectInit) {
6702    // Parameters arguments are occassionially constructed with itself,
6703    // for instance, in recursive functions.  Skip them.
6704    if (isa<ParmVarDecl>(OrigDecl))
6705      return;
6706
6707    E = E->IgnoreParens();
6708
6709    // Skip checking T a = a where T is not a record or reference type.
6710    // Doing so is a way to silence uninitialized warnings.
6711    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6712      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6713        if (ICE->getCastKind() == CK_LValueToRValue)
6714          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6715            if (DRE->getDecl() == OrigDecl)
6716              return;
6717
6718    SelfReferenceChecker(S, OrigDecl).Visit(E);
6719  }
6720}
6721
6722/// AddInitializerToDecl - Adds the initializer Init to the
6723/// declaration dcl. If DirectInit is true, this is C++ direct
6724/// initialization rather than copy initialization.
6725void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6726                                bool DirectInit, bool TypeMayContainAuto) {
6727  // If there is no declaration, there was an error parsing it.  Just ignore
6728  // the initializer.
6729  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6730    return;
6731
6732  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6733    // With declarators parsed the way they are, the parser cannot
6734    // distinguish between a normal initializer and a pure-specifier.
6735    // Thus this grotesque test.
6736    IntegerLiteral *IL;
6737    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6738        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6739      CheckPureMethod(Method, Init->getSourceRange());
6740    else {
6741      Diag(Method->getLocation(), diag::err_member_function_initialization)
6742        << Method->getDeclName() << Init->getSourceRange();
6743      Method->setInvalidDecl();
6744    }
6745    return;
6746  }
6747
6748  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6749  if (!VDecl) {
6750    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6751    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6752    RealDecl->setInvalidDecl();
6753    return;
6754  }
6755
6756  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6757
6758  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6759  AutoType *Auto = 0;
6760  if (TypeMayContainAuto &&
6761      (Auto = VDecl->getType()->getContainedAutoType()) &&
6762      !Auto->isDeduced()) {
6763    Expr *DeduceInit = Init;
6764    // Initializer could be a C++ direct-initializer. Deduction only works if it
6765    // contains exactly one expression.
6766    if (CXXDirectInit) {
6767      if (CXXDirectInit->getNumExprs() == 0) {
6768        // It isn't possible to write this directly, but it is possible to
6769        // end up in this situation with "auto x(some_pack...);"
6770        Diag(CXXDirectInit->getLocStart(),
6771             diag::err_auto_var_init_no_expression)
6772          << VDecl->getDeclName() << VDecl->getType()
6773          << VDecl->getSourceRange();
6774        RealDecl->setInvalidDecl();
6775        return;
6776      } else if (CXXDirectInit->getNumExprs() > 1) {
6777        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6778             diag::err_auto_var_init_multiple_expressions)
6779          << VDecl->getDeclName() << VDecl->getType()
6780          << VDecl->getSourceRange();
6781        RealDecl->setInvalidDecl();
6782        return;
6783      } else {
6784        DeduceInit = CXXDirectInit->getExpr(0);
6785      }
6786    }
6787    TypeSourceInfo *DeducedType = 0;
6788    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6789            DAR_Failed)
6790      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6791    if (!DeducedType) {
6792      RealDecl->setInvalidDecl();
6793      return;
6794    }
6795    VDecl->setTypeSourceInfo(DeducedType);
6796    VDecl->setType(DeducedType->getType());
6797    VDecl->ClearLinkageCache();
6798
6799    // In ARC, infer lifetime.
6800    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6801      VDecl->setInvalidDecl();
6802
6803    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6804    // 'id' instead of a specific object type prevents most of our usual checks.
6805    // We only want to warn outside of template instantiations, though:
6806    // inside a template, the 'id' could have come from a parameter.
6807    if (ActiveTemplateInstantiations.empty() &&
6808        DeducedType->getType()->isObjCIdType()) {
6809      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6810      Diag(Loc, diag::warn_auto_var_is_id)
6811        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6812    }
6813
6814    // If this is a redeclaration, check that the type we just deduced matches
6815    // the previously declared type.
6816    if (VarDecl *Old = VDecl->getPreviousDecl())
6817      MergeVarDeclTypes(VDecl, Old);
6818  }
6819
6820  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6821    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6822    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6823    VDecl->setInvalidDecl();
6824    return;
6825  }
6826
6827  if (!VDecl->getType()->isDependentType()) {
6828    // A definition must end up with a complete type, which means it must be
6829    // complete with the restriction that an array type might be completed by
6830    // the initializer; note that later code assumes this restriction.
6831    QualType BaseDeclType = VDecl->getType();
6832    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6833      BaseDeclType = Array->getElementType();
6834    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6835                            diag::err_typecheck_decl_incomplete_type)) {
6836      RealDecl->setInvalidDecl();
6837      return;
6838    }
6839
6840    // The variable can not have an abstract class type.
6841    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6842                               diag::err_abstract_type_in_decl,
6843                               AbstractVariableType))
6844      VDecl->setInvalidDecl();
6845  }
6846
6847  const VarDecl *Def;
6848  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6849    Diag(VDecl->getLocation(), diag::err_redefinition)
6850      << VDecl->getDeclName();
6851    Diag(Def->getLocation(), diag::note_previous_definition);
6852    VDecl->setInvalidDecl();
6853    return;
6854  }
6855
6856  const VarDecl* PrevInit = 0;
6857  if (getLangOpts().CPlusPlus) {
6858    // C++ [class.static.data]p4
6859    //   If a static data member is of const integral or const
6860    //   enumeration type, its declaration in the class definition can
6861    //   specify a constant-initializer which shall be an integral
6862    //   constant expression (5.19). In that case, the member can appear
6863    //   in integral constant expressions. The member shall still be
6864    //   defined in a namespace scope if it is used in the program and the
6865    //   namespace scope definition shall not contain an initializer.
6866    //
6867    // We already performed a redefinition check above, but for static
6868    // data members we also need to check whether there was an in-class
6869    // declaration with an initializer.
6870    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6871      Diag(VDecl->getLocation(), diag::err_redefinition)
6872        << VDecl->getDeclName();
6873      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6874      return;
6875    }
6876
6877    if (VDecl->hasLocalStorage())
6878      getCurFunction()->setHasBranchProtectedScope();
6879
6880    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6881      VDecl->setInvalidDecl();
6882      return;
6883    }
6884  }
6885
6886  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6887  // a kernel function cannot be initialized."
6888  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6889    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6890    VDecl->setInvalidDecl();
6891    return;
6892  }
6893
6894  // Get the decls type and save a reference for later, since
6895  // CheckInitializerTypes may change it.
6896  QualType DclT = VDecl->getType(), SavT = DclT;
6897
6898  // Top-level message sends default to 'id' when we're in a debugger
6899  // and we are assigning it to a variable of 'id' type.
6900  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6901    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6902      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6903      if (Result.isInvalid()) {
6904        VDecl->setInvalidDecl();
6905        return;
6906      }
6907      Init = Result.take();
6908    }
6909
6910  // Perform the initialization.
6911  if (!VDecl->isInvalidDecl()) {
6912    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6913    InitializationKind Kind
6914      = DirectInit ?
6915          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6916                                                           Init->getLocStart(),
6917                                                           Init->getLocEnd())
6918                        : InitializationKind::CreateDirectList(
6919                                                          VDecl->getLocation())
6920                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6921                                                    Init->getLocStart());
6922
6923    Expr **Args = &Init;
6924    unsigned NumArgs = 1;
6925    if (CXXDirectInit) {
6926      Args = CXXDirectInit->getExprs();
6927      NumArgs = CXXDirectInit->getNumExprs();
6928    }
6929    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6930    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6931                                        MultiExprArg(Args, NumArgs), &DclT);
6932    if (Result.isInvalid()) {
6933      VDecl->setInvalidDecl();
6934      return;
6935    }
6936
6937    Init = Result.takeAs<Expr>();
6938  }
6939
6940  // Check for self-references within variable initializers.
6941  // Variables declared within a function/method body (except for references)
6942  // are handled by a dataflow analysis.
6943  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
6944      VDecl->getType()->isReferenceType()) {
6945    CheckSelfReference(*this, RealDecl, Init, DirectInit);
6946  }
6947
6948  // If the type changed, it means we had an incomplete type that was
6949  // completed by the initializer. For example:
6950  //   int ary[] = { 1, 3, 5 };
6951  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6952  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6953    VDecl->setType(DclT);
6954
6955  if (!VDecl->isInvalidDecl()) {
6956    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6957
6958    if (VDecl->hasAttr<BlocksAttr>())
6959      checkRetainCycles(VDecl, Init);
6960
6961    // It is safe to assign a weak reference into a strong variable.
6962    // Although this code can still have problems:
6963    //   id x = self.weakProp;
6964    //   id y = self.weakProp;
6965    // we do not warn to warn spuriously when 'x' and 'y' are on separate
6966    // paths through the function. This should be revisited if
6967    // -Wrepeated-use-of-weak is made flow-sensitive.
6968    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
6969      DiagnosticsEngine::Level Level =
6970        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
6971                                 Init->getLocStart());
6972      if (Level != DiagnosticsEngine::Ignored)
6973        getCurFunction()->markSafeWeakUse(Init);
6974    }
6975  }
6976
6977  // The initialization is usually a full-expression.
6978  //
6979  // FIXME: If this is a braced initialization of an aggregate, it is not
6980  // an expression, and each individual field initializer is a separate
6981  // full-expression. For instance, in:
6982  //
6983  //   struct Temp { ~Temp(); };
6984  //   struct S { S(Temp); };
6985  //   struct T { S a, b; } t = { Temp(), Temp() }
6986  //
6987  // we should destroy the first Temp before constructing the second.
6988  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation());
6989  if (Result.isInvalid()) {
6990    VDecl->setInvalidDecl();
6991    return;
6992  }
6993  Init = Result.take();
6994
6995  // Attach the initializer to the decl.
6996  VDecl->setInit(Init);
6997
6998  if (VDecl->isLocalVarDecl()) {
6999    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7000    // static storage duration shall be constant expressions or string literals.
7001    // C++ does not have this restriction.
7002    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7003        VDecl->getStorageClass() == SC_Static)
7004      CheckForConstantInitializer(Init, DclT);
7005  } else if (VDecl->isStaticDataMember() &&
7006             VDecl->getLexicalDeclContext()->isRecord()) {
7007    // This is an in-class initialization for a static data member, e.g.,
7008    //
7009    // struct S {
7010    //   static const int value = 17;
7011    // };
7012
7013    // C++ [class.mem]p4:
7014    //   A member-declarator can contain a constant-initializer only
7015    //   if it declares a static member (9.4) of const integral or
7016    //   const enumeration type, see 9.4.2.
7017    //
7018    // C++11 [class.static.data]p3:
7019    //   If a non-volatile const static data member is of integral or
7020    //   enumeration type, its declaration in the class definition can
7021    //   specify a brace-or-equal-initializer in which every initalizer-clause
7022    //   that is an assignment-expression is a constant expression. A static
7023    //   data member of literal type can be declared in the class definition
7024    //   with the constexpr specifier; if so, its declaration shall specify a
7025    //   brace-or-equal-initializer in which every initializer-clause that is
7026    //   an assignment-expression is a constant expression.
7027
7028    // Do nothing on dependent types.
7029    if (DclT->isDependentType()) {
7030
7031    // Allow any 'static constexpr' members, whether or not they are of literal
7032    // type. We separately check that every constexpr variable is of literal
7033    // type.
7034    } else if (VDecl->isConstexpr()) {
7035
7036    // Require constness.
7037    } else if (!DclT.isConstQualified()) {
7038      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7039        << Init->getSourceRange();
7040      VDecl->setInvalidDecl();
7041
7042    // We allow integer constant expressions in all cases.
7043    } else if (DclT->isIntegralOrEnumerationType()) {
7044      // Check whether the expression is a constant expression.
7045      SourceLocation Loc;
7046      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7047        // In C++11, a non-constexpr const static data member with an
7048        // in-class initializer cannot be volatile.
7049        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7050      else if (Init->isValueDependent())
7051        ; // Nothing to check.
7052      else if (Init->isIntegerConstantExpr(Context, &Loc))
7053        ; // Ok, it's an ICE!
7054      else if (Init->isEvaluatable(Context)) {
7055        // If we can constant fold the initializer through heroics, accept it,
7056        // but report this as a use of an extension for -pedantic.
7057        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7058          << Init->getSourceRange();
7059      } else {
7060        // Otherwise, this is some crazy unknown case.  Report the issue at the
7061        // location provided by the isIntegerConstantExpr failed check.
7062        Diag(Loc, diag::err_in_class_initializer_non_constant)
7063          << Init->getSourceRange();
7064        VDecl->setInvalidDecl();
7065      }
7066
7067    // We allow foldable floating-point constants as an extension.
7068    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7069      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7070        << DclT << Init->getSourceRange();
7071      if (getLangOpts().CPlusPlus11)
7072        Diag(VDecl->getLocation(),
7073             diag::note_in_class_initializer_float_type_constexpr)
7074          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7075
7076      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7077        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7078          << Init->getSourceRange();
7079        VDecl->setInvalidDecl();
7080      }
7081
7082    // Suggest adding 'constexpr' in C++11 for literal types.
7083    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7084      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7085        << DclT << Init->getSourceRange()
7086        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7087      VDecl->setConstexpr(true);
7088
7089    } else {
7090      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7091        << DclT << Init->getSourceRange();
7092      VDecl->setInvalidDecl();
7093    }
7094  } else if (VDecl->isFileVarDecl()) {
7095    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7096        (!getLangOpts().CPlusPlus ||
7097         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7098      Diag(VDecl->getLocation(), diag::warn_extern_init);
7099
7100    // C99 6.7.8p4. All file scoped initializers need to be constant.
7101    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7102      CheckForConstantInitializer(Init, DclT);
7103  }
7104
7105  // We will represent direct-initialization similarly to copy-initialization:
7106  //    int x(1);  -as-> int x = 1;
7107  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7108  //
7109  // Clients that want to distinguish between the two forms, can check for
7110  // direct initializer using VarDecl::getInitStyle().
7111  // A major benefit is that clients that don't particularly care about which
7112  // exactly form was it (like the CodeGen) can handle both cases without
7113  // special case code.
7114
7115  // C++ 8.5p11:
7116  // The form of initialization (using parentheses or '=') is generally
7117  // insignificant, but does matter when the entity being initialized has a
7118  // class type.
7119  if (CXXDirectInit) {
7120    assert(DirectInit && "Call-style initializer must be direct init.");
7121    VDecl->setInitStyle(VarDecl::CallInit);
7122  } else if (DirectInit) {
7123    // This must be list-initialization. No other way is direct-initialization.
7124    VDecl->setInitStyle(VarDecl::ListInit);
7125  }
7126
7127  CheckCompleteVariableDeclaration(VDecl);
7128}
7129
7130/// ActOnInitializerError - Given that there was an error parsing an
7131/// initializer for the given declaration, try to return to some form
7132/// of sanity.
7133void Sema::ActOnInitializerError(Decl *D) {
7134  // Our main concern here is re-establishing invariants like "a
7135  // variable's type is either dependent or complete".
7136  if (!D || D->isInvalidDecl()) return;
7137
7138  VarDecl *VD = dyn_cast<VarDecl>(D);
7139  if (!VD) return;
7140
7141  // Auto types are meaningless if we can't make sense of the initializer.
7142  if (ParsingInitForAutoVars.count(D)) {
7143    D->setInvalidDecl();
7144    return;
7145  }
7146
7147  QualType Ty = VD->getType();
7148  if (Ty->isDependentType()) return;
7149
7150  // Require a complete type.
7151  if (RequireCompleteType(VD->getLocation(),
7152                          Context.getBaseElementType(Ty),
7153                          diag::err_typecheck_decl_incomplete_type)) {
7154    VD->setInvalidDecl();
7155    return;
7156  }
7157
7158  // Require an abstract type.
7159  if (RequireNonAbstractType(VD->getLocation(), Ty,
7160                             diag::err_abstract_type_in_decl,
7161                             AbstractVariableType)) {
7162    VD->setInvalidDecl();
7163    return;
7164  }
7165
7166  // Don't bother complaining about constructors or destructors,
7167  // though.
7168}
7169
7170void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7171                                  bool TypeMayContainAuto) {
7172  // If there is no declaration, there was an error parsing it. Just ignore it.
7173  if (RealDecl == 0)
7174    return;
7175
7176  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7177    QualType Type = Var->getType();
7178
7179    // C++11 [dcl.spec.auto]p3
7180    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7181      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7182        << Var->getDeclName() << Type;
7183      Var->setInvalidDecl();
7184      return;
7185    }
7186
7187    // C++11 [class.static.data]p3: A static data member can be declared with
7188    // the constexpr specifier; if so, its declaration shall specify
7189    // a brace-or-equal-initializer.
7190    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7191    // the definition of a variable [...] or the declaration of a static data
7192    // member.
7193    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7194      if (Var->isStaticDataMember())
7195        Diag(Var->getLocation(),
7196             diag::err_constexpr_static_mem_var_requires_init)
7197          << Var->getDeclName();
7198      else
7199        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7200      Var->setInvalidDecl();
7201      return;
7202    }
7203
7204    switch (Var->isThisDeclarationADefinition()) {
7205    case VarDecl::Definition:
7206      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7207        break;
7208
7209      // We have an out-of-line definition of a static data member
7210      // that has an in-class initializer, so we type-check this like
7211      // a declaration.
7212      //
7213      // Fall through
7214
7215    case VarDecl::DeclarationOnly:
7216      // It's only a declaration.
7217
7218      // Block scope. C99 6.7p7: If an identifier for an object is
7219      // declared with no linkage (C99 6.2.2p6), the type for the
7220      // object shall be complete.
7221      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7222          !Var->getLinkage() && !Var->isInvalidDecl() &&
7223          RequireCompleteType(Var->getLocation(), Type,
7224                              diag::err_typecheck_decl_incomplete_type))
7225        Var->setInvalidDecl();
7226
7227      // Make sure that the type is not abstract.
7228      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7229          RequireNonAbstractType(Var->getLocation(), Type,
7230                                 diag::err_abstract_type_in_decl,
7231                                 AbstractVariableType))
7232        Var->setInvalidDecl();
7233      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7234          Var->getStorageClass() == SC_PrivateExtern) {
7235        Diag(Var->getLocation(), diag::warn_private_extern);
7236        Diag(Var->getLocation(), diag::note_private_extern);
7237      }
7238
7239      return;
7240
7241    case VarDecl::TentativeDefinition:
7242      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7243      // object that has file scope without an initializer, and without a
7244      // storage-class specifier or with the storage-class specifier "static",
7245      // constitutes a tentative definition. Note: A tentative definition with
7246      // external linkage is valid (C99 6.2.2p5).
7247      if (!Var->isInvalidDecl()) {
7248        if (const IncompleteArrayType *ArrayT
7249                                    = Context.getAsIncompleteArrayType(Type)) {
7250          if (RequireCompleteType(Var->getLocation(),
7251                                  ArrayT->getElementType(),
7252                                  diag::err_illegal_decl_array_incomplete_type))
7253            Var->setInvalidDecl();
7254        } else if (Var->getStorageClass() == SC_Static) {
7255          // C99 6.9.2p3: If the declaration of an identifier for an object is
7256          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7257          // declared type shall not be an incomplete type.
7258          // NOTE: code such as the following
7259          //     static struct s;
7260          //     struct s { int a; };
7261          // is accepted by gcc. Hence here we issue a warning instead of
7262          // an error and we do not invalidate the static declaration.
7263          // NOTE: to avoid multiple warnings, only check the first declaration.
7264          if (Var->getPreviousDecl() == 0)
7265            RequireCompleteType(Var->getLocation(), Type,
7266                                diag::ext_typecheck_decl_incomplete_type);
7267        }
7268      }
7269
7270      // Record the tentative definition; we're done.
7271      if (!Var->isInvalidDecl())
7272        TentativeDefinitions.push_back(Var);
7273      return;
7274    }
7275
7276    // Provide a specific diagnostic for uninitialized variable
7277    // definitions with incomplete array type.
7278    if (Type->isIncompleteArrayType()) {
7279      Diag(Var->getLocation(),
7280           diag::err_typecheck_incomplete_array_needs_initializer);
7281      Var->setInvalidDecl();
7282      return;
7283    }
7284
7285    // Provide a specific diagnostic for uninitialized variable
7286    // definitions with reference type.
7287    if (Type->isReferenceType()) {
7288      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7289        << Var->getDeclName()
7290        << SourceRange(Var->getLocation(), Var->getLocation());
7291      Var->setInvalidDecl();
7292      return;
7293    }
7294
7295    // Do not attempt to type-check the default initializer for a
7296    // variable with dependent type.
7297    if (Type->isDependentType())
7298      return;
7299
7300    if (Var->isInvalidDecl())
7301      return;
7302
7303    if (RequireCompleteType(Var->getLocation(),
7304                            Context.getBaseElementType(Type),
7305                            diag::err_typecheck_decl_incomplete_type)) {
7306      Var->setInvalidDecl();
7307      return;
7308    }
7309
7310    // The variable can not have an abstract class type.
7311    if (RequireNonAbstractType(Var->getLocation(), Type,
7312                               diag::err_abstract_type_in_decl,
7313                               AbstractVariableType)) {
7314      Var->setInvalidDecl();
7315      return;
7316    }
7317
7318    // Check for jumps past the implicit initializer.  C++0x
7319    // clarifies that this applies to a "variable with automatic
7320    // storage duration", not a "local variable".
7321    // C++11 [stmt.dcl]p3
7322    //   A program that jumps from a point where a variable with automatic
7323    //   storage duration is not in scope to a point where it is in scope is
7324    //   ill-formed unless the variable has scalar type, class type with a
7325    //   trivial default constructor and a trivial destructor, a cv-qualified
7326    //   version of one of these types, or an array of one of the preceding
7327    //   types and is declared without an initializer.
7328    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7329      if (const RecordType *Record
7330            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7331        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7332        // Mark the function for further checking even if the looser rules of
7333        // C++11 do not require such checks, so that we can diagnose
7334        // incompatibilities with C++98.
7335        if (!CXXRecord->isPOD())
7336          getCurFunction()->setHasBranchProtectedScope();
7337      }
7338    }
7339
7340    // C++03 [dcl.init]p9:
7341    //   If no initializer is specified for an object, and the
7342    //   object is of (possibly cv-qualified) non-POD class type (or
7343    //   array thereof), the object shall be default-initialized; if
7344    //   the object is of const-qualified type, the underlying class
7345    //   type shall have a user-declared default
7346    //   constructor. Otherwise, if no initializer is specified for
7347    //   a non- static object, the object and its subobjects, if
7348    //   any, have an indeterminate initial value); if the object
7349    //   or any of its subobjects are of const-qualified type, the
7350    //   program is ill-formed.
7351    // C++0x [dcl.init]p11:
7352    //   If no initializer is specified for an object, the object is
7353    //   default-initialized; [...].
7354    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7355    InitializationKind Kind
7356      = InitializationKind::CreateDefault(Var->getLocation());
7357
7358    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7359    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7360    if (Init.isInvalid())
7361      Var->setInvalidDecl();
7362    else if (Init.get()) {
7363      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7364      // This is important for template substitution.
7365      Var->setInitStyle(VarDecl::CallInit);
7366    }
7367
7368    CheckCompleteVariableDeclaration(Var);
7369  }
7370}
7371
7372void Sema::ActOnCXXForRangeDecl(Decl *D) {
7373  VarDecl *VD = dyn_cast<VarDecl>(D);
7374  if (!VD) {
7375    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7376    D->setInvalidDecl();
7377    return;
7378  }
7379
7380  VD->setCXXForRangeDecl(true);
7381
7382  // for-range-declaration cannot be given a storage class specifier.
7383  int Error = -1;
7384  switch (VD->getStorageClassAsWritten()) {
7385  case SC_None:
7386    break;
7387  case SC_Extern:
7388    Error = 0;
7389    break;
7390  case SC_Static:
7391    Error = 1;
7392    break;
7393  case SC_PrivateExtern:
7394    Error = 2;
7395    break;
7396  case SC_Auto:
7397    Error = 3;
7398    break;
7399  case SC_Register:
7400    Error = 4;
7401    break;
7402  case SC_OpenCLWorkGroupLocal:
7403    llvm_unreachable("Unexpected storage class");
7404  }
7405  if (VD->isConstexpr())
7406    Error = 5;
7407  if (Error != -1) {
7408    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7409      << VD->getDeclName() << Error;
7410    D->setInvalidDecl();
7411  }
7412}
7413
7414void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7415  if (var->isInvalidDecl()) return;
7416
7417  // In ARC, don't allow jumps past the implicit initialization of a
7418  // local retaining variable.
7419  if (getLangOpts().ObjCAutoRefCount &&
7420      var->hasLocalStorage()) {
7421    switch (var->getType().getObjCLifetime()) {
7422    case Qualifiers::OCL_None:
7423    case Qualifiers::OCL_ExplicitNone:
7424    case Qualifiers::OCL_Autoreleasing:
7425      break;
7426
7427    case Qualifiers::OCL_Weak:
7428    case Qualifiers::OCL_Strong:
7429      getCurFunction()->setHasBranchProtectedScope();
7430      break;
7431    }
7432  }
7433
7434  if (var->isThisDeclarationADefinition() &&
7435      var->getLinkage() == ExternalLinkage &&
7436      getDiagnostics().getDiagnosticLevel(
7437                       diag::warn_missing_variable_declarations,
7438                       var->getLocation())) {
7439    // Find a previous declaration that's not a definition.
7440    VarDecl *prev = var->getPreviousDecl();
7441    while (prev && prev->isThisDeclarationADefinition())
7442      prev = prev->getPreviousDecl();
7443
7444    if (!prev)
7445      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7446  }
7447
7448  // All the following checks are C++ only.
7449  if (!getLangOpts().CPlusPlus) return;
7450
7451  QualType type = var->getType();
7452  if (type->isDependentType()) return;
7453
7454  // __block variables might require us to capture a copy-initializer.
7455  if (var->hasAttr<BlocksAttr>()) {
7456    // It's currently invalid to ever have a __block variable with an
7457    // array type; should we diagnose that here?
7458
7459    // Regardless, we don't want to ignore array nesting when
7460    // constructing this copy.
7461    if (type->isStructureOrClassType()) {
7462      SourceLocation poi = var->getLocation();
7463      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7464      ExprResult result =
7465        PerformCopyInitialization(
7466                        InitializedEntity::InitializeBlock(poi, type, false),
7467                                  poi, Owned(varRef));
7468      if (!result.isInvalid()) {
7469        result = MaybeCreateExprWithCleanups(result);
7470        Expr *init = result.takeAs<Expr>();
7471        Context.setBlockVarCopyInits(var, init);
7472      }
7473    }
7474  }
7475
7476  Expr *Init = var->getInit();
7477  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7478  QualType baseType = Context.getBaseElementType(type);
7479
7480  if (!var->getDeclContext()->isDependentContext() &&
7481      Init && !Init->isValueDependent()) {
7482    if (IsGlobal && !var->isConstexpr() &&
7483        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7484                                            var->getLocation())
7485          != DiagnosticsEngine::Ignored &&
7486        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7487      Diag(var->getLocation(), diag::warn_global_constructor)
7488        << Init->getSourceRange();
7489
7490    if (var->isConstexpr()) {
7491      SmallVector<PartialDiagnosticAt, 8> Notes;
7492      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7493        SourceLocation DiagLoc = var->getLocation();
7494        // If the note doesn't add any useful information other than a source
7495        // location, fold it into the primary diagnostic.
7496        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7497              diag::note_invalid_subexpr_in_const_expr) {
7498          DiagLoc = Notes[0].first;
7499          Notes.clear();
7500        }
7501        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7502          << var << Init->getSourceRange();
7503        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7504          Diag(Notes[I].first, Notes[I].second);
7505      }
7506    } else if (var->isUsableInConstantExpressions(Context)) {
7507      // Check whether the initializer of a const variable of integral or
7508      // enumeration type is an ICE now, since we can't tell whether it was
7509      // initialized by a constant expression if we check later.
7510      var->checkInitIsICE();
7511    }
7512  }
7513
7514  // Require the destructor.
7515  if (const RecordType *recordType = baseType->getAs<RecordType>())
7516    FinalizeVarWithDestructor(var, recordType);
7517}
7518
7519/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7520/// any semantic actions necessary after any initializer has been attached.
7521void
7522Sema::FinalizeDeclaration(Decl *ThisDecl) {
7523  // Note that we are no longer parsing the initializer for this declaration.
7524  ParsingInitForAutoVars.erase(ThisDecl);
7525
7526  const VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7527  if (!VD)
7528    return;
7529
7530  if (VD->isFileVarDecl())
7531    MarkUnusedFileScopedDecl(VD);
7532
7533  // Now we have parsed the initializer and can update the table of magic
7534  // tag values.
7535  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7536      !VD->getType()->isIntegralOrEnumerationType())
7537    return;
7538
7539  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7540         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7541         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7542       I != E; ++I) {
7543    const Expr *MagicValueExpr = VD->getInit();
7544    if (!MagicValueExpr) {
7545      continue;
7546    }
7547    llvm::APSInt MagicValueInt;
7548    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7549      Diag(I->getRange().getBegin(),
7550           diag::err_type_tag_for_datatype_not_ice)
7551        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7552      continue;
7553    }
7554    if (MagicValueInt.getActiveBits() > 64) {
7555      Diag(I->getRange().getBegin(),
7556           diag::err_type_tag_for_datatype_too_large)
7557        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7558      continue;
7559    }
7560    uint64_t MagicValue = MagicValueInt.getZExtValue();
7561    RegisterTypeTagForDatatype(I->getArgumentKind(),
7562                               MagicValue,
7563                               I->getMatchingCType(),
7564                               I->getLayoutCompatible(),
7565                               I->getMustBeNull());
7566  }
7567}
7568
7569Sema::DeclGroupPtrTy
7570Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7571                              Decl **Group, unsigned NumDecls) {
7572  SmallVector<Decl*, 8> Decls;
7573
7574  if (DS.isTypeSpecOwned())
7575    Decls.push_back(DS.getRepAsDecl());
7576
7577  for (unsigned i = 0; i != NumDecls; ++i)
7578    if (Decl *D = Group[i])
7579      Decls.push_back(D);
7580
7581  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7582    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7583      getASTContext().addUnnamedTag(Tag);
7584
7585  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7586                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7587}
7588
7589/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7590/// group, performing any necessary semantic checking.
7591Sema::DeclGroupPtrTy
7592Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7593                           bool TypeMayContainAuto) {
7594  // C++0x [dcl.spec.auto]p7:
7595  //   If the type deduced for the template parameter U is not the same in each
7596  //   deduction, the program is ill-formed.
7597  // FIXME: When initializer-list support is added, a distinction is needed
7598  // between the deduced type U and the deduced type which 'auto' stands for.
7599  //   auto a = 0, b = { 1, 2, 3 };
7600  // is legal because the deduced type U is 'int' in both cases.
7601  if (TypeMayContainAuto && NumDecls > 1) {
7602    QualType Deduced;
7603    CanQualType DeducedCanon;
7604    VarDecl *DeducedDecl = 0;
7605    for (unsigned i = 0; i != NumDecls; ++i) {
7606      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7607        AutoType *AT = D->getType()->getContainedAutoType();
7608        // Don't reissue diagnostics when instantiating a template.
7609        if (AT && D->isInvalidDecl())
7610          break;
7611        if (AT && AT->isDeduced()) {
7612          QualType U = AT->getDeducedType();
7613          CanQualType UCanon = Context.getCanonicalType(U);
7614          if (Deduced.isNull()) {
7615            Deduced = U;
7616            DeducedCanon = UCanon;
7617            DeducedDecl = D;
7618          } else if (DeducedCanon != UCanon) {
7619            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7620                 diag::err_auto_different_deductions)
7621              << Deduced << DeducedDecl->getDeclName()
7622              << U << D->getDeclName()
7623              << DeducedDecl->getInit()->getSourceRange()
7624              << D->getInit()->getSourceRange();
7625            D->setInvalidDecl();
7626            break;
7627          }
7628        }
7629      }
7630    }
7631  }
7632
7633  ActOnDocumentableDecls(Group, NumDecls);
7634
7635  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7636}
7637
7638void Sema::ActOnDocumentableDecl(Decl *D) {
7639  ActOnDocumentableDecls(&D, 1);
7640}
7641
7642void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7643  // Don't parse the comment if Doxygen diagnostics are ignored.
7644  if (NumDecls == 0 || !Group[0])
7645   return;
7646
7647  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7648                               Group[0]->getLocation())
7649        == DiagnosticsEngine::Ignored)
7650    return;
7651
7652  if (NumDecls >= 2) {
7653    // This is a decl group.  Normally it will contain only declarations
7654    // procuded from declarator list.  But in case we have any definitions or
7655    // additional declaration references:
7656    //   'typedef struct S {} S;'
7657    //   'typedef struct S *S;'
7658    //   'struct S *pS;'
7659    // FinalizeDeclaratorGroup adds these as separate declarations.
7660    Decl *MaybeTagDecl = Group[0];
7661    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7662      Group++;
7663      NumDecls--;
7664    }
7665  }
7666
7667  // See if there are any new comments that are not attached to a decl.
7668  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7669  if (!Comments.empty() &&
7670      !Comments.back()->isAttached()) {
7671    // There is at least one comment that not attached to a decl.
7672    // Maybe it should be attached to one of these decls?
7673    //
7674    // Note that this way we pick up not only comments that precede the
7675    // declaration, but also comments that *follow* the declaration -- thanks to
7676    // the lookahead in the lexer: we've consumed the semicolon and looked
7677    // ahead through comments.
7678    for (unsigned i = 0; i != NumDecls; ++i)
7679      Context.getCommentForDecl(Group[i], &PP);
7680  }
7681}
7682
7683/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7684/// to introduce parameters into function prototype scope.
7685Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7686  const DeclSpec &DS = D.getDeclSpec();
7687
7688  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7689  // C++03 [dcl.stc]p2 also permits 'auto'.
7690  VarDecl::StorageClass StorageClass = SC_None;
7691  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7692  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7693    StorageClass = SC_Register;
7694    StorageClassAsWritten = SC_Register;
7695  } else if (getLangOpts().CPlusPlus &&
7696             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7697    StorageClass = SC_Auto;
7698    StorageClassAsWritten = SC_Auto;
7699  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7700    Diag(DS.getStorageClassSpecLoc(),
7701         diag::err_invalid_storage_class_in_func_decl);
7702    D.getMutableDeclSpec().ClearStorageClassSpecs();
7703  }
7704
7705  if (D.getDeclSpec().isThreadSpecified())
7706    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7707  if (D.getDeclSpec().isConstexprSpecified())
7708    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7709      << 0;
7710
7711  DiagnoseFunctionSpecifiers(D);
7712
7713  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7714  QualType parmDeclType = TInfo->getType();
7715
7716  if (getLangOpts().CPlusPlus) {
7717    // Check that there are no default arguments inside the type of this
7718    // parameter.
7719    CheckExtraCXXDefaultArguments(D);
7720
7721    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7722    if (D.getCXXScopeSpec().isSet()) {
7723      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7724        << D.getCXXScopeSpec().getRange();
7725      D.getCXXScopeSpec().clear();
7726    }
7727  }
7728
7729  // Ensure we have a valid name
7730  IdentifierInfo *II = 0;
7731  if (D.hasName()) {
7732    II = D.getIdentifier();
7733    if (!II) {
7734      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7735        << GetNameForDeclarator(D).getName().getAsString();
7736      D.setInvalidType(true);
7737    }
7738  }
7739
7740  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7741  if (II) {
7742    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7743                   ForRedeclaration);
7744    LookupName(R, S);
7745    if (R.isSingleResult()) {
7746      NamedDecl *PrevDecl = R.getFoundDecl();
7747      if (PrevDecl->isTemplateParameter()) {
7748        // Maybe we will complain about the shadowed template parameter.
7749        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7750        // Just pretend that we didn't see the previous declaration.
7751        PrevDecl = 0;
7752      } else if (S->isDeclScope(PrevDecl)) {
7753        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7754        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7755
7756        // Recover by removing the name
7757        II = 0;
7758        D.SetIdentifier(0, D.getIdentifierLoc());
7759        D.setInvalidType(true);
7760      }
7761    }
7762  }
7763
7764  // Temporarily put parameter variables in the translation unit, not
7765  // the enclosing context.  This prevents them from accidentally
7766  // looking like class members in C++.
7767  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7768                                    D.getLocStart(),
7769                                    D.getIdentifierLoc(), II,
7770                                    parmDeclType, TInfo,
7771                                    StorageClass, StorageClassAsWritten);
7772
7773  if (D.isInvalidType())
7774    New->setInvalidDecl();
7775
7776  assert(S->isFunctionPrototypeScope());
7777  assert(S->getFunctionPrototypeDepth() >= 1);
7778  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7779                    S->getNextFunctionPrototypeIndex());
7780
7781  // Add the parameter declaration into this scope.
7782  S->AddDecl(New);
7783  if (II)
7784    IdResolver.AddDecl(New);
7785
7786  ProcessDeclAttributes(S, New, D);
7787
7788  if (D.getDeclSpec().isModulePrivateSpecified())
7789    Diag(New->getLocation(), diag::err_module_private_local)
7790      << 1 << New->getDeclName()
7791      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7792      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7793
7794  if (New->hasAttr<BlocksAttr>()) {
7795    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7796  }
7797  return New;
7798}
7799
7800/// \brief Synthesizes a variable for a parameter arising from a
7801/// typedef.
7802ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7803                                              SourceLocation Loc,
7804                                              QualType T) {
7805  /* FIXME: setting StartLoc == Loc.
7806     Would it be worth to modify callers so as to provide proper source
7807     location for the unnamed parameters, embedding the parameter's type? */
7808  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7809                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7810                                           SC_None, SC_None, 0);
7811  Param->setImplicit();
7812  return Param;
7813}
7814
7815void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7816                                    ParmVarDecl * const *ParamEnd) {
7817  // Don't diagnose unused-parameter errors in template instantiations; we
7818  // will already have done so in the template itself.
7819  if (!ActiveTemplateInstantiations.empty())
7820    return;
7821
7822  for (; Param != ParamEnd; ++Param) {
7823    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7824        !(*Param)->hasAttr<UnusedAttr>()) {
7825      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7826        << (*Param)->getDeclName();
7827    }
7828  }
7829}
7830
7831void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7832                                                  ParmVarDecl * const *ParamEnd,
7833                                                  QualType ReturnTy,
7834                                                  NamedDecl *D) {
7835  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7836    return;
7837
7838  // Warn if the return value is pass-by-value and larger than the specified
7839  // threshold.
7840  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7841    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7842    if (Size > LangOpts.NumLargeByValueCopy)
7843      Diag(D->getLocation(), diag::warn_return_value_size)
7844          << D->getDeclName() << Size;
7845  }
7846
7847  // Warn if any parameter is pass-by-value and larger than the specified
7848  // threshold.
7849  for (; Param != ParamEnd; ++Param) {
7850    QualType T = (*Param)->getType();
7851    if (T->isDependentType() || !T.isPODType(Context))
7852      continue;
7853    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7854    if (Size > LangOpts.NumLargeByValueCopy)
7855      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7856          << (*Param)->getDeclName() << Size;
7857  }
7858}
7859
7860ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7861                                  SourceLocation NameLoc, IdentifierInfo *Name,
7862                                  QualType T, TypeSourceInfo *TSInfo,
7863                                  VarDecl::StorageClass StorageClass,
7864                                  VarDecl::StorageClass StorageClassAsWritten) {
7865  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7866  if (getLangOpts().ObjCAutoRefCount &&
7867      T.getObjCLifetime() == Qualifiers::OCL_None &&
7868      T->isObjCLifetimeType()) {
7869
7870    Qualifiers::ObjCLifetime lifetime;
7871
7872    // Special cases for arrays:
7873    //   - if it's const, use __unsafe_unretained
7874    //   - otherwise, it's an error
7875    if (T->isArrayType()) {
7876      if (!T.isConstQualified()) {
7877        DelayedDiagnostics.add(
7878            sema::DelayedDiagnostic::makeForbiddenType(
7879            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7880      }
7881      lifetime = Qualifiers::OCL_ExplicitNone;
7882    } else {
7883      lifetime = T->getObjCARCImplicitLifetime();
7884    }
7885    T = Context.getLifetimeQualifiedType(T, lifetime);
7886  }
7887
7888  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7889                                         Context.getAdjustedParameterType(T),
7890                                         TSInfo,
7891                                         StorageClass, StorageClassAsWritten,
7892                                         0);
7893
7894  // Parameters can not be abstract class types.
7895  // For record types, this is done by the AbstractClassUsageDiagnoser once
7896  // the class has been completely parsed.
7897  if (!CurContext->isRecord() &&
7898      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7899                             AbstractParamType))
7900    New->setInvalidDecl();
7901
7902  // Parameter declarators cannot be interface types. All ObjC objects are
7903  // passed by reference.
7904  if (T->isObjCObjectType()) {
7905    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7906    Diag(NameLoc,
7907         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7908      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7909    T = Context.getObjCObjectPointerType(T);
7910    New->setType(T);
7911  }
7912
7913  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7914  // duration shall not be qualified by an address-space qualifier."
7915  // Since all parameters have automatic store duration, they can not have
7916  // an address space.
7917  if (T.getAddressSpace() != 0) {
7918    Diag(NameLoc, diag::err_arg_with_address_space);
7919    New->setInvalidDecl();
7920  }
7921
7922  return New;
7923}
7924
7925void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7926                                           SourceLocation LocAfterDecls) {
7927  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7928
7929  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7930  // for a K&R function.
7931  if (!FTI.hasPrototype) {
7932    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7933      --i;
7934      if (FTI.ArgInfo[i].Param == 0) {
7935        SmallString<256> Code;
7936        llvm::raw_svector_ostream(Code) << "  int "
7937                                        << FTI.ArgInfo[i].Ident->getName()
7938                                        << ";\n";
7939        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7940          << FTI.ArgInfo[i].Ident
7941          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7942
7943        // Implicitly declare the argument as type 'int' for lack of a better
7944        // type.
7945        AttributeFactory attrs;
7946        DeclSpec DS(attrs);
7947        const char* PrevSpec; // unused
7948        unsigned DiagID; // unused
7949        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7950                           PrevSpec, DiagID);
7951        // Use the identifier location for the type source range.
7952        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
7953        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
7954        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7955        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7956        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7957      }
7958    }
7959  }
7960}
7961
7962Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7963  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7964  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7965  Scope *ParentScope = FnBodyScope->getParent();
7966
7967  D.setFunctionDefinitionKind(FDK_Definition);
7968  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7969  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7970}
7971
7972static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
7973                             const FunctionDecl*& PossibleZeroParamPrototype) {
7974  // Don't warn about invalid declarations.
7975  if (FD->isInvalidDecl())
7976    return false;
7977
7978  // Or declarations that aren't global.
7979  if (!FD->isGlobal())
7980    return false;
7981
7982  // Don't warn about C++ member functions.
7983  if (isa<CXXMethodDecl>(FD))
7984    return false;
7985
7986  // Don't warn about 'main'.
7987  if (FD->isMain())
7988    return false;
7989
7990  // Don't warn about inline functions.
7991  if (FD->isInlined())
7992    return false;
7993
7994  // Don't warn about function templates.
7995  if (FD->getDescribedFunctionTemplate())
7996    return false;
7997
7998  // Don't warn about function template specializations.
7999  if (FD->isFunctionTemplateSpecialization())
8000    return false;
8001
8002  // Don't warn for OpenCL kernels.
8003  if (FD->hasAttr<OpenCLKernelAttr>())
8004    return false;
8005
8006  bool MissingPrototype = true;
8007  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8008       Prev; Prev = Prev->getPreviousDecl()) {
8009    // Ignore any declarations that occur in function or method
8010    // scope, because they aren't visible from the header.
8011    if (Prev->getDeclContext()->isFunctionOrMethod())
8012      continue;
8013
8014    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8015    if (FD->getNumParams() == 0)
8016      PossibleZeroParamPrototype = Prev;
8017    break;
8018  }
8019
8020  return MissingPrototype;
8021}
8022
8023void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8024  // Don't complain if we're in GNU89 mode and the previous definition
8025  // was an extern inline function.
8026  const FunctionDecl *Definition;
8027  if (FD->isDefined(Definition) &&
8028      !canRedefineFunction(Definition, getLangOpts())) {
8029    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8030        Definition->getStorageClass() == SC_Extern)
8031      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8032        << FD->getDeclName() << getLangOpts().CPlusPlus;
8033    else
8034      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8035    Diag(Definition->getLocation(), diag::note_previous_definition);
8036    FD->setInvalidDecl();
8037  }
8038}
8039
8040Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8041  // Clear the last template instantiation error context.
8042  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8043
8044  if (!D)
8045    return D;
8046  FunctionDecl *FD = 0;
8047
8048  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8049    FD = FunTmpl->getTemplatedDecl();
8050  else
8051    FD = cast<FunctionDecl>(D);
8052
8053  // Enter a new function scope
8054  PushFunctionScope();
8055
8056  // See if this is a redefinition.
8057  if (!FD->isLateTemplateParsed())
8058    CheckForFunctionRedefinition(FD);
8059
8060  // Builtin functions cannot be defined.
8061  if (unsigned BuiltinID = FD->getBuiltinID()) {
8062    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8063      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8064      FD->setInvalidDecl();
8065    }
8066  }
8067
8068  // The return type of a function definition must be complete
8069  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8070  QualType ResultType = FD->getResultType();
8071  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8072      !FD->isInvalidDecl() &&
8073      RequireCompleteType(FD->getLocation(), ResultType,
8074                          diag::err_func_def_incomplete_result))
8075    FD->setInvalidDecl();
8076
8077  // GNU warning -Wmissing-prototypes:
8078  //   Warn if a global function is defined without a previous
8079  //   prototype declaration. This warning is issued even if the
8080  //   definition itself provides a prototype. The aim is to detect
8081  //   global functions that fail to be declared in header files.
8082  const FunctionDecl *PossibleZeroParamPrototype = 0;
8083  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8084    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8085
8086    if (PossibleZeroParamPrototype) {
8087      // We found a declaration that is not a prototype,
8088      // but that could be a zero-parameter prototype
8089      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8090      TypeLoc TL = TI->getTypeLoc();
8091      if (FunctionNoProtoTypeLoc* FTL = dyn_cast<FunctionNoProtoTypeLoc>(&TL))
8092        Diag(PossibleZeroParamPrototype->getLocation(),
8093             diag::note_declaration_not_a_prototype)
8094          << PossibleZeroParamPrototype
8095          << FixItHint::CreateInsertion(FTL->getRParenLoc(), "void");
8096    }
8097  }
8098
8099  if (FnBodyScope)
8100    PushDeclContext(FnBodyScope, FD);
8101
8102  // Check the validity of our function parameters
8103  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8104                           /*CheckParameterNames=*/true);
8105
8106  // Introduce our parameters into the function scope
8107  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8108    ParmVarDecl *Param = FD->getParamDecl(p);
8109    Param->setOwningFunction(FD);
8110
8111    // If this has an identifier, add it to the scope stack.
8112    if (Param->getIdentifier() && FnBodyScope) {
8113      CheckShadow(FnBodyScope, Param);
8114
8115      PushOnScopeChains(Param, FnBodyScope);
8116    }
8117  }
8118
8119  // If we had any tags defined in the function prototype,
8120  // introduce them into the function scope.
8121  if (FnBodyScope) {
8122    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8123           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8124      NamedDecl *D = *I;
8125
8126      // Some of these decls (like enums) may have been pinned to the translation unit
8127      // for lack of a real context earlier. If so, remove from the translation unit
8128      // and reattach to the current context.
8129      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8130        // Is the decl actually in the context?
8131        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8132               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8133          if (*DI == D) {
8134            Context.getTranslationUnitDecl()->removeDecl(D);
8135            break;
8136          }
8137        }
8138        // Either way, reassign the lexical decl context to our FunctionDecl.
8139        D->setLexicalDeclContext(CurContext);
8140      }
8141
8142      // If the decl has a non-null name, make accessible in the current scope.
8143      if (!D->getName().empty())
8144        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8145
8146      // Similarly, dive into enums and fish their constants out, making them
8147      // accessible in this scope.
8148      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8149        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8150               EE = ED->enumerator_end(); EI != EE; ++EI)
8151          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8152      }
8153    }
8154  }
8155
8156  // Ensure that the function's exception specification is instantiated.
8157  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8158    ResolveExceptionSpec(D->getLocation(), FPT);
8159
8160  // Checking attributes of current function definition
8161  // dllimport attribute.
8162  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8163  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8164    // dllimport attribute cannot be directly applied to definition.
8165    // Microsoft accepts dllimport for functions defined within class scope.
8166    if (!DA->isInherited() &&
8167        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8168      Diag(FD->getLocation(),
8169           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8170        << "dllimport";
8171      FD->setInvalidDecl();
8172      return D;
8173    }
8174
8175    // Visual C++ appears to not think this is an issue, so only issue
8176    // a warning when Microsoft extensions are disabled.
8177    if (!LangOpts.MicrosoftExt) {
8178      // If a symbol previously declared dllimport is later defined, the
8179      // attribute is ignored in subsequent references, and a warning is
8180      // emitted.
8181      Diag(FD->getLocation(),
8182           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8183        << FD->getName() << "dllimport";
8184    }
8185  }
8186  // We want to attach documentation to original Decl (which might be
8187  // a function template).
8188  ActOnDocumentableDecl(D);
8189  return D;
8190}
8191
8192/// \brief Given the set of return statements within a function body,
8193/// compute the variables that are subject to the named return value
8194/// optimization.
8195///
8196/// Each of the variables that is subject to the named return value
8197/// optimization will be marked as NRVO variables in the AST, and any
8198/// return statement that has a marked NRVO variable as its NRVO candidate can
8199/// use the named return value optimization.
8200///
8201/// This function applies a very simplistic algorithm for NRVO: if every return
8202/// statement in the function has the same NRVO candidate, that candidate is
8203/// the NRVO variable.
8204///
8205/// FIXME: Employ a smarter algorithm that accounts for multiple return
8206/// statements and the lifetimes of the NRVO candidates. We should be able to
8207/// find a maximal set of NRVO variables.
8208void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8209  ReturnStmt **Returns = Scope->Returns.data();
8210
8211  const VarDecl *NRVOCandidate = 0;
8212  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8213    if (!Returns[I]->getNRVOCandidate())
8214      return;
8215
8216    if (!NRVOCandidate)
8217      NRVOCandidate = Returns[I]->getNRVOCandidate();
8218    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8219      return;
8220  }
8221
8222  if (NRVOCandidate)
8223    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8224}
8225
8226bool Sema::canSkipFunctionBody(Decl *D) {
8227  if (!Consumer.shouldSkipFunctionBody(D))
8228    return false;
8229
8230  if (isa<ObjCMethodDecl>(D))
8231    return true;
8232
8233  FunctionDecl *FD = 0;
8234  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8235    FD = FTD->getTemplatedDecl();
8236  else
8237    FD = cast<FunctionDecl>(D);
8238
8239  // We cannot skip the body of a function (or function template) which is
8240  // constexpr, since we may need to evaluate its body in order to parse the
8241  // rest of the file.
8242  return !FD->isConstexpr();
8243}
8244
8245Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8246  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
8247    FD->setHasSkippedBody();
8248  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
8249    MD->setHasSkippedBody();
8250  return ActOnFinishFunctionBody(Decl, 0);
8251}
8252
8253Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8254  return ActOnFinishFunctionBody(D, BodyArg, false);
8255}
8256
8257Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8258                                    bool IsInstantiation) {
8259  FunctionDecl *FD = 0;
8260  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8261  if (FunTmpl)
8262    FD = FunTmpl->getTemplatedDecl();
8263  else
8264    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8265
8266  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8267  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8268
8269  if (FD) {
8270    FD->setBody(Body);
8271
8272    // If the function implicitly returns zero (like 'main') or is naked,
8273    // don't complain about missing return statements.
8274    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8275      WP.disableCheckFallThrough();
8276
8277    // MSVC permits the use of pure specifier (=0) on function definition,
8278    // defined at class scope, warn about this non standard construct.
8279    if (getLangOpts().MicrosoftExt && FD->isPure())
8280      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8281
8282    if (!FD->isInvalidDecl()) {
8283      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8284      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8285                                             FD->getResultType(), FD);
8286
8287      // If this is a constructor, we need a vtable.
8288      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8289        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8290
8291      // Try to apply the named return value optimization. We have to check
8292      // if we can do this here because lambdas keep return statements around
8293      // to deduce an implicit return type.
8294      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8295          !FD->isDependentContext())
8296        computeNRVO(Body, getCurFunction());
8297    }
8298
8299    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8300           "Function parsing confused");
8301  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8302    assert(MD == getCurMethodDecl() && "Method parsing confused");
8303    MD->setBody(Body);
8304    if (!MD->isInvalidDecl()) {
8305      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8306      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8307                                             MD->getResultType(), MD);
8308
8309      if (Body)
8310        computeNRVO(Body, getCurFunction());
8311    }
8312    if (getCurFunction()->ObjCShouldCallSuper) {
8313      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8314        << MD->getSelector().getAsString();
8315      getCurFunction()->ObjCShouldCallSuper = false;
8316    }
8317  } else {
8318    return 0;
8319  }
8320
8321  assert(!getCurFunction()->ObjCShouldCallSuper &&
8322         "This should only be set for ObjC methods, which should have been "
8323         "handled in the block above.");
8324
8325  // Verify and clean out per-function state.
8326  if (Body) {
8327    // C++ constructors that have function-try-blocks can't have return
8328    // statements in the handlers of that block. (C++ [except.handle]p14)
8329    // Verify this.
8330    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8331      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8332
8333    // Verify that gotos and switch cases don't jump into scopes illegally.
8334    if (getCurFunction()->NeedsScopeChecking() &&
8335        !dcl->isInvalidDecl() &&
8336        !hasAnyUnrecoverableErrorsInThisFunction() &&
8337        !PP.isCodeCompletionEnabled())
8338      DiagnoseInvalidJumps(Body);
8339
8340    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8341      if (!Destructor->getParent()->isDependentType())
8342        CheckDestructor(Destructor);
8343
8344      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8345                                             Destructor->getParent());
8346    }
8347
8348    // If any errors have occurred, clear out any temporaries that may have
8349    // been leftover. This ensures that these temporaries won't be picked up for
8350    // deletion in some later function.
8351    if (PP.getDiagnostics().hasErrorOccurred() ||
8352        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8353      DiscardCleanupsInEvaluationContext();
8354    }
8355    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8356        !isa<FunctionTemplateDecl>(dcl)) {
8357      // Since the body is valid, issue any analysis-based warnings that are
8358      // enabled.
8359      ActivePolicy = &WP;
8360    }
8361
8362    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8363        (!CheckConstexprFunctionDecl(FD) ||
8364         !CheckConstexprFunctionBody(FD, Body)))
8365      FD->setInvalidDecl();
8366
8367    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8368    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8369    assert(MaybeODRUseExprs.empty() &&
8370           "Leftover expressions for odr-use checking");
8371  }
8372
8373  if (!IsInstantiation)
8374    PopDeclContext();
8375
8376  PopFunctionScopeInfo(ActivePolicy, dcl);
8377
8378  // If any errors have occurred, clear out any temporaries that may have
8379  // been leftover. This ensures that these temporaries won't be picked up for
8380  // deletion in some later function.
8381  if (getDiagnostics().hasErrorOccurred()) {
8382    DiscardCleanupsInEvaluationContext();
8383  }
8384
8385  return dcl;
8386}
8387
8388
8389/// When we finish delayed parsing of an attribute, we must attach it to the
8390/// relevant Decl.
8391void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8392                                       ParsedAttributes &Attrs) {
8393  // Always attach attributes to the underlying decl.
8394  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8395    D = TD->getTemplatedDecl();
8396  ProcessDeclAttributeList(S, D, Attrs.getList());
8397
8398  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8399    if (Method->isStatic())
8400      checkThisInStaticMemberFunctionAttributes(Method);
8401}
8402
8403
8404/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8405/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8406NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8407                                          IdentifierInfo &II, Scope *S) {
8408  // Before we produce a declaration for an implicitly defined
8409  // function, see whether there was a locally-scoped declaration of
8410  // this name as a function or variable. If so, use that
8411  // (non-visible) declaration, and complain about it.
8412  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8413    = findLocallyScopedExternCDecl(&II);
8414  if (Pos != LocallyScopedExternCDecls.end()) {
8415    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8416    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8417    return Pos->second;
8418  }
8419
8420  // Extension in C99.  Legal in C90, but warn about it.
8421  unsigned diag_id;
8422  if (II.getName().startswith("__builtin_"))
8423    diag_id = diag::warn_builtin_unknown;
8424  else if (getLangOpts().C99)
8425    diag_id = diag::ext_implicit_function_decl;
8426  else
8427    diag_id = diag::warn_implicit_function_decl;
8428  Diag(Loc, diag_id) << &II;
8429
8430  // Because typo correction is expensive, only do it if the implicit
8431  // function declaration is going to be treated as an error.
8432  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8433    TypoCorrection Corrected;
8434    DeclFilterCCC<FunctionDecl> Validator;
8435    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8436                                      LookupOrdinaryName, S, 0, Validator))) {
8437      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8438      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8439      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8440
8441      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8442          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8443
8444      if (Func->getLocation().isValid()
8445          && !II.getName().startswith("__builtin_"))
8446        Diag(Func->getLocation(), diag::note_previous_decl)
8447            << CorrectedQuotedStr;
8448    }
8449  }
8450
8451  // Set a Declarator for the implicit definition: int foo();
8452  const char *Dummy;
8453  AttributeFactory attrFactory;
8454  DeclSpec DS(attrFactory);
8455  unsigned DiagID;
8456  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8457  (void)Error; // Silence warning.
8458  assert(!Error && "Error setting up implicit decl!");
8459  SourceLocation NoLoc;
8460  Declarator D(DS, Declarator::BlockContext);
8461  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8462                                             /*IsAmbiguous=*/false,
8463                                             /*RParenLoc=*/NoLoc,
8464                                             /*ArgInfo=*/0,
8465                                             /*NumArgs=*/0,
8466                                             /*EllipsisLoc=*/NoLoc,
8467                                             /*RParenLoc=*/NoLoc,
8468                                             /*TypeQuals=*/0,
8469                                             /*RefQualifierIsLvalueRef=*/true,
8470                                             /*RefQualifierLoc=*/NoLoc,
8471                                             /*ConstQualifierLoc=*/NoLoc,
8472                                             /*VolatileQualifierLoc=*/NoLoc,
8473                                             /*MutableLoc=*/NoLoc,
8474                                             EST_None,
8475                                             /*ESpecLoc=*/NoLoc,
8476                                             /*Exceptions=*/0,
8477                                             /*ExceptionRanges=*/0,
8478                                             /*NumExceptions=*/0,
8479                                             /*NoexceptExpr=*/0,
8480                                             Loc, Loc, D),
8481                DS.getAttributes(),
8482                SourceLocation());
8483  D.SetIdentifier(&II, Loc);
8484
8485  // Insert this function into translation-unit scope.
8486
8487  DeclContext *PrevDC = CurContext;
8488  CurContext = Context.getTranslationUnitDecl();
8489
8490  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8491  FD->setImplicit();
8492
8493  CurContext = PrevDC;
8494
8495  AddKnownFunctionAttributes(FD);
8496
8497  return FD;
8498}
8499
8500/// \brief Adds any function attributes that we know a priori based on
8501/// the declaration of this function.
8502///
8503/// These attributes can apply both to implicitly-declared builtins
8504/// (like __builtin___printf_chk) or to library-declared functions
8505/// like NSLog or printf.
8506///
8507/// We need to check for duplicate attributes both here and where user-written
8508/// attributes are applied to declarations.
8509void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8510  if (FD->isInvalidDecl())
8511    return;
8512
8513  // If this is a built-in function, map its builtin attributes to
8514  // actual attributes.
8515  if (unsigned BuiltinID = FD->getBuiltinID()) {
8516    // Handle printf-formatting attributes.
8517    unsigned FormatIdx;
8518    bool HasVAListArg;
8519    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8520      if (!FD->getAttr<FormatAttr>()) {
8521        const char *fmt = "printf";
8522        unsigned int NumParams = FD->getNumParams();
8523        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8524            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8525          fmt = "NSString";
8526        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8527                                               fmt, FormatIdx+1,
8528                                               HasVAListArg ? 0 : FormatIdx+2));
8529      }
8530    }
8531    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8532                                             HasVAListArg)) {
8533     if (!FD->getAttr<FormatAttr>())
8534       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8535                                              "scanf", FormatIdx+1,
8536                                              HasVAListArg ? 0 : FormatIdx+2));
8537    }
8538
8539    // Mark const if we don't care about errno and that is the only
8540    // thing preventing the function from being const. This allows
8541    // IRgen to use LLVM intrinsics for such functions.
8542    if (!getLangOpts().MathErrno &&
8543        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8544      if (!FD->getAttr<ConstAttr>())
8545        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8546    }
8547
8548    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8549        !FD->getAttr<ReturnsTwiceAttr>())
8550      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8551    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8552      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8553    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8554      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8555  }
8556
8557  IdentifierInfo *Name = FD->getIdentifier();
8558  if (!Name)
8559    return;
8560  if ((!getLangOpts().CPlusPlus &&
8561       FD->getDeclContext()->isTranslationUnit()) ||
8562      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8563       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8564       LinkageSpecDecl::lang_c)) {
8565    // Okay: this could be a libc/libm/Objective-C function we know
8566    // about.
8567  } else
8568    return;
8569
8570  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8571    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8572    // target-specific builtins, perhaps?
8573    if (!FD->getAttr<FormatAttr>())
8574      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8575                                             "printf", 2,
8576                                             Name->isStr("vasprintf") ? 0 : 3));
8577  }
8578
8579  if (Name->isStr("__CFStringMakeConstantString")) {
8580    // We already have a __builtin___CFStringMakeConstantString,
8581    // but builds that use -fno-constant-cfstrings don't go through that.
8582    if (!FD->getAttr<FormatArgAttr>())
8583      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8584  }
8585}
8586
8587TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8588                                    TypeSourceInfo *TInfo) {
8589  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8590  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8591
8592  if (!TInfo) {
8593    assert(D.isInvalidType() && "no declarator info for valid type");
8594    TInfo = Context.getTrivialTypeSourceInfo(T);
8595  }
8596
8597  // Scope manipulation handled by caller.
8598  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8599                                           D.getLocStart(),
8600                                           D.getIdentifierLoc(),
8601                                           D.getIdentifier(),
8602                                           TInfo);
8603
8604  // Bail out immediately if we have an invalid declaration.
8605  if (D.isInvalidType()) {
8606    NewTD->setInvalidDecl();
8607    return NewTD;
8608  }
8609
8610  if (D.getDeclSpec().isModulePrivateSpecified()) {
8611    if (CurContext->isFunctionOrMethod())
8612      Diag(NewTD->getLocation(), diag::err_module_private_local)
8613        << 2 << NewTD->getDeclName()
8614        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8615        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8616    else
8617      NewTD->setModulePrivate();
8618  }
8619
8620  // C++ [dcl.typedef]p8:
8621  //   If the typedef declaration defines an unnamed class (or
8622  //   enum), the first typedef-name declared by the declaration
8623  //   to be that class type (or enum type) is used to denote the
8624  //   class type (or enum type) for linkage purposes only.
8625  // We need to check whether the type was declared in the declaration.
8626  switch (D.getDeclSpec().getTypeSpecType()) {
8627  case TST_enum:
8628  case TST_struct:
8629  case TST_interface:
8630  case TST_union:
8631  case TST_class: {
8632    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8633
8634    // Do nothing if the tag is not anonymous or already has an
8635    // associated typedef (from an earlier typedef in this decl group).
8636    if (tagFromDeclSpec->getIdentifier()) break;
8637    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8638
8639    // A well-formed anonymous tag must always be a TUK_Definition.
8640    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8641
8642    // The type must match the tag exactly;  no qualifiers allowed.
8643    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8644      break;
8645
8646    // Otherwise, set this is the anon-decl typedef for the tag.
8647    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8648    break;
8649  }
8650
8651  default:
8652    break;
8653  }
8654
8655  return NewTD;
8656}
8657
8658
8659/// \brief Check that this is a valid underlying type for an enum declaration.
8660bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8661  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8662  QualType T = TI->getType();
8663
8664  if (T->isDependentType())
8665    return false;
8666
8667  if (const BuiltinType *BT = T->getAs<BuiltinType>())
8668    if (BT->isInteger())
8669      return false;
8670
8671  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8672  return true;
8673}
8674
8675/// Check whether this is a valid redeclaration of a previous enumeration.
8676/// \return true if the redeclaration was invalid.
8677bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8678                                  QualType EnumUnderlyingTy,
8679                                  const EnumDecl *Prev) {
8680  bool IsFixed = !EnumUnderlyingTy.isNull();
8681
8682  if (IsScoped != Prev->isScoped()) {
8683    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8684      << Prev->isScoped();
8685    Diag(Prev->getLocation(), diag::note_previous_use);
8686    return true;
8687  }
8688
8689  if (IsFixed && Prev->isFixed()) {
8690    if (!EnumUnderlyingTy->isDependentType() &&
8691        !Prev->getIntegerType()->isDependentType() &&
8692        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8693                                        Prev->getIntegerType())) {
8694      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8695        << EnumUnderlyingTy << Prev->getIntegerType();
8696      Diag(Prev->getLocation(), diag::note_previous_use);
8697      return true;
8698    }
8699  } else if (IsFixed != Prev->isFixed()) {
8700    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8701      << Prev->isFixed();
8702    Diag(Prev->getLocation(), diag::note_previous_use);
8703    return true;
8704  }
8705
8706  return false;
8707}
8708
8709/// \brief Get diagnostic %select index for tag kind for
8710/// redeclaration diagnostic message.
8711/// WARNING: Indexes apply to particular diagnostics only!
8712///
8713/// \returns diagnostic %select index.
8714static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8715  switch (Tag) {
8716  case TTK_Struct: return 0;
8717  case TTK_Interface: return 1;
8718  case TTK_Class:  return 2;
8719  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8720  }
8721}
8722
8723/// \brief Determine if tag kind is a class-key compatible with
8724/// class for redeclaration (class, struct, or __interface).
8725///
8726/// \returns true iff the tag kind is compatible.
8727static bool isClassCompatTagKind(TagTypeKind Tag)
8728{
8729  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8730}
8731
8732/// \brief Determine whether a tag with a given kind is acceptable
8733/// as a redeclaration of the given tag declaration.
8734///
8735/// \returns true if the new tag kind is acceptable, false otherwise.
8736bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8737                                        TagTypeKind NewTag, bool isDefinition,
8738                                        SourceLocation NewTagLoc,
8739                                        const IdentifierInfo &Name) {
8740  // C++ [dcl.type.elab]p3:
8741  //   The class-key or enum keyword present in the
8742  //   elaborated-type-specifier shall agree in kind with the
8743  //   declaration to which the name in the elaborated-type-specifier
8744  //   refers. This rule also applies to the form of
8745  //   elaborated-type-specifier that declares a class-name or
8746  //   friend class since it can be construed as referring to the
8747  //   definition of the class. Thus, in any
8748  //   elaborated-type-specifier, the enum keyword shall be used to
8749  //   refer to an enumeration (7.2), the union class-key shall be
8750  //   used to refer to a union (clause 9), and either the class or
8751  //   struct class-key shall be used to refer to a class (clause 9)
8752  //   declared using the class or struct class-key.
8753  TagTypeKind OldTag = Previous->getTagKind();
8754  if (!isDefinition || !isClassCompatTagKind(NewTag))
8755    if (OldTag == NewTag)
8756      return true;
8757
8758  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8759    // Warn about the struct/class tag mismatch.
8760    bool isTemplate = false;
8761    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8762      isTemplate = Record->getDescribedClassTemplate();
8763
8764    if (!ActiveTemplateInstantiations.empty()) {
8765      // In a template instantiation, do not offer fix-its for tag mismatches
8766      // since they usually mess up the template instead of fixing the problem.
8767      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8768        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8769        << getRedeclDiagFromTagKind(OldTag);
8770      return true;
8771    }
8772
8773    if (isDefinition) {
8774      // On definitions, check previous tags and issue a fix-it for each
8775      // one that doesn't match the current tag.
8776      if (Previous->getDefinition()) {
8777        // Don't suggest fix-its for redefinitions.
8778        return true;
8779      }
8780
8781      bool previousMismatch = false;
8782      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8783           E(Previous->redecls_end()); I != E; ++I) {
8784        if (I->getTagKind() != NewTag) {
8785          if (!previousMismatch) {
8786            previousMismatch = true;
8787            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8788              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8789              << getRedeclDiagFromTagKind(I->getTagKind());
8790          }
8791          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8792            << getRedeclDiagFromTagKind(NewTag)
8793            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8794                 TypeWithKeyword::getTagTypeKindName(NewTag));
8795        }
8796      }
8797      return true;
8798    }
8799
8800    // Check for a previous definition.  If current tag and definition
8801    // are same type, do nothing.  If no definition, but disagree with
8802    // with previous tag type, give a warning, but no fix-it.
8803    const TagDecl *Redecl = Previous->getDefinition() ?
8804                            Previous->getDefinition() : Previous;
8805    if (Redecl->getTagKind() == NewTag) {
8806      return true;
8807    }
8808
8809    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8810      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8811      << getRedeclDiagFromTagKind(OldTag);
8812    Diag(Redecl->getLocation(), diag::note_previous_use);
8813
8814    // If there is a previous defintion, suggest a fix-it.
8815    if (Previous->getDefinition()) {
8816        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8817          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8818          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8819               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8820    }
8821
8822    return true;
8823  }
8824  return false;
8825}
8826
8827/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8828/// former case, Name will be non-null.  In the later case, Name will be null.
8829/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8830/// reference/declaration/definition of a tag.
8831Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8832                     SourceLocation KWLoc, CXXScopeSpec &SS,
8833                     IdentifierInfo *Name, SourceLocation NameLoc,
8834                     AttributeList *Attr, AccessSpecifier AS,
8835                     SourceLocation ModulePrivateLoc,
8836                     MultiTemplateParamsArg TemplateParameterLists,
8837                     bool &OwnedDecl, bool &IsDependent,
8838                     SourceLocation ScopedEnumKWLoc,
8839                     bool ScopedEnumUsesClassTag,
8840                     TypeResult UnderlyingType) {
8841  // If this is not a definition, it must have a name.
8842  IdentifierInfo *OrigName = Name;
8843  assert((Name != 0 || TUK == TUK_Definition) &&
8844         "Nameless record must be a definition!");
8845  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8846
8847  OwnedDecl = false;
8848  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8849  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8850
8851  // FIXME: Check explicit specializations more carefully.
8852  bool isExplicitSpecialization = false;
8853  bool Invalid = false;
8854
8855  // We only need to do this matching if we have template parameters
8856  // or a scope specifier, which also conveniently avoids this work
8857  // for non-C++ cases.
8858  if (TemplateParameterLists.size() > 0 ||
8859      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8860    if (TemplateParameterList *TemplateParams
8861          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8862                                                TemplateParameterLists.data(),
8863                                                TemplateParameterLists.size(),
8864                                                    TUK == TUK_Friend,
8865                                                    isExplicitSpecialization,
8866                                                    Invalid)) {
8867      if (TemplateParams->size() > 0) {
8868        // This is a declaration or definition of a class template (which may
8869        // be a member of another template).
8870
8871        if (Invalid)
8872          return 0;
8873
8874        OwnedDecl = false;
8875        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8876                                               SS, Name, NameLoc, Attr,
8877                                               TemplateParams, AS,
8878                                               ModulePrivateLoc,
8879                                               TemplateParameterLists.size()-1,
8880                                               TemplateParameterLists.data());
8881        return Result.get();
8882      } else {
8883        // The "template<>" header is extraneous.
8884        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8885          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8886        isExplicitSpecialization = true;
8887      }
8888    }
8889  }
8890
8891  // Figure out the underlying type if this a enum declaration. We need to do
8892  // this early, because it's needed to detect if this is an incompatible
8893  // redeclaration.
8894  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8895
8896  if (Kind == TTK_Enum) {
8897    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8898      // No underlying type explicitly specified, or we failed to parse the
8899      // type, default to int.
8900      EnumUnderlying = Context.IntTy.getTypePtr();
8901    else if (UnderlyingType.get()) {
8902      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8903      // integral type; any cv-qualification is ignored.
8904      TypeSourceInfo *TI = 0;
8905      GetTypeFromParser(UnderlyingType.get(), &TI);
8906      EnumUnderlying = TI;
8907
8908      if (CheckEnumUnderlyingType(TI))
8909        // Recover by falling back to int.
8910        EnumUnderlying = Context.IntTy.getTypePtr();
8911
8912      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8913                                          UPPC_FixedUnderlyingType))
8914        EnumUnderlying = Context.IntTy.getTypePtr();
8915
8916    } else if (getLangOpts().MicrosoftMode)
8917      // Microsoft enums are always of int type.
8918      EnumUnderlying = Context.IntTy.getTypePtr();
8919  }
8920
8921  DeclContext *SearchDC = CurContext;
8922  DeclContext *DC = CurContext;
8923  bool isStdBadAlloc = false;
8924
8925  RedeclarationKind Redecl = ForRedeclaration;
8926  if (TUK == TUK_Friend || TUK == TUK_Reference)
8927    Redecl = NotForRedeclaration;
8928
8929  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8930
8931  if (Name && SS.isNotEmpty()) {
8932    // We have a nested-name tag ('struct foo::bar').
8933
8934    // Check for invalid 'foo::'.
8935    if (SS.isInvalid()) {
8936      Name = 0;
8937      goto CreateNewDecl;
8938    }
8939
8940    // If this is a friend or a reference to a class in a dependent
8941    // context, don't try to make a decl for it.
8942    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8943      DC = computeDeclContext(SS, false);
8944      if (!DC) {
8945        IsDependent = true;
8946        return 0;
8947      }
8948    } else {
8949      DC = computeDeclContext(SS, true);
8950      if (!DC) {
8951        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8952          << SS.getRange();
8953        return 0;
8954      }
8955    }
8956
8957    if (RequireCompleteDeclContext(SS, DC))
8958      return 0;
8959
8960    SearchDC = DC;
8961    // Look-up name inside 'foo::'.
8962    LookupQualifiedName(Previous, DC);
8963
8964    if (Previous.isAmbiguous())
8965      return 0;
8966
8967    if (Previous.empty()) {
8968      // Name lookup did not find anything. However, if the
8969      // nested-name-specifier refers to the current instantiation,
8970      // and that current instantiation has any dependent base
8971      // classes, we might find something at instantiation time: treat
8972      // this as a dependent elaborated-type-specifier.
8973      // But this only makes any sense for reference-like lookups.
8974      if (Previous.wasNotFoundInCurrentInstantiation() &&
8975          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8976        IsDependent = true;
8977        return 0;
8978      }
8979
8980      // A tag 'foo::bar' must already exist.
8981      Diag(NameLoc, diag::err_not_tag_in_scope)
8982        << Kind << Name << DC << SS.getRange();
8983      Name = 0;
8984      Invalid = true;
8985      goto CreateNewDecl;
8986    }
8987  } else if (Name) {
8988    // If this is a named struct, check to see if there was a previous forward
8989    // declaration or definition.
8990    // FIXME: We're looking into outer scopes here, even when we
8991    // shouldn't be. Doing so can result in ambiguities that we
8992    // shouldn't be diagnosing.
8993    LookupName(Previous, S);
8994
8995    if (Previous.isAmbiguous() &&
8996        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8997      LookupResult::Filter F = Previous.makeFilter();
8998      while (F.hasNext()) {
8999        NamedDecl *ND = F.next();
9000        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9001          F.erase();
9002      }
9003      F.done();
9004    }
9005
9006    // Note:  there used to be some attempt at recovery here.
9007    if (Previous.isAmbiguous())
9008      return 0;
9009
9010    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9011      // FIXME: This makes sure that we ignore the contexts associated
9012      // with C structs, unions, and enums when looking for a matching
9013      // tag declaration or definition. See the similar lookup tweak
9014      // in Sema::LookupName; is there a better way to deal with this?
9015      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9016        SearchDC = SearchDC->getParent();
9017    }
9018  } else if (S->isFunctionPrototypeScope()) {
9019    // If this is an enum declaration in function prototype scope, set its
9020    // initial context to the translation unit.
9021    // FIXME: [citation needed]
9022    SearchDC = Context.getTranslationUnitDecl();
9023  }
9024
9025  if (Previous.isSingleResult() &&
9026      Previous.getFoundDecl()->isTemplateParameter()) {
9027    // Maybe we will complain about the shadowed template parameter.
9028    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9029    // Just pretend that we didn't see the previous declaration.
9030    Previous.clear();
9031  }
9032
9033  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9034      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9035    // This is a declaration of or a reference to "std::bad_alloc".
9036    isStdBadAlloc = true;
9037
9038    if (Previous.empty() && StdBadAlloc) {
9039      // std::bad_alloc has been implicitly declared (but made invisible to
9040      // name lookup). Fill in this implicit declaration as the previous
9041      // declaration, so that the declarations get chained appropriately.
9042      Previous.addDecl(getStdBadAlloc());
9043    }
9044  }
9045
9046  // If we didn't find a previous declaration, and this is a reference
9047  // (or friend reference), move to the correct scope.  In C++, we
9048  // also need to do a redeclaration lookup there, just in case
9049  // there's a shadow friend decl.
9050  if (Name && Previous.empty() &&
9051      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9052    if (Invalid) goto CreateNewDecl;
9053    assert(SS.isEmpty());
9054
9055    if (TUK == TUK_Reference) {
9056      // C++ [basic.scope.pdecl]p5:
9057      //   -- for an elaborated-type-specifier of the form
9058      //
9059      //          class-key identifier
9060      //
9061      //      if the elaborated-type-specifier is used in the
9062      //      decl-specifier-seq or parameter-declaration-clause of a
9063      //      function defined in namespace scope, the identifier is
9064      //      declared as a class-name in the namespace that contains
9065      //      the declaration; otherwise, except as a friend
9066      //      declaration, the identifier is declared in the smallest
9067      //      non-class, non-function-prototype scope that contains the
9068      //      declaration.
9069      //
9070      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9071      // C structs and unions.
9072      //
9073      // It is an error in C++ to declare (rather than define) an enum
9074      // type, including via an elaborated type specifier.  We'll
9075      // diagnose that later; for now, declare the enum in the same
9076      // scope as we would have picked for any other tag type.
9077      //
9078      // GNU C also supports this behavior as part of its incomplete
9079      // enum types extension, while GNU C++ does not.
9080      //
9081      // Find the context where we'll be declaring the tag.
9082      // FIXME: We would like to maintain the current DeclContext as the
9083      // lexical context,
9084      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9085        SearchDC = SearchDC->getParent();
9086
9087      // Find the scope where we'll be declaring the tag.
9088      while (S->isClassScope() ||
9089             (getLangOpts().CPlusPlus &&
9090              S->isFunctionPrototypeScope()) ||
9091             ((S->getFlags() & Scope::DeclScope) == 0) ||
9092             (S->getEntity() &&
9093              ((DeclContext *)S->getEntity())->isTransparentContext()))
9094        S = S->getParent();
9095    } else {
9096      assert(TUK == TUK_Friend);
9097      // C++ [namespace.memdef]p3:
9098      //   If a friend declaration in a non-local class first declares a
9099      //   class or function, the friend class or function is a member of
9100      //   the innermost enclosing namespace.
9101      SearchDC = SearchDC->getEnclosingNamespaceContext();
9102    }
9103
9104    // In C++, we need to do a redeclaration lookup to properly
9105    // diagnose some problems.
9106    if (getLangOpts().CPlusPlus) {
9107      Previous.setRedeclarationKind(ForRedeclaration);
9108      LookupQualifiedName(Previous, SearchDC);
9109    }
9110  }
9111
9112  if (!Previous.empty()) {
9113    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9114
9115    // It's okay to have a tag decl in the same scope as a typedef
9116    // which hides a tag decl in the same scope.  Finding this
9117    // insanity with a redeclaration lookup can only actually happen
9118    // in C++.
9119    //
9120    // This is also okay for elaborated-type-specifiers, which is
9121    // technically forbidden by the current standard but which is
9122    // okay according to the likely resolution of an open issue;
9123    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9124    if (getLangOpts().CPlusPlus) {
9125      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9126        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9127          TagDecl *Tag = TT->getDecl();
9128          if (Tag->getDeclName() == Name &&
9129              Tag->getDeclContext()->getRedeclContext()
9130                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9131            PrevDecl = Tag;
9132            Previous.clear();
9133            Previous.addDecl(Tag);
9134            Previous.resolveKind();
9135          }
9136        }
9137      }
9138    }
9139
9140    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9141      // If this is a use of a previous tag, or if the tag is already declared
9142      // in the same scope (so that the definition/declaration completes or
9143      // rementions the tag), reuse the decl.
9144      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9145          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9146        // Make sure that this wasn't declared as an enum and now used as a
9147        // struct or something similar.
9148        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9149                                          TUK == TUK_Definition, KWLoc,
9150                                          *Name)) {
9151          bool SafeToContinue
9152            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9153               Kind != TTK_Enum);
9154          if (SafeToContinue)
9155            Diag(KWLoc, diag::err_use_with_wrong_tag)
9156              << Name
9157              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9158                                              PrevTagDecl->getKindName());
9159          else
9160            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9161          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9162
9163          if (SafeToContinue)
9164            Kind = PrevTagDecl->getTagKind();
9165          else {
9166            // Recover by making this an anonymous redefinition.
9167            Name = 0;
9168            Previous.clear();
9169            Invalid = true;
9170          }
9171        }
9172
9173        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9174          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9175
9176          // If this is an elaborated-type-specifier for a scoped enumeration,
9177          // the 'class' keyword is not necessary and not permitted.
9178          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9179            if (ScopedEnum)
9180              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9181                << PrevEnum->isScoped()
9182                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9183            return PrevTagDecl;
9184          }
9185
9186          QualType EnumUnderlyingTy;
9187          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9188            EnumUnderlyingTy = TI->getType();
9189          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9190            EnumUnderlyingTy = QualType(T, 0);
9191
9192          // All conflicts with previous declarations are recovered by
9193          // returning the previous declaration, unless this is a definition,
9194          // in which case we want the caller to bail out.
9195          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9196                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9197            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9198        }
9199
9200        if (!Invalid) {
9201          // If this is a use, just return the declaration we found.
9202
9203          // FIXME: In the future, return a variant or some other clue
9204          // for the consumer of this Decl to know it doesn't own it.
9205          // For our current ASTs this shouldn't be a problem, but will
9206          // need to be changed with DeclGroups.
9207          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9208               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9209            return PrevTagDecl;
9210
9211          // Diagnose attempts to redefine a tag.
9212          if (TUK == TUK_Definition) {
9213            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9214              // If we're defining a specialization and the previous definition
9215              // is from an implicit instantiation, don't emit an error
9216              // here; we'll catch this in the general case below.
9217              bool IsExplicitSpecializationAfterInstantiation = false;
9218              if (isExplicitSpecialization) {
9219                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9220                  IsExplicitSpecializationAfterInstantiation =
9221                    RD->getTemplateSpecializationKind() !=
9222                    TSK_ExplicitSpecialization;
9223                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9224                  IsExplicitSpecializationAfterInstantiation =
9225                    ED->getTemplateSpecializationKind() !=
9226                    TSK_ExplicitSpecialization;
9227              }
9228
9229              if (!IsExplicitSpecializationAfterInstantiation) {
9230                // A redeclaration in function prototype scope in C isn't
9231                // visible elsewhere, so merely issue a warning.
9232                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9233                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9234                else
9235                  Diag(NameLoc, diag::err_redefinition) << Name;
9236                Diag(Def->getLocation(), diag::note_previous_definition);
9237                // If this is a redefinition, recover by making this
9238                // struct be anonymous, which will make any later
9239                // references get the previous definition.
9240                Name = 0;
9241                Previous.clear();
9242                Invalid = true;
9243              }
9244            } else {
9245              // If the type is currently being defined, complain
9246              // about a nested redefinition.
9247              const TagType *Tag
9248                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9249              if (Tag->isBeingDefined()) {
9250                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9251                Diag(PrevTagDecl->getLocation(),
9252                     diag::note_previous_definition);
9253                Name = 0;
9254                Previous.clear();
9255                Invalid = true;
9256              }
9257            }
9258
9259            // Okay, this is definition of a previously declared or referenced
9260            // tag PrevDecl. We're going to create a new Decl for it.
9261          }
9262        }
9263        // If we get here we have (another) forward declaration or we
9264        // have a definition.  Just create a new decl.
9265
9266      } else {
9267        // If we get here, this is a definition of a new tag type in a nested
9268        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9269        // new decl/type.  We set PrevDecl to NULL so that the entities
9270        // have distinct types.
9271        Previous.clear();
9272      }
9273      // If we get here, we're going to create a new Decl. If PrevDecl
9274      // is non-NULL, it's a definition of the tag declared by
9275      // PrevDecl. If it's NULL, we have a new definition.
9276
9277
9278    // Otherwise, PrevDecl is not a tag, but was found with tag
9279    // lookup.  This is only actually possible in C++, where a few
9280    // things like templates still live in the tag namespace.
9281    } else {
9282      // Use a better diagnostic if an elaborated-type-specifier
9283      // found the wrong kind of type on the first
9284      // (non-redeclaration) lookup.
9285      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9286          !Previous.isForRedeclaration()) {
9287        unsigned Kind = 0;
9288        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9289        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9290        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9291        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9292        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9293        Invalid = true;
9294
9295      // Otherwise, only diagnose if the declaration is in scope.
9296      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9297                                isExplicitSpecialization)) {
9298        // do nothing
9299
9300      // Diagnose implicit declarations introduced by elaborated types.
9301      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9302        unsigned Kind = 0;
9303        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9304        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9305        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9306        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9307        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9308        Invalid = true;
9309
9310      // Otherwise it's a declaration.  Call out a particularly common
9311      // case here.
9312      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9313        unsigned Kind = 0;
9314        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9315        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9316          << Name << Kind << TND->getUnderlyingType();
9317        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9318        Invalid = true;
9319
9320      // Otherwise, diagnose.
9321      } else {
9322        // The tag name clashes with something else in the target scope,
9323        // issue an error and recover by making this tag be anonymous.
9324        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9325        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9326        Name = 0;
9327        Invalid = true;
9328      }
9329
9330      // The existing declaration isn't relevant to us; we're in a
9331      // new scope, so clear out the previous declaration.
9332      Previous.clear();
9333    }
9334  }
9335
9336CreateNewDecl:
9337
9338  TagDecl *PrevDecl = 0;
9339  if (Previous.isSingleResult())
9340    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9341
9342  // If there is an identifier, use the location of the identifier as the
9343  // location of the decl, otherwise use the location of the struct/union
9344  // keyword.
9345  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9346
9347  // Otherwise, create a new declaration. If there is a previous
9348  // declaration of the same entity, the two will be linked via
9349  // PrevDecl.
9350  TagDecl *New;
9351
9352  bool IsForwardReference = false;
9353  if (Kind == TTK_Enum) {
9354    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9355    // enum X { A, B, C } D;    D should chain to X.
9356    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9357                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9358                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9359    // If this is an undefined enum, warn.
9360    if (TUK != TUK_Definition && !Invalid) {
9361      TagDecl *Def;
9362      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9363        // C++0x: 7.2p2: opaque-enum-declaration.
9364        // Conflicts are diagnosed above. Do nothing.
9365      }
9366      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9367        Diag(Loc, diag::ext_forward_ref_enum_def)
9368          << New;
9369        Diag(Def->getLocation(), diag::note_previous_definition);
9370      } else {
9371        unsigned DiagID = diag::ext_forward_ref_enum;
9372        if (getLangOpts().MicrosoftMode)
9373          DiagID = diag::ext_ms_forward_ref_enum;
9374        else if (getLangOpts().CPlusPlus)
9375          DiagID = diag::err_forward_ref_enum;
9376        Diag(Loc, DiagID);
9377
9378        // If this is a forward-declared reference to an enumeration, make a
9379        // note of it; we won't actually be introducing the declaration into
9380        // the declaration context.
9381        if (TUK == TUK_Reference)
9382          IsForwardReference = true;
9383      }
9384    }
9385
9386    if (EnumUnderlying) {
9387      EnumDecl *ED = cast<EnumDecl>(New);
9388      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9389        ED->setIntegerTypeSourceInfo(TI);
9390      else
9391        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9392      ED->setPromotionType(ED->getIntegerType());
9393    }
9394
9395  } else {
9396    // struct/union/class
9397
9398    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9399    // struct X { int A; } D;    D should chain to X.
9400    if (getLangOpts().CPlusPlus) {
9401      // FIXME: Look for a way to use RecordDecl for simple structs.
9402      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9403                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9404
9405      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9406        StdBadAlloc = cast<CXXRecordDecl>(New);
9407    } else
9408      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9409                               cast_or_null<RecordDecl>(PrevDecl));
9410  }
9411
9412  // Maybe add qualifier info.
9413  if (SS.isNotEmpty()) {
9414    if (SS.isSet()) {
9415      // If this is either a declaration or a definition, check the
9416      // nested-name-specifier against the current context. We don't do this
9417      // for explicit specializations, because they have similar checking
9418      // (with more specific diagnostics) in the call to
9419      // CheckMemberSpecialization, below.
9420      if (!isExplicitSpecialization &&
9421          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9422          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9423        Invalid = true;
9424
9425      New->setQualifierInfo(SS.getWithLocInContext(Context));
9426      if (TemplateParameterLists.size() > 0) {
9427        New->setTemplateParameterListsInfo(Context,
9428                                           TemplateParameterLists.size(),
9429                                           TemplateParameterLists.data());
9430      }
9431    }
9432    else
9433      Invalid = true;
9434  }
9435
9436  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9437    // Add alignment attributes if necessary; these attributes are checked when
9438    // the ASTContext lays out the structure.
9439    //
9440    // It is important for implementing the correct semantics that this
9441    // happen here (in act on tag decl). The #pragma pack stack is
9442    // maintained as a result of parser callbacks which can occur at
9443    // many points during the parsing of a struct declaration (because
9444    // the #pragma tokens are effectively skipped over during the
9445    // parsing of the struct).
9446    if (TUK == TUK_Definition) {
9447      AddAlignmentAttributesForRecord(RD);
9448      AddMsStructLayoutForRecord(RD);
9449    }
9450  }
9451
9452  if (ModulePrivateLoc.isValid()) {
9453    if (isExplicitSpecialization)
9454      Diag(New->getLocation(), diag::err_module_private_specialization)
9455        << 2
9456        << FixItHint::CreateRemoval(ModulePrivateLoc);
9457    // __module_private__ does not apply to local classes. However, we only
9458    // diagnose this as an error when the declaration specifiers are
9459    // freestanding. Here, we just ignore the __module_private__.
9460    else if (!SearchDC->isFunctionOrMethod())
9461      New->setModulePrivate();
9462  }
9463
9464  // If this is a specialization of a member class (of a class template),
9465  // check the specialization.
9466  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9467    Invalid = true;
9468
9469  if (Invalid)
9470    New->setInvalidDecl();
9471
9472  if (Attr)
9473    ProcessDeclAttributeList(S, New, Attr);
9474
9475  // If we're declaring or defining a tag in function prototype scope
9476  // in C, note that this type can only be used within the function.
9477  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9478    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9479
9480  // Set the lexical context. If the tag has a C++ scope specifier, the
9481  // lexical context will be different from the semantic context.
9482  New->setLexicalDeclContext(CurContext);
9483
9484  // Mark this as a friend decl if applicable.
9485  // In Microsoft mode, a friend declaration also acts as a forward
9486  // declaration so we always pass true to setObjectOfFriendDecl to make
9487  // the tag name visible.
9488  if (TUK == TUK_Friend)
9489    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9490                               getLangOpts().MicrosoftExt);
9491
9492  // Set the access specifier.
9493  if (!Invalid && SearchDC->isRecord())
9494    SetMemberAccessSpecifier(New, PrevDecl, AS);
9495
9496  if (TUK == TUK_Definition)
9497    New->startDefinition();
9498
9499  // If this has an identifier, add it to the scope stack.
9500  if (TUK == TUK_Friend) {
9501    // We might be replacing an existing declaration in the lookup tables;
9502    // if so, borrow its access specifier.
9503    if (PrevDecl)
9504      New->setAccess(PrevDecl->getAccess());
9505
9506    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9507    DC->makeDeclVisibleInContext(New);
9508    if (Name) // can be null along some error paths
9509      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9510        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9511  } else if (Name) {
9512    S = getNonFieldDeclScope(S);
9513    PushOnScopeChains(New, S, !IsForwardReference);
9514    if (IsForwardReference)
9515      SearchDC->makeDeclVisibleInContext(New);
9516
9517  } else {
9518    CurContext->addDecl(New);
9519  }
9520
9521  // If this is the C FILE type, notify the AST context.
9522  if (IdentifierInfo *II = New->getIdentifier())
9523    if (!New->isInvalidDecl() &&
9524        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9525        II->isStr("FILE"))
9526      Context.setFILEDecl(New);
9527
9528  // If we were in function prototype scope (and not in C++ mode), add this
9529  // tag to the list of decls to inject into the function definition scope.
9530  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9531      InFunctionDeclarator && Name)
9532    DeclsInPrototypeScope.push_back(New);
9533
9534  if (PrevDecl)
9535    mergeDeclAttributes(New, PrevDecl);
9536
9537  // If there's a #pragma GCC visibility in scope, set the visibility of this
9538  // record.
9539  AddPushedVisibilityAttribute(New);
9540
9541  OwnedDecl = true;
9542  // In C++, don't return an invalid declaration. We can't recover well from
9543  // the cases where we make the type anonymous.
9544  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9545}
9546
9547void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9548  AdjustDeclIfTemplate(TagD);
9549  TagDecl *Tag = cast<TagDecl>(TagD);
9550
9551  // Enter the tag context.
9552  PushDeclContext(S, Tag);
9553
9554  ActOnDocumentableDecl(TagD);
9555
9556  // If there's a #pragma GCC visibility in scope, set the visibility of this
9557  // record.
9558  AddPushedVisibilityAttribute(Tag);
9559}
9560
9561Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9562  assert(isa<ObjCContainerDecl>(IDecl) &&
9563         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9564  DeclContext *OCD = cast<DeclContext>(IDecl);
9565  assert(getContainingDC(OCD) == CurContext &&
9566      "The next DeclContext should be lexically contained in the current one.");
9567  CurContext = OCD;
9568  return IDecl;
9569}
9570
9571void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9572                                           SourceLocation FinalLoc,
9573                                           SourceLocation LBraceLoc) {
9574  AdjustDeclIfTemplate(TagD);
9575  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9576
9577  FieldCollector->StartClass();
9578
9579  if (!Record->getIdentifier())
9580    return;
9581
9582  if (FinalLoc.isValid())
9583    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9584
9585  // C++ [class]p2:
9586  //   [...] The class-name is also inserted into the scope of the
9587  //   class itself; this is known as the injected-class-name. For
9588  //   purposes of access checking, the injected-class-name is treated
9589  //   as if it were a public member name.
9590  CXXRecordDecl *InjectedClassName
9591    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9592                            Record->getLocStart(), Record->getLocation(),
9593                            Record->getIdentifier(),
9594                            /*PrevDecl=*/0,
9595                            /*DelayTypeCreation=*/true);
9596  Context.getTypeDeclType(InjectedClassName, Record);
9597  InjectedClassName->setImplicit();
9598  InjectedClassName->setAccess(AS_public);
9599  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9600      InjectedClassName->setDescribedClassTemplate(Template);
9601  PushOnScopeChains(InjectedClassName, S);
9602  assert(InjectedClassName->isInjectedClassName() &&
9603         "Broken injected-class-name");
9604}
9605
9606void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9607                                    SourceLocation RBraceLoc) {
9608  AdjustDeclIfTemplate(TagD);
9609  TagDecl *Tag = cast<TagDecl>(TagD);
9610  Tag->setRBraceLoc(RBraceLoc);
9611
9612  // Make sure we "complete" the definition even it is invalid.
9613  if (Tag->isBeingDefined()) {
9614    assert(Tag->isInvalidDecl() && "We should already have completed it");
9615    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9616      RD->completeDefinition();
9617  }
9618
9619  if (isa<CXXRecordDecl>(Tag))
9620    FieldCollector->FinishClass();
9621
9622  // Exit this scope of this tag's definition.
9623  PopDeclContext();
9624
9625  // Notify the consumer that we've defined a tag.
9626  Consumer.HandleTagDeclDefinition(Tag);
9627}
9628
9629void Sema::ActOnObjCContainerFinishDefinition() {
9630  // Exit this scope of this interface definition.
9631  PopDeclContext();
9632}
9633
9634void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9635  assert(DC == CurContext && "Mismatch of container contexts");
9636  OriginalLexicalContext = DC;
9637  ActOnObjCContainerFinishDefinition();
9638}
9639
9640void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9641  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9642  OriginalLexicalContext = 0;
9643}
9644
9645void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9646  AdjustDeclIfTemplate(TagD);
9647  TagDecl *Tag = cast<TagDecl>(TagD);
9648  Tag->setInvalidDecl();
9649
9650  // Make sure we "complete" the definition even it is invalid.
9651  if (Tag->isBeingDefined()) {
9652    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9653      RD->completeDefinition();
9654  }
9655
9656  // We're undoing ActOnTagStartDefinition here, not
9657  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9658  // the FieldCollector.
9659
9660  PopDeclContext();
9661}
9662
9663// Note that FieldName may be null for anonymous bitfields.
9664ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9665                                IdentifierInfo *FieldName,
9666                                QualType FieldTy, Expr *BitWidth,
9667                                bool *ZeroWidth) {
9668  // Default to true; that shouldn't confuse checks for emptiness
9669  if (ZeroWidth)
9670    *ZeroWidth = true;
9671
9672  // C99 6.7.2.1p4 - verify the field type.
9673  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9674  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9675    // Handle incomplete types with specific error.
9676    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9677      return ExprError();
9678    if (FieldName)
9679      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9680        << FieldName << FieldTy << BitWidth->getSourceRange();
9681    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9682      << FieldTy << BitWidth->getSourceRange();
9683  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9684                                             UPPC_BitFieldWidth))
9685    return ExprError();
9686
9687  // If the bit-width is type- or value-dependent, don't try to check
9688  // it now.
9689  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9690    return Owned(BitWidth);
9691
9692  llvm::APSInt Value;
9693  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9694  if (ICE.isInvalid())
9695    return ICE;
9696  BitWidth = ICE.take();
9697
9698  if (Value != 0 && ZeroWidth)
9699    *ZeroWidth = false;
9700
9701  // Zero-width bitfield is ok for anonymous field.
9702  if (Value == 0 && FieldName)
9703    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9704
9705  if (Value.isSigned() && Value.isNegative()) {
9706    if (FieldName)
9707      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9708               << FieldName << Value.toString(10);
9709    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9710      << Value.toString(10);
9711  }
9712
9713  if (!FieldTy->isDependentType()) {
9714    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9715    if (Value.getZExtValue() > TypeSize) {
9716      if (!getLangOpts().CPlusPlus) {
9717        if (FieldName)
9718          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9719            << FieldName << (unsigned)Value.getZExtValue()
9720            << (unsigned)TypeSize;
9721
9722        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9723          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9724      }
9725
9726      if (FieldName)
9727        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9728          << FieldName << (unsigned)Value.getZExtValue()
9729          << (unsigned)TypeSize;
9730      else
9731        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9732          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9733    }
9734  }
9735
9736  return Owned(BitWidth);
9737}
9738
9739/// ActOnField - Each field of a C struct/union is passed into this in order
9740/// to create a FieldDecl object for it.
9741Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9742                       Declarator &D, Expr *BitfieldWidth) {
9743  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9744                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9745                               /*InitStyle=*/ICIS_NoInit, AS_public);
9746  return Res;
9747}
9748
9749/// HandleField - Analyze a field of a C struct or a C++ data member.
9750///
9751FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9752                             SourceLocation DeclStart,
9753                             Declarator &D, Expr *BitWidth,
9754                             InClassInitStyle InitStyle,
9755                             AccessSpecifier AS) {
9756  IdentifierInfo *II = D.getIdentifier();
9757  SourceLocation Loc = DeclStart;
9758  if (II) Loc = D.getIdentifierLoc();
9759
9760  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9761  QualType T = TInfo->getType();
9762  if (getLangOpts().CPlusPlus) {
9763    CheckExtraCXXDefaultArguments(D);
9764
9765    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9766                                        UPPC_DataMemberType)) {
9767      D.setInvalidType();
9768      T = Context.IntTy;
9769      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9770    }
9771  }
9772
9773  DiagnoseFunctionSpecifiers(D);
9774
9775  if (D.getDeclSpec().isThreadSpecified())
9776    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9777  if (D.getDeclSpec().isConstexprSpecified())
9778    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9779      << 2;
9780
9781  // Check to see if this name was declared as a member previously
9782  NamedDecl *PrevDecl = 0;
9783  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9784  LookupName(Previous, S);
9785  switch (Previous.getResultKind()) {
9786    case LookupResult::Found:
9787    case LookupResult::FoundUnresolvedValue:
9788      PrevDecl = Previous.getAsSingle<NamedDecl>();
9789      break;
9790
9791    case LookupResult::FoundOverloaded:
9792      PrevDecl = Previous.getRepresentativeDecl();
9793      break;
9794
9795    case LookupResult::NotFound:
9796    case LookupResult::NotFoundInCurrentInstantiation:
9797    case LookupResult::Ambiguous:
9798      break;
9799  }
9800  Previous.suppressDiagnostics();
9801
9802  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9803    // Maybe we will complain about the shadowed template parameter.
9804    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9805    // Just pretend that we didn't see the previous declaration.
9806    PrevDecl = 0;
9807  }
9808
9809  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9810    PrevDecl = 0;
9811
9812  bool Mutable
9813    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9814  SourceLocation TSSL = D.getLocStart();
9815  FieldDecl *NewFD
9816    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9817                     TSSL, AS, PrevDecl, &D);
9818
9819  if (NewFD->isInvalidDecl())
9820    Record->setInvalidDecl();
9821
9822  if (D.getDeclSpec().isModulePrivateSpecified())
9823    NewFD->setModulePrivate();
9824
9825  if (NewFD->isInvalidDecl() && PrevDecl) {
9826    // Don't introduce NewFD into scope; there's already something
9827    // with the same name in the same scope.
9828  } else if (II) {
9829    PushOnScopeChains(NewFD, S);
9830  } else
9831    Record->addDecl(NewFD);
9832
9833  return NewFD;
9834}
9835
9836/// \brief Build a new FieldDecl and check its well-formedness.
9837///
9838/// This routine builds a new FieldDecl given the fields name, type,
9839/// record, etc. \p PrevDecl should refer to any previous declaration
9840/// with the same name and in the same scope as the field to be
9841/// created.
9842///
9843/// \returns a new FieldDecl.
9844///
9845/// \todo The Declarator argument is a hack. It will be removed once
9846FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9847                                TypeSourceInfo *TInfo,
9848                                RecordDecl *Record, SourceLocation Loc,
9849                                bool Mutable, Expr *BitWidth,
9850                                InClassInitStyle InitStyle,
9851                                SourceLocation TSSL,
9852                                AccessSpecifier AS, NamedDecl *PrevDecl,
9853                                Declarator *D) {
9854  IdentifierInfo *II = Name.getAsIdentifierInfo();
9855  bool InvalidDecl = false;
9856  if (D) InvalidDecl = D->isInvalidType();
9857
9858  // If we receive a broken type, recover by assuming 'int' and
9859  // marking this declaration as invalid.
9860  if (T.isNull()) {
9861    InvalidDecl = true;
9862    T = Context.IntTy;
9863  }
9864
9865  QualType EltTy = Context.getBaseElementType(T);
9866  if (!EltTy->isDependentType()) {
9867    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9868      // Fields of incomplete type force their record to be invalid.
9869      Record->setInvalidDecl();
9870      InvalidDecl = true;
9871    } else {
9872      NamedDecl *Def;
9873      EltTy->isIncompleteType(&Def);
9874      if (Def && Def->isInvalidDecl()) {
9875        Record->setInvalidDecl();
9876        InvalidDecl = true;
9877      }
9878    }
9879  }
9880
9881  // OpenCL v1.2 s6.9.c: bitfields are not supported.
9882  if (BitWidth && getLangOpts().OpenCL) {
9883    Diag(Loc, diag::err_opencl_bitfields);
9884    InvalidDecl = true;
9885  }
9886
9887  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9888  // than a variably modified type.
9889  if (!InvalidDecl && T->isVariablyModifiedType()) {
9890    bool SizeIsNegative;
9891    llvm::APSInt Oversized;
9892
9893    TypeSourceInfo *FixedTInfo =
9894      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
9895                                                    SizeIsNegative,
9896                                                    Oversized);
9897    if (FixedTInfo) {
9898      Diag(Loc, diag::warn_illegal_constant_array_size);
9899      TInfo = FixedTInfo;
9900      T = FixedTInfo->getType();
9901    } else {
9902      if (SizeIsNegative)
9903        Diag(Loc, diag::err_typecheck_negative_array_size);
9904      else if (Oversized.getBoolValue())
9905        Diag(Loc, diag::err_array_too_large)
9906          << Oversized.toString(10);
9907      else
9908        Diag(Loc, diag::err_typecheck_field_variable_size);
9909      InvalidDecl = true;
9910    }
9911  }
9912
9913  // Fields can not have abstract class types
9914  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9915                                             diag::err_abstract_type_in_decl,
9916                                             AbstractFieldType))
9917    InvalidDecl = true;
9918
9919  bool ZeroWidth = false;
9920  // If this is declared as a bit-field, check the bit-field.
9921  if (!InvalidDecl && BitWidth) {
9922    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9923    if (!BitWidth) {
9924      InvalidDecl = true;
9925      BitWidth = 0;
9926      ZeroWidth = false;
9927    }
9928  }
9929
9930  // Check that 'mutable' is consistent with the type of the declaration.
9931  if (!InvalidDecl && Mutable) {
9932    unsigned DiagID = 0;
9933    if (T->isReferenceType())
9934      DiagID = diag::err_mutable_reference;
9935    else if (T.isConstQualified())
9936      DiagID = diag::err_mutable_const;
9937
9938    if (DiagID) {
9939      SourceLocation ErrLoc = Loc;
9940      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9941        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9942      Diag(ErrLoc, DiagID);
9943      Mutable = false;
9944      InvalidDecl = true;
9945    }
9946  }
9947
9948  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9949                                       BitWidth, Mutable, InitStyle);
9950  if (InvalidDecl)
9951    NewFD->setInvalidDecl();
9952
9953  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9954    Diag(Loc, diag::err_duplicate_member) << II;
9955    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9956    NewFD->setInvalidDecl();
9957  }
9958
9959  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9960    if (Record->isUnion()) {
9961      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9962        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9963        if (RDecl->getDefinition()) {
9964          // C++ [class.union]p1: An object of a class with a non-trivial
9965          // constructor, a non-trivial copy constructor, a non-trivial
9966          // destructor, or a non-trivial copy assignment operator
9967          // cannot be a member of a union, nor can an array of such
9968          // objects.
9969          if (CheckNontrivialField(NewFD))
9970            NewFD->setInvalidDecl();
9971        }
9972      }
9973
9974      // C++ [class.union]p1: If a union contains a member of reference type,
9975      // the program is ill-formed.
9976      if (EltTy->isReferenceType()) {
9977        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9978          << NewFD->getDeclName() << EltTy;
9979        NewFD->setInvalidDecl();
9980      }
9981    }
9982  }
9983
9984  // FIXME: We need to pass in the attributes given an AST
9985  // representation, not a parser representation.
9986  if (D)
9987    // FIXME: What to pass instead of TUScope?
9988    ProcessDeclAttributes(TUScope, NewFD, *D);
9989
9990  // In auto-retain/release, infer strong retension for fields of
9991  // retainable type.
9992  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9993    NewFD->setInvalidDecl();
9994
9995  if (T.isObjCGCWeak())
9996    Diag(Loc, diag::warn_attribute_weak_on_field);
9997
9998  NewFD->setAccess(AS);
9999  return NewFD;
10000}
10001
10002bool Sema::CheckNontrivialField(FieldDecl *FD) {
10003  assert(FD);
10004  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10005
10006  if (FD->isInvalidDecl())
10007    return true;
10008
10009  QualType EltTy = Context.getBaseElementType(FD->getType());
10010  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10011    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10012    if (RDecl->getDefinition()) {
10013      // We check for copy constructors before constructors
10014      // because otherwise we'll never get complaints about
10015      // copy constructors.
10016
10017      CXXSpecialMember member = CXXInvalid;
10018      // We're required to check for any non-trivial constructors. Since the
10019      // implicit default constructor is suppressed if there are any
10020      // user-declared constructors, we just need to check that there is a
10021      // trivial default constructor and a trivial copy constructor. (We don't
10022      // worry about move constructors here, since this is a C++98 check.)
10023      if (RDecl->hasNonTrivialCopyConstructor())
10024        member = CXXCopyConstructor;
10025      else if (!RDecl->hasTrivialDefaultConstructor())
10026        member = CXXDefaultConstructor;
10027      else if (RDecl->hasNonTrivialCopyAssignment())
10028        member = CXXCopyAssignment;
10029      else if (RDecl->hasNonTrivialDestructor())
10030        member = CXXDestructor;
10031
10032      if (member != CXXInvalid) {
10033        if (!getLangOpts().CPlusPlus11 &&
10034            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10035          // Objective-C++ ARC: it is an error to have a non-trivial field of
10036          // a union. However, system headers in Objective-C programs
10037          // occasionally have Objective-C lifetime objects within unions,
10038          // and rather than cause the program to fail, we make those
10039          // members unavailable.
10040          SourceLocation Loc = FD->getLocation();
10041          if (getSourceManager().isInSystemHeader(Loc)) {
10042            if (!FD->hasAttr<UnavailableAttr>())
10043              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10044                                  "this system field has retaining ownership"));
10045            return false;
10046          }
10047        }
10048
10049        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10050               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10051               diag::err_illegal_union_or_anon_struct_member)
10052          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10053        DiagnoseNontrivial(RDecl, member);
10054        return !getLangOpts().CPlusPlus11;
10055      }
10056    }
10057  }
10058
10059  return false;
10060}
10061
10062/// TranslateIvarVisibility - Translate visibility from a token ID to an
10063///  AST enum value.
10064static ObjCIvarDecl::AccessControl
10065TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10066  switch (ivarVisibility) {
10067  default: llvm_unreachable("Unknown visitibility kind");
10068  case tok::objc_private: return ObjCIvarDecl::Private;
10069  case tok::objc_public: return ObjCIvarDecl::Public;
10070  case tok::objc_protected: return ObjCIvarDecl::Protected;
10071  case tok::objc_package: return ObjCIvarDecl::Package;
10072  }
10073}
10074
10075/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10076/// in order to create an IvarDecl object for it.
10077Decl *Sema::ActOnIvar(Scope *S,
10078                                SourceLocation DeclStart,
10079                                Declarator &D, Expr *BitfieldWidth,
10080                                tok::ObjCKeywordKind Visibility) {
10081
10082  IdentifierInfo *II = D.getIdentifier();
10083  Expr *BitWidth = (Expr*)BitfieldWidth;
10084  SourceLocation Loc = DeclStart;
10085  if (II) Loc = D.getIdentifierLoc();
10086
10087  // FIXME: Unnamed fields can be handled in various different ways, for
10088  // example, unnamed unions inject all members into the struct namespace!
10089
10090  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10091  QualType T = TInfo->getType();
10092
10093  if (BitWidth) {
10094    // 6.7.2.1p3, 6.7.2.1p4
10095    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10096    if (!BitWidth)
10097      D.setInvalidType();
10098  } else {
10099    // Not a bitfield.
10100
10101    // validate II.
10102
10103  }
10104  if (T->isReferenceType()) {
10105    Diag(Loc, diag::err_ivar_reference_type);
10106    D.setInvalidType();
10107  }
10108  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10109  // than a variably modified type.
10110  else if (T->isVariablyModifiedType()) {
10111    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10112    D.setInvalidType();
10113  }
10114
10115  // Get the visibility (access control) for this ivar.
10116  ObjCIvarDecl::AccessControl ac =
10117    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10118                                        : ObjCIvarDecl::None;
10119  // Must set ivar's DeclContext to its enclosing interface.
10120  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10121  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10122    return 0;
10123  ObjCContainerDecl *EnclosingContext;
10124  if (ObjCImplementationDecl *IMPDecl =
10125      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10126    if (LangOpts.ObjCRuntime.isFragile()) {
10127    // Case of ivar declared in an implementation. Context is that of its class.
10128      EnclosingContext = IMPDecl->getClassInterface();
10129      assert(EnclosingContext && "Implementation has no class interface!");
10130    }
10131    else
10132      EnclosingContext = EnclosingDecl;
10133  } else {
10134    if (ObjCCategoryDecl *CDecl =
10135        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10136      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10137        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10138        return 0;
10139      }
10140    }
10141    EnclosingContext = EnclosingDecl;
10142  }
10143
10144  // Construct the decl.
10145  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10146                                             DeclStart, Loc, II, T,
10147                                             TInfo, ac, (Expr *)BitfieldWidth);
10148
10149  if (II) {
10150    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10151                                           ForRedeclaration);
10152    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10153        && !isa<TagDecl>(PrevDecl)) {
10154      Diag(Loc, diag::err_duplicate_member) << II;
10155      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10156      NewID->setInvalidDecl();
10157    }
10158  }
10159
10160  // Process attributes attached to the ivar.
10161  ProcessDeclAttributes(S, NewID, D);
10162
10163  if (D.isInvalidType())
10164    NewID->setInvalidDecl();
10165
10166  // In ARC, infer 'retaining' for ivars of retainable type.
10167  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10168    NewID->setInvalidDecl();
10169
10170  if (D.getDeclSpec().isModulePrivateSpecified())
10171    NewID->setModulePrivate();
10172
10173  if (II) {
10174    // FIXME: When interfaces are DeclContexts, we'll need to add
10175    // these to the interface.
10176    S->AddDecl(NewID);
10177    IdResolver.AddDecl(NewID);
10178  }
10179
10180  if (LangOpts.ObjCRuntime.isNonFragile() &&
10181      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10182    Diag(Loc, diag::warn_ivars_in_interface);
10183
10184  return NewID;
10185}
10186
10187/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10188/// class and class extensions. For every class @interface and class
10189/// extension @interface, if the last ivar is a bitfield of any type,
10190/// then add an implicit `char :0` ivar to the end of that interface.
10191void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10192                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10193  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10194    return;
10195
10196  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10197  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10198
10199  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10200    return;
10201  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10202  if (!ID) {
10203    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10204      if (!CD->IsClassExtension())
10205        return;
10206    }
10207    // No need to add this to end of @implementation.
10208    else
10209      return;
10210  }
10211  // All conditions are met. Add a new bitfield to the tail end of ivars.
10212  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10213  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10214
10215  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10216                              DeclLoc, DeclLoc, 0,
10217                              Context.CharTy,
10218                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10219                                                               DeclLoc),
10220                              ObjCIvarDecl::Private, BW,
10221                              true);
10222  AllIvarDecls.push_back(Ivar);
10223}
10224
10225void Sema::ActOnFields(Scope* S,
10226                       SourceLocation RecLoc, Decl *EnclosingDecl,
10227                       llvm::ArrayRef<Decl *> Fields,
10228                       SourceLocation LBrac, SourceLocation RBrac,
10229                       AttributeList *Attr) {
10230  assert(EnclosingDecl && "missing record or interface decl");
10231
10232  // If this is an Objective-C @implementation or category and we have
10233  // new fields here we should reset the layout of the interface since
10234  // it will now change.
10235  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10236    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10237    switch (DC->getKind()) {
10238    default: break;
10239    case Decl::ObjCCategory:
10240      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10241      break;
10242    case Decl::ObjCImplementation:
10243      Context.
10244        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10245      break;
10246    }
10247  }
10248
10249  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10250
10251  // Start counting up the number of named members; make sure to include
10252  // members of anonymous structs and unions in the total.
10253  unsigned NumNamedMembers = 0;
10254  if (Record) {
10255    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10256                                   e = Record->decls_end(); i != e; i++) {
10257      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10258        if (IFD->getDeclName())
10259          ++NumNamedMembers;
10260    }
10261  }
10262
10263  // Verify that all the fields are okay.
10264  SmallVector<FieldDecl*, 32> RecFields;
10265
10266  bool ARCErrReported = false;
10267  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10268       i != end; ++i) {
10269    FieldDecl *FD = cast<FieldDecl>(*i);
10270
10271    // Get the type for the field.
10272    const Type *FDTy = FD->getType().getTypePtr();
10273
10274    if (!FD->isAnonymousStructOrUnion()) {
10275      // Remember all fields written by the user.
10276      RecFields.push_back(FD);
10277    }
10278
10279    // If the field is already invalid for some reason, don't emit more
10280    // diagnostics about it.
10281    if (FD->isInvalidDecl()) {
10282      EnclosingDecl->setInvalidDecl();
10283      continue;
10284    }
10285
10286    // C99 6.7.2.1p2:
10287    //   A structure or union shall not contain a member with
10288    //   incomplete or function type (hence, a structure shall not
10289    //   contain an instance of itself, but may contain a pointer to
10290    //   an instance of itself), except that the last member of a
10291    //   structure with more than one named member may have incomplete
10292    //   array type; such a structure (and any union containing,
10293    //   possibly recursively, a member that is such a structure)
10294    //   shall not be a member of a structure or an element of an
10295    //   array.
10296    if (FDTy->isFunctionType()) {
10297      // Field declared as a function.
10298      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10299        << FD->getDeclName();
10300      FD->setInvalidDecl();
10301      EnclosingDecl->setInvalidDecl();
10302      continue;
10303    } else if (FDTy->isIncompleteArrayType() && Record &&
10304               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10305                ((getLangOpts().MicrosoftExt ||
10306                  getLangOpts().CPlusPlus) &&
10307                 (i + 1 == Fields.end() || Record->isUnion())))) {
10308      // Flexible array member.
10309      // Microsoft and g++ is more permissive regarding flexible array.
10310      // It will accept flexible array in union and also
10311      // as the sole element of a struct/class.
10312      if (getLangOpts().MicrosoftExt) {
10313        if (Record->isUnion())
10314          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10315            << FD->getDeclName();
10316        else if (Fields.size() == 1)
10317          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10318            << FD->getDeclName() << Record->getTagKind();
10319      } else if (getLangOpts().CPlusPlus) {
10320        if (Record->isUnion())
10321          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10322            << FD->getDeclName();
10323        else if (Fields.size() == 1)
10324          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10325            << FD->getDeclName() << Record->getTagKind();
10326      } else if (!getLangOpts().C99) {
10327      if (Record->isUnion())
10328        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10329          << FD->getDeclName();
10330      else
10331        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10332          << FD->getDeclName() << Record->getTagKind();
10333      } else if (NumNamedMembers < 1) {
10334        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10335          << FD->getDeclName();
10336        FD->setInvalidDecl();
10337        EnclosingDecl->setInvalidDecl();
10338        continue;
10339      }
10340      if (!FD->getType()->isDependentType() &&
10341          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10342        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10343          << FD->getDeclName() << FD->getType();
10344        FD->setInvalidDecl();
10345        EnclosingDecl->setInvalidDecl();
10346        continue;
10347      }
10348      // Okay, we have a legal flexible array member at the end of the struct.
10349      if (Record)
10350        Record->setHasFlexibleArrayMember(true);
10351    } else if (!FDTy->isDependentType() &&
10352               RequireCompleteType(FD->getLocation(), FD->getType(),
10353                                   diag::err_field_incomplete)) {
10354      // Incomplete type
10355      FD->setInvalidDecl();
10356      EnclosingDecl->setInvalidDecl();
10357      continue;
10358    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10359      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10360        // If this is a member of a union, then entire union becomes "flexible".
10361        if (Record && Record->isUnion()) {
10362          Record->setHasFlexibleArrayMember(true);
10363        } else {
10364          // If this is a struct/class and this is not the last element, reject
10365          // it.  Note that GCC supports variable sized arrays in the middle of
10366          // structures.
10367          if (i + 1 != Fields.end())
10368            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10369              << FD->getDeclName() << FD->getType();
10370          else {
10371            // We support flexible arrays at the end of structs in
10372            // other structs as an extension.
10373            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10374              << FD->getDeclName();
10375            if (Record)
10376              Record->setHasFlexibleArrayMember(true);
10377          }
10378        }
10379      }
10380      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10381          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10382                                 diag::err_abstract_type_in_decl,
10383                                 AbstractIvarType)) {
10384        // Ivars can not have abstract class types
10385        FD->setInvalidDecl();
10386      }
10387      if (Record && FDTTy->getDecl()->hasObjectMember())
10388        Record->setHasObjectMember(true);
10389    } else if (FDTy->isObjCObjectType()) {
10390      /// A field cannot be an Objective-c object
10391      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10392        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10393      QualType T = Context.getObjCObjectPointerType(FD->getType());
10394      FD->setType(T);
10395    } else if (!getLangOpts().CPlusPlus) {
10396      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10397        // It's an error in ARC if a field has lifetime.
10398        // We don't want to report this in a system header, though,
10399        // so we just make the field unavailable.
10400        // FIXME: that's really not sufficient; we need to make the type
10401        // itself invalid to, say, initialize or copy.
10402        QualType T = FD->getType();
10403        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10404        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10405          SourceLocation loc = FD->getLocation();
10406          if (getSourceManager().isInSystemHeader(loc)) {
10407            if (!FD->hasAttr<UnavailableAttr>()) {
10408              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10409                                "this system field has retaining ownership"));
10410            }
10411          } else {
10412            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10413              << T->isBlockPointerType();
10414          }
10415          ARCErrReported = true;
10416        }
10417      }
10418      else if (getLangOpts().ObjC1 &&
10419               getLangOpts().getGC() != LangOptions::NonGC &&
10420               Record && !Record->hasObjectMember()) {
10421        if (FD->getType()->isObjCObjectPointerType() ||
10422            FD->getType().isObjCGCStrong())
10423          Record->setHasObjectMember(true);
10424        else if (Context.getAsArrayType(FD->getType())) {
10425          QualType BaseType = Context.getBaseElementType(FD->getType());
10426          if (BaseType->isRecordType() &&
10427              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10428            Record->setHasObjectMember(true);
10429          else if (BaseType->isObjCObjectPointerType() ||
10430                   BaseType.isObjCGCStrong())
10431                 Record->setHasObjectMember(true);
10432        }
10433      }
10434    }
10435    // Keep track of the number of named members.
10436    if (FD->getIdentifier())
10437      ++NumNamedMembers;
10438  }
10439
10440  // Okay, we successfully defined 'Record'.
10441  if (Record) {
10442    bool Completed = false;
10443    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10444      if (!CXXRecord->isInvalidDecl()) {
10445        // Set access bits correctly on the directly-declared conversions.
10446        for (CXXRecordDecl::conversion_iterator
10447               I = CXXRecord->conversion_begin(),
10448               E = CXXRecord->conversion_end(); I != E; ++I)
10449          I.setAccess((*I)->getAccess());
10450
10451        if (!CXXRecord->isDependentType()) {
10452          // Adjust user-defined destructor exception spec.
10453          if (getLangOpts().CPlusPlus11 &&
10454              CXXRecord->hasUserDeclaredDestructor())
10455            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10456
10457          // Add any implicitly-declared members to this class.
10458          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10459
10460          // If we have virtual base classes, we may end up finding multiple
10461          // final overriders for a given virtual function. Check for this
10462          // problem now.
10463          if (CXXRecord->getNumVBases()) {
10464            CXXFinalOverriderMap FinalOverriders;
10465            CXXRecord->getFinalOverriders(FinalOverriders);
10466
10467            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10468                                             MEnd = FinalOverriders.end();
10469                 M != MEnd; ++M) {
10470              for (OverridingMethods::iterator SO = M->second.begin(),
10471                                            SOEnd = M->second.end();
10472                   SO != SOEnd; ++SO) {
10473                assert(SO->second.size() > 0 &&
10474                       "Virtual function without overridding functions?");
10475                if (SO->second.size() == 1)
10476                  continue;
10477
10478                // C++ [class.virtual]p2:
10479                //   In a derived class, if a virtual member function of a base
10480                //   class subobject has more than one final overrider the
10481                //   program is ill-formed.
10482                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10483                  << (const NamedDecl *)M->first << Record;
10484                Diag(M->first->getLocation(),
10485                     diag::note_overridden_virtual_function);
10486                for (OverridingMethods::overriding_iterator
10487                          OM = SO->second.begin(),
10488                       OMEnd = SO->second.end();
10489                     OM != OMEnd; ++OM)
10490                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10491                    << (const NamedDecl *)M->first << OM->Method->getParent();
10492
10493                Record->setInvalidDecl();
10494              }
10495            }
10496            CXXRecord->completeDefinition(&FinalOverriders);
10497            Completed = true;
10498          }
10499        }
10500      }
10501    }
10502
10503    if (!Completed)
10504      Record->completeDefinition();
10505
10506  } else {
10507    ObjCIvarDecl **ClsFields =
10508      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10509    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10510      ID->setEndOfDefinitionLoc(RBrac);
10511      // Add ivar's to class's DeclContext.
10512      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10513        ClsFields[i]->setLexicalDeclContext(ID);
10514        ID->addDecl(ClsFields[i]);
10515      }
10516      // Must enforce the rule that ivars in the base classes may not be
10517      // duplicates.
10518      if (ID->getSuperClass())
10519        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10520    } else if (ObjCImplementationDecl *IMPDecl =
10521                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10522      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10523      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10524        // Ivar declared in @implementation never belongs to the implementation.
10525        // Only it is in implementation's lexical context.
10526        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10527      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10528      IMPDecl->setIvarLBraceLoc(LBrac);
10529      IMPDecl->setIvarRBraceLoc(RBrac);
10530    } else if (ObjCCategoryDecl *CDecl =
10531                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10532      // case of ivars in class extension; all other cases have been
10533      // reported as errors elsewhere.
10534      // FIXME. Class extension does not have a LocEnd field.
10535      // CDecl->setLocEnd(RBrac);
10536      // Add ivar's to class extension's DeclContext.
10537      // Diagnose redeclaration of private ivars.
10538      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10539      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10540        if (IDecl) {
10541          if (const ObjCIvarDecl *ClsIvar =
10542              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10543            Diag(ClsFields[i]->getLocation(),
10544                 diag::err_duplicate_ivar_declaration);
10545            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10546            continue;
10547          }
10548          for (ObjCInterfaceDecl::known_extensions_iterator
10549                 Ext = IDecl->known_extensions_begin(),
10550                 ExtEnd = IDecl->known_extensions_end();
10551               Ext != ExtEnd; ++Ext) {
10552            if (const ObjCIvarDecl *ClsExtIvar
10553                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
10554              Diag(ClsFields[i]->getLocation(),
10555                   diag::err_duplicate_ivar_declaration);
10556              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10557              continue;
10558            }
10559          }
10560        }
10561        ClsFields[i]->setLexicalDeclContext(CDecl);
10562        CDecl->addDecl(ClsFields[i]);
10563      }
10564      CDecl->setIvarLBraceLoc(LBrac);
10565      CDecl->setIvarRBraceLoc(RBrac);
10566    }
10567  }
10568
10569  if (Attr)
10570    ProcessDeclAttributeList(S, Record, Attr);
10571}
10572
10573/// \brief Determine whether the given integral value is representable within
10574/// the given type T.
10575static bool isRepresentableIntegerValue(ASTContext &Context,
10576                                        llvm::APSInt &Value,
10577                                        QualType T) {
10578  assert(T->isIntegralType(Context) && "Integral type required!");
10579  unsigned BitWidth = Context.getIntWidth(T);
10580
10581  if (Value.isUnsigned() || Value.isNonNegative()) {
10582    if (T->isSignedIntegerOrEnumerationType())
10583      --BitWidth;
10584    return Value.getActiveBits() <= BitWidth;
10585  }
10586  return Value.getMinSignedBits() <= BitWidth;
10587}
10588
10589// \brief Given an integral type, return the next larger integral type
10590// (or a NULL type of no such type exists).
10591static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10592  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10593  // enum checking below.
10594  assert(T->isIntegralType(Context) && "Integral type required!");
10595  const unsigned NumTypes = 4;
10596  QualType SignedIntegralTypes[NumTypes] = {
10597    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10598  };
10599  QualType UnsignedIntegralTypes[NumTypes] = {
10600    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10601    Context.UnsignedLongLongTy
10602  };
10603
10604  unsigned BitWidth = Context.getTypeSize(T);
10605  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10606                                                        : UnsignedIntegralTypes;
10607  for (unsigned I = 0; I != NumTypes; ++I)
10608    if (Context.getTypeSize(Types[I]) > BitWidth)
10609      return Types[I];
10610
10611  return QualType();
10612}
10613
10614EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10615                                          EnumConstantDecl *LastEnumConst,
10616                                          SourceLocation IdLoc,
10617                                          IdentifierInfo *Id,
10618                                          Expr *Val) {
10619  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10620  llvm::APSInt EnumVal(IntWidth);
10621  QualType EltTy;
10622
10623  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10624    Val = 0;
10625
10626  if (Val)
10627    Val = DefaultLvalueConversion(Val).take();
10628
10629  if (Val) {
10630    if (Enum->isDependentType() || Val->isTypeDependent())
10631      EltTy = Context.DependentTy;
10632    else {
10633      SourceLocation ExpLoc;
10634      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
10635          !getLangOpts().MicrosoftMode) {
10636        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10637        // constant-expression in the enumerator-definition shall be a converted
10638        // constant expression of the underlying type.
10639        EltTy = Enum->getIntegerType();
10640        ExprResult Converted =
10641          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10642                                           CCEK_Enumerator);
10643        if (Converted.isInvalid())
10644          Val = 0;
10645        else
10646          Val = Converted.take();
10647      } else if (!Val->isValueDependent() &&
10648                 !(Val = VerifyIntegerConstantExpression(Val,
10649                                                         &EnumVal).take())) {
10650        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10651      } else {
10652        if (Enum->isFixed()) {
10653          EltTy = Enum->getIntegerType();
10654
10655          // In Obj-C and Microsoft mode, require the enumeration value to be
10656          // representable in the underlying type of the enumeration. In C++11,
10657          // we perform a non-narrowing conversion as part of converted constant
10658          // expression checking.
10659          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10660            if (getLangOpts().MicrosoftMode) {
10661              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10662              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10663            } else
10664              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10665          } else
10666            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10667        } else if (getLangOpts().CPlusPlus) {
10668          // C++11 [dcl.enum]p5:
10669          //   If the underlying type is not fixed, the type of each enumerator
10670          //   is the type of its initializing value:
10671          //     - If an initializer is specified for an enumerator, the
10672          //       initializing value has the same type as the expression.
10673          EltTy = Val->getType();
10674        } else {
10675          // C99 6.7.2.2p2:
10676          //   The expression that defines the value of an enumeration constant
10677          //   shall be an integer constant expression that has a value
10678          //   representable as an int.
10679
10680          // Complain if the value is not representable in an int.
10681          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10682            Diag(IdLoc, diag::ext_enum_value_not_int)
10683              << EnumVal.toString(10) << Val->getSourceRange()
10684              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10685          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10686            // Force the type of the expression to 'int'.
10687            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10688          }
10689          EltTy = Val->getType();
10690        }
10691      }
10692    }
10693  }
10694
10695  if (!Val) {
10696    if (Enum->isDependentType())
10697      EltTy = Context.DependentTy;
10698    else if (!LastEnumConst) {
10699      // C++0x [dcl.enum]p5:
10700      //   If the underlying type is not fixed, the type of each enumerator
10701      //   is the type of its initializing value:
10702      //     - If no initializer is specified for the first enumerator, the
10703      //       initializing value has an unspecified integral type.
10704      //
10705      // GCC uses 'int' for its unspecified integral type, as does
10706      // C99 6.7.2.2p3.
10707      if (Enum->isFixed()) {
10708        EltTy = Enum->getIntegerType();
10709      }
10710      else {
10711        EltTy = Context.IntTy;
10712      }
10713    } else {
10714      // Assign the last value + 1.
10715      EnumVal = LastEnumConst->getInitVal();
10716      ++EnumVal;
10717      EltTy = LastEnumConst->getType();
10718
10719      // Check for overflow on increment.
10720      if (EnumVal < LastEnumConst->getInitVal()) {
10721        // C++0x [dcl.enum]p5:
10722        //   If the underlying type is not fixed, the type of each enumerator
10723        //   is the type of its initializing value:
10724        //
10725        //     - Otherwise the type of the initializing value is the same as
10726        //       the type of the initializing value of the preceding enumerator
10727        //       unless the incremented value is not representable in that type,
10728        //       in which case the type is an unspecified integral type
10729        //       sufficient to contain the incremented value. If no such type
10730        //       exists, the program is ill-formed.
10731        QualType T = getNextLargerIntegralType(Context, EltTy);
10732        if (T.isNull() || Enum->isFixed()) {
10733          // There is no integral type larger enough to represent this
10734          // value. Complain, then allow the value to wrap around.
10735          EnumVal = LastEnumConst->getInitVal();
10736          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10737          ++EnumVal;
10738          if (Enum->isFixed())
10739            // When the underlying type is fixed, this is ill-formed.
10740            Diag(IdLoc, diag::err_enumerator_wrapped)
10741              << EnumVal.toString(10)
10742              << EltTy;
10743          else
10744            Diag(IdLoc, diag::warn_enumerator_too_large)
10745              << EnumVal.toString(10);
10746        } else {
10747          EltTy = T;
10748        }
10749
10750        // Retrieve the last enumerator's value, extent that type to the
10751        // type that is supposed to be large enough to represent the incremented
10752        // value, then increment.
10753        EnumVal = LastEnumConst->getInitVal();
10754        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10755        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10756        ++EnumVal;
10757
10758        // If we're not in C++, diagnose the overflow of enumerator values,
10759        // which in C99 means that the enumerator value is not representable in
10760        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10761        // permits enumerator values that are representable in some larger
10762        // integral type.
10763        if (!getLangOpts().CPlusPlus && !T.isNull())
10764          Diag(IdLoc, diag::warn_enum_value_overflow);
10765      } else if (!getLangOpts().CPlusPlus &&
10766                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10767        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10768        Diag(IdLoc, diag::ext_enum_value_not_int)
10769          << EnumVal.toString(10) << 1;
10770      }
10771    }
10772  }
10773
10774  if (!EltTy->isDependentType()) {
10775    // Make the enumerator value match the signedness and size of the
10776    // enumerator's type.
10777    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10778    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10779  }
10780
10781  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10782                                  Val, EnumVal);
10783}
10784
10785
10786Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10787                              SourceLocation IdLoc, IdentifierInfo *Id,
10788                              AttributeList *Attr,
10789                              SourceLocation EqualLoc, Expr *Val) {
10790  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10791  EnumConstantDecl *LastEnumConst =
10792    cast_or_null<EnumConstantDecl>(lastEnumConst);
10793
10794  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10795  // we find one that is.
10796  S = getNonFieldDeclScope(S);
10797
10798  // Verify that there isn't already something declared with this name in this
10799  // scope.
10800  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10801                                         ForRedeclaration);
10802  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10803    // Maybe we will complain about the shadowed template parameter.
10804    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10805    // Just pretend that we didn't see the previous declaration.
10806    PrevDecl = 0;
10807  }
10808
10809  if (PrevDecl) {
10810    // When in C++, we may get a TagDecl with the same name; in this case the
10811    // enum constant will 'hide' the tag.
10812    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10813           "Received TagDecl when not in C++!");
10814    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10815      if (isa<EnumConstantDecl>(PrevDecl))
10816        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10817      else
10818        Diag(IdLoc, diag::err_redefinition) << Id;
10819      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10820      return 0;
10821    }
10822  }
10823
10824  // C++ [class.mem]p15:
10825  // If T is the name of a class, then each of the following shall have a name
10826  // different from T:
10827  // - every enumerator of every member of class T that is an unscoped
10828  // enumerated type
10829  if (CXXRecordDecl *Record
10830                      = dyn_cast<CXXRecordDecl>(
10831                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10832    if (!TheEnumDecl->isScoped() &&
10833        Record->getIdentifier() && Record->getIdentifier() == Id)
10834      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10835
10836  EnumConstantDecl *New =
10837    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10838
10839  if (New) {
10840    // Process attributes.
10841    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10842
10843    // Register this decl in the current scope stack.
10844    New->setAccess(TheEnumDecl->getAccess());
10845    PushOnScopeChains(New, S);
10846  }
10847
10848  ActOnDocumentableDecl(New);
10849
10850  return New;
10851}
10852
10853// Returns true when the enum initial expression does not trigger the
10854// duplicate enum warning.  A few common cases are exempted as follows:
10855// Element2 = Element1
10856// Element2 = Element1 + 1
10857// Element2 = Element1 - 1
10858// Where Element2 and Element1 are from the same enum.
10859static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10860  Expr *InitExpr = ECD->getInitExpr();
10861  if (!InitExpr)
10862    return true;
10863  InitExpr = InitExpr->IgnoreImpCasts();
10864
10865  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10866    if (!BO->isAdditiveOp())
10867      return true;
10868    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10869    if (!IL)
10870      return true;
10871    if (IL->getValue() != 1)
10872      return true;
10873
10874    InitExpr = BO->getLHS();
10875  }
10876
10877  // This checks if the elements are from the same enum.
10878  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10879  if (!DRE)
10880    return true;
10881
10882  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10883  if (!EnumConstant)
10884    return true;
10885
10886  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10887      Enum)
10888    return true;
10889
10890  return false;
10891}
10892
10893struct DupKey {
10894  int64_t val;
10895  bool isTombstoneOrEmptyKey;
10896  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10897    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10898};
10899
10900static DupKey GetDupKey(const llvm::APSInt& Val) {
10901  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10902                false);
10903}
10904
10905struct DenseMapInfoDupKey {
10906  static DupKey getEmptyKey() { return DupKey(0, true); }
10907  static DupKey getTombstoneKey() { return DupKey(1, true); }
10908  static unsigned getHashValue(const DupKey Key) {
10909    return (unsigned)(Key.val * 37);
10910  }
10911  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10912    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10913           LHS.val == RHS.val;
10914  }
10915};
10916
10917// Emits a warning when an element is implicitly set a value that
10918// a previous element has already been set to.
10919static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10920                                        unsigned NumElements, EnumDecl *Enum,
10921                                        QualType EnumType) {
10922  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10923                                 Enum->getLocation()) ==
10924      DiagnosticsEngine::Ignored)
10925    return;
10926  // Avoid anonymous enums
10927  if (!Enum->getIdentifier())
10928    return;
10929
10930  // Only check for small enums.
10931  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10932    return;
10933
10934  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
10935  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
10936
10937  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10938  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10939          ValueToVectorMap;
10940
10941  DuplicatesVector DupVector;
10942  ValueToVectorMap EnumMap;
10943
10944  // Populate the EnumMap with all values represented by enum constants without
10945  // an initialier.
10946  for (unsigned i = 0; i < NumElements; ++i) {
10947    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10948
10949    // Null EnumConstantDecl means a previous diagnostic has been emitted for
10950    // this constant.  Skip this enum since it may be ill-formed.
10951    if (!ECD) {
10952      return;
10953    }
10954
10955    if (ECD->getInitExpr())
10956      continue;
10957
10958    DupKey Key = GetDupKey(ECD->getInitVal());
10959    DeclOrVector &Entry = EnumMap[Key];
10960
10961    // First time encountering this value.
10962    if (Entry.isNull())
10963      Entry = ECD;
10964  }
10965
10966  // Create vectors for any values that has duplicates.
10967  for (unsigned i = 0; i < NumElements; ++i) {
10968    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10969    if (!ValidDuplicateEnum(ECD, Enum))
10970      continue;
10971
10972    DupKey Key = GetDupKey(ECD->getInitVal());
10973
10974    DeclOrVector& Entry = EnumMap[Key];
10975    if (Entry.isNull())
10976      continue;
10977
10978    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10979      // Ensure constants are different.
10980      if (D == ECD)
10981        continue;
10982
10983      // Create new vector and push values onto it.
10984      ECDVector *Vec = new ECDVector();
10985      Vec->push_back(D);
10986      Vec->push_back(ECD);
10987
10988      // Update entry to point to the duplicates vector.
10989      Entry = Vec;
10990
10991      // Store the vector somewhere we can consult later for quick emission of
10992      // diagnostics.
10993      DupVector.push_back(Vec);
10994      continue;
10995    }
10996
10997    ECDVector *Vec = Entry.get<ECDVector*>();
10998    // Make sure constants are not added more than once.
10999    if (*Vec->begin() == ECD)
11000      continue;
11001
11002    Vec->push_back(ECD);
11003  }
11004
11005  // Emit diagnostics.
11006  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11007                                  DupVectorEnd = DupVector.end();
11008       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11009    ECDVector *Vec = *DupVectorIter;
11010    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11011
11012    // Emit warning for one enum constant.
11013    ECDVector::iterator I = Vec->begin();
11014    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11015      << (*I)->getName() << (*I)->getInitVal().toString(10)
11016      << (*I)->getSourceRange();
11017    ++I;
11018
11019    // Emit one note for each of the remaining enum constants with
11020    // the same value.
11021    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11022      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11023        << (*I)->getName() << (*I)->getInitVal().toString(10)
11024        << (*I)->getSourceRange();
11025    delete Vec;
11026  }
11027}
11028
11029void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11030                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11031                         Decl **Elements, unsigned NumElements,
11032                         Scope *S, AttributeList *Attr) {
11033  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11034  QualType EnumType = Context.getTypeDeclType(Enum);
11035
11036  if (Attr)
11037    ProcessDeclAttributeList(S, Enum, Attr);
11038
11039  if (Enum->isDependentType()) {
11040    for (unsigned i = 0; i != NumElements; ++i) {
11041      EnumConstantDecl *ECD =
11042        cast_or_null<EnumConstantDecl>(Elements[i]);
11043      if (!ECD) continue;
11044
11045      ECD->setType(EnumType);
11046    }
11047
11048    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11049    return;
11050  }
11051
11052  // TODO: If the result value doesn't fit in an int, it must be a long or long
11053  // long value.  ISO C does not support this, but GCC does as an extension,
11054  // emit a warning.
11055  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11056  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11057  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11058
11059  // Verify that all the values are okay, compute the size of the values, and
11060  // reverse the list.
11061  unsigned NumNegativeBits = 0;
11062  unsigned NumPositiveBits = 0;
11063
11064  // Keep track of whether all elements have type int.
11065  bool AllElementsInt = true;
11066
11067  for (unsigned i = 0; i != NumElements; ++i) {
11068    EnumConstantDecl *ECD =
11069      cast_or_null<EnumConstantDecl>(Elements[i]);
11070    if (!ECD) continue;  // Already issued a diagnostic.
11071
11072    const llvm::APSInt &InitVal = ECD->getInitVal();
11073
11074    // Keep track of the size of positive and negative values.
11075    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11076      NumPositiveBits = std::max(NumPositiveBits,
11077                                 (unsigned)InitVal.getActiveBits());
11078    else
11079      NumNegativeBits = std::max(NumNegativeBits,
11080                                 (unsigned)InitVal.getMinSignedBits());
11081
11082    // Keep track of whether every enum element has type int (very commmon).
11083    if (AllElementsInt)
11084      AllElementsInt = ECD->getType() == Context.IntTy;
11085  }
11086
11087  // Figure out the type that should be used for this enum.
11088  QualType BestType;
11089  unsigned BestWidth;
11090
11091  // C++0x N3000 [conv.prom]p3:
11092  //   An rvalue of an unscoped enumeration type whose underlying
11093  //   type is not fixed can be converted to an rvalue of the first
11094  //   of the following types that can represent all the values of
11095  //   the enumeration: int, unsigned int, long int, unsigned long
11096  //   int, long long int, or unsigned long long int.
11097  // C99 6.4.4.3p2:
11098  //   An identifier declared as an enumeration constant has type int.
11099  // The C99 rule is modified by a gcc extension
11100  QualType BestPromotionType;
11101
11102  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11103  // -fshort-enums is the equivalent to specifying the packed attribute on all
11104  // enum definitions.
11105  if (LangOpts.ShortEnums)
11106    Packed = true;
11107
11108  if (Enum->isFixed()) {
11109    BestType = Enum->getIntegerType();
11110    if (BestType->isPromotableIntegerType())
11111      BestPromotionType = Context.getPromotedIntegerType(BestType);
11112    else
11113      BestPromotionType = BestType;
11114    // We don't need to set BestWidth, because BestType is going to be the type
11115    // of the enumerators, but we do anyway because otherwise some compilers
11116    // warn that it might be used uninitialized.
11117    BestWidth = CharWidth;
11118  }
11119  else if (NumNegativeBits) {
11120    // If there is a negative value, figure out the smallest integer type (of
11121    // int/long/longlong) that fits.
11122    // If it's packed, check also if it fits a char or a short.
11123    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11124      BestType = Context.SignedCharTy;
11125      BestWidth = CharWidth;
11126    } else if (Packed && NumNegativeBits <= ShortWidth &&
11127               NumPositiveBits < ShortWidth) {
11128      BestType = Context.ShortTy;
11129      BestWidth = ShortWidth;
11130    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11131      BestType = Context.IntTy;
11132      BestWidth = IntWidth;
11133    } else {
11134      BestWidth = Context.getTargetInfo().getLongWidth();
11135
11136      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11137        BestType = Context.LongTy;
11138      } else {
11139        BestWidth = Context.getTargetInfo().getLongLongWidth();
11140
11141        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11142          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11143        BestType = Context.LongLongTy;
11144      }
11145    }
11146    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11147  } else {
11148    // If there is no negative value, figure out the smallest type that fits
11149    // all of the enumerator values.
11150    // If it's packed, check also if it fits a char or a short.
11151    if (Packed && NumPositiveBits <= CharWidth) {
11152      BestType = Context.UnsignedCharTy;
11153      BestPromotionType = Context.IntTy;
11154      BestWidth = CharWidth;
11155    } else if (Packed && NumPositiveBits <= ShortWidth) {
11156      BestType = Context.UnsignedShortTy;
11157      BestPromotionType = Context.IntTy;
11158      BestWidth = ShortWidth;
11159    } else if (NumPositiveBits <= IntWidth) {
11160      BestType = Context.UnsignedIntTy;
11161      BestWidth = IntWidth;
11162      BestPromotionType
11163        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11164                           ? Context.UnsignedIntTy : Context.IntTy;
11165    } else if (NumPositiveBits <=
11166               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11167      BestType = Context.UnsignedLongTy;
11168      BestPromotionType
11169        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11170                           ? Context.UnsignedLongTy : Context.LongTy;
11171    } else {
11172      BestWidth = Context.getTargetInfo().getLongLongWidth();
11173      assert(NumPositiveBits <= BestWidth &&
11174             "How could an initializer get larger than ULL?");
11175      BestType = Context.UnsignedLongLongTy;
11176      BestPromotionType
11177        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11178                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11179    }
11180  }
11181
11182  // Loop over all of the enumerator constants, changing their types to match
11183  // the type of the enum if needed.
11184  for (unsigned i = 0; i != NumElements; ++i) {
11185    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11186    if (!ECD) continue;  // Already issued a diagnostic.
11187
11188    // Standard C says the enumerators have int type, but we allow, as an
11189    // extension, the enumerators to be larger than int size.  If each
11190    // enumerator value fits in an int, type it as an int, otherwise type it the
11191    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11192    // that X has type 'int', not 'unsigned'.
11193
11194    // Determine whether the value fits into an int.
11195    llvm::APSInt InitVal = ECD->getInitVal();
11196
11197    // If it fits into an integer type, force it.  Otherwise force it to match
11198    // the enum decl type.
11199    QualType NewTy;
11200    unsigned NewWidth;
11201    bool NewSign;
11202    if (!getLangOpts().CPlusPlus &&
11203        !Enum->isFixed() &&
11204        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11205      NewTy = Context.IntTy;
11206      NewWidth = IntWidth;
11207      NewSign = true;
11208    } else if (ECD->getType() == BestType) {
11209      // Already the right type!
11210      if (getLangOpts().CPlusPlus)
11211        // C++ [dcl.enum]p4: Following the closing brace of an
11212        // enum-specifier, each enumerator has the type of its
11213        // enumeration.
11214        ECD->setType(EnumType);
11215      continue;
11216    } else {
11217      NewTy = BestType;
11218      NewWidth = BestWidth;
11219      NewSign = BestType->isSignedIntegerOrEnumerationType();
11220    }
11221
11222    // Adjust the APSInt value.
11223    InitVal = InitVal.extOrTrunc(NewWidth);
11224    InitVal.setIsSigned(NewSign);
11225    ECD->setInitVal(InitVal);
11226
11227    // Adjust the Expr initializer and type.
11228    if (ECD->getInitExpr() &&
11229        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11230      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11231                                                CK_IntegralCast,
11232                                                ECD->getInitExpr(),
11233                                                /*base paths*/ 0,
11234                                                VK_RValue));
11235    if (getLangOpts().CPlusPlus)
11236      // C++ [dcl.enum]p4: Following the closing brace of an
11237      // enum-specifier, each enumerator has the type of its
11238      // enumeration.
11239      ECD->setType(EnumType);
11240    else
11241      ECD->setType(NewTy);
11242  }
11243
11244  Enum->completeDefinition(BestType, BestPromotionType,
11245                           NumPositiveBits, NumNegativeBits);
11246
11247  // If we're declaring a function, ensure this decl isn't forgotten about -
11248  // it needs to go into the function scope.
11249  if (InFunctionDeclarator)
11250    DeclsInPrototypeScope.push_back(Enum);
11251
11252  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11253}
11254
11255Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11256                                  SourceLocation StartLoc,
11257                                  SourceLocation EndLoc) {
11258  StringLiteral *AsmString = cast<StringLiteral>(expr);
11259
11260  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11261                                                   AsmString, StartLoc,
11262                                                   EndLoc);
11263  CurContext->addDecl(New);
11264  return New;
11265}
11266
11267DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11268                                   SourceLocation ImportLoc,
11269                                   ModuleIdPath Path) {
11270  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11271                                                Module::AllVisible,
11272                                                /*IsIncludeDirective=*/false);
11273  if (!Mod)
11274    return true;
11275
11276  SmallVector<SourceLocation, 2> IdentifierLocs;
11277  Module *ModCheck = Mod;
11278  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11279    // If we've run out of module parents, just drop the remaining identifiers.
11280    // We need the length to be consistent.
11281    if (!ModCheck)
11282      break;
11283    ModCheck = ModCheck->Parent;
11284
11285    IdentifierLocs.push_back(Path[I].second);
11286  }
11287
11288  ImportDecl *Import = ImportDecl::Create(Context,
11289                                          Context.getTranslationUnitDecl(),
11290                                          AtLoc.isValid()? AtLoc : ImportLoc,
11291                                          Mod, IdentifierLocs);
11292  Context.getTranslationUnitDecl()->addDecl(Import);
11293  return Import;
11294}
11295
11296void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11297  // Create the implicit import declaration.
11298  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11299  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11300                                                   Loc, Mod, Loc);
11301  TU->addDecl(ImportD);
11302  Consumer.HandleImplicitImportDecl(ImportD);
11303
11304  // Make the module visible.
11305  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible);
11306}
11307
11308void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11309                                      IdentifierInfo* AliasName,
11310                                      SourceLocation PragmaLoc,
11311                                      SourceLocation NameLoc,
11312                                      SourceLocation AliasNameLoc) {
11313  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11314                                    LookupOrdinaryName);
11315  AsmLabelAttr *Attr =
11316     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11317
11318  if (PrevDecl)
11319    PrevDecl->addAttr(Attr);
11320  else
11321    (void)ExtnameUndeclaredIdentifiers.insert(
11322      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11323}
11324
11325void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11326                             SourceLocation PragmaLoc,
11327                             SourceLocation NameLoc) {
11328  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11329
11330  if (PrevDecl) {
11331    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11332  } else {
11333    (void)WeakUndeclaredIdentifiers.insert(
11334      std::pair<IdentifierInfo*,WeakInfo>
11335        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11336  }
11337}
11338
11339void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11340                                IdentifierInfo* AliasName,
11341                                SourceLocation PragmaLoc,
11342                                SourceLocation NameLoc,
11343                                SourceLocation AliasNameLoc) {
11344  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11345                                    LookupOrdinaryName);
11346  WeakInfo W = WeakInfo(Name, NameLoc);
11347
11348  if (PrevDecl) {
11349    if (!PrevDecl->hasAttr<AliasAttr>())
11350      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11351        DeclApplyPragmaWeak(TUScope, ND, W);
11352  } else {
11353    (void)WeakUndeclaredIdentifiers.insert(
11354      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11355  }
11356}
11357
11358Decl *Sema::getObjCDeclContext() const {
11359  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11360}
11361
11362AvailabilityResult Sema::getCurContextAvailability() const {
11363  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11364  return D->getAvailability();
11365}
11366