SemaDecl.cpp revision f4d84b663ef7dda959cbe45561d90e59760cbb74
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName) {
66  // C++ [temp.res]p3:
67  //   A qualified-id that refers to a type and in which the
68  //   nested-name-specifier depends on a template-parameter (14.6.2)
69  //   shall be prefixed by the keyword typename to indicate that the
70  //   qualified-id denotes a type, forming an
71  //   elaborated-type-specifier (7.1.5.3).
72  //
73  // We therefore do not perform any name lookup if the result would
74  // refer to a member of an unknown specialization.
75  if (SS && isUnknownSpecialization(*SS)) {
76    if (!isClassName)
77      return 0;
78
79    // We know from the grammar that this name refers to a type, so build a
80    // TypenameType node to describe the type.
81    // FIXME: Record somewhere that this TypenameType node has no "typename"
82    // keyword associated with it.
83    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
84                             II, SS->getRange()).getAsOpaquePtr();
85  }
86
87  LookupResult Result
88    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
89
90  NamedDecl *IIDecl = 0;
91  switch (Result.getKind()) {
92  case LookupResult::NotFound:
93  case LookupResult::FoundOverloaded:
94    return 0;
95
96  case LookupResult::AmbiguousBaseSubobjectTypes:
97  case LookupResult::AmbiguousBaseSubobjects:
98  case LookupResult::AmbiguousReference: {
99    // Look to see if we have a type anywhere in the list of results.
100    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
101         Res != ResEnd; ++Res) {
102      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
103        if (!IIDecl ||
104            (*Res)->getLocation().getRawEncoding() <
105              IIDecl->getLocation().getRawEncoding())
106          IIDecl = *Res;
107      }
108    }
109
110    if (!IIDecl) {
111      // None of the entities we found is a type, so there is no way
112      // to even assume that the result is a type. In this case, don't
113      // complain about the ambiguity. The parser will either try to
114      // perform this lookup again (e.g., as an object name), which
115      // will produce the ambiguity, or will complain that it expected
116      // a type name.
117      Result.Destroy();
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getAsDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195
196// Determines the context to return to after temporarily entering a
197// context.  This depends in an unnecessarily complicated way on the
198// exact ordering of callbacks from the parser.
199DeclContext *Sema::getContainingDC(DeclContext *DC) {
200
201  // Functions defined inline within classes aren't parsed until we've
202  // finished parsing the top-level class, so the top-level class is
203  // the context we'll need to return to.
204  if (isa<FunctionDecl>(DC)) {
205    DC = DC->getLexicalParent();
206
207    // A function not defined within a class will always return to its
208    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  S->AddDecl(DeclPtrTy::make(D));
292
293  // Add scoped declarations into their context, so that they can be
294  // found later. Declarations without a context won't be inserted
295  // into any context.
296  CurContext->addDecl(D);
297
298  // C++ [basic.scope]p4:
299  //   -- exactly one declaration shall declare a class name or
300  //   enumeration name that is not a typedef name and the other
301  //   declarations shall all refer to the same object or
302  //   enumerator, or all refer to functions and function templates;
303  //   in this case the class name or enumeration name is hidden.
304  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
305    // We are pushing the name of a tag (enum or class).
306    if (CurContext->getLookupContext()
307          == TD->getDeclContext()->getLookupContext()) {
308      // We're pushing the tag into the current context, which might
309      // require some reshuffling in the identifier resolver.
310      IdentifierResolver::iterator
311        I = IdResolver.begin(TD->getDeclName()),
312        IEnd = IdResolver.end();
313      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
314        NamedDecl *PrevDecl = *I;
315        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
316             PrevDecl = *I, ++I) {
317          if (TD->declarationReplaces(*I)) {
318            // This is a redeclaration. Remove it from the chain and
319            // break out, so that we'll add in the shadowed
320            // declaration.
321            S->RemoveDecl(DeclPtrTy::make(*I));
322            if (PrevDecl == *I) {
323              IdResolver.RemoveDecl(*I);
324              IdResolver.AddDecl(TD);
325              return;
326            } else {
327              IdResolver.RemoveDecl(*I);
328              break;
329            }
330          }
331        }
332
333        // There is already a declaration with the same name in the same
334        // scope, which is not a tag declaration. It must be found
335        // before we find the new declaration, so insert the new
336        // declaration at the end of the chain.
337        IdResolver.AddShadowedDecl(TD, PrevDecl);
338
339        return;
340      }
341    }
342  } else if ((isa<FunctionDecl>(D) &&
343              AllowOverloadingOfFunction(D, Context)) ||
344             isa<FunctionTemplateDecl>(D)) {
345    // We are pushing the name of a function or function template,
346    // which might be an overloaded name.
347    IdentifierResolver::iterator Redecl
348      = std::find_if(IdResolver.begin(D->getDeclName()),
349                     IdResolver.end(),
350                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
351                                  D));
352    if (Redecl != IdResolver.end() &&
353        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
354      // There is already a declaration of a function on our
355      // IdResolver chain. Replace it with this declaration.
356      S->RemoveDecl(DeclPtrTy::make(*Redecl));
357      IdResolver.RemoveDecl(*Redecl);
358    }
359  } else if (isa<ObjCInterfaceDecl>(D)) {
360    // We're pushing an Objective-C interface into the current
361    // context. If there is already an alias declaration, remove it first.
362    for (IdentifierResolver::iterator
363           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
364         I != IEnd; ++I) {
365      if (isa<ObjCCompatibleAliasDecl>(*I)) {
366        S->RemoveDecl(DeclPtrTy::make(*I));
367        IdResolver.RemoveDecl(*I);
368        break;
369      }
370    }
371  }
372
373  IdResolver.AddDecl(D);
374}
375
376void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
377  if (S->decl_empty()) return;
378  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
379	 "Scope shouldn't contain decls!");
380
381  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
382       I != E; ++I) {
383    Decl *TmpD = (*I).getAs<Decl>();
384    assert(TmpD && "This decl didn't get pushed??");
385
386    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
387    NamedDecl *D = cast<NamedDecl>(TmpD);
388
389    if (!D->getDeclName()) continue;
390
391    // Remove this name from our lexical scope.
392    IdResolver.RemoveDecl(D);
393  }
394}
395
396/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
397/// return 0 if one not found.
398ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
399  // The third "scope" argument is 0 since we aren't enabling lazy built-in
400  // creation from this context.
401  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
402
403  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
404}
405
406/// getNonFieldDeclScope - Retrieves the innermost scope, starting
407/// from S, where a non-field would be declared. This routine copes
408/// with the difference between C and C++ scoping rules in structs and
409/// unions. For example, the following code is well-formed in C but
410/// ill-formed in C++:
411/// @code
412/// struct S6 {
413///   enum { BAR } e;
414/// };
415///
416/// void test_S6() {
417///   struct S6 a;
418///   a.e = BAR;
419/// }
420/// @endcode
421/// For the declaration of BAR, this routine will return a different
422/// scope. The scope S will be the scope of the unnamed enumeration
423/// within S6. In C++, this routine will return the scope associated
424/// with S6, because the enumeration's scope is a transparent
425/// context but structures can contain non-field names. In C, this
426/// routine will return the translation unit scope, since the
427/// enumeration's scope is a transparent context and structures cannot
428/// contain non-field names.
429Scope *Sema::getNonFieldDeclScope(Scope *S) {
430  while (((S->getFlags() & Scope::DeclScope) == 0) ||
431         (S->getEntity() &&
432          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
433         (S->isClassScope() && !getLangOptions().CPlusPlus))
434    S = S->getParent();
435  return S;
436}
437
438void Sema::InitBuiltinVaListType() {
439  if (!Context.getBuiltinVaListType().isNull())
440    return;
441
442  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
443  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
444  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
445  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
446}
447
448/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
449/// file scope.  lazily create a decl for it. ForRedeclaration is true
450/// if we're creating this built-in in anticipation of redeclaring the
451/// built-in.
452NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
453                                     Scope *S, bool ForRedeclaration,
454                                     SourceLocation Loc) {
455  Builtin::ID BID = (Builtin::ID)bid;
456
457  if (Context.BuiltinInfo.hasVAListUse(BID))
458    InitBuiltinVaListType();
459
460  ASTContext::GetBuiltinTypeError Error;
461  QualType R = Context.GetBuiltinType(BID, Error);
462  switch (Error) {
463  case ASTContext::GE_None:
464    // Okay
465    break;
466
467  case ASTContext::GE_Missing_stdio:
468    if (ForRedeclaration)
469      Diag(Loc, diag::err_implicit_decl_requires_stdio)
470        << Context.BuiltinInfo.GetName(BID);
471    return 0;
472
473  case ASTContext::GE_Missing_setjmp:
474    if (ForRedeclaration)
475      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
476        << Context.BuiltinInfo.GetName(BID);
477    return 0;
478  }
479
480  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
481    Diag(Loc, diag::ext_implicit_lib_function_decl)
482      << Context.BuiltinInfo.GetName(BID)
483      << R;
484    if (Context.BuiltinInfo.getHeaderName(BID) &&
485        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
486          != Diagnostic::Ignored)
487      Diag(Loc, diag::note_please_include_header)
488        << Context.BuiltinInfo.getHeaderName(BID)
489        << Context.BuiltinInfo.GetName(BID);
490  }
491
492  FunctionDecl *New = FunctionDecl::Create(Context,
493                                           Context.getTranslationUnitDecl(),
494                                           Loc, II, R, /*DInfo=*/0,
495                                           FunctionDecl::Extern, false,
496                                           /*hasPrototype=*/true);
497  New->setImplicit();
498
499  // Create Decl objects for each parameter, adding them to the
500  // FunctionDecl.
501  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
502    llvm::SmallVector<ParmVarDecl*, 16> Params;
503    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
504      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
505                                           FT->getArgType(i), /*DInfo=*/0,
506                                           VarDecl::None, 0));
507    New->setParams(Context, Params.data(), Params.size());
508  }
509
510  AddKnownFunctionAttributes(New);
511
512  // TUScope is the translation-unit scope to insert this function into.
513  // FIXME: This is hideous. We need to teach PushOnScopeChains to
514  // relate Scopes to DeclContexts, and probably eliminate CurContext
515  // entirely, but we're not there yet.
516  DeclContext *SavedContext = CurContext;
517  CurContext = Context.getTranslationUnitDecl();
518  PushOnScopeChains(New, TUScope);
519  CurContext = SavedContext;
520  return New;
521}
522
523/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
524/// everything from the standard library is defined.
525NamespaceDecl *Sema::GetStdNamespace() {
526  if (!StdNamespace) {
527    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
528    DeclContext *Global = Context.getTranslationUnitDecl();
529    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
530    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
531  }
532  return StdNamespace;
533}
534
535/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
536/// same name and scope as a previous declaration 'Old'.  Figure out
537/// how to resolve this situation, merging decls or emitting
538/// diagnostics as appropriate. If there was an error, set New to be invalid.
539///
540void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
541  // If either decl is known invalid already, set the new one to be invalid and
542  // don't bother doing any merging checks.
543  if (New->isInvalidDecl() || OldD->isInvalidDecl())
544    return New->setInvalidDecl();
545
546  // Allow multiple definitions for ObjC built-in typedefs.
547  // FIXME: Verify the underlying types are equivalent!
548  if (getLangOptions().ObjC1) {
549    const IdentifierInfo *TypeID = New->getIdentifier();
550    switch (TypeID->getLength()) {
551    default: break;
552    case 2:
553      if (!TypeID->isStr("id"))
554        break;
555      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
556      // Install the built-in type for 'id', ignoring the current definition.
557      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
558      return;
559    case 5:
560      if (!TypeID->isStr("Class"))
561        break;
562      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
563      // Install the built-in type for 'Class', ignoring the current definition.
564      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
565      return;
566    case 3:
567      if (!TypeID->isStr("SEL"))
568        break;
569      Context.setObjCSelType(Context.getTypeDeclType(New));
570      return;
571    case 8:
572      if (!TypeID->isStr("Protocol"))
573        break;
574      Context.setObjCProtoType(New->getUnderlyingType());
575      return;
576    }
577    // Fall through - the typedef name was not a builtin type.
578  }
579  // Verify the old decl was also a type.
580  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
581  if (!Old) {
582    Diag(New->getLocation(), diag::err_redefinition_different_kind)
583      << New->getDeclName();
584    if (OldD->getLocation().isValid())
585      Diag(OldD->getLocation(), diag::note_previous_definition);
586    return New->setInvalidDecl();
587  }
588
589  // Determine the "old" type we'll use for checking and diagnostics.
590  QualType OldType;
591  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
592    OldType = OldTypedef->getUnderlyingType();
593  else
594    OldType = Context.getTypeDeclType(Old);
595
596  // If the typedef types are not identical, reject them in all languages and
597  // with any extensions enabled.
598
599  if (OldType != New->getUnderlyingType() &&
600      Context.getCanonicalType(OldType) !=
601      Context.getCanonicalType(New->getUnderlyingType())) {
602    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
603      << New->getUnderlyingType() << OldType;
604    if (Old->getLocation().isValid())
605      Diag(Old->getLocation(), diag::note_previous_definition);
606    return New->setInvalidDecl();
607  }
608
609  if (getLangOptions().Microsoft)
610    return;
611
612  // C++ [dcl.typedef]p2:
613  //   In a given non-class scope, a typedef specifier can be used to
614  //   redefine the name of any type declared in that scope to refer
615  //   to the type to which it already refers.
616  if (getLangOptions().CPlusPlus) {
617    if (!isa<CXXRecordDecl>(CurContext))
618      return;
619    Diag(New->getLocation(), diag::err_redefinition)
620      << New->getDeclName();
621    Diag(Old->getLocation(), diag::note_previous_definition);
622    return New->setInvalidDecl();
623  }
624
625  // If we have a redefinition of a typedef in C, emit a warning.  This warning
626  // is normally mapped to an error, but can be controlled with
627  // -Wtypedef-redefinition.  If either the original or the redefinition is
628  // in a system header, don't emit this for compatibility with GCC.
629  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
630      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
631       Context.getSourceManager().isInSystemHeader(New->getLocation())))
632    return;
633
634  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
635    << New->getDeclName();
636  Diag(Old->getLocation(), diag::note_previous_definition);
637  return;
638}
639
640/// DeclhasAttr - returns true if decl Declaration already has the target
641/// attribute.
642static bool
643DeclHasAttr(const Decl *decl, const Attr *target) {
644  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
645    if (attr->getKind() == target->getKind())
646      return true;
647
648  return false;
649}
650
651/// MergeAttributes - append attributes from the Old decl to the New one.
652static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
653  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
654    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
655      Attr *NewAttr = attr->clone(C);
656      NewAttr->setInherited(true);
657      New->addAttr(NewAttr);
658    }
659  }
660}
661
662/// Used in MergeFunctionDecl to keep track of function parameters in
663/// C.
664struct GNUCompatibleParamWarning {
665  ParmVarDecl *OldParm;
666  ParmVarDecl *NewParm;
667  QualType PromotedType;
668};
669
670/// MergeFunctionDecl - We just parsed a function 'New' from
671/// declarator D which has the same name and scope as a previous
672/// declaration 'Old'.  Figure out how to resolve this situation,
673/// merging decls or emitting diagnostics as appropriate.
674///
675/// In C++, New and Old must be declarations that are not
676/// overloaded. Use IsOverload to determine whether New and Old are
677/// overloaded, and to select the Old declaration that New should be
678/// merged with.
679///
680/// Returns true if there was an error, false otherwise.
681bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
682  assert(!isa<OverloadedFunctionDecl>(OldD) &&
683         "Cannot merge with an overloaded function declaration");
684
685  // Verify the old decl was also a function.
686  FunctionDecl *Old = 0;
687  if (FunctionTemplateDecl *OldFunctionTemplate
688        = dyn_cast<FunctionTemplateDecl>(OldD))
689    Old = OldFunctionTemplate->getTemplatedDecl();
690  else
691    Old = dyn_cast<FunctionDecl>(OldD);
692  if (!Old) {
693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
694      << New->getDeclName();
695    Diag(OldD->getLocation(), diag::note_previous_definition);
696    return true;
697  }
698
699  // Determine whether the previous declaration was a definition,
700  // implicit declaration, or a declaration.
701  diag::kind PrevDiag;
702  if (Old->isThisDeclarationADefinition())
703    PrevDiag = diag::note_previous_definition;
704  else if (Old->isImplicit())
705    PrevDiag = diag::note_previous_implicit_declaration;
706  else
707    PrevDiag = diag::note_previous_declaration;
708
709  QualType OldQType = Context.getCanonicalType(Old->getType());
710  QualType NewQType = Context.getCanonicalType(New->getType());
711
712  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
713      New->getStorageClass() == FunctionDecl::Static &&
714      Old->getStorageClass() != FunctionDecl::Static) {
715    Diag(New->getLocation(), diag::err_static_non_static)
716      << New;
717    Diag(Old->getLocation(), PrevDiag);
718    return true;
719  }
720
721  if (getLangOptions().CPlusPlus) {
722    // (C++98 13.1p2):
723    //   Certain function declarations cannot be overloaded:
724    //     -- Function declarations that differ only in the return type
725    //        cannot be overloaded.
726    QualType OldReturnType
727      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
728    QualType NewReturnType
729      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
730    if (OldReturnType != NewReturnType) {
731      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
732      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
733      return true;
734    }
735
736    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
737    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
738    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
739        NewMethod->getLexicalDeclContext()->isRecord()) {
740      //    -- Member function declarations with the same name and the
741      //       same parameter types cannot be overloaded if any of them
742      //       is a static member function declaration.
743      if (OldMethod->isStatic() || NewMethod->isStatic()) {
744        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
745        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
746        return true;
747      }
748
749      // C++ [class.mem]p1:
750      //   [...] A member shall not be declared twice in the
751      //   member-specification, except that a nested class or member
752      //   class template can be declared and then later defined.
753      unsigned NewDiag;
754      if (isa<CXXConstructorDecl>(OldMethod))
755        NewDiag = diag::err_constructor_redeclared;
756      else if (isa<CXXDestructorDecl>(NewMethod))
757        NewDiag = diag::err_destructor_redeclared;
758      else if (isa<CXXConversionDecl>(NewMethod))
759        NewDiag = diag::err_conv_function_redeclared;
760      else
761        NewDiag = diag::err_member_redeclared;
762
763      Diag(New->getLocation(), NewDiag);
764      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
765    }
766
767    // (C++98 8.3.5p3):
768    //   All declarations for a function shall agree exactly in both the
769    //   return type and the parameter-type-list.
770    if (OldQType == NewQType)
771      return MergeCompatibleFunctionDecls(New, Old);
772
773    // Fall through for conflicting redeclarations and redefinitions.
774  }
775
776  // C: Function types need to be compatible, not identical. This handles
777  // duplicate function decls like "void f(int); void f(enum X);" properly.
778  if (!getLangOptions().CPlusPlus &&
779      Context.typesAreCompatible(OldQType, NewQType)) {
780    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
781    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
782    const FunctionProtoType *OldProto = 0;
783    if (isa<FunctionNoProtoType>(NewFuncType) &&
784        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
785      // The old declaration provided a function prototype, but the
786      // new declaration does not. Merge in the prototype.
787      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
788      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
789                                                 OldProto->arg_type_end());
790      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
791                                         ParamTypes.data(), ParamTypes.size(),
792                                         OldProto->isVariadic(),
793                                         OldProto->getTypeQuals());
794      New->setType(NewQType);
795      New->setHasInheritedPrototype();
796
797      // Synthesize a parameter for each argument type.
798      llvm::SmallVector<ParmVarDecl*, 16> Params;
799      for (FunctionProtoType::arg_type_iterator
800             ParamType = OldProto->arg_type_begin(),
801             ParamEnd = OldProto->arg_type_end();
802           ParamType != ParamEnd; ++ParamType) {
803        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
804                                                 SourceLocation(), 0,
805                                                 *ParamType, /*DInfo=*/0,
806                                                 VarDecl::None, 0);
807        Param->setImplicit();
808        Params.push_back(Param);
809      }
810
811      New->setParams(Context, Params.data(), Params.size());
812    }
813
814    return MergeCompatibleFunctionDecls(New, Old);
815  }
816
817  // GNU C permits a K&R definition to follow a prototype declaration
818  // if the declared types of the parameters in the K&R definition
819  // match the types in the prototype declaration, even when the
820  // promoted types of the parameters from the K&R definition differ
821  // from the types in the prototype. GCC then keeps the types from
822  // the prototype.
823  //
824  // If a variadic prototype is followed by a non-variadic K&R definition,
825  // the K&R definition becomes variadic.  This is sort of an edge case, but
826  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
827  // C99 6.9.1p8.
828  if (!getLangOptions().CPlusPlus &&
829      Old->hasPrototype() && !New->hasPrototype() &&
830      New->getType()->getAsFunctionProtoType() &&
831      Old->getNumParams() == New->getNumParams()) {
832    llvm::SmallVector<QualType, 16> ArgTypes;
833    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
834    const FunctionProtoType *OldProto
835      = Old->getType()->getAsFunctionProtoType();
836    const FunctionProtoType *NewProto
837      = New->getType()->getAsFunctionProtoType();
838
839    // Determine whether this is the GNU C extension.
840    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
841                                               NewProto->getResultType());
842    bool LooseCompatible = !MergedReturn.isNull();
843    for (unsigned Idx = 0, End = Old->getNumParams();
844         LooseCompatible && Idx != End; ++Idx) {
845      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
846      ParmVarDecl *NewParm = New->getParamDecl(Idx);
847      if (Context.typesAreCompatible(OldParm->getType(),
848                                     NewProto->getArgType(Idx))) {
849        ArgTypes.push_back(NewParm->getType());
850      } else if (Context.typesAreCompatible(OldParm->getType(),
851                                            NewParm->getType())) {
852        GNUCompatibleParamWarning Warn
853          = { OldParm, NewParm, NewProto->getArgType(Idx) };
854        Warnings.push_back(Warn);
855        ArgTypes.push_back(NewParm->getType());
856      } else
857        LooseCompatible = false;
858    }
859
860    if (LooseCompatible) {
861      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
862        Diag(Warnings[Warn].NewParm->getLocation(),
863             diag::ext_param_promoted_not_compatible_with_prototype)
864          << Warnings[Warn].PromotedType
865          << Warnings[Warn].OldParm->getType();
866        Diag(Warnings[Warn].OldParm->getLocation(),
867             diag::note_previous_declaration);
868      }
869
870      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
871                                           ArgTypes.size(),
872                                           OldProto->isVariadic(), 0));
873      return MergeCompatibleFunctionDecls(New, Old);
874    }
875
876    // Fall through to diagnose conflicting types.
877  }
878
879  // A function that has already been declared has been redeclared or defined
880  // with a different type- show appropriate diagnostic
881  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
882    // The user has declared a builtin function with an incompatible
883    // signature.
884    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
885      // The function the user is redeclaring is a library-defined
886      // function like 'malloc' or 'printf'. Warn about the
887      // redeclaration, then pretend that we don't know about this
888      // library built-in.
889      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
890      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
891        << Old << Old->getType();
892      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
893      Old->setInvalidDecl();
894      return false;
895    }
896
897    PrevDiag = diag::note_previous_builtin_declaration;
898  }
899
900  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
901  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
902  return true;
903}
904
905/// \brief Completes the merge of two function declarations that are
906/// known to be compatible.
907///
908/// This routine handles the merging of attributes and other
909/// properties of function declarations form the old declaration to
910/// the new declaration, once we know that New is in fact a
911/// redeclaration of Old.
912///
913/// \returns false
914bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
915  // Merge the attributes
916  MergeAttributes(New, Old, Context);
917
918  // Merge the storage class.
919  if (Old->getStorageClass() != FunctionDecl::Extern)
920    New->setStorageClass(Old->getStorageClass());
921
922  // Merge "inline"
923  if (Old->isInline())
924    New->setInline(true);
925
926  // If this function declaration by itself qualifies as a C99 inline
927  // definition (C99 6.7.4p6), but the previous definition did not,
928  // then the function is not a C99 inline definition.
929  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
930    New->setC99InlineDefinition(false);
931  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
932    // Mark all preceding definitions as not being C99 inline definitions.
933    for (const FunctionDecl *Prev = Old; Prev;
934         Prev = Prev->getPreviousDeclaration())
935      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
936  }
937
938  // Merge "pure" flag.
939  if (Old->isPure())
940    New->setPure();
941
942  // Merge the "deleted" flag.
943  if (Old->isDeleted())
944    New->setDeleted();
945
946  if (getLangOptions().CPlusPlus)
947    return MergeCXXFunctionDecl(New, Old);
948
949  return false;
950}
951
952/// MergeVarDecl - We just parsed a variable 'New' which has the same name
953/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
954/// situation, merging decls or emitting diagnostics as appropriate.
955///
956/// Tentative definition rules (C99 6.9.2p2) are checked by
957/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
958/// definitions here, since the initializer hasn't been attached.
959///
960void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
961  // If either decl is invalid, make sure the new one is marked invalid and
962  // don't do any other checking.
963  if (New->isInvalidDecl() || OldD->isInvalidDecl())
964    return New->setInvalidDecl();
965
966  // Verify the old decl was also a variable.
967  VarDecl *Old = dyn_cast<VarDecl>(OldD);
968  if (!Old) {
969    Diag(New->getLocation(), diag::err_redefinition_different_kind)
970      << New->getDeclName();
971    Diag(OldD->getLocation(), diag::note_previous_definition);
972    return New->setInvalidDecl();
973  }
974
975  MergeAttributes(New, Old, Context);
976
977  // Merge the types
978  QualType MergedT;
979  if (getLangOptions().CPlusPlus) {
980    if (Context.hasSameType(New->getType(), Old->getType()))
981      MergedT = New->getType();
982  } else {
983    MergedT = Context.mergeTypes(New->getType(), Old->getType());
984  }
985  if (MergedT.isNull()) {
986    Diag(New->getLocation(), diag::err_redefinition_different_type)
987      << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991  New->setType(MergedT);
992
993  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
994  if (New->getStorageClass() == VarDecl::Static &&
995      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
996    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
997    Diag(Old->getLocation(), diag::note_previous_definition);
998    return New->setInvalidDecl();
999  }
1000  // C99 6.2.2p4:
1001  //   For an identifier declared with the storage-class specifier
1002  //   extern in a scope in which a prior declaration of that
1003  //   identifier is visible,23) if the prior declaration specifies
1004  //   internal or external linkage, the linkage of the identifier at
1005  //   the later declaration is the same as the linkage specified at
1006  //   the prior declaration. If no prior declaration is visible, or
1007  //   if the prior declaration specifies no linkage, then the
1008  //   identifier has external linkage.
1009  if (New->hasExternalStorage() && Old->hasLinkage())
1010    /* Okay */;
1011  else if (New->getStorageClass() != VarDecl::Static &&
1012           Old->getStorageClass() == VarDecl::Static) {
1013    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015    return New->setInvalidDecl();
1016  }
1017
1018  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1019
1020  // FIXME: The test for external storage here seems wrong? We still
1021  // need to check for mismatches.
1022  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1023      // Don't complain about out-of-line definitions of static members.
1024      !(Old->getLexicalDeclContext()->isRecord() &&
1025        !New->getLexicalDeclContext()->isRecord())) {
1026    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1027    Diag(Old->getLocation(), diag::note_previous_definition);
1028    return New->setInvalidDecl();
1029  }
1030
1031  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1032    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1033    Diag(Old->getLocation(), diag::note_previous_definition);
1034  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1035    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1036    Diag(Old->getLocation(), diag::note_previous_definition);
1037  }
1038
1039  // Keep a chain of previous declarations.
1040  New->setPreviousDeclaration(Old);
1041}
1042
1043/// CheckFallThrough - Check that we don't fall off the end of a
1044/// Statement that should return a value.
1045///
1046/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1047/// MaybeFallThrough iff we might or might not fall off the end and
1048/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1049/// that functions not marked noreturn will return.
1050Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1051  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1052
1053  // FIXME: They should never return 0, fix that, delete this code.
1054  if (cfg == 0)
1055    return NeverFallThrough;
1056  // The CFG leaves in dead things, and we don't want to dead code paths to
1057  // confuse us, so we mark all live things first.
1058  std::queue<CFGBlock*> workq;
1059  llvm::BitVector live(cfg->getNumBlockIDs());
1060  // Prep work queue
1061  workq.push(&cfg->getEntry());
1062  // Solve
1063  while (!workq.empty()) {
1064    CFGBlock *item = workq.front();
1065    workq.pop();
1066    live.set(item->getBlockID());
1067    for (CFGBlock::succ_iterator I=item->succ_begin(),
1068           E=item->succ_end();
1069         I != E;
1070         ++I) {
1071      if ((*I) && !live[(*I)->getBlockID()]) {
1072        live.set((*I)->getBlockID());
1073        workq.push(*I);
1074      }
1075    }
1076  }
1077
1078  // Now we know what is live, we check the live precessors of the exit block
1079  // and look for fall through paths, being careful to ignore normal returns,
1080  // and exceptional paths.
1081  bool HasLiveReturn = false;
1082  bool HasFakeEdge = false;
1083  bool HasPlainEdge = false;
1084  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1085         E = cfg->getExit().pred_end();
1086       I != E;
1087       ++I) {
1088    CFGBlock& B = **I;
1089    if (!live[B.getBlockID()])
1090      continue;
1091    if (B.size() == 0) {
1092      // A labeled empty statement, or the entry block...
1093      HasPlainEdge = true;
1094      continue;
1095    }
1096    Stmt *S = B[B.size()-1];
1097    if (isa<ReturnStmt>(S)) {
1098      HasLiveReturn = true;
1099      continue;
1100    }
1101    if (isa<ObjCAtThrowStmt>(S)) {
1102      HasFakeEdge = true;
1103      continue;
1104    }
1105    if (isa<CXXThrowExpr>(S)) {
1106      HasFakeEdge = true;
1107      continue;
1108    }
1109    bool NoReturnEdge = false;
1110    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1111      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1112      if (CEE->getType().getNoReturnAttr()) {
1113        NoReturnEdge = true;
1114        HasFakeEdge = true;
1115      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1116        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1117          if (FD->hasAttr<NoReturnAttr>()) {
1118            NoReturnEdge = true;
1119            HasFakeEdge = true;
1120          }
1121        }
1122      }
1123    }
1124    // FIXME: Add noreturn message sends.
1125    if (NoReturnEdge == false)
1126      HasPlainEdge = true;
1127  }
1128  if (!HasPlainEdge)
1129    return NeverFallThrough;
1130  if (HasFakeEdge || HasLiveReturn)
1131    return MaybeFallThrough;
1132  // This says AlwaysFallThrough for calls to functions that are not marked
1133  // noreturn, that don't return.  If people would like this warning to be more
1134  // accurate, such functions should be marked as noreturn.
1135  return AlwaysFallThrough;
1136}
1137
1138/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1139/// function that should return a value.  Check that we don't fall off the end
1140/// of a noreturn function.  We assume that functions and blocks not marked
1141/// noreturn will return.
1142void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1143  // FIXME: Would be nice if we had a better way to control cascading errors,
1144  // but for now, avoid them.  The problem is that when Parse sees:
1145  //   int foo() { return a; }
1146  // The return is eaten and the Sema code sees just:
1147  //   int foo() { }
1148  // which this code would then warn about.
1149  if (getDiagnostics().hasErrorOccurred())
1150    return;
1151  bool ReturnsVoid = false;
1152  bool HasNoReturn = false;
1153  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1154    if (FD->getResultType()->isVoidType())
1155      ReturnsVoid = true;
1156    if (FD->hasAttr<NoReturnAttr>())
1157      HasNoReturn = true;
1158  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1159    if (MD->getResultType()->isVoidType())
1160      ReturnsVoid = true;
1161    if (MD->hasAttr<NoReturnAttr>())
1162      HasNoReturn = true;
1163  }
1164
1165  // Short circuit for compilation speed.
1166  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1167       == Diagnostic::Ignored || ReturnsVoid)
1168      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1169          == Diagnostic::Ignored || !HasNoReturn)
1170      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1171          == Diagnostic::Ignored || !ReturnsVoid))
1172    return;
1173  // FIXME: Funtion try block
1174  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1175    switch (CheckFallThrough(Body)) {
1176    case MaybeFallThrough:
1177      if (HasNoReturn)
1178        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1179      else if (!ReturnsVoid)
1180        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1181      break;
1182    case AlwaysFallThrough:
1183      if (HasNoReturn)
1184        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1185      else if (!ReturnsVoid)
1186        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1187      break;
1188    case NeverFallThrough:
1189      if (ReturnsVoid)
1190        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1191      break;
1192    }
1193  }
1194}
1195
1196/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1197/// that should return a value.  Check that we don't fall off the end of a
1198/// noreturn block.  We assume that functions and blocks not marked noreturn
1199/// will return.
1200void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1201  // FIXME: Would be nice if we had a better way to control cascading errors,
1202  // but for now, avoid them.  The problem is that when Parse sees:
1203  //   int foo() { return a; }
1204  // The return is eaten and the Sema code sees just:
1205  //   int foo() { }
1206  // which this code would then warn about.
1207  if (getDiagnostics().hasErrorOccurred())
1208    return;
1209  bool ReturnsVoid = false;
1210  bool HasNoReturn = false;
1211  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1212    if (FT->getResultType()->isVoidType())
1213      ReturnsVoid = true;
1214    if (FT->getNoReturnAttr())
1215      HasNoReturn = true;
1216  }
1217
1218  // Short circuit for compilation speed.
1219  if (ReturnsVoid
1220      && !HasNoReturn
1221      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1222          == Diagnostic::Ignored || !ReturnsVoid))
1223    return;
1224  // FIXME: Funtion try block
1225  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1226    switch (CheckFallThrough(Body)) {
1227    case MaybeFallThrough:
1228      if (HasNoReturn)
1229        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1230      else if (!ReturnsVoid)
1231        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1232      break;
1233    case AlwaysFallThrough:
1234      if (HasNoReturn)
1235        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1236      else if (!ReturnsVoid)
1237        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1238      break;
1239    case NeverFallThrough:
1240      if (ReturnsVoid)
1241        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1242      break;
1243    }
1244  }
1245}
1246
1247/// CheckParmsForFunctionDef - Check that the parameters of the given
1248/// function are appropriate for the definition of a function. This
1249/// takes care of any checks that cannot be performed on the
1250/// declaration itself, e.g., that the types of each of the function
1251/// parameters are complete.
1252bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1253  bool HasInvalidParm = false;
1254  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1255    ParmVarDecl *Param = FD->getParamDecl(p);
1256
1257    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1258    // function declarator that is part of a function definition of
1259    // that function shall not have incomplete type.
1260    //
1261    // This is also C++ [dcl.fct]p6.
1262    if (!Param->isInvalidDecl() &&
1263        RequireCompleteType(Param->getLocation(), Param->getType(),
1264                               diag::err_typecheck_decl_incomplete_type)) {
1265      Param->setInvalidDecl();
1266      HasInvalidParm = true;
1267    }
1268
1269    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1270    // declaration of each parameter shall include an identifier.
1271    if (Param->getIdentifier() == 0 &&
1272        !Param->isImplicit() &&
1273        !getLangOptions().CPlusPlus)
1274      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1275  }
1276
1277  return HasInvalidParm;
1278}
1279
1280/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1281/// no declarator (e.g. "struct foo;") is parsed.
1282Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1283  // FIXME: Error on auto/register at file scope
1284  // FIXME: Error on inline/virtual/explicit
1285  // FIXME: Error on invalid restrict
1286  // FIXME: Warn on useless __thread
1287  // FIXME: Warn on useless const/volatile
1288  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1289  // FIXME: Warn on useless attributes
1290  TagDecl *Tag = 0;
1291  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1292      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1293      DS.getTypeSpecType() == DeclSpec::TST_union ||
1294      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1295    if (!DS.getTypeRep()) // We probably had an error
1296      return DeclPtrTy();
1297
1298    // Note that the above type specs guarantee that the
1299    // type rep is a Decl, whereas in many of the others
1300    // it's a Type.
1301    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1302  }
1303
1304  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1305    if (!Record->getDeclName() && Record->isDefinition() &&
1306        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1307      if (getLangOptions().CPlusPlus ||
1308          Record->getDeclContext()->isRecord())
1309        return BuildAnonymousStructOrUnion(S, DS, Record);
1310
1311      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1312        << DS.getSourceRange();
1313    }
1314
1315    // Microsoft allows unnamed struct/union fields. Don't complain
1316    // about them.
1317    // FIXME: Should we support Microsoft's extensions in this area?
1318    if (Record->getDeclName() && getLangOptions().Microsoft)
1319      return DeclPtrTy::make(Tag);
1320  }
1321
1322  if (!DS.isMissingDeclaratorOk() &&
1323      DS.getTypeSpecType() != DeclSpec::TST_error) {
1324    // Warn about typedefs of enums without names, since this is an
1325    // extension in both Microsoft an GNU.
1326    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1327        Tag && isa<EnumDecl>(Tag)) {
1328      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1329        << DS.getSourceRange();
1330      return DeclPtrTy::make(Tag);
1331    }
1332
1333    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1334      << DS.getSourceRange();
1335    return DeclPtrTy();
1336  }
1337
1338  return DeclPtrTy::make(Tag);
1339}
1340
1341/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1342/// anonymous struct or union AnonRecord into the owning context Owner
1343/// and scope S. This routine will be invoked just after we realize
1344/// that an unnamed union or struct is actually an anonymous union or
1345/// struct, e.g.,
1346///
1347/// @code
1348/// union {
1349///   int i;
1350///   float f;
1351/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1352///    // f into the surrounding scope.x
1353/// @endcode
1354///
1355/// This routine is recursive, injecting the names of nested anonymous
1356/// structs/unions into the owning context and scope as well.
1357bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1358                                               RecordDecl *AnonRecord) {
1359  bool Invalid = false;
1360  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1361                               FEnd = AnonRecord->field_end();
1362       F != FEnd; ++F) {
1363    if ((*F)->getDeclName()) {
1364      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1365                                                LookupOrdinaryName, true);
1366      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1367        // C++ [class.union]p2:
1368        //   The names of the members of an anonymous union shall be
1369        //   distinct from the names of any other entity in the
1370        //   scope in which the anonymous union is declared.
1371        unsigned diagKind
1372          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1373                                 : diag::err_anonymous_struct_member_redecl;
1374        Diag((*F)->getLocation(), diagKind)
1375          << (*F)->getDeclName();
1376        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1377        Invalid = true;
1378      } else {
1379        // C++ [class.union]p2:
1380        //   For the purpose of name lookup, after the anonymous union
1381        //   definition, the members of the anonymous union are
1382        //   considered to have been defined in the scope in which the
1383        //   anonymous union is declared.
1384        Owner->makeDeclVisibleInContext(*F);
1385        S->AddDecl(DeclPtrTy::make(*F));
1386        IdResolver.AddDecl(*F);
1387      }
1388    } else if (const RecordType *InnerRecordType
1389                 = (*F)->getType()->getAs<RecordType>()) {
1390      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1391      if (InnerRecord->isAnonymousStructOrUnion())
1392        Invalid = Invalid ||
1393          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1394    }
1395  }
1396
1397  return Invalid;
1398}
1399
1400/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1401/// anonymous structure or union. Anonymous unions are a C++ feature
1402/// (C++ [class.union]) and a GNU C extension; anonymous structures
1403/// are a GNU C and GNU C++ extension.
1404Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1405                                                  RecordDecl *Record) {
1406  DeclContext *Owner = Record->getDeclContext();
1407
1408  // Diagnose whether this anonymous struct/union is an extension.
1409  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1410    Diag(Record->getLocation(), diag::ext_anonymous_union);
1411  else if (!Record->isUnion())
1412    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1413
1414  // C and C++ require different kinds of checks for anonymous
1415  // structs/unions.
1416  bool Invalid = false;
1417  if (getLangOptions().CPlusPlus) {
1418    const char* PrevSpec = 0;
1419    unsigned DiagID;
1420    // C++ [class.union]p3:
1421    //   Anonymous unions declared in a named namespace or in the
1422    //   global namespace shall be declared static.
1423    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1424        (isa<TranslationUnitDecl>(Owner) ||
1425         (isa<NamespaceDecl>(Owner) &&
1426          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1427      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1428      Invalid = true;
1429
1430      // Recover by adding 'static'.
1431      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1432                             PrevSpec, DiagID);
1433    }
1434    // C++ [class.union]p3:
1435    //   A storage class is not allowed in a declaration of an
1436    //   anonymous union in a class scope.
1437    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1438             isa<RecordDecl>(Owner)) {
1439      Diag(DS.getStorageClassSpecLoc(),
1440           diag::err_anonymous_union_with_storage_spec);
1441      Invalid = true;
1442
1443      // Recover by removing the storage specifier.
1444      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1445                             PrevSpec, DiagID);
1446    }
1447
1448    // C++ [class.union]p2:
1449    //   The member-specification of an anonymous union shall only
1450    //   define non-static data members. [Note: nested types and
1451    //   functions cannot be declared within an anonymous union. ]
1452    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1453                                 MemEnd = Record->decls_end();
1454         Mem != MemEnd; ++Mem) {
1455      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1456        // C++ [class.union]p3:
1457        //   An anonymous union shall not have private or protected
1458        //   members (clause 11).
1459        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1460          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1461            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1462          Invalid = true;
1463        }
1464      } else if ((*Mem)->isImplicit()) {
1465        // Any implicit members are fine.
1466      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1467        // This is a type that showed up in an
1468        // elaborated-type-specifier inside the anonymous struct or
1469        // union, but which actually declares a type outside of the
1470        // anonymous struct or union. It's okay.
1471      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1472        if (!MemRecord->isAnonymousStructOrUnion() &&
1473            MemRecord->getDeclName()) {
1474          // This is a nested type declaration.
1475          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1476            << (int)Record->isUnion();
1477          Invalid = true;
1478        }
1479      } else {
1480        // We have something that isn't a non-static data
1481        // member. Complain about it.
1482        unsigned DK = diag::err_anonymous_record_bad_member;
1483        if (isa<TypeDecl>(*Mem))
1484          DK = diag::err_anonymous_record_with_type;
1485        else if (isa<FunctionDecl>(*Mem))
1486          DK = diag::err_anonymous_record_with_function;
1487        else if (isa<VarDecl>(*Mem))
1488          DK = diag::err_anonymous_record_with_static;
1489        Diag((*Mem)->getLocation(), DK)
1490            << (int)Record->isUnion();
1491          Invalid = true;
1492      }
1493    }
1494  }
1495
1496  if (!Record->isUnion() && !Owner->isRecord()) {
1497    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1498      << (int)getLangOptions().CPlusPlus;
1499    Invalid = true;
1500  }
1501
1502  // Create a declaration for this anonymous struct/union.
1503  NamedDecl *Anon = 0;
1504  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1505    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1506                             /*IdentifierInfo=*/0,
1507                             Context.getTypeDeclType(Record),
1508                             // FIXME: Type source info.
1509                             /*DInfo=*/0,
1510                             /*BitWidth=*/0, /*Mutable=*/false);
1511    Anon->setAccess(AS_public);
1512    if (getLangOptions().CPlusPlus)
1513      FieldCollector->Add(cast<FieldDecl>(Anon));
1514  } else {
1515    VarDecl::StorageClass SC;
1516    switch (DS.getStorageClassSpec()) {
1517    default: assert(0 && "Unknown storage class!");
1518    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1519    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1520    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1521    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1522    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1523    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1524    case DeclSpec::SCS_mutable:
1525      // mutable can only appear on non-static class members, so it's always
1526      // an error here
1527      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1528      Invalid = true;
1529      SC = VarDecl::None;
1530      break;
1531    }
1532
1533    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1534                           /*IdentifierInfo=*/0,
1535                           Context.getTypeDeclType(Record),
1536                           // FIXME: Type source info.
1537                           /*DInfo=*/0,
1538                           SC);
1539  }
1540  Anon->setImplicit();
1541
1542  // Add the anonymous struct/union object to the current
1543  // context. We'll be referencing this object when we refer to one of
1544  // its members.
1545  Owner->addDecl(Anon);
1546
1547  // Inject the members of the anonymous struct/union into the owning
1548  // context and into the identifier resolver chain for name lookup
1549  // purposes.
1550  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1551    Invalid = true;
1552
1553  // Mark this as an anonymous struct/union type. Note that we do not
1554  // do this until after we have already checked and injected the
1555  // members of this anonymous struct/union type, because otherwise
1556  // the members could be injected twice: once by DeclContext when it
1557  // builds its lookup table, and once by
1558  // InjectAnonymousStructOrUnionMembers.
1559  Record->setAnonymousStructOrUnion(true);
1560
1561  if (Invalid)
1562    Anon->setInvalidDecl();
1563
1564  return DeclPtrTy::make(Anon);
1565}
1566
1567
1568/// GetNameForDeclarator - Determine the full declaration name for the
1569/// given Declarator.
1570DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1571  switch (D.getKind()) {
1572  case Declarator::DK_Abstract:
1573    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1574    return DeclarationName();
1575
1576  case Declarator::DK_Normal:
1577    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1578    return DeclarationName(D.getIdentifier());
1579
1580  case Declarator::DK_Constructor: {
1581    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1582    return Context.DeclarationNames.getCXXConstructorName(
1583                                                Context.getCanonicalType(Ty));
1584  }
1585
1586  case Declarator::DK_Destructor: {
1587    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1588    return Context.DeclarationNames.getCXXDestructorName(
1589                                                Context.getCanonicalType(Ty));
1590  }
1591
1592  case Declarator::DK_Conversion: {
1593    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1594    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1595    return Context.DeclarationNames.getCXXConversionFunctionName(
1596                                                Context.getCanonicalType(Ty));
1597  }
1598
1599  case Declarator::DK_Operator:
1600    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1601    return Context.DeclarationNames.getCXXOperatorName(
1602                                                D.getOverloadedOperator());
1603  }
1604
1605  assert(false && "Unknown name kind");
1606  return DeclarationName();
1607}
1608
1609/// isNearlyMatchingFunction - Determine whether the C++ functions
1610/// Declaration and Definition are "nearly" matching. This heuristic
1611/// is used to improve diagnostics in the case where an out-of-line
1612/// function definition doesn't match any declaration within
1613/// the class or namespace.
1614static bool isNearlyMatchingFunction(ASTContext &Context,
1615                                     FunctionDecl *Declaration,
1616                                     FunctionDecl *Definition) {
1617  if (Declaration->param_size() != Definition->param_size())
1618    return false;
1619  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1620    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1621    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1622
1623    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1624    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1625    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1626      return false;
1627  }
1628
1629  return true;
1630}
1631
1632Sema::DeclPtrTy
1633Sema::HandleDeclarator(Scope *S, Declarator &D,
1634                       MultiTemplateParamsArg TemplateParamLists,
1635                       bool IsFunctionDefinition) {
1636  DeclarationName Name = GetNameForDeclarator(D);
1637
1638  // All of these full declarators require an identifier.  If it doesn't have
1639  // one, the ParsedFreeStandingDeclSpec action should be used.
1640  if (!Name) {
1641    if (!D.isInvalidType())  // Reject this if we think it is valid.
1642      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1643           diag::err_declarator_need_ident)
1644        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1645    return DeclPtrTy();
1646  }
1647
1648  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1649  // we find one that is.
1650  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1651         (S->getFlags() & Scope::TemplateParamScope) != 0)
1652    S = S->getParent();
1653
1654  // If this is an out-of-line definition of a member of a class template
1655  // or class template partial specialization, we may need to rebuild the
1656  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1657  // for more information.
1658  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1659  // handle expressions properly.
1660  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1661  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1662      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1663      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1664       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1665       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1666       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1667    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1668      // FIXME: Preserve type source info.
1669      QualType T = GetTypeFromParser(DS.getTypeRep());
1670      EnterDeclaratorContext(S, DC);
1671      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1672      ExitDeclaratorContext(S);
1673      if (T.isNull())
1674        return DeclPtrTy();
1675      DS.UpdateTypeRep(T.getAsOpaquePtr());
1676    }
1677  }
1678
1679  DeclContext *DC;
1680  NamedDecl *PrevDecl;
1681  NamedDecl *New;
1682
1683  DeclaratorInfo *DInfo = 0;
1684  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1685
1686  // See if this is a redefinition of a variable in the same scope.
1687  if (D.getCXXScopeSpec().isInvalid()) {
1688    DC = CurContext;
1689    PrevDecl = 0;
1690    D.setInvalidType();
1691  } else if (!D.getCXXScopeSpec().isSet()) {
1692    LookupNameKind NameKind = LookupOrdinaryName;
1693
1694    // If the declaration we're planning to build will be a function
1695    // or object with linkage, then look for another declaration with
1696    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1697    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1698      /* Do nothing*/;
1699    else if (R->isFunctionType()) {
1700      if (CurContext->isFunctionOrMethod() ||
1701          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1702        NameKind = LookupRedeclarationWithLinkage;
1703    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1704      NameKind = LookupRedeclarationWithLinkage;
1705    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1706             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1707      NameKind = LookupRedeclarationWithLinkage;
1708
1709    DC = CurContext;
1710    PrevDecl = LookupName(S, Name, NameKind, true,
1711                          NameKind == LookupRedeclarationWithLinkage,
1712                          D.getIdentifierLoc());
1713  } else { // Something like "int foo::x;"
1714    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1715
1716    if (!DC) {
1717      // If we could not compute the declaration context, it's because the
1718      // declaration context is dependent but does not refer to a class,
1719      // class template, or class template partial specialization. Complain
1720      // and return early, to avoid the coming semantic disaster.
1721      Diag(D.getIdentifierLoc(),
1722           diag::err_template_qualified_declarator_no_match)
1723        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1724        << D.getCXXScopeSpec().getRange();
1725      return DeclPtrTy();
1726    }
1727
1728    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1729
1730    // C++ 7.3.1.2p2:
1731    // Members (including explicit specializations of templates) of a named
1732    // namespace can also be defined outside that namespace by explicit
1733    // qualification of the name being defined, provided that the entity being
1734    // defined was already declared in the namespace and the definition appears
1735    // after the point of declaration in a namespace that encloses the
1736    // declarations namespace.
1737    //
1738    // Note that we only check the context at this point. We don't yet
1739    // have enough information to make sure that PrevDecl is actually
1740    // the declaration we want to match. For example, given:
1741    //
1742    //   class X {
1743    //     void f();
1744    //     void f(float);
1745    //   };
1746    //
1747    //   void X::f(int) { } // ill-formed
1748    //
1749    // In this case, PrevDecl will point to the overload set
1750    // containing the two f's declared in X, but neither of them
1751    // matches.
1752
1753    // First check whether we named the global scope.
1754    if (isa<TranslationUnitDecl>(DC)) {
1755      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1756        << Name << D.getCXXScopeSpec().getRange();
1757    } else if (!CurContext->Encloses(DC)) {
1758      // The qualifying scope doesn't enclose the original declaration.
1759      // Emit diagnostic based on current scope.
1760      SourceLocation L = D.getIdentifierLoc();
1761      SourceRange R = D.getCXXScopeSpec().getRange();
1762      if (isa<FunctionDecl>(CurContext))
1763        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1764      else
1765        Diag(L, diag::err_invalid_declarator_scope)
1766          << Name << cast<NamedDecl>(DC) << R;
1767      D.setInvalidType();
1768    }
1769  }
1770
1771  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1772    // Maybe we will complain about the shadowed template parameter.
1773    if (!D.isInvalidType())
1774      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1775        D.setInvalidType();
1776
1777    // Just pretend that we didn't see the previous declaration.
1778    PrevDecl = 0;
1779  }
1780
1781  // In C++, the previous declaration we find might be a tag type
1782  // (class or enum). In this case, the new declaration will hide the
1783  // tag type. Note that this does does not apply if we're declaring a
1784  // typedef (C++ [dcl.typedef]p4).
1785  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1786      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1787    PrevDecl = 0;
1788
1789  bool Redeclaration = false;
1790  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1791    if (TemplateParamLists.size()) {
1792      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1793      return DeclPtrTy();
1794    }
1795
1796    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1797  } else if (R->isFunctionType()) {
1798    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1799                                  move(TemplateParamLists),
1800                                  IsFunctionDefinition, Redeclaration);
1801  } else {
1802    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1803                                  move(TemplateParamLists),
1804                                  Redeclaration);
1805  }
1806
1807  if (New == 0)
1808    return DeclPtrTy();
1809
1810  // If this has an identifier and is not an invalid redeclaration,
1811  // add it to the scope stack.
1812  if (Name && !(Redeclaration && New->isInvalidDecl()))
1813    PushOnScopeChains(New, S);
1814
1815  return DeclPtrTy::make(New);
1816}
1817
1818/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1819/// types into constant array types in certain situations which would otherwise
1820/// be errors (for GCC compatibility).
1821static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1822                                                    ASTContext &Context,
1823                                                    bool &SizeIsNegative) {
1824  // This method tries to turn a variable array into a constant
1825  // array even when the size isn't an ICE.  This is necessary
1826  // for compatibility with code that depends on gcc's buggy
1827  // constant expression folding, like struct {char x[(int)(char*)2];}
1828  SizeIsNegative = false;
1829
1830  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1831    QualType Pointee = PTy->getPointeeType();
1832    QualType FixedType =
1833        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1834    if (FixedType.isNull()) return FixedType;
1835    FixedType = Context.getPointerType(FixedType);
1836    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1837    return FixedType;
1838  }
1839
1840  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1841  if (!VLATy)
1842    return QualType();
1843  // FIXME: We should probably handle this case
1844  if (VLATy->getElementType()->isVariablyModifiedType())
1845    return QualType();
1846
1847  Expr::EvalResult EvalResult;
1848  if (!VLATy->getSizeExpr() ||
1849      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1850      !EvalResult.Val.isInt())
1851    return QualType();
1852
1853  llvm::APSInt &Res = EvalResult.Val.getInt();
1854  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1855    Expr* ArySizeExpr = VLATy->getSizeExpr();
1856    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1857    // so as to transfer ownership to the ConstantArrayWithExpr.
1858    // Alternatively, we could "clone" it (how?).
1859    // Since we don't know how to do things above, we just use the
1860    // very same Expr*.
1861    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1862                                                Res, ArySizeExpr,
1863                                                ArrayType::Normal, 0,
1864                                                VLATy->getBracketsRange());
1865  }
1866
1867  SizeIsNegative = true;
1868  return QualType();
1869}
1870
1871/// \brief Register the given locally-scoped external C declaration so
1872/// that it can be found later for redeclarations
1873void
1874Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1875                                       Scope *S) {
1876  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1877         "Decl is not a locally-scoped decl!");
1878  // Note that we have a locally-scoped external with this name.
1879  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1880
1881  if (!PrevDecl)
1882    return;
1883
1884  // If there was a previous declaration of this variable, it may be
1885  // in our identifier chain. Update the identifier chain with the new
1886  // declaration.
1887  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1888    // The previous declaration was found on the identifer resolver
1889    // chain, so remove it from its scope.
1890    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1891      S = S->getParent();
1892
1893    if (S)
1894      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1895  }
1896}
1897
1898/// \brief Diagnose function specifiers on a declaration of an identifier that
1899/// does not identify a function.
1900void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1901  // FIXME: We should probably indicate the identifier in question to avoid
1902  // confusion for constructs like "inline int a(), b;"
1903  if (D.getDeclSpec().isInlineSpecified())
1904    Diag(D.getDeclSpec().getInlineSpecLoc(),
1905         diag::err_inline_non_function);
1906
1907  if (D.getDeclSpec().isVirtualSpecified())
1908    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1909         diag::err_virtual_non_function);
1910
1911  if (D.getDeclSpec().isExplicitSpecified())
1912    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1913         diag::err_explicit_non_function);
1914}
1915
1916NamedDecl*
1917Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1918                             QualType R,  DeclaratorInfo *DInfo,
1919                             Decl* PrevDecl, bool &Redeclaration) {
1920  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1921  if (D.getCXXScopeSpec().isSet()) {
1922    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1923      << D.getCXXScopeSpec().getRange();
1924    D.setInvalidType();
1925    // Pretend we didn't see the scope specifier.
1926    DC = 0;
1927  }
1928
1929  if (getLangOptions().CPlusPlus) {
1930    // Check that there are no default arguments (C++ only).
1931    CheckExtraCXXDefaultArguments(D);
1932  }
1933
1934  DiagnoseFunctionSpecifiers(D);
1935
1936  if (D.getDeclSpec().isThreadSpecified())
1937    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1938
1939  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1940  if (!NewTD) return 0;
1941
1942  if (D.isInvalidType())
1943    NewTD->setInvalidDecl();
1944
1945  // Handle attributes prior to checking for duplicates in MergeVarDecl
1946  ProcessDeclAttributes(S, NewTD, D);
1947  // Merge the decl with the existing one if appropriate. If the decl is
1948  // in an outer scope, it isn't the same thing.
1949  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1950    Redeclaration = true;
1951    MergeTypeDefDecl(NewTD, PrevDecl);
1952  }
1953
1954  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1955  // then it shall have block scope.
1956  QualType T = NewTD->getUnderlyingType();
1957  if (T->isVariablyModifiedType()) {
1958    CurFunctionNeedsScopeChecking = true;
1959
1960    if (S->getFnParent() == 0) {
1961      bool SizeIsNegative;
1962      QualType FixedTy =
1963          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1964      if (!FixedTy.isNull()) {
1965        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1966        NewTD->setUnderlyingType(FixedTy);
1967      } else {
1968        if (SizeIsNegative)
1969          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1970        else if (T->isVariableArrayType())
1971          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1972        else
1973          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1974        NewTD->setInvalidDecl();
1975      }
1976    }
1977  }
1978
1979  // If this is the C FILE type, notify the AST context.
1980  if (IdentifierInfo *II = NewTD->getIdentifier())
1981    if (!NewTD->isInvalidDecl() &&
1982        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1983      if (II->isStr("FILE"))
1984        Context.setFILEDecl(NewTD);
1985      else if (II->isStr("jmp_buf"))
1986        Context.setjmp_bufDecl(NewTD);
1987      else if (II->isStr("sigjmp_buf"))
1988        Context.setsigjmp_bufDecl(NewTD);
1989    }
1990
1991  return NewTD;
1992}
1993
1994/// \brief Determines whether the given declaration is an out-of-scope
1995/// previous declaration.
1996///
1997/// This routine should be invoked when name lookup has found a
1998/// previous declaration (PrevDecl) that is not in the scope where a
1999/// new declaration by the same name is being introduced. If the new
2000/// declaration occurs in a local scope, previous declarations with
2001/// linkage may still be considered previous declarations (C99
2002/// 6.2.2p4-5, C++ [basic.link]p6).
2003///
2004/// \param PrevDecl the previous declaration found by name
2005/// lookup
2006///
2007/// \param DC the context in which the new declaration is being
2008/// declared.
2009///
2010/// \returns true if PrevDecl is an out-of-scope previous declaration
2011/// for a new delcaration with the same name.
2012static bool
2013isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2014                                ASTContext &Context) {
2015  if (!PrevDecl)
2016    return 0;
2017
2018  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2019  // case we need to check each of the overloaded functions.
2020  if (!PrevDecl->hasLinkage())
2021    return false;
2022
2023  if (Context.getLangOptions().CPlusPlus) {
2024    // C++ [basic.link]p6:
2025    //   If there is a visible declaration of an entity with linkage
2026    //   having the same name and type, ignoring entities declared
2027    //   outside the innermost enclosing namespace scope, the block
2028    //   scope declaration declares that same entity and receives the
2029    //   linkage of the previous declaration.
2030    DeclContext *OuterContext = DC->getLookupContext();
2031    if (!OuterContext->isFunctionOrMethod())
2032      // This rule only applies to block-scope declarations.
2033      return false;
2034    else {
2035      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2036      if (PrevOuterContext->isRecord())
2037        // We found a member function: ignore it.
2038        return false;
2039      else {
2040        // Find the innermost enclosing namespace for the new and
2041        // previous declarations.
2042        while (!OuterContext->isFileContext())
2043          OuterContext = OuterContext->getParent();
2044        while (!PrevOuterContext->isFileContext())
2045          PrevOuterContext = PrevOuterContext->getParent();
2046
2047        // The previous declaration is in a different namespace, so it
2048        // isn't the same function.
2049        if (OuterContext->getPrimaryContext() !=
2050            PrevOuterContext->getPrimaryContext())
2051          return false;
2052      }
2053    }
2054  }
2055
2056  return true;
2057}
2058
2059NamedDecl*
2060Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2061                              QualType R, DeclaratorInfo *DInfo,
2062                              NamedDecl* PrevDecl,
2063                              MultiTemplateParamsArg TemplateParamLists,
2064                              bool &Redeclaration) {
2065  DeclarationName Name = GetNameForDeclarator(D);
2066
2067  // Check that there are no default arguments (C++ only).
2068  if (getLangOptions().CPlusPlus)
2069    CheckExtraCXXDefaultArguments(D);
2070
2071  VarDecl *NewVD;
2072  VarDecl::StorageClass SC;
2073  switch (D.getDeclSpec().getStorageClassSpec()) {
2074  default: assert(0 && "Unknown storage class!");
2075  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2076  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2077  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2078  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2079  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2080  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2081  case DeclSpec::SCS_mutable:
2082    // mutable can only appear on non-static class members, so it's always
2083    // an error here
2084    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2085    D.setInvalidType();
2086    SC = VarDecl::None;
2087    break;
2088  }
2089
2090  IdentifierInfo *II = Name.getAsIdentifierInfo();
2091  if (!II) {
2092    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2093      << Name.getAsString();
2094    return 0;
2095  }
2096
2097  DiagnoseFunctionSpecifiers(D);
2098
2099  if (!DC->isRecord() && S->getFnParent() == 0) {
2100    // C99 6.9p2: The storage-class specifiers auto and register shall not
2101    // appear in the declaration specifiers in an external declaration.
2102    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2103
2104      // If this is a register variable with an asm label specified, then this
2105      // is a GNU extension.
2106      if (SC == VarDecl::Register && D.getAsmLabel())
2107        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2108      else
2109        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2110      D.setInvalidType();
2111    }
2112  }
2113  if (DC->isRecord() && !CurContext->isRecord()) {
2114    // This is an out-of-line definition of a static data member.
2115    if (SC == VarDecl::Static) {
2116      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2117           diag::err_static_out_of_line)
2118        << CodeModificationHint::CreateRemoval(
2119                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2120    } else if (SC == VarDecl::None)
2121      SC = VarDecl::Static;
2122  }
2123  if (SC == VarDecl::Static) {
2124    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2125      if (RD->isLocalClass())
2126        Diag(D.getIdentifierLoc(),
2127             diag::err_static_data_member_not_allowed_in_local_class)
2128          << Name << RD->getDeclName();
2129    }
2130  }
2131
2132  // Match up the template parameter lists with the scope specifier, then
2133  // determine whether we have a template or a template specialization.
2134  if (TemplateParameterList *TemplateParams
2135      = MatchTemplateParametersToScopeSpecifier(
2136                                  D.getDeclSpec().getSourceRange().getBegin(),
2137                                                D.getCXXScopeSpec(),
2138                        (TemplateParameterList**)TemplateParamLists.get(),
2139                                                 TemplateParamLists.size())) {
2140    if (TemplateParams->size() > 0) {
2141      // There is no such thing as a variable template.
2142      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2143        << II
2144        << SourceRange(TemplateParams->getTemplateLoc(),
2145                       TemplateParams->getRAngleLoc());
2146      return 0;
2147    } else {
2148      // There is an extraneous 'template<>' for this variable. Complain
2149      // about it, but allow the declaration of the variable.
2150      Diag(TemplateParams->getTemplateLoc(),
2151           diag::err_template_variable_noparams)
2152        << II
2153        << SourceRange(TemplateParams->getTemplateLoc(),
2154                       TemplateParams->getRAngleLoc());
2155    }
2156  }
2157
2158  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2159                          II, R, DInfo, SC);
2160
2161  if (D.isInvalidType())
2162    NewVD->setInvalidDecl();
2163
2164  if (D.getDeclSpec().isThreadSpecified()) {
2165    if (NewVD->hasLocalStorage())
2166      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2167    else if (!Context.Target.isTLSSupported())
2168      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2169    else
2170      NewVD->setThreadSpecified(true);
2171  }
2172
2173  // Set the lexical context. If the declarator has a C++ scope specifier, the
2174  // lexical context will be different from the semantic context.
2175  NewVD->setLexicalDeclContext(CurContext);
2176
2177  // Handle attributes prior to checking for duplicates in MergeVarDecl
2178  ProcessDeclAttributes(S, NewVD, D);
2179
2180  // Handle GNU asm-label extension (encoded as an attribute).
2181  if (Expr *E = (Expr*) D.getAsmLabel()) {
2182    // The parser guarantees this is a string.
2183    StringLiteral *SE = cast<StringLiteral>(E);
2184    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2185                                                        SE->getByteLength())));
2186  }
2187
2188  // If name lookup finds a previous declaration that is not in the
2189  // same scope as the new declaration, this may still be an
2190  // acceptable redeclaration.
2191  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2192      !(NewVD->hasLinkage() &&
2193        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2194    PrevDecl = 0;
2195
2196  // Merge the decl with the existing one if appropriate.
2197  if (PrevDecl) {
2198    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2199      // The user tried to define a non-static data member
2200      // out-of-line (C++ [dcl.meaning]p1).
2201      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2202        << D.getCXXScopeSpec().getRange();
2203      PrevDecl = 0;
2204      NewVD->setInvalidDecl();
2205    }
2206  } else if (D.getCXXScopeSpec().isSet()) {
2207    // No previous declaration in the qualifying scope.
2208    NestedNameSpecifier *NNS =
2209      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2210    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2211                          D.getCXXScopeSpec().getRange());
2212    NewVD->setInvalidDecl();
2213  }
2214
2215  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2216
2217  // attributes declared post-definition are currently ignored
2218  if (PrevDecl) {
2219    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2220    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2221      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2222      Diag(Def->getLocation(), diag::note_previous_definition);
2223    }
2224  }
2225
2226  // If this is a locally-scoped extern C variable, update the map of
2227  // such variables.
2228  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2229      !NewVD->isInvalidDecl())
2230    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2231
2232  return NewVD;
2233}
2234
2235/// \brief Perform semantic checking on a newly-created variable
2236/// declaration.
2237///
2238/// This routine performs all of the type-checking required for a
2239/// variable declaration once it has been built. It is used both to
2240/// check variables after they have been parsed and their declarators
2241/// have been translated into a declaration, and to check variables
2242/// that have been instantiated from a template.
2243///
2244/// Sets NewVD->isInvalidDecl() if an error was encountered.
2245void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2246                                    bool &Redeclaration) {
2247  // If the decl is already known invalid, don't check it.
2248  if (NewVD->isInvalidDecl())
2249    return;
2250
2251  QualType T = NewVD->getType();
2252
2253  if (T->isObjCInterfaceType()) {
2254    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2255    return NewVD->setInvalidDecl();
2256  }
2257
2258  // The variable can not have an abstract class type.
2259  if (RequireNonAbstractType(NewVD->getLocation(), T,
2260                             diag::err_abstract_type_in_decl,
2261                             AbstractVariableType))
2262    return NewVD->setInvalidDecl();
2263
2264  // Emit an error if an address space was applied to decl with local storage.
2265  // This includes arrays of objects with address space qualifiers, but not
2266  // automatic variables that point to other address spaces.
2267  // ISO/IEC TR 18037 S5.1.2
2268  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2269    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2270    return NewVD->setInvalidDecl();
2271  }
2272
2273  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2274      && !NewVD->hasAttr<BlocksAttr>())
2275    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2276
2277  bool isVM = T->isVariablyModifiedType();
2278  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2279      NewVD->hasAttr<BlocksAttr>())
2280    CurFunctionNeedsScopeChecking = true;
2281
2282  if ((isVM && NewVD->hasLinkage()) ||
2283      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2284    bool SizeIsNegative;
2285    QualType FixedTy =
2286        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2287
2288    if (FixedTy.isNull() && T->isVariableArrayType()) {
2289      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2290      // FIXME: This won't give the correct result for
2291      // int a[10][n];
2292      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2293
2294      if (NewVD->isFileVarDecl())
2295        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2296        << SizeRange;
2297      else if (NewVD->getStorageClass() == VarDecl::Static)
2298        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2299        << SizeRange;
2300      else
2301        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2302        << SizeRange;
2303      return NewVD->setInvalidDecl();
2304    }
2305
2306    if (FixedTy.isNull()) {
2307      if (NewVD->isFileVarDecl())
2308        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2309      else
2310        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2311      return NewVD->setInvalidDecl();
2312    }
2313
2314    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2315    NewVD->setType(FixedTy);
2316  }
2317
2318  if (!PrevDecl && NewVD->isExternC(Context)) {
2319    // Since we did not find anything by this name and we're declaring
2320    // an extern "C" variable, look for a non-visible extern "C"
2321    // declaration with the same name.
2322    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2323      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2324    if (Pos != LocallyScopedExternalDecls.end())
2325      PrevDecl = Pos->second;
2326  }
2327
2328  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2329    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2330      << T;
2331    return NewVD->setInvalidDecl();
2332  }
2333
2334  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2335    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2336    return NewVD->setInvalidDecl();
2337  }
2338
2339  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2340    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2341    return NewVD->setInvalidDecl();
2342  }
2343
2344  if (PrevDecl) {
2345    Redeclaration = true;
2346    MergeVarDecl(NewVD, PrevDecl);
2347  }
2348}
2349
2350static bool isUsingDecl(Decl *D) {
2351  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2352}
2353
2354NamedDecl*
2355Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2356                              QualType R, DeclaratorInfo *DInfo,
2357                              NamedDecl* PrevDecl,
2358                              MultiTemplateParamsArg TemplateParamLists,
2359                              bool IsFunctionDefinition, bool &Redeclaration) {
2360  assert(R.getTypePtr()->isFunctionType());
2361
2362  DeclarationName Name = GetNameForDeclarator(D);
2363  FunctionDecl::StorageClass SC = FunctionDecl::None;
2364  switch (D.getDeclSpec().getStorageClassSpec()) {
2365  default: assert(0 && "Unknown storage class!");
2366  case DeclSpec::SCS_auto:
2367  case DeclSpec::SCS_register:
2368  case DeclSpec::SCS_mutable:
2369    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2370         diag::err_typecheck_sclass_func);
2371    D.setInvalidType();
2372    break;
2373  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2374  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2375  case DeclSpec::SCS_static: {
2376    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2377      // C99 6.7.1p5:
2378      //   The declaration of an identifier for a function that has
2379      //   block scope shall have no explicit storage-class specifier
2380      //   other than extern
2381      // See also (C++ [dcl.stc]p4).
2382      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2383           diag::err_static_block_func);
2384      SC = FunctionDecl::None;
2385    } else
2386      SC = FunctionDecl::Static;
2387    break;
2388  }
2389  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2390  }
2391
2392  if (D.getDeclSpec().isThreadSpecified())
2393    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2394
2395  bool isFriend = D.getDeclSpec().isFriendSpecified();
2396  bool isInline = D.getDeclSpec().isInlineSpecified();
2397  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2398  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2399
2400  // Check that the return type is not an abstract class type.
2401  // For record types, this is done by the AbstractClassUsageDiagnoser once
2402  // the class has been completely parsed.
2403  if (!DC->isRecord() &&
2404      RequireNonAbstractType(D.getIdentifierLoc(),
2405                             R->getAsFunctionType()->getResultType(),
2406                             diag::err_abstract_type_in_decl,
2407                             AbstractReturnType))
2408    D.setInvalidType();
2409
2410  // Do not allow returning a objc interface by-value.
2411  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2412    Diag(D.getIdentifierLoc(),
2413         diag::err_object_cannot_be_passed_returned_by_value) << 0
2414      << R->getAsFunctionType()->getResultType();
2415    D.setInvalidType();
2416  }
2417
2418  bool isVirtualOkay = false;
2419  FunctionDecl *NewFD;
2420
2421  if (isFriend) {
2422    // DC is the namespace in which the function is being declared.
2423    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2424           "friend function being created in a non-namespace context");
2425
2426    // C++ [class.friend]p5
2427    //   A function can be defined in a friend declaration of a
2428    //   class . . . . Such a function is implicitly inline.
2429    isInline |= IsFunctionDefinition;
2430  }
2431
2432  if (D.getKind() == Declarator::DK_Constructor) {
2433    // This is a C++ constructor declaration.
2434    assert(DC->isRecord() &&
2435           "Constructors can only be declared in a member context");
2436
2437    R = CheckConstructorDeclarator(D, R, SC);
2438
2439    // Create the new declaration
2440    NewFD = CXXConstructorDecl::Create(Context,
2441                                       cast<CXXRecordDecl>(DC),
2442                                       D.getIdentifierLoc(), Name, R, DInfo,
2443                                       isExplicit, isInline,
2444                                       /*isImplicitlyDeclared=*/false);
2445  } else if (D.getKind() == Declarator::DK_Destructor) {
2446    // This is a C++ destructor declaration.
2447    if (DC->isRecord()) {
2448      R = CheckDestructorDeclarator(D, SC);
2449
2450      NewFD = CXXDestructorDecl::Create(Context,
2451                                        cast<CXXRecordDecl>(DC),
2452                                        D.getIdentifierLoc(), Name, R,
2453                                        isInline,
2454                                        /*isImplicitlyDeclared=*/false);
2455
2456      isVirtualOkay = true;
2457    } else {
2458      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2459
2460      // Create a FunctionDecl to satisfy the function definition parsing
2461      // code path.
2462      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2463                                   Name, R, DInfo, SC, isInline,
2464                                   /*hasPrototype=*/true);
2465      D.setInvalidType();
2466    }
2467  } else if (D.getKind() == Declarator::DK_Conversion) {
2468    if (!DC->isRecord()) {
2469      Diag(D.getIdentifierLoc(),
2470           diag::err_conv_function_not_member);
2471      return 0;
2472    }
2473
2474    CheckConversionDeclarator(D, R, SC);
2475    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2476                                      D.getIdentifierLoc(), Name, R, DInfo,
2477                                      isInline, isExplicit);
2478
2479    isVirtualOkay = true;
2480  } else if (DC->isRecord()) {
2481    // If the of the function is the same as the name of the record, then this
2482    // must be an invalid constructor that has a return type.
2483    // (The parser checks for a return type and makes the declarator a
2484    // constructor if it has no return type).
2485    // must have an invalid constructor that has a return type
2486    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2487      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2488        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2489        << SourceRange(D.getIdentifierLoc());
2490      return 0;
2491    }
2492
2493    // This is a C++ method declaration.
2494    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2495                                  D.getIdentifierLoc(), Name, R, DInfo,
2496                                  (SC == FunctionDecl::Static), isInline);
2497
2498    isVirtualOkay = (SC != FunctionDecl::Static);
2499  } else {
2500    // Determine whether the function was written with a
2501    // prototype. This true when:
2502    //   - we're in C++ (where every function has a prototype),
2503    //   - there is a prototype in the declarator, or
2504    //   - the type R of the function is some kind of typedef or other reference
2505    //     to a type name (which eventually refers to a function type).
2506    bool HasPrototype =
2507       getLangOptions().CPlusPlus ||
2508       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2509       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2510
2511    NewFD = FunctionDecl::Create(Context, DC,
2512                                 D.getIdentifierLoc(),
2513                                 Name, R, DInfo, SC, isInline, HasPrototype);
2514  }
2515
2516  if (D.isInvalidType())
2517    NewFD->setInvalidDecl();
2518
2519  // Set the lexical context. If the declarator has a C++
2520  // scope specifier, or is the object of a friend declaration, the
2521  // lexical context will be different from the semantic context.
2522  NewFD->setLexicalDeclContext(CurContext);
2523
2524  if (isFriend)
2525    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2526
2527  // Match up the template parameter lists with the scope specifier, then
2528  // determine whether we have a template or a template specialization.
2529  FunctionTemplateDecl *FunctionTemplate = 0;
2530  if (TemplateParameterList *TemplateParams
2531        = MatchTemplateParametersToScopeSpecifier(
2532                                  D.getDeclSpec().getSourceRange().getBegin(),
2533                                  D.getCXXScopeSpec(),
2534                           (TemplateParameterList**)TemplateParamLists.get(),
2535                                                  TemplateParamLists.size())) {
2536    if (TemplateParams->size() > 0) {
2537      // This is a function template
2538
2539      // Check that we can declare a template here.
2540      if (CheckTemplateDeclScope(S, TemplateParams))
2541        return 0;
2542
2543      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2544                                                      NewFD->getLocation(),
2545                                                      Name, TemplateParams,
2546                                                      NewFD);
2547      FunctionTemplate->setLexicalDeclContext(CurContext);
2548      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2549    } else {
2550      // FIXME: Handle function template specializations
2551    }
2552
2553    // FIXME: Free this memory properly.
2554    TemplateParamLists.release();
2555  }
2556
2557  // C++ [dcl.fct.spec]p5:
2558  //   The virtual specifier shall only be used in declarations of
2559  //   nonstatic class member functions that appear within a
2560  //   member-specification of a class declaration; see 10.3.
2561  //
2562  if (isVirtual && !NewFD->isInvalidDecl()) {
2563    if (!isVirtualOkay) {
2564       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2565           diag::err_virtual_non_function);
2566    } else if (!CurContext->isRecord()) {
2567      // 'virtual' was specified outside of the class.
2568      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2569        << CodeModificationHint::CreateRemoval(
2570                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2571    } else {
2572      // Okay: Add virtual to the method.
2573      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2574      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2575      CurClass->setAggregate(false);
2576      CurClass->setPOD(false);
2577      CurClass->setEmpty(false);
2578      CurClass->setPolymorphic(true);
2579      CurClass->setHasTrivialConstructor(false);
2580      CurClass->setHasTrivialCopyConstructor(false);
2581      CurClass->setHasTrivialCopyAssignment(false);
2582    }
2583  }
2584
2585  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2586    // Look for virtual methods in base classes that this method might override.
2587
2588    BasePaths Paths;
2589    if (LookupInBases(cast<CXXRecordDecl>(DC),
2590                      MemberLookupCriteria(NewMD), Paths)) {
2591      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2592           E = Paths.found_decls_end(); I != E; ++I) {
2593        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2594          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2595              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2596            NewMD->addOverriddenMethod(OldMD);
2597        }
2598      }
2599    }
2600  }
2601
2602  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2603      !CurContext->isRecord()) {
2604    // C++ [class.static]p1:
2605    //   A data or function member of a class may be declared static
2606    //   in a class definition, in which case it is a static member of
2607    //   the class.
2608
2609    // Complain about the 'static' specifier if it's on an out-of-line
2610    // member function definition.
2611    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2612         diag::err_static_out_of_line)
2613      << CodeModificationHint::CreateRemoval(
2614                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2615  }
2616
2617  // Handle GNU asm-label extension (encoded as an attribute).
2618  if (Expr *E = (Expr*) D.getAsmLabel()) {
2619    // The parser guarantees this is a string.
2620    StringLiteral *SE = cast<StringLiteral>(E);
2621    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2622                                                        SE->getByteLength())));
2623  }
2624
2625  // Copy the parameter declarations from the declarator D to the function
2626  // declaration NewFD, if they are available.  First scavenge them into Params.
2627  llvm::SmallVector<ParmVarDecl*, 16> Params;
2628  if (D.getNumTypeObjects() > 0) {
2629    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2630
2631    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2632    // function that takes no arguments, not a function that takes a
2633    // single void argument.
2634    // We let through "const void" here because Sema::GetTypeForDeclarator
2635    // already checks for that case.
2636    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2637        FTI.ArgInfo[0].Param &&
2638        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2639      // Empty arg list, don't push any params.
2640      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2641
2642      // In C++, the empty parameter-type-list must be spelled "void"; a
2643      // typedef of void is not permitted.
2644      if (getLangOptions().CPlusPlus &&
2645          Param->getType().getUnqualifiedType() != Context.VoidTy)
2646        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2647      // FIXME: Leaks decl?
2648    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2649      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2650        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2651        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2652        Param->setDeclContext(NewFD);
2653        Params.push_back(Param);
2654      }
2655    }
2656
2657  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2658    // When we're declaring a function with a typedef, typeof, etc as in the
2659    // following example, we'll need to synthesize (unnamed)
2660    // parameters for use in the declaration.
2661    //
2662    // @code
2663    // typedef void fn(int);
2664    // fn f;
2665    // @endcode
2666
2667    // Synthesize a parameter for each argument type.
2668    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2669         AE = FT->arg_type_end(); AI != AE; ++AI) {
2670      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2671                                               SourceLocation(), 0,
2672                                               *AI, /*DInfo=*/0,
2673                                               VarDecl::None, 0);
2674      Param->setImplicit();
2675      Params.push_back(Param);
2676    }
2677  } else {
2678    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2679           "Should not need args for typedef of non-prototype fn");
2680  }
2681  // Finally, we know we have the right number of parameters, install them.
2682  NewFD->setParams(Context, Params.data(), Params.size());
2683
2684  // If name lookup finds a previous declaration that is not in the
2685  // same scope as the new declaration, this may still be an
2686  // acceptable redeclaration.
2687  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2688      !(NewFD->hasLinkage() &&
2689        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2690    PrevDecl = 0;
2691
2692  // Perform semantic checking on the function declaration.
2693  bool OverloadableAttrRequired = false; // FIXME: HACK!
2694  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2695                           /*FIXME:*/OverloadableAttrRequired);
2696
2697  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2698    // An out-of-line member function declaration must also be a
2699    // definition (C++ [dcl.meaning]p1).
2700    if (!IsFunctionDefinition && !isFriend) {
2701      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2702        << D.getCXXScopeSpec().getRange();
2703      NewFD->setInvalidDecl();
2704    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2705      // The user tried to provide an out-of-line definition for a
2706      // function that is a member of a class or namespace, but there
2707      // was no such member function declared (C++ [class.mfct]p2,
2708      // C++ [namespace.memdef]p2). For example:
2709      //
2710      // class X {
2711      //   void f() const;
2712      // };
2713      //
2714      // void X::f() { } // ill-formed
2715      //
2716      // Complain about this problem, and attempt to suggest close
2717      // matches (e.g., those that differ only in cv-qualifiers and
2718      // whether the parameter types are references).
2719      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2720        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2721      NewFD->setInvalidDecl();
2722
2723      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2724                                              true);
2725      assert(!Prev.isAmbiguous() &&
2726             "Cannot have an ambiguity in previous-declaration lookup");
2727      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2728           Func != FuncEnd; ++Func) {
2729        if (isa<FunctionDecl>(*Func) &&
2730            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2731          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2732      }
2733
2734      PrevDecl = 0;
2735    }
2736  }
2737
2738  // Handle attributes. We need to have merged decls when handling attributes
2739  // (for example to check for conflicts, etc).
2740  // FIXME: This needs to happen before we merge declarations. Then,
2741  // let attribute merging cope with attribute conflicts.
2742  ProcessDeclAttributes(S, NewFD, D);
2743
2744  // attributes declared post-definition are currently ignored
2745  if (Redeclaration && PrevDecl) {
2746    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2747    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2748      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2749      Diag(Def->getLocation(), diag::note_previous_definition);
2750    }
2751  }
2752
2753  AddKnownFunctionAttributes(NewFD);
2754
2755  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2756    // If a function name is overloadable in C, then every function
2757    // with that name must be marked "overloadable".
2758    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2759      << Redeclaration << NewFD;
2760    if (PrevDecl)
2761      Diag(PrevDecl->getLocation(),
2762           diag::note_attribute_overloadable_prev_overload);
2763    NewFD->addAttr(::new (Context) OverloadableAttr());
2764  }
2765
2766  // If this is a locally-scoped extern C function, update the
2767  // map of such names.
2768  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2769      && !NewFD->isInvalidDecl())
2770    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2771
2772  // Set this FunctionDecl's range up to the right paren.
2773  NewFD->setLocEnd(D.getSourceRange().getEnd());
2774
2775  if (FunctionTemplate && NewFD->isInvalidDecl())
2776    FunctionTemplate->setInvalidDecl();
2777
2778  if (FunctionTemplate)
2779    return FunctionTemplate;
2780
2781  return NewFD;
2782}
2783
2784/// \brief Perform semantic checking of a new function declaration.
2785///
2786/// Performs semantic analysis of the new function declaration
2787/// NewFD. This routine performs all semantic checking that does not
2788/// require the actual declarator involved in the declaration, and is
2789/// used both for the declaration of functions as they are parsed
2790/// (called via ActOnDeclarator) and for the declaration of functions
2791/// that have been instantiated via C++ template instantiation (called
2792/// via InstantiateDecl).
2793///
2794/// This sets NewFD->isInvalidDecl() to true if there was an error.
2795void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2796                                    bool &Redeclaration,
2797                                    bool &OverloadableAttrRequired) {
2798  // If NewFD is already known erroneous, don't do any of this checking.
2799  if (NewFD->isInvalidDecl())
2800    return;
2801
2802  if (NewFD->getResultType()->isVariablyModifiedType()) {
2803    // Functions returning a variably modified type violate C99 6.7.5.2p2
2804    // because all functions have linkage.
2805    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2806    return NewFD->setInvalidDecl();
2807  }
2808
2809  if (NewFD->isMain(Context)) CheckMain(NewFD);
2810
2811  // Semantic checking for this function declaration (in isolation).
2812  if (getLangOptions().CPlusPlus) {
2813    // C++-specific checks.
2814    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2815      CheckConstructor(Constructor);
2816    } else if (isa<CXXDestructorDecl>(NewFD)) {
2817      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2818      QualType ClassType = Context.getTypeDeclType(Record);
2819      if (!ClassType->isDependentType()) {
2820        DeclarationName Name
2821          = Context.DeclarationNames.getCXXDestructorName(
2822                                        Context.getCanonicalType(ClassType));
2823        if (NewFD->getDeclName() != Name) {
2824          Diag(NewFD->getLocation(), diag::err_destructor_name);
2825          return NewFD->setInvalidDecl();
2826        }
2827      }
2828      Record->setUserDeclaredDestructor(true);
2829      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2830      // user-defined destructor.
2831      Record->setPOD(false);
2832
2833      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2834      // declared destructor.
2835      // FIXME: C++0x: don't do this for "= default" destructors
2836      Record->setHasTrivialDestructor(false);
2837    } else if (CXXConversionDecl *Conversion
2838               = dyn_cast<CXXConversionDecl>(NewFD))
2839      ActOnConversionDeclarator(Conversion);
2840
2841    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2842    if (NewFD->isOverloadedOperator() &&
2843        CheckOverloadedOperatorDeclaration(NewFD))
2844      return NewFD->setInvalidDecl();
2845  }
2846
2847  // C99 6.7.4p6:
2848  //   [... ] For a function with external linkage, the following
2849  //   restrictions apply: [...] If all of the file scope declarations
2850  //   for a function in a translation unit include the inline
2851  //   function specifier without extern, then the definition in that
2852  //   translation unit is an inline definition. An inline definition
2853  //   does not provide an external definition for the function, and
2854  //   does not forbid an external definition in another translation
2855  //   unit.
2856  //
2857  // Here we determine whether this function, in isolation, would be a
2858  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2859  // previous declarations.
2860  if (NewFD->isInline() && getLangOptions().C99 &&
2861      NewFD->getStorageClass() == FunctionDecl::None &&
2862      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2863    NewFD->setC99InlineDefinition(true);
2864
2865  // Check for a previous declaration of this name.
2866  if (!PrevDecl && NewFD->isExternC(Context)) {
2867    // Since we did not find anything by this name and we're declaring
2868    // an extern "C" function, look for a non-visible extern "C"
2869    // declaration with the same name.
2870    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2871      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2872    if (Pos != LocallyScopedExternalDecls.end())
2873      PrevDecl = Pos->second;
2874  }
2875
2876  // Merge or overload the declaration with an existing declaration of
2877  // the same name, if appropriate.
2878  if (PrevDecl) {
2879    // Determine whether NewFD is an overload of PrevDecl or
2880    // a declaration that requires merging. If it's an overload,
2881    // there's no more work to do here; we'll just add the new
2882    // function to the scope.
2883    OverloadedFunctionDecl::function_iterator MatchedDecl;
2884
2885    if (!getLangOptions().CPlusPlus &&
2886        AllowOverloadingOfFunction(PrevDecl, Context)) {
2887      OverloadableAttrRequired = true;
2888
2889      // Functions marked "overloadable" must have a prototype (that
2890      // we can't get through declaration merging).
2891      if (!NewFD->getType()->getAsFunctionProtoType()) {
2892        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2893          << NewFD;
2894        Redeclaration = true;
2895
2896        // Turn this into a variadic function with no parameters.
2897        QualType R = Context.getFunctionType(
2898                       NewFD->getType()->getAsFunctionType()->getResultType(),
2899                       0, 0, true, 0);
2900        NewFD->setType(R);
2901        return NewFD->setInvalidDecl();
2902      }
2903    }
2904
2905    if (PrevDecl &&
2906        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2907         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2908      Redeclaration = true;
2909      Decl *OldDecl = PrevDecl;
2910
2911      // If PrevDecl was an overloaded function, extract the
2912      // FunctionDecl that matched.
2913      if (isa<OverloadedFunctionDecl>(PrevDecl))
2914        OldDecl = *MatchedDecl;
2915
2916      // NewFD and OldDecl represent declarations that need to be
2917      // merged.
2918      if (MergeFunctionDecl(NewFD, OldDecl))
2919        return NewFD->setInvalidDecl();
2920
2921      if (FunctionTemplateDecl *OldTemplateDecl
2922            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2923        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2924      else {
2925        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2926          NewFD->setAccess(OldDecl->getAccess());
2927        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2928      }
2929    }
2930  }
2931
2932  // In C++, check default arguments now that we have merged decls. Unless
2933  // the lexical context is the class, because in this case this is done
2934  // during delayed parsing anyway.
2935  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2936    CheckCXXDefaultArguments(NewFD);
2937}
2938
2939void Sema::CheckMain(FunctionDecl* FD) {
2940  // C++ [basic.start.main]p3:  A program that declares main to be inline
2941  //   or static is ill-formed.
2942  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2943  //   shall not appear in a declaration of main.
2944  // static main is not an error under C99, but we should warn about it.
2945  bool isInline = FD->isInline();
2946  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2947  if (isInline || isStatic) {
2948    unsigned diagID = diag::warn_unusual_main_decl;
2949    if (isInline || getLangOptions().CPlusPlus)
2950      diagID = diag::err_unusual_main_decl;
2951
2952    int which = isStatic + (isInline << 1) - 1;
2953    Diag(FD->getLocation(), diagID) << which;
2954  }
2955
2956  QualType T = FD->getType();
2957  assert(T->isFunctionType() && "function decl is not of function type");
2958  const FunctionType* FT = T->getAsFunctionType();
2959
2960  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2961    // TODO: add a replacement fixit to turn the return type into 'int'.
2962    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2963    FD->setInvalidDecl(true);
2964  }
2965
2966  // Treat protoless main() as nullary.
2967  if (isa<FunctionNoProtoType>(FT)) return;
2968
2969  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2970  unsigned nparams = FTP->getNumArgs();
2971  assert(FD->getNumParams() == nparams);
2972
2973  if (nparams > 3) {
2974    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2975    FD->setInvalidDecl(true);
2976    nparams = 3;
2977  }
2978
2979  // FIXME: a lot of the following diagnostics would be improved
2980  // if we had some location information about types.
2981
2982  QualType CharPP =
2983    Context.getPointerType(Context.getPointerType(Context.CharTy));
2984  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2985
2986  for (unsigned i = 0; i < nparams; ++i) {
2987    QualType AT = FTP->getArgType(i);
2988
2989    bool mismatch = true;
2990
2991    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2992      mismatch = false;
2993    else if (Expected[i] == CharPP) {
2994      // As an extension, the following forms are okay:
2995      //   char const **
2996      //   char const * const *
2997      //   char * const *
2998
2999      QualifierSet qs;
3000      const PointerType* PT;
3001      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3002          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3003          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3004        qs.removeConst();
3005        mismatch = !qs.empty();
3006      }
3007    }
3008
3009    if (mismatch) {
3010      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3011      // TODO: suggest replacing given type with expected type
3012      FD->setInvalidDecl(true);
3013    }
3014  }
3015
3016  if (nparams == 1 && !FD->isInvalidDecl()) {
3017    Diag(FD->getLocation(), diag::warn_main_one_arg);
3018  }
3019}
3020
3021bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3022  // FIXME: Need strict checking.  In C89, we need to check for
3023  // any assignment, increment, decrement, function-calls, or
3024  // commas outside of a sizeof.  In C99, it's the same list,
3025  // except that the aforementioned are allowed in unevaluated
3026  // expressions.  Everything else falls under the
3027  // "may accept other forms of constant expressions" exception.
3028  // (We never end up here for C++, so the constant expression
3029  // rules there don't matter.)
3030  if (Init->isConstantInitializer(Context))
3031    return false;
3032  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3033    << Init->getSourceRange();
3034  return true;
3035}
3036
3037void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3038  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3039}
3040
3041/// AddInitializerToDecl - Adds the initializer Init to the
3042/// declaration dcl. If DirectInit is true, this is C++ direct
3043/// initialization rather than copy initialization.
3044void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3045  Decl *RealDecl = dcl.getAs<Decl>();
3046  // If there is no declaration, there was an error parsing it.  Just ignore
3047  // the initializer.
3048  if (RealDecl == 0)
3049    return;
3050
3051  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3052    // With declarators parsed the way they are, the parser cannot
3053    // distinguish between a normal initializer and a pure-specifier.
3054    // Thus this grotesque test.
3055    IntegerLiteral *IL;
3056    Expr *Init = static_cast<Expr *>(init.get());
3057    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3058        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3059      if (Method->isVirtualAsWritten()) {
3060        Method->setPure();
3061
3062        // A class is abstract if at least one function is pure virtual.
3063        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3064      } else if (!Method->isInvalidDecl()) {
3065        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3066          << Method->getDeclName() << Init->getSourceRange();
3067        Method->setInvalidDecl();
3068      }
3069    } else {
3070      Diag(Method->getLocation(), diag::err_member_function_initialization)
3071        << Method->getDeclName() << Init->getSourceRange();
3072      Method->setInvalidDecl();
3073    }
3074    return;
3075  }
3076
3077  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3078  if (!VDecl) {
3079    if (getLangOptions().CPlusPlus &&
3080        RealDecl->getLexicalDeclContext()->isRecord() &&
3081        isa<NamedDecl>(RealDecl))
3082      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3083        << cast<NamedDecl>(RealDecl)->getDeclName();
3084    else
3085      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3086    RealDecl->setInvalidDecl();
3087    return;
3088  }
3089
3090  if (!VDecl->getType()->isArrayType() &&
3091      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3092                          diag::err_typecheck_decl_incomplete_type)) {
3093    RealDecl->setInvalidDecl();
3094    return;
3095  }
3096
3097  const VarDecl *Def = 0;
3098  if (VDecl->getDefinition(Def)) {
3099    Diag(VDecl->getLocation(), diag::err_redefinition)
3100      << VDecl->getDeclName();
3101    Diag(Def->getLocation(), diag::note_previous_definition);
3102    VDecl->setInvalidDecl();
3103    return;
3104  }
3105
3106  // Take ownership of the expression, now that we're sure we have somewhere
3107  // to put it.
3108  Expr *Init = init.takeAs<Expr>();
3109  assert(Init && "missing initializer");
3110
3111  // Get the decls type and save a reference for later, since
3112  // CheckInitializerTypes may change it.
3113  QualType DclT = VDecl->getType(), SavT = DclT;
3114  if (VDecl->isBlockVarDecl()) {
3115    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3116      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3117      VDecl->setInvalidDecl();
3118    } else if (!VDecl->isInvalidDecl()) {
3119      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3120                                VDecl->getDeclName(), DirectInit))
3121        VDecl->setInvalidDecl();
3122
3123      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3124      // Don't check invalid declarations to avoid emitting useless diagnostics.
3125      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3126        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3127          CheckForConstantInitializer(Init, DclT);
3128      }
3129    }
3130  } else if (VDecl->isStaticDataMember() &&
3131             VDecl->getLexicalDeclContext()->isRecord()) {
3132    // This is an in-class initialization for a static data member, e.g.,
3133    //
3134    // struct S {
3135    //   static const int value = 17;
3136    // };
3137
3138    // Attach the initializer
3139    VDecl->setInit(Context, Init);
3140
3141    // C++ [class.mem]p4:
3142    //   A member-declarator can contain a constant-initializer only
3143    //   if it declares a static member (9.4) of const integral or
3144    //   const enumeration type, see 9.4.2.
3145    QualType T = VDecl->getType();
3146    if (!T->isDependentType() &&
3147        (!Context.getCanonicalType(T).isConstQualified() ||
3148         !T->isIntegralType())) {
3149      Diag(VDecl->getLocation(), diag::err_member_initialization)
3150        << VDecl->getDeclName() << Init->getSourceRange();
3151      VDecl->setInvalidDecl();
3152    } else {
3153      // C++ [class.static.data]p4:
3154      //   If a static data member is of const integral or const
3155      //   enumeration type, its declaration in the class definition
3156      //   can specify a constant-initializer which shall be an
3157      //   integral constant expression (5.19).
3158      if (!Init->isTypeDependent() &&
3159          !Init->getType()->isIntegralType()) {
3160        // We have a non-dependent, non-integral or enumeration type.
3161        Diag(Init->getSourceRange().getBegin(),
3162             diag::err_in_class_initializer_non_integral_type)
3163          << Init->getType() << Init->getSourceRange();
3164        VDecl->setInvalidDecl();
3165      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3166        // Check whether the expression is a constant expression.
3167        llvm::APSInt Value;
3168        SourceLocation Loc;
3169        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3170          Diag(Loc, diag::err_in_class_initializer_non_constant)
3171            << Init->getSourceRange();
3172          VDecl->setInvalidDecl();
3173        } else if (!VDecl->getType()->isDependentType())
3174          ImpCastExprToType(Init, VDecl->getType());
3175      }
3176    }
3177  } else if (VDecl->isFileVarDecl()) {
3178    if (VDecl->getStorageClass() == VarDecl::Extern)
3179      Diag(VDecl->getLocation(), diag::warn_extern_init);
3180    if (!VDecl->isInvalidDecl())
3181      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3182                                VDecl->getDeclName(), DirectInit))
3183        VDecl->setInvalidDecl();
3184
3185    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3186    // Don't check invalid declarations to avoid emitting useless diagnostics.
3187    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3188      // C99 6.7.8p4. All file scoped initializers need to be constant.
3189      CheckForConstantInitializer(Init, DclT);
3190    }
3191  }
3192  // If the type changed, it means we had an incomplete type that was
3193  // completed by the initializer. For example:
3194  //   int ary[] = { 1, 3, 5 };
3195  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3196  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3197    VDecl->setType(DclT);
3198    Init->setType(DclT);
3199  }
3200
3201  Init = MaybeCreateCXXExprWithTemporaries(Init,
3202                                           /*ShouldDestroyTemporaries=*/true);
3203  // Attach the initializer to the decl.
3204  VDecl->setInit(Context, Init);
3205
3206  // If the previous declaration of VDecl was a tentative definition,
3207  // remove it from the set of tentative definitions.
3208  if (VDecl->getPreviousDeclaration() &&
3209      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3210    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3211      = TentativeDefinitions.find(VDecl->getDeclName());
3212    assert(Pos != TentativeDefinitions.end() &&
3213           "Unrecorded tentative definition?");
3214    TentativeDefinitions.erase(Pos);
3215  }
3216
3217  return;
3218}
3219
3220void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3221                                  bool TypeContainsUndeducedAuto) {
3222  Decl *RealDecl = dcl.getAs<Decl>();
3223
3224  // If there is no declaration, there was an error parsing it. Just ignore it.
3225  if (RealDecl == 0)
3226    return;
3227
3228  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3229    QualType Type = Var->getType();
3230
3231    // Record tentative definitions.
3232    if (Var->isTentativeDefinition(Context))
3233      TentativeDefinitions[Var->getDeclName()] = Var;
3234
3235    // C++ [dcl.init.ref]p3:
3236    //   The initializer can be omitted for a reference only in a
3237    //   parameter declaration (8.3.5), in the declaration of a
3238    //   function return type, in the declaration of a class member
3239    //   within its class declaration (9.2), and where the extern
3240    //   specifier is explicitly used.
3241    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3242      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3243        << Var->getDeclName()
3244        << SourceRange(Var->getLocation(), Var->getLocation());
3245      Var->setInvalidDecl();
3246      return;
3247    }
3248
3249    // C++0x [dcl.spec.auto]p3
3250    if (TypeContainsUndeducedAuto) {
3251      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3252        << Var->getDeclName() << Type;
3253      Var->setInvalidDecl();
3254      return;
3255    }
3256
3257    // C++ [dcl.init]p9:
3258    //
3259    //   If no initializer is specified for an object, and the object
3260    //   is of (possibly cv-qualified) non-POD class type (or array
3261    //   thereof), the object shall be default-initialized; if the
3262    //   object is of const-qualified type, the underlying class type
3263    //   shall have a user-declared default constructor.
3264    if (getLangOptions().CPlusPlus) {
3265      QualType InitType = Type;
3266      if (const ArrayType *Array = Context.getAsArrayType(Type))
3267        InitType = Array->getElementType();
3268      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3269          InitType->isRecordType() && !InitType->isDependentType()) {
3270        CXXRecordDecl *RD =
3271          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3272        CXXConstructorDecl *Constructor = 0;
3273        if (!RequireCompleteType(Var->getLocation(), InitType,
3274                                    diag::err_invalid_incomplete_type_use))
3275          Constructor
3276            = PerformInitializationByConstructor(InitType, 0, 0,
3277                                                 Var->getLocation(),
3278                                               SourceRange(Var->getLocation(),
3279                                                           Var->getLocation()),
3280                                                 Var->getDeclName(),
3281                                                 IK_Default);
3282        if (!Constructor)
3283          Var->setInvalidDecl();
3284        else {
3285          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) {
3286            if (InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0))
3287              Var->setInvalidDecl();
3288          }
3289
3290          FinalizeVarWithDestructor(Var, InitType);
3291        }
3292      }
3293    }
3294
3295#if 0
3296    // FIXME: Temporarily disabled because we are not properly parsing
3297    // linkage specifications on declarations, e.g.,
3298    //
3299    //   extern "C" const CGPoint CGPointerZero;
3300    //
3301    // C++ [dcl.init]p9:
3302    //
3303    //     If no initializer is specified for an object, and the
3304    //     object is of (possibly cv-qualified) non-POD class type (or
3305    //     array thereof), the object shall be default-initialized; if
3306    //     the object is of const-qualified type, the underlying class
3307    //     type shall have a user-declared default
3308    //     constructor. Otherwise, if no initializer is specified for
3309    //     an object, the object and its subobjects, if any, have an
3310    //     indeterminate initial value; if the object or any of its
3311    //     subobjects are of const-qualified type, the program is
3312    //     ill-formed.
3313    //
3314    // This isn't technically an error in C, so we don't diagnose it.
3315    //
3316    // FIXME: Actually perform the POD/user-defined default
3317    // constructor check.
3318    if (getLangOptions().CPlusPlus &&
3319        Context.getCanonicalType(Type).isConstQualified() &&
3320        !Var->hasExternalStorage())
3321      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3322        << Var->getName()
3323        << SourceRange(Var->getLocation(), Var->getLocation());
3324#endif
3325  }
3326}
3327
3328Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3329                                                   DeclPtrTy *Group,
3330                                                   unsigned NumDecls) {
3331  llvm::SmallVector<Decl*, 8> Decls;
3332
3333  if (DS.isTypeSpecOwned())
3334    Decls.push_back((Decl*)DS.getTypeRep());
3335
3336  for (unsigned i = 0; i != NumDecls; ++i)
3337    if (Decl *D = Group[i].getAs<Decl>())
3338      Decls.push_back(D);
3339
3340  // Perform semantic analysis that depends on having fully processed both
3341  // the declarator and initializer.
3342  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3343    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3344    if (!IDecl)
3345      continue;
3346    QualType T = IDecl->getType();
3347
3348    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3349    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3350    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3351      if (!IDecl->isInvalidDecl() &&
3352          RequireCompleteType(IDecl->getLocation(), T,
3353                              diag::err_typecheck_decl_incomplete_type))
3354        IDecl->setInvalidDecl();
3355    }
3356    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3357    // object that has file scope without an initializer, and without a
3358    // storage-class specifier or with the storage-class specifier "static",
3359    // constitutes a tentative definition. Note: A tentative definition with
3360    // external linkage is valid (C99 6.2.2p5).
3361    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3362      if (const IncompleteArrayType *ArrayT
3363          = Context.getAsIncompleteArrayType(T)) {
3364        if (RequireCompleteType(IDecl->getLocation(),
3365                                ArrayT->getElementType(),
3366                                diag::err_illegal_decl_array_incomplete_type))
3367          IDecl->setInvalidDecl();
3368      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3369        // C99 6.9.2p3: If the declaration of an identifier for an object is
3370        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3371        // declared type shall not be an incomplete type.
3372        // NOTE: code such as the following
3373        //     static struct s;
3374        //     struct s { int a; };
3375        // is accepted by gcc. Hence here we issue a warning instead of
3376        // an error and we do not invalidate the static declaration.
3377        // NOTE: to avoid multiple warnings, only check the first declaration.
3378        if (IDecl->getPreviousDeclaration() == 0)
3379          RequireCompleteType(IDecl->getLocation(), T,
3380                              diag::ext_typecheck_decl_incomplete_type);
3381      }
3382    }
3383  }
3384  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3385                                                   Decls.data(), Decls.size()));
3386}
3387
3388
3389/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3390/// to introduce parameters into function prototype scope.
3391Sema::DeclPtrTy
3392Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3393  const DeclSpec &DS = D.getDeclSpec();
3394
3395  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3396  VarDecl::StorageClass StorageClass = VarDecl::None;
3397  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3398    StorageClass = VarDecl::Register;
3399  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3400    Diag(DS.getStorageClassSpecLoc(),
3401         diag::err_invalid_storage_class_in_func_decl);
3402    D.getMutableDeclSpec().ClearStorageClassSpecs();
3403  }
3404
3405  if (D.getDeclSpec().isThreadSpecified())
3406    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3407
3408  DiagnoseFunctionSpecifiers(D);
3409
3410  // Check that there are no default arguments inside the type of this
3411  // parameter (C++ only).
3412  if (getLangOptions().CPlusPlus)
3413    CheckExtraCXXDefaultArguments(D);
3414
3415  DeclaratorInfo *DInfo = 0;
3416  TagDecl *OwnedDecl = 0;
3417  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3418                                               &OwnedDecl);
3419
3420  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3421    // C++ [dcl.fct]p6:
3422    //   Types shall not be defined in return or parameter types.
3423    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3424      << Context.getTypeDeclType(OwnedDecl);
3425  }
3426
3427  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3428  // Can this happen for params?  We already checked that they don't conflict
3429  // among each other.  Here they can only shadow globals, which is ok.
3430  IdentifierInfo *II = D.getIdentifier();
3431  if (II) {
3432    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3433      if (PrevDecl->isTemplateParameter()) {
3434        // Maybe we will complain about the shadowed template parameter.
3435        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3436        // Just pretend that we didn't see the previous declaration.
3437        PrevDecl = 0;
3438      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3439        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3440
3441        // Recover by removing the name
3442        II = 0;
3443        D.SetIdentifier(0, D.getIdentifierLoc());
3444      }
3445    }
3446  }
3447
3448  // Parameters can not be abstract class types.
3449  // For record types, this is done by the AbstractClassUsageDiagnoser once
3450  // the class has been completely parsed.
3451  if (!CurContext->isRecord() &&
3452      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3453                             diag::err_abstract_type_in_decl,
3454                             AbstractParamType))
3455    D.setInvalidType(true);
3456
3457  QualType T = adjustParameterType(parmDeclType);
3458
3459  ParmVarDecl *New;
3460  if (T == parmDeclType) // parameter type did not need adjustment
3461    New = ParmVarDecl::Create(Context, CurContext,
3462                              D.getIdentifierLoc(), II,
3463                              parmDeclType, DInfo, StorageClass,
3464                              0);
3465  else // keep track of both the adjusted and unadjusted types
3466    New = OriginalParmVarDecl::Create(Context, CurContext,
3467                                      D.getIdentifierLoc(), II, T, DInfo,
3468                                      parmDeclType, StorageClass, 0);
3469
3470  if (D.isInvalidType())
3471    New->setInvalidDecl();
3472
3473  // Parameter declarators cannot be interface types. All ObjC objects are
3474  // passed by reference.
3475  if (T->isObjCInterfaceType()) {
3476    Diag(D.getIdentifierLoc(),
3477         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3478    New->setInvalidDecl();
3479  }
3480
3481  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3482  if (D.getCXXScopeSpec().isSet()) {
3483    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3484      << D.getCXXScopeSpec().getRange();
3485    New->setInvalidDecl();
3486  }
3487
3488  // Add the parameter declaration into this scope.
3489  S->AddDecl(DeclPtrTy::make(New));
3490  if (II)
3491    IdResolver.AddDecl(New);
3492
3493  ProcessDeclAttributes(S, New, D);
3494
3495  if (New->hasAttr<BlocksAttr>()) {
3496    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3497  }
3498  return DeclPtrTy::make(New);
3499}
3500
3501void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3502                                           SourceLocation LocAfterDecls) {
3503  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3504         "Not a function declarator!");
3505  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3506
3507  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3508  // for a K&R function.
3509  if (!FTI.hasPrototype) {
3510    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3511      --i;
3512      if (FTI.ArgInfo[i].Param == 0) {
3513        std::string Code = "  int ";
3514        Code += FTI.ArgInfo[i].Ident->getName();
3515        Code += ";\n";
3516        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3517          << FTI.ArgInfo[i].Ident
3518          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3519
3520        // Implicitly declare the argument as type 'int' for lack of a better
3521        // type.
3522        DeclSpec DS;
3523        const char* PrevSpec; // unused
3524        unsigned DiagID; // unused
3525        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3526                           PrevSpec, DiagID);
3527        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3528        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3529        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3530      }
3531    }
3532  }
3533}
3534
3535Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3536                                              Declarator &D) {
3537  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3538  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3539         "Not a function declarator!");
3540  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3541
3542  if (FTI.hasPrototype) {
3543    // FIXME: Diagnose arguments without names in C.
3544  }
3545
3546  Scope *ParentScope = FnBodyScope->getParent();
3547
3548  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3549                                  MultiTemplateParamsArg(*this),
3550                                  /*IsFunctionDefinition=*/true);
3551  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3552}
3553
3554Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3555  if (!D)
3556    return D;
3557  FunctionDecl *FD = 0;
3558
3559  if (FunctionTemplateDecl *FunTmpl
3560        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3561    FD = FunTmpl->getTemplatedDecl();
3562  else
3563    FD = cast<FunctionDecl>(D.getAs<Decl>());
3564
3565  CurFunctionNeedsScopeChecking = false;
3566
3567  // See if this is a redefinition.
3568  const FunctionDecl *Definition;
3569  if (FD->getBody(Definition)) {
3570    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3571    Diag(Definition->getLocation(), diag::note_previous_definition);
3572  }
3573
3574  // Builtin functions cannot be defined.
3575  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3576    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3577      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3578      FD->setInvalidDecl();
3579    }
3580  }
3581
3582  // The return type of a function definition must be complete
3583  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3584  QualType ResultType = FD->getResultType();
3585  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3586      !FD->isInvalidDecl() &&
3587      RequireCompleteType(FD->getLocation(), ResultType,
3588                          diag::err_func_def_incomplete_result))
3589    FD->setInvalidDecl();
3590
3591  // GNU warning -Wmissing-prototypes:
3592  //   Warn if a global function is defined without a previous
3593  //   prototype declaration. This warning is issued even if the
3594  //   definition itself provides a prototype. The aim is to detect
3595  //   global functions that fail to be declared in header files.
3596  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3597      !FD->isMain(Context)) {
3598    bool MissingPrototype = true;
3599    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3600         Prev; Prev = Prev->getPreviousDeclaration()) {
3601      // Ignore any declarations that occur in function or method
3602      // scope, because they aren't visible from the header.
3603      if (Prev->getDeclContext()->isFunctionOrMethod())
3604        continue;
3605
3606      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3607      break;
3608    }
3609
3610    if (MissingPrototype)
3611      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3612  }
3613
3614  if (FnBodyScope)
3615    PushDeclContext(FnBodyScope, FD);
3616
3617  // Check the validity of our function parameters
3618  CheckParmsForFunctionDef(FD);
3619
3620  // Introduce our parameters into the function scope
3621  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3622    ParmVarDecl *Param = FD->getParamDecl(p);
3623    Param->setOwningFunction(FD);
3624
3625    // If this has an identifier, add it to the scope stack.
3626    if (Param->getIdentifier() && FnBodyScope)
3627      PushOnScopeChains(Param, FnBodyScope);
3628  }
3629
3630  // Checking attributes of current function definition
3631  // dllimport attribute.
3632  if (FD->getAttr<DLLImportAttr>() &&
3633      (!FD->getAttr<DLLExportAttr>())) {
3634    // dllimport attribute cannot be applied to definition.
3635    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3636      Diag(FD->getLocation(),
3637           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3638        << "dllimport";
3639      FD->setInvalidDecl();
3640      return DeclPtrTy::make(FD);
3641    } else {
3642      // If a symbol previously declared dllimport is later defined, the
3643      // attribute is ignored in subsequent references, and a warning is
3644      // emitted.
3645      Diag(FD->getLocation(),
3646           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3647        << FD->getNameAsCString() << "dllimport";
3648    }
3649  }
3650  return DeclPtrTy::make(FD);
3651}
3652
3653Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3654  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3655}
3656
3657Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3658                                              bool IsInstantiation) {
3659  Decl *dcl = D.getAs<Decl>();
3660  Stmt *Body = BodyArg.takeAs<Stmt>();
3661
3662  FunctionDecl *FD = 0;
3663  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3664  if (FunTmpl)
3665    FD = FunTmpl->getTemplatedDecl();
3666  else
3667    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3668
3669  if (FD) {
3670    FD->setBody(Body);
3671    if (FD->isMain(Context))
3672      // C and C++ allow for main to automagically return 0.
3673      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3674      FD->setHasImplicitReturnZero(true);
3675    else
3676      CheckFallThroughForFunctionDef(FD, Body);
3677
3678    if (!FD->isInvalidDecl())
3679      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3680
3681    // C++ [basic.def.odr]p2:
3682    //   [...] A virtual member function is used if it is not pure. [...]
3683    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3684      if (Method->isVirtual() && !Method->isPure())
3685        MarkDeclarationReferenced(Method->getLocation(), Method);
3686
3687    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3688  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3689    assert(MD == getCurMethodDecl() && "Method parsing confused");
3690    MD->setBody(Body);
3691    CheckFallThroughForFunctionDef(MD, Body);
3692    MD->setEndLoc(Body->getLocEnd());
3693
3694    if (!MD->isInvalidDecl())
3695      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3696  } else {
3697    Body->Destroy(Context);
3698    return DeclPtrTy();
3699  }
3700  if (!IsInstantiation)
3701    PopDeclContext();
3702
3703  // Verify and clean out per-function state.
3704
3705  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3706
3707  // Check goto/label use.
3708  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3709       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3710    LabelStmt *L = I->second;
3711
3712    // Verify that we have no forward references left.  If so, there was a goto
3713    // or address of a label taken, but no definition of it.  Label fwd
3714    // definitions are indicated with a null substmt.
3715    if (L->getSubStmt() != 0)
3716      continue;
3717
3718    // Emit error.
3719    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3720
3721    // At this point, we have gotos that use the bogus label.  Stitch it into
3722    // the function body so that they aren't leaked and that the AST is well
3723    // formed.
3724    if (Body == 0) {
3725      // The whole function wasn't parsed correctly, just delete this.
3726      L->Destroy(Context);
3727      continue;
3728    }
3729
3730    // Otherwise, the body is valid: we want to stitch the label decl into the
3731    // function somewhere so that it is properly owned and so that the goto
3732    // has a valid target.  Do this by creating a new compound stmt with the
3733    // label in it.
3734
3735    // Give the label a sub-statement.
3736    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3737
3738    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3739                               cast<CXXTryStmt>(Body)->getTryBlock() :
3740                               cast<CompoundStmt>(Body);
3741    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3742    Elements.push_back(L);
3743    Compound->setStmts(Context, &Elements[0], Elements.size());
3744  }
3745  FunctionLabelMap.clear();
3746
3747  if (!Body) return D;
3748
3749  // Verify that that gotos and switch cases don't jump into scopes illegally.
3750  if (CurFunctionNeedsScopeChecking)
3751    DiagnoseInvalidJumps(Body);
3752
3753  // C++ constructors that have function-try-blocks can't have return
3754  // statements in the handlers of that block. (C++ [except.handle]p14)
3755  // Verify this.
3756  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3757    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3758
3759  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3760    Destructor->computeBaseOrMembersToDestroy(Context);
3761  return D;
3762}
3763
3764/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3765/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3766NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3767                                          IdentifierInfo &II, Scope *S) {
3768  // Before we produce a declaration for an implicitly defined
3769  // function, see whether there was a locally-scoped declaration of
3770  // this name as a function or variable. If so, use that
3771  // (non-visible) declaration, and complain about it.
3772  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3773    = LocallyScopedExternalDecls.find(&II);
3774  if (Pos != LocallyScopedExternalDecls.end()) {
3775    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3776    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3777    return Pos->second;
3778  }
3779
3780  // Extension in C99.  Legal in C90, but warn about it.
3781  if (getLangOptions().C99)
3782    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3783  else
3784    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3785
3786  // FIXME: handle stuff like:
3787  // void foo() { extern float X(); }
3788  // void bar() { X(); }  <-- implicit decl for X in another scope.
3789
3790  // Set a Declarator for the implicit definition: int foo();
3791  const char *Dummy;
3792  DeclSpec DS;
3793  unsigned DiagID;
3794  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3795  Error = Error; // Silence warning.
3796  assert(!Error && "Error setting up implicit decl!");
3797  Declarator D(DS, Declarator::BlockContext);
3798  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3799                                             0, 0, false, SourceLocation(),
3800                                             false, 0,0,0, Loc, Loc, D),
3801                SourceLocation());
3802  D.SetIdentifier(&II, Loc);
3803
3804  // Insert this function into translation-unit scope.
3805
3806  DeclContext *PrevDC = CurContext;
3807  CurContext = Context.getTranslationUnitDecl();
3808
3809  FunctionDecl *FD =
3810 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3811  FD->setImplicit();
3812
3813  CurContext = PrevDC;
3814
3815  AddKnownFunctionAttributes(FD);
3816
3817  return FD;
3818}
3819
3820/// \brief Adds any function attributes that we know a priori based on
3821/// the declaration of this function.
3822///
3823/// These attributes can apply both to implicitly-declared builtins
3824/// (like __builtin___printf_chk) or to library-declared functions
3825/// like NSLog or printf.
3826void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3827  if (FD->isInvalidDecl())
3828    return;
3829
3830  // If this is a built-in function, map its builtin attributes to
3831  // actual attributes.
3832  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3833    // Handle printf-formatting attributes.
3834    unsigned FormatIdx;
3835    bool HasVAListArg;
3836    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3837      if (!FD->getAttr<FormatAttr>())
3838        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3839                                             HasVAListArg ? 0 : FormatIdx + 2));
3840    }
3841
3842    // Mark const if we don't care about errno and that is the only
3843    // thing preventing the function from being const. This allows
3844    // IRgen to use LLVM intrinsics for such functions.
3845    if (!getLangOptions().MathErrno &&
3846        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3847      if (!FD->getAttr<ConstAttr>())
3848        FD->addAttr(::new (Context) ConstAttr());
3849    }
3850
3851    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3852      FD->addAttr(::new (Context) NoReturnAttr());
3853  }
3854
3855  IdentifierInfo *Name = FD->getIdentifier();
3856  if (!Name)
3857    return;
3858  if ((!getLangOptions().CPlusPlus &&
3859       FD->getDeclContext()->isTranslationUnit()) ||
3860      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3861       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3862       LinkageSpecDecl::lang_c)) {
3863    // Okay: this could be a libc/libm/Objective-C function we know
3864    // about.
3865  } else
3866    return;
3867
3868  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3869    // FIXME: NSLog and NSLogv should be target specific
3870    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3871      // FIXME: We known better than our headers.
3872      const_cast<FormatAttr *>(Format)->setType("printf");
3873    } else
3874      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3875                                             Name->isStr("NSLogv") ? 0 : 2));
3876  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3877    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3878    // target-specific builtins, perhaps?
3879    if (!FD->getAttr<FormatAttr>())
3880      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3881                                             Name->isStr("vasprintf") ? 0 : 3));
3882  }
3883}
3884
3885TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3886  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3887  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3888
3889  // Scope manipulation handled by caller.
3890  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3891                                           D.getIdentifierLoc(),
3892                                           D.getIdentifier(),
3893                                           T);
3894
3895  if (TagType *TT = dyn_cast<TagType>(T)) {
3896    TagDecl *TD = TT->getDecl();
3897
3898    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3899    // keep track of the TypedefDecl.
3900    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3901      TD->setTypedefForAnonDecl(NewTD);
3902  }
3903
3904  if (D.isInvalidType())
3905    NewTD->setInvalidDecl();
3906  return NewTD;
3907}
3908
3909
3910/// \brief Determine whether a tag with a given kind is acceptable
3911/// as a redeclaration of the given tag declaration.
3912///
3913/// \returns true if the new tag kind is acceptable, false otherwise.
3914bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3915                                        TagDecl::TagKind NewTag,
3916                                        SourceLocation NewTagLoc,
3917                                        const IdentifierInfo &Name) {
3918  // C++ [dcl.type.elab]p3:
3919  //   The class-key or enum keyword present in the
3920  //   elaborated-type-specifier shall agree in kind with the
3921  //   declaration to which the name in theelaborated-type-specifier
3922  //   refers. This rule also applies to the form of
3923  //   elaborated-type-specifier that declares a class-name or
3924  //   friend class since it can be construed as referring to the
3925  //   definition of the class. Thus, in any
3926  //   elaborated-type-specifier, the enum keyword shall be used to
3927  //   refer to an enumeration (7.2), the union class-keyshall be
3928  //   used to refer to a union (clause 9), and either the class or
3929  //   struct class-key shall be used to refer to a class (clause 9)
3930  //   declared using the class or struct class-key.
3931  TagDecl::TagKind OldTag = Previous->getTagKind();
3932  if (OldTag == NewTag)
3933    return true;
3934
3935  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3936      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3937    // Warn about the struct/class tag mismatch.
3938    bool isTemplate = false;
3939    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3940      isTemplate = Record->getDescribedClassTemplate();
3941
3942    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3943      << (NewTag == TagDecl::TK_class)
3944      << isTemplate << &Name
3945      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3946                              OldTag == TagDecl::TK_class? "class" : "struct");
3947    Diag(Previous->getLocation(), diag::note_previous_use);
3948    return true;
3949  }
3950  return false;
3951}
3952
3953/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3954/// former case, Name will be non-null.  In the later case, Name will be null.
3955/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3956/// reference/declaration/definition of a tag.
3957Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3958                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3959                               IdentifierInfo *Name, SourceLocation NameLoc,
3960                               AttributeList *Attr, AccessSpecifier AS,
3961                               MultiTemplateParamsArg TemplateParameterLists,
3962                               bool &OwnedDecl) {
3963  // If this is not a definition, it must have a name.
3964  assert((Name != 0 || TUK == TUK_Definition) &&
3965         "Nameless record must be a definition!");
3966
3967  OwnedDecl = false;
3968  TagDecl::TagKind Kind;
3969  switch (TagSpec) {
3970  default: assert(0 && "Unknown tag type!");
3971  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3972  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3973  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3974  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3975  }
3976
3977  if (TUK != TUK_Reference) {
3978    if (TemplateParameterList *TemplateParams
3979          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3980                        (TemplateParameterList**)TemplateParameterLists.get(),
3981                                              TemplateParameterLists.size())) {
3982      if (TemplateParams->size() > 0) {
3983        // This is a declaration or definition of a class template (which may
3984        // be a member of another template).
3985        OwnedDecl = false;
3986        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3987                                               SS, Name, NameLoc, Attr,
3988                                               TemplateParams,
3989                                               AS);
3990        TemplateParameterLists.release();
3991        return Result.get();
3992      } else {
3993        // FIXME: diagnose the extraneous 'template<>', once we recover
3994        // slightly better in ParseTemplate.cpp from bogus template
3995        // parameters.
3996      }
3997    }
3998  }
3999
4000  DeclContext *SearchDC = CurContext;
4001  DeclContext *DC = CurContext;
4002  NamedDecl *PrevDecl = 0;
4003
4004  bool Invalid = false;
4005
4006  if (Name && SS.isNotEmpty()) {
4007    // We have a nested-name tag ('struct foo::bar').
4008
4009    // Check for invalid 'foo::'.
4010    if (SS.isInvalid()) {
4011      Name = 0;
4012      goto CreateNewDecl;
4013    }
4014
4015    if (RequireCompleteDeclContext(SS))
4016      return DeclPtrTy::make((Decl *)0);
4017
4018    DC = computeDeclContext(SS, true);
4019    SearchDC = DC;
4020    // Look-up name inside 'foo::'.
4021    PrevDecl
4022      = dyn_cast_or_null<TagDecl>(
4023               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4024
4025    // A tag 'foo::bar' must already exist.
4026    if (PrevDecl == 0) {
4027      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4028      Name = 0;
4029      Invalid = true;
4030      goto CreateNewDecl;
4031    }
4032  } else if (Name) {
4033    // If this is a named struct, check to see if there was a previous forward
4034    // declaration or definition.
4035    // FIXME: We're looking into outer scopes here, even when we
4036    // shouldn't be. Doing so can result in ambiguities that we
4037    // shouldn't be diagnosing.
4038    LookupResult R = LookupName(S, Name, LookupTagName,
4039                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4040    if (R.isAmbiguous()) {
4041      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4042      // FIXME: This is not best way to recover from case like:
4043      //
4044      // struct S s;
4045      //
4046      // causes needless "incomplete type" error later.
4047      Name = 0;
4048      PrevDecl = 0;
4049      Invalid = true;
4050    } else
4051      PrevDecl = R;
4052
4053    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4054      // FIXME: This makes sure that we ignore the contexts associated
4055      // with C structs, unions, and enums when looking for a matching
4056      // tag declaration or definition. See the similar lookup tweak
4057      // in Sema::LookupName; is there a better way to deal with this?
4058      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4059        SearchDC = SearchDC->getParent();
4060    }
4061  }
4062
4063  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4064    // Maybe we will complain about the shadowed template parameter.
4065    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4066    // Just pretend that we didn't see the previous declaration.
4067    PrevDecl = 0;
4068  }
4069
4070  if (PrevDecl) {
4071    // Check whether the previous declaration is usable.
4072    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4073
4074    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4075      // If this is a use of a previous tag, or if the tag is already declared
4076      // in the same scope (so that the definition/declaration completes or
4077      // rementions the tag), reuse the decl.
4078      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4079          isDeclInScope(PrevDecl, SearchDC, S)) {
4080        // Make sure that this wasn't declared as an enum and now used as a
4081        // struct or something similar.
4082        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4083          bool SafeToContinue
4084            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4085               Kind != TagDecl::TK_enum);
4086          if (SafeToContinue)
4087            Diag(KWLoc, diag::err_use_with_wrong_tag)
4088              << Name
4089              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4090                                                  PrevTagDecl->getKindName());
4091          else
4092            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4093          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4094
4095          if (SafeToContinue)
4096            Kind = PrevTagDecl->getTagKind();
4097          else {
4098            // Recover by making this an anonymous redefinition.
4099            Name = 0;
4100            PrevDecl = 0;
4101            Invalid = true;
4102          }
4103        }
4104
4105        if (!Invalid) {
4106          // If this is a use, just return the declaration we found.
4107
4108          // FIXME: In the future, return a variant or some other clue
4109          // for the consumer of this Decl to know it doesn't own it.
4110          // For our current ASTs this shouldn't be a problem, but will
4111          // need to be changed with DeclGroups.
4112          if (TUK == TUK_Reference)
4113            return DeclPtrTy::make(PrevDecl);
4114
4115          // If this is a friend, make sure we create the new
4116          // declaration in the appropriate semantic context.
4117          if (TUK == TUK_Friend)
4118            SearchDC = PrevDecl->getDeclContext();
4119
4120          // Diagnose attempts to redefine a tag.
4121          if (TUK == TUK_Definition) {
4122            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4123              Diag(NameLoc, diag::err_redefinition) << Name;
4124              Diag(Def->getLocation(), diag::note_previous_definition);
4125              // If this is a redefinition, recover by making this
4126              // struct be anonymous, which will make any later
4127              // references get the previous definition.
4128              Name = 0;
4129              PrevDecl = 0;
4130              Invalid = true;
4131            } else {
4132              // If the type is currently being defined, complain
4133              // about a nested redefinition.
4134              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4135              if (Tag->isBeingDefined()) {
4136                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4137                Diag(PrevTagDecl->getLocation(),
4138                     diag::note_previous_definition);
4139                Name = 0;
4140                PrevDecl = 0;
4141                Invalid = true;
4142              }
4143            }
4144
4145            // Okay, this is definition of a previously declared or referenced
4146            // tag PrevDecl. We're going to create a new Decl for it.
4147          }
4148        }
4149        // If we get here we have (another) forward declaration or we
4150        // have a definition.  Just create a new decl.
4151
4152      } else {
4153        // If we get here, this is a definition of a new tag type in a nested
4154        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4155        // new decl/type.  We set PrevDecl to NULL so that the entities
4156        // have distinct types.
4157        PrevDecl = 0;
4158      }
4159      // If we get here, we're going to create a new Decl. If PrevDecl
4160      // is non-NULL, it's a definition of the tag declared by
4161      // PrevDecl. If it's NULL, we have a new definition.
4162    } else {
4163      // PrevDecl is a namespace, template, or anything else
4164      // that lives in the IDNS_Tag identifier namespace.
4165      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4166        // The tag name clashes with a namespace name, issue an error and
4167        // recover by making this tag be anonymous.
4168        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4169        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4170        Name = 0;
4171        PrevDecl = 0;
4172        Invalid = true;
4173      } else {
4174        // The existing declaration isn't relevant to us; we're in a
4175        // new scope, so clear out the previous declaration.
4176        PrevDecl = 0;
4177      }
4178    }
4179  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4180             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4181    // C++ [basic.scope.pdecl]p5:
4182    //   -- for an elaborated-type-specifier of the form
4183    //
4184    //          class-key identifier
4185    //
4186    //      if the elaborated-type-specifier is used in the
4187    //      decl-specifier-seq or parameter-declaration-clause of a
4188    //      function defined in namespace scope, the identifier is
4189    //      declared as a class-name in the namespace that contains
4190    //      the declaration; otherwise, except as a friend
4191    //      declaration, the identifier is declared in the smallest
4192    //      non-class, non-function-prototype scope that contains the
4193    //      declaration.
4194    //
4195    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4196    // C structs and unions.
4197    //
4198    // GNU C also supports this behavior as part of its incomplete
4199    // enum types extension, while GNU C++ does not.
4200    //
4201    // Find the context where we'll be declaring the tag.
4202    // FIXME: We would like to maintain the current DeclContext as the
4203    // lexical context,
4204    while (SearchDC->isRecord())
4205      SearchDC = SearchDC->getParent();
4206
4207    // Find the scope where we'll be declaring the tag.
4208    while (S->isClassScope() ||
4209           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4210           ((S->getFlags() & Scope::DeclScope) == 0) ||
4211           (S->getEntity() &&
4212            ((DeclContext *)S->getEntity())->isTransparentContext()))
4213      S = S->getParent();
4214
4215  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4216    // C++ [namespace.memdef]p3:
4217    //   If a friend declaration in a non-local class first declares a
4218    //   class or function, the friend class or function is a member of
4219    //   the innermost enclosing namespace.
4220    while (!SearchDC->isFileContext())
4221      SearchDC = SearchDC->getParent();
4222
4223    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4224    while (S->getEntity() != SearchDC)
4225      S = S->getParent();
4226  }
4227
4228CreateNewDecl:
4229
4230  // If there is an identifier, use the location of the identifier as the
4231  // location of the decl, otherwise use the location of the struct/union
4232  // keyword.
4233  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4234
4235  // Otherwise, create a new declaration. If there is a previous
4236  // declaration of the same entity, the two will be linked via
4237  // PrevDecl.
4238  TagDecl *New;
4239
4240  if (Kind == TagDecl::TK_enum) {
4241    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4242    // enum X { A, B, C } D;    D should chain to X.
4243    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4244                           cast_or_null<EnumDecl>(PrevDecl));
4245    // If this is an undefined enum, warn.
4246    if (TUK != TUK_Definition && !Invalid)  {
4247      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4248                                              : diag::ext_forward_ref_enum;
4249      Diag(Loc, DK);
4250    }
4251  } else {
4252    // struct/union/class
4253
4254    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4255    // struct X { int A; } D;    D should chain to X.
4256    if (getLangOptions().CPlusPlus)
4257      // FIXME: Look for a way to use RecordDecl for simple structs.
4258      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4259                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4260    else
4261      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4262                               cast_or_null<RecordDecl>(PrevDecl));
4263  }
4264
4265  if (Kind != TagDecl::TK_enum) {
4266    // Handle #pragma pack: if the #pragma pack stack has non-default
4267    // alignment, make up a packed attribute for this decl. These
4268    // attributes are checked when the ASTContext lays out the
4269    // structure.
4270    //
4271    // It is important for implementing the correct semantics that this
4272    // happen here (in act on tag decl). The #pragma pack stack is
4273    // maintained as a result of parser callbacks which can occur at
4274    // many points during the parsing of a struct declaration (because
4275    // the #pragma tokens are effectively skipped over during the
4276    // parsing of the struct).
4277    if (unsigned Alignment = getPragmaPackAlignment())
4278      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4279  }
4280
4281  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4282    // C++ [dcl.typedef]p3:
4283    //   [...] Similarly, in a given scope, a class or enumeration
4284    //   shall not be declared with the same name as a typedef-name
4285    //   that is declared in that scope and refers to a type other
4286    //   than the class or enumeration itself.
4287    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4288    TypedefDecl *PrevTypedef = 0;
4289    if (Lookup.getKind() == LookupResult::Found)
4290      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4291
4292    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4293        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4294          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4295      Diag(Loc, diag::err_tag_definition_of_typedef)
4296        << Context.getTypeDeclType(New)
4297        << PrevTypedef->getUnderlyingType();
4298      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4299      Invalid = true;
4300    }
4301  }
4302
4303  if (Invalid)
4304    New->setInvalidDecl();
4305
4306  if (Attr)
4307    ProcessDeclAttributeList(S, New, Attr);
4308
4309  // If we're declaring or defining a tag in function prototype scope
4310  // in C, note that this type can only be used within the function.
4311  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4312    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4313
4314  // Set the lexical context. If the tag has a C++ scope specifier, the
4315  // lexical context will be different from the semantic context.
4316  New->setLexicalDeclContext(CurContext);
4317
4318  // Mark this as a friend decl if applicable.
4319  if (TUK == TUK_Friend)
4320    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4321
4322  // Set the access specifier.
4323  if (!Invalid && TUK != TUK_Friend)
4324    SetMemberAccessSpecifier(New, PrevDecl, AS);
4325
4326  if (TUK == TUK_Definition)
4327    New->startDefinition();
4328
4329  // If this has an identifier, add it to the scope stack.
4330  if (Name && TUK != TUK_Friend) {
4331    S = getNonFieldDeclScope(S);
4332    PushOnScopeChains(New, S);
4333  } else {
4334    CurContext->addDecl(New);
4335  }
4336
4337  // If this is the C FILE type, notify the AST context.
4338  if (IdentifierInfo *II = New->getIdentifier())
4339    if (!New->isInvalidDecl() &&
4340        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4341        II->isStr("FILE"))
4342      Context.setFILEDecl(New);
4343
4344  OwnedDecl = true;
4345  return DeclPtrTy::make(New);
4346}
4347
4348void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4349  AdjustDeclIfTemplate(TagD);
4350  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4351
4352  // Enter the tag context.
4353  PushDeclContext(S, Tag);
4354
4355  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4356    FieldCollector->StartClass();
4357
4358    if (Record->getIdentifier()) {
4359      // C++ [class]p2:
4360      //   [...] The class-name is also inserted into the scope of the
4361      //   class itself; this is known as the injected-class-name. For
4362      //   purposes of access checking, the injected-class-name is treated
4363      //   as if it were a public member name.
4364      CXXRecordDecl *InjectedClassName
4365        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4366                                CurContext, Record->getLocation(),
4367                                Record->getIdentifier(),
4368                                Record->getTagKeywordLoc(),
4369                                Record);
4370      InjectedClassName->setImplicit();
4371      InjectedClassName->setAccess(AS_public);
4372      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4373        InjectedClassName->setDescribedClassTemplate(Template);
4374      PushOnScopeChains(InjectedClassName, S);
4375      assert(InjectedClassName->isInjectedClassName() &&
4376             "Broken injected-class-name");
4377    }
4378  }
4379}
4380
4381void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4382                                    SourceLocation RBraceLoc) {
4383  AdjustDeclIfTemplate(TagD);
4384  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4385  Tag->setRBraceLoc(RBraceLoc);
4386
4387  if (isa<CXXRecordDecl>(Tag))
4388    FieldCollector->FinishClass();
4389
4390  // Exit this scope of this tag's definition.
4391  PopDeclContext();
4392
4393  // Notify the consumer that we've defined a tag.
4394  Consumer.HandleTagDeclDefinition(Tag);
4395}
4396
4397// Note that FieldName may be null for anonymous bitfields.
4398bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4399                          QualType FieldTy, const Expr *BitWidth,
4400                          bool *ZeroWidth) {
4401  // Default to true; that shouldn't confuse checks for emptiness
4402  if (ZeroWidth)
4403    *ZeroWidth = true;
4404
4405  // C99 6.7.2.1p4 - verify the field type.
4406  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4407  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4408    // Handle incomplete types with specific error.
4409    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4410      return true;
4411    if (FieldName)
4412      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4413        << FieldName << FieldTy << BitWidth->getSourceRange();
4414    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4415      << FieldTy << BitWidth->getSourceRange();
4416  }
4417
4418  // If the bit-width is type- or value-dependent, don't try to check
4419  // it now.
4420  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4421    return false;
4422
4423  llvm::APSInt Value;
4424  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4425    return true;
4426
4427  if (Value != 0 && ZeroWidth)
4428    *ZeroWidth = false;
4429
4430  // Zero-width bitfield is ok for anonymous field.
4431  if (Value == 0 && FieldName)
4432    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4433
4434  if (Value.isSigned() && Value.isNegative()) {
4435    if (FieldName)
4436      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4437               << FieldName << Value.toString(10);
4438    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4439      << Value.toString(10);
4440  }
4441
4442  if (!FieldTy->isDependentType()) {
4443    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4444    if (Value.getZExtValue() > TypeSize) {
4445      if (FieldName)
4446        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4447          << FieldName << (unsigned)TypeSize;
4448      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4449        << (unsigned)TypeSize;
4450    }
4451  }
4452
4453  return false;
4454}
4455
4456/// ActOnField - Each field of a struct/union/class is passed into this in order
4457/// to create a FieldDecl object for it.
4458Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4459                                 SourceLocation DeclStart,
4460                                 Declarator &D, ExprTy *BitfieldWidth) {
4461  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4462                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4463                               AS_public);
4464  return DeclPtrTy::make(Res);
4465}
4466
4467/// HandleField - Analyze a field of a C struct or a C++ data member.
4468///
4469FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4470                             SourceLocation DeclStart,
4471                             Declarator &D, Expr *BitWidth,
4472                             AccessSpecifier AS) {
4473  IdentifierInfo *II = D.getIdentifier();
4474  SourceLocation Loc = DeclStart;
4475  if (II) Loc = D.getIdentifierLoc();
4476
4477  DeclaratorInfo *DInfo = 0;
4478  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4479  if (getLangOptions().CPlusPlus)
4480    CheckExtraCXXDefaultArguments(D);
4481
4482  DiagnoseFunctionSpecifiers(D);
4483
4484  if (D.getDeclSpec().isThreadSpecified())
4485    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4486
4487  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4488
4489  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4490    // Maybe we will complain about the shadowed template parameter.
4491    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4492    // Just pretend that we didn't see the previous declaration.
4493    PrevDecl = 0;
4494  }
4495
4496  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4497    PrevDecl = 0;
4498
4499  bool Mutable
4500    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4501  SourceLocation TSSL = D.getSourceRange().getBegin();
4502  FieldDecl *NewFD
4503    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4504                     AS, PrevDecl, &D);
4505  if (NewFD->isInvalidDecl() && PrevDecl) {
4506    // Don't introduce NewFD into scope; there's already something
4507    // with the same name in the same scope.
4508  } else if (II) {
4509    PushOnScopeChains(NewFD, S);
4510  } else
4511    Record->addDecl(NewFD);
4512
4513  return NewFD;
4514}
4515
4516/// \brief Build a new FieldDecl and check its well-formedness.
4517///
4518/// This routine builds a new FieldDecl given the fields name, type,
4519/// record, etc. \p PrevDecl should refer to any previous declaration
4520/// with the same name and in the same scope as the field to be
4521/// created.
4522///
4523/// \returns a new FieldDecl.
4524///
4525/// \todo The Declarator argument is a hack. It will be removed once
4526FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4527                                DeclaratorInfo *DInfo,
4528                                RecordDecl *Record, SourceLocation Loc,
4529                                bool Mutable, Expr *BitWidth,
4530                                SourceLocation TSSL,
4531                                AccessSpecifier AS, NamedDecl *PrevDecl,
4532                                Declarator *D) {
4533  IdentifierInfo *II = Name.getAsIdentifierInfo();
4534  bool InvalidDecl = false;
4535  if (D) InvalidDecl = D->isInvalidType();
4536
4537  // If we receive a broken type, recover by assuming 'int' and
4538  // marking this declaration as invalid.
4539  if (T.isNull()) {
4540    InvalidDecl = true;
4541    T = Context.IntTy;
4542  }
4543
4544  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4545  // than a variably modified type.
4546  if (T->isVariablyModifiedType()) {
4547    bool SizeIsNegative;
4548    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4549                                                           SizeIsNegative);
4550    if (!FixedTy.isNull()) {
4551      Diag(Loc, diag::warn_illegal_constant_array_size);
4552      T = FixedTy;
4553    } else {
4554      if (SizeIsNegative)
4555        Diag(Loc, diag::err_typecheck_negative_array_size);
4556      else
4557        Diag(Loc, diag::err_typecheck_field_variable_size);
4558      InvalidDecl = true;
4559    }
4560  }
4561
4562  // Fields can not have abstract class types
4563  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4564                             AbstractFieldType))
4565    InvalidDecl = true;
4566
4567  bool ZeroWidth = false;
4568  // If this is declared as a bit-field, check the bit-field.
4569  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4570    InvalidDecl = true;
4571    DeleteExpr(BitWidth);
4572    BitWidth = 0;
4573    ZeroWidth = false;
4574  }
4575
4576  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4577                                       BitWidth, Mutable);
4578  if (InvalidDecl)
4579    NewFD->setInvalidDecl();
4580
4581  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4582    Diag(Loc, diag::err_duplicate_member) << II;
4583    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4584    NewFD->setInvalidDecl();
4585  }
4586
4587  if (getLangOptions().CPlusPlus) {
4588    QualType EltTy = Context.getBaseElementType(T);
4589
4590    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4591
4592    if (!T->isPODType())
4593      CXXRecord->setPOD(false);
4594    if (!ZeroWidth)
4595      CXXRecord->setEmpty(false);
4596
4597    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4598      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4599
4600      if (!RDecl->hasTrivialConstructor())
4601        CXXRecord->setHasTrivialConstructor(false);
4602      if (!RDecl->hasTrivialCopyConstructor())
4603        CXXRecord->setHasTrivialCopyConstructor(false);
4604      if (!RDecl->hasTrivialCopyAssignment())
4605        CXXRecord->setHasTrivialCopyAssignment(false);
4606      if (!RDecl->hasTrivialDestructor())
4607        CXXRecord->setHasTrivialDestructor(false);
4608
4609      // C++ 9.5p1: An object of a class with a non-trivial
4610      // constructor, a non-trivial copy constructor, a non-trivial
4611      // destructor, or a non-trivial copy assignment operator
4612      // cannot be a member of a union, nor can an array of such
4613      // objects.
4614      // TODO: C++0x alters this restriction significantly.
4615      if (Record->isUnion()) {
4616        // We check for copy constructors before constructors
4617        // because otherwise we'll never get complaints about
4618        // copy constructors.
4619
4620        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4621
4622        CXXSpecialMember member;
4623        if (!RDecl->hasTrivialCopyConstructor())
4624          member = CXXCopyConstructor;
4625        else if (!RDecl->hasTrivialConstructor())
4626          member = CXXDefaultConstructor;
4627        else if (!RDecl->hasTrivialCopyAssignment())
4628          member = CXXCopyAssignment;
4629        else if (!RDecl->hasTrivialDestructor())
4630          member = CXXDestructor;
4631        else
4632          member = invalid;
4633
4634        if (member != invalid) {
4635          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4636          DiagnoseNontrivial(RT, member);
4637          NewFD->setInvalidDecl();
4638        }
4639      }
4640    }
4641  }
4642
4643  // FIXME: We need to pass in the attributes given an AST
4644  // representation, not a parser representation.
4645  if (D)
4646    // FIXME: What to pass instead of TUScope?
4647    ProcessDeclAttributes(TUScope, NewFD, *D);
4648
4649  if (T.isObjCGCWeak())
4650    Diag(Loc, diag::warn_attribute_weak_on_field);
4651
4652  NewFD->setAccess(AS);
4653
4654  // C++ [dcl.init.aggr]p1:
4655  //   An aggregate is an array or a class (clause 9) with [...] no
4656  //   private or protected non-static data members (clause 11).
4657  // A POD must be an aggregate.
4658  if (getLangOptions().CPlusPlus &&
4659      (AS == AS_private || AS == AS_protected)) {
4660    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4661    CXXRecord->setAggregate(false);
4662    CXXRecord->setPOD(false);
4663  }
4664
4665  return NewFD;
4666}
4667
4668/// DiagnoseNontrivial - Given that a class has a non-trivial
4669/// special member, figure out why.
4670void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4671  QualType QT(T, 0U);
4672  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4673
4674  // Check whether the member was user-declared.
4675  switch (member) {
4676  case CXXDefaultConstructor:
4677    if (RD->hasUserDeclaredConstructor()) {
4678      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4679      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4680        if (!ci->isImplicitlyDefined(Context)) {
4681          SourceLocation CtorLoc = ci->getLocation();
4682          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4683          return;
4684        }
4685
4686      assert(0 && "found no user-declared constructors");
4687      return;
4688    }
4689    break;
4690
4691  case CXXCopyConstructor:
4692    if (RD->hasUserDeclaredCopyConstructor()) {
4693      SourceLocation CtorLoc =
4694        RD->getCopyConstructor(Context, 0)->getLocation();
4695      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4696      return;
4697    }
4698    break;
4699
4700  case CXXCopyAssignment:
4701    if (RD->hasUserDeclaredCopyAssignment()) {
4702      // FIXME: this should use the location of the copy
4703      // assignment, not the type.
4704      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4705      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4706      return;
4707    }
4708    break;
4709
4710  case CXXDestructor:
4711    if (RD->hasUserDeclaredDestructor()) {
4712      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4713      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4714      return;
4715    }
4716    break;
4717  }
4718
4719  typedef CXXRecordDecl::base_class_iterator base_iter;
4720
4721  // Virtual bases and members inhibit trivial copying/construction,
4722  // but not trivial destruction.
4723  if (member != CXXDestructor) {
4724    // Check for virtual bases.  vbases includes indirect virtual bases,
4725    // so we just iterate through the direct bases.
4726    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4727      if (bi->isVirtual()) {
4728        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4729        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4730        return;
4731      }
4732
4733    // Check for virtual methods.
4734    typedef CXXRecordDecl::method_iterator meth_iter;
4735    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4736         ++mi) {
4737      if (mi->isVirtual()) {
4738        SourceLocation MLoc = mi->getSourceRange().getBegin();
4739        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4740        return;
4741      }
4742    }
4743  }
4744
4745  bool (CXXRecordDecl::*hasTrivial)() const;
4746  switch (member) {
4747  case CXXDefaultConstructor:
4748    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4749  case CXXCopyConstructor:
4750    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4751  case CXXCopyAssignment:
4752    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4753  case CXXDestructor:
4754    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4755  default:
4756    assert(0 && "unexpected special member"); return;
4757  }
4758
4759  // Check for nontrivial bases (and recurse).
4760  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4761    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4762    assert(BaseRT);
4763    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4764    if (!(BaseRecTy->*hasTrivial)()) {
4765      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4766      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4767      DiagnoseNontrivial(BaseRT, member);
4768      return;
4769    }
4770  }
4771
4772  // Check for nontrivial members (and recurse).
4773  typedef RecordDecl::field_iterator field_iter;
4774  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4775       ++fi) {
4776    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4777    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4778      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4779
4780      if (!(EltRD->*hasTrivial)()) {
4781        SourceLocation FLoc = (*fi)->getLocation();
4782        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4783        DiagnoseNontrivial(EltRT, member);
4784        return;
4785      }
4786    }
4787  }
4788
4789  assert(0 && "found no explanation for non-trivial member");
4790}
4791
4792/// TranslateIvarVisibility - Translate visibility from a token ID to an
4793///  AST enum value.
4794static ObjCIvarDecl::AccessControl
4795TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4796  switch (ivarVisibility) {
4797  default: assert(0 && "Unknown visitibility kind");
4798  case tok::objc_private: return ObjCIvarDecl::Private;
4799  case tok::objc_public: return ObjCIvarDecl::Public;
4800  case tok::objc_protected: return ObjCIvarDecl::Protected;
4801  case tok::objc_package: return ObjCIvarDecl::Package;
4802  }
4803}
4804
4805/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4806/// in order to create an IvarDecl object for it.
4807Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4808                                SourceLocation DeclStart,
4809                                DeclPtrTy IntfDecl,
4810                                Declarator &D, ExprTy *BitfieldWidth,
4811                                tok::ObjCKeywordKind Visibility) {
4812
4813  IdentifierInfo *II = D.getIdentifier();
4814  Expr *BitWidth = (Expr*)BitfieldWidth;
4815  SourceLocation Loc = DeclStart;
4816  if (II) Loc = D.getIdentifierLoc();
4817
4818  // FIXME: Unnamed fields can be handled in various different ways, for
4819  // example, unnamed unions inject all members into the struct namespace!
4820
4821  DeclaratorInfo *DInfo = 0;
4822  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4823
4824  if (BitWidth) {
4825    // 6.7.2.1p3, 6.7.2.1p4
4826    if (VerifyBitField(Loc, II, T, BitWidth)) {
4827      D.setInvalidType();
4828      DeleteExpr(BitWidth);
4829      BitWidth = 0;
4830    }
4831  } else {
4832    // Not a bitfield.
4833
4834    // validate II.
4835
4836  }
4837
4838  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4839  // than a variably modified type.
4840  if (T->isVariablyModifiedType()) {
4841    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4842    D.setInvalidType();
4843  }
4844
4845  // Get the visibility (access control) for this ivar.
4846  ObjCIvarDecl::AccessControl ac =
4847    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4848                                        : ObjCIvarDecl::None;
4849  // Must set ivar's DeclContext to its enclosing interface.
4850  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4851  DeclContext *EnclosingContext;
4852  if (ObjCImplementationDecl *IMPDecl =
4853      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4854    // Case of ivar declared in an implementation. Context is that of its class.
4855    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4856    assert(IDecl && "No class- ActOnIvar");
4857    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4858  } else
4859    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4860  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4861
4862  // Construct the decl.
4863  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4864                                             EnclosingContext, Loc, II, T,
4865                                             DInfo, ac, (Expr *)BitfieldWidth);
4866
4867  if (II) {
4868    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4869    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4870        && !isa<TagDecl>(PrevDecl)) {
4871      Diag(Loc, diag::err_duplicate_member) << II;
4872      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4873      NewID->setInvalidDecl();
4874    }
4875  }
4876
4877  // Process attributes attached to the ivar.
4878  ProcessDeclAttributes(S, NewID, D);
4879
4880  if (D.isInvalidType())
4881    NewID->setInvalidDecl();
4882
4883  if (II) {
4884    // FIXME: When interfaces are DeclContexts, we'll need to add
4885    // these to the interface.
4886    S->AddDecl(DeclPtrTy::make(NewID));
4887    IdResolver.AddDecl(NewID);
4888  }
4889
4890  return DeclPtrTy::make(NewID);
4891}
4892
4893void Sema::ActOnFields(Scope* S,
4894                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4895                       DeclPtrTy *Fields, unsigned NumFields,
4896                       SourceLocation LBrac, SourceLocation RBrac,
4897                       AttributeList *Attr) {
4898  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4899  assert(EnclosingDecl && "missing record or interface decl");
4900
4901  // If the decl this is being inserted into is invalid, then it may be a
4902  // redeclaration or some other bogus case.  Don't try to add fields to it.
4903  if (EnclosingDecl->isInvalidDecl()) {
4904    // FIXME: Deallocate fields?
4905    return;
4906  }
4907
4908
4909  // Verify that all the fields are okay.
4910  unsigned NumNamedMembers = 0;
4911  llvm::SmallVector<FieldDecl*, 32> RecFields;
4912
4913  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4914  for (unsigned i = 0; i != NumFields; ++i) {
4915    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4916
4917    // Get the type for the field.
4918    Type *FDTy = FD->getType().getTypePtr();
4919
4920    if (!FD->isAnonymousStructOrUnion()) {
4921      // Remember all fields written by the user.
4922      RecFields.push_back(FD);
4923    }
4924
4925    // If the field is already invalid for some reason, don't emit more
4926    // diagnostics about it.
4927    if (FD->isInvalidDecl())
4928      continue;
4929
4930    // C99 6.7.2.1p2:
4931    //   A structure or union shall not contain a member with
4932    //   incomplete or function type (hence, a structure shall not
4933    //   contain an instance of itself, but may contain a pointer to
4934    //   an instance of itself), except that the last member of a
4935    //   structure with more than one named member may have incomplete
4936    //   array type; such a structure (and any union containing,
4937    //   possibly recursively, a member that is such a structure)
4938    //   shall not be a member of a structure or an element of an
4939    //   array.
4940    if (FDTy->isFunctionType()) {
4941      // Field declared as a function.
4942      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4943        << FD->getDeclName();
4944      FD->setInvalidDecl();
4945      EnclosingDecl->setInvalidDecl();
4946      continue;
4947    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4948               Record && Record->isStruct()) {
4949      // Flexible array member.
4950      if (NumNamedMembers < 1) {
4951        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4952          << FD->getDeclName();
4953        FD->setInvalidDecl();
4954        EnclosingDecl->setInvalidDecl();
4955        continue;
4956      }
4957      // Okay, we have a legal flexible array member at the end of the struct.
4958      if (Record)
4959        Record->setHasFlexibleArrayMember(true);
4960    } else if (!FDTy->isDependentType() &&
4961               RequireCompleteType(FD->getLocation(), FD->getType(),
4962                                   diag::err_field_incomplete)) {
4963      // Incomplete type
4964      FD->setInvalidDecl();
4965      EnclosingDecl->setInvalidDecl();
4966      continue;
4967    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4968      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4969        // If this is a member of a union, then entire union becomes "flexible".
4970        if (Record && Record->isUnion()) {
4971          Record->setHasFlexibleArrayMember(true);
4972        } else {
4973          // If this is a struct/class and this is not the last element, reject
4974          // it.  Note that GCC supports variable sized arrays in the middle of
4975          // structures.
4976          if (i != NumFields-1)
4977            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4978              << FD->getDeclName() << FD->getType();
4979          else {
4980            // We support flexible arrays at the end of structs in
4981            // other structs as an extension.
4982            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4983              << FD->getDeclName();
4984            if (Record)
4985              Record->setHasFlexibleArrayMember(true);
4986          }
4987        }
4988      }
4989      if (Record && FDTTy->getDecl()->hasObjectMember())
4990        Record->setHasObjectMember(true);
4991    } else if (FDTy->isObjCInterfaceType()) {
4992      /// A field cannot be an Objective-c object
4993      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4994      FD->setInvalidDecl();
4995      EnclosingDecl->setInvalidDecl();
4996      continue;
4997    } else if (getLangOptions().ObjC1 &&
4998               getLangOptions().getGCMode() != LangOptions::NonGC &&
4999               Record &&
5000               (FD->getType()->isObjCObjectPointerType() ||
5001                FD->getType().isObjCGCStrong()))
5002      Record->setHasObjectMember(true);
5003    // Keep track of the number of named members.
5004    if (FD->getIdentifier())
5005      ++NumNamedMembers;
5006  }
5007
5008  // Okay, we successfully defined 'Record'.
5009  if (Record) {
5010    Record->completeDefinition(Context);
5011  } else {
5012    ObjCIvarDecl **ClsFields =
5013      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5014    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5015      ID->setIVarList(ClsFields, RecFields.size(), Context);
5016      ID->setLocEnd(RBrac);
5017      // Add ivar's to class's DeclContext.
5018      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5019        ClsFields[i]->setLexicalDeclContext(ID);
5020        ID->addDecl(ClsFields[i]);
5021      }
5022      // Must enforce the rule that ivars in the base classes may not be
5023      // duplicates.
5024      if (ID->getSuperClass()) {
5025        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5026             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5027          ObjCIvarDecl* Ivar = (*IVI);
5028
5029          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5030            ObjCIvarDecl* prevIvar =
5031              ID->getSuperClass()->lookupInstanceVariable(II);
5032            if (prevIvar) {
5033              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5034              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5035            }
5036          }
5037        }
5038      }
5039    } else if (ObjCImplementationDecl *IMPDecl =
5040                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5041      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5042      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5043        // Ivar declared in @implementation never belongs to the implementation.
5044        // Only it is in implementation's lexical context.
5045        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5046      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5047    }
5048  }
5049
5050  if (Attr)
5051    ProcessDeclAttributeList(S, Record, Attr);
5052}
5053
5054EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5055                                          EnumConstantDecl *LastEnumConst,
5056                                          SourceLocation IdLoc,
5057                                          IdentifierInfo *Id,
5058                                          ExprArg val) {
5059  Expr *Val = (Expr *)val.get();
5060
5061  llvm::APSInt EnumVal(32);
5062  QualType EltTy;
5063  if (Val && !Val->isTypeDependent()) {
5064    // Make sure to promote the operand type to int.
5065    UsualUnaryConversions(Val);
5066    if (Val != val.get()) {
5067      val.release();
5068      val = Val;
5069    }
5070
5071    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5072    SourceLocation ExpLoc;
5073    if (!Val->isValueDependent() &&
5074        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5075      Val = 0;
5076    } else {
5077      EltTy = Val->getType();
5078    }
5079  }
5080
5081  if (!Val) {
5082    if (LastEnumConst) {
5083      // Assign the last value + 1.
5084      EnumVal = LastEnumConst->getInitVal();
5085      ++EnumVal;
5086
5087      // Check for overflow on increment.
5088      if (EnumVal < LastEnumConst->getInitVal())
5089        Diag(IdLoc, diag::warn_enum_value_overflow);
5090
5091      EltTy = LastEnumConst->getType();
5092    } else {
5093      // First value, set to zero.
5094      EltTy = Context.IntTy;
5095      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5096    }
5097  }
5098
5099  val.release();
5100  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5101                                  Val, EnumVal);
5102}
5103
5104
5105Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5106                                        DeclPtrTy lastEnumConst,
5107                                        SourceLocation IdLoc,
5108                                        IdentifierInfo *Id,
5109                                        SourceLocation EqualLoc, ExprTy *val) {
5110  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5111  EnumConstantDecl *LastEnumConst =
5112    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5113  Expr *Val = static_cast<Expr*>(val);
5114
5115  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5116  // we find one that is.
5117  S = getNonFieldDeclScope(S);
5118
5119  // Verify that there isn't already something declared with this name in this
5120  // scope.
5121  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5122  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5123    // Maybe we will complain about the shadowed template parameter.
5124    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5125    // Just pretend that we didn't see the previous declaration.
5126    PrevDecl = 0;
5127  }
5128
5129  if (PrevDecl) {
5130    // When in C++, we may get a TagDecl with the same name; in this case the
5131    // enum constant will 'hide' the tag.
5132    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5133           "Received TagDecl when not in C++!");
5134    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5135      if (isa<EnumConstantDecl>(PrevDecl))
5136        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5137      else
5138        Diag(IdLoc, diag::err_redefinition) << Id;
5139      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5140      if (Val) Val->Destroy(Context);
5141      return DeclPtrTy();
5142    }
5143  }
5144
5145  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5146                                            IdLoc, Id, Owned(Val));
5147
5148  // Register this decl in the current scope stack.
5149  if (New)
5150    PushOnScopeChains(New, S);
5151
5152  return DeclPtrTy::make(New);
5153}
5154
5155void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5156                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5157                         DeclPtrTy *Elements, unsigned NumElements,
5158                         Scope *S, AttributeList *Attr) {
5159  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5160  QualType EnumType = Context.getTypeDeclType(Enum);
5161
5162  if (Attr)
5163    ProcessDeclAttributeList(S, Enum, Attr);
5164
5165  // TODO: If the result value doesn't fit in an int, it must be a long or long
5166  // long value.  ISO C does not support this, but GCC does as an extension,
5167  // emit a warning.
5168  unsigned IntWidth = Context.Target.getIntWidth();
5169  unsigned CharWidth = Context.Target.getCharWidth();
5170  unsigned ShortWidth = Context.Target.getShortWidth();
5171
5172  // Verify that all the values are okay, compute the size of the values, and
5173  // reverse the list.
5174  unsigned NumNegativeBits = 0;
5175  unsigned NumPositiveBits = 0;
5176
5177  // Keep track of whether all elements have type int.
5178  bool AllElementsInt = true;
5179
5180  for (unsigned i = 0; i != NumElements; ++i) {
5181    EnumConstantDecl *ECD =
5182      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5183    if (!ECD) continue;  // Already issued a diagnostic.
5184
5185    // If the enum value doesn't fit in an int, emit an extension warning.
5186    const llvm::APSInt &InitVal = ECD->getInitVal();
5187    assert(InitVal.getBitWidth() >= IntWidth &&
5188           "Should have promoted value to int");
5189    if (InitVal.getBitWidth() > IntWidth) {
5190      llvm::APSInt V(InitVal);
5191      V.trunc(IntWidth);
5192      V.extend(InitVal.getBitWidth());
5193      if (V != InitVal)
5194        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5195          << InitVal.toString(10);
5196    }
5197
5198    // Keep track of the size of positive and negative values.
5199    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5200      NumPositiveBits = std::max(NumPositiveBits,
5201                                 (unsigned)InitVal.getActiveBits());
5202    else
5203      NumNegativeBits = std::max(NumNegativeBits,
5204                                 (unsigned)InitVal.getMinSignedBits());
5205
5206    // Keep track of whether every enum element has type int (very commmon).
5207    if (AllElementsInt)
5208      AllElementsInt = ECD->getType() == Context.IntTy;
5209  }
5210
5211  // Figure out the type that should be used for this enum.
5212  // FIXME: Support -fshort-enums.
5213  QualType BestType;
5214  unsigned BestWidth;
5215
5216  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5217
5218  if (NumNegativeBits) {
5219    // If there is a negative value, figure out the smallest integer type (of
5220    // int/long/longlong) that fits.
5221    // If it's packed, check also if it fits a char or a short.
5222    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5223        BestType = Context.SignedCharTy;
5224        BestWidth = CharWidth;
5225    } else if (Packed && NumNegativeBits <= ShortWidth &&
5226               NumPositiveBits < ShortWidth) {
5227        BestType = Context.ShortTy;
5228        BestWidth = ShortWidth;
5229    }
5230    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5231      BestType = Context.IntTy;
5232      BestWidth = IntWidth;
5233    } else {
5234      BestWidth = Context.Target.getLongWidth();
5235
5236      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5237        BestType = Context.LongTy;
5238      else {
5239        BestWidth = Context.Target.getLongLongWidth();
5240
5241        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5242          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5243        BestType = Context.LongLongTy;
5244      }
5245    }
5246  } else {
5247    // If there is no negative value, figure out which of uint, ulong, ulonglong
5248    // fits.
5249    // If it's packed, check also if it fits a char or a short.
5250    if (Packed && NumPositiveBits <= CharWidth) {
5251        BestType = Context.UnsignedCharTy;
5252        BestWidth = CharWidth;
5253    } else if (Packed && NumPositiveBits <= ShortWidth) {
5254        BestType = Context.UnsignedShortTy;
5255        BestWidth = ShortWidth;
5256    }
5257    else if (NumPositiveBits <= IntWidth) {
5258      BestType = Context.UnsignedIntTy;
5259      BestWidth = IntWidth;
5260    } else if (NumPositiveBits <=
5261               (BestWidth = Context.Target.getLongWidth())) {
5262      BestType = Context.UnsignedLongTy;
5263    } else {
5264      BestWidth = Context.Target.getLongLongWidth();
5265      assert(NumPositiveBits <= BestWidth &&
5266             "How could an initializer get larger than ULL?");
5267      BestType = Context.UnsignedLongLongTy;
5268    }
5269  }
5270
5271  // Loop over all of the enumerator constants, changing their types to match
5272  // the type of the enum if needed.
5273  for (unsigned i = 0; i != NumElements; ++i) {
5274    EnumConstantDecl *ECD =
5275      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5276    if (!ECD) continue;  // Already issued a diagnostic.
5277
5278    // Standard C says the enumerators have int type, but we allow, as an
5279    // extension, the enumerators to be larger than int size.  If each
5280    // enumerator value fits in an int, type it as an int, otherwise type it the
5281    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5282    // that X has type 'int', not 'unsigned'.
5283    if (ECD->getType() == Context.IntTy) {
5284      // Make sure the init value is signed.
5285      llvm::APSInt IV = ECD->getInitVal();
5286      IV.setIsSigned(true);
5287      ECD->setInitVal(IV);
5288
5289      if (getLangOptions().CPlusPlus)
5290        // C++ [dcl.enum]p4: Following the closing brace of an
5291        // enum-specifier, each enumerator has the type of its
5292        // enumeration.
5293        ECD->setType(EnumType);
5294      continue;  // Already int type.
5295    }
5296
5297    // Determine whether the value fits into an int.
5298    llvm::APSInt InitVal = ECD->getInitVal();
5299    bool FitsInInt;
5300    if (InitVal.isUnsigned() || !InitVal.isNegative())
5301      FitsInInt = InitVal.getActiveBits() < IntWidth;
5302    else
5303      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5304
5305    // If it fits into an integer type, force it.  Otherwise force it to match
5306    // the enum decl type.
5307    QualType NewTy;
5308    unsigned NewWidth;
5309    bool NewSign;
5310    if (FitsInInt) {
5311      NewTy = Context.IntTy;
5312      NewWidth = IntWidth;
5313      NewSign = true;
5314    } else if (ECD->getType() == BestType) {
5315      // Already the right type!
5316      if (getLangOptions().CPlusPlus)
5317        // C++ [dcl.enum]p4: Following the closing brace of an
5318        // enum-specifier, each enumerator has the type of its
5319        // enumeration.
5320        ECD->setType(EnumType);
5321      continue;
5322    } else {
5323      NewTy = BestType;
5324      NewWidth = BestWidth;
5325      NewSign = BestType->isSignedIntegerType();
5326    }
5327
5328    // Adjust the APSInt value.
5329    InitVal.extOrTrunc(NewWidth);
5330    InitVal.setIsSigned(NewSign);
5331    ECD->setInitVal(InitVal);
5332
5333    // Adjust the Expr initializer and type.
5334    if (ECD->getInitExpr())
5335      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5336                                                      CastExpr::CK_Unknown,
5337                                                      ECD->getInitExpr(),
5338                                                      /*isLvalue=*/false));
5339    if (getLangOptions().CPlusPlus)
5340      // C++ [dcl.enum]p4: Following the closing brace of an
5341      // enum-specifier, each enumerator has the type of its
5342      // enumeration.
5343      ECD->setType(EnumType);
5344    else
5345      ECD->setType(NewTy);
5346  }
5347
5348  Enum->completeDefinition(Context, BestType);
5349}
5350
5351Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5352                                            ExprArg expr) {
5353  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5354
5355  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5356                                                   Loc, AsmString);
5357  CurContext->addDecl(New);
5358  return DeclPtrTy::make(New);
5359}
5360
5361void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5362                             SourceLocation PragmaLoc,
5363                             SourceLocation NameLoc) {
5364  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5365
5366  if (PrevDecl) {
5367    PrevDecl->addAttr(::new (Context) WeakAttr());
5368  } else {
5369    (void)WeakUndeclaredIdentifiers.insert(
5370      std::pair<IdentifierInfo*,WeakInfo>
5371        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5372  }
5373}
5374
5375void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5376                                IdentifierInfo* AliasName,
5377                                SourceLocation PragmaLoc,
5378                                SourceLocation NameLoc,
5379                                SourceLocation AliasNameLoc) {
5380  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5381  WeakInfo W = WeakInfo(Name, NameLoc);
5382
5383  if (PrevDecl) {
5384    if (!PrevDecl->hasAttr<AliasAttr>())
5385      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5386        DeclApplyPragmaWeak(TUScope, ND, W);
5387  } else {
5388    (void)WeakUndeclaredIdentifiers.insert(
5389      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5390  }
5391}
5392