SemaDecl.cpp revision f3f8d2a52ebc0acbe6269a0302f90c21668e2404
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/Triple.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName,
67                                TypeTy *ObjectTypePtr) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isSet()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return 0;
90
91        // We know from the grammar that this name refers to a type, so build a
92        // TypenameType node to describe the type.
93        // FIXME: Record somewhere that this TypenameType node has no "typename"
94        // keyword associated with it.
95        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
96                                 II, SS->getRange()).getAsOpaquePtr();
97      }
98
99      return 0;
100    }
101
102    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    // C++ [temp.local]p2:
192    //   Within the scope of a class template specialization or
193    //   partial specialization, when the injected-class-name is
194    //   not followed by a <, it is equivalent to the
195    //   injected-class-name followed by the template-argument s
196    //   of the class template specialization or partial
197    //   specialization enclosed in <>.
198    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
199      if (RD->isInjectedClassName())
200        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
201          T = Template->getInjectedClassNameType(Context);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS)
207      T = getQualifiedNameType(*SS, T);
208
209  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
210    T = Context.getObjCInterfaceType(IDecl);
211  } else if (UnresolvedUsingTypenameDecl *UUDecl =
212               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
213    // FIXME: preserve source structure information.
214    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
215  } else {
216    // If it's not plausibly a type, suppress diagnostics.
217    Result.suppressDiagnostics();
218    return 0;
219  }
220
221  return T.getAsOpaquePtr();
222}
223
224/// isTagName() - This method is called *for error recovery purposes only*
225/// to determine if the specified name is a valid tag name ("struct foo").  If
226/// so, this returns the TST for the tag corresponding to it (TST_enum,
227/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
228/// where the user forgot to specify the tag.
229DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
230  // Do a tag name lookup in this scope.
231  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
232  LookupName(R, S, false);
233  R.suppressDiagnostics();
234  if (R.getResultKind() == LookupResult::Found)
235    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
236      switch (TD->getTagKind()) {
237      case TagDecl::TK_struct: return DeclSpec::TST_struct;
238      case TagDecl::TK_union:  return DeclSpec::TST_union;
239      case TagDecl::TK_class:  return DeclSpec::TST_class;
240      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
241      }
242    }
243
244  return DeclSpec::TST_unspecified;
245}
246
247bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
248                                   SourceLocation IILoc,
249                                   Scope *S,
250                                   const CXXScopeSpec *SS,
251                                   TypeTy *&SuggestedType) {
252  // We don't have anything to suggest (yet).
253  SuggestedType = 0;
254
255  // There may have been a typo in the name of the type. Look up typo
256  // results, in case we have something that we can suggest.
257  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
258                      NotForRedeclaration);
259
260  // FIXME: It would be nice if we could correct for typos in built-in
261  // names, such as "itn" for "int".
262
263  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
264    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
265    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
266        !Result->isInvalidDecl()) {
267      // We found a similarly-named type or interface; suggest that.
268      if (!SS || !SS->isSet())
269        Diag(IILoc, diag::err_unknown_typename_suggest)
270          << &II << Lookup.getLookupName()
271          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
272                                                     Result->getNameAsString());
273      else if (DeclContext *DC = computeDeclContext(*SS, false))
274        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
275          << &II << DC << Lookup.getLookupName() << SS->getRange()
276          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
277                                                     Result->getNameAsString());
278      else
279        llvm_unreachable("could not have corrected a typo here");
280
281      Diag(Result->getLocation(), diag::note_previous_decl)
282        << Result->getDeclName();
283
284      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
285      return true;
286    }
287  }
288
289  // FIXME: Should we move the logic that tries to recover from a missing tag
290  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
291
292  if (!SS || (!SS->isSet() && !SS->isInvalid()))
293    Diag(IILoc, diag::err_unknown_typename) << &II;
294  else if (DeclContext *DC = computeDeclContext(*SS, false))
295    Diag(IILoc, diag::err_typename_nested_not_found)
296      << &II << DC << SS->getRange();
297  else if (isDependentScopeSpecifier(*SS)) {
298    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
299      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
300      << SourceRange(SS->getRange().getBegin(), IILoc)
301      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
302                                               "typename ");
303    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
304  } else {
305    assert(SS && SS->isInvalid() &&
306           "Invalid scope specifier has already been diagnosed");
307  }
308
309  return true;
310}
311
312// Determines the context to return to after temporarily entering a
313// context.  This depends in an unnecessarily complicated way on the
314// exact ordering of callbacks from the parser.
315DeclContext *Sema::getContainingDC(DeclContext *DC) {
316
317  // Functions defined inline within classes aren't parsed until we've
318  // finished parsing the top-level class, so the top-level class is
319  // the context we'll need to return to.
320  if (isa<FunctionDecl>(DC)) {
321    DC = DC->getLexicalParent();
322
323    // A function not defined within a class will always return to its
324    // lexical context.
325    if (!isa<CXXRecordDecl>(DC))
326      return DC;
327
328    // A C++ inline method/friend is parsed *after* the topmost class
329    // it was declared in is fully parsed ("complete");  the topmost
330    // class is the context we need to return to.
331    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
332      DC = RD;
333
334    // Return the declaration context of the topmost class the inline method is
335    // declared in.
336    return DC;
337  }
338
339  if (isa<ObjCMethodDecl>(DC))
340    return Context.getTranslationUnitDecl();
341
342  return DC->getLexicalParent();
343}
344
345void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
346  assert(getContainingDC(DC) == CurContext &&
347      "The next DeclContext should be lexically contained in the current one.");
348  CurContext = DC;
349  S->setEntity(DC);
350}
351
352void Sema::PopDeclContext() {
353  assert(CurContext && "DeclContext imbalance!");
354
355  CurContext = getContainingDC(CurContext);
356}
357
358/// EnterDeclaratorContext - Used when we must lookup names in the context
359/// of a declarator's nested name specifier.
360///
361void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
362  // C++0x [basic.lookup.unqual]p13:
363  //   A name used in the definition of a static data member of class
364  //   X (after the qualified-id of the static member) is looked up as
365  //   if the name was used in a member function of X.
366  // C++0x [basic.lookup.unqual]p14:
367  //   If a variable member of a namespace is defined outside of the
368  //   scope of its namespace then any name used in the definition of
369  //   the variable member (after the declarator-id) is looked up as
370  //   if the definition of the variable member occurred in its
371  //   namespace.
372  // Both of these imply that we should push a scope whose context
373  // is the semantic context of the declaration.  We can't use
374  // PushDeclContext here because that context is not necessarily
375  // lexically contained in the current context.  Fortunately,
376  // the containing scope should have the appropriate information.
377
378  assert(!S->getEntity() && "scope already has entity");
379
380#ifndef NDEBUG
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
384#endif
385
386  CurContext = DC;
387  S->setEntity(DC);
388}
389
390void Sema::ExitDeclaratorContext(Scope *S) {
391  assert(S->getEntity() == CurContext && "Context imbalance!");
392
393  // Switch back to the lexical context.  The safety of this is
394  // enforced by an assert in EnterDeclaratorContext.
395  Scope *Ancestor = S->getParent();
396  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
397  CurContext = (DeclContext*) Ancestor->getEntity();
398
399  // We don't need to do anything with the scope, which is going to
400  // disappear.
401}
402
403/// \brief Determine whether we allow overloading of the function
404/// PrevDecl with another declaration.
405///
406/// This routine determines whether overloading is possible, not
407/// whether some new function is actually an overload. It will return
408/// true in C++ (where we can always provide overloads) or, as an
409/// extension, in C when the previous function is already an
410/// overloaded function declaration or has the "overloadable"
411/// attribute.
412static bool AllowOverloadingOfFunction(LookupResult &Previous,
413                                       ASTContext &Context) {
414  if (Context.getLangOptions().CPlusPlus)
415    return true;
416
417  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
418    return true;
419
420  return (Previous.getResultKind() == LookupResult::Found
421          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
422}
423
424/// Add this decl to the scope shadowed decl chains.
425void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
426  // Move up the scope chain until we find the nearest enclosing
427  // non-transparent context. The declaration will be introduced into this
428  // scope.
429  while (S->getEntity() &&
430         ((DeclContext *)S->getEntity())->isTransparentContext())
431    S = S->getParent();
432
433  // Add scoped declarations into their context, so that they can be
434  // found later. Declarations without a context won't be inserted
435  // into any context.
436  if (AddToContext)
437    CurContext->addDecl(D);
438
439  // Out-of-line function and variable definitions should not be pushed into
440  // scope.
441  if ((isa<FunctionTemplateDecl>(D) &&
442       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
443      (isa<FunctionDecl>(D) &&
444       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
445        cast<FunctionDecl>(D)->isOutOfLine())) ||
446      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
447    return;
448
449  // If this replaces anything in the current scope,
450  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
451                               IEnd = IdResolver.end();
452  for (; I != IEnd; ++I) {
453    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
454      S->RemoveDecl(DeclPtrTy::make(*I));
455      IdResolver.RemoveDecl(*I);
456
457      // Should only need to replace one decl.
458      break;
459    }
460  }
461
462  S->AddDecl(DeclPtrTy::make(D));
463  IdResolver.AddDecl(D);
464}
465
466bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
467  return IdResolver.isDeclInScope(D, Ctx, Context, S);
468}
469
470static bool isOutOfScopePreviousDeclaration(NamedDecl *,
471                                            DeclContext*,
472                                            ASTContext&);
473
474/// Filters out lookup results that don't fall within the given scope
475/// as determined by isDeclInScope.
476static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
477                                 DeclContext *Ctx, Scope *S,
478                                 bool ConsiderLinkage) {
479  LookupResult::Filter F = R.makeFilter();
480  while (F.hasNext()) {
481    NamedDecl *D = F.next();
482
483    if (SemaRef.isDeclInScope(D, Ctx, S))
484      continue;
485
486    if (ConsiderLinkage &&
487        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
488      continue;
489
490    F.erase();
491  }
492
493  F.done();
494}
495
496static bool isUsingDecl(NamedDecl *D) {
497  return isa<UsingShadowDecl>(D) ||
498         isa<UnresolvedUsingTypenameDecl>(D) ||
499         isa<UnresolvedUsingValueDecl>(D);
500}
501
502/// Removes using shadow declarations from the lookup results.
503static void RemoveUsingDecls(LookupResult &R) {
504  LookupResult::Filter F = R.makeFilter();
505  while (F.hasNext())
506    if (isUsingDecl(F.next()))
507      F.erase();
508
509  F.done();
510}
511
512static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
513  if (D->isInvalidDecl())
514    return false;
515
516  if (D->isUsed() || D->hasAttr<UnusedAttr>())
517    return false;
518
519  // White-list anything that isn't a local variable.
520  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
521      !D->getDeclContext()->isFunctionOrMethod())
522    return false;
523
524  // Types of valid local variables should be complete, so this should succeed.
525  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
526    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
527      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
528        if (!RD->hasTrivialConstructor())
529          return false;
530        if (!RD->hasTrivialDestructor())
531          return false;
532      }
533    }
534  }
535
536  return true;
537}
538
539void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
540  if (S->decl_empty()) return;
541  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
542         "Scope shouldn't contain decls!");
543
544  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
545       I != E; ++I) {
546    Decl *TmpD = (*I).getAs<Decl>();
547    assert(TmpD && "This decl didn't get pushed??");
548
549    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
550    NamedDecl *D = cast<NamedDecl>(TmpD);
551
552    if (!D->getDeclName()) continue;
553
554    // Diagnose unused variables in this scope.
555    if (ShouldDiagnoseUnusedDecl(D))
556      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
557
558    // Remove this name from our lexical scope.
559    IdResolver.RemoveDecl(D);
560  }
561}
562
563/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
564/// return 0 if one not found.
565///
566/// \param Id the name of the Objective-C class we're looking for. If
567/// typo-correction fixes this name, the Id will be updated
568/// to the fixed name.
569///
570/// \param RecoverLoc if provided, this routine will attempt to
571/// recover from a typo in the name of an existing Objective-C class
572/// and, if successful, will return the lookup that results from
573/// typo-correction.
574ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
575                                              SourceLocation RecoverLoc) {
576  // The third "scope" argument is 0 since we aren't enabling lazy built-in
577  // creation from this context.
578  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
579
580  if (!IDecl && !RecoverLoc.isInvalid()) {
581    // Perform typo correction at the given location, but only if we
582    // find an Objective-C class name.
583    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
584    if (CorrectTypo(R, TUScope, 0) &&
585        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
586      Diag(RecoverLoc, diag::err_undef_interface_suggest)
587        << Id << IDecl->getDeclName()
588        << CodeModificationHint::CreateReplacement(RecoverLoc,
589                                                   IDecl->getNameAsString());
590      Diag(IDecl->getLocation(), diag::note_previous_decl)
591        << IDecl->getDeclName();
592
593      Id = IDecl->getIdentifier();
594    }
595  }
596
597  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
598}
599
600/// getNonFieldDeclScope - Retrieves the innermost scope, starting
601/// from S, where a non-field would be declared. This routine copes
602/// with the difference between C and C++ scoping rules in structs and
603/// unions. For example, the following code is well-formed in C but
604/// ill-formed in C++:
605/// @code
606/// struct S6 {
607///   enum { BAR } e;
608/// };
609///
610/// void test_S6() {
611///   struct S6 a;
612///   a.e = BAR;
613/// }
614/// @endcode
615/// For the declaration of BAR, this routine will return a different
616/// scope. The scope S will be the scope of the unnamed enumeration
617/// within S6. In C++, this routine will return the scope associated
618/// with S6, because the enumeration's scope is a transparent
619/// context but structures can contain non-field names. In C, this
620/// routine will return the translation unit scope, since the
621/// enumeration's scope is a transparent context and structures cannot
622/// contain non-field names.
623Scope *Sema::getNonFieldDeclScope(Scope *S) {
624  while (((S->getFlags() & Scope::DeclScope) == 0) ||
625         (S->getEntity() &&
626          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
627         (S->isClassScope() && !getLangOptions().CPlusPlus))
628    S = S->getParent();
629  return S;
630}
631
632void Sema::InitBuiltinVaListType() {
633  if (!Context.getBuiltinVaListType().isNull())
634    return;
635
636  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
637  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
638  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
639  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
640}
641
642/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
643/// file scope.  lazily create a decl for it. ForRedeclaration is true
644/// if we're creating this built-in in anticipation of redeclaring the
645/// built-in.
646NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
647                                     Scope *S, bool ForRedeclaration,
648                                     SourceLocation Loc) {
649  Builtin::ID BID = (Builtin::ID)bid;
650
651  if (Context.BuiltinInfo.hasVAListUse(BID))
652    InitBuiltinVaListType();
653
654  ASTContext::GetBuiltinTypeError Error;
655  QualType R = Context.GetBuiltinType(BID, Error);
656  switch (Error) {
657  case ASTContext::GE_None:
658    // Okay
659    break;
660
661  case ASTContext::GE_Missing_stdio:
662    if (ForRedeclaration)
663      Diag(Loc, diag::err_implicit_decl_requires_stdio)
664        << Context.BuiltinInfo.GetName(BID);
665    return 0;
666
667  case ASTContext::GE_Missing_setjmp:
668    if (ForRedeclaration)
669      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
670        << Context.BuiltinInfo.GetName(BID);
671    return 0;
672  }
673
674  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
675    Diag(Loc, diag::ext_implicit_lib_function_decl)
676      << Context.BuiltinInfo.GetName(BID)
677      << R;
678    if (Context.BuiltinInfo.getHeaderName(BID) &&
679        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
680          != Diagnostic::Ignored)
681      Diag(Loc, diag::note_please_include_header)
682        << Context.BuiltinInfo.getHeaderName(BID)
683        << Context.BuiltinInfo.GetName(BID);
684  }
685
686  FunctionDecl *New = FunctionDecl::Create(Context,
687                                           Context.getTranslationUnitDecl(),
688                                           Loc, II, R, /*TInfo=*/0,
689                                           FunctionDecl::Extern, false,
690                                           /*hasPrototype=*/true);
691  New->setImplicit();
692
693  // Create Decl objects for each parameter, adding them to the
694  // FunctionDecl.
695  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
696    llvm::SmallVector<ParmVarDecl*, 16> Params;
697    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
698      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
699                                           FT->getArgType(i), /*TInfo=*/0,
700                                           VarDecl::None, 0));
701    New->setParams(Params.data(), Params.size());
702  }
703
704  AddKnownFunctionAttributes(New);
705
706  // TUScope is the translation-unit scope to insert this function into.
707  // FIXME: This is hideous. We need to teach PushOnScopeChains to
708  // relate Scopes to DeclContexts, and probably eliminate CurContext
709  // entirely, but we're not there yet.
710  DeclContext *SavedContext = CurContext;
711  CurContext = Context.getTranslationUnitDecl();
712  PushOnScopeChains(New, TUScope);
713  CurContext = SavedContext;
714  return New;
715}
716
717/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
718/// same name and scope as a previous declaration 'Old'.  Figure out
719/// how to resolve this situation, merging decls or emitting
720/// diagnostics as appropriate. If there was an error, set New to be invalid.
721///
722void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
723  // If the new decl is known invalid already, don't bother doing any
724  // merging checks.
725  if (New->isInvalidDecl()) return;
726
727  // Allow multiple definitions for ObjC built-in typedefs.
728  // FIXME: Verify the underlying types are equivalent!
729  if (getLangOptions().ObjC1) {
730    const IdentifierInfo *TypeID = New->getIdentifier();
731    switch (TypeID->getLength()) {
732    default: break;
733    case 2:
734      if (!TypeID->isStr("id"))
735        break;
736      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
737      // Install the built-in type for 'id', ignoring the current definition.
738      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
739      return;
740    case 5:
741      if (!TypeID->isStr("Class"))
742        break;
743      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
744      // Install the built-in type for 'Class', ignoring the current definition.
745      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
746      return;
747    case 3:
748      if (!TypeID->isStr("SEL"))
749        break;
750      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
751      // Install the built-in type for 'SEL', ignoring the current definition.
752      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
753      return;
754    case 8:
755      if (!TypeID->isStr("Protocol"))
756        break;
757      Context.setObjCProtoType(New->getUnderlyingType());
758      return;
759    }
760    // Fall through - the typedef name was not a builtin type.
761  }
762
763  // Verify the old decl was also a type.
764  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
765  if (!Old) {
766    Diag(New->getLocation(), diag::err_redefinition_different_kind)
767      << New->getDeclName();
768
769    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
770    if (OldD->getLocation().isValid())
771      Diag(OldD->getLocation(), diag::note_previous_definition);
772
773    return New->setInvalidDecl();
774  }
775
776  // If the old declaration is invalid, just give up here.
777  if (Old->isInvalidDecl())
778    return New->setInvalidDecl();
779
780  // Determine the "old" type we'll use for checking and diagnostics.
781  QualType OldType;
782  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
783    OldType = OldTypedef->getUnderlyingType();
784  else
785    OldType = Context.getTypeDeclType(Old);
786
787  // If the typedef types are not identical, reject them in all languages and
788  // with any extensions enabled.
789
790  if (OldType != New->getUnderlyingType() &&
791      Context.getCanonicalType(OldType) !=
792      Context.getCanonicalType(New->getUnderlyingType())) {
793    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
794      << New->getUnderlyingType() << OldType;
795    if (Old->getLocation().isValid())
796      Diag(Old->getLocation(), diag::note_previous_definition);
797    return New->setInvalidDecl();
798  }
799
800  // The types match.  Link up the redeclaration chain if the old
801  // declaration was a typedef.
802  // FIXME: this is a potential source of wierdness if the type
803  // spellings don't match exactly.
804  if (isa<TypedefDecl>(Old))
805    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
806
807  if (getLangOptions().Microsoft)
808    return;
809
810  if (getLangOptions().CPlusPlus) {
811    // C++ [dcl.typedef]p2:
812    //   In a given non-class scope, a typedef specifier can be used to
813    //   redefine the name of any type declared in that scope to refer
814    //   to the type to which it already refers.
815    if (!isa<CXXRecordDecl>(CurContext))
816      return;
817
818    // C++0x [dcl.typedef]p4:
819    //   In a given class scope, a typedef specifier can be used to redefine
820    //   any class-name declared in that scope that is not also a typedef-name
821    //   to refer to the type to which it already refers.
822    //
823    // This wording came in via DR424, which was a correction to the
824    // wording in DR56, which accidentally banned code like:
825    //
826    //   struct S {
827    //     typedef struct A { } A;
828    //   };
829    //
830    // in the C++03 standard. We implement the C++0x semantics, which
831    // allow the above but disallow
832    //
833    //   struct S {
834    //     typedef int I;
835    //     typedef int I;
836    //   };
837    //
838    // since that was the intent of DR56.
839    if (!isa<TypedefDecl >(Old))
840      return;
841
842    Diag(New->getLocation(), diag::err_redefinition)
843      << New->getDeclName();
844    Diag(Old->getLocation(), diag::note_previous_definition);
845    return New->setInvalidDecl();
846  }
847
848  // If we have a redefinition of a typedef in C, emit a warning.  This warning
849  // is normally mapped to an error, but can be controlled with
850  // -Wtypedef-redefinition.  If either the original or the redefinition is
851  // in a system header, don't emit this for compatibility with GCC.
852  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
853      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
854       Context.getSourceManager().isInSystemHeader(New->getLocation())))
855    return;
856
857  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
858    << New->getDeclName();
859  Diag(Old->getLocation(), diag::note_previous_definition);
860  return;
861}
862
863/// DeclhasAttr - returns true if decl Declaration already has the target
864/// attribute.
865static bool
866DeclHasAttr(const Decl *decl, const Attr *target) {
867  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
868    if (attr->getKind() == target->getKind())
869      return true;
870
871  return false;
872}
873
874/// MergeAttributes - append attributes from the Old decl to the New one.
875static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
876  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
877    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
878      Attr *NewAttr = attr->clone(C);
879      NewAttr->setInherited(true);
880      New->addAttr(NewAttr);
881    }
882  }
883}
884
885/// Used in MergeFunctionDecl to keep track of function parameters in
886/// C.
887struct GNUCompatibleParamWarning {
888  ParmVarDecl *OldParm;
889  ParmVarDecl *NewParm;
890  QualType PromotedType;
891};
892
893
894/// getSpecialMember - get the special member enum for a method.
895static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
896                                               const CXXMethodDecl *MD) {
897  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
898    if (Ctor->isDefaultConstructor())
899      return Sema::CXXDefaultConstructor;
900    if (Ctor->isCopyConstructor())
901      return Sema::CXXCopyConstructor;
902  }
903
904  if (isa<CXXDestructorDecl>(MD))
905    return Sema::CXXDestructor;
906
907  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
908  return Sema::CXXCopyAssignment;
909}
910
911/// canREdefineFunction - checks if a function can be redefined. Currently,
912/// only extern inline functions can be redefined, and even then only in
913/// GNU89 mode.
914static bool canRedefineFunction(const FunctionDecl *FD,
915                                const LangOptions& LangOpts) {
916  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
917          FD->isInlineSpecified() &&
918          FD->getStorageClass() == FunctionDecl::Extern);
919}
920
921/// MergeFunctionDecl - We just parsed a function 'New' from
922/// declarator D which has the same name and scope as a previous
923/// declaration 'Old'.  Figure out how to resolve this situation,
924/// merging decls or emitting diagnostics as appropriate.
925///
926/// In C++, New and Old must be declarations that are not
927/// overloaded. Use IsOverload to determine whether New and Old are
928/// overloaded, and to select the Old declaration that New should be
929/// merged with.
930///
931/// Returns true if there was an error, false otherwise.
932bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
933  // Verify the old decl was also a function.
934  FunctionDecl *Old = 0;
935  if (FunctionTemplateDecl *OldFunctionTemplate
936        = dyn_cast<FunctionTemplateDecl>(OldD))
937    Old = OldFunctionTemplate->getTemplatedDecl();
938  else
939    Old = dyn_cast<FunctionDecl>(OldD);
940  if (!Old) {
941    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
942      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
943      Diag(Shadow->getTargetDecl()->getLocation(),
944           diag::note_using_decl_target);
945      Diag(Shadow->getUsingDecl()->getLocation(),
946           diag::note_using_decl) << 0;
947      return true;
948    }
949
950    Diag(New->getLocation(), diag::err_redefinition_different_kind)
951      << New->getDeclName();
952    Diag(OldD->getLocation(), diag::note_previous_definition);
953    return true;
954  }
955
956  // Determine whether the previous declaration was a definition,
957  // implicit declaration, or a declaration.
958  diag::kind PrevDiag;
959  if (Old->isThisDeclarationADefinition())
960    PrevDiag = diag::note_previous_definition;
961  else if (Old->isImplicit())
962    PrevDiag = diag::note_previous_implicit_declaration;
963  else
964    PrevDiag = diag::note_previous_declaration;
965
966  QualType OldQType = Context.getCanonicalType(Old->getType());
967  QualType NewQType = Context.getCanonicalType(New->getType());
968
969  // Don't complain about this if we're in GNU89 mode and the old function
970  // is an extern inline function.
971  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
972      New->getStorageClass() == FunctionDecl::Static &&
973      Old->getStorageClass() != FunctionDecl::Static &&
974      !canRedefineFunction(Old, getLangOptions())) {
975    Diag(New->getLocation(), diag::err_static_non_static)
976      << New;
977    Diag(Old->getLocation(), PrevDiag);
978    return true;
979  }
980
981  // If a function is first declared with a calling convention, but is
982  // later declared or defined without one, the second decl assumes the
983  // calling convention of the first.
984  //
985  // For the new decl, we have to look at the NON-canonical type to tell the
986  // difference between a function that really doesn't have a calling
987  // convention and one that is declared cdecl. That's because in
988  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
989  // because it is the default calling convention.
990  //
991  // Note also that we DO NOT return at this point, because we still have
992  // other tests to run.
993  const FunctionType *OldType = OldQType->getAs<FunctionType>();
994  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
995  if (OldType->getCallConv() != CC_Default &&
996      NewType->getCallConv() == CC_Default) {
997    NewQType = Context.getCallConvType(NewQType, OldType->getCallConv());
998    New->setType(NewQType);
999    NewQType = Context.getCanonicalType(NewQType);
1000  } else if (!Context.isSameCallConv(OldType->getCallConv(),
1001                                     NewType->getCallConv())) {
1002    // Calling conventions really aren't compatible, so complain.
1003    Diag(New->getLocation(), diag::err_cconv_change)
1004      << FunctionType::getNameForCallConv(NewType->getCallConv())
1005      << (OldType->getCallConv() == CC_Default)
1006      << (OldType->getCallConv() == CC_Default ? "" :
1007          FunctionType::getNameForCallConv(OldType->getCallConv()));
1008    Diag(Old->getLocation(), diag::note_previous_declaration);
1009    return true;
1010  }
1011
1012  // FIXME: diagnose the other way around?
1013  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1014    NewQType = Context.getNoReturnType(NewQType);
1015    New->setType(NewQType);
1016    assert(NewQType.isCanonical());
1017  }
1018
1019  if (getLangOptions().CPlusPlus) {
1020    // (C++98 13.1p2):
1021    //   Certain function declarations cannot be overloaded:
1022    //     -- Function declarations that differ only in the return type
1023    //        cannot be overloaded.
1024    QualType OldReturnType
1025      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1026    QualType NewReturnType
1027      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1028    if (OldReturnType != NewReturnType) {
1029      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1030      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1031      return true;
1032    }
1033
1034    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1035    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1036    if (OldMethod && NewMethod) {
1037      if (!NewMethod->getFriendObjectKind() &&
1038          NewMethod->getLexicalDeclContext()->isRecord()) {
1039        //    -- Member function declarations with the same name and the
1040        //       same parameter types cannot be overloaded if any of them
1041        //       is a static member function declaration.
1042        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1043          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1044          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1045          return true;
1046        }
1047
1048        // C++ [class.mem]p1:
1049        //   [...] A member shall not be declared twice in the
1050        //   member-specification, except that a nested class or member
1051        //   class template can be declared and then later defined.
1052        unsigned NewDiag;
1053        if (isa<CXXConstructorDecl>(OldMethod))
1054          NewDiag = diag::err_constructor_redeclared;
1055        else if (isa<CXXDestructorDecl>(NewMethod))
1056          NewDiag = diag::err_destructor_redeclared;
1057        else if (isa<CXXConversionDecl>(NewMethod))
1058          NewDiag = diag::err_conv_function_redeclared;
1059        else
1060          NewDiag = diag::err_member_redeclared;
1061
1062        Diag(New->getLocation(), NewDiag);
1063        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1064      } else {
1065        if (OldMethod->isImplicit()) {
1066          Diag(NewMethod->getLocation(),
1067               diag::err_definition_of_implicitly_declared_member)
1068          << New << getSpecialMember(Context, OldMethod);
1069
1070          Diag(OldMethod->getLocation(),
1071               diag::note_previous_implicit_declaration);
1072          return true;
1073        }
1074      }
1075    }
1076
1077    // (C++98 8.3.5p3):
1078    //   All declarations for a function shall agree exactly in both the
1079    //   return type and the parameter-type-list.
1080    // attributes should be ignored when comparing.
1081    if (Context.getNoReturnType(OldQType, false) ==
1082        Context.getNoReturnType(NewQType, false))
1083      return MergeCompatibleFunctionDecls(New, Old);
1084
1085    // Fall through for conflicting redeclarations and redefinitions.
1086  }
1087
1088  // C: Function types need to be compatible, not identical. This handles
1089  // duplicate function decls like "void f(int); void f(enum X);" properly.
1090  if (!getLangOptions().CPlusPlus &&
1091      Context.typesAreCompatible(OldQType, NewQType)) {
1092    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1093    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1094    const FunctionProtoType *OldProto = 0;
1095    if (isa<FunctionNoProtoType>(NewFuncType) &&
1096        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1097      // The old declaration provided a function prototype, but the
1098      // new declaration does not. Merge in the prototype.
1099      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1100      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1101                                                 OldProto->arg_type_end());
1102      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1103                                         ParamTypes.data(), ParamTypes.size(),
1104                                         OldProto->isVariadic(),
1105                                         OldProto->getTypeQuals());
1106      New->setType(NewQType);
1107      New->setHasInheritedPrototype();
1108
1109      // Synthesize a parameter for each argument type.
1110      llvm::SmallVector<ParmVarDecl*, 16> Params;
1111      for (FunctionProtoType::arg_type_iterator
1112             ParamType = OldProto->arg_type_begin(),
1113             ParamEnd = OldProto->arg_type_end();
1114           ParamType != ParamEnd; ++ParamType) {
1115        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1116                                                 SourceLocation(), 0,
1117                                                 *ParamType, /*TInfo=*/0,
1118                                                 VarDecl::None, 0);
1119        Param->setImplicit();
1120        Params.push_back(Param);
1121      }
1122
1123      New->setParams(Params.data(), Params.size());
1124    }
1125
1126    return MergeCompatibleFunctionDecls(New, Old);
1127  }
1128
1129  // GNU C permits a K&R definition to follow a prototype declaration
1130  // if the declared types of the parameters in the K&R definition
1131  // match the types in the prototype declaration, even when the
1132  // promoted types of the parameters from the K&R definition differ
1133  // from the types in the prototype. GCC then keeps the types from
1134  // the prototype.
1135  //
1136  // If a variadic prototype is followed by a non-variadic K&R definition,
1137  // the K&R definition becomes variadic.  This is sort of an edge case, but
1138  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1139  // C99 6.9.1p8.
1140  if (!getLangOptions().CPlusPlus &&
1141      Old->hasPrototype() && !New->hasPrototype() &&
1142      New->getType()->getAs<FunctionProtoType>() &&
1143      Old->getNumParams() == New->getNumParams()) {
1144    llvm::SmallVector<QualType, 16> ArgTypes;
1145    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1146    const FunctionProtoType *OldProto
1147      = Old->getType()->getAs<FunctionProtoType>();
1148    const FunctionProtoType *NewProto
1149      = New->getType()->getAs<FunctionProtoType>();
1150
1151    // Determine whether this is the GNU C extension.
1152    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1153                                               NewProto->getResultType());
1154    bool LooseCompatible = !MergedReturn.isNull();
1155    for (unsigned Idx = 0, End = Old->getNumParams();
1156         LooseCompatible && Idx != End; ++Idx) {
1157      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1158      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1159      if (Context.typesAreCompatible(OldParm->getType(),
1160                                     NewProto->getArgType(Idx))) {
1161        ArgTypes.push_back(NewParm->getType());
1162      } else if (Context.typesAreCompatible(OldParm->getType(),
1163                                            NewParm->getType())) {
1164        GNUCompatibleParamWarning Warn
1165          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1166        Warnings.push_back(Warn);
1167        ArgTypes.push_back(NewParm->getType());
1168      } else
1169        LooseCompatible = false;
1170    }
1171
1172    if (LooseCompatible) {
1173      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1174        Diag(Warnings[Warn].NewParm->getLocation(),
1175             diag::ext_param_promoted_not_compatible_with_prototype)
1176          << Warnings[Warn].PromotedType
1177          << Warnings[Warn].OldParm->getType();
1178        Diag(Warnings[Warn].OldParm->getLocation(),
1179             diag::note_previous_declaration);
1180      }
1181
1182      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1183                                           ArgTypes.size(),
1184                                           OldProto->isVariadic(), 0));
1185      return MergeCompatibleFunctionDecls(New, Old);
1186    }
1187
1188    // Fall through to diagnose conflicting types.
1189  }
1190
1191  // A function that has already been declared has been redeclared or defined
1192  // with a different type- show appropriate diagnostic
1193  if (unsigned BuiltinID = Old->getBuiltinID()) {
1194    // The user has declared a builtin function with an incompatible
1195    // signature.
1196    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1197      // The function the user is redeclaring is a library-defined
1198      // function like 'malloc' or 'printf'. Warn about the
1199      // redeclaration, then pretend that we don't know about this
1200      // library built-in.
1201      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1202      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1203        << Old << Old->getType();
1204      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1205      Old->setInvalidDecl();
1206      return false;
1207    }
1208
1209    PrevDiag = diag::note_previous_builtin_declaration;
1210  }
1211
1212  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1213  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1214  return true;
1215}
1216
1217/// \brief Completes the merge of two function declarations that are
1218/// known to be compatible.
1219///
1220/// This routine handles the merging of attributes and other
1221/// properties of function declarations form the old declaration to
1222/// the new declaration, once we know that New is in fact a
1223/// redeclaration of Old.
1224///
1225/// \returns false
1226bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1227  // Merge the attributes
1228  MergeAttributes(New, Old, Context);
1229
1230  // Merge the storage class.
1231  if (Old->getStorageClass() != FunctionDecl::Extern &&
1232      Old->getStorageClass() != FunctionDecl::None)
1233    New->setStorageClass(Old->getStorageClass());
1234
1235  // Merge "pure" flag.
1236  if (Old->isPure())
1237    New->setPure();
1238
1239  // Merge the "deleted" flag.
1240  if (Old->isDeleted())
1241    New->setDeleted();
1242
1243  if (getLangOptions().CPlusPlus)
1244    return MergeCXXFunctionDecl(New, Old);
1245
1246  return false;
1247}
1248
1249/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1250/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1251/// situation, merging decls or emitting diagnostics as appropriate.
1252///
1253/// Tentative definition rules (C99 6.9.2p2) are checked by
1254/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1255/// definitions here, since the initializer hasn't been attached.
1256///
1257void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1258  // If the new decl is already invalid, don't do any other checking.
1259  if (New->isInvalidDecl())
1260    return;
1261
1262  // Verify the old decl was also a variable.
1263  VarDecl *Old = 0;
1264  if (!Previous.isSingleResult() ||
1265      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1266    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1267      << New->getDeclName();
1268    Diag(Previous.getRepresentativeDecl()->getLocation(),
1269         diag::note_previous_definition);
1270    return New->setInvalidDecl();
1271  }
1272
1273  MergeAttributes(New, Old, Context);
1274
1275  // Merge the types
1276  QualType MergedT;
1277  if (getLangOptions().CPlusPlus) {
1278    if (Context.hasSameType(New->getType(), Old->getType()))
1279      MergedT = New->getType();
1280    // C++ [basic.link]p10:
1281    //   [...] the types specified by all declarations referring to a given
1282    //   object or function shall be identical, except that declarations for an
1283    //   array object can specify array types that differ by the presence or
1284    //   absence of a major array bound (8.3.4).
1285    else if (Old->getType()->isIncompleteArrayType() &&
1286             New->getType()->isArrayType()) {
1287      CanQual<ArrayType> OldArray
1288        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1289      CanQual<ArrayType> NewArray
1290        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1291      if (OldArray->getElementType() == NewArray->getElementType())
1292        MergedT = New->getType();
1293    } else if (Old->getType()->isArrayType() &&
1294             New->getType()->isIncompleteArrayType()) {
1295      CanQual<ArrayType> OldArray
1296        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1297      CanQual<ArrayType> NewArray
1298        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1299      if (OldArray->getElementType() == NewArray->getElementType())
1300        MergedT = Old->getType();
1301    }
1302  } else {
1303    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1304  }
1305  if (MergedT.isNull()) {
1306    Diag(New->getLocation(), diag::err_redefinition_different_type)
1307      << New->getDeclName();
1308    Diag(Old->getLocation(), diag::note_previous_definition);
1309    return New->setInvalidDecl();
1310  }
1311  New->setType(MergedT);
1312
1313  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1314  if (New->getStorageClass() == VarDecl::Static &&
1315      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1316    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1317    Diag(Old->getLocation(), diag::note_previous_definition);
1318    return New->setInvalidDecl();
1319  }
1320  // C99 6.2.2p4:
1321  //   For an identifier declared with the storage-class specifier
1322  //   extern in a scope in which a prior declaration of that
1323  //   identifier is visible,23) if the prior declaration specifies
1324  //   internal or external linkage, the linkage of the identifier at
1325  //   the later declaration is the same as the linkage specified at
1326  //   the prior declaration. If no prior declaration is visible, or
1327  //   if the prior declaration specifies no linkage, then the
1328  //   identifier has external linkage.
1329  if (New->hasExternalStorage() && Old->hasLinkage())
1330    /* Okay */;
1331  else if (New->getStorageClass() != VarDecl::Static &&
1332           Old->getStorageClass() == VarDecl::Static) {
1333    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1334    Diag(Old->getLocation(), diag::note_previous_definition);
1335    return New->setInvalidDecl();
1336  }
1337
1338  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1339
1340  // FIXME: The test for external storage here seems wrong? We still
1341  // need to check for mismatches.
1342  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1343      // Don't complain about out-of-line definitions of static members.
1344      !(Old->getLexicalDeclContext()->isRecord() &&
1345        !New->getLexicalDeclContext()->isRecord())) {
1346    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1347    Diag(Old->getLocation(), diag::note_previous_definition);
1348    return New->setInvalidDecl();
1349  }
1350
1351  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1352    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1353    Diag(Old->getLocation(), diag::note_previous_definition);
1354  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1355    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1356    Diag(Old->getLocation(), diag::note_previous_definition);
1357  }
1358
1359  // C++ doesn't have tentative definitions, so go right ahead and check here.
1360  const VarDecl *Def;
1361  if (getLangOptions().CPlusPlus &&
1362      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1363      (Def = Old->getDefinition())) {
1364    Diag(New->getLocation(), diag::err_redefinition)
1365      << New->getDeclName();
1366    Diag(Def->getLocation(), diag::note_previous_definition);
1367    New->setInvalidDecl();
1368    return;
1369  }
1370
1371  // Keep a chain of previous declarations.
1372  New->setPreviousDeclaration(Old);
1373
1374  // Inherit access appropriately.
1375  New->setAccess(Old->getAccess());
1376}
1377
1378/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1379/// no declarator (e.g. "struct foo;") is parsed.
1380Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1381  // FIXME: Error on auto/register at file scope
1382  // FIXME: Error on inline/virtual/explicit
1383  // FIXME: Warn on useless __thread
1384  // FIXME: Warn on useless const/volatile
1385  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1386  // FIXME: Warn on useless attributes
1387  Decl *TagD = 0;
1388  TagDecl *Tag = 0;
1389  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1390      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1391      DS.getTypeSpecType() == DeclSpec::TST_union ||
1392      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1393    TagD = static_cast<Decl *>(DS.getTypeRep());
1394
1395    if (!TagD) // We probably had an error
1396      return DeclPtrTy();
1397
1398    // Note that the above type specs guarantee that the
1399    // type rep is a Decl, whereas in many of the others
1400    // it's a Type.
1401    Tag = dyn_cast<TagDecl>(TagD);
1402  }
1403
1404  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1405    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1406    // or incomplete types shall not be restrict-qualified."
1407    if (TypeQuals & DeclSpec::TQ_restrict)
1408      Diag(DS.getRestrictSpecLoc(),
1409           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1410           << DS.getSourceRange();
1411  }
1412
1413  if (DS.isFriendSpecified()) {
1414    // If we're dealing with a class template decl, assume that the
1415    // template routines are handling it.
1416    if (TagD && isa<ClassTemplateDecl>(TagD))
1417      return DeclPtrTy();
1418    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1419  }
1420
1421  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1422    // If there are attributes in the DeclSpec, apply them to the record.
1423    if (const AttributeList *AL = DS.getAttributes())
1424      ProcessDeclAttributeList(S, Record, AL);
1425
1426    if (!Record->getDeclName() && Record->isDefinition() &&
1427        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1428      if (getLangOptions().CPlusPlus ||
1429          Record->getDeclContext()->isRecord())
1430        return BuildAnonymousStructOrUnion(S, DS, Record);
1431
1432      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1433        << DS.getSourceRange();
1434    }
1435
1436    // Microsoft allows unnamed struct/union fields. Don't complain
1437    // about them.
1438    // FIXME: Should we support Microsoft's extensions in this area?
1439    if (Record->getDeclName() && getLangOptions().Microsoft)
1440      return DeclPtrTy::make(Tag);
1441  }
1442
1443  if (!DS.isMissingDeclaratorOk() &&
1444      DS.getTypeSpecType() != DeclSpec::TST_error) {
1445    // Warn about typedefs of enums without names, since this is an
1446    // extension in both Microsoft an GNU.
1447    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1448        Tag && isa<EnumDecl>(Tag)) {
1449      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1450        << DS.getSourceRange();
1451      return DeclPtrTy::make(Tag);
1452    }
1453
1454    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1455      << DS.getSourceRange();
1456    return DeclPtrTy();
1457  }
1458
1459  return DeclPtrTy::make(Tag);
1460}
1461
1462/// We are trying to inject an anonymous member into the given scope;
1463/// check if there's an existing declaration that can't be overloaded.
1464///
1465/// \return true if this is a forbidden redeclaration
1466static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1467                                         Scope *S,
1468                                         DeclContext *Owner,
1469                                         DeclarationName Name,
1470                                         SourceLocation NameLoc,
1471                                         unsigned diagnostic) {
1472  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1473                 Sema::ForRedeclaration);
1474  if (!SemaRef.LookupName(R, S)) return false;
1475
1476  if (R.getAsSingle<TagDecl>())
1477    return false;
1478
1479  // Pick a representative declaration.
1480  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1481  if (PrevDecl && Owner->isRecord()) {
1482    RecordDecl *Record = cast<RecordDecl>(Owner);
1483    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1484      return false;
1485  }
1486
1487  SemaRef.Diag(NameLoc, diagnostic) << Name;
1488  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1489
1490  return true;
1491}
1492
1493/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1494/// anonymous struct or union AnonRecord into the owning context Owner
1495/// and scope S. This routine will be invoked just after we realize
1496/// that an unnamed union or struct is actually an anonymous union or
1497/// struct, e.g.,
1498///
1499/// @code
1500/// union {
1501///   int i;
1502///   float f;
1503/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1504///    // f into the surrounding scope.x
1505/// @endcode
1506///
1507/// This routine is recursive, injecting the names of nested anonymous
1508/// structs/unions into the owning context and scope as well.
1509bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1510                                               RecordDecl *AnonRecord) {
1511  unsigned diagKind
1512    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1513                            : diag::err_anonymous_struct_member_redecl;
1514
1515  bool Invalid = false;
1516  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1517                               FEnd = AnonRecord->field_end();
1518       F != FEnd; ++F) {
1519    if ((*F)->getDeclName()) {
1520      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1521                                       (*F)->getLocation(), diagKind)) {
1522        // C++ [class.union]p2:
1523        //   The names of the members of an anonymous union shall be
1524        //   distinct from the names of any other entity in the
1525        //   scope in which the anonymous union is declared.
1526        Invalid = true;
1527      } else {
1528        // C++ [class.union]p2:
1529        //   For the purpose of name lookup, after the anonymous union
1530        //   definition, the members of the anonymous union are
1531        //   considered to have been defined in the scope in which the
1532        //   anonymous union is declared.
1533        Owner->makeDeclVisibleInContext(*F);
1534        S->AddDecl(DeclPtrTy::make(*F));
1535        IdResolver.AddDecl(*F);
1536      }
1537    } else if (const RecordType *InnerRecordType
1538                 = (*F)->getType()->getAs<RecordType>()) {
1539      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1540      if (InnerRecord->isAnonymousStructOrUnion())
1541        Invalid = Invalid ||
1542          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1543    }
1544  }
1545
1546  return Invalid;
1547}
1548
1549/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1550/// anonymous structure or union. Anonymous unions are a C++ feature
1551/// (C++ [class.union]) and a GNU C extension; anonymous structures
1552/// are a GNU C and GNU C++ extension.
1553Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1554                                                  RecordDecl *Record) {
1555  DeclContext *Owner = Record->getDeclContext();
1556
1557  // Diagnose whether this anonymous struct/union is an extension.
1558  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1559    Diag(Record->getLocation(), diag::ext_anonymous_union);
1560  else if (!Record->isUnion())
1561    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1562
1563  // C and C++ require different kinds of checks for anonymous
1564  // structs/unions.
1565  bool Invalid = false;
1566  if (getLangOptions().CPlusPlus) {
1567    const char* PrevSpec = 0;
1568    unsigned DiagID;
1569    // C++ [class.union]p3:
1570    //   Anonymous unions declared in a named namespace or in the
1571    //   global namespace shall be declared static.
1572    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1573        (isa<TranslationUnitDecl>(Owner) ||
1574         (isa<NamespaceDecl>(Owner) &&
1575          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1576      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1577      Invalid = true;
1578
1579      // Recover by adding 'static'.
1580      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1581                             PrevSpec, DiagID);
1582    }
1583    // C++ [class.union]p3:
1584    //   A storage class is not allowed in a declaration of an
1585    //   anonymous union in a class scope.
1586    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1587             isa<RecordDecl>(Owner)) {
1588      Diag(DS.getStorageClassSpecLoc(),
1589           diag::err_anonymous_union_with_storage_spec);
1590      Invalid = true;
1591
1592      // Recover by removing the storage specifier.
1593      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1594                             PrevSpec, DiagID);
1595    }
1596
1597    // C++ [class.union]p2:
1598    //   The member-specification of an anonymous union shall only
1599    //   define non-static data members. [Note: nested types and
1600    //   functions cannot be declared within an anonymous union. ]
1601    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1602                                 MemEnd = Record->decls_end();
1603         Mem != MemEnd; ++Mem) {
1604      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1605        // C++ [class.union]p3:
1606        //   An anonymous union shall not have private or protected
1607        //   members (clause 11).
1608        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1609          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1610            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1611          Invalid = true;
1612        }
1613      } else if ((*Mem)->isImplicit()) {
1614        // Any implicit members are fine.
1615      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1616        // This is a type that showed up in an
1617        // elaborated-type-specifier inside the anonymous struct or
1618        // union, but which actually declares a type outside of the
1619        // anonymous struct or union. It's okay.
1620      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1621        if (!MemRecord->isAnonymousStructOrUnion() &&
1622            MemRecord->getDeclName()) {
1623          // This is a nested type declaration.
1624          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1625            << (int)Record->isUnion();
1626          Invalid = true;
1627        }
1628      } else {
1629        // We have something that isn't a non-static data
1630        // member. Complain about it.
1631        unsigned DK = diag::err_anonymous_record_bad_member;
1632        if (isa<TypeDecl>(*Mem))
1633          DK = diag::err_anonymous_record_with_type;
1634        else if (isa<FunctionDecl>(*Mem))
1635          DK = diag::err_anonymous_record_with_function;
1636        else if (isa<VarDecl>(*Mem))
1637          DK = diag::err_anonymous_record_with_static;
1638        Diag((*Mem)->getLocation(), DK)
1639            << (int)Record->isUnion();
1640          Invalid = true;
1641      }
1642    }
1643  }
1644
1645  if (!Record->isUnion() && !Owner->isRecord()) {
1646    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1647      << (int)getLangOptions().CPlusPlus;
1648    Invalid = true;
1649  }
1650
1651  // Mock up a declarator.
1652  Declarator Dc(DS, Declarator::TypeNameContext);
1653  TypeSourceInfo *TInfo = 0;
1654  GetTypeForDeclarator(Dc, S, &TInfo);
1655  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1656
1657  // Create a declaration for this anonymous struct/union.
1658  NamedDecl *Anon = 0;
1659  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1660    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1661                             /*IdentifierInfo=*/0,
1662                             Context.getTypeDeclType(Record),
1663                             TInfo,
1664                             /*BitWidth=*/0, /*Mutable=*/false);
1665    Anon->setAccess(AS_public);
1666    if (getLangOptions().CPlusPlus)
1667      FieldCollector->Add(cast<FieldDecl>(Anon));
1668  } else {
1669    VarDecl::StorageClass SC;
1670    switch (DS.getStorageClassSpec()) {
1671    default: assert(0 && "Unknown storage class!");
1672    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1673    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1674    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1675    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1676    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1677    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1678    case DeclSpec::SCS_mutable:
1679      // mutable can only appear on non-static class members, so it's always
1680      // an error here
1681      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1682      Invalid = true;
1683      SC = VarDecl::None;
1684      break;
1685    }
1686
1687    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1688                           /*IdentifierInfo=*/0,
1689                           Context.getTypeDeclType(Record),
1690                           TInfo,
1691                           SC);
1692  }
1693  Anon->setImplicit();
1694
1695  // Add the anonymous struct/union object to the current
1696  // context. We'll be referencing this object when we refer to one of
1697  // its members.
1698  Owner->addDecl(Anon);
1699
1700  // Inject the members of the anonymous struct/union into the owning
1701  // context and into the identifier resolver chain for name lookup
1702  // purposes.
1703  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1704    Invalid = true;
1705
1706  // Mark this as an anonymous struct/union type. Note that we do not
1707  // do this until after we have already checked and injected the
1708  // members of this anonymous struct/union type, because otherwise
1709  // the members could be injected twice: once by DeclContext when it
1710  // builds its lookup table, and once by
1711  // InjectAnonymousStructOrUnionMembers.
1712  Record->setAnonymousStructOrUnion(true);
1713
1714  if (Invalid)
1715    Anon->setInvalidDecl();
1716
1717  return DeclPtrTy::make(Anon);
1718}
1719
1720
1721/// GetNameForDeclarator - Determine the full declaration name for the
1722/// given Declarator.
1723DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1724  return GetNameFromUnqualifiedId(D.getName());
1725}
1726
1727/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1728DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1729  switch (Name.getKind()) {
1730    case UnqualifiedId::IK_Identifier:
1731      return DeclarationName(Name.Identifier);
1732
1733    case UnqualifiedId::IK_OperatorFunctionId:
1734      return Context.DeclarationNames.getCXXOperatorName(
1735                                              Name.OperatorFunctionId.Operator);
1736
1737    case UnqualifiedId::IK_LiteralOperatorId:
1738      return Context.DeclarationNames.getCXXLiteralOperatorName(
1739                                                               Name.Identifier);
1740
1741    case UnqualifiedId::IK_ConversionFunctionId: {
1742      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1743      if (Ty.isNull())
1744        return DeclarationName();
1745
1746      return Context.DeclarationNames.getCXXConversionFunctionName(
1747                                                  Context.getCanonicalType(Ty));
1748    }
1749
1750    case UnqualifiedId::IK_ConstructorName: {
1751      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1752      if (Ty.isNull())
1753        return DeclarationName();
1754
1755      return Context.DeclarationNames.getCXXConstructorName(
1756                                                  Context.getCanonicalType(Ty));
1757    }
1758
1759    case UnqualifiedId::IK_ConstructorTemplateId: {
1760      // In well-formed code, we can only have a constructor
1761      // template-id that refers to the current context, so go there
1762      // to find the actual type being constructed.
1763      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1764      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1765        return DeclarationName();
1766
1767      // Determine the type of the class being constructed.
1768      QualType CurClassType;
1769      if (ClassTemplateDecl *ClassTemplate
1770            = CurClass->getDescribedClassTemplate())
1771        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1772      else
1773        CurClassType = Context.getTypeDeclType(CurClass);
1774
1775      // FIXME: Check two things: that the template-id names the same type as
1776      // CurClassType, and that the template-id does not occur when the name
1777      // was qualified.
1778
1779      return Context.DeclarationNames.getCXXConstructorName(
1780                                       Context.getCanonicalType(CurClassType));
1781    }
1782
1783    case UnqualifiedId::IK_DestructorName: {
1784      QualType Ty = GetTypeFromParser(Name.DestructorName);
1785      if (Ty.isNull())
1786        return DeclarationName();
1787
1788      return Context.DeclarationNames.getCXXDestructorName(
1789                                                           Context.getCanonicalType(Ty));
1790    }
1791
1792    case UnqualifiedId::IK_TemplateId: {
1793      TemplateName TName
1794        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1795      return Context.getNameForTemplate(TName);
1796    }
1797  }
1798
1799  assert(false && "Unknown name kind");
1800  return DeclarationName();
1801}
1802
1803/// isNearlyMatchingFunction - Determine whether the C++ functions
1804/// Declaration and Definition are "nearly" matching. This heuristic
1805/// is used to improve diagnostics in the case where an out-of-line
1806/// function definition doesn't match any declaration within
1807/// the class or namespace.
1808static bool isNearlyMatchingFunction(ASTContext &Context,
1809                                     FunctionDecl *Declaration,
1810                                     FunctionDecl *Definition) {
1811  if (Declaration->param_size() != Definition->param_size())
1812    return false;
1813  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1814    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1815    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1816
1817    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1818                                        DefParamTy.getNonReferenceType()))
1819      return false;
1820  }
1821
1822  return true;
1823}
1824
1825Sema::DeclPtrTy
1826Sema::HandleDeclarator(Scope *S, Declarator &D,
1827                       MultiTemplateParamsArg TemplateParamLists,
1828                       bool IsFunctionDefinition) {
1829  DeclarationName Name = GetNameForDeclarator(D);
1830
1831  // All of these full declarators require an identifier.  If it doesn't have
1832  // one, the ParsedFreeStandingDeclSpec action should be used.
1833  if (!Name) {
1834    if (!D.isInvalidType())  // Reject this if we think it is valid.
1835      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1836           diag::err_declarator_need_ident)
1837        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1838    return DeclPtrTy();
1839  }
1840
1841  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1842  // we find one that is.
1843  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1844         (S->getFlags() & Scope::TemplateParamScope) != 0)
1845    S = S->getParent();
1846
1847  // If this is an out-of-line definition of a member of a class template
1848  // or class template partial specialization, we may need to rebuild the
1849  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1850  // for more information.
1851  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1852  // handle expressions properly.
1853  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1854  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1855      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1856      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1857       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1858       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1859       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1860    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1861      // FIXME: Preserve type source info.
1862      QualType T = GetTypeFromParser(DS.getTypeRep());
1863
1864      DeclContext *SavedContext = CurContext;
1865      CurContext = DC;
1866      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1867      CurContext = SavedContext;
1868
1869      if (T.isNull())
1870        return DeclPtrTy();
1871      DS.UpdateTypeRep(T.getAsOpaquePtr());
1872    }
1873  }
1874
1875  DeclContext *DC;
1876  NamedDecl *New;
1877
1878  TypeSourceInfo *TInfo = 0;
1879  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1880
1881  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1882                        ForRedeclaration);
1883
1884  // See if this is a redefinition of a variable in the same scope.
1885  if (D.getCXXScopeSpec().isInvalid()) {
1886    DC = CurContext;
1887    D.setInvalidType();
1888  } else if (!D.getCXXScopeSpec().isSet()) {
1889    bool IsLinkageLookup = false;
1890
1891    // If the declaration we're planning to build will be a function
1892    // or object with linkage, then look for another declaration with
1893    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1894    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1895      /* Do nothing*/;
1896    else if (R->isFunctionType()) {
1897      if (CurContext->isFunctionOrMethod() ||
1898          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1899        IsLinkageLookup = true;
1900    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1901      IsLinkageLookup = true;
1902    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1903             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1904      IsLinkageLookup = true;
1905
1906    if (IsLinkageLookup)
1907      Previous.clear(LookupRedeclarationWithLinkage);
1908
1909    DC = CurContext;
1910    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1911  } else { // Something like "int foo::x;"
1912    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1913
1914    if (!DC) {
1915      // If we could not compute the declaration context, it's because the
1916      // declaration context is dependent but does not refer to a class,
1917      // class template, or class template partial specialization. Complain
1918      // and return early, to avoid the coming semantic disaster.
1919      Diag(D.getIdentifierLoc(),
1920           diag::err_template_qualified_declarator_no_match)
1921        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1922        << D.getCXXScopeSpec().getRange();
1923      return DeclPtrTy();
1924    }
1925
1926    if (!DC->isDependentContext() &&
1927        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1928      return DeclPtrTy();
1929
1930    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1931      Diag(D.getIdentifierLoc(),
1932           diag::err_member_def_undefined_record)
1933        << Name << DC << D.getCXXScopeSpec().getRange();
1934      D.setInvalidType();
1935    }
1936
1937    LookupQualifiedName(Previous, DC);
1938
1939    // Don't consider using declarations as previous declarations for
1940    // out-of-line members.
1941    RemoveUsingDecls(Previous);
1942
1943    // C++ 7.3.1.2p2:
1944    // Members (including explicit specializations of templates) of a named
1945    // namespace can also be defined outside that namespace by explicit
1946    // qualification of the name being defined, provided that the entity being
1947    // defined was already declared in the namespace and the definition appears
1948    // after the point of declaration in a namespace that encloses the
1949    // declarations namespace.
1950    //
1951    // Note that we only check the context at this point. We don't yet
1952    // have enough information to make sure that PrevDecl is actually
1953    // the declaration we want to match. For example, given:
1954    //
1955    //   class X {
1956    //     void f();
1957    //     void f(float);
1958    //   };
1959    //
1960    //   void X::f(int) { } // ill-formed
1961    //
1962    // In this case, PrevDecl will point to the overload set
1963    // containing the two f's declared in X, but neither of them
1964    // matches.
1965
1966    // First check whether we named the global scope.
1967    if (isa<TranslationUnitDecl>(DC)) {
1968      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1969        << Name << D.getCXXScopeSpec().getRange();
1970    } else {
1971      DeclContext *Cur = CurContext;
1972      while (isa<LinkageSpecDecl>(Cur))
1973        Cur = Cur->getParent();
1974      if (!Cur->Encloses(DC)) {
1975        // The qualifying scope doesn't enclose the original declaration.
1976        // Emit diagnostic based on current scope.
1977        SourceLocation L = D.getIdentifierLoc();
1978        SourceRange R = D.getCXXScopeSpec().getRange();
1979        if (isa<FunctionDecl>(Cur))
1980          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1981        else
1982          Diag(L, diag::err_invalid_declarator_scope)
1983            << Name << cast<NamedDecl>(DC) << R;
1984        D.setInvalidType();
1985      }
1986    }
1987  }
1988
1989  if (Previous.isSingleResult() &&
1990      Previous.getFoundDecl()->isTemplateParameter()) {
1991    // Maybe we will complain about the shadowed template parameter.
1992    if (!D.isInvalidType())
1993      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1994                                          Previous.getFoundDecl()))
1995        D.setInvalidType();
1996
1997    // Just pretend that we didn't see the previous declaration.
1998    Previous.clear();
1999  }
2000
2001  // In C++, the previous declaration we find might be a tag type
2002  // (class or enum). In this case, the new declaration will hide the
2003  // tag type. Note that this does does not apply if we're declaring a
2004  // typedef (C++ [dcl.typedef]p4).
2005  if (Previous.isSingleTagDecl() &&
2006      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2007    Previous.clear();
2008
2009  bool Redeclaration = false;
2010  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2011    if (TemplateParamLists.size()) {
2012      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2013      return DeclPtrTy();
2014    }
2015
2016    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2017  } else if (R->isFunctionType()) {
2018    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2019                                  move(TemplateParamLists),
2020                                  IsFunctionDefinition, Redeclaration);
2021  } else {
2022    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2023                                  move(TemplateParamLists),
2024                                  Redeclaration);
2025  }
2026
2027  if (New == 0)
2028    return DeclPtrTy();
2029
2030  // If this has an identifier and is not an invalid redeclaration or
2031  // function template specialization, add it to the scope stack.
2032  if (Name && !(Redeclaration && New->isInvalidDecl()))
2033    PushOnScopeChains(New, S);
2034
2035  return DeclPtrTy::make(New);
2036}
2037
2038/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2039/// types into constant array types in certain situations which would otherwise
2040/// be errors (for GCC compatibility).
2041static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2042                                                    ASTContext &Context,
2043                                                    bool &SizeIsNegative) {
2044  // This method tries to turn a variable array into a constant
2045  // array even when the size isn't an ICE.  This is necessary
2046  // for compatibility with code that depends on gcc's buggy
2047  // constant expression folding, like struct {char x[(int)(char*)2];}
2048  SizeIsNegative = false;
2049
2050  QualifierCollector Qs;
2051  const Type *Ty = Qs.strip(T);
2052
2053  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2054    QualType Pointee = PTy->getPointeeType();
2055    QualType FixedType =
2056        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2057    if (FixedType.isNull()) return FixedType;
2058    FixedType = Context.getPointerType(FixedType);
2059    return Qs.apply(FixedType);
2060  }
2061
2062  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2063  if (!VLATy)
2064    return QualType();
2065  // FIXME: We should probably handle this case
2066  if (VLATy->getElementType()->isVariablyModifiedType())
2067    return QualType();
2068
2069  Expr::EvalResult EvalResult;
2070  if (!VLATy->getSizeExpr() ||
2071      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2072      !EvalResult.Val.isInt())
2073    return QualType();
2074
2075  llvm::APSInt &Res = EvalResult.Val.getInt();
2076  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2077    // TODO: preserve the size expression in declarator info
2078    return Context.getConstantArrayType(VLATy->getElementType(),
2079                                        Res, ArrayType::Normal, 0);
2080  }
2081
2082  SizeIsNegative = true;
2083  return QualType();
2084}
2085
2086/// \brief Register the given locally-scoped external C declaration so
2087/// that it can be found later for redeclarations
2088void
2089Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2090                                       const LookupResult &Previous,
2091                                       Scope *S) {
2092  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2093         "Decl is not a locally-scoped decl!");
2094  // Note that we have a locally-scoped external with this name.
2095  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2096
2097  if (!Previous.isSingleResult())
2098    return;
2099
2100  NamedDecl *PrevDecl = Previous.getFoundDecl();
2101
2102  // If there was a previous declaration of this variable, it may be
2103  // in our identifier chain. Update the identifier chain with the new
2104  // declaration.
2105  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2106    // The previous declaration was found on the identifer resolver
2107    // chain, so remove it from its scope.
2108    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2109      S = S->getParent();
2110
2111    if (S)
2112      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2113  }
2114}
2115
2116/// \brief Diagnose function specifiers on a declaration of an identifier that
2117/// does not identify a function.
2118void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2119  // FIXME: We should probably indicate the identifier in question to avoid
2120  // confusion for constructs like "inline int a(), b;"
2121  if (D.getDeclSpec().isInlineSpecified())
2122    Diag(D.getDeclSpec().getInlineSpecLoc(),
2123         diag::err_inline_non_function);
2124
2125  if (D.getDeclSpec().isVirtualSpecified())
2126    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2127         diag::err_virtual_non_function);
2128
2129  if (D.getDeclSpec().isExplicitSpecified())
2130    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2131         diag::err_explicit_non_function);
2132}
2133
2134NamedDecl*
2135Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2136                             QualType R,  TypeSourceInfo *TInfo,
2137                             LookupResult &Previous, bool &Redeclaration) {
2138  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2139  if (D.getCXXScopeSpec().isSet()) {
2140    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2141      << D.getCXXScopeSpec().getRange();
2142    D.setInvalidType();
2143    // Pretend we didn't see the scope specifier.
2144    DC = 0;
2145  }
2146
2147  if (getLangOptions().CPlusPlus) {
2148    // Check that there are no default arguments (C++ only).
2149    CheckExtraCXXDefaultArguments(D);
2150  }
2151
2152  DiagnoseFunctionSpecifiers(D);
2153
2154  if (D.getDeclSpec().isThreadSpecified())
2155    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2156
2157  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2158  if (!NewTD) return 0;
2159
2160  // Handle attributes prior to checking for duplicates in MergeVarDecl
2161  ProcessDeclAttributes(S, NewTD, D);
2162
2163  // Merge the decl with the existing one if appropriate. If the decl is
2164  // in an outer scope, it isn't the same thing.
2165  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2166  if (!Previous.empty()) {
2167    Redeclaration = true;
2168    MergeTypeDefDecl(NewTD, Previous);
2169  }
2170
2171  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2172  // then it shall have block scope.
2173  QualType T = NewTD->getUnderlyingType();
2174  if (T->isVariablyModifiedType()) {
2175    CurFunctionNeedsScopeChecking = true;
2176
2177    if (S->getFnParent() == 0) {
2178      bool SizeIsNegative;
2179      QualType FixedTy =
2180          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2181      if (!FixedTy.isNull()) {
2182        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2183        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2184      } else {
2185        if (SizeIsNegative)
2186          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2187        else if (T->isVariableArrayType())
2188          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2189        else
2190          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2191        NewTD->setInvalidDecl();
2192      }
2193    }
2194  }
2195
2196  // If this is the C FILE type, notify the AST context.
2197  if (IdentifierInfo *II = NewTD->getIdentifier())
2198    if (!NewTD->isInvalidDecl() &&
2199        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2200      if (II->isStr("FILE"))
2201        Context.setFILEDecl(NewTD);
2202      else if (II->isStr("jmp_buf"))
2203        Context.setjmp_bufDecl(NewTD);
2204      else if (II->isStr("sigjmp_buf"))
2205        Context.setsigjmp_bufDecl(NewTD);
2206    }
2207
2208  return NewTD;
2209}
2210
2211/// \brief Determines whether the given declaration is an out-of-scope
2212/// previous declaration.
2213///
2214/// This routine should be invoked when name lookup has found a
2215/// previous declaration (PrevDecl) that is not in the scope where a
2216/// new declaration by the same name is being introduced. If the new
2217/// declaration occurs in a local scope, previous declarations with
2218/// linkage may still be considered previous declarations (C99
2219/// 6.2.2p4-5, C++ [basic.link]p6).
2220///
2221/// \param PrevDecl the previous declaration found by name
2222/// lookup
2223///
2224/// \param DC the context in which the new declaration is being
2225/// declared.
2226///
2227/// \returns true if PrevDecl is an out-of-scope previous declaration
2228/// for a new delcaration with the same name.
2229static bool
2230isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2231                                ASTContext &Context) {
2232  if (!PrevDecl)
2233    return 0;
2234
2235  if (!PrevDecl->hasLinkage())
2236    return false;
2237
2238  if (Context.getLangOptions().CPlusPlus) {
2239    // C++ [basic.link]p6:
2240    //   If there is a visible declaration of an entity with linkage
2241    //   having the same name and type, ignoring entities declared
2242    //   outside the innermost enclosing namespace scope, the block
2243    //   scope declaration declares that same entity and receives the
2244    //   linkage of the previous declaration.
2245    DeclContext *OuterContext = DC->getLookupContext();
2246    if (!OuterContext->isFunctionOrMethod())
2247      // This rule only applies to block-scope declarations.
2248      return false;
2249    else {
2250      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2251      if (PrevOuterContext->isRecord())
2252        // We found a member function: ignore it.
2253        return false;
2254      else {
2255        // Find the innermost enclosing namespace for the new and
2256        // previous declarations.
2257        while (!OuterContext->isFileContext())
2258          OuterContext = OuterContext->getParent();
2259        while (!PrevOuterContext->isFileContext())
2260          PrevOuterContext = PrevOuterContext->getParent();
2261
2262        // The previous declaration is in a different namespace, so it
2263        // isn't the same function.
2264        if (OuterContext->getPrimaryContext() !=
2265            PrevOuterContext->getPrimaryContext())
2266          return false;
2267      }
2268    }
2269  }
2270
2271  return true;
2272}
2273
2274NamedDecl*
2275Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2276                              QualType R, TypeSourceInfo *TInfo,
2277                              LookupResult &Previous,
2278                              MultiTemplateParamsArg TemplateParamLists,
2279                              bool &Redeclaration) {
2280  DeclarationName Name = GetNameForDeclarator(D);
2281
2282  // Check that there are no default arguments (C++ only).
2283  if (getLangOptions().CPlusPlus)
2284    CheckExtraCXXDefaultArguments(D);
2285
2286  VarDecl *NewVD;
2287  VarDecl::StorageClass SC;
2288  switch (D.getDeclSpec().getStorageClassSpec()) {
2289  default: assert(0 && "Unknown storage class!");
2290  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2291  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2292  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2293  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2294  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2295  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2296  case DeclSpec::SCS_mutable:
2297    // mutable can only appear on non-static class members, so it's always
2298    // an error here
2299    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2300    D.setInvalidType();
2301    SC = VarDecl::None;
2302    break;
2303  }
2304
2305  IdentifierInfo *II = Name.getAsIdentifierInfo();
2306  if (!II) {
2307    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2308      << Name.getAsString();
2309    return 0;
2310  }
2311
2312  DiagnoseFunctionSpecifiers(D);
2313
2314  if (!DC->isRecord() && S->getFnParent() == 0) {
2315    // C99 6.9p2: The storage-class specifiers auto and register shall not
2316    // appear in the declaration specifiers in an external declaration.
2317    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2318
2319      // If this is a register variable with an asm label specified, then this
2320      // is a GNU extension.
2321      if (SC == VarDecl::Register && D.getAsmLabel())
2322        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2323      else
2324        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2325      D.setInvalidType();
2326    }
2327  }
2328  if (DC->isRecord() && !CurContext->isRecord()) {
2329    // This is an out-of-line definition of a static data member.
2330    if (SC == VarDecl::Static) {
2331      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2332           diag::err_static_out_of_line)
2333        << CodeModificationHint::CreateRemoval(
2334                                      D.getDeclSpec().getStorageClassSpecLoc());
2335    } else if (SC == VarDecl::None)
2336      SC = VarDecl::Static;
2337  }
2338  if (SC == VarDecl::Static) {
2339    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2340      if (RD->isLocalClass())
2341        Diag(D.getIdentifierLoc(),
2342             diag::err_static_data_member_not_allowed_in_local_class)
2343          << Name << RD->getDeclName();
2344    }
2345  }
2346
2347  // Match up the template parameter lists with the scope specifier, then
2348  // determine whether we have a template or a template specialization.
2349  bool isExplicitSpecialization = false;
2350  if (TemplateParameterList *TemplateParams
2351        = MatchTemplateParametersToScopeSpecifier(
2352                                  D.getDeclSpec().getSourceRange().getBegin(),
2353                                                  D.getCXXScopeSpec(),
2354                        (TemplateParameterList**)TemplateParamLists.get(),
2355                                                   TemplateParamLists.size(),
2356                                                  isExplicitSpecialization)) {
2357    if (TemplateParams->size() > 0) {
2358      // There is no such thing as a variable template.
2359      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2360        << II
2361        << SourceRange(TemplateParams->getTemplateLoc(),
2362                       TemplateParams->getRAngleLoc());
2363      return 0;
2364    } else {
2365      // There is an extraneous 'template<>' for this variable. Complain
2366      // about it, but allow the declaration of the variable.
2367      Diag(TemplateParams->getTemplateLoc(),
2368           diag::err_template_variable_noparams)
2369        << II
2370        << SourceRange(TemplateParams->getTemplateLoc(),
2371                       TemplateParams->getRAngleLoc());
2372
2373      isExplicitSpecialization = true;
2374    }
2375  }
2376
2377  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2378                          II, R, TInfo, SC);
2379
2380  if (D.isInvalidType())
2381    NewVD->setInvalidDecl();
2382
2383  if (D.getDeclSpec().isThreadSpecified()) {
2384    if (NewVD->hasLocalStorage())
2385      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2386    else if (!Context.Target.isTLSSupported())
2387      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2388    else
2389      NewVD->setThreadSpecified(true);
2390  }
2391
2392  // Set the lexical context. If the declarator has a C++ scope specifier, the
2393  // lexical context will be different from the semantic context.
2394  NewVD->setLexicalDeclContext(CurContext);
2395
2396  // Handle attributes prior to checking for duplicates in MergeVarDecl
2397  ProcessDeclAttributes(S, NewVD, D);
2398
2399  // Handle GNU asm-label extension (encoded as an attribute).
2400  if (Expr *E = (Expr*) D.getAsmLabel()) {
2401    // The parser guarantees this is a string.
2402    StringLiteral *SE = cast<StringLiteral>(E);
2403    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2404  }
2405
2406  // Don't consider existing declarations that are in a different
2407  // scope and are out-of-semantic-context declarations (if the new
2408  // declaration has linkage).
2409  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2410
2411  // Merge the decl with the existing one if appropriate.
2412  if (!Previous.empty()) {
2413    if (Previous.isSingleResult() &&
2414        isa<FieldDecl>(Previous.getFoundDecl()) &&
2415        D.getCXXScopeSpec().isSet()) {
2416      // The user tried to define a non-static data member
2417      // out-of-line (C++ [dcl.meaning]p1).
2418      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2419        << D.getCXXScopeSpec().getRange();
2420      Previous.clear();
2421      NewVD->setInvalidDecl();
2422    }
2423  } else if (D.getCXXScopeSpec().isSet()) {
2424    // No previous declaration in the qualifying scope.
2425    Diag(D.getIdentifierLoc(), diag::err_no_member)
2426      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2427      << D.getCXXScopeSpec().getRange();
2428    NewVD->setInvalidDecl();
2429  }
2430
2431  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2432
2433  // This is an explicit specialization of a static data member. Check it.
2434  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2435      CheckMemberSpecialization(NewVD, Previous))
2436    NewVD->setInvalidDecl();
2437
2438  // attributes declared post-definition are currently ignored
2439  if (Previous.isSingleResult()) {
2440    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2441    if (Def && (Def = Def->getDefinition()) &&
2442        Def != NewVD && D.hasAttributes()) {
2443      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2444      Diag(Def->getLocation(), diag::note_previous_definition);
2445    }
2446  }
2447
2448  // If this is a locally-scoped extern C variable, update the map of
2449  // such variables.
2450  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2451      !NewVD->isInvalidDecl())
2452    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2453
2454  return NewVD;
2455}
2456
2457/// \brief Perform semantic checking on a newly-created variable
2458/// declaration.
2459///
2460/// This routine performs all of the type-checking required for a
2461/// variable declaration once it has been built. It is used both to
2462/// check variables after they have been parsed and their declarators
2463/// have been translated into a declaration, and to check variables
2464/// that have been instantiated from a template.
2465///
2466/// Sets NewVD->isInvalidDecl() if an error was encountered.
2467void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2468                                    LookupResult &Previous,
2469                                    bool &Redeclaration) {
2470  // If the decl is already known invalid, don't check it.
2471  if (NewVD->isInvalidDecl())
2472    return;
2473
2474  QualType T = NewVD->getType();
2475
2476  if (T->isObjCInterfaceType()) {
2477    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2478    return NewVD->setInvalidDecl();
2479  }
2480
2481  // Emit an error if an address space was applied to decl with local storage.
2482  // This includes arrays of objects with address space qualifiers, but not
2483  // automatic variables that point to other address spaces.
2484  // ISO/IEC TR 18037 S5.1.2
2485  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2486    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2487    return NewVD->setInvalidDecl();
2488  }
2489
2490  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2491      && !NewVD->hasAttr<BlocksAttr>())
2492    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2493
2494  bool isVM = T->isVariablyModifiedType();
2495  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2496      NewVD->hasAttr<BlocksAttr>())
2497    CurFunctionNeedsScopeChecking = true;
2498
2499  if ((isVM && NewVD->hasLinkage()) ||
2500      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2501    bool SizeIsNegative;
2502    QualType FixedTy =
2503        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2504
2505    if (FixedTy.isNull() && T->isVariableArrayType()) {
2506      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2507      // FIXME: This won't give the correct result for
2508      // int a[10][n];
2509      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2510
2511      if (NewVD->isFileVarDecl())
2512        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2513        << SizeRange;
2514      else if (NewVD->getStorageClass() == VarDecl::Static)
2515        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2516        << SizeRange;
2517      else
2518        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2519        << SizeRange;
2520      return NewVD->setInvalidDecl();
2521    }
2522
2523    if (FixedTy.isNull()) {
2524      if (NewVD->isFileVarDecl())
2525        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2526      else
2527        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2528      return NewVD->setInvalidDecl();
2529    }
2530
2531    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2532    NewVD->setType(FixedTy);
2533  }
2534
2535  if (Previous.empty() && NewVD->isExternC()) {
2536    // Since we did not find anything by this name and we're declaring
2537    // an extern "C" variable, look for a non-visible extern "C"
2538    // declaration with the same name.
2539    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2540      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2541    if (Pos != LocallyScopedExternalDecls.end())
2542      Previous.addDecl(Pos->second);
2543  }
2544
2545  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2546    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2547      << T;
2548    return NewVD->setInvalidDecl();
2549  }
2550
2551  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2552    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2553    return NewVD->setInvalidDecl();
2554  }
2555
2556  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2557    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2558    return NewVD->setInvalidDecl();
2559  }
2560
2561  if (!Previous.empty()) {
2562    Redeclaration = true;
2563    MergeVarDecl(NewVD, Previous);
2564  }
2565}
2566
2567/// \brief Data used with FindOverriddenMethod
2568struct FindOverriddenMethodData {
2569  Sema *S;
2570  CXXMethodDecl *Method;
2571};
2572
2573/// \brief Member lookup function that determines whether a given C++
2574/// method overrides a method in a base class, to be used with
2575/// CXXRecordDecl::lookupInBases().
2576static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2577                                 CXXBasePath &Path,
2578                                 void *UserData) {
2579  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2580
2581  FindOverriddenMethodData *Data
2582    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2583
2584  DeclarationName Name = Data->Method->getDeclName();
2585
2586  // FIXME: Do we care about other names here too?
2587  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2588    // We really want to find the base class constructor here.
2589    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2590    CanQualType CT = Data->S->Context.getCanonicalType(T);
2591
2592    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2593  }
2594
2595  for (Path.Decls = BaseRecord->lookup(Name);
2596       Path.Decls.first != Path.Decls.second;
2597       ++Path.Decls.first) {
2598    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2599      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2600        return true;
2601    }
2602  }
2603
2604  return false;
2605}
2606
2607/// AddOverriddenMethods - See if a method overrides any in the base classes,
2608/// and if so, check that it's a valid override and remember it.
2609void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2610  // Look for virtual methods in base classes that this method might override.
2611  CXXBasePaths Paths;
2612  FindOverriddenMethodData Data;
2613  Data.Method = MD;
2614  Data.S = this;
2615  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2616    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2617         E = Paths.found_decls_end(); I != E; ++I) {
2618      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2619        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2620            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2621            !CheckOverridingFunctionAttributes(MD, OldMD))
2622          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2623      }
2624    }
2625  }
2626}
2627
2628NamedDecl*
2629Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2630                              QualType R, TypeSourceInfo *TInfo,
2631                              LookupResult &Previous,
2632                              MultiTemplateParamsArg TemplateParamLists,
2633                              bool IsFunctionDefinition, bool &Redeclaration) {
2634  assert(R.getTypePtr()->isFunctionType());
2635
2636  DeclarationName Name = GetNameForDeclarator(D);
2637  FunctionDecl::StorageClass SC = FunctionDecl::None;
2638  switch (D.getDeclSpec().getStorageClassSpec()) {
2639  default: assert(0 && "Unknown storage class!");
2640  case DeclSpec::SCS_auto:
2641  case DeclSpec::SCS_register:
2642  case DeclSpec::SCS_mutable:
2643    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2644         diag::err_typecheck_sclass_func);
2645    D.setInvalidType();
2646    break;
2647  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2648  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2649  case DeclSpec::SCS_static: {
2650    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2651      // C99 6.7.1p5:
2652      //   The declaration of an identifier for a function that has
2653      //   block scope shall have no explicit storage-class specifier
2654      //   other than extern
2655      // See also (C++ [dcl.stc]p4).
2656      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2657           diag::err_static_block_func);
2658      SC = FunctionDecl::None;
2659    } else
2660      SC = FunctionDecl::Static;
2661    break;
2662  }
2663  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2664  }
2665
2666  if (D.getDeclSpec().isThreadSpecified())
2667    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2668
2669  bool isFriend = D.getDeclSpec().isFriendSpecified();
2670  bool isInline = D.getDeclSpec().isInlineSpecified();
2671  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2672  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2673
2674  // Check that the return type is not an abstract class type.
2675  // For record types, this is done by the AbstractClassUsageDiagnoser once
2676  // the class has been completely parsed.
2677  if (!DC->isRecord() &&
2678      RequireNonAbstractType(D.getIdentifierLoc(),
2679                             R->getAs<FunctionType>()->getResultType(),
2680                             diag::err_abstract_type_in_decl,
2681                             AbstractReturnType))
2682    D.setInvalidType();
2683
2684  // Do not allow returning a objc interface by-value.
2685  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2686    Diag(D.getIdentifierLoc(),
2687         diag::err_object_cannot_be_passed_returned_by_value) << 0
2688      << R->getAs<FunctionType>()->getResultType();
2689    D.setInvalidType();
2690  }
2691
2692  bool isVirtualOkay = false;
2693  FunctionDecl *NewFD;
2694
2695  if (isFriend) {
2696    // C++ [class.friend]p5
2697    //   A function can be defined in a friend declaration of a
2698    //   class . . . . Such a function is implicitly inline.
2699    isInline |= IsFunctionDefinition;
2700  }
2701
2702  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2703    // This is a C++ constructor declaration.
2704    assert(DC->isRecord() &&
2705           "Constructors can only be declared in a member context");
2706
2707    R = CheckConstructorDeclarator(D, R, SC);
2708
2709    // Create the new declaration
2710    NewFD = CXXConstructorDecl::Create(Context,
2711                                       cast<CXXRecordDecl>(DC),
2712                                       D.getIdentifierLoc(), Name, R, TInfo,
2713                                       isExplicit, isInline,
2714                                       /*isImplicitlyDeclared=*/false);
2715  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2716    // This is a C++ destructor declaration.
2717    if (DC->isRecord()) {
2718      R = CheckDestructorDeclarator(D, SC);
2719
2720      NewFD = CXXDestructorDecl::Create(Context,
2721                                        cast<CXXRecordDecl>(DC),
2722                                        D.getIdentifierLoc(), Name, R,
2723                                        isInline,
2724                                        /*isImplicitlyDeclared=*/false);
2725
2726      isVirtualOkay = true;
2727    } else {
2728      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2729
2730      // Create a FunctionDecl to satisfy the function definition parsing
2731      // code path.
2732      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2733                                   Name, R, TInfo, SC, isInline,
2734                                   /*hasPrototype=*/true);
2735      D.setInvalidType();
2736    }
2737  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2738    if (!DC->isRecord()) {
2739      Diag(D.getIdentifierLoc(),
2740           diag::err_conv_function_not_member);
2741      return 0;
2742    }
2743
2744    CheckConversionDeclarator(D, R, SC);
2745    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2746                                      D.getIdentifierLoc(), Name, R, TInfo,
2747                                      isInline, isExplicit);
2748
2749    isVirtualOkay = true;
2750  } else if (DC->isRecord()) {
2751    // If the of the function is the same as the name of the record, then this
2752    // must be an invalid constructor that has a return type.
2753    // (The parser checks for a return type and makes the declarator a
2754    // constructor if it has no return type).
2755    // must have an invalid constructor that has a return type
2756    if (Name.getAsIdentifierInfo() &&
2757        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2758      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2759        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2760        << SourceRange(D.getIdentifierLoc());
2761      return 0;
2762    }
2763
2764    bool isStatic = SC == FunctionDecl::Static;
2765
2766    // [class.free]p1:
2767    // Any allocation function for a class T is a static member
2768    // (even if not explicitly declared static).
2769    if (Name.getCXXOverloadedOperator() == OO_New ||
2770        Name.getCXXOverloadedOperator() == OO_Array_New)
2771      isStatic = true;
2772
2773    // [class.free]p6 Any deallocation function for a class X is a static member
2774    // (even if not explicitly declared static).
2775    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2776        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2777      isStatic = true;
2778
2779    // This is a C++ method declaration.
2780    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2781                                  D.getIdentifierLoc(), Name, R, TInfo,
2782                                  isStatic, isInline);
2783
2784    isVirtualOkay = !isStatic;
2785  } else {
2786    // Determine whether the function was written with a
2787    // prototype. This true when:
2788    //   - we're in C++ (where every function has a prototype),
2789    //   - there is a prototype in the declarator, or
2790    //   - the type R of the function is some kind of typedef or other reference
2791    //     to a type name (which eventually refers to a function type).
2792    bool HasPrototype =
2793       getLangOptions().CPlusPlus ||
2794       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2795       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2796
2797    NewFD = FunctionDecl::Create(Context, DC,
2798                                 D.getIdentifierLoc(),
2799                                 Name, R, TInfo, SC, isInline, HasPrototype);
2800  }
2801
2802  if (D.isInvalidType())
2803    NewFD->setInvalidDecl();
2804
2805  // Set the lexical context. If the declarator has a C++
2806  // scope specifier, or is the object of a friend declaration, the
2807  // lexical context will be different from the semantic context.
2808  NewFD->setLexicalDeclContext(CurContext);
2809
2810  // Match up the template parameter lists with the scope specifier, then
2811  // determine whether we have a template or a template specialization.
2812  FunctionTemplateDecl *FunctionTemplate = 0;
2813  bool isExplicitSpecialization = false;
2814  bool isFunctionTemplateSpecialization = false;
2815  if (TemplateParameterList *TemplateParams
2816        = MatchTemplateParametersToScopeSpecifier(
2817                                  D.getDeclSpec().getSourceRange().getBegin(),
2818                                  D.getCXXScopeSpec(),
2819                           (TemplateParameterList**)TemplateParamLists.get(),
2820                                                  TemplateParamLists.size(),
2821                                                  isExplicitSpecialization)) {
2822    if (TemplateParams->size() > 0) {
2823      // This is a function template
2824
2825      // Check that we can declare a template here.
2826      if (CheckTemplateDeclScope(S, TemplateParams))
2827        return 0;
2828
2829      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2830                                                      NewFD->getLocation(),
2831                                                      Name, TemplateParams,
2832                                                      NewFD);
2833      FunctionTemplate->setLexicalDeclContext(CurContext);
2834      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2835    } else {
2836      // This is a function template specialization.
2837      isFunctionTemplateSpecialization = true;
2838    }
2839
2840    // FIXME: Free this memory properly.
2841    TemplateParamLists.release();
2842  }
2843
2844  // C++ [dcl.fct.spec]p5:
2845  //   The virtual specifier shall only be used in declarations of
2846  //   nonstatic class member functions that appear within a
2847  //   member-specification of a class declaration; see 10.3.
2848  //
2849  if (isVirtual && !NewFD->isInvalidDecl()) {
2850    if (!isVirtualOkay) {
2851       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2852           diag::err_virtual_non_function);
2853    } else if (!CurContext->isRecord()) {
2854      // 'virtual' was specified outside of the class.
2855      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2856        << CodeModificationHint::CreateRemoval(
2857                                           D.getDeclSpec().getVirtualSpecLoc());
2858    } else {
2859      // Okay: Add virtual to the method.
2860      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2861      CurClass->setMethodAsVirtual(NewFD);
2862    }
2863  }
2864
2865  // C++ [dcl.fct.spec]p6:
2866  //  The explicit specifier shall be used only in the declaration of a
2867  //  constructor or conversion function within its class definition; see 12.3.1
2868  //  and 12.3.2.
2869  if (isExplicit && !NewFD->isInvalidDecl()) {
2870    if (!CurContext->isRecord()) {
2871      // 'explicit' was specified outside of the class.
2872      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2873           diag::err_explicit_out_of_class)
2874        << CodeModificationHint::CreateRemoval(
2875                                          D.getDeclSpec().getExplicitSpecLoc());
2876    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2877               !isa<CXXConversionDecl>(NewFD)) {
2878      // 'explicit' was specified on a function that wasn't a constructor
2879      // or conversion function.
2880      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2881           diag::err_explicit_non_ctor_or_conv_function)
2882        << CodeModificationHint::CreateRemoval(
2883                                          D.getDeclSpec().getExplicitSpecLoc());
2884    }
2885  }
2886
2887  // Filter out previous declarations that don't match the scope.
2888  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2889
2890  if (isFriend) {
2891    // DC is the namespace in which the function is being declared.
2892    assert((DC->isFileContext() || !Previous.empty()) &&
2893           "previously-undeclared friend function being created "
2894           "in a non-namespace context");
2895
2896    if (FunctionTemplate) {
2897      FunctionTemplate->setObjectOfFriendDecl(
2898                                   /* PreviouslyDeclared= */ !Previous.empty());
2899      FunctionTemplate->setAccess(AS_public);
2900    }
2901    else
2902      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2903
2904    NewFD->setAccess(AS_public);
2905  }
2906
2907  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2908      !CurContext->isRecord()) {
2909    // C++ [class.static]p1:
2910    //   A data or function member of a class may be declared static
2911    //   in a class definition, in which case it is a static member of
2912    //   the class.
2913
2914    // Complain about the 'static' specifier if it's on an out-of-line
2915    // member function definition.
2916    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2917         diag::err_static_out_of_line)
2918      << CodeModificationHint::CreateRemoval(
2919                                      D.getDeclSpec().getStorageClassSpecLoc());
2920  }
2921
2922  // Handle GNU asm-label extension (encoded as an attribute).
2923  if (Expr *E = (Expr*) D.getAsmLabel()) {
2924    // The parser guarantees this is a string.
2925    StringLiteral *SE = cast<StringLiteral>(E);
2926    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2927  }
2928
2929  // Copy the parameter declarations from the declarator D to the function
2930  // declaration NewFD, if they are available.  First scavenge them into Params.
2931  llvm::SmallVector<ParmVarDecl*, 16> Params;
2932  if (D.getNumTypeObjects() > 0) {
2933    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2934
2935    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2936    // function that takes no arguments, not a function that takes a
2937    // single void argument.
2938    // We let through "const void" here because Sema::GetTypeForDeclarator
2939    // already checks for that case.
2940    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2941        FTI.ArgInfo[0].Param &&
2942        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2943      // Empty arg list, don't push any params.
2944      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2945
2946      // In C++, the empty parameter-type-list must be spelled "void"; a
2947      // typedef of void is not permitted.
2948      if (getLangOptions().CPlusPlus &&
2949          Param->getType().getUnqualifiedType() != Context.VoidTy)
2950        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2951      // FIXME: Leaks decl?
2952    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2953      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2954        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2955        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2956        Param->setDeclContext(NewFD);
2957        Params.push_back(Param);
2958      }
2959    }
2960
2961  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2962    // When we're declaring a function with a typedef, typeof, etc as in the
2963    // following example, we'll need to synthesize (unnamed)
2964    // parameters for use in the declaration.
2965    //
2966    // @code
2967    // typedef void fn(int);
2968    // fn f;
2969    // @endcode
2970
2971    // Synthesize a parameter for each argument type.
2972    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2973         AE = FT->arg_type_end(); AI != AE; ++AI) {
2974      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
2975                                               SourceLocation(), 0,
2976                                               *AI, /*TInfo=*/0,
2977                                               VarDecl::None, 0);
2978      Param->setImplicit();
2979      Params.push_back(Param);
2980    }
2981  } else {
2982    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2983           "Should not need args for typedef of non-prototype fn");
2984  }
2985  // Finally, we know we have the right number of parameters, install them.
2986  NewFD->setParams(Params.data(), Params.size());
2987
2988  // If the declarator is a template-id, translate the parser's template
2989  // argument list into our AST format.
2990  bool HasExplicitTemplateArgs = false;
2991  TemplateArgumentListInfo TemplateArgs;
2992  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2993    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2994    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2995    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2996    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2997                                       TemplateId->getTemplateArgs(),
2998                                       TemplateId->NumArgs);
2999    translateTemplateArguments(TemplateArgsPtr,
3000                               TemplateArgs);
3001    TemplateArgsPtr.release();
3002
3003    HasExplicitTemplateArgs = true;
3004
3005    if (FunctionTemplate) {
3006      // FIXME: Diagnose function template with explicit template
3007      // arguments.
3008      HasExplicitTemplateArgs = false;
3009    } else if (!isFunctionTemplateSpecialization &&
3010               !D.getDeclSpec().isFriendSpecified()) {
3011      // We have encountered something that the user meant to be a
3012      // specialization (because it has explicitly-specified template
3013      // arguments) but that was not introduced with a "template<>" (or had
3014      // too few of them).
3015      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3016        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3017        << CodeModificationHint::CreateInsertion(
3018                                   D.getDeclSpec().getSourceRange().getBegin(),
3019                                                 "template<> ");
3020      isFunctionTemplateSpecialization = true;
3021    }
3022  }
3023
3024  if (isFunctionTemplateSpecialization) {
3025      if (CheckFunctionTemplateSpecialization(NewFD,
3026                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3027                                              Previous))
3028        NewFD->setInvalidDecl();
3029  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3030             CheckMemberSpecialization(NewFD, Previous))
3031    NewFD->setInvalidDecl();
3032
3033  // Perform semantic checking on the function declaration.
3034  bool OverloadableAttrRequired = false; // FIXME: HACK!
3035  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3036                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3037
3038  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3039          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3040         "previous declaration set still overloaded");
3041
3042  // If we have a function template, check the template parameter
3043  // list. This will check and merge default template arguments.
3044  if (FunctionTemplate) {
3045    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3046    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3047                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3048             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3049                                                : TPC_FunctionTemplate);
3050  }
3051
3052  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3053    // Fake up an access specifier if it's supposed to be a class member.
3054    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3055      NewFD->setAccess(AS_public);
3056
3057    // An out-of-line member function declaration must also be a
3058    // definition (C++ [dcl.meaning]p1).
3059    // Note that this is not the case for explicit specializations of
3060    // function templates or member functions of class templates, per
3061    // C++ [temp.expl.spec]p2.
3062    if (!IsFunctionDefinition && !isFriend &&
3063        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3064      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3065        << D.getCXXScopeSpec().getRange();
3066      NewFD->setInvalidDecl();
3067    } else if (!Redeclaration &&
3068               !(isFriend && CurContext->isDependentContext())) {
3069      // The user tried to provide an out-of-line definition for a
3070      // function that is a member of a class or namespace, but there
3071      // was no such member function declared (C++ [class.mfct]p2,
3072      // C++ [namespace.memdef]p2). For example:
3073      //
3074      // class X {
3075      //   void f() const;
3076      // };
3077      //
3078      // void X::f() { } // ill-formed
3079      //
3080      // Complain about this problem, and attempt to suggest close
3081      // matches (e.g., those that differ only in cv-qualifiers and
3082      // whether the parameter types are references).
3083      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3084        << Name << DC << D.getCXXScopeSpec().getRange();
3085      NewFD->setInvalidDecl();
3086
3087      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3088                        ForRedeclaration);
3089      LookupQualifiedName(Prev, DC);
3090      assert(!Prev.isAmbiguous() &&
3091             "Cannot have an ambiguity in previous-declaration lookup");
3092      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3093           Func != FuncEnd; ++Func) {
3094        if (isa<FunctionDecl>(*Func) &&
3095            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3096          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3097      }
3098    }
3099  }
3100
3101  // Handle attributes. We need to have merged decls when handling attributes
3102  // (for example to check for conflicts, etc).
3103  // FIXME: This needs to happen before we merge declarations. Then,
3104  // let attribute merging cope with attribute conflicts.
3105  ProcessDeclAttributes(S, NewFD, D);
3106
3107  // attributes declared post-definition are currently ignored
3108  if (Redeclaration && Previous.isSingleResult()) {
3109    const FunctionDecl *Def;
3110    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3111    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3112      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3113      Diag(Def->getLocation(), diag::note_previous_definition);
3114    }
3115  }
3116
3117  AddKnownFunctionAttributes(NewFD);
3118
3119  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3120    // If a function name is overloadable in C, then every function
3121    // with that name must be marked "overloadable".
3122    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3123      << Redeclaration << NewFD;
3124    if (!Previous.empty())
3125      Diag(Previous.getRepresentativeDecl()->getLocation(),
3126           diag::note_attribute_overloadable_prev_overload);
3127    NewFD->addAttr(::new (Context) OverloadableAttr());
3128  }
3129
3130  // If this is a locally-scoped extern C function, update the
3131  // map of such names.
3132  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3133      && !NewFD->isInvalidDecl())
3134    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3135
3136  // Set this FunctionDecl's range up to the right paren.
3137  NewFD->setLocEnd(D.getSourceRange().getEnd());
3138
3139  if (FunctionTemplate && NewFD->isInvalidDecl())
3140    FunctionTemplate->setInvalidDecl();
3141
3142  if (FunctionTemplate)
3143    return FunctionTemplate;
3144
3145
3146  // Keep track of static, non-inlined function definitions that
3147  // have not been used. We will warn later.
3148  // FIXME: Also include static functions declared but not defined.
3149  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3150      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3151      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>())
3152    UnusedStaticFuncs.push_back(NewFD);
3153
3154  return NewFD;
3155}
3156
3157/// \brief Perform semantic checking of a new function declaration.
3158///
3159/// Performs semantic analysis of the new function declaration
3160/// NewFD. This routine performs all semantic checking that does not
3161/// require the actual declarator involved in the declaration, and is
3162/// used both for the declaration of functions as they are parsed
3163/// (called via ActOnDeclarator) and for the declaration of functions
3164/// that have been instantiated via C++ template instantiation (called
3165/// via InstantiateDecl).
3166///
3167/// \param IsExplicitSpecialiation whether this new function declaration is
3168/// an explicit specialization of the previous declaration.
3169///
3170/// This sets NewFD->isInvalidDecl() to true if there was an error.
3171void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3172                                    LookupResult &Previous,
3173                                    bool IsExplicitSpecialization,
3174                                    bool &Redeclaration,
3175                                    bool &OverloadableAttrRequired) {
3176  // If NewFD is already known erroneous, don't do any of this checking.
3177  if (NewFD->isInvalidDecl())
3178    return;
3179
3180  if (NewFD->getResultType()->isVariablyModifiedType()) {
3181    // Functions returning a variably modified type violate C99 6.7.5.2p2
3182    // because all functions have linkage.
3183    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3184    return NewFD->setInvalidDecl();
3185  }
3186
3187  if (NewFD->isMain())
3188    CheckMain(NewFD);
3189
3190  // Check for a previous declaration of this name.
3191  if (Previous.empty() && NewFD->isExternC()) {
3192    // Since we did not find anything by this name and we're declaring
3193    // an extern "C" function, look for a non-visible extern "C"
3194    // declaration with the same name.
3195    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3196      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3197    if (Pos != LocallyScopedExternalDecls.end())
3198      Previous.addDecl(Pos->second);
3199  }
3200
3201  // Merge or overload the declaration with an existing declaration of
3202  // the same name, if appropriate.
3203  if (!Previous.empty()) {
3204    // Determine whether NewFD is an overload of PrevDecl or
3205    // a declaration that requires merging. If it's an overload,
3206    // there's no more work to do here; we'll just add the new
3207    // function to the scope.
3208
3209    NamedDecl *OldDecl = 0;
3210    if (!AllowOverloadingOfFunction(Previous, Context)) {
3211      Redeclaration = true;
3212      OldDecl = Previous.getFoundDecl();
3213    } else {
3214      if (!getLangOptions().CPlusPlus) {
3215        OverloadableAttrRequired = true;
3216
3217        // Functions marked "overloadable" must have a prototype (that
3218        // we can't get through declaration merging).
3219        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3220          Diag(NewFD->getLocation(),
3221               diag::err_attribute_overloadable_no_prototype)
3222            << NewFD;
3223          Redeclaration = true;
3224
3225          // Turn this into a variadic function with no parameters.
3226          QualType R = Context.getFunctionType(
3227                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3228                     0, 0, true, 0);
3229          NewFD->setType(R);
3230          return NewFD->setInvalidDecl();
3231        }
3232      }
3233
3234      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3235      case Ovl_Match:
3236        Redeclaration = true;
3237        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3238          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3239          Redeclaration = false;
3240        }
3241        break;
3242
3243      case Ovl_NonFunction:
3244        Redeclaration = true;
3245        break;
3246
3247      case Ovl_Overload:
3248        Redeclaration = false;
3249        break;
3250      }
3251    }
3252
3253    if (Redeclaration) {
3254      // NewFD and OldDecl represent declarations that need to be
3255      // merged.
3256      if (MergeFunctionDecl(NewFD, OldDecl))
3257        return NewFD->setInvalidDecl();
3258
3259      Previous.clear();
3260      Previous.addDecl(OldDecl);
3261
3262      if (FunctionTemplateDecl *OldTemplateDecl
3263                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3264        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3265        FunctionTemplateDecl *NewTemplateDecl
3266          = NewFD->getDescribedFunctionTemplate();
3267        assert(NewTemplateDecl && "Template/non-template mismatch");
3268        if (CXXMethodDecl *Method
3269              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3270          Method->setAccess(OldTemplateDecl->getAccess());
3271          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3272        }
3273
3274        // If this is an explicit specialization of a member that is a function
3275        // template, mark it as a member specialization.
3276        if (IsExplicitSpecialization &&
3277            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3278          NewTemplateDecl->setMemberSpecialization();
3279          assert(OldTemplateDecl->isMemberSpecialization());
3280        }
3281      } else {
3282        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3283          NewFD->setAccess(OldDecl->getAccess());
3284        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3285      }
3286    }
3287  }
3288
3289  // Semantic checking for this function declaration (in isolation).
3290  if (getLangOptions().CPlusPlus) {
3291    // C++-specific checks.
3292    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3293      CheckConstructor(Constructor);
3294    } else if (CXXDestructorDecl *Destructor =
3295                dyn_cast<CXXDestructorDecl>(NewFD)) {
3296      CXXRecordDecl *Record = Destructor->getParent();
3297      QualType ClassType = Context.getTypeDeclType(Record);
3298
3299      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3300      // type is dependent? Both gcc and edg can handle that.
3301      if (!ClassType->isDependentType()) {
3302        DeclarationName Name
3303          = Context.DeclarationNames.getCXXDestructorName(
3304                                        Context.getCanonicalType(ClassType));
3305        if (NewFD->getDeclName() != Name) {
3306          Diag(NewFD->getLocation(), diag::err_destructor_name);
3307          return NewFD->setInvalidDecl();
3308        }
3309      }
3310
3311      Record->setUserDeclaredDestructor(true);
3312      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3313      // user-defined destructor.
3314      Record->setPOD(false);
3315
3316      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3317      // declared destructor.
3318      // FIXME: C++0x: don't do this for "= default" destructors
3319      Record->setHasTrivialDestructor(false);
3320    } else if (CXXConversionDecl *Conversion
3321               = dyn_cast<CXXConversionDecl>(NewFD)) {
3322      ActOnConversionDeclarator(Conversion);
3323    }
3324
3325    // Find any virtual functions that this function overrides.
3326    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3327      if (!Method->isFunctionTemplateSpecialization() &&
3328          !Method->getDescribedFunctionTemplate())
3329        AddOverriddenMethods(Method->getParent(), Method);
3330    }
3331
3332    // Additional checks for the destructor; make sure we do this after we
3333    // figure out whether the destructor is virtual.
3334    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3335      if (!Destructor->getParent()->isDependentType())
3336        CheckDestructor(Destructor);
3337
3338    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3339    if (NewFD->isOverloadedOperator() &&
3340        CheckOverloadedOperatorDeclaration(NewFD))
3341      return NewFD->setInvalidDecl();
3342
3343    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3344    if (NewFD->getLiteralIdentifier() &&
3345        CheckLiteralOperatorDeclaration(NewFD))
3346      return NewFD->setInvalidDecl();
3347
3348    // In C++, check default arguments now that we have merged decls. Unless
3349    // the lexical context is the class, because in this case this is done
3350    // during delayed parsing anyway.
3351    if (!CurContext->isRecord())
3352      CheckCXXDefaultArguments(NewFD);
3353  }
3354}
3355
3356void Sema::CheckMain(FunctionDecl* FD) {
3357  // C++ [basic.start.main]p3:  A program that declares main to be inline
3358  //   or static is ill-formed.
3359  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3360  //   shall not appear in a declaration of main.
3361  // static main is not an error under C99, but we should warn about it.
3362  bool isInline = FD->isInlineSpecified();
3363  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3364  if (isInline || isStatic) {
3365    unsigned diagID = diag::warn_unusual_main_decl;
3366    if (isInline || getLangOptions().CPlusPlus)
3367      diagID = diag::err_unusual_main_decl;
3368
3369    int which = isStatic + (isInline << 1) - 1;
3370    Diag(FD->getLocation(), diagID) << which;
3371  }
3372
3373  QualType T = FD->getType();
3374  assert(T->isFunctionType() && "function decl is not of function type");
3375  const FunctionType* FT = T->getAs<FunctionType>();
3376
3377  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3378    // TODO: add a replacement fixit to turn the return type into 'int'.
3379    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3380    FD->setInvalidDecl(true);
3381  }
3382
3383  // Treat protoless main() as nullary.
3384  if (isa<FunctionNoProtoType>(FT)) return;
3385
3386  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3387  unsigned nparams = FTP->getNumArgs();
3388  assert(FD->getNumParams() == nparams);
3389
3390  bool HasExtraParameters = (nparams > 3);
3391
3392  // Darwin passes an undocumented fourth argument of type char**.  If
3393  // other platforms start sprouting these, the logic below will start
3394  // getting shifty.
3395  if (nparams == 4 &&
3396      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3397    HasExtraParameters = false;
3398
3399  if (HasExtraParameters) {
3400    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3401    FD->setInvalidDecl(true);
3402    nparams = 3;
3403  }
3404
3405  // FIXME: a lot of the following diagnostics would be improved
3406  // if we had some location information about types.
3407
3408  QualType CharPP =
3409    Context.getPointerType(Context.getPointerType(Context.CharTy));
3410  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3411
3412  for (unsigned i = 0; i < nparams; ++i) {
3413    QualType AT = FTP->getArgType(i);
3414
3415    bool mismatch = true;
3416
3417    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3418      mismatch = false;
3419    else if (Expected[i] == CharPP) {
3420      // As an extension, the following forms are okay:
3421      //   char const **
3422      //   char const * const *
3423      //   char * const *
3424
3425      QualifierCollector qs;
3426      const PointerType* PT;
3427      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3428          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3429          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3430        qs.removeConst();
3431        mismatch = !qs.empty();
3432      }
3433    }
3434
3435    if (mismatch) {
3436      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3437      // TODO: suggest replacing given type with expected type
3438      FD->setInvalidDecl(true);
3439    }
3440  }
3441
3442  if (nparams == 1 && !FD->isInvalidDecl()) {
3443    Diag(FD->getLocation(), diag::warn_main_one_arg);
3444  }
3445}
3446
3447bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3448  // FIXME: Need strict checking.  In C89, we need to check for
3449  // any assignment, increment, decrement, function-calls, or
3450  // commas outside of a sizeof.  In C99, it's the same list,
3451  // except that the aforementioned are allowed in unevaluated
3452  // expressions.  Everything else falls under the
3453  // "may accept other forms of constant expressions" exception.
3454  // (We never end up here for C++, so the constant expression
3455  // rules there don't matter.)
3456  if (Init->isConstantInitializer(Context))
3457    return false;
3458  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3459    << Init->getSourceRange();
3460  return true;
3461}
3462
3463void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3464  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3465}
3466
3467/// AddInitializerToDecl - Adds the initializer Init to the
3468/// declaration dcl. If DirectInit is true, this is C++ direct
3469/// initialization rather than copy initialization.
3470void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3471  Decl *RealDecl = dcl.getAs<Decl>();
3472  // If there is no declaration, there was an error parsing it.  Just ignore
3473  // the initializer.
3474  if (RealDecl == 0)
3475    return;
3476
3477  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3478    // With declarators parsed the way they are, the parser cannot
3479    // distinguish between a normal initializer and a pure-specifier.
3480    // Thus this grotesque test.
3481    IntegerLiteral *IL;
3482    Expr *Init = static_cast<Expr *>(init.get());
3483    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3484        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3485      CheckPureMethod(Method, Init->getSourceRange());
3486    else {
3487      Diag(Method->getLocation(), diag::err_member_function_initialization)
3488        << Method->getDeclName() << Init->getSourceRange();
3489      Method->setInvalidDecl();
3490    }
3491    return;
3492  }
3493
3494  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3495  if (!VDecl) {
3496    if (getLangOptions().CPlusPlus &&
3497        RealDecl->getLexicalDeclContext()->isRecord() &&
3498        isa<NamedDecl>(RealDecl))
3499      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3500        << cast<NamedDecl>(RealDecl)->getDeclName();
3501    else
3502      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3503    RealDecl->setInvalidDecl();
3504    return;
3505  }
3506
3507  // A definition must end up with a complete type, which means it must be
3508  // complete with the restriction that an array type might be completed by the
3509  // initializer; note that later code assumes this restriction.
3510  QualType BaseDeclType = VDecl->getType();
3511  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3512    BaseDeclType = Array->getElementType();
3513  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3514                          diag::err_typecheck_decl_incomplete_type)) {
3515    RealDecl->setInvalidDecl();
3516    return;
3517  }
3518
3519  // The variable can not have an abstract class type.
3520  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3521                             diag::err_abstract_type_in_decl,
3522                             AbstractVariableType))
3523    VDecl->setInvalidDecl();
3524
3525  const VarDecl *Def;
3526  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3527    Diag(VDecl->getLocation(), diag::err_redefinition)
3528      << VDecl->getDeclName();
3529    Diag(Def->getLocation(), diag::note_previous_definition);
3530    VDecl->setInvalidDecl();
3531    return;
3532  }
3533
3534  // Take ownership of the expression, now that we're sure we have somewhere
3535  // to put it.
3536  Expr *Init = init.takeAs<Expr>();
3537  assert(Init && "missing initializer");
3538
3539  // Capture the variable that is being initialized and the style of
3540  // initialization.
3541  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3542
3543  // FIXME: Poor source location information.
3544  InitializationKind Kind
3545    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3546                                                   Init->getLocStart(),
3547                                                   Init->getLocEnd())
3548                : InitializationKind::CreateCopy(VDecl->getLocation(),
3549                                                 Init->getLocStart());
3550
3551  // Get the decls type and save a reference for later, since
3552  // CheckInitializerTypes may change it.
3553  QualType DclT = VDecl->getType(), SavT = DclT;
3554  if (VDecl->isBlockVarDecl()) {
3555    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3556      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3557      VDecl->setInvalidDecl();
3558    } else if (!VDecl->isInvalidDecl()) {
3559      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3560      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3561                                          MultiExprArg(*this, (void**)&Init, 1),
3562                                                &DclT);
3563      if (Result.isInvalid()) {
3564        VDecl->setInvalidDecl();
3565        return;
3566      }
3567
3568      Init = Result.takeAs<Expr>();
3569
3570      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3571      // Don't check invalid declarations to avoid emitting useless diagnostics.
3572      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3573        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3574          CheckForConstantInitializer(Init, DclT);
3575      }
3576    }
3577  } else if (VDecl->isStaticDataMember() &&
3578             VDecl->getLexicalDeclContext()->isRecord()) {
3579    // This is an in-class initialization for a static data member, e.g.,
3580    //
3581    // struct S {
3582    //   static const int value = 17;
3583    // };
3584
3585    // Attach the initializer
3586    VDecl->setInit(Init);
3587
3588    // C++ [class.mem]p4:
3589    //   A member-declarator can contain a constant-initializer only
3590    //   if it declares a static member (9.4) of const integral or
3591    //   const enumeration type, see 9.4.2.
3592    QualType T = VDecl->getType();
3593    if (!T->isDependentType() &&
3594        (!Context.getCanonicalType(T).isConstQualified() ||
3595         !T->isIntegralType())) {
3596      Diag(VDecl->getLocation(), diag::err_member_initialization)
3597        << VDecl->getDeclName() << Init->getSourceRange();
3598      VDecl->setInvalidDecl();
3599    } else {
3600      // C++ [class.static.data]p4:
3601      //   If a static data member is of const integral or const
3602      //   enumeration type, its declaration in the class definition
3603      //   can specify a constant-initializer which shall be an
3604      //   integral constant expression (5.19).
3605      if (!Init->isTypeDependent() &&
3606          !Init->getType()->isIntegralType()) {
3607        // We have a non-dependent, non-integral or enumeration type.
3608        Diag(Init->getSourceRange().getBegin(),
3609             diag::err_in_class_initializer_non_integral_type)
3610          << Init->getType() << Init->getSourceRange();
3611        VDecl->setInvalidDecl();
3612      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3613        // Check whether the expression is a constant expression.
3614        llvm::APSInt Value;
3615        SourceLocation Loc;
3616        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3617          Diag(Loc, diag::err_in_class_initializer_non_constant)
3618            << Init->getSourceRange();
3619          VDecl->setInvalidDecl();
3620        } else if (!VDecl->getType()->isDependentType())
3621          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3622      }
3623    }
3624  } else if (VDecl->isFileVarDecl()) {
3625    if (VDecl->getStorageClass() == VarDecl::Extern)
3626      Diag(VDecl->getLocation(), diag::warn_extern_init);
3627    if (!VDecl->isInvalidDecl()) {
3628      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3629      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3630                                          MultiExprArg(*this, (void**)&Init, 1),
3631                                                &DclT);
3632      if (Result.isInvalid()) {
3633        VDecl->setInvalidDecl();
3634        return;
3635      }
3636
3637      Init = Result.takeAs<Expr>();
3638    }
3639
3640    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3641    // Don't check invalid declarations to avoid emitting useless diagnostics.
3642    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3643      // C99 6.7.8p4. All file scoped initializers need to be constant.
3644      CheckForConstantInitializer(Init, DclT);
3645    }
3646  }
3647  // If the type changed, it means we had an incomplete type that was
3648  // completed by the initializer. For example:
3649  //   int ary[] = { 1, 3, 5 };
3650  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3651  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3652    VDecl->setType(DclT);
3653    Init->setType(DclT);
3654  }
3655
3656  Init = MaybeCreateCXXExprWithTemporaries(Init);
3657  // Attach the initializer to the decl.
3658  VDecl->setInit(Init);
3659
3660  if (getLangOptions().CPlusPlus) {
3661    // Make sure we mark the destructor as used if necessary.
3662    QualType InitType = VDecl->getType();
3663    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3664      InitType = Context.getBaseElementType(Array);
3665    if (const RecordType *Record = InitType->getAs<RecordType>())
3666      FinalizeVarWithDestructor(VDecl, Record);
3667  }
3668
3669  return;
3670}
3671
3672void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3673                                  bool TypeContainsUndeducedAuto) {
3674  Decl *RealDecl = dcl.getAs<Decl>();
3675
3676  // If there is no declaration, there was an error parsing it. Just ignore it.
3677  if (RealDecl == 0)
3678    return;
3679
3680  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3681    QualType Type = Var->getType();
3682
3683    // C++0x [dcl.spec.auto]p3
3684    if (TypeContainsUndeducedAuto) {
3685      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3686        << Var->getDeclName() << Type;
3687      Var->setInvalidDecl();
3688      return;
3689    }
3690
3691    switch (Var->isThisDeclarationADefinition()) {
3692    case VarDecl::Definition:
3693      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3694        break;
3695
3696      // We have an out-of-line definition of a static data member
3697      // that has an in-class initializer, so we type-check this like
3698      // a declaration.
3699      //
3700      // Fall through
3701
3702    case VarDecl::DeclarationOnly:
3703      // It's only a declaration.
3704
3705      // Block scope. C99 6.7p7: If an identifier for an object is
3706      // declared with no linkage (C99 6.2.2p6), the type for the
3707      // object shall be complete.
3708      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3709          !Var->getLinkage() && !Var->isInvalidDecl() &&
3710          RequireCompleteType(Var->getLocation(), Type,
3711                              diag::err_typecheck_decl_incomplete_type))
3712        Var->setInvalidDecl();
3713
3714      // Make sure that the type is not abstract.
3715      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3716          RequireNonAbstractType(Var->getLocation(), Type,
3717                                 diag::err_abstract_type_in_decl,
3718                                 AbstractVariableType))
3719        Var->setInvalidDecl();
3720      return;
3721
3722    case VarDecl::TentativeDefinition:
3723      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3724      // object that has file scope without an initializer, and without a
3725      // storage-class specifier or with the storage-class specifier "static",
3726      // constitutes a tentative definition. Note: A tentative definition with
3727      // external linkage is valid (C99 6.2.2p5).
3728      if (!Var->isInvalidDecl()) {
3729        if (const IncompleteArrayType *ArrayT
3730                                    = Context.getAsIncompleteArrayType(Type)) {
3731          if (RequireCompleteType(Var->getLocation(),
3732                                  ArrayT->getElementType(),
3733                                  diag::err_illegal_decl_array_incomplete_type))
3734            Var->setInvalidDecl();
3735        } else if (Var->getStorageClass() == VarDecl::Static) {
3736          // C99 6.9.2p3: If the declaration of an identifier for an object is
3737          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3738          // declared type shall not be an incomplete type.
3739          // NOTE: code such as the following
3740          //     static struct s;
3741          //     struct s { int a; };
3742          // is accepted by gcc. Hence here we issue a warning instead of
3743          // an error and we do not invalidate the static declaration.
3744          // NOTE: to avoid multiple warnings, only check the first declaration.
3745          if (Var->getPreviousDeclaration() == 0)
3746            RequireCompleteType(Var->getLocation(), Type,
3747                                diag::ext_typecheck_decl_incomplete_type);
3748        }
3749      }
3750
3751      // Record the tentative definition; we're done.
3752      if (!Var->isInvalidDecl())
3753        TentativeDefinitions.push_back(Var);
3754      return;
3755    }
3756
3757    // Provide a specific diagnostic for uninitialized variable
3758    // definitions with incomplete array type.
3759    if (Type->isIncompleteArrayType()) {
3760      Diag(Var->getLocation(),
3761           diag::err_typecheck_incomplete_array_needs_initializer);
3762      Var->setInvalidDecl();
3763      return;
3764    }
3765
3766   // Provide a specific diagnostic for uninitialized variable
3767   // definitions with reference type.
3768   if (Type->isReferenceType()) {
3769     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3770       << Var->getDeclName()
3771       << SourceRange(Var->getLocation(), Var->getLocation());
3772     Var->setInvalidDecl();
3773     return;
3774   }
3775
3776    // Do not attempt to type-check the default initializer for a
3777    // variable with dependent type.
3778    if (Type->isDependentType())
3779      return;
3780
3781    if (Var->isInvalidDecl())
3782      return;
3783
3784    if (RequireCompleteType(Var->getLocation(),
3785                            Context.getBaseElementType(Type),
3786                            diag::err_typecheck_decl_incomplete_type)) {
3787      Var->setInvalidDecl();
3788      return;
3789    }
3790
3791    // The variable can not have an abstract class type.
3792    if (RequireNonAbstractType(Var->getLocation(), Type,
3793                               diag::err_abstract_type_in_decl,
3794                               AbstractVariableType)) {
3795      Var->setInvalidDecl();
3796      return;
3797    }
3798
3799    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
3800    InitializationKind Kind
3801      = InitializationKind::CreateDefault(Var->getLocation());
3802
3803    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3804    OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3805                                            MultiExprArg(*this, 0, 0));
3806    if (Init.isInvalid())
3807      Var->setInvalidDecl();
3808    else {
3809      if (Init.get())
3810        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3811
3812      if (getLangOptions().CPlusPlus)
3813        if (const RecordType *Record
3814                        = Context.getBaseElementType(Type)->getAs<RecordType>())
3815          FinalizeVarWithDestructor(Var, Record);
3816    }
3817  }
3818}
3819
3820Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3821                                                   DeclPtrTy *Group,
3822                                                   unsigned NumDecls) {
3823  llvm::SmallVector<Decl*, 8> Decls;
3824
3825  if (DS.isTypeSpecOwned())
3826    Decls.push_back((Decl*)DS.getTypeRep());
3827
3828  for (unsigned i = 0; i != NumDecls; ++i)
3829    if (Decl *D = Group[i].getAs<Decl>())
3830      Decls.push_back(D);
3831
3832  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3833                                                   Decls.data(), Decls.size()));
3834}
3835
3836
3837/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3838/// to introduce parameters into function prototype scope.
3839Sema::DeclPtrTy
3840Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3841  const DeclSpec &DS = D.getDeclSpec();
3842
3843  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3844  VarDecl::StorageClass StorageClass = VarDecl::None;
3845  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3846    StorageClass = VarDecl::Register;
3847  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3848    Diag(DS.getStorageClassSpecLoc(),
3849         diag::err_invalid_storage_class_in_func_decl);
3850    D.getMutableDeclSpec().ClearStorageClassSpecs();
3851  }
3852
3853  if (D.getDeclSpec().isThreadSpecified())
3854    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3855
3856  DiagnoseFunctionSpecifiers(D);
3857
3858  // Check that there are no default arguments inside the type of this
3859  // parameter (C++ only).
3860  if (getLangOptions().CPlusPlus)
3861    CheckExtraCXXDefaultArguments(D);
3862
3863  TypeSourceInfo *TInfo = 0;
3864  TagDecl *OwnedDecl = 0;
3865  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3866
3867  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3868    // C++ [dcl.fct]p6:
3869    //   Types shall not be defined in return or parameter types.
3870    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3871      << Context.getTypeDeclType(OwnedDecl);
3872  }
3873
3874  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3875  // Can this happen for params?  We already checked that they don't conflict
3876  // among each other.  Here they can only shadow globals, which is ok.
3877  IdentifierInfo *II = D.getIdentifier();
3878  if (II) {
3879    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3880      if (PrevDecl->isTemplateParameter()) {
3881        // Maybe we will complain about the shadowed template parameter.
3882        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3883        // Just pretend that we didn't see the previous declaration.
3884        PrevDecl = 0;
3885      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3886        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3887
3888        // Recover by removing the name
3889        II = 0;
3890        D.SetIdentifier(0, D.getIdentifierLoc());
3891        D.setInvalidType(true);
3892      }
3893    }
3894  }
3895
3896  // Parameters can not be abstract class types.
3897  // For record types, this is done by the AbstractClassUsageDiagnoser once
3898  // the class has been completely parsed.
3899  if (!CurContext->isRecord() &&
3900      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3901                             diag::err_abstract_type_in_decl,
3902                             AbstractParamType))
3903    D.setInvalidType(true);
3904
3905  QualType T = adjustParameterType(parmDeclType);
3906
3907  // Temporarily put parameter variables in the translation unit, not
3908  // the enclosing context.  This prevents them from accidentally
3909  // looking like class members in C++.
3910  DeclContext *DC = Context.getTranslationUnitDecl();
3911
3912  ParmVarDecl *New
3913    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
3914                          T, TInfo, StorageClass, 0);
3915
3916  if (D.isInvalidType())
3917    New->setInvalidDecl();
3918
3919  // Parameter declarators cannot be interface types. All ObjC objects are
3920  // passed by reference.
3921  if (T->isObjCInterfaceType()) {
3922    Diag(D.getIdentifierLoc(),
3923         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3924    New->setInvalidDecl();
3925  }
3926
3927  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3928  if (D.getCXXScopeSpec().isSet()) {
3929    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3930      << D.getCXXScopeSpec().getRange();
3931    New->setInvalidDecl();
3932  }
3933
3934  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3935  // duration shall not be qualified by an address-space qualifier."
3936  // Since all parameters have automatic store duration, they can not have
3937  // an address space.
3938  if (T.getAddressSpace() != 0) {
3939    Diag(D.getIdentifierLoc(),
3940         diag::err_arg_with_address_space);
3941    New->setInvalidDecl();
3942  }
3943
3944
3945  // Add the parameter declaration into this scope.
3946  S->AddDecl(DeclPtrTy::make(New));
3947  if (II)
3948    IdResolver.AddDecl(New);
3949
3950  ProcessDeclAttributes(S, New, D);
3951
3952  if (New->hasAttr<BlocksAttr>()) {
3953    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3954  }
3955  return DeclPtrTy::make(New);
3956}
3957
3958void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
3959  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
3960  Param->setDeclContext(CurContext);
3961}
3962
3963void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3964                                           SourceLocation LocAfterDecls) {
3965  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3966         "Not a function declarator!");
3967  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3968
3969  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3970  // for a K&R function.
3971  if (!FTI.hasPrototype) {
3972    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3973      --i;
3974      if (FTI.ArgInfo[i].Param == 0) {
3975        llvm::SmallString<256> Code;
3976        llvm::raw_svector_ostream(Code) << "  int "
3977                                        << FTI.ArgInfo[i].Ident->getName()
3978                                        << ";\n";
3979        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3980          << FTI.ArgInfo[i].Ident
3981          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3982
3983        // Implicitly declare the argument as type 'int' for lack of a better
3984        // type.
3985        DeclSpec DS;
3986        const char* PrevSpec; // unused
3987        unsigned DiagID; // unused
3988        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3989                           PrevSpec, DiagID);
3990        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3991        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3992        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3993      }
3994    }
3995  }
3996}
3997
3998Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3999                                              Declarator &D) {
4000  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4001  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4002         "Not a function declarator!");
4003  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4004
4005  if (FTI.hasPrototype) {
4006    // FIXME: Diagnose arguments without names in C.
4007  }
4008
4009  Scope *ParentScope = FnBodyScope->getParent();
4010
4011  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4012                                  MultiTemplateParamsArg(*this),
4013                                  /*IsFunctionDefinition=*/true);
4014  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4015}
4016
4017static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4018  // Don't warn about invalid declarations.
4019  if (FD->isInvalidDecl())
4020    return false;
4021
4022  // Or declarations that aren't global.
4023  if (!FD->isGlobal())
4024    return false;
4025
4026  // Don't warn about C++ member functions.
4027  if (isa<CXXMethodDecl>(FD))
4028    return false;
4029
4030  // Don't warn about 'main'.
4031  if (FD->isMain())
4032    return false;
4033
4034  // Don't warn about inline functions.
4035  if (FD->isInlineSpecified())
4036    return false;
4037
4038  // Don't warn about function templates.
4039  if (FD->getDescribedFunctionTemplate())
4040    return false;
4041
4042  // Don't warn about function template specializations.
4043  if (FD->isFunctionTemplateSpecialization())
4044    return false;
4045
4046  bool MissingPrototype = true;
4047  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4048       Prev; Prev = Prev->getPreviousDeclaration()) {
4049    // Ignore any declarations that occur in function or method
4050    // scope, because they aren't visible from the header.
4051    if (Prev->getDeclContext()->isFunctionOrMethod())
4052      continue;
4053
4054    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4055    break;
4056  }
4057
4058  return MissingPrototype;
4059}
4060
4061Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4062  // Clear the last template instantiation error context.
4063  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4064
4065  if (!D)
4066    return D;
4067  FunctionDecl *FD = 0;
4068
4069  if (FunctionTemplateDecl *FunTmpl
4070        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4071    FD = FunTmpl->getTemplatedDecl();
4072  else
4073    FD = cast<FunctionDecl>(D.getAs<Decl>());
4074
4075  CurFunctionNeedsScopeChecking = false;
4076
4077  // See if this is a redefinition.
4078  // But don't complain if we're in GNU89 mode and the previous definition
4079  // was an extern inline function.
4080  const FunctionDecl *Definition;
4081  if (FD->getBody(Definition) &&
4082      !canRedefineFunction(Definition, getLangOptions())) {
4083    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4084    Diag(Definition->getLocation(), diag::note_previous_definition);
4085  }
4086
4087  // Builtin functions cannot be defined.
4088  if (unsigned BuiltinID = FD->getBuiltinID()) {
4089    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4090      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4091      FD->setInvalidDecl();
4092    }
4093  }
4094
4095  // The return type of a function definition must be complete
4096  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4097  QualType ResultType = FD->getResultType();
4098  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4099      !FD->isInvalidDecl() &&
4100      RequireCompleteType(FD->getLocation(), ResultType,
4101                          diag::err_func_def_incomplete_result))
4102    FD->setInvalidDecl();
4103
4104  // GNU warning -Wmissing-prototypes:
4105  //   Warn if a global function is defined without a previous
4106  //   prototype declaration. This warning is issued even if the
4107  //   definition itself provides a prototype. The aim is to detect
4108  //   global functions that fail to be declared in header files.
4109  if (ShouldWarnAboutMissingPrototype(FD))
4110    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4111
4112  if (FnBodyScope)
4113    PushDeclContext(FnBodyScope, FD);
4114
4115  // Check the validity of our function parameters
4116  CheckParmsForFunctionDef(FD);
4117
4118  // Introduce our parameters into the function scope
4119  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4120    ParmVarDecl *Param = FD->getParamDecl(p);
4121    Param->setOwningFunction(FD);
4122
4123    // If this has an identifier, add it to the scope stack.
4124    if (Param->getIdentifier() && FnBodyScope)
4125      PushOnScopeChains(Param, FnBodyScope);
4126  }
4127
4128  // Checking attributes of current function definition
4129  // dllimport attribute.
4130  if (FD->getAttr<DLLImportAttr>() &&
4131      (!FD->getAttr<DLLExportAttr>())) {
4132    // dllimport attribute cannot be applied to definition.
4133    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4134      Diag(FD->getLocation(),
4135           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4136        << "dllimport";
4137      FD->setInvalidDecl();
4138      return DeclPtrTy::make(FD);
4139    } else {
4140      // If a symbol previously declared dllimport is later defined, the
4141      // attribute is ignored in subsequent references, and a warning is
4142      // emitted.
4143      Diag(FD->getLocation(),
4144           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4145        << FD->getNameAsCString() << "dllimport";
4146    }
4147  }
4148  return DeclPtrTy::make(FD);
4149}
4150
4151Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4152  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4153}
4154
4155Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4156                                              bool IsInstantiation) {
4157  Decl *dcl = D.getAs<Decl>();
4158  Stmt *Body = BodyArg.takeAs<Stmt>();
4159
4160  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
4161  // explosion for destrutors that can result and the compile time hit.
4162  AnalysisContext AC(dcl, false);
4163  FunctionDecl *FD = 0;
4164  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4165  if (FunTmpl)
4166    FD = FunTmpl->getTemplatedDecl();
4167  else
4168    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4169
4170  if (FD) {
4171    FD->setBody(Body);
4172    if (FD->isMain())
4173      // C and C++ allow for main to automagically return 0.
4174      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4175      FD->setHasImplicitReturnZero(true);
4176    else
4177      CheckFallThroughForFunctionDef(FD, Body, AC);
4178
4179    if (!FD->isInvalidDecl())
4180      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4181
4182    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4183      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4184
4185    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4186  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4187    assert(MD == getCurMethodDecl() && "Method parsing confused");
4188    MD->setBody(Body);
4189    CheckFallThroughForFunctionDef(MD, Body, AC);
4190    MD->setEndLoc(Body->getLocEnd());
4191
4192    if (!MD->isInvalidDecl())
4193      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4194  } else {
4195    Body->Destroy(Context);
4196    return DeclPtrTy();
4197  }
4198  if (!IsInstantiation)
4199    PopDeclContext();
4200
4201  // Verify and clean out per-function state.
4202
4203  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4204
4205  // Check goto/label use.
4206  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4207       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4208    LabelStmt *L = I->second;
4209
4210    // Verify that we have no forward references left.  If so, there was a goto
4211    // or address of a label taken, but no definition of it.  Label fwd
4212    // definitions are indicated with a null substmt.
4213    if (L->getSubStmt() != 0)
4214      continue;
4215
4216    // Emit error.
4217    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4218
4219    // At this point, we have gotos that use the bogus label.  Stitch it into
4220    // the function body so that they aren't leaked and that the AST is well
4221    // formed.
4222    if (Body == 0) {
4223      // The whole function wasn't parsed correctly, just delete this.
4224      L->Destroy(Context);
4225      continue;
4226    }
4227
4228    // Otherwise, the body is valid: we want to stitch the label decl into the
4229    // function somewhere so that it is properly owned and so that the goto
4230    // has a valid target.  Do this by creating a new compound stmt with the
4231    // label in it.
4232
4233    // Give the label a sub-statement.
4234    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4235
4236    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4237                               cast<CXXTryStmt>(Body)->getTryBlock() :
4238                               cast<CompoundStmt>(Body);
4239    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4240    Elements.push_back(L);
4241    Compound->setStmts(Context, &Elements[0], Elements.size());
4242  }
4243  FunctionLabelMap.clear();
4244
4245  if (!Body) return D;
4246
4247  CheckUnreachable(AC);
4248
4249  // Verify that that gotos and switch cases don't jump into scopes illegally.
4250  if (CurFunctionNeedsScopeChecking)
4251    DiagnoseInvalidJumps(Body);
4252
4253  // C++ constructors that have function-try-blocks can't have return
4254  // statements in the handlers of that block. (C++ [except.handle]p14)
4255  // Verify this.
4256  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4257    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4258
4259  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4260    MarkBaseAndMemberDestructorsReferenced(Destructor);
4261
4262  // If any errors have occurred, clear out any temporaries that may have
4263  // been leftover. This ensures that these temporaries won't be picked up for
4264  // deletion in some later function.
4265  if (PP.getDiagnostics().hasErrorOccurred())
4266    ExprTemporaries.clear();
4267
4268  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4269  return D;
4270}
4271
4272/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4273/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4274NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4275                                          IdentifierInfo &II, Scope *S) {
4276  // Before we produce a declaration for an implicitly defined
4277  // function, see whether there was a locally-scoped declaration of
4278  // this name as a function or variable. If so, use that
4279  // (non-visible) declaration, and complain about it.
4280  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4281    = LocallyScopedExternalDecls.find(&II);
4282  if (Pos != LocallyScopedExternalDecls.end()) {
4283    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4284    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4285    return Pos->second;
4286  }
4287
4288  // Extension in C99.  Legal in C90, but warn about it.
4289  if (II.getName().startswith("__builtin_"))
4290    Diag(Loc, diag::warn_builtin_unknown) << &II;
4291  else if (getLangOptions().C99)
4292    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4293  else
4294    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4295
4296  // Set a Declarator for the implicit definition: int foo();
4297  const char *Dummy;
4298  DeclSpec DS;
4299  unsigned DiagID;
4300  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4301  Error = Error; // Silence warning.
4302  assert(!Error && "Error setting up implicit decl!");
4303  Declarator D(DS, Declarator::BlockContext);
4304  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4305                                             0, 0, false, SourceLocation(),
4306                                             false, 0,0,0, Loc, Loc, D),
4307                SourceLocation());
4308  D.SetIdentifier(&II, Loc);
4309
4310  // Insert this function into translation-unit scope.
4311
4312  DeclContext *PrevDC = CurContext;
4313  CurContext = Context.getTranslationUnitDecl();
4314
4315  FunctionDecl *FD =
4316 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4317  FD->setImplicit();
4318
4319  CurContext = PrevDC;
4320
4321  AddKnownFunctionAttributes(FD);
4322
4323  return FD;
4324}
4325
4326/// \brief Adds any function attributes that we know a priori based on
4327/// the declaration of this function.
4328///
4329/// These attributes can apply both to implicitly-declared builtins
4330/// (like __builtin___printf_chk) or to library-declared functions
4331/// like NSLog or printf.
4332void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4333  if (FD->isInvalidDecl())
4334    return;
4335
4336  // If this is a built-in function, map its builtin attributes to
4337  // actual attributes.
4338  if (unsigned BuiltinID = FD->getBuiltinID()) {
4339    // Handle printf-formatting attributes.
4340    unsigned FormatIdx;
4341    bool HasVAListArg;
4342    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4343      if (!FD->getAttr<FormatAttr>())
4344        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4345                                               HasVAListArg ? 0 : FormatIdx+2));
4346    }
4347
4348    // Mark const if we don't care about errno and that is the only
4349    // thing preventing the function from being const. This allows
4350    // IRgen to use LLVM intrinsics for such functions.
4351    if (!getLangOptions().MathErrno &&
4352        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4353      if (!FD->getAttr<ConstAttr>())
4354        FD->addAttr(::new (Context) ConstAttr());
4355    }
4356
4357    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4358      FD->setType(Context.getNoReturnType(FD->getType()));
4359    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4360      FD->addAttr(::new (Context) NoThrowAttr());
4361    if (Context.BuiltinInfo.isConst(BuiltinID))
4362      FD->addAttr(::new (Context) ConstAttr());
4363  }
4364
4365  IdentifierInfo *Name = FD->getIdentifier();
4366  if (!Name)
4367    return;
4368  if ((!getLangOptions().CPlusPlus &&
4369       FD->getDeclContext()->isTranslationUnit()) ||
4370      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4371       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4372       LinkageSpecDecl::lang_c)) {
4373    // Okay: this could be a libc/libm/Objective-C function we know
4374    // about.
4375  } else
4376    return;
4377
4378  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4379    // FIXME: NSLog and NSLogv should be target specific
4380    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4381      // FIXME: We known better than our headers.
4382      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4383    } else
4384      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4385                                             Name->isStr("NSLogv") ? 0 : 2));
4386  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4387    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4388    // target-specific builtins, perhaps?
4389    if (!FD->getAttr<FormatAttr>())
4390      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4391                                             Name->isStr("vasprintf") ? 0 : 3));
4392  }
4393}
4394
4395TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4396                                    TypeSourceInfo *TInfo) {
4397  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4398  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4399
4400  if (!TInfo) {
4401    assert(D.isInvalidType() && "no declarator info for valid type");
4402    TInfo = Context.getTrivialTypeSourceInfo(T);
4403  }
4404
4405  // Scope manipulation handled by caller.
4406  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4407                                           D.getIdentifierLoc(),
4408                                           D.getIdentifier(),
4409                                           TInfo);
4410
4411  if (const TagType *TT = T->getAs<TagType>()) {
4412    TagDecl *TD = TT->getDecl();
4413
4414    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4415    // keep track of the TypedefDecl.
4416    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4417      TD->setTypedefForAnonDecl(NewTD);
4418  }
4419
4420  if (D.isInvalidType())
4421    NewTD->setInvalidDecl();
4422  return NewTD;
4423}
4424
4425
4426/// \brief Determine whether a tag with a given kind is acceptable
4427/// as a redeclaration of the given tag declaration.
4428///
4429/// \returns true if the new tag kind is acceptable, false otherwise.
4430bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4431                                        TagDecl::TagKind NewTag,
4432                                        SourceLocation NewTagLoc,
4433                                        const IdentifierInfo &Name) {
4434  // C++ [dcl.type.elab]p3:
4435  //   The class-key or enum keyword present in the
4436  //   elaborated-type-specifier shall agree in kind with the
4437  //   declaration to which the name in theelaborated-type-specifier
4438  //   refers. This rule also applies to the form of
4439  //   elaborated-type-specifier that declares a class-name or
4440  //   friend class since it can be construed as referring to the
4441  //   definition of the class. Thus, in any
4442  //   elaborated-type-specifier, the enum keyword shall be used to
4443  //   refer to an enumeration (7.2), the union class-keyshall be
4444  //   used to refer to a union (clause 9), and either the class or
4445  //   struct class-key shall be used to refer to a class (clause 9)
4446  //   declared using the class or struct class-key.
4447  TagDecl::TagKind OldTag = Previous->getTagKind();
4448  if (OldTag == NewTag)
4449    return true;
4450
4451  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4452      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4453    // Warn about the struct/class tag mismatch.
4454    bool isTemplate = false;
4455    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4456      isTemplate = Record->getDescribedClassTemplate();
4457
4458    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4459      << (NewTag == TagDecl::TK_class)
4460      << isTemplate << &Name
4461      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4462                              OldTag == TagDecl::TK_class? "class" : "struct");
4463    Diag(Previous->getLocation(), diag::note_previous_use);
4464    return true;
4465  }
4466  return false;
4467}
4468
4469/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4470/// former case, Name will be non-null.  In the later case, Name will be null.
4471/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4472/// reference/declaration/definition of a tag.
4473Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4474                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4475                               IdentifierInfo *Name, SourceLocation NameLoc,
4476                               AttributeList *Attr, AccessSpecifier AS,
4477                               MultiTemplateParamsArg TemplateParameterLists,
4478                               bool &OwnedDecl, bool &IsDependent) {
4479  // If this is not a definition, it must have a name.
4480  assert((Name != 0 || TUK == TUK_Definition) &&
4481         "Nameless record must be a definition!");
4482
4483  OwnedDecl = false;
4484  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4485
4486  // FIXME: Check explicit specializations more carefully.
4487  bool isExplicitSpecialization = false;
4488  if (TUK != TUK_Reference) {
4489    if (TemplateParameterList *TemplateParams
4490          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4491                        (TemplateParameterList**)TemplateParameterLists.get(),
4492                                              TemplateParameterLists.size(),
4493                                                    isExplicitSpecialization)) {
4494      if (TemplateParams->size() > 0) {
4495        // This is a declaration or definition of a class template (which may
4496        // be a member of another template).
4497        OwnedDecl = false;
4498        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4499                                               SS, Name, NameLoc, Attr,
4500                                               TemplateParams,
4501                                               AS);
4502        TemplateParameterLists.release();
4503        return Result.get();
4504      } else {
4505        // The "template<>" header is extraneous.
4506        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4507          << ElaboratedType::getNameForTagKind(Kind) << Name;
4508        isExplicitSpecialization = true;
4509      }
4510    }
4511
4512    TemplateParameterLists.release();
4513  }
4514
4515  DeclContext *SearchDC = CurContext;
4516  DeclContext *DC = CurContext;
4517  bool isStdBadAlloc = false;
4518  bool Invalid = false;
4519
4520  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4521                                                   : NotForRedeclaration);
4522
4523  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4524
4525  if (Name && SS.isNotEmpty()) {
4526    // We have a nested-name tag ('struct foo::bar').
4527
4528    // Check for invalid 'foo::'.
4529    if (SS.isInvalid()) {
4530      Name = 0;
4531      goto CreateNewDecl;
4532    }
4533
4534    // If this is a friend or a reference to a class in a dependent
4535    // context, don't try to make a decl for it.
4536    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4537      DC = computeDeclContext(SS, false);
4538      if (!DC) {
4539        IsDependent = true;
4540        return DeclPtrTy();
4541      }
4542    }
4543
4544    if (RequireCompleteDeclContext(SS))
4545      return DeclPtrTy::make((Decl *)0);
4546
4547    DC = computeDeclContext(SS, true);
4548    SearchDC = DC;
4549    // Look-up name inside 'foo::'.
4550    LookupQualifiedName(Previous, DC);
4551
4552    if (Previous.isAmbiguous())
4553      return DeclPtrTy();
4554
4555    if (Previous.empty()) {
4556      // Name lookup did not find anything. However, if the
4557      // nested-name-specifier refers to the current instantiation,
4558      // and that current instantiation has any dependent base
4559      // classes, we might find something at instantiation time: treat
4560      // this as a dependent elaborated-type-specifier.
4561      if (Previous.wasNotFoundInCurrentInstantiation()) {
4562        IsDependent = true;
4563        return DeclPtrTy();
4564      }
4565
4566      // A tag 'foo::bar' must already exist.
4567      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4568      Name = 0;
4569      Invalid = true;
4570      goto CreateNewDecl;
4571    }
4572  } else if (Name) {
4573    // If this is a named struct, check to see if there was a previous forward
4574    // declaration or definition.
4575    // FIXME: We're looking into outer scopes here, even when we
4576    // shouldn't be. Doing so can result in ambiguities that we
4577    // shouldn't be diagnosing.
4578    LookupName(Previous, S);
4579
4580    // Note:  there used to be some attempt at recovery here.
4581    if (Previous.isAmbiguous())
4582      return DeclPtrTy();
4583
4584    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4585      // FIXME: This makes sure that we ignore the contexts associated
4586      // with C structs, unions, and enums when looking for a matching
4587      // tag declaration or definition. See the similar lookup tweak
4588      // in Sema::LookupName; is there a better way to deal with this?
4589      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4590        SearchDC = SearchDC->getParent();
4591    }
4592  }
4593
4594  if (Previous.isSingleResult() &&
4595      Previous.getFoundDecl()->isTemplateParameter()) {
4596    // Maybe we will complain about the shadowed template parameter.
4597    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4598    // Just pretend that we didn't see the previous declaration.
4599    Previous.clear();
4600  }
4601
4602  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4603      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4604    // This is a declaration of or a reference to "std::bad_alloc".
4605    isStdBadAlloc = true;
4606
4607    if (Previous.empty() && StdBadAlloc) {
4608      // std::bad_alloc has been implicitly declared (but made invisible to
4609      // name lookup). Fill in this implicit declaration as the previous
4610      // declaration, so that the declarations get chained appropriately.
4611      Previous.addDecl(StdBadAlloc);
4612    }
4613  }
4614
4615  if (!Previous.empty()) {
4616    assert(Previous.isSingleResult());
4617    NamedDecl *PrevDecl = Previous.getFoundDecl();
4618    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4619      // If this is a use of a previous tag, or if the tag is already declared
4620      // in the same scope (so that the definition/declaration completes or
4621      // rementions the tag), reuse the decl.
4622      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4623          isDeclInScope(PrevDecl, SearchDC, S)) {
4624        // Make sure that this wasn't declared as an enum and now used as a
4625        // struct or something similar.
4626        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4627          bool SafeToContinue
4628            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4629               Kind != TagDecl::TK_enum);
4630          if (SafeToContinue)
4631            Diag(KWLoc, diag::err_use_with_wrong_tag)
4632              << Name
4633              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4634                                                  PrevTagDecl->getKindName());
4635          else
4636            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4637          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4638
4639          if (SafeToContinue)
4640            Kind = PrevTagDecl->getTagKind();
4641          else {
4642            // Recover by making this an anonymous redefinition.
4643            Name = 0;
4644            Previous.clear();
4645            Invalid = true;
4646          }
4647        }
4648
4649        if (!Invalid) {
4650          // If this is a use, just return the declaration we found.
4651
4652          // FIXME: In the future, return a variant or some other clue
4653          // for the consumer of this Decl to know it doesn't own it.
4654          // For our current ASTs this shouldn't be a problem, but will
4655          // need to be changed with DeclGroups.
4656          if (TUK == TUK_Reference || TUK == TUK_Friend)
4657            return DeclPtrTy::make(PrevTagDecl);
4658
4659          // Diagnose attempts to redefine a tag.
4660          if (TUK == TUK_Definition) {
4661            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
4662              // If we're defining a specialization and the previous definition
4663              // is from an implicit instantiation, don't emit an error
4664              // here; we'll catch this in the general case below.
4665              if (!isExplicitSpecialization ||
4666                  !isa<CXXRecordDecl>(Def) ||
4667                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4668                                               == TSK_ExplicitSpecialization) {
4669                Diag(NameLoc, diag::err_redefinition) << Name;
4670                Diag(Def->getLocation(), diag::note_previous_definition);
4671                // If this is a redefinition, recover by making this
4672                // struct be anonymous, which will make any later
4673                // references get the previous definition.
4674                Name = 0;
4675                Previous.clear();
4676                Invalid = true;
4677              }
4678            } else {
4679              // If the type is currently being defined, complain
4680              // about a nested redefinition.
4681              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4682              if (Tag->isBeingDefined()) {
4683                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4684                Diag(PrevTagDecl->getLocation(),
4685                     diag::note_previous_definition);
4686                Name = 0;
4687                Previous.clear();
4688                Invalid = true;
4689              }
4690            }
4691
4692            // Okay, this is definition of a previously declared or referenced
4693            // tag PrevDecl. We're going to create a new Decl for it.
4694          }
4695        }
4696        // If we get here we have (another) forward declaration or we
4697        // have a definition.  Just create a new decl.
4698
4699      } else {
4700        // If we get here, this is a definition of a new tag type in a nested
4701        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4702        // new decl/type.  We set PrevDecl to NULL so that the entities
4703        // have distinct types.
4704        Previous.clear();
4705      }
4706      // If we get here, we're going to create a new Decl. If PrevDecl
4707      // is non-NULL, it's a definition of the tag declared by
4708      // PrevDecl. If it's NULL, we have a new definition.
4709    } else {
4710      // PrevDecl is a namespace, template, or anything else
4711      // that lives in the IDNS_Tag identifier namespace.
4712      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4713        // The tag name clashes with a namespace name, issue an error and
4714        // recover by making this tag be anonymous.
4715        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4716        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4717        Name = 0;
4718        Previous.clear();
4719        Invalid = true;
4720      } else {
4721        // The existing declaration isn't relevant to us; we're in a
4722        // new scope, so clear out the previous declaration.
4723        Previous.clear();
4724      }
4725    }
4726  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4727    // C++ [basic.scope.pdecl]p5:
4728    //   -- for an elaborated-type-specifier of the form
4729    //
4730    //          class-key identifier
4731    //
4732    //      if the elaborated-type-specifier is used in the
4733    //      decl-specifier-seq or parameter-declaration-clause of a
4734    //      function defined in namespace scope, the identifier is
4735    //      declared as a class-name in the namespace that contains
4736    //      the declaration; otherwise, except as a friend
4737    //      declaration, the identifier is declared in the smallest
4738    //      non-class, non-function-prototype scope that contains the
4739    //      declaration.
4740    //
4741    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4742    // C structs and unions.
4743    //
4744    // It is an error in C++ to declare (rather than define) an enum
4745    // type, including via an elaborated type specifier.  We'll
4746    // diagnose that later; for now, declare the enum in the same
4747    // scope as we would have picked for any other tag type.
4748    //
4749    // GNU C also supports this behavior as part of its incomplete
4750    // enum types extension, while GNU C++ does not.
4751    //
4752    // Find the context where we'll be declaring the tag.
4753    // FIXME: We would like to maintain the current DeclContext as the
4754    // lexical context,
4755    while (SearchDC->isRecord())
4756      SearchDC = SearchDC->getParent();
4757
4758    // Find the scope where we'll be declaring the tag.
4759    while (S->isClassScope() ||
4760           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4761           ((S->getFlags() & Scope::DeclScope) == 0) ||
4762           (S->getEntity() &&
4763            ((DeclContext *)S->getEntity())->isTransparentContext()))
4764      S = S->getParent();
4765
4766  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4767    // C++ [namespace.memdef]p3:
4768    //   If a friend declaration in a non-local class first declares a
4769    //   class or function, the friend class or function is a member of
4770    //   the innermost enclosing namespace.
4771    while (!SearchDC->isFileContext())
4772      SearchDC = SearchDC->getParent();
4773
4774    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4775    while (S->getEntity() != SearchDC)
4776      S = S->getParent();
4777  }
4778
4779CreateNewDecl:
4780
4781  TagDecl *PrevDecl = 0;
4782  if (Previous.isSingleResult())
4783    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4784
4785  // If there is an identifier, use the location of the identifier as the
4786  // location of the decl, otherwise use the location of the struct/union
4787  // keyword.
4788  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4789
4790  // Otherwise, create a new declaration. If there is a previous
4791  // declaration of the same entity, the two will be linked via
4792  // PrevDecl.
4793  TagDecl *New;
4794
4795  if (Kind == TagDecl::TK_enum) {
4796    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4797    // enum X { A, B, C } D;    D should chain to X.
4798    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4799                           cast_or_null<EnumDecl>(PrevDecl));
4800    // If this is an undefined enum, warn.
4801    if (TUK != TUK_Definition && !Invalid)  {
4802      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4803                                              : diag::ext_forward_ref_enum;
4804      Diag(Loc, DK);
4805    }
4806  } else {
4807    // struct/union/class
4808
4809    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4810    // struct X { int A; } D;    D should chain to X.
4811    if (getLangOptions().CPlusPlus) {
4812      // FIXME: Look for a way to use RecordDecl for simple structs.
4813      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4814                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4815
4816      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4817        StdBadAlloc = cast<CXXRecordDecl>(New);
4818    } else
4819      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4820                               cast_or_null<RecordDecl>(PrevDecl));
4821  }
4822
4823  if (Kind != TagDecl::TK_enum) {
4824    // Handle #pragma pack: if the #pragma pack stack has non-default
4825    // alignment, make up a packed attribute for this decl. These
4826    // attributes are checked when the ASTContext lays out the
4827    // structure.
4828    //
4829    // It is important for implementing the correct semantics that this
4830    // happen here (in act on tag decl). The #pragma pack stack is
4831    // maintained as a result of parser callbacks which can occur at
4832    // many points during the parsing of a struct declaration (because
4833    // the #pragma tokens are effectively skipped over during the
4834    // parsing of the struct).
4835    if (unsigned Alignment = getPragmaPackAlignment())
4836      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4837  }
4838
4839  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4840    // C++ [dcl.typedef]p3:
4841    //   [...] Similarly, in a given scope, a class or enumeration
4842    //   shall not be declared with the same name as a typedef-name
4843    //   that is declared in that scope and refers to a type other
4844    //   than the class or enumeration itself.
4845    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4846                        ForRedeclaration);
4847    LookupName(Lookup, S);
4848    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4849    NamedDecl *PrevTypedefNamed = PrevTypedef;
4850    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4851        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4852          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4853      Diag(Loc, diag::err_tag_definition_of_typedef)
4854        << Context.getTypeDeclType(New)
4855        << PrevTypedef->getUnderlyingType();
4856      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4857      Invalid = true;
4858    }
4859  }
4860
4861  // If this is a specialization of a member class (of a class template),
4862  // check the specialization.
4863  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4864    Invalid = true;
4865
4866  if (Invalid)
4867    New->setInvalidDecl();
4868
4869  if (Attr)
4870    ProcessDeclAttributeList(S, New, Attr);
4871
4872  // If we're declaring or defining a tag in function prototype scope
4873  // in C, note that this type can only be used within the function.
4874  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4875    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4876
4877  // Set the lexical context. If the tag has a C++ scope specifier, the
4878  // lexical context will be different from the semantic context.
4879  New->setLexicalDeclContext(CurContext);
4880
4881  // Mark this as a friend decl if applicable.
4882  if (TUK == TUK_Friend)
4883    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4884
4885  // Set the access specifier.
4886  if (!Invalid && TUK != TUK_Friend)
4887    SetMemberAccessSpecifier(New, PrevDecl, AS);
4888
4889  if (TUK == TUK_Definition)
4890    New->startDefinition();
4891
4892  // If this has an identifier, add it to the scope stack.
4893  if (TUK == TUK_Friend) {
4894    // We might be replacing an existing declaration in the lookup tables;
4895    // if so, borrow its access specifier.
4896    if (PrevDecl)
4897      New->setAccess(PrevDecl->getAccess());
4898
4899    // Friend tag decls are visible in fairly strange ways.
4900    if (!CurContext->isDependentContext()) {
4901      DeclContext *DC = New->getDeclContext()->getLookupContext();
4902      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4903      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4904        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4905    }
4906  } else if (Name) {
4907    S = getNonFieldDeclScope(S);
4908    PushOnScopeChains(New, S);
4909  } else {
4910    CurContext->addDecl(New);
4911  }
4912
4913  // If this is the C FILE type, notify the AST context.
4914  if (IdentifierInfo *II = New->getIdentifier())
4915    if (!New->isInvalidDecl() &&
4916        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4917        II->isStr("FILE"))
4918      Context.setFILEDecl(New);
4919
4920  OwnedDecl = true;
4921  return DeclPtrTy::make(New);
4922}
4923
4924void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4925  AdjustDeclIfTemplate(TagD);
4926  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4927
4928  // Enter the tag context.
4929  PushDeclContext(S, Tag);
4930}
4931
4932void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4933                                           SourceLocation LBraceLoc) {
4934  AdjustDeclIfTemplate(TagD);
4935  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4936
4937  FieldCollector->StartClass();
4938
4939  if (!Record->getIdentifier())
4940    return;
4941
4942  // C++ [class]p2:
4943  //   [...] The class-name is also inserted into the scope of the
4944  //   class itself; this is known as the injected-class-name. For
4945  //   purposes of access checking, the injected-class-name is treated
4946  //   as if it were a public member name.
4947  CXXRecordDecl *InjectedClassName
4948    = CXXRecordDecl::Create(Context, Record->getTagKind(),
4949                            CurContext, Record->getLocation(),
4950                            Record->getIdentifier(),
4951                            Record->getTagKeywordLoc(),
4952                            Record);
4953  InjectedClassName->setImplicit();
4954  InjectedClassName->setAccess(AS_public);
4955  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4956      InjectedClassName->setDescribedClassTemplate(Template);
4957  PushOnScopeChains(InjectedClassName, S);
4958  assert(InjectedClassName->isInjectedClassName() &&
4959         "Broken injected-class-name");
4960}
4961
4962// Traverses the class and any nested classes, making a note of any
4963// dynamic classes that have no key function so that we can mark all of
4964// their virtual member functions as "used" at the end of the translation
4965// unit. This ensures that all functions needed by the vtable will get
4966// instantiated/synthesized.
4967static void
4968RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
4969                                      SourceLocation Loc) {
4970  // We don't look at dependent or undefined classes.
4971  if (Record->isDependentContext() || !Record->isDefinition())
4972    return;
4973
4974  if (Record->isDynamicClass()) {
4975    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
4976
4977    if (!KeyFunction)
4978      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
4979                                                                   Loc));
4980
4981    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
4982        && Record->getLinkage() == ExternalLinkage)
4983      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
4984  }
4985  for (DeclContext::decl_iterator D = Record->decls_begin(),
4986                               DEnd = Record->decls_end();
4987       D != DEnd; ++D) {
4988    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
4989      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
4990  }
4991}
4992
4993void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4994                                    SourceLocation RBraceLoc) {
4995  AdjustDeclIfTemplate(TagD);
4996  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4997  Tag->setRBraceLoc(RBraceLoc);
4998
4999  if (isa<CXXRecordDecl>(Tag))
5000    FieldCollector->FinishClass();
5001
5002  // Exit this scope of this tag's definition.
5003  PopDeclContext();
5004
5005  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
5006    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5007                                          RBraceLoc);
5008
5009  // Notify the consumer that we've defined a tag.
5010  Consumer.HandleTagDeclDefinition(Tag);
5011}
5012
5013// Note that FieldName may be null for anonymous bitfields.
5014bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5015                          QualType FieldTy, const Expr *BitWidth,
5016                          bool *ZeroWidth) {
5017  // Default to true; that shouldn't confuse checks for emptiness
5018  if (ZeroWidth)
5019    *ZeroWidth = true;
5020
5021  // C99 6.7.2.1p4 - verify the field type.
5022  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5023  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5024    // Handle incomplete types with specific error.
5025    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5026      return true;
5027    if (FieldName)
5028      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5029        << FieldName << FieldTy << BitWidth->getSourceRange();
5030    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5031      << FieldTy << BitWidth->getSourceRange();
5032  }
5033
5034  // If the bit-width is type- or value-dependent, don't try to check
5035  // it now.
5036  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5037    return false;
5038
5039  llvm::APSInt Value;
5040  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5041    return true;
5042
5043  if (Value != 0 && ZeroWidth)
5044    *ZeroWidth = false;
5045
5046  // Zero-width bitfield is ok for anonymous field.
5047  if (Value == 0 && FieldName)
5048    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5049
5050  if (Value.isSigned() && Value.isNegative()) {
5051    if (FieldName)
5052      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5053               << FieldName << Value.toString(10);
5054    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5055      << Value.toString(10);
5056  }
5057
5058  if (!FieldTy->isDependentType()) {
5059    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5060    if (Value.getZExtValue() > TypeSize) {
5061      if (FieldName)
5062        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5063          << FieldName << (unsigned)TypeSize;
5064      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5065        << (unsigned)TypeSize;
5066    }
5067  }
5068
5069  return false;
5070}
5071
5072/// ActOnField - Each field of a struct/union/class is passed into this in order
5073/// to create a FieldDecl object for it.
5074Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5075                                 SourceLocation DeclStart,
5076                                 Declarator &D, ExprTy *BitfieldWidth) {
5077  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5078                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5079                               AS_public);
5080  return DeclPtrTy::make(Res);
5081}
5082
5083/// HandleField - Analyze a field of a C struct or a C++ data member.
5084///
5085FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5086                             SourceLocation DeclStart,
5087                             Declarator &D, Expr *BitWidth,
5088                             AccessSpecifier AS) {
5089  IdentifierInfo *II = D.getIdentifier();
5090  SourceLocation Loc = DeclStart;
5091  if (II) Loc = D.getIdentifierLoc();
5092
5093  TypeSourceInfo *TInfo = 0;
5094  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5095  if (getLangOptions().CPlusPlus)
5096    CheckExtraCXXDefaultArguments(D);
5097
5098  DiagnoseFunctionSpecifiers(D);
5099
5100  if (D.getDeclSpec().isThreadSpecified())
5101    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5102
5103  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5104                                         ForRedeclaration);
5105
5106  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5107    // Maybe we will complain about the shadowed template parameter.
5108    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5109    // Just pretend that we didn't see the previous declaration.
5110    PrevDecl = 0;
5111  }
5112
5113  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5114    PrevDecl = 0;
5115
5116  bool Mutable
5117    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5118  SourceLocation TSSL = D.getSourceRange().getBegin();
5119  FieldDecl *NewFD
5120    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5121                     AS, PrevDecl, &D);
5122  if (NewFD->isInvalidDecl() && PrevDecl) {
5123    // Don't introduce NewFD into scope; there's already something
5124    // with the same name in the same scope.
5125  } else if (II) {
5126    PushOnScopeChains(NewFD, S);
5127  } else
5128    Record->addDecl(NewFD);
5129
5130  return NewFD;
5131}
5132
5133/// \brief Build a new FieldDecl and check its well-formedness.
5134///
5135/// This routine builds a new FieldDecl given the fields name, type,
5136/// record, etc. \p PrevDecl should refer to any previous declaration
5137/// with the same name and in the same scope as the field to be
5138/// created.
5139///
5140/// \returns a new FieldDecl.
5141///
5142/// \todo The Declarator argument is a hack. It will be removed once
5143FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5144                                TypeSourceInfo *TInfo,
5145                                RecordDecl *Record, SourceLocation Loc,
5146                                bool Mutable, Expr *BitWidth,
5147                                SourceLocation TSSL,
5148                                AccessSpecifier AS, NamedDecl *PrevDecl,
5149                                Declarator *D) {
5150  IdentifierInfo *II = Name.getAsIdentifierInfo();
5151  bool InvalidDecl = false;
5152  if (D) InvalidDecl = D->isInvalidType();
5153
5154  // If we receive a broken type, recover by assuming 'int' and
5155  // marking this declaration as invalid.
5156  if (T.isNull()) {
5157    InvalidDecl = true;
5158    T = Context.IntTy;
5159  }
5160
5161  QualType EltTy = Context.getBaseElementType(T);
5162  if (!EltTy->isDependentType() &&
5163      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5164    InvalidDecl = true;
5165
5166  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5167  // than a variably modified type.
5168  if (!InvalidDecl && T->isVariablyModifiedType()) {
5169    bool SizeIsNegative;
5170    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5171                                                           SizeIsNegative);
5172    if (!FixedTy.isNull()) {
5173      Diag(Loc, diag::warn_illegal_constant_array_size);
5174      T = FixedTy;
5175    } else {
5176      if (SizeIsNegative)
5177        Diag(Loc, diag::err_typecheck_negative_array_size);
5178      else
5179        Diag(Loc, diag::err_typecheck_field_variable_size);
5180      InvalidDecl = true;
5181    }
5182  }
5183
5184  // Fields can not have abstract class types
5185  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5186                                             diag::err_abstract_type_in_decl,
5187                                             AbstractFieldType))
5188    InvalidDecl = true;
5189
5190  bool ZeroWidth = false;
5191  // If this is declared as a bit-field, check the bit-field.
5192  if (!InvalidDecl && BitWidth &&
5193      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5194    InvalidDecl = true;
5195    DeleteExpr(BitWidth);
5196    BitWidth = 0;
5197    ZeroWidth = false;
5198  }
5199
5200  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5201                                       BitWidth, Mutable);
5202  if (InvalidDecl)
5203    NewFD->setInvalidDecl();
5204
5205  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5206    Diag(Loc, diag::err_duplicate_member) << II;
5207    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5208    NewFD->setInvalidDecl();
5209  }
5210
5211  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5212    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5213
5214    if (!T->isPODType())
5215      CXXRecord->setPOD(false);
5216    if (!ZeroWidth)
5217      CXXRecord->setEmpty(false);
5218
5219    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5220      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5221
5222      if (!RDecl->hasTrivialConstructor())
5223        CXXRecord->setHasTrivialConstructor(false);
5224      if (!RDecl->hasTrivialCopyConstructor())
5225        CXXRecord->setHasTrivialCopyConstructor(false);
5226      if (!RDecl->hasTrivialCopyAssignment())
5227        CXXRecord->setHasTrivialCopyAssignment(false);
5228      if (!RDecl->hasTrivialDestructor())
5229        CXXRecord->setHasTrivialDestructor(false);
5230
5231      // C++ 9.5p1: An object of a class with a non-trivial
5232      // constructor, a non-trivial copy constructor, a non-trivial
5233      // destructor, or a non-trivial copy assignment operator
5234      // cannot be a member of a union, nor can an array of such
5235      // objects.
5236      // TODO: C++0x alters this restriction significantly.
5237      if (Record->isUnion()) {
5238        // We check for copy constructors before constructors
5239        // because otherwise we'll never get complaints about
5240        // copy constructors.
5241
5242        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5243
5244        CXXSpecialMember member;
5245        if (!RDecl->hasTrivialCopyConstructor())
5246          member = CXXCopyConstructor;
5247        else if (!RDecl->hasTrivialConstructor())
5248          member = CXXDefaultConstructor;
5249        else if (!RDecl->hasTrivialCopyAssignment())
5250          member = CXXCopyAssignment;
5251        else if (!RDecl->hasTrivialDestructor())
5252          member = CXXDestructor;
5253        else
5254          member = invalid;
5255
5256        if (member != invalid) {
5257          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5258          DiagnoseNontrivial(RT, member);
5259          NewFD->setInvalidDecl();
5260        }
5261      }
5262    }
5263  }
5264
5265  // FIXME: We need to pass in the attributes given an AST
5266  // representation, not a parser representation.
5267  if (D)
5268    // FIXME: What to pass instead of TUScope?
5269    ProcessDeclAttributes(TUScope, NewFD, *D);
5270
5271  if (T.isObjCGCWeak())
5272    Diag(Loc, diag::warn_attribute_weak_on_field);
5273
5274  NewFD->setAccess(AS);
5275
5276  // C++ [dcl.init.aggr]p1:
5277  //   An aggregate is an array or a class (clause 9) with [...] no
5278  //   private or protected non-static data members (clause 11).
5279  // A POD must be an aggregate.
5280  if (getLangOptions().CPlusPlus &&
5281      (AS == AS_private || AS == AS_protected)) {
5282    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5283    CXXRecord->setAggregate(false);
5284    CXXRecord->setPOD(false);
5285  }
5286
5287  return NewFD;
5288}
5289
5290/// DiagnoseNontrivial - Given that a class has a non-trivial
5291/// special member, figure out why.
5292void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5293  QualType QT(T, 0U);
5294  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5295
5296  // Check whether the member was user-declared.
5297  switch (member) {
5298  case CXXDefaultConstructor:
5299    if (RD->hasUserDeclaredConstructor()) {
5300      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5301      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5302        const FunctionDecl *body = 0;
5303        ci->getBody(body);
5304        if (!body ||
5305            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5306          SourceLocation CtorLoc = ci->getLocation();
5307          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5308          return;
5309        }
5310      }
5311
5312      assert(0 && "found no user-declared constructors");
5313      return;
5314    }
5315    break;
5316
5317  case CXXCopyConstructor:
5318    if (RD->hasUserDeclaredCopyConstructor()) {
5319      SourceLocation CtorLoc =
5320        RD->getCopyConstructor(Context, 0)->getLocation();
5321      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5322      return;
5323    }
5324    break;
5325
5326  case CXXCopyAssignment:
5327    if (RD->hasUserDeclaredCopyAssignment()) {
5328      // FIXME: this should use the location of the copy
5329      // assignment, not the type.
5330      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5331      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5332      return;
5333    }
5334    break;
5335
5336  case CXXDestructor:
5337    if (RD->hasUserDeclaredDestructor()) {
5338      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5339      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5340      return;
5341    }
5342    break;
5343  }
5344
5345  typedef CXXRecordDecl::base_class_iterator base_iter;
5346
5347  // Virtual bases and members inhibit trivial copying/construction,
5348  // but not trivial destruction.
5349  if (member != CXXDestructor) {
5350    // Check for virtual bases.  vbases includes indirect virtual bases,
5351    // so we just iterate through the direct bases.
5352    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5353      if (bi->isVirtual()) {
5354        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5355        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5356        return;
5357      }
5358
5359    // Check for virtual methods.
5360    typedef CXXRecordDecl::method_iterator meth_iter;
5361    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5362         ++mi) {
5363      if (mi->isVirtual()) {
5364        SourceLocation MLoc = mi->getSourceRange().getBegin();
5365        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5366        return;
5367      }
5368    }
5369  }
5370
5371  bool (CXXRecordDecl::*hasTrivial)() const;
5372  switch (member) {
5373  case CXXDefaultConstructor:
5374    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5375  case CXXCopyConstructor:
5376    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5377  case CXXCopyAssignment:
5378    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5379  case CXXDestructor:
5380    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5381  default:
5382    assert(0 && "unexpected special member"); return;
5383  }
5384
5385  // Check for nontrivial bases (and recurse).
5386  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5387    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5388    assert(BaseRT && "Don't know how to handle dependent bases");
5389    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5390    if (!(BaseRecTy->*hasTrivial)()) {
5391      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5392      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5393      DiagnoseNontrivial(BaseRT, member);
5394      return;
5395    }
5396  }
5397
5398  // Check for nontrivial members (and recurse).
5399  typedef RecordDecl::field_iterator field_iter;
5400  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5401       ++fi) {
5402    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5403    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5404      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5405
5406      if (!(EltRD->*hasTrivial)()) {
5407        SourceLocation FLoc = (*fi)->getLocation();
5408        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5409        DiagnoseNontrivial(EltRT, member);
5410        return;
5411      }
5412    }
5413  }
5414
5415  assert(0 && "found no explanation for non-trivial member");
5416}
5417
5418/// TranslateIvarVisibility - Translate visibility from a token ID to an
5419///  AST enum value.
5420static ObjCIvarDecl::AccessControl
5421TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5422  switch (ivarVisibility) {
5423  default: assert(0 && "Unknown visitibility kind");
5424  case tok::objc_private: return ObjCIvarDecl::Private;
5425  case tok::objc_public: return ObjCIvarDecl::Public;
5426  case tok::objc_protected: return ObjCIvarDecl::Protected;
5427  case tok::objc_package: return ObjCIvarDecl::Package;
5428  }
5429}
5430
5431/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5432/// in order to create an IvarDecl object for it.
5433Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5434                                SourceLocation DeclStart,
5435                                DeclPtrTy IntfDecl,
5436                                Declarator &D, ExprTy *BitfieldWidth,
5437                                tok::ObjCKeywordKind Visibility) {
5438
5439  IdentifierInfo *II = D.getIdentifier();
5440  Expr *BitWidth = (Expr*)BitfieldWidth;
5441  SourceLocation Loc = DeclStart;
5442  if (II) Loc = D.getIdentifierLoc();
5443
5444  // FIXME: Unnamed fields can be handled in various different ways, for
5445  // example, unnamed unions inject all members into the struct namespace!
5446
5447  TypeSourceInfo *TInfo = 0;
5448  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5449
5450  if (BitWidth) {
5451    // 6.7.2.1p3, 6.7.2.1p4
5452    if (VerifyBitField(Loc, II, T, BitWidth)) {
5453      D.setInvalidType();
5454      DeleteExpr(BitWidth);
5455      BitWidth = 0;
5456    }
5457  } else {
5458    // Not a bitfield.
5459
5460    // validate II.
5461
5462  }
5463
5464  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5465  // than a variably modified type.
5466  if (T->isVariablyModifiedType()) {
5467    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5468    D.setInvalidType();
5469  }
5470
5471  // Get the visibility (access control) for this ivar.
5472  ObjCIvarDecl::AccessControl ac =
5473    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5474                                        : ObjCIvarDecl::None;
5475  // Must set ivar's DeclContext to its enclosing interface.
5476  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5477  DeclContext *EnclosingContext;
5478  if (ObjCImplementationDecl *IMPDecl =
5479      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5480    // Case of ivar declared in an implementation. Context is that of its class.
5481    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5482    assert(IDecl && "No class- ActOnIvar");
5483    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5484  } else
5485    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5486  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5487
5488  // Construct the decl.
5489  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5490                                             EnclosingContext, Loc, II, T,
5491                                             TInfo, ac, (Expr *)BitfieldWidth);
5492
5493  if (II) {
5494    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5495                                           ForRedeclaration);
5496    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5497        && !isa<TagDecl>(PrevDecl)) {
5498      Diag(Loc, diag::err_duplicate_member) << II;
5499      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5500      NewID->setInvalidDecl();
5501    }
5502  }
5503
5504  // Process attributes attached to the ivar.
5505  ProcessDeclAttributes(S, NewID, D);
5506
5507  if (D.isInvalidType())
5508    NewID->setInvalidDecl();
5509
5510  if (II) {
5511    // FIXME: When interfaces are DeclContexts, we'll need to add
5512    // these to the interface.
5513    S->AddDecl(DeclPtrTy::make(NewID));
5514    IdResolver.AddDecl(NewID);
5515  }
5516
5517  return DeclPtrTy::make(NewID);
5518}
5519
5520void Sema::ActOnFields(Scope* S,
5521                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5522                       DeclPtrTy *Fields, unsigned NumFields,
5523                       SourceLocation LBrac, SourceLocation RBrac,
5524                       AttributeList *Attr) {
5525  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5526  assert(EnclosingDecl && "missing record or interface decl");
5527
5528  // If the decl this is being inserted into is invalid, then it may be a
5529  // redeclaration or some other bogus case.  Don't try to add fields to it.
5530  if (EnclosingDecl->isInvalidDecl()) {
5531    // FIXME: Deallocate fields?
5532    return;
5533  }
5534
5535
5536  // Verify that all the fields are okay.
5537  unsigned NumNamedMembers = 0;
5538  llvm::SmallVector<FieldDecl*, 32> RecFields;
5539
5540  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5541  for (unsigned i = 0; i != NumFields; ++i) {
5542    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5543
5544    // Get the type for the field.
5545    Type *FDTy = FD->getType().getTypePtr();
5546
5547    if (!FD->isAnonymousStructOrUnion()) {
5548      // Remember all fields written by the user.
5549      RecFields.push_back(FD);
5550    }
5551
5552    // If the field is already invalid for some reason, don't emit more
5553    // diagnostics about it.
5554    if (FD->isInvalidDecl()) {
5555      EnclosingDecl->setInvalidDecl();
5556      continue;
5557    }
5558
5559    // C99 6.7.2.1p2:
5560    //   A structure or union shall not contain a member with
5561    //   incomplete or function type (hence, a structure shall not
5562    //   contain an instance of itself, but may contain a pointer to
5563    //   an instance of itself), except that the last member of a
5564    //   structure with more than one named member may have incomplete
5565    //   array type; such a structure (and any union containing,
5566    //   possibly recursively, a member that is such a structure)
5567    //   shall not be a member of a structure or an element of an
5568    //   array.
5569    if (FDTy->isFunctionType()) {
5570      // Field declared as a function.
5571      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5572        << FD->getDeclName();
5573      FD->setInvalidDecl();
5574      EnclosingDecl->setInvalidDecl();
5575      continue;
5576    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5577               Record && Record->isStruct()) {
5578      // Flexible array member.
5579      if (NumNamedMembers < 1) {
5580        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5581          << FD->getDeclName();
5582        FD->setInvalidDecl();
5583        EnclosingDecl->setInvalidDecl();
5584        continue;
5585      }
5586      // Okay, we have a legal flexible array member at the end of the struct.
5587      if (Record)
5588        Record->setHasFlexibleArrayMember(true);
5589    } else if (!FDTy->isDependentType() &&
5590               RequireCompleteType(FD->getLocation(), FD->getType(),
5591                                   diag::err_field_incomplete)) {
5592      // Incomplete type
5593      FD->setInvalidDecl();
5594      EnclosingDecl->setInvalidDecl();
5595      continue;
5596    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5597      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5598        // If this is a member of a union, then entire union becomes "flexible".
5599        if (Record && Record->isUnion()) {
5600          Record->setHasFlexibleArrayMember(true);
5601        } else {
5602          // If this is a struct/class and this is not the last element, reject
5603          // it.  Note that GCC supports variable sized arrays in the middle of
5604          // structures.
5605          if (i != NumFields-1)
5606            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5607              << FD->getDeclName() << FD->getType();
5608          else {
5609            // We support flexible arrays at the end of structs in
5610            // other structs as an extension.
5611            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5612              << FD->getDeclName();
5613            if (Record)
5614              Record->setHasFlexibleArrayMember(true);
5615          }
5616        }
5617      }
5618      if (Record && FDTTy->getDecl()->hasObjectMember())
5619        Record->setHasObjectMember(true);
5620    } else if (FDTy->isObjCInterfaceType()) {
5621      /// A field cannot be an Objective-c object
5622      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5623      FD->setInvalidDecl();
5624      EnclosingDecl->setInvalidDecl();
5625      continue;
5626    } else if (getLangOptions().ObjC1 &&
5627               getLangOptions().getGCMode() != LangOptions::NonGC &&
5628               Record &&
5629               (FD->getType()->isObjCObjectPointerType() ||
5630                FD->getType().isObjCGCStrong()))
5631      Record->setHasObjectMember(true);
5632    // Keep track of the number of named members.
5633    if (FD->getIdentifier())
5634      ++NumNamedMembers;
5635  }
5636
5637  // Okay, we successfully defined 'Record'.
5638  if (Record) {
5639    Record->completeDefinition();
5640  } else {
5641    ObjCIvarDecl **ClsFields =
5642      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5643    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5644      ID->setIVarList(ClsFields, RecFields.size(), Context);
5645      ID->setLocEnd(RBrac);
5646      // Add ivar's to class's DeclContext.
5647      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5648        ClsFields[i]->setLexicalDeclContext(ID);
5649        ID->addDecl(ClsFields[i]);
5650      }
5651      // Must enforce the rule that ivars in the base classes may not be
5652      // duplicates.
5653      if (ID->getSuperClass()) {
5654        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5655             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5656          ObjCIvarDecl* Ivar = (*IVI);
5657
5658          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5659            ObjCIvarDecl* prevIvar =
5660              ID->getSuperClass()->lookupInstanceVariable(II);
5661            if (prevIvar) {
5662              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5663              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5664            }
5665          }
5666        }
5667      }
5668    } else if (ObjCImplementationDecl *IMPDecl =
5669                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5670      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5671      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5672        // Ivar declared in @implementation never belongs to the implementation.
5673        // Only it is in implementation's lexical context.
5674        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5675      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5676    }
5677  }
5678
5679  if (Attr)
5680    ProcessDeclAttributeList(S, Record, Attr);
5681}
5682
5683/// \brief Determine whether the given integral value is representable within
5684/// the given type T.
5685static bool isRepresentableIntegerValue(ASTContext &Context,
5686                                        llvm::APSInt &Value,
5687                                        QualType T) {
5688  assert(T->isIntegralType() && "Integral type required!");
5689  unsigned BitWidth = Context.getTypeSize(T);
5690
5691  if (Value.isUnsigned() || Value.isNonNegative())
5692    return Value.getActiveBits() < BitWidth;
5693
5694  return Value.getMinSignedBits() <= BitWidth;
5695}
5696
5697// \brief Given an integral type, return the next larger integral type
5698// (or a NULL type of no such type exists).
5699static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5700  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5701  // enum checking below.
5702  assert(T->isIntegralType() && "Integral type required!");
5703  const unsigned NumTypes = 4;
5704  QualType SignedIntegralTypes[NumTypes] = {
5705    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5706  };
5707  QualType UnsignedIntegralTypes[NumTypes] = {
5708    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5709    Context.UnsignedLongLongTy
5710  };
5711
5712  unsigned BitWidth = Context.getTypeSize(T);
5713  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5714                                            : UnsignedIntegralTypes;
5715  for (unsigned I = 0; I != NumTypes; ++I)
5716    if (Context.getTypeSize(Types[I]) > BitWidth)
5717      return Types[I];
5718
5719  return QualType();
5720}
5721
5722EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5723                                          EnumConstantDecl *LastEnumConst,
5724                                          SourceLocation IdLoc,
5725                                          IdentifierInfo *Id,
5726                                          ExprArg val) {
5727  Expr *Val = (Expr *)val.get();
5728
5729  unsigned IntWidth = Context.Target.getIntWidth();
5730  llvm::APSInt EnumVal(IntWidth);
5731  QualType EltTy;
5732  if (Val) {
5733    if (Enum->isDependentType())
5734      EltTy = Context.DependentTy;
5735    else {
5736      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5737      SourceLocation ExpLoc;
5738      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5739        Val = 0;
5740      } else {
5741        if (!getLangOptions().CPlusPlus) {
5742          // C99 6.7.2.2p2:
5743          //   The expression that defines the value of an enumeration constant
5744          //   shall be an integer constant expression that has a value
5745          //   representable as an int.
5746
5747          // Complain if the value is not representable in an int.
5748          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
5749            Diag(IdLoc, diag::ext_enum_value_not_int)
5750              << EnumVal.toString(10) << Val->getSourceRange()
5751              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
5752          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
5753            // Force the type of the expression to 'int'.
5754            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
5755
5756            if (Val != val.get()) {
5757              val.release();
5758              val = Val;
5759            }
5760          }
5761        }
5762
5763        // C++0x [dcl.enum]p5:
5764        //   If the underlying type is not fixed, the type of each enumerator
5765        //   is the type of its initializing value:
5766        //     - If an initializer is specified for an enumerator, the
5767        //       initializing value has the same type as the expression.
5768        EltTy = Val->getType();
5769      }
5770    }
5771  }
5772
5773  if (!Val) {
5774    if (Enum->isDependentType())
5775      EltTy = Context.DependentTy;
5776    else if (!LastEnumConst) {
5777      // C++0x [dcl.enum]p5:
5778      //   If the underlying type is not fixed, the type of each enumerator
5779      //   is the type of its initializing value:
5780      //     - If no initializer is specified for the first enumerator, the
5781      //       initializing value has an unspecified integral type.
5782      //
5783      // GCC uses 'int' for its unspecified integral type, as does
5784      // C99 6.7.2.2p3.
5785      EltTy = Context.IntTy;
5786    } else {
5787      // Assign the last value + 1.
5788      EnumVal = LastEnumConst->getInitVal();
5789      ++EnumVal;
5790      EltTy = LastEnumConst->getType();
5791
5792      // Check for overflow on increment.
5793      if (EnumVal < LastEnumConst->getInitVal()) {
5794        // C++0x [dcl.enum]p5:
5795        //   If the underlying type is not fixed, the type of each enumerator
5796        //   is the type of its initializing value:
5797        //
5798        //     - Otherwise the type of the initializing value is the same as
5799        //       the type of the initializing value of the preceding enumerator
5800        //       unless the incremented value is not representable in that type,
5801        //       in which case the type is an unspecified integral type
5802        //       sufficient to contain the incremented value. If no such type
5803        //       exists, the program is ill-formed.
5804        QualType T = getNextLargerIntegralType(Context, EltTy);
5805        if (T.isNull()) {
5806          // There is no integral type larger enough to represent this
5807          // value. Complain, then allow the value to wrap around.
5808          EnumVal = LastEnumConst->getInitVal();
5809          EnumVal.zext(EnumVal.getBitWidth() * 2);
5810          Diag(IdLoc, diag::warn_enumerator_too_large)
5811            << EnumVal.toString(10);
5812        } else {
5813          EltTy = T;
5814        }
5815
5816        // Retrieve the last enumerator's value, extent that type to the
5817        // type that is supposed to be large enough to represent the incremented
5818        // value, then increment.
5819        EnumVal = LastEnumConst->getInitVal();
5820        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5821        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5822        ++EnumVal;
5823
5824        // If we're not in C++, diagnose the overflow of enumerator values,
5825        // which in C99 means that the enumerator value is not representable in
5826        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
5827        // permits enumerator values that are representable in some larger
5828        // integral type.
5829        if (!getLangOptions().CPlusPlus && !T.isNull())
5830          Diag(IdLoc, diag::warn_enum_value_overflow);
5831      } else if (!getLangOptions().CPlusPlus &&
5832                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
5833        // Enforce C99 6.7.2.2p2 even when we compute the next value.
5834        Diag(IdLoc, diag::ext_enum_value_not_int)
5835          << EnumVal.toString(10) << 1;
5836      }
5837    }
5838  }
5839
5840  if (!Enum->isDependentType()) {
5841    // Make the enumerator value match the signedness and size of the
5842    // enumerator's type.
5843    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5844    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5845  }
5846
5847  val.release();
5848  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5849                                  Val, EnumVal);
5850}
5851
5852
5853Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5854                                        DeclPtrTy lastEnumConst,
5855                                        SourceLocation IdLoc,
5856                                        IdentifierInfo *Id,
5857                                        SourceLocation EqualLoc, ExprTy *val) {
5858  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5859  EnumConstantDecl *LastEnumConst =
5860    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5861  Expr *Val = static_cast<Expr*>(val);
5862
5863  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5864  // we find one that is.
5865  S = getNonFieldDeclScope(S);
5866
5867  // Verify that there isn't already something declared with this name in this
5868  // scope.
5869  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
5870                                         ForRedeclaration);
5871  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5872    // Maybe we will complain about the shadowed template parameter.
5873    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5874    // Just pretend that we didn't see the previous declaration.
5875    PrevDecl = 0;
5876  }
5877
5878  if (PrevDecl) {
5879    // When in C++, we may get a TagDecl with the same name; in this case the
5880    // enum constant will 'hide' the tag.
5881    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5882           "Received TagDecl when not in C++!");
5883    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5884      if (isa<EnumConstantDecl>(PrevDecl))
5885        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5886      else
5887        Diag(IdLoc, diag::err_redefinition) << Id;
5888      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5889      if (Val) Val->Destroy(Context);
5890      return DeclPtrTy();
5891    }
5892  }
5893
5894  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5895                                            IdLoc, Id, Owned(Val));
5896
5897  // Register this decl in the current scope stack.
5898  if (New) {
5899    New->setAccess(TheEnumDecl->getAccess());
5900    PushOnScopeChains(New, S);
5901  }
5902
5903  return DeclPtrTy::make(New);
5904}
5905
5906void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5907                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5908                         DeclPtrTy *Elements, unsigned NumElements,
5909                         Scope *S, AttributeList *Attr) {
5910  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5911  QualType EnumType = Context.getTypeDeclType(Enum);
5912
5913  if (Attr)
5914    ProcessDeclAttributeList(S, Enum, Attr);
5915
5916  if (Enum->isDependentType()) {
5917    for (unsigned i = 0; i != NumElements; ++i) {
5918      EnumConstantDecl *ECD =
5919        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5920      if (!ECD) continue;
5921
5922      ECD->setType(EnumType);
5923    }
5924
5925    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
5926    return;
5927  }
5928
5929  // TODO: If the result value doesn't fit in an int, it must be a long or long
5930  // long value.  ISO C does not support this, but GCC does as an extension,
5931  // emit a warning.
5932  unsigned IntWidth = Context.Target.getIntWidth();
5933  unsigned CharWidth = Context.Target.getCharWidth();
5934  unsigned ShortWidth = Context.Target.getShortWidth();
5935
5936  // Verify that all the values are okay, compute the size of the values, and
5937  // reverse the list.
5938  unsigned NumNegativeBits = 0;
5939  unsigned NumPositiveBits = 0;
5940
5941  // Keep track of whether all elements have type int.
5942  bool AllElementsInt = true;
5943
5944  for (unsigned i = 0; i != NumElements; ++i) {
5945    EnumConstantDecl *ECD =
5946      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5947    if (!ECD) continue;  // Already issued a diagnostic.
5948
5949    const llvm::APSInt &InitVal = ECD->getInitVal();
5950
5951    // Keep track of the size of positive and negative values.
5952    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5953      NumPositiveBits = std::max(NumPositiveBits,
5954                                 (unsigned)InitVal.getActiveBits());
5955    else
5956      NumNegativeBits = std::max(NumNegativeBits,
5957                                 (unsigned)InitVal.getMinSignedBits());
5958
5959    // Keep track of whether every enum element has type int (very commmon).
5960    if (AllElementsInt)
5961      AllElementsInt = ECD->getType() == Context.IntTy;
5962  }
5963
5964  // Figure out the type that should be used for this enum.
5965  // FIXME: Support -fshort-enums.
5966  QualType BestType;
5967  unsigned BestWidth;
5968
5969  // C++0x N3000 [conv.prom]p3:
5970  //   An rvalue of an unscoped enumeration type whose underlying
5971  //   type is not fixed can be converted to an rvalue of the first
5972  //   of the following types that can represent all the values of
5973  //   the enumeration: int, unsigned int, long int, unsigned long
5974  //   int, long long int, or unsigned long long int.
5975  // C99 6.4.4.3p2:
5976  //   An identifier declared as an enumeration constant has type int.
5977  // The C99 rule is modified by a gcc extension
5978  QualType BestPromotionType;
5979
5980  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5981
5982  if (NumNegativeBits) {
5983    // If there is a negative value, figure out the smallest integer type (of
5984    // int/long/longlong) that fits.
5985    // If it's packed, check also if it fits a char or a short.
5986    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5987      BestType = Context.SignedCharTy;
5988      BestWidth = CharWidth;
5989    } else if (Packed && NumNegativeBits <= ShortWidth &&
5990               NumPositiveBits < ShortWidth) {
5991      BestType = Context.ShortTy;
5992      BestWidth = ShortWidth;
5993    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5994      BestType = Context.IntTy;
5995      BestWidth = IntWidth;
5996    } else {
5997      BestWidth = Context.Target.getLongWidth();
5998
5999      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6000        BestType = Context.LongTy;
6001      } else {
6002        BestWidth = Context.Target.getLongLongWidth();
6003
6004        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6005          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6006        BestType = Context.LongLongTy;
6007      }
6008    }
6009    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6010  } else {
6011    // If there is no negative value, figure out the smallest type that fits
6012    // all of the enumerator values.
6013    // If it's packed, check also if it fits a char or a short.
6014    if (Packed && NumPositiveBits <= CharWidth) {
6015      BestType = Context.UnsignedCharTy;
6016      BestPromotionType = Context.IntTy;
6017      BestWidth = CharWidth;
6018    } else if (Packed && NumPositiveBits <= ShortWidth) {
6019      BestType = Context.UnsignedShortTy;
6020      BestPromotionType = Context.IntTy;
6021      BestWidth = ShortWidth;
6022    } else if (NumPositiveBits <= IntWidth) {
6023      BestType = Context.UnsignedIntTy;
6024      BestWidth = IntWidth;
6025      BestPromotionType
6026        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6027                           ? Context.UnsignedIntTy : Context.IntTy;
6028    } else if (NumPositiveBits <=
6029               (BestWidth = Context.Target.getLongWidth())) {
6030      BestType = Context.UnsignedLongTy;
6031      BestPromotionType
6032        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6033                           ? Context.UnsignedLongTy : Context.LongTy;
6034    } else {
6035      BestWidth = Context.Target.getLongLongWidth();
6036      assert(NumPositiveBits <= BestWidth &&
6037             "How could an initializer get larger than ULL?");
6038      BestType = Context.UnsignedLongLongTy;
6039      BestPromotionType
6040        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6041                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6042    }
6043  }
6044
6045  // Loop over all of the enumerator constants, changing their types to match
6046  // the type of the enum if needed.
6047  for (unsigned i = 0; i != NumElements; ++i) {
6048    EnumConstantDecl *ECD =
6049      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6050    if (!ECD) continue;  // Already issued a diagnostic.
6051
6052    // Standard C says the enumerators have int type, but we allow, as an
6053    // extension, the enumerators to be larger than int size.  If each
6054    // enumerator value fits in an int, type it as an int, otherwise type it the
6055    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6056    // that X has type 'int', not 'unsigned'.
6057
6058    // Determine whether the value fits into an int.
6059    llvm::APSInt InitVal = ECD->getInitVal();
6060
6061    // If it fits into an integer type, force it.  Otherwise force it to match
6062    // the enum decl type.
6063    QualType NewTy;
6064    unsigned NewWidth;
6065    bool NewSign;
6066    if (!getLangOptions().CPlusPlus &&
6067        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6068      NewTy = Context.IntTy;
6069      NewWidth = IntWidth;
6070      NewSign = true;
6071    } else if (ECD->getType() == BestType) {
6072      // Already the right type!
6073      if (getLangOptions().CPlusPlus)
6074        // C++ [dcl.enum]p4: Following the closing brace of an
6075        // enum-specifier, each enumerator has the type of its
6076        // enumeration.
6077        ECD->setType(EnumType);
6078      continue;
6079    } else {
6080      NewTy = BestType;
6081      NewWidth = BestWidth;
6082      NewSign = BestType->isSignedIntegerType();
6083    }
6084
6085    // Adjust the APSInt value.
6086    InitVal.extOrTrunc(NewWidth);
6087    InitVal.setIsSigned(NewSign);
6088    ECD->setInitVal(InitVal);
6089
6090    // Adjust the Expr initializer and type.
6091    if (ECD->getInitExpr())
6092      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6093                                                      CastExpr::CK_IntegralCast,
6094                                                      ECD->getInitExpr(),
6095                                                      /*isLvalue=*/false));
6096    if (getLangOptions().CPlusPlus)
6097      // C++ [dcl.enum]p4: Following the closing brace of an
6098      // enum-specifier, each enumerator has the type of its
6099      // enumeration.
6100      ECD->setType(EnumType);
6101    else
6102      ECD->setType(NewTy);
6103  }
6104
6105  Enum->completeDefinition(BestType, BestPromotionType);
6106}
6107
6108Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6109                                            ExprArg expr) {
6110  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6111
6112  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6113                                                   Loc, AsmString);
6114  CurContext->addDecl(New);
6115  return DeclPtrTy::make(New);
6116}
6117
6118void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6119                             SourceLocation PragmaLoc,
6120                             SourceLocation NameLoc) {
6121  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6122
6123  if (PrevDecl) {
6124    PrevDecl->addAttr(::new (Context) WeakAttr());
6125  } else {
6126    (void)WeakUndeclaredIdentifiers.insert(
6127      std::pair<IdentifierInfo*,WeakInfo>
6128        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6129  }
6130}
6131
6132void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6133                                IdentifierInfo* AliasName,
6134                                SourceLocation PragmaLoc,
6135                                SourceLocation NameLoc,
6136                                SourceLocation AliasNameLoc) {
6137  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6138  WeakInfo W = WeakInfo(Name, NameLoc);
6139
6140  if (PrevDecl) {
6141    if (!PrevDecl->hasAttr<AliasAttr>())
6142      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6143        DeclApplyPragmaWeak(TUScope, ND, W);
6144  } else {
6145    (void)WeakUndeclaredIdentifiers.insert(
6146      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6147  }
6148}
6149