SemaDecl.cpp revision f5e7dbf23d5a94f0b29927e8f86633a0637018a5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // DependentNameType node to describe the type.
92        // FIXME: Record somewhere that this DependentNameType node has no "typename"
93        // keyword associated with it.
94        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
95                                 II, SS->getRange()).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getDependentNameType(ETK_None,
202                                     UUDecl->getTargetNestedNameSpecifier(),
203                                     &II);
204  } else {
205    // If it's not plausibly a type, suppress diagnostics.
206    Result.suppressDiagnostics();
207    return 0;
208  }
209
210  return T.getAsOpaquePtr();
211}
212
213/// isTagName() - This method is called *for error recovery purposes only*
214/// to determine if the specified name is a valid tag name ("struct foo").  If
215/// so, this returns the TST for the tag corresponding to it (TST_enum,
216/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
217/// where the user forgot to specify the tag.
218DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
219  // Do a tag name lookup in this scope.
220  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
221  LookupName(R, S, false);
222  R.suppressDiagnostics();
223  if (R.getResultKind() == LookupResult::Found)
224    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
225      switch (TD->getTagKind()) {
226      case TagDecl::TK_struct: return DeclSpec::TST_struct;
227      case TagDecl::TK_union:  return DeclSpec::TST_union;
228      case TagDecl::TK_class:  return DeclSpec::TST_class;
229      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
230      }
231    }
232
233  return DeclSpec::TST_unspecified;
234}
235
236bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
237                                   SourceLocation IILoc,
238                                   Scope *S,
239                                   CXXScopeSpec *SS,
240                                   TypeTy *&SuggestedType) {
241  // We don't have anything to suggest (yet).
242  SuggestedType = 0;
243
244  // There may have been a typo in the name of the type. Look up typo
245  // results, in case we have something that we can suggest.
246  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
247                      NotForRedeclaration);
248
249  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
250    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
251      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
252          !Result->isInvalidDecl()) {
253        // We found a similarly-named type or interface; suggest that.
254        if (!SS || !SS->isSet())
255          Diag(IILoc, diag::err_unknown_typename_suggest)
256            << &II << Lookup.getLookupName()
257            << FixItHint::CreateReplacement(SourceRange(IILoc),
258                                            Result->getNameAsString());
259        else if (DeclContext *DC = computeDeclContext(*SS, false))
260          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
261            << &II << DC << Lookup.getLookupName() << SS->getRange()
262            << FixItHint::CreateReplacement(SourceRange(IILoc),
263                                            Result->getNameAsString());
264        else
265          llvm_unreachable("could not have corrected a typo here");
266
267        Diag(Result->getLocation(), diag::note_previous_decl)
268          << Result->getDeclName();
269
270        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
271        return true;
272      }
273    } else if (Lookup.empty()) {
274      // We corrected to a keyword.
275      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
276      Diag(IILoc, diag::err_unknown_typename_suggest)
277        << &II << Corrected;
278      return true;
279    }
280  }
281
282  if (getLangOptions().CPlusPlus) {
283    // See if II is a class template that the user forgot to pass arguments to.
284    UnqualifiedId Name;
285    Name.setIdentifier(&II, IILoc);
286    CXXScopeSpec EmptySS;
287    TemplateTy TemplateResult;
288    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult)
289        == TNK_Type_template) {
290      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
291      Diag(IILoc, diag::err_template_missing_args) << TplName;
292      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
293        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
294          << TplDecl->getTemplateParameters()->getSourceRange();
295      }
296      return true;
297    }
298  }
299
300  // FIXME: Should we move the logic that tries to recover from a missing tag
301  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
302
303  if (!SS || (!SS->isSet() && !SS->isInvalid()))
304    Diag(IILoc, diag::err_unknown_typename) << &II;
305  else if (DeclContext *DC = computeDeclContext(*SS, false))
306    Diag(IILoc, diag::err_typename_nested_not_found)
307      << &II << DC << SS->getRange();
308  else if (isDependentScopeSpecifier(*SS)) {
309    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
310      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
311      << SourceRange(SS->getRange().getBegin(), IILoc)
312      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
313    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
314  } else {
315    assert(SS && SS->isInvalid() &&
316           "Invalid scope specifier has already been diagnosed");
317  }
318
319  return true;
320}
321
322// Determines the context to return to after temporarily entering a
323// context.  This depends in an unnecessarily complicated way on the
324// exact ordering of callbacks from the parser.
325DeclContext *Sema::getContainingDC(DeclContext *DC) {
326
327  // Functions defined inline within classes aren't parsed until we've
328  // finished parsing the top-level class, so the top-level class is
329  // the context we'll need to return to.
330  if (isa<FunctionDecl>(DC)) {
331    DC = DC->getLexicalParent();
332
333    // A function not defined within a class will always return to its
334    // lexical context.
335    if (!isa<CXXRecordDecl>(DC))
336      return DC;
337
338    // A C++ inline method/friend is parsed *after* the topmost class
339    // it was declared in is fully parsed ("complete");  the topmost
340    // class is the context we need to return to.
341    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
342      DC = RD;
343
344    // Return the declaration context of the topmost class the inline method is
345    // declared in.
346    return DC;
347  }
348
349  if (isa<ObjCMethodDecl>(DC))
350    return Context.getTranslationUnitDecl();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(DeclPtrTy::make(*I));
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(DeclPtrTy::make(D));
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
524  if (D->isInvalidDecl())
525    return false;
526
527  if (D->isUsed() || D->hasAttr<UnusedAttr>())
528    return false;
529
530  // White-list anything that isn't a local variable.
531  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
532      !D->getDeclContext()->isFunctionOrMethod())
533    return false;
534
535  // Types of valid local variables should be complete, so this should succeed.
536  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
537
538    // White-list anything with an __attribute__((unused)) type.
539    QualType Ty = VD->getType();
540
541    // Only look at the outermost level of typedef.
542    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
543      if (TT->getDecl()->hasAttr<UnusedAttr>())
544        return false;
545    }
546
547    if (const TagType *TT = Ty->getAs<TagType>()) {
548      const TagDecl *Tag = TT->getDecl();
549      if (Tag->hasAttr<UnusedAttr>())
550        return false;
551
552      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
553        if (!RD->hasTrivialConstructor())
554          return false;
555        if (!RD->hasTrivialDestructor())
556          return false;
557      }
558    }
559
560    // TODO: __attribute__((unused)) templates?
561  }
562
563  return true;
564}
565
566void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
567  if (S->decl_empty()) return;
568  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
569         "Scope shouldn't contain decls!");
570
571  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
572       I != E; ++I) {
573    Decl *TmpD = (*I).getAs<Decl>();
574    assert(TmpD && "This decl didn't get pushed??");
575
576    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
577    NamedDecl *D = cast<NamedDecl>(TmpD);
578
579    if (!D->getDeclName()) continue;
580
581    // Diagnose unused variables in this scope.
582    if (ShouldDiagnoseUnusedDecl(D) &&
583        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
584      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
585
586    // Remove this name from our lexical scope.
587    IdResolver.RemoveDecl(D);
588  }
589}
590
591/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
592/// return 0 if one not found.
593///
594/// \param Id the name of the Objective-C class we're looking for. If
595/// typo-correction fixes this name, the Id will be updated
596/// to the fixed name.
597///
598/// \param RecoverLoc if provided, this routine will attempt to
599/// recover from a typo in the name of an existing Objective-C class
600/// and, if successful, will return the lookup that results from
601/// typo-correction.
602ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
603                                              SourceLocation RecoverLoc) {
604  // The third "scope" argument is 0 since we aren't enabling lazy built-in
605  // creation from this context.
606  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
607
608  if (!IDecl && !RecoverLoc.isInvalid()) {
609    // Perform typo correction at the given location, but only if we
610    // find an Objective-C class name.
611    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
612    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
613        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
614      Diag(RecoverLoc, diag::err_undef_interface_suggest)
615        << Id << IDecl->getDeclName()
616        << FixItHint::CreateReplacement(RecoverLoc, IDecl->getNameAsString());
617      Diag(IDecl->getLocation(), diag::note_previous_decl)
618        << IDecl->getDeclName();
619
620      Id = IDecl->getIdentifier();
621    }
622  }
623
624  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
625}
626
627/// getNonFieldDeclScope - Retrieves the innermost scope, starting
628/// from S, where a non-field would be declared. This routine copes
629/// with the difference between C and C++ scoping rules in structs and
630/// unions. For example, the following code is well-formed in C but
631/// ill-formed in C++:
632/// @code
633/// struct S6 {
634///   enum { BAR } e;
635/// };
636///
637/// void test_S6() {
638///   struct S6 a;
639///   a.e = BAR;
640/// }
641/// @endcode
642/// For the declaration of BAR, this routine will return a different
643/// scope. The scope S will be the scope of the unnamed enumeration
644/// within S6. In C++, this routine will return the scope associated
645/// with S6, because the enumeration's scope is a transparent
646/// context but structures can contain non-field names. In C, this
647/// routine will return the translation unit scope, since the
648/// enumeration's scope is a transparent context and structures cannot
649/// contain non-field names.
650Scope *Sema::getNonFieldDeclScope(Scope *S) {
651  while (((S->getFlags() & Scope::DeclScope) == 0) ||
652         (S->getEntity() &&
653          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
654         (S->isClassScope() && !getLangOptions().CPlusPlus))
655    S = S->getParent();
656  return S;
657}
658
659void Sema::InitBuiltinVaListType() {
660  if (!Context.getBuiltinVaListType().isNull())
661    return;
662
663  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
664  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
665  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
666  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
667}
668
669/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
670/// file scope.  lazily create a decl for it. ForRedeclaration is true
671/// if we're creating this built-in in anticipation of redeclaring the
672/// built-in.
673NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
674                                     Scope *S, bool ForRedeclaration,
675                                     SourceLocation Loc) {
676  Builtin::ID BID = (Builtin::ID)bid;
677
678  if (Context.BuiltinInfo.hasVAListUse(BID))
679    InitBuiltinVaListType();
680
681  ASTContext::GetBuiltinTypeError Error;
682  QualType R = Context.GetBuiltinType(BID, Error);
683  switch (Error) {
684  case ASTContext::GE_None:
685    // Okay
686    break;
687
688  case ASTContext::GE_Missing_stdio:
689    if (ForRedeclaration)
690      Diag(Loc, diag::err_implicit_decl_requires_stdio)
691        << Context.BuiltinInfo.GetName(BID);
692    return 0;
693
694  case ASTContext::GE_Missing_setjmp:
695    if (ForRedeclaration)
696      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
697        << Context.BuiltinInfo.GetName(BID);
698    return 0;
699  }
700
701  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
702    Diag(Loc, diag::ext_implicit_lib_function_decl)
703      << Context.BuiltinInfo.GetName(BID)
704      << R;
705    if (Context.BuiltinInfo.getHeaderName(BID) &&
706        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
707          != Diagnostic::Ignored)
708      Diag(Loc, diag::note_please_include_header)
709        << Context.BuiltinInfo.getHeaderName(BID)
710        << Context.BuiltinInfo.GetName(BID);
711  }
712
713  FunctionDecl *New = FunctionDecl::Create(Context,
714                                           Context.getTranslationUnitDecl(),
715                                           Loc, II, R, /*TInfo=*/0,
716                                           FunctionDecl::Extern, false,
717                                           /*hasPrototype=*/true);
718  New->setImplicit();
719
720  // Create Decl objects for each parameter, adding them to the
721  // FunctionDecl.
722  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
723    llvm::SmallVector<ParmVarDecl*, 16> Params;
724    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
725      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
726                                           FT->getArgType(i), /*TInfo=*/0,
727                                           VarDecl::None, 0));
728    New->setParams(Params.data(), Params.size());
729  }
730
731  AddKnownFunctionAttributes(New);
732
733  // TUScope is the translation-unit scope to insert this function into.
734  // FIXME: This is hideous. We need to teach PushOnScopeChains to
735  // relate Scopes to DeclContexts, and probably eliminate CurContext
736  // entirely, but we're not there yet.
737  DeclContext *SavedContext = CurContext;
738  CurContext = Context.getTranslationUnitDecl();
739  PushOnScopeChains(New, TUScope);
740  CurContext = SavedContext;
741  return New;
742}
743
744/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
745/// same name and scope as a previous declaration 'Old'.  Figure out
746/// how to resolve this situation, merging decls or emitting
747/// diagnostics as appropriate. If there was an error, set New to be invalid.
748///
749void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
750  // If the new decl is known invalid already, don't bother doing any
751  // merging checks.
752  if (New->isInvalidDecl()) return;
753
754  // Allow multiple definitions for ObjC built-in typedefs.
755  // FIXME: Verify the underlying types are equivalent!
756  if (getLangOptions().ObjC1) {
757    const IdentifierInfo *TypeID = New->getIdentifier();
758    switch (TypeID->getLength()) {
759    default: break;
760    case 2:
761      if (!TypeID->isStr("id"))
762        break;
763      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
764      // Install the built-in type for 'id', ignoring the current definition.
765      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
766      return;
767    case 5:
768      if (!TypeID->isStr("Class"))
769        break;
770      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
771      // Install the built-in type for 'Class', ignoring the current definition.
772      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
773      return;
774    case 3:
775      if (!TypeID->isStr("SEL"))
776        break;
777      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
778      // Install the built-in type for 'SEL', ignoring the current definition.
779      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
780      return;
781    case 8:
782      if (!TypeID->isStr("Protocol"))
783        break;
784      Context.setObjCProtoType(New->getUnderlyingType());
785      return;
786    }
787    // Fall through - the typedef name was not a builtin type.
788  }
789
790  // Verify the old decl was also a type.
791  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
792  if (!Old) {
793    Diag(New->getLocation(), diag::err_redefinition_different_kind)
794      << New->getDeclName();
795
796    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
797    if (OldD->getLocation().isValid())
798      Diag(OldD->getLocation(), diag::note_previous_definition);
799
800    return New->setInvalidDecl();
801  }
802
803  // If the old declaration is invalid, just give up here.
804  if (Old->isInvalidDecl())
805    return New->setInvalidDecl();
806
807  // Determine the "old" type we'll use for checking and diagnostics.
808  QualType OldType;
809  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
810    OldType = OldTypedef->getUnderlyingType();
811  else
812    OldType = Context.getTypeDeclType(Old);
813
814  // If the typedef types are not identical, reject them in all languages and
815  // with any extensions enabled.
816
817  if (OldType != New->getUnderlyingType() &&
818      Context.getCanonicalType(OldType) !=
819      Context.getCanonicalType(New->getUnderlyingType())) {
820    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
821      << New->getUnderlyingType() << OldType;
822    if (Old->getLocation().isValid())
823      Diag(Old->getLocation(), diag::note_previous_definition);
824    return New->setInvalidDecl();
825  }
826
827  // The types match.  Link up the redeclaration chain if the old
828  // declaration was a typedef.
829  // FIXME: this is a potential source of wierdness if the type
830  // spellings don't match exactly.
831  if (isa<TypedefDecl>(Old))
832    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
833
834  if (getLangOptions().Microsoft)
835    return;
836
837  if (getLangOptions().CPlusPlus) {
838    // C++ [dcl.typedef]p2:
839    //   In a given non-class scope, a typedef specifier can be used to
840    //   redefine the name of any type declared in that scope to refer
841    //   to the type to which it already refers.
842    if (!isa<CXXRecordDecl>(CurContext))
843      return;
844
845    // C++0x [dcl.typedef]p4:
846    //   In a given class scope, a typedef specifier can be used to redefine
847    //   any class-name declared in that scope that is not also a typedef-name
848    //   to refer to the type to which it already refers.
849    //
850    // This wording came in via DR424, which was a correction to the
851    // wording in DR56, which accidentally banned code like:
852    //
853    //   struct S {
854    //     typedef struct A { } A;
855    //   };
856    //
857    // in the C++03 standard. We implement the C++0x semantics, which
858    // allow the above but disallow
859    //
860    //   struct S {
861    //     typedef int I;
862    //     typedef int I;
863    //   };
864    //
865    // since that was the intent of DR56.
866    if (!isa<TypedefDecl >(Old))
867      return;
868
869    Diag(New->getLocation(), diag::err_redefinition)
870      << New->getDeclName();
871    Diag(Old->getLocation(), diag::note_previous_definition);
872    return New->setInvalidDecl();
873  }
874
875  // If we have a redefinition of a typedef in C, emit a warning.  This warning
876  // is normally mapped to an error, but can be controlled with
877  // -Wtypedef-redefinition.  If either the original or the redefinition is
878  // in a system header, don't emit this for compatibility with GCC.
879  if (getDiagnostics().getSuppressSystemWarnings() &&
880      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
881       Context.getSourceManager().isInSystemHeader(New->getLocation())))
882    return;
883
884  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
885    << New->getDeclName();
886  Diag(Old->getLocation(), diag::note_previous_definition);
887  return;
888}
889
890/// DeclhasAttr - returns true if decl Declaration already has the target
891/// attribute.
892static bool
893DeclHasAttr(const Decl *decl, const Attr *target) {
894  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
895    if (attr->getKind() == target->getKind())
896      return true;
897
898  return false;
899}
900
901/// MergeAttributes - append attributes from the Old decl to the New one.
902static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
903  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
904    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
905      Attr *NewAttr = attr->clone(C);
906      NewAttr->setInherited(true);
907      New->addAttr(NewAttr);
908    }
909  }
910}
911
912/// Used in MergeFunctionDecl to keep track of function parameters in
913/// C.
914struct GNUCompatibleParamWarning {
915  ParmVarDecl *OldParm;
916  ParmVarDecl *NewParm;
917  QualType PromotedType;
918};
919
920
921/// getSpecialMember - get the special member enum for a method.
922static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
923                                               const CXXMethodDecl *MD) {
924  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
925    if (Ctor->isDefaultConstructor())
926      return Sema::CXXDefaultConstructor;
927    if (Ctor->isCopyConstructor())
928      return Sema::CXXCopyConstructor;
929  }
930
931  if (isa<CXXDestructorDecl>(MD))
932    return Sema::CXXDestructor;
933
934  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
935  return Sema::CXXCopyAssignment;
936}
937
938/// canREdefineFunction - checks if a function can be redefined. Currently,
939/// only extern inline functions can be redefined, and even then only in
940/// GNU89 mode.
941static bool canRedefineFunction(const FunctionDecl *FD,
942                                const LangOptions& LangOpts) {
943  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
944          FD->isInlineSpecified() &&
945          FD->getStorageClass() == FunctionDecl::Extern);
946}
947
948/// MergeFunctionDecl - We just parsed a function 'New' from
949/// declarator D which has the same name and scope as a previous
950/// declaration 'Old'.  Figure out how to resolve this situation,
951/// merging decls or emitting diagnostics as appropriate.
952///
953/// In C++, New and Old must be declarations that are not
954/// overloaded. Use IsOverload to determine whether New and Old are
955/// overloaded, and to select the Old declaration that New should be
956/// merged with.
957///
958/// Returns true if there was an error, false otherwise.
959bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
960  // Verify the old decl was also a function.
961  FunctionDecl *Old = 0;
962  if (FunctionTemplateDecl *OldFunctionTemplate
963        = dyn_cast<FunctionTemplateDecl>(OldD))
964    Old = OldFunctionTemplate->getTemplatedDecl();
965  else
966    Old = dyn_cast<FunctionDecl>(OldD);
967  if (!Old) {
968    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
969      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
970      Diag(Shadow->getTargetDecl()->getLocation(),
971           diag::note_using_decl_target);
972      Diag(Shadow->getUsingDecl()->getLocation(),
973           diag::note_using_decl) << 0;
974      return true;
975    }
976
977    Diag(New->getLocation(), diag::err_redefinition_different_kind)
978      << New->getDeclName();
979    Diag(OldD->getLocation(), diag::note_previous_definition);
980    return true;
981  }
982
983  // Determine whether the previous declaration was a definition,
984  // implicit declaration, or a declaration.
985  diag::kind PrevDiag;
986  if (Old->isThisDeclarationADefinition())
987    PrevDiag = diag::note_previous_definition;
988  else if (Old->isImplicit())
989    PrevDiag = diag::note_previous_implicit_declaration;
990  else
991    PrevDiag = diag::note_previous_declaration;
992
993  QualType OldQType = Context.getCanonicalType(Old->getType());
994  QualType NewQType = Context.getCanonicalType(New->getType());
995
996  // Don't complain about this if we're in GNU89 mode and the old function
997  // is an extern inline function.
998  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
999      New->getStorageClass() == FunctionDecl::Static &&
1000      Old->getStorageClass() != FunctionDecl::Static &&
1001      !canRedefineFunction(Old, getLangOptions())) {
1002    Diag(New->getLocation(), diag::err_static_non_static)
1003      << New;
1004    Diag(Old->getLocation(), PrevDiag);
1005    return true;
1006  }
1007
1008  // If a function is first declared with a calling convention, but is
1009  // later declared or defined without one, the second decl assumes the
1010  // calling convention of the first.
1011  //
1012  // For the new decl, we have to look at the NON-canonical type to tell the
1013  // difference between a function that really doesn't have a calling
1014  // convention and one that is declared cdecl. That's because in
1015  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1016  // because it is the default calling convention.
1017  //
1018  // Note also that we DO NOT return at this point, because we still have
1019  // other tests to run.
1020  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1021  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1022  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1023  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1024  if (OldTypeInfo.getCC() != CC_Default &&
1025      NewTypeInfo.getCC() == CC_Default) {
1026    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1027    New->setType(NewQType);
1028    NewQType = Context.getCanonicalType(NewQType);
1029  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1030                                     NewTypeInfo.getCC())) {
1031    // Calling conventions really aren't compatible, so complain.
1032    Diag(New->getLocation(), diag::err_cconv_change)
1033      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1034      << (OldTypeInfo.getCC() == CC_Default)
1035      << (OldTypeInfo.getCC() == CC_Default ? "" :
1036          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1037    Diag(Old->getLocation(), diag::note_previous_declaration);
1038    return true;
1039  }
1040
1041  // FIXME: diagnose the other way around?
1042  if (OldType->getNoReturnAttr() &&
1043      !NewType->getNoReturnAttr()) {
1044    NewQType = Context.getNoReturnType(NewQType);
1045    New->setType(NewQType);
1046    assert(NewQType.isCanonical());
1047  }
1048
1049  if (getLangOptions().CPlusPlus) {
1050    // (C++98 13.1p2):
1051    //   Certain function declarations cannot be overloaded:
1052    //     -- Function declarations that differ only in the return type
1053    //        cannot be overloaded.
1054    QualType OldReturnType
1055      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1056    QualType NewReturnType
1057      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1058    if (OldReturnType != NewReturnType) {
1059      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1060      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1061      return true;
1062    }
1063
1064    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1065    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1066    if (OldMethod && NewMethod) {
1067      // Preserve triviality.
1068      NewMethod->setTrivial(OldMethod->isTrivial());
1069
1070      bool isFriend = NewMethod->getFriendObjectKind();
1071
1072      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1073        //    -- Member function declarations with the same name and the
1074        //       same parameter types cannot be overloaded if any of them
1075        //       is a static member function declaration.
1076        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1077          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1078          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1079          return true;
1080        }
1081
1082        // C++ [class.mem]p1:
1083        //   [...] A member shall not be declared twice in the
1084        //   member-specification, except that a nested class or member
1085        //   class template can be declared and then later defined.
1086        unsigned NewDiag;
1087        if (isa<CXXConstructorDecl>(OldMethod))
1088          NewDiag = diag::err_constructor_redeclared;
1089        else if (isa<CXXDestructorDecl>(NewMethod))
1090          NewDiag = diag::err_destructor_redeclared;
1091        else if (isa<CXXConversionDecl>(NewMethod))
1092          NewDiag = diag::err_conv_function_redeclared;
1093        else
1094          NewDiag = diag::err_member_redeclared;
1095
1096        Diag(New->getLocation(), NewDiag);
1097        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1098
1099      // Complain if this is an explicit declaration of a special
1100      // member that was initially declared implicitly.
1101      //
1102      // As an exception, it's okay to befriend such methods in order
1103      // to permit the implicit constructor/destructor/operator calls.
1104      } else if (OldMethod->isImplicit()) {
1105        if (isFriend) {
1106          NewMethod->setImplicit();
1107        } else {
1108          Diag(NewMethod->getLocation(),
1109               diag::err_definition_of_implicitly_declared_member)
1110            << New << getSpecialMember(Context, OldMethod);
1111          return true;
1112        }
1113      }
1114    }
1115
1116    // (C++98 8.3.5p3):
1117    //   All declarations for a function shall agree exactly in both the
1118    //   return type and the parameter-type-list.
1119    // attributes should be ignored when comparing.
1120    if (Context.getNoReturnType(OldQType, false) ==
1121        Context.getNoReturnType(NewQType, false))
1122      return MergeCompatibleFunctionDecls(New, Old);
1123
1124    // Fall through for conflicting redeclarations and redefinitions.
1125  }
1126
1127  // C: Function types need to be compatible, not identical. This handles
1128  // duplicate function decls like "void f(int); void f(enum X);" properly.
1129  if (!getLangOptions().CPlusPlus &&
1130      Context.typesAreCompatible(OldQType, NewQType)) {
1131    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1132    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1133    const FunctionProtoType *OldProto = 0;
1134    if (isa<FunctionNoProtoType>(NewFuncType) &&
1135        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1136      // The old declaration provided a function prototype, but the
1137      // new declaration does not. Merge in the prototype.
1138      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1139      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1140                                                 OldProto->arg_type_end());
1141      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1142                                         ParamTypes.data(), ParamTypes.size(),
1143                                         OldProto->isVariadic(),
1144                                         OldProto->getTypeQuals(),
1145                                         false, false, 0, 0,
1146                                         OldProto->getExtInfo());
1147      New->setType(NewQType);
1148      New->setHasInheritedPrototype();
1149
1150      // Synthesize a parameter for each argument type.
1151      llvm::SmallVector<ParmVarDecl*, 16> Params;
1152      for (FunctionProtoType::arg_type_iterator
1153             ParamType = OldProto->arg_type_begin(),
1154             ParamEnd = OldProto->arg_type_end();
1155           ParamType != ParamEnd; ++ParamType) {
1156        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1157                                                 SourceLocation(), 0,
1158                                                 *ParamType, /*TInfo=*/0,
1159                                                 VarDecl::None, 0);
1160        Param->setImplicit();
1161        Params.push_back(Param);
1162      }
1163
1164      New->setParams(Params.data(), Params.size());
1165    }
1166
1167    return MergeCompatibleFunctionDecls(New, Old);
1168  }
1169
1170  // GNU C permits a K&R definition to follow a prototype declaration
1171  // if the declared types of the parameters in the K&R definition
1172  // match the types in the prototype declaration, even when the
1173  // promoted types of the parameters from the K&R definition differ
1174  // from the types in the prototype. GCC then keeps the types from
1175  // the prototype.
1176  //
1177  // If a variadic prototype is followed by a non-variadic K&R definition,
1178  // the K&R definition becomes variadic.  This is sort of an edge case, but
1179  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1180  // C99 6.9.1p8.
1181  if (!getLangOptions().CPlusPlus &&
1182      Old->hasPrototype() && !New->hasPrototype() &&
1183      New->getType()->getAs<FunctionProtoType>() &&
1184      Old->getNumParams() == New->getNumParams()) {
1185    llvm::SmallVector<QualType, 16> ArgTypes;
1186    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1187    const FunctionProtoType *OldProto
1188      = Old->getType()->getAs<FunctionProtoType>();
1189    const FunctionProtoType *NewProto
1190      = New->getType()->getAs<FunctionProtoType>();
1191
1192    // Determine whether this is the GNU C extension.
1193    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1194                                               NewProto->getResultType());
1195    bool LooseCompatible = !MergedReturn.isNull();
1196    for (unsigned Idx = 0, End = Old->getNumParams();
1197         LooseCompatible && Idx != End; ++Idx) {
1198      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1199      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1200      if (Context.typesAreCompatible(OldParm->getType(),
1201                                     NewProto->getArgType(Idx))) {
1202        ArgTypes.push_back(NewParm->getType());
1203      } else if (Context.typesAreCompatible(OldParm->getType(),
1204                                            NewParm->getType())) {
1205        GNUCompatibleParamWarning Warn
1206          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1207        Warnings.push_back(Warn);
1208        ArgTypes.push_back(NewParm->getType());
1209      } else
1210        LooseCompatible = false;
1211    }
1212
1213    if (LooseCompatible) {
1214      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1215        Diag(Warnings[Warn].NewParm->getLocation(),
1216             diag::ext_param_promoted_not_compatible_with_prototype)
1217          << Warnings[Warn].PromotedType
1218          << Warnings[Warn].OldParm->getType();
1219        Diag(Warnings[Warn].OldParm->getLocation(),
1220             diag::note_previous_declaration);
1221      }
1222
1223      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1224                                           ArgTypes.size(),
1225                                           OldProto->isVariadic(), 0,
1226                                           false, false, 0, 0,
1227                                           OldProto->getExtInfo()));
1228      return MergeCompatibleFunctionDecls(New, Old);
1229    }
1230
1231    // Fall through to diagnose conflicting types.
1232  }
1233
1234  // A function that has already been declared has been redeclared or defined
1235  // with a different type- show appropriate diagnostic
1236  if (unsigned BuiltinID = Old->getBuiltinID()) {
1237    // The user has declared a builtin function with an incompatible
1238    // signature.
1239    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1240      // The function the user is redeclaring is a library-defined
1241      // function like 'malloc' or 'printf'. Warn about the
1242      // redeclaration, then pretend that we don't know about this
1243      // library built-in.
1244      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1245      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1246        << Old << Old->getType();
1247      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1248      Old->setInvalidDecl();
1249      return false;
1250    }
1251
1252    PrevDiag = diag::note_previous_builtin_declaration;
1253  }
1254
1255  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1256  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1257  return true;
1258}
1259
1260/// \brief Completes the merge of two function declarations that are
1261/// known to be compatible.
1262///
1263/// This routine handles the merging of attributes and other
1264/// properties of function declarations form the old declaration to
1265/// the new declaration, once we know that New is in fact a
1266/// redeclaration of Old.
1267///
1268/// \returns false
1269bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1270  // Merge the attributes
1271  MergeAttributes(New, Old, Context);
1272
1273  // Merge the storage class.
1274  if (Old->getStorageClass() != FunctionDecl::Extern &&
1275      Old->getStorageClass() != FunctionDecl::None)
1276    New->setStorageClass(Old->getStorageClass());
1277
1278  // Merge "pure" flag.
1279  if (Old->isPure())
1280    New->setPure();
1281
1282  // Merge the "deleted" flag.
1283  if (Old->isDeleted())
1284    New->setDeleted();
1285
1286  if (getLangOptions().CPlusPlus)
1287    return MergeCXXFunctionDecl(New, Old);
1288
1289  return false;
1290}
1291
1292/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1293/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1294/// situation, merging decls or emitting diagnostics as appropriate.
1295///
1296/// Tentative definition rules (C99 6.9.2p2) are checked by
1297/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1298/// definitions here, since the initializer hasn't been attached.
1299///
1300void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1301  // If the new decl is already invalid, don't do any other checking.
1302  if (New->isInvalidDecl())
1303    return;
1304
1305  // Verify the old decl was also a variable.
1306  VarDecl *Old = 0;
1307  if (!Previous.isSingleResult() ||
1308      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1309    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1310      << New->getDeclName();
1311    Diag(Previous.getRepresentativeDecl()->getLocation(),
1312         diag::note_previous_definition);
1313    return New->setInvalidDecl();
1314  }
1315
1316  MergeAttributes(New, Old, Context);
1317
1318  // Merge the types
1319  QualType MergedT;
1320  if (getLangOptions().CPlusPlus) {
1321    if (Context.hasSameType(New->getType(), Old->getType()))
1322      MergedT = New->getType();
1323    // C++ [basic.link]p10:
1324    //   [...] the types specified by all declarations referring to a given
1325    //   object or function shall be identical, except that declarations for an
1326    //   array object can specify array types that differ by the presence or
1327    //   absence of a major array bound (8.3.4).
1328    else if (Old->getType()->isIncompleteArrayType() &&
1329             New->getType()->isArrayType()) {
1330      CanQual<ArrayType> OldArray
1331        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1332      CanQual<ArrayType> NewArray
1333        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1334      if (OldArray->getElementType() == NewArray->getElementType())
1335        MergedT = New->getType();
1336    } else if (Old->getType()->isArrayType() &&
1337             New->getType()->isIncompleteArrayType()) {
1338      CanQual<ArrayType> OldArray
1339        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1340      CanQual<ArrayType> NewArray
1341        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1342      if (OldArray->getElementType() == NewArray->getElementType())
1343        MergedT = Old->getType();
1344    }
1345  } else {
1346    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1347  }
1348  if (MergedT.isNull()) {
1349    Diag(New->getLocation(), diag::err_redefinition_different_type)
1350      << New->getDeclName();
1351    Diag(Old->getLocation(), diag::note_previous_definition);
1352    return New->setInvalidDecl();
1353  }
1354  New->setType(MergedT);
1355
1356  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1357  if (New->getStorageClass() == VarDecl::Static &&
1358      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1359    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1360    Diag(Old->getLocation(), diag::note_previous_definition);
1361    return New->setInvalidDecl();
1362  }
1363  // C99 6.2.2p4:
1364  //   For an identifier declared with the storage-class specifier
1365  //   extern in a scope in which a prior declaration of that
1366  //   identifier is visible,23) if the prior declaration specifies
1367  //   internal or external linkage, the linkage of the identifier at
1368  //   the later declaration is the same as the linkage specified at
1369  //   the prior declaration. If no prior declaration is visible, or
1370  //   if the prior declaration specifies no linkage, then the
1371  //   identifier has external linkage.
1372  if (New->hasExternalStorage() && Old->hasLinkage())
1373    /* Okay */;
1374  else if (New->getStorageClass() != VarDecl::Static &&
1375           Old->getStorageClass() == VarDecl::Static) {
1376    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1377    Diag(Old->getLocation(), diag::note_previous_definition);
1378    return New->setInvalidDecl();
1379  }
1380
1381  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1382
1383  // FIXME: The test for external storage here seems wrong? We still
1384  // need to check for mismatches.
1385  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1386      // Don't complain about out-of-line definitions of static members.
1387      !(Old->getLexicalDeclContext()->isRecord() &&
1388        !New->getLexicalDeclContext()->isRecord())) {
1389    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1390    Diag(Old->getLocation(), diag::note_previous_definition);
1391    return New->setInvalidDecl();
1392  }
1393
1394  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1395    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1396    Diag(Old->getLocation(), diag::note_previous_definition);
1397  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1398    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1399    Diag(Old->getLocation(), diag::note_previous_definition);
1400  }
1401
1402  // C++ doesn't have tentative definitions, so go right ahead and check here.
1403  const VarDecl *Def;
1404  if (getLangOptions().CPlusPlus &&
1405      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1406      (Def = Old->getDefinition())) {
1407    Diag(New->getLocation(), diag::err_redefinition)
1408      << New->getDeclName();
1409    Diag(Def->getLocation(), diag::note_previous_definition);
1410    New->setInvalidDecl();
1411    return;
1412  }
1413
1414  // Keep a chain of previous declarations.
1415  New->setPreviousDeclaration(Old);
1416
1417  // Inherit access appropriately.
1418  New->setAccess(Old->getAccess());
1419}
1420
1421/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1422/// no declarator (e.g. "struct foo;") is parsed.
1423Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1424  // FIXME: Error on auto/register at file scope
1425  // FIXME: Error on inline/virtual/explicit
1426  // FIXME: Warn on useless __thread
1427  // FIXME: Warn on useless const/volatile
1428  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1429  // FIXME: Warn on useless attributes
1430  Decl *TagD = 0;
1431  TagDecl *Tag = 0;
1432  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1433      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1434      DS.getTypeSpecType() == DeclSpec::TST_union ||
1435      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1436    TagD = static_cast<Decl *>(DS.getTypeRep());
1437
1438    if (!TagD) // We probably had an error
1439      return DeclPtrTy();
1440
1441    // Note that the above type specs guarantee that the
1442    // type rep is a Decl, whereas in many of the others
1443    // it's a Type.
1444    Tag = dyn_cast<TagDecl>(TagD);
1445  }
1446
1447  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1448    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1449    // or incomplete types shall not be restrict-qualified."
1450    if (TypeQuals & DeclSpec::TQ_restrict)
1451      Diag(DS.getRestrictSpecLoc(),
1452           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1453           << DS.getSourceRange();
1454  }
1455
1456  if (DS.isFriendSpecified()) {
1457    // If we're dealing with a class template decl, assume that the
1458    // template routines are handling it.
1459    if (TagD && isa<ClassTemplateDecl>(TagD))
1460      return DeclPtrTy();
1461    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1462  }
1463
1464  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1465    // If there are attributes in the DeclSpec, apply them to the record.
1466    if (const AttributeList *AL = DS.getAttributes())
1467      ProcessDeclAttributeList(S, Record, AL);
1468
1469    if (!Record->getDeclName() && Record->isDefinition() &&
1470        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1471      if (getLangOptions().CPlusPlus ||
1472          Record->getDeclContext()->isRecord())
1473        return BuildAnonymousStructOrUnion(S, DS, Record);
1474
1475      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1476        << DS.getSourceRange();
1477    }
1478
1479    // Microsoft allows unnamed struct/union fields. Don't complain
1480    // about them.
1481    // FIXME: Should we support Microsoft's extensions in this area?
1482    if (Record->getDeclName() && getLangOptions().Microsoft)
1483      return DeclPtrTy::make(Tag);
1484  }
1485
1486  if (!DS.isMissingDeclaratorOk() &&
1487      DS.getTypeSpecType() != DeclSpec::TST_error) {
1488    // Warn about typedefs of enums without names, since this is an
1489    // extension in both Microsoft an GNU.
1490    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1491        Tag && isa<EnumDecl>(Tag)) {
1492      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1493        << DS.getSourceRange();
1494      return DeclPtrTy::make(Tag);
1495    }
1496
1497    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1498      << DS.getSourceRange();
1499  }
1500
1501  return DeclPtrTy::make(Tag);
1502}
1503
1504/// We are trying to inject an anonymous member into the given scope;
1505/// check if there's an existing declaration that can't be overloaded.
1506///
1507/// \return true if this is a forbidden redeclaration
1508static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1509                                         Scope *S,
1510                                         DeclContext *Owner,
1511                                         DeclarationName Name,
1512                                         SourceLocation NameLoc,
1513                                         unsigned diagnostic) {
1514  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1515                 Sema::ForRedeclaration);
1516  if (!SemaRef.LookupName(R, S)) return false;
1517
1518  if (R.getAsSingle<TagDecl>())
1519    return false;
1520
1521  // Pick a representative declaration.
1522  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1523  if (PrevDecl && Owner->isRecord()) {
1524    RecordDecl *Record = cast<RecordDecl>(Owner);
1525    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1526      return false;
1527  }
1528
1529  SemaRef.Diag(NameLoc, diagnostic) << Name;
1530  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1531
1532  return true;
1533}
1534
1535/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1536/// anonymous struct or union AnonRecord into the owning context Owner
1537/// and scope S. This routine will be invoked just after we realize
1538/// that an unnamed union or struct is actually an anonymous union or
1539/// struct, e.g.,
1540///
1541/// @code
1542/// union {
1543///   int i;
1544///   float f;
1545/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1546///    // f into the surrounding scope.x
1547/// @endcode
1548///
1549/// This routine is recursive, injecting the names of nested anonymous
1550/// structs/unions into the owning context and scope as well.
1551bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1552                                               RecordDecl *AnonRecord) {
1553  unsigned diagKind
1554    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1555                            : diag::err_anonymous_struct_member_redecl;
1556
1557  bool Invalid = false;
1558  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1559                               FEnd = AnonRecord->field_end();
1560       F != FEnd; ++F) {
1561    if ((*F)->getDeclName()) {
1562      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1563                                       (*F)->getLocation(), diagKind)) {
1564        // C++ [class.union]p2:
1565        //   The names of the members of an anonymous union shall be
1566        //   distinct from the names of any other entity in the
1567        //   scope in which the anonymous union is declared.
1568        Invalid = true;
1569      } else {
1570        // C++ [class.union]p2:
1571        //   For the purpose of name lookup, after the anonymous union
1572        //   definition, the members of the anonymous union are
1573        //   considered to have been defined in the scope in which the
1574        //   anonymous union is declared.
1575        Owner->makeDeclVisibleInContext(*F);
1576        S->AddDecl(DeclPtrTy::make(*F));
1577        IdResolver.AddDecl(*F);
1578      }
1579    } else if (const RecordType *InnerRecordType
1580                 = (*F)->getType()->getAs<RecordType>()) {
1581      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1582      if (InnerRecord->isAnonymousStructOrUnion())
1583        Invalid = Invalid ||
1584          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1585    }
1586  }
1587
1588  return Invalid;
1589}
1590
1591/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1592/// anonymous structure or union. Anonymous unions are a C++ feature
1593/// (C++ [class.union]) and a GNU C extension; anonymous structures
1594/// are a GNU C and GNU C++ extension.
1595Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1596                                                  RecordDecl *Record) {
1597  DeclContext *Owner = Record->getDeclContext();
1598
1599  // Diagnose whether this anonymous struct/union is an extension.
1600  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1601    Diag(Record->getLocation(), diag::ext_anonymous_union);
1602  else if (!Record->isUnion())
1603    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1604
1605  // C and C++ require different kinds of checks for anonymous
1606  // structs/unions.
1607  bool Invalid = false;
1608  if (getLangOptions().CPlusPlus) {
1609    const char* PrevSpec = 0;
1610    unsigned DiagID;
1611    // C++ [class.union]p3:
1612    //   Anonymous unions declared in a named namespace or in the
1613    //   global namespace shall be declared static.
1614    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1615        (isa<TranslationUnitDecl>(Owner) ||
1616         (isa<NamespaceDecl>(Owner) &&
1617          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1618      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1619      Invalid = true;
1620
1621      // Recover by adding 'static'.
1622      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1623                             PrevSpec, DiagID);
1624    }
1625    // C++ [class.union]p3:
1626    //   A storage class is not allowed in a declaration of an
1627    //   anonymous union in a class scope.
1628    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1629             isa<RecordDecl>(Owner)) {
1630      Diag(DS.getStorageClassSpecLoc(),
1631           diag::err_anonymous_union_with_storage_spec);
1632      Invalid = true;
1633
1634      // Recover by removing the storage specifier.
1635      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1636                             PrevSpec, DiagID);
1637    }
1638
1639    // C++ [class.union]p2:
1640    //   The member-specification of an anonymous union shall only
1641    //   define non-static data members. [Note: nested types and
1642    //   functions cannot be declared within an anonymous union. ]
1643    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1644                                 MemEnd = Record->decls_end();
1645         Mem != MemEnd; ++Mem) {
1646      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1647        // C++ [class.union]p3:
1648        //   An anonymous union shall not have private or protected
1649        //   members (clause 11).
1650        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1651          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1652            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1653          Invalid = true;
1654        }
1655      } else if ((*Mem)->isImplicit()) {
1656        // Any implicit members are fine.
1657      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1658        // This is a type that showed up in an
1659        // elaborated-type-specifier inside the anonymous struct or
1660        // union, but which actually declares a type outside of the
1661        // anonymous struct or union. It's okay.
1662      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1663        if (!MemRecord->isAnonymousStructOrUnion() &&
1664            MemRecord->getDeclName()) {
1665          // This is a nested type declaration.
1666          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1667            << (int)Record->isUnion();
1668          Invalid = true;
1669        }
1670      } else {
1671        // We have something that isn't a non-static data
1672        // member. Complain about it.
1673        unsigned DK = diag::err_anonymous_record_bad_member;
1674        if (isa<TypeDecl>(*Mem))
1675          DK = diag::err_anonymous_record_with_type;
1676        else if (isa<FunctionDecl>(*Mem))
1677          DK = diag::err_anonymous_record_with_function;
1678        else if (isa<VarDecl>(*Mem))
1679          DK = diag::err_anonymous_record_with_static;
1680        Diag((*Mem)->getLocation(), DK)
1681            << (int)Record->isUnion();
1682          Invalid = true;
1683      }
1684    }
1685  }
1686
1687  if (!Record->isUnion() && !Owner->isRecord()) {
1688    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1689      << (int)getLangOptions().CPlusPlus;
1690    Invalid = true;
1691  }
1692
1693  // Mock up a declarator.
1694  Declarator Dc(DS, Declarator::TypeNameContext);
1695  TypeSourceInfo *TInfo = 0;
1696  GetTypeForDeclarator(Dc, S, &TInfo);
1697  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1698
1699  // Create a declaration for this anonymous struct/union.
1700  NamedDecl *Anon = 0;
1701  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1702    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1703                             /*IdentifierInfo=*/0,
1704                             Context.getTypeDeclType(Record),
1705                             TInfo,
1706                             /*BitWidth=*/0, /*Mutable=*/false);
1707    Anon->setAccess(AS_public);
1708    if (getLangOptions().CPlusPlus)
1709      FieldCollector->Add(cast<FieldDecl>(Anon));
1710  } else {
1711    VarDecl::StorageClass SC;
1712    switch (DS.getStorageClassSpec()) {
1713    default: assert(0 && "Unknown storage class!");
1714    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1715    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1716    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1717    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1718    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1719    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1720    case DeclSpec::SCS_mutable:
1721      // mutable can only appear on non-static class members, so it's always
1722      // an error here
1723      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1724      Invalid = true;
1725      SC = VarDecl::None;
1726      break;
1727    }
1728
1729    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1730                           /*IdentifierInfo=*/0,
1731                           Context.getTypeDeclType(Record),
1732                           TInfo,
1733                           SC);
1734  }
1735  Anon->setImplicit();
1736
1737  // Add the anonymous struct/union object to the current
1738  // context. We'll be referencing this object when we refer to one of
1739  // its members.
1740  Owner->addDecl(Anon);
1741
1742  // Inject the members of the anonymous struct/union into the owning
1743  // context and into the identifier resolver chain for name lookup
1744  // purposes.
1745  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1746    Invalid = true;
1747
1748  // Mark this as an anonymous struct/union type. Note that we do not
1749  // do this until after we have already checked and injected the
1750  // members of this anonymous struct/union type, because otherwise
1751  // the members could be injected twice: once by DeclContext when it
1752  // builds its lookup table, and once by
1753  // InjectAnonymousStructOrUnionMembers.
1754  Record->setAnonymousStructOrUnion(true);
1755
1756  if (Invalid)
1757    Anon->setInvalidDecl();
1758
1759  return DeclPtrTy::make(Anon);
1760}
1761
1762
1763/// GetNameForDeclarator - Determine the full declaration name for the
1764/// given Declarator.
1765DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1766  return GetNameFromUnqualifiedId(D.getName());
1767}
1768
1769/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1770DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1771  switch (Name.getKind()) {
1772    case UnqualifiedId::IK_Identifier:
1773      return DeclarationName(Name.Identifier);
1774
1775    case UnqualifiedId::IK_OperatorFunctionId:
1776      return Context.DeclarationNames.getCXXOperatorName(
1777                                              Name.OperatorFunctionId.Operator);
1778
1779    case UnqualifiedId::IK_LiteralOperatorId:
1780      return Context.DeclarationNames.getCXXLiteralOperatorName(
1781                                                               Name.Identifier);
1782
1783    case UnqualifiedId::IK_ConversionFunctionId: {
1784      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1785      if (Ty.isNull())
1786        return DeclarationName();
1787
1788      return Context.DeclarationNames.getCXXConversionFunctionName(
1789                                                  Context.getCanonicalType(Ty));
1790    }
1791
1792    case UnqualifiedId::IK_ConstructorName: {
1793      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1794      if (Ty.isNull())
1795        return DeclarationName();
1796
1797      return Context.DeclarationNames.getCXXConstructorName(
1798                                                  Context.getCanonicalType(Ty));
1799    }
1800
1801    case UnqualifiedId::IK_ConstructorTemplateId: {
1802      // In well-formed code, we can only have a constructor
1803      // template-id that refers to the current context, so go there
1804      // to find the actual type being constructed.
1805      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1806      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1807        return DeclarationName();
1808
1809      // Determine the type of the class being constructed.
1810      QualType CurClassType = Context.getTypeDeclType(CurClass);
1811
1812      // FIXME: Check two things: that the template-id names the same type as
1813      // CurClassType, and that the template-id does not occur when the name
1814      // was qualified.
1815
1816      return Context.DeclarationNames.getCXXConstructorName(
1817                                       Context.getCanonicalType(CurClassType));
1818    }
1819
1820    case UnqualifiedId::IK_DestructorName: {
1821      QualType Ty = GetTypeFromParser(Name.DestructorName);
1822      if (Ty.isNull())
1823        return DeclarationName();
1824
1825      return Context.DeclarationNames.getCXXDestructorName(
1826                                                           Context.getCanonicalType(Ty));
1827    }
1828
1829    case UnqualifiedId::IK_TemplateId: {
1830      TemplateName TName
1831        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1832      return Context.getNameForTemplate(TName);
1833    }
1834  }
1835
1836  assert(false && "Unknown name kind");
1837  return DeclarationName();
1838}
1839
1840/// isNearlyMatchingFunction - Determine whether the C++ functions
1841/// Declaration and Definition are "nearly" matching. This heuristic
1842/// is used to improve diagnostics in the case where an out-of-line
1843/// function definition doesn't match any declaration within
1844/// the class or namespace.
1845static bool isNearlyMatchingFunction(ASTContext &Context,
1846                                     FunctionDecl *Declaration,
1847                                     FunctionDecl *Definition) {
1848  if (Declaration->param_size() != Definition->param_size())
1849    return false;
1850  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1851    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1852    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1853
1854    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1855                                        DefParamTy.getNonReferenceType()))
1856      return false;
1857  }
1858
1859  return true;
1860}
1861
1862Sema::DeclPtrTy
1863Sema::HandleDeclarator(Scope *S, Declarator &D,
1864                       MultiTemplateParamsArg TemplateParamLists,
1865                       bool IsFunctionDefinition) {
1866  DeclarationName Name = GetNameForDeclarator(D);
1867
1868  // All of these full declarators require an identifier.  If it doesn't have
1869  // one, the ParsedFreeStandingDeclSpec action should be used.
1870  if (!Name) {
1871    if (!D.isInvalidType())  // Reject this if we think it is valid.
1872      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1873           diag::err_declarator_need_ident)
1874        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1875    return DeclPtrTy();
1876  }
1877
1878  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1879  // we find one that is.
1880  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1881         (S->getFlags() & Scope::TemplateParamScope) != 0)
1882    S = S->getParent();
1883
1884  // If this is an out-of-line definition of a member of a class template
1885  // or class template partial specialization, we may need to rebuild the
1886  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1887  // for more information.
1888  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1889  // handle expressions properly.
1890  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1891  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1892      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1893      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1894       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1895       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1896       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1897    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1898      // FIXME: Preserve type source info.
1899      QualType T = GetTypeFromParser(DS.getTypeRep());
1900
1901      DeclContext *SavedContext = CurContext;
1902      CurContext = DC;
1903      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1904      CurContext = SavedContext;
1905
1906      if (T.isNull())
1907        return DeclPtrTy();
1908      DS.UpdateTypeRep(T.getAsOpaquePtr());
1909    }
1910  }
1911
1912  DeclContext *DC;
1913  NamedDecl *New;
1914
1915  TypeSourceInfo *TInfo = 0;
1916  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1917
1918  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1919                        ForRedeclaration);
1920
1921  // See if this is a redefinition of a variable in the same scope.
1922  if (D.getCXXScopeSpec().isInvalid()) {
1923    DC = CurContext;
1924    D.setInvalidType();
1925  } else if (!D.getCXXScopeSpec().isSet()) {
1926    bool IsLinkageLookup = false;
1927
1928    // If the declaration we're planning to build will be a function
1929    // or object with linkage, then look for another declaration with
1930    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1931    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1932      /* Do nothing*/;
1933    else if (R->isFunctionType()) {
1934      if (CurContext->isFunctionOrMethod() ||
1935          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1936        IsLinkageLookup = true;
1937    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1938      IsLinkageLookup = true;
1939    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1940             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1941      IsLinkageLookup = true;
1942
1943    if (IsLinkageLookup)
1944      Previous.clear(LookupRedeclarationWithLinkage);
1945
1946    DC = CurContext;
1947    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1948  } else { // Something like "int foo::x;"
1949    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1950
1951    if (!DC) {
1952      // If we could not compute the declaration context, it's because the
1953      // declaration context is dependent but does not refer to a class,
1954      // class template, or class template partial specialization. Complain
1955      // and return early, to avoid the coming semantic disaster.
1956      Diag(D.getIdentifierLoc(),
1957           diag::err_template_qualified_declarator_no_match)
1958        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1959        << D.getCXXScopeSpec().getRange();
1960      return DeclPtrTy();
1961    }
1962
1963    if (!DC->isDependentContext() &&
1964        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1965      return DeclPtrTy();
1966
1967    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1968      Diag(D.getIdentifierLoc(),
1969           diag::err_member_def_undefined_record)
1970        << Name << DC << D.getCXXScopeSpec().getRange();
1971      D.setInvalidType();
1972    }
1973
1974    LookupQualifiedName(Previous, DC);
1975
1976    // Don't consider using declarations as previous declarations for
1977    // out-of-line members.
1978    RemoveUsingDecls(Previous);
1979
1980    // C++ 7.3.1.2p2:
1981    // Members (including explicit specializations of templates) of a named
1982    // namespace can also be defined outside that namespace by explicit
1983    // qualification of the name being defined, provided that the entity being
1984    // defined was already declared in the namespace and the definition appears
1985    // after the point of declaration in a namespace that encloses the
1986    // declarations namespace.
1987    //
1988    // Note that we only check the context at this point. We don't yet
1989    // have enough information to make sure that PrevDecl is actually
1990    // the declaration we want to match. For example, given:
1991    //
1992    //   class X {
1993    //     void f();
1994    //     void f(float);
1995    //   };
1996    //
1997    //   void X::f(int) { } // ill-formed
1998    //
1999    // In this case, PrevDecl will point to the overload set
2000    // containing the two f's declared in X, but neither of them
2001    // matches.
2002
2003    // First check whether we named the global scope.
2004    if (isa<TranslationUnitDecl>(DC)) {
2005      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2006        << Name << D.getCXXScopeSpec().getRange();
2007    } else {
2008      DeclContext *Cur = CurContext;
2009      while (isa<LinkageSpecDecl>(Cur))
2010        Cur = Cur->getParent();
2011      if (!Cur->Encloses(DC)) {
2012        // The qualifying scope doesn't enclose the original declaration.
2013        // Emit diagnostic based on current scope.
2014        SourceLocation L = D.getIdentifierLoc();
2015        SourceRange R = D.getCXXScopeSpec().getRange();
2016        if (isa<FunctionDecl>(Cur))
2017          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2018        else
2019          Diag(L, diag::err_invalid_declarator_scope)
2020            << Name << cast<NamedDecl>(DC) << R;
2021        D.setInvalidType();
2022      }
2023    }
2024  }
2025
2026  if (Previous.isSingleResult() &&
2027      Previous.getFoundDecl()->isTemplateParameter()) {
2028    // Maybe we will complain about the shadowed template parameter.
2029    if (!D.isInvalidType())
2030      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2031                                          Previous.getFoundDecl()))
2032        D.setInvalidType();
2033
2034    // Just pretend that we didn't see the previous declaration.
2035    Previous.clear();
2036  }
2037
2038  // In C++, the previous declaration we find might be a tag type
2039  // (class or enum). In this case, the new declaration will hide the
2040  // tag type. Note that this does does not apply if we're declaring a
2041  // typedef (C++ [dcl.typedef]p4).
2042  if (Previous.isSingleTagDecl() &&
2043      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2044    Previous.clear();
2045
2046  bool Redeclaration = false;
2047  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2048    if (TemplateParamLists.size()) {
2049      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2050      return DeclPtrTy();
2051    }
2052
2053    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2054  } else if (R->isFunctionType()) {
2055    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2056                                  move(TemplateParamLists),
2057                                  IsFunctionDefinition, Redeclaration);
2058  } else {
2059    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2060                                  move(TemplateParamLists),
2061                                  Redeclaration);
2062  }
2063
2064  if (New == 0)
2065    return DeclPtrTy();
2066
2067  // If this has an identifier and is not an invalid redeclaration or
2068  // function template specialization, add it to the scope stack.
2069  if (Name && !(Redeclaration && New->isInvalidDecl()))
2070    PushOnScopeChains(New, S);
2071
2072  return DeclPtrTy::make(New);
2073}
2074
2075/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2076/// types into constant array types in certain situations which would otherwise
2077/// be errors (for GCC compatibility).
2078static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2079                                                    ASTContext &Context,
2080                                                    bool &SizeIsNegative) {
2081  // This method tries to turn a variable array into a constant
2082  // array even when the size isn't an ICE.  This is necessary
2083  // for compatibility with code that depends on gcc's buggy
2084  // constant expression folding, like struct {char x[(int)(char*)2];}
2085  SizeIsNegative = false;
2086
2087  QualifierCollector Qs;
2088  const Type *Ty = Qs.strip(T);
2089
2090  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2091    QualType Pointee = PTy->getPointeeType();
2092    QualType FixedType =
2093        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2094    if (FixedType.isNull()) return FixedType;
2095    FixedType = Context.getPointerType(FixedType);
2096    return Qs.apply(FixedType);
2097  }
2098
2099  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2100  if (!VLATy)
2101    return QualType();
2102  // FIXME: We should probably handle this case
2103  if (VLATy->getElementType()->isVariablyModifiedType())
2104    return QualType();
2105
2106  Expr::EvalResult EvalResult;
2107  if (!VLATy->getSizeExpr() ||
2108      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2109      !EvalResult.Val.isInt())
2110    return QualType();
2111
2112  llvm::APSInt &Res = EvalResult.Val.getInt();
2113  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2114    // TODO: preserve the size expression in declarator info
2115    return Context.getConstantArrayType(VLATy->getElementType(),
2116                                        Res, ArrayType::Normal, 0);
2117  }
2118
2119  SizeIsNegative = true;
2120  return QualType();
2121}
2122
2123/// \brief Register the given locally-scoped external C declaration so
2124/// that it can be found later for redeclarations
2125void
2126Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2127                                       const LookupResult &Previous,
2128                                       Scope *S) {
2129  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2130         "Decl is not a locally-scoped decl!");
2131  // Note that we have a locally-scoped external with this name.
2132  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2133
2134  if (!Previous.isSingleResult())
2135    return;
2136
2137  NamedDecl *PrevDecl = Previous.getFoundDecl();
2138
2139  // If there was a previous declaration of this variable, it may be
2140  // in our identifier chain. Update the identifier chain with the new
2141  // declaration.
2142  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2143    // The previous declaration was found on the identifer resolver
2144    // chain, so remove it from its scope.
2145    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2146      S = S->getParent();
2147
2148    if (S)
2149      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2150  }
2151}
2152
2153/// \brief Diagnose function specifiers on a declaration of an identifier that
2154/// does not identify a function.
2155void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2156  // FIXME: We should probably indicate the identifier in question to avoid
2157  // confusion for constructs like "inline int a(), b;"
2158  if (D.getDeclSpec().isInlineSpecified())
2159    Diag(D.getDeclSpec().getInlineSpecLoc(),
2160         diag::err_inline_non_function);
2161
2162  if (D.getDeclSpec().isVirtualSpecified())
2163    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2164         diag::err_virtual_non_function);
2165
2166  if (D.getDeclSpec().isExplicitSpecified())
2167    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2168         diag::err_explicit_non_function);
2169}
2170
2171NamedDecl*
2172Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2173                             QualType R,  TypeSourceInfo *TInfo,
2174                             LookupResult &Previous, bool &Redeclaration) {
2175  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2176  if (D.getCXXScopeSpec().isSet()) {
2177    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2178      << D.getCXXScopeSpec().getRange();
2179    D.setInvalidType();
2180    // Pretend we didn't see the scope specifier.
2181    DC = CurContext;
2182    Previous.clear();
2183  }
2184
2185  if (getLangOptions().CPlusPlus) {
2186    // Check that there are no default arguments (C++ only).
2187    CheckExtraCXXDefaultArguments(D);
2188  }
2189
2190  DiagnoseFunctionSpecifiers(D);
2191
2192  if (D.getDeclSpec().isThreadSpecified())
2193    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2194
2195  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2196  if (!NewTD) return 0;
2197
2198  // Handle attributes prior to checking for duplicates in MergeVarDecl
2199  ProcessDeclAttributes(S, NewTD, D);
2200
2201  // Merge the decl with the existing one if appropriate. If the decl is
2202  // in an outer scope, it isn't the same thing.
2203  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2204  if (!Previous.empty()) {
2205    Redeclaration = true;
2206    MergeTypeDefDecl(NewTD, Previous);
2207  }
2208
2209  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2210  // then it shall have block scope.
2211  QualType T = NewTD->getUnderlyingType();
2212  if (T->isVariablyModifiedType()) {
2213    FunctionNeedsScopeChecking() = true;
2214
2215    if (S->getFnParent() == 0) {
2216      bool SizeIsNegative;
2217      QualType FixedTy =
2218          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2219      if (!FixedTy.isNull()) {
2220        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2221        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2222      } else {
2223        if (SizeIsNegative)
2224          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2225        else if (T->isVariableArrayType())
2226          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2227        else
2228          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2229        NewTD->setInvalidDecl();
2230      }
2231    }
2232  }
2233
2234  // If this is the C FILE type, notify the AST context.
2235  if (IdentifierInfo *II = NewTD->getIdentifier())
2236    if (!NewTD->isInvalidDecl() &&
2237        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2238      if (II->isStr("FILE"))
2239        Context.setFILEDecl(NewTD);
2240      else if (II->isStr("jmp_buf"))
2241        Context.setjmp_bufDecl(NewTD);
2242      else if (II->isStr("sigjmp_buf"))
2243        Context.setsigjmp_bufDecl(NewTD);
2244    }
2245
2246  return NewTD;
2247}
2248
2249/// \brief Determines whether the given declaration is an out-of-scope
2250/// previous declaration.
2251///
2252/// This routine should be invoked when name lookup has found a
2253/// previous declaration (PrevDecl) that is not in the scope where a
2254/// new declaration by the same name is being introduced. If the new
2255/// declaration occurs in a local scope, previous declarations with
2256/// linkage may still be considered previous declarations (C99
2257/// 6.2.2p4-5, C++ [basic.link]p6).
2258///
2259/// \param PrevDecl the previous declaration found by name
2260/// lookup
2261///
2262/// \param DC the context in which the new declaration is being
2263/// declared.
2264///
2265/// \returns true if PrevDecl is an out-of-scope previous declaration
2266/// for a new delcaration with the same name.
2267static bool
2268isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2269                                ASTContext &Context) {
2270  if (!PrevDecl)
2271    return 0;
2272
2273  if (!PrevDecl->hasLinkage())
2274    return false;
2275
2276  if (Context.getLangOptions().CPlusPlus) {
2277    // C++ [basic.link]p6:
2278    //   If there is a visible declaration of an entity with linkage
2279    //   having the same name and type, ignoring entities declared
2280    //   outside the innermost enclosing namespace scope, the block
2281    //   scope declaration declares that same entity and receives the
2282    //   linkage of the previous declaration.
2283    DeclContext *OuterContext = DC->getLookupContext();
2284    if (!OuterContext->isFunctionOrMethod())
2285      // This rule only applies to block-scope declarations.
2286      return false;
2287    else {
2288      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2289      if (PrevOuterContext->isRecord())
2290        // We found a member function: ignore it.
2291        return false;
2292      else {
2293        // Find the innermost enclosing namespace for the new and
2294        // previous declarations.
2295        while (!OuterContext->isFileContext())
2296          OuterContext = OuterContext->getParent();
2297        while (!PrevOuterContext->isFileContext())
2298          PrevOuterContext = PrevOuterContext->getParent();
2299
2300        // The previous declaration is in a different namespace, so it
2301        // isn't the same function.
2302        if (OuterContext->getPrimaryContext() !=
2303            PrevOuterContext->getPrimaryContext())
2304          return false;
2305      }
2306    }
2307  }
2308
2309  return true;
2310}
2311
2312static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2313  CXXScopeSpec &SS = D.getCXXScopeSpec();
2314  if (!SS.isSet()) return;
2315  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2316                       SS.getRange());
2317}
2318
2319NamedDecl*
2320Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2321                              QualType R, TypeSourceInfo *TInfo,
2322                              LookupResult &Previous,
2323                              MultiTemplateParamsArg TemplateParamLists,
2324                              bool &Redeclaration) {
2325  DeclarationName Name = GetNameForDeclarator(D);
2326
2327  // Check that there are no default arguments (C++ only).
2328  if (getLangOptions().CPlusPlus)
2329    CheckExtraCXXDefaultArguments(D);
2330
2331  VarDecl *NewVD;
2332  VarDecl::StorageClass SC;
2333  switch (D.getDeclSpec().getStorageClassSpec()) {
2334  default: assert(0 && "Unknown storage class!");
2335  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2336  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2337  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2338  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2339  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2340  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2341  case DeclSpec::SCS_mutable:
2342    // mutable can only appear on non-static class members, so it's always
2343    // an error here
2344    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2345    D.setInvalidType();
2346    SC = VarDecl::None;
2347    break;
2348  }
2349
2350  IdentifierInfo *II = Name.getAsIdentifierInfo();
2351  if (!II) {
2352    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2353      << Name.getAsString();
2354    return 0;
2355  }
2356
2357  DiagnoseFunctionSpecifiers(D);
2358
2359  if (!DC->isRecord() && S->getFnParent() == 0) {
2360    // C99 6.9p2: The storage-class specifiers auto and register shall not
2361    // appear in the declaration specifiers in an external declaration.
2362    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2363
2364      // If this is a register variable with an asm label specified, then this
2365      // is a GNU extension.
2366      if (SC == VarDecl::Register && D.getAsmLabel())
2367        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2368      else
2369        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2370      D.setInvalidType();
2371    }
2372  }
2373  if (DC->isRecord() && !CurContext->isRecord()) {
2374    // This is an out-of-line definition of a static data member.
2375    if (SC == VarDecl::Static) {
2376      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2377           diag::err_static_out_of_line)
2378        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2379    } else if (SC == VarDecl::None)
2380      SC = VarDecl::Static;
2381  }
2382  if (SC == VarDecl::Static) {
2383    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2384      if (RD->isLocalClass())
2385        Diag(D.getIdentifierLoc(),
2386             diag::err_static_data_member_not_allowed_in_local_class)
2387          << Name << RD->getDeclName();
2388    }
2389  }
2390
2391  // Match up the template parameter lists with the scope specifier, then
2392  // determine whether we have a template or a template specialization.
2393  bool isExplicitSpecialization = false;
2394  if (TemplateParameterList *TemplateParams
2395        = MatchTemplateParametersToScopeSpecifier(
2396                                  D.getDeclSpec().getSourceRange().getBegin(),
2397                                                  D.getCXXScopeSpec(),
2398                        (TemplateParameterList**)TemplateParamLists.get(),
2399                                                   TemplateParamLists.size(),
2400                                                  /*never a friend*/ false,
2401                                                  isExplicitSpecialization)) {
2402    if (TemplateParams->size() > 0) {
2403      // There is no such thing as a variable template.
2404      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2405        << II
2406        << SourceRange(TemplateParams->getTemplateLoc(),
2407                       TemplateParams->getRAngleLoc());
2408      return 0;
2409    } else {
2410      // There is an extraneous 'template<>' for this variable. Complain
2411      // about it, but allow the declaration of the variable.
2412      Diag(TemplateParams->getTemplateLoc(),
2413           diag::err_template_variable_noparams)
2414        << II
2415        << SourceRange(TemplateParams->getTemplateLoc(),
2416                       TemplateParams->getRAngleLoc());
2417
2418      isExplicitSpecialization = true;
2419    }
2420  }
2421
2422  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2423                          II, R, TInfo, SC);
2424
2425  if (D.isInvalidType())
2426    NewVD->setInvalidDecl();
2427
2428  SetNestedNameSpecifier(NewVD, D);
2429
2430  if (D.getDeclSpec().isThreadSpecified()) {
2431    if (NewVD->hasLocalStorage())
2432      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2433    else if (!Context.Target.isTLSSupported())
2434      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2435    else
2436      NewVD->setThreadSpecified(true);
2437  }
2438
2439  // Set the lexical context. If the declarator has a C++ scope specifier, the
2440  // lexical context will be different from the semantic context.
2441  NewVD->setLexicalDeclContext(CurContext);
2442
2443  // Handle attributes prior to checking for duplicates in MergeVarDecl
2444  ProcessDeclAttributes(S, NewVD, D);
2445
2446  // Handle GNU asm-label extension (encoded as an attribute).
2447  if (Expr *E = (Expr*) D.getAsmLabel()) {
2448    // The parser guarantees this is a string.
2449    StringLiteral *SE = cast<StringLiteral>(E);
2450    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2451  }
2452
2453  // Diagnose shadowed variables before filtering for scope.
2454  if (!D.getCXXScopeSpec().isSet())
2455    CheckShadow(S, NewVD, Previous);
2456
2457  // Don't consider existing declarations that are in a different
2458  // scope and are out-of-semantic-context declarations (if the new
2459  // declaration has linkage).
2460  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2461
2462  // Merge the decl with the existing one if appropriate.
2463  if (!Previous.empty()) {
2464    if (Previous.isSingleResult() &&
2465        isa<FieldDecl>(Previous.getFoundDecl()) &&
2466        D.getCXXScopeSpec().isSet()) {
2467      // The user tried to define a non-static data member
2468      // out-of-line (C++ [dcl.meaning]p1).
2469      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2470        << D.getCXXScopeSpec().getRange();
2471      Previous.clear();
2472      NewVD->setInvalidDecl();
2473    }
2474  } else if (D.getCXXScopeSpec().isSet()) {
2475    // No previous declaration in the qualifying scope.
2476    Diag(D.getIdentifierLoc(), diag::err_no_member)
2477      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2478      << D.getCXXScopeSpec().getRange();
2479    NewVD->setInvalidDecl();
2480  }
2481
2482  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2483
2484  // This is an explicit specialization of a static data member. Check it.
2485  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2486      CheckMemberSpecialization(NewVD, Previous))
2487    NewVD->setInvalidDecl();
2488
2489  // attributes declared post-definition are currently ignored
2490  if (Previous.isSingleResult()) {
2491    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2492    if (Def && (Def = Def->getDefinition()) &&
2493        Def != NewVD && D.hasAttributes()) {
2494      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2495      Diag(Def->getLocation(), diag::note_previous_definition);
2496    }
2497  }
2498
2499  // If this is a locally-scoped extern C variable, update the map of
2500  // such variables.
2501  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2502      !NewVD->isInvalidDecl())
2503    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2504
2505  return NewVD;
2506}
2507
2508/// \brief Diagnose variable or built-in function shadowing.  Implements
2509/// -Wshadow.
2510///
2511/// This method is called whenever a VarDecl is added to a "useful"
2512/// scope.
2513///
2514/// \param S the scope in which the shadowing name is being declared
2515/// \param R the lookup of the name
2516///
2517void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2518  // Return if warning is ignored.
2519  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2520    return;
2521
2522  // Don't diagnose declarations at file scope.  The scope might not
2523  // have a DeclContext if (e.g.) we're parsing a function prototype.
2524  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2525  if (NewDC && NewDC->isFileContext())
2526    return;
2527
2528  // Only diagnose if we're shadowing an unambiguous field or variable.
2529  if (R.getResultKind() != LookupResult::Found)
2530    return;
2531
2532  NamedDecl* ShadowedDecl = R.getFoundDecl();
2533  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2534    return;
2535
2536  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2537
2538  // Only warn about certain kinds of shadowing for class members.
2539  if (NewDC && NewDC->isRecord()) {
2540    // In particular, don't warn about shadowing non-class members.
2541    if (!OldDC->isRecord())
2542      return;
2543
2544    // TODO: should we warn about static data members shadowing
2545    // static data members from base classes?
2546
2547    // TODO: don't diagnose for inaccessible shadowed members.
2548    // This is hard to do perfectly because we might friend the
2549    // shadowing context, but that's just a false negative.
2550  }
2551
2552  // Determine what kind of declaration we're shadowing.
2553  unsigned Kind;
2554  if (isa<RecordDecl>(OldDC)) {
2555    if (isa<FieldDecl>(ShadowedDecl))
2556      Kind = 3; // field
2557    else
2558      Kind = 2; // static data member
2559  } else if (OldDC->isFileContext())
2560    Kind = 1; // global
2561  else
2562    Kind = 0; // local
2563
2564  DeclarationName Name = R.getLookupName();
2565
2566  // Emit warning and note.
2567  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2568  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2569}
2570
2571/// \brief Check -Wshadow without the advantage of a previous lookup.
2572void Sema::CheckShadow(Scope *S, VarDecl *D) {
2573  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2574                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2575  LookupName(R, S);
2576  CheckShadow(S, D, R);
2577}
2578
2579/// \brief Perform semantic checking on a newly-created variable
2580/// declaration.
2581///
2582/// This routine performs all of the type-checking required for a
2583/// variable declaration once it has been built. It is used both to
2584/// check variables after they have been parsed and their declarators
2585/// have been translated into a declaration, and to check variables
2586/// that have been instantiated from a template.
2587///
2588/// Sets NewVD->isInvalidDecl() if an error was encountered.
2589void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2590                                    LookupResult &Previous,
2591                                    bool &Redeclaration) {
2592  // If the decl is already known invalid, don't check it.
2593  if (NewVD->isInvalidDecl())
2594    return;
2595
2596  QualType T = NewVD->getType();
2597
2598  if (T->isObjCInterfaceType()) {
2599    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2600    return NewVD->setInvalidDecl();
2601  }
2602
2603  // Emit an error if an address space was applied to decl with local storage.
2604  // This includes arrays of objects with address space qualifiers, but not
2605  // automatic variables that point to other address spaces.
2606  // ISO/IEC TR 18037 S5.1.2
2607  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2608    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2609    return NewVD->setInvalidDecl();
2610  }
2611
2612  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2613      && !NewVD->hasAttr<BlocksAttr>())
2614    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2615
2616  bool isVM = T->isVariablyModifiedType();
2617  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2618      NewVD->hasAttr<BlocksAttr>() ||
2619      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2620      // However, this turns on the scope checker for everything with a variable
2621      // which may impact compile time.  See if we can find a better solution
2622      // to this, perhaps only checking functions that contain gotos in C++?
2623      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2624    FunctionNeedsScopeChecking() = true;
2625
2626  if ((isVM && NewVD->hasLinkage()) ||
2627      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2628    bool SizeIsNegative;
2629    QualType FixedTy =
2630        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2631
2632    if (FixedTy.isNull() && T->isVariableArrayType()) {
2633      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2634      // FIXME: This won't give the correct result for
2635      // int a[10][n];
2636      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2637
2638      if (NewVD->isFileVarDecl())
2639        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2640        << SizeRange;
2641      else if (NewVD->getStorageClass() == VarDecl::Static)
2642        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2643        << SizeRange;
2644      else
2645        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2646        << SizeRange;
2647      return NewVD->setInvalidDecl();
2648    }
2649
2650    if (FixedTy.isNull()) {
2651      if (NewVD->isFileVarDecl())
2652        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2653      else
2654        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2655      return NewVD->setInvalidDecl();
2656    }
2657
2658    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2659    NewVD->setType(FixedTy);
2660  }
2661
2662  if (Previous.empty() && NewVD->isExternC()) {
2663    // Since we did not find anything by this name and we're declaring
2664    // an extern "C" variable, look for a non-visible extern "C"
2665    // declaration with the same name.
2666    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2667      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2668    if (Pos != LocallyScopedExternalDecls.end())
2669      Previous.addDecl(Pos->second);
2670  }
2671
2672  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2673    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2674      << T;
2675    return NewVD->setInvalidDecl();
2676  }
2677
2678  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2679    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2680    return NewVD->setInvalidDecl();
2681  }
2682
2683  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2684    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2685    return NewVD->setInvalidDecl();
2686  }
2687
2688  if (!Previous.empty()) {
2689    Redeclaration = true;
2690    MergeVarDecl(NewVD, Previous);
2691  }
2692}
2693
2694/// \brief Data used with FindOverriddenMethod
2695struct FindOverriddenMethodData {
2696  Sema *S;
2697  CXXMethodDecl *Method;
2698};
2699
2700/// \brief Member lookup function that determines whether a given C++
2701/// method overrides a method in a base class, to be used with
2702/// CXXRecordDecl::lookupInBases().
2703static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2704                                 CXXBasePath &Path,
2705                                 void *UserData) {
2706  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2707
2708  FindOverriddenMethodData *Data
2709    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2710
2711  DeclarationName Name = Data->Method->getDeclName();
2712
2713  // FIXME: Do we care about other names here too?
2714  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2715    // We really want to find the base class constructor here.
2716    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2717    CanQualType CT = Data->S->Context.getCanonicalType(T);
2718
2719    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2720  }
2721
2722  for (Path.Decls = BaseRecord->lookup(Name);
2723       Path.Decls.first != Path.Decls.second;
2724       ++Path.Decls.first) {
2725    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2726      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2727        return true;
2728    }
2729  }
2730
2731  return false;
2732}
2733
2734/// AddOverriddenMethods - See if a method overrides any in the base classes,
2735/// and if so, check that it's a valid override and remember it.
2736void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2737  // Look for virtual methods in base classes that this method might override.
2738  CXXBasePaths Paths;
2739  FindOverriddenMethodData Data;
2740  Data.Method = MD;
2741  Data.S = this;
2742  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2743    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2744         E = Paths.found_decls_end(); I != E; ++I) {
2745      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2746        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2747            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2748            !CheckOverridingFunctionAttributes(MD, OldMD))
2749          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2750      }
2751    }
2752  }
2753}
2754
2755NamedDecl*
2756Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2757                              QualType R, TypeSourceInfo *TInfo,
2758                              LookupResult &Previous,
2759                              MultiTemplateParamsArg TemplateParamLists,
2760                              bool IsFunctionDefinition, bool &Redeclaration) {
2761  assert(R.getTypePtr()->isFunctionType());
2762
2763  DeclarationName Name = GetNameForDeclarator(D);
2764  FunctionDecl::StorageClass SC = FunctionDecl::None;
2765  switch (D.getDeclSpec().getStorageClassSpec()) {
2766  default: assert(0 && "Unknown storage class!");
2767  case DeclSpec::SCS_auto:
2768  case DeclSpec::SCS_register:
2769  case DeclSpec::SCS_mutable:
2770    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2771         diag::err_typecheck_sclass_func);
2772    D.setInvalidType();
2773    break;
2774  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2775  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2776  case DeclSpec::SCS_static: {
2777    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2778      // C99 6.7.1p5:
2779      //   The declaration of an identifier for a function that has
2780      //   block scope shall have no explicit storage-class specifier
2781      //   other than extern
2782      // See also (C++ [dcl.stc]p4).
2783      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2784           diag::err_static_block_func);
2785      SC = FunctionDecl::None;
2786    } else
2787      SC = FunctionDecl::Static;
2788    break;
2789  }
2790  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2791  }
2792
2793  if (D.getDeclSpec().isThreadSpecified())
2794    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2795
2796  bool isFriend = D.getDeclSpec().isFriendSpecified();
2797  bool isInline = D.getDeclSpec().isInlineSpecified();
2798  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2799  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2800
2801  // Check that the return type is not an abstract class type.
2802  // For record types, this is done by the AbstractClassUsageDiagnoser once
2803  // the class has been completely parsed.
2804  if (!DC->isRecord() &&
2805      RequireNonAbstractType(D.getIdentifierLoc(),
2806                             R->getAs<FunctionType>()->getResultType(),
2807                             diag::err_abstract_type_in_decl,
2808                             AbstractReturnType))
2809    D.setInvalidType();
2810
2811  // Do not allow returning a objc interface by-value.
2812  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2813    Diag(D.getIdentifierLoc(),
2814         diag::err_object_cannot_be_passed_returned_by_value) << 0
2815      << R->getAs<FunctionType>()->getResultType();
2816    D.setInvalidType();
2817  }
2818
2819  bool isVirtualOkay = false;
2820  FunctionDecl *NewFD;
2821
2822  if (isFriend) {
2823    // C++ [class.friend]p5
2824    //   A function can be defined in a friend declaration of a
2825    //   class . . . . Such a function is implicitly inline.
2826    isInline |= IsFunctionDefinition;
2827  }
2828
2829  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2830    // This is a C++ constructor declaration.
2831    assert(DC->isRecord() &&
2832           "Constructors can only be declared in a member context");
2833
2834    R = CheckConstructorDeclarator(D, R, SC);
2835
2836    // Create the new declaration
2837    NewFD = CXXConstructorDecl::Create(Context,
2838                                       cast<CXXRecordDecl>(DC),
2839                                       D.getIdentifierLoc(), Name, R, TInfo,
2840                                       isExplicit, isInline,
2841                                       /*isImplicitlyDeclared=*/false);
2842  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2843    // This is a C++ destructor declaration.
2844    if (DC->isRecord()) {
2845      R = CheckDestructorDeclarator(D, SC);
2846
2847      NewFD = CXXDestructorDecl::Create(Context,
2848                                        cast<CXXRecordDecl>(DC),
2849                                        D.getIdentifierLoc(), Name, R,
2850                                        isInline,
2851                                        /*isImplicitlyDeclared=*/false);
2852      NewFD->setTypeSourceInfo(TInfo);
2853
2854      isVirtualOkay = true;
2855    } else {
2856      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2857
2858      // Create a FunctionDecl to satisfy the function definition parsing
2859      // code path.
2860      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2861                                   Name, R, TInfo, SC, isInline,
2862                                   /*hasPrototype=*/true);
2863      D.setInvalidType();
2864    }
2865  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2866    if (!DC->isRecord()) {
2867      Diag(D.getIdentifierLoc(),
2868           diag::err_conv_function_not_member);
2869      return 0;
2870    }
2871
2872    CheckConversionDeclarator(D, R, SC);
2873    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2874                                      D.getIdentifierLoc(), Name, R, TInfo,
2875                                      isInline, isExplicit);
2876
2877    isVirtualOkay = true;
2878  } else if (DC->isRecord()) {
2879    // If the of the function is the same as the name of the record, then this
2880    // must be an invalid constructor that has a return type.
2881    // (The parser checks for a return type and makes the declarator a
2882    // constructor if it has no return type).
2883    // must have an invalid constructor that has a return type
2884    if (Name.getAsIdentifierInfo() &&
2885        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2886      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2887        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2888        << SourceRange(D.getIdentifierLoc());
2889      return 0;
2890    }
2891
2892    bool isStatic = SC == FunctionDecl::Static;
2893
2894    // [class.free]p1:
2895    // Any allocation function for a class T is a static member
2896    // (even if not explicitly declared static).
2897    if (Name.getCXXOverloadedOperator() == OO_New ||
2898        Name.getCXXOverloadedOperator() == OO_Array_New)
2899      isStatic = true;
2900
2901    // [class.free]p6 Any deallocation function for a class X is a static member
2902    // (even if not explicitly declared static).
2903    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2904        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2905      isStatic = true;
2906
2907    // This is a C++ method declaration.
2908    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2909                                  D.getIdentifierLoc(), Name, R, TInfo,
2910                                  isStatic, isInline);
2911
2912    isVirtualOkay = !isStatic;
2913  } else {
2914    // Determine whether the function was written with a
2915    // prototype. This true when:
2916    //   - we're in C++ (where every function has a prototype),
2917    //   - there is a prototype in the declarator, or
2918    //   - the type R of the function is some kind of typedef or other reference
2919    //     to a type name (which eventually refers to a function type).
2920    bool HasPrototype =
2921       getLangOptions().CPlusPlus ||
2922       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2923       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2924
2925    NewFD = FunctionDecl::Create(Context, DC,
2926                                 D.getIdentifierLoc(),
2927                                 Name, R, TInfo, SC, isInline, HasPrototype);
2928  }
2929
2930  if (D.isInvalidType())
2931    NewFD->setInvalidDecl();
2932
2933  SetNestedNameSpecifier(NewFD, D);
2934
2935  // Set the lexical context. If the declarator has a C++
2936  // scope specifier, or is the object of a friend declaration, the
2937  // lexical context will be different from the semantic context.
2938  NewFD->setLexicalDeclContext(CurContext);
2939
2940  // Match up the template parameter lists with the scope specifier, then
2941  // determine whether we have a template or a template specialization.
2942  FunctionTemplateDecl *FunctionTemplate = 0;
2943  bool isExplicitSpecialization = false;
2944  bool isFunctionTemplateSpecialization = false;
2945  if (TemplateParameterList *TemplateParams
2946        = MatchTemplateParametersToScopeSpecifier(
2947                                  D.getDeclSpec().getSourceRange().getBegin(),
2948                                  D.getCXXScopeSpec(),
2949                           (TemplateParameterList**)TemplateParamLists.get(),
2950                                                  TemplateParamLists.size(),
2951                                                  isFriend,
2952                                                  isExplicitSpecialization)) {
2953    if (TemplateParams->size() > 0) {
2954      // This is a function template
2955
2956      // Check that we can declare a template here.
2957      if (CheckTemplateDeclScope(S, TemplateParams))
2958        return 0;
2959
2960      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2961                                                      NewFD->getLocation(),
2962                                                      Name, TemplateParams,
2963                                                      NewFD);
2964      FunctionTemplate->setLexicalDeclContext(CurContext);
2965      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2966    } else {
2967      // This is a function template specialization.
2968      isFunctionTemplateSpecialization = true;
2969
2970      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
2971      if (isFriend && isFunctionTemplateSpecialization) {
2972        // We want to remove the "template<>", found here.
2973        SourceRange RemoveRange = TemplateParams->getSourceRange();
2974
2975        // If we remove the template<> and the name is not a
2976        // template-id, we're actually silently creating a problem:
2977        // the friend declaration will refer to an untemplated decl,
2978        // and clearly the user wants a template specialization.  So
2979        // we need to insert '<>' after the name.
2980        SourceLocation InsertLoc;
2981        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
2982          InsertLoc = D.getName().getSourceRange().getEnd();
2983          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
2984        }
2985
2986        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
2987          << Name << RemoveRange
2988          << FixItHint::CreateRemoval(RemoveRange)
2989          << FixItHint::CreateInsertion(InsertLoc, "<>");
2990      }
2991    }
2992
2993    // FIXME: Free this memory properly.
2994    TemplateParamLists.release();
2995  }
2996
2997  // C++ [dcl.fct.spec]p5:
2998  //   The virtual specifier shall only be used in declarations of
2999  //   nonstatic class member functions that appear within a
3000  //   member-specification of a class declaration; see 10.3.
3001  //
3002  if (isVirtual && !NewFD->isInvalidDecl()) {
3003    if (!isVirtualOkay) {
3004       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3005           diag::err_virtual_non_function);
3006    } else if (!CurContext->isRecord()) {
3007      // 'virtual' was specified outside of the class.
3008      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3009        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3010    } else {
3011      // Okay: Add virtual to the method.
3012      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3013      CurClass->setMethodAsVirtual(NewFD);
3014    }
3015  }
3016
3017  // C++ [dcl.fct.spec]p6:
3018  //  The explicit specifier shall be used only in the declaration of a
3019  //  constructor or conversion function within its class definition; see 12.3.1
3020  //  and 12.3.2.
3021  if (isExplicit && !NewFD->isInvalidDecl()) {
3022    if (!CurContext->isRecord()) {
3023      // 'explicit' was specified outside of the class.
3024      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3025           diag::err_explicit_out_of_class)
3026        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3027    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3028               !isa<CXXConversionDecl>(NewFD)) {
3029      // 'explicit' was specified on a function that wasn't a constructor
3030      // or conversion function.
3031      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3032           diag::err_explicit_non_ctor_or_conv_function)
3033        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3034    }
3035  }
3036
3037  // Filter out previous declarations that don't match the scope.
3038  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3039
3040  if (isFriend) {
3041    // DC is the namespace in which the function is being declared.
3042    assert((DC->isFileContext() || !Previous.empty()) &&
3043           "previously-undeclared friend function being created "
3044           "in a non-namespace context");
3045
3046    // For now, claim that the objects have no previous declaration.
3047    if (FunctionTemplate) {
3048      FunctionTemplate->setObjectOfFriendDecl(false);
3049      FunctionTemplate->setAccess(AS_public);
3050    }
3051    NewFD->setObjectOfFriendDecl(false);
3052    NewFD->setAccess(AS_public);
3053  }
3054
3055  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3056      !CurContext->isRecord()) {
3057    // C++ [class.static]p1:
3058    //   A data or function member of a class may be declared static
3059    //   in a class definition, in which case it is a static member of
3060    //   the class.
3061
3062    // Complain about the 'static' specifier if it's on an out-of-line
3063    // member function definition.
3064    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3065         diag::err_static_out_of_line)
3066      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3067  }
3068
3069  // Handle GNU asm-label extension (encoded as an attribute).
3070  if (Expr *E = (Expr*) D.getAsmLabel()) {
3071    // The parser guarantees this is a string.
3072    StringLiteral *SE = cast<StringLiteral>(E);
3073    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3074  }
3075
3076  // Copy the parameter declarations from the declarator D to the function
3077  // declaration NewFD, if they are available.  First scavenge them into Params.
3078  llvm::SmallVector<ParmVarDecl*, 16> Params;
3079  if (D.getNumTypeObjects() > 0) {
3080    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3081
3082    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3083    // function that takes no arguments, not a function that takes a
3084    // single void argument.
3085    // We let through "const void" here because Sema::GetTypeForDeclarator
3086    // already checks for that case.
3087    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3088        FTI.ArgInfo[0].Param &&
3089        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3090      // Empty arg list, don't push any params.
3091      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3092
3093      // In C++, the empty parameter-type-list must be spelled "void"; a
3094      // typedef of void is not permitted.
3095      if (getLangOptions().CPlusPlus &&
3096          Param->getType().getUnqualifiedType() != Context.VoidTy)
3097        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3098      // FIXME: Leaks decl?
3099    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3100      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3101        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3102        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3103        Param->setDeclContext(NewFD);
3104        Params.push_back(Param);
3105
3106        if (Param->isInvalidDecl())
3107          NewFD->setInvalidDecl();
3108      }
3109    }
3110
3111  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3112    // When we're declaring a function with a typedef, typeof, etc as in the
3113    // following example, we'll need to synthesize (unnamed)
3114    // parameters for use in the declaration.
3115    //
3116    // @code
3117    // typedef void fn(int);
3118    // fn f;
3119    // @endcode
3120
3121    // Synthesize a parameter for each argument type.
3122    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3123         AE = FT->arg_type_end(); AI != AE; ++AI) {
3124      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3125                                               SourceLocation(), 0,
3126                                               *AI, /*TInfo=*/0,
3127                                               VarDecl::None, 0);
3128      Param->setImplicit();
3129      Params.push_back(Param);
3130    }
3131  } else {
3132    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3133           "Should not need args for typedef of non-prototype fn");
3134  }
3135  // Finally, we know we have the right number of parameters, install them.
3136  NewFD->setParams(Params.data(), Params.size());
3137
3138  // If the declarator is a template-id, translate the parser's template
3139  // argument list into our AST format.
3140  bool HasExplicitTemplateArgs = false;
3141  TemplateArgumentListInfo TemplateArgs;
3142  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3143    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3144    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3145    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3146    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3147                                       TemplateId->getTemplateArgs(),
3148                                       TemplateId->NumArgs);
3149    translateTemplateArguments(TemplateArgsPtr,
3150                               TemplateArgs);
3151    TemplateArgsPtr.release();
3152
3153    HasExplicitTemplateArgs = true;
3154
3155    if (FunctionTemplate) {
3156      // FIXME: Diagnose function template with explicit template
3157      // arguments.
3158      HasExplicitTemplateArgs = false;
3159    } else if (!isFunctionTemplateSpecialization &&
3160               !D.getDeclSpec().isFriendSpecified()) {
3161      // We have encountered something that the user meant to be a
3162      // specialization (because it has explicitly-specified template
3163      // arguments) but that was not introduced with a "template<>" (or had
3164      // too few of them).
3165      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3166        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3167        << FixItHint::CreateInsertion(
3168                                   D.getDeclSpec().getSourceRange().getBegin(),
3169                                                 "template<> ");
3170      isFunctionTemplateSpecialization = true;
3171    } else {
3172      // "friend void foo<>(int);" is an implicit specialization decl.
3173      isFunctionTemplateSpecialization = true;
3174    }
3175  } else if (isFriend && isFunctionTemplateSpecialization) {
3176    // This combination is only possible in a recovery case;  the user
3177    // wrote something like:
3178    //   template <> friend void foo(int);
3179    // which we're recovering from as if the user had written:
3180    //   friend void foo<>(int);
3181    // Go ahead and fake up a template id.
3182    HasExplicitTemplateArgs = true;
3183    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3184    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3185  }
3186
3187  // If it's a friend (and only if it's a friend), it's possible
3188  // that either the specialized function type or the specialized
3189  // template is dependent, and therefore matching will fail.  In
3190  // this case, don't check the specialization yet.
3191  if (isFunctionTemplateSpecialization && isFriend &&
3192      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3193    assert(HasExplicitTemplateArgs &&
3194           "friend function specialization without template args");
3195    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3196                                                     Previous))
3197      NewFD->setInvalidDecl();
3198  } else if (isFunctionTemplateSpecialization) {
3199    if (CheckFunctionTemplateSpecialization(NewFD,
3200                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3201                                            Previous))
3202      NewFD->setInvalidDecl();
3203  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3204    if (CheckMemberSpecialization(NewFD, Previous))
3205      NewFD->setInvalidDecl();
3206  }
3207
3208  // Perform semantic checking on the function declaration.
3209  bool OverloadableAttrRequired = false; // FIXME: HACK!
3210  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3211                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3212
3213  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3214          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3215         "previous declaration set still overloaded");
3216
3217  if (isFriend && Redeclaration) {
3218    AccessSpecifier Access = AS_public;
3219    if (!NewFD->isInvalidDecl())
3220      Access = NewFD->getPreviousDeclaration()->getAccess();
3221
3222    if (FunctionTemplate) {
3223      FunctionTemplate->setObjectOfFriendDecl(true);
3224      FunctionTemplate->setAccess(Access);
3225    } else {
3226      NewFD->setObjectOfFriendDecl(true);
3227    }
3228    NewFD->setAccess(Access);
3229  }
3230
3231  // If we have a function template, check the template parameter
3232  // list. This will check and merge default template arguments.
3233  if (FunctionTemplate) {
3234    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3235    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3236                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3237             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3238                                                : TPC_FunctionTemplate);
3239  }
3240
3241  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3242    // Fake up an access specifier if it's supposed to be a class member.
3243    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3244      NewFD->setAccess(AS_public);
3245
3246    // An out-of-line member function declaration must also be a
3247    // definition (C++ [dcl.meaning]p1).
3248    // Note that this is not the case for explicit specializations of
3249    // function templates or member functions of class templates, per
3250    // C++ [temp.expl.spec]p2.
3251    if (!IsFunctionDefinition && !isFriend &&
3252        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3253      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3254        << D.getCXXScopeSpec().getRange();
3255      NewFD->setInvalidDecl();
3256    } else if (!Redeclaration &&
3257               !(isFriend && CurContext->isDependentContext())) {
3258      // The user tried to provide an out-of-line definition for a
3259      // function that is a member of a class or namespace, but there
3260      // was no such member function declared (C++ [class.mfct]p2,
3261      // C++ [namespace.memdef]p2). For example:
3262      //
3263      // class X {
3264      //   void f() const;
3265      // };
3266      //
3267      // void X::f() { } // ill-formed
3268      //
3269      // Complain about this problem, and attempt to suggest close
3270      // matches (e.g., those that differ only in cv-qualifiers and
3271      // whether the parameter types are references).
3272      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3273        << Name << DC << D.getCXXScopeSpec().getRange();
3274      NewFD->setInvalidDecl();
3275
3276      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3277                        ForRedeclaration);
3278      LookupQualifiedName(Prev, DC);
3279      assert(!Prev.isAmbiguous() &&
3280             "Cannot have an ambiguity in previous-declaration lookup");
3281      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3282           Func != FuncEnd; ++Func) {
3283        if (isa<FunctionDecl>(*Func) &&
3284            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3285          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3286      }
3287    }
3288  }
3289
3290  // Handle attributes. We need to have merged decls when handling attributes
3291  // (for example to check for conflicts, etc).
3292  // FIXME: This needs to happen before we merge declarations. Then,
3293  // let attribute merging cope with attribute conflicts.
3294  ProcessDeclAttributes(S, NewFD, D);
3295
3296  // attributes declared post-definition are currently ignored
3297  if (Redeclaration && Previous.isSingleResult()) {
3298    const FunctionDecl *Def;
3299    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3300    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3301      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3302      Diag(Def->getLocation(), diag::note_previous_definition);
3303    }
3304  }
3305
3306  AddKnownFunctionAttributes(NewFD);
3307
3308  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3309    // If a function name is overloadable in C, then every function
3310    // with that name must be marked "overloadable".
3311    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3312      << Redeclaration << NewFD;
3313    if (!Previous.empty())
3314      Diag(Previous.getRepresentativeDecl()->getLocation(),
3315           diag::note_attribute_overloadable_prev_overload);
3316    NewFD->addAttr(::new (Context) OverloadableAttr());
3317  }
3318
3319  // If this is a locally-scoped extern C function, update the
3320  // map of such names.
3321  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3322      && !NewFD->isInvalidDecl())
3323    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3324
3325  // Set this FunctionDecl's range up to the right paren.
3326  NewFD->setLocEnd(D.getSourceRange().getEnd());
3327
3328  if (FunctionTemplate && NewFD->isInvalidDecl())
3329    FunctionTemplate->setInvalidDecl();
3330
3331  if (FunctionTemplate)
3332    return FunctionTemplate;
3333
3334
3335  // Keep track of static, non-inlined function definitions that
3336  // have not been used. We will warn later.
3337  // FIXME: Also include static functions declared but not defined.
3338  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3339      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3340      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3341      && !NewFD->hasAttr<ConstructorAttr>()
3342      && !NewFD->hasAttr<DestructorAttr>())
3343    UnusedStaticFuncs.push_back(NewFD);
3344
3345  return NewFD;
3346}
3347
3348/// \brief Perform semantic checking of a new function declaration.
3349///
3350/// Performs semantic analysis of the new function declaration
3351/// NewFD. This routine performs all semantic checking that does not
3352/// require the actual declarator involved in the declaration, and is
3353/// used both for the declaration of functions as they are parsed
3354/// (called via ActOnDeclarator) and for the declaration of functions
3355/// that have been instantiated via C++ template instantiation (called
3356/// via InstantiateDecl).
3357///
3358/// \param IsExplicitSpecialiation whether this new function declaration is
3359/// an explicit specialization of the previous declaration.
3360///
3361/// This sets NewFD->isInvalidDecl() to true if there was an error.
3362void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3363                                    LookupResult &Previous,
3364                                    bool IsExplicitSpecialization,
3365                                    bool &Redeclaration,
3366                                    bool &OverloadableAttrRequired) {
3367  // If NewFD is already known erroneous, don't do any of this checking.
3368  if (NewFD->isInvalidDecl())
3369    return;
3370
3371  if (NewFD->getResultType()->isVariablyModifiedType()) {
3372    // Functions returning a variably modified type violate C99 6.7.5.2p2
3373    // because all functions have linkage.
3374    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3375    return NewFD->setInvalidDecl();
3376  }
3377
3378  if (NewFD->isMain())
3379    CheckMain(NewFD);
3380
3381  // Check for a previous declaration of this name.
3382  if (Previous.empty() && NewFD->isExternC()) {
3383    // Since we did not find anything by this name and we're declaring
3384    // an extern "C" function, look for a non-visible extern "C"
3385    // declaration with the same name.
3386    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3387      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3388    if (Pos != LocallyScopedExternalDecls.end())
3389      Previous.addDecl(Pos->second);
3390  }
3391
3392  // Merge or overload the declaration with an existing declaration of
3393  // the same name, if appropriate.
3394  if (!Previous.empty()) {
3395    // Determine whether NewFD is an overload of PrevDecl or
3396    // a declaration that requires merging. If it's an overload,
3397    // there's no more work to do here; we'll just add the new
3398    // function to the scope.
3399
3400    NamedDecl *OldDecl = 0;
3401    if (!AllowOverloadingOfFunction(Previous, Context)) {
3402      Redeclaration = true;
3403      OldDecl = Previous.getFoundDecl();
3404    } else {
3405      if (!getLangOptions().CPlusPlus) {
3406        OverloadableAttrRequired = true;
3407
3408        // Functions marked "overloadable" must have a prototype (that
3409        // we can't get through declaration merging).
3410        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3411          Diag(NewFD->getLocation(),
3412               diag::err_attribute_overloadable_no_prototype)
3413            << NewFD;
3414          Redeclaration = true;
3415
3416          // Turn this into a variadic function with no parameters.
3417          QualType R = Context.getFunctionType(
3418                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3419                     0, 0, true, 0, false, false, 0, 0,
3420                     FunctionType::ExtInfo());
3421          NewFD->setType(R);
3422          return NewFD->setInvalidDecl();
3423        }
3424      }
3425
3426      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3427      case Ovl_Match:
3428        Redeclaration = true;
3429        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3430          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3431          Redeclaration = false;
3432        }
3433        break;
3434
3435      case Ovl_NonFunction:
3436        Redeclaration = true;
3437        break;
3438
3439      case Ovl_Overload:
3440        Redeclaration = false;
3441        break;
3442      }
3443    }
3444
3445    if (Redeclaration) {
3446      // NewFD and OldDecl represent declarations that need to be
3447      // merged.
3448      if (MergeFunctionDecl(NewFD, OldDecl))
3449        return NewFD->setInvalidDecl();
3450
3451      Previous.clear();
3452      Previous.addDecl(OldDecl);
3453
3454      if (FunctionTemplateDecl *OldTemplateDecl
3455                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3456        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3457        FunctionTemplateDecl *NewTemplateDecl
3458          = NewFD->getDescribedFunctionTemplate();
3459        assert(NewTemplateDecl && "Template/non-template mismatch");
3460        if (CXXMethodDecl *Method
3461              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3462          Method->setAccess(OldTemplateDecl->getAccess());
3463          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3464        }
3465
3466        // If this is an explicit specialization of a member that is a function
3467        // template, mark it as a member specialization.
3468        if (IsExplicitSpecialization &&
3469            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3470          NewTemplateDecl->setMemberSpecialization();
3471          assert(OldTemplateDecl->isMemberSpecialization());
3472        }
3473      } else {
3474        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3475          NewFD->setAccess(OldDecl->getAccess());
3476        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3477      }
3478    }
3479  }
3480
3481  // Semantic checking for this function declaration (in isolation).
3482  if (getLangOptions().CPlusPlus) {
3483    // C++-specific checks.
3484    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3485      CheckConstructor(Constructor);
3486    } else if (CXXDestructorDecl *Destructor =
3487                dyn_cast<CXXDestructorDecl>(NewFD)) {
3488      CXXRecordDecl *Record = Destructor->getParent();
3489      QualType ClassType = Context.getTypeDeclType(Record);
3490
3491      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3492      // type is dependent? Both gcc and edg can handle that.
3493      if (!ClassType->isDependentType()) {
3494        DeclarationName Name
3495          = Context.DeclarationNames.getCXXDestructorName(
3496                                        Context.getCanonicalType(ClassType));
3497        if (NewFD->getDeclName() != Name) {
3498          Diag(NewFD->getLocation(), diag::err_destructor_name);
3499          return NewFD->setInvalidDecl();
3500        }
3501      }
3502
3503      Record->setUserDeclaredDestructor(true);
3504      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3505      // user-defined destructor.
3506      Record->setPOD(false);
3507
3508      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3509      // declared destructor.
3510      // FIXME: C++0x: don't do this for "= default" destructors
3511      Record->setHasTrivialDestructor(false);
3512    } else if (CXXConversionDecl *Conversion
3513               = dyn_cast<CXXConversionDecl>(NewFD)) {
3514      ActOnConversionDeclarator(Conversion);
3515    }
3516
3517    // Find any virtual functions that this function overrides.
3518    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3519      if (!Method->isFunctionTemplateSpecialization() &&
3520          !Method->getDescribedFunctionTemplate())
3521        AddOverriddenMethods(Method->getParent(), Method);
3522    }
3523
3524    // Additional checks for the destructor; make sure we do this after we
3525    // figure out whether the destructor is virtual.
3526    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3527      if (!Destructor->getParent()->isDependentType())
3528        CheckDestructor(Destructor);
3529
3530    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3531    if (NewFD->isOverloadedOperator() &&
3532        CheckOverloadedOperatorDeclaration(NewFD))
3533      return NewFD->setInvalidDecl();
3534
3535    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3536    if (NewFD->getLiteralIdentifier() &&
3537        CheckLiteralOperatorDeclaration(NewFD))
3538      return NewFD->setInvalidDecl();
3539
3540    // In C++, check default arguments now that we have merged decls. Unless
3541    // the lexical context is the class, because in this case this is done
3542    // during delayed parsing anyway.
3543    if (!CurContext->isRecord())
3544      CheckCXXDefaultArguments(NewFD);
3545  }
3546}
3547
3548void Sema::CheckMain(FunctionDecl* FD) {
3549  // C++ [basic.start.main]p3:  A program that declares main to be inline
3550  //   or static is ill-formed.
3551  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3552  //   shall not appear in a declaration of main.
3553  // static main is not an error under C99, but we should warn about it.
3554  bool isInline = FD->isInlineSpecified();
3555  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3556  if (isInline || isStatic) {
3557    unsigned diagID = diag::warn_unusual_main_decl;
3558    if (isInline || getLangOptions().CPlusPlus)
3559      diagID = diag::err_unusual_main_decl;
3560
3561    int which = isStatic + (isInline << 1) - 1;
3562    Diag(FD->getLocation(), diagID) << which;
3563  }
3564
3565  QualType T = FD->getType();
3566  assert(T->isFunctionType() && "function decl is not of function type");
3567  const FunctionType* FT = T->getAs<FunctionType>();
3568
3569  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3570    // TODO: add a replacement fixit to turn the return type into 'int'.
3571    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3572    FD->setInvalidDecl(true);
3573  }
3574
3575  // Treat protoless main() as nullary.
3576  if (isa<FunctionNoProtoType>(FT)) return;
3577
3578  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3579  unsigned nparams = FTP->getNumArgs();
3580  assert(FD->getNumParams() == nparams);
3581
3582  bool HasExtraParameters = (nparams > 3);
3583
3584  // Darwin passes an undocumented fourth argument of type char**.  If
3585  // other platforms start sprouting these, the logic below will start
3586  // getting shifty.
3587  if (nparams == 4 &&
3588      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3589    HasExtraParameters = false;
3590
3591  if (HasExtraParameters) {
3592    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3593    FD->setInvalidDecl(true);
3594    nparams = 3;
3595  }
3596
3597  // FIXME: a lot of the following diagnostics would be improved
3598  // if we had some location information about types.
3599
3600  QualType CharPP =
3601    Context.getPointerType(Context.getPointerType(Context.CharTy));
3602  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3603
3604  for (unsigned i = 0; i < nparams; ++i) {
3605    QualType AT = FTP->getArgType(i);
3606
3607    bool mismatch = true;
3608
3609    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3610      mismatch = false;
3611    else if (Expected[i] == CharPP) {
3612      // As an extension, the following forms are okay:
3613      //   char const **
3614      //   char const * const *
3615      //   char * const *
3616
3617      QualifierCollector qs;
3618      const PointerType* PT;
3619      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3620          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3621          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3622        qs.removeConst();
3623        mismatch = !qs.empty();
3624      }
3625    }
3626
3627    if (mismatch) {
3628      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3629      // TODO: suggest replacing given type with expected type
3630      FD->setInvalidDecl(true);
3631    }
3632  }
3633
3634  if (nparams == 1 && !FD->isInvalidDecl()) {
3635    Diag(FD->getLocation(), diag::warn_main_one_arg);
3636  }
3637}
3638
3639bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3640  // FIXME: Need strict checking.  In C89, we need to check for
3641  // any assignment, increment, decrement, function-calls, or
3642  // commas outside of a sizeof.  In C99, it's the same list,
3643  // except that the aforementioned are allowed in unevaluated
3644  // expressions.  Everything else falls under the
3645  // "may accept other forms of constant expressions" exception.
3646  // (We never end up here for C++, so the constant expression
3647  // rules there don't matter.)
3648  if (Init->isConstantInitializer(Context))
3649    return false;
3650  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3651    << Init->getSourceRange();
3652  return true;
3653}
3654
3655void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3656  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3657}
3658
3659/// AddInitializerToDecl - Adds the initializer Init to the
3660/// declaration dcl. If DirectInit is true, this is C++ direct
3661/// initialization rather than copy initialization.
3662void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3663  Decl *RealDecl = dcl.getAs<Decl>();
3664  // If there is no declaration, there was an error parsing it.  Just ignore
3665  // the initializer.
3666  if (RealDecl == 0)
3667    return;
3668
3669  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3670    // With declarators parsed the way they are, the parser cannot
3671    // distinguish between a normal initializer and a pure-specifier.
3672    // Thus this grotesque test.
3673    IntegerLiteral *IL;
3674    Expr *Init = static_cast<Expr *>(init.get());
3675    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3676        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3677      CheckPureMethod(Method, Init->getSourceRange());
3678    else {
3679      Diag(Method->getLocation(), diag::err_member_function_initialization)
3680        << Method->getDeclName() << Init->getSourceRange();
3681      Method->setInvalidDecl();
3682    }
3683    return;
3684  }
3685
3686  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3687  if (!VDecl) {
3688    if (getLangOptions().CPlusPlus &&
3689        RealDecl->getLexicalDeclContext()->isRecord() &&
3690        isa<NamedDecl>(RealDecl))
3691      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3692        << cast<NamedDecl>(RealDecl)->getDeclName();
3693    else
3694      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3695    RealDecl->setInvalidDecl();
3696    return;
3697  }
3698
3699  // A definition must end up with a complete type, which means it must be
3700  // complete with the restriction that an array type might be completed by the
3701  // initializer; note that later code assumes this restriction.
3702  QualType BaseDeclType = VDecl->getType();
3703  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3704    BaseDeclType = Array->getElementType();
3705  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3706                          diag::err_typecheck_decl_incomplete_type)) {
3707    RealDecl->setInvalidDecl();
3708    return;
3709  }
3710
3711  // The variable can not have an abstract class type.
3712  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3713                             diag::err_abstract_type_in_decl,
3714                             AbstractVariableType))
3715    VDecl->setInvalidDecl();
3716
3717  const VarDecl *Def;
3718  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3719    Diag(VDecl->getLocation(), diag::err_redefinition)
3720      << VDecl->getDeclName();
3721    Diag(Def->getLocation(), diag::note_previous_definition);
3722    VDecl->setInvalidDecl();
3723    return;
3724  }
3725
3726  // Take ownership of the expression, now that we're sure we have somewhere
3727  // to put it.
3728  Expr *Init = init.takeAs<Expr>();
3729  assert(Init && "missing initializer");
3730
3731  // Capture the variable that is being initialized and the style of
3732  // initialization.
3733  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3734
3735  // FIXME: Poor source location information.
3736  InitializationKind Kind
3737    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3738                                                   Init->getLocStart(),
3739                                                   Init->getLocEnd())
3740                : InitializationKind::CreateCopy(VDecl->getLocation(),
3741                                                 Init->getLocStart());
3742
3743  // Get the decls type and save a reference for later, since
3744  // CheckInitializerTypes may change it.
3745  QualType DclT = VDecl->getType(), SavT = DclT;
3746  if (VDecl->isBlockVarDecl()) {
3747    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3748      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3749      VDecl->setInvalidDecl();
3750    } else if (!VDecl->isInvalidDecl()) {
3751      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3752      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3753                                          MultiExprArg(*this, (void**)&Init, 1),
3754                                                &DclT);
3755      if (Result.isInvalid()) {
3756        VDecl->setInvalidDecl();
3757        return;
3758      }
3759
3760      Init = Result.takeAs<Expr>();
3761
3762      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3763      // Don't check invalid declarations to avoid emitting useless diagnostics.
3764      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3765        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3766          CheckForConstantInitializer(Init, DclT);
3767      }
3768    }
3769  } else if (VDecl->isStaticDataMember() &&
3770             VDecl->getLexicalDeclContext()->isRecord()) {
3771    // This is an in-class initialization for a static data member, e.g.,
3772    //
3773    // struct S {
3774    //   static const int value = 17;
3775    // };
3776
3777    // Attach the initializer
3778    VDecl->setInit(Init);
3779
3780    // C++ [class.mem]p4:
3781    //   A member-declarator can contain a constant-initializer only
3782    //   if it declares a static member (9.4) of const integral or
3783    //   const enumeration type, see 9.4.2.
3784    QualType T = VDecl->getType();
3785    if (!T->isDependentType() &&
3786        (!Context.getCanonicalType(T).isConstQualified() ||
3787         !T->isIntegralType())) {
3788      Diag(VDecl->getLocation(), diag::err_member_initialization)
3789        << VDecl->getDeclName() << Init->getSourceRange();
3790      VDecl->setInvalidDecl();
3791    } else {
3792      // C++ [class.static.data]p4:
3793      //   If a static data member is of const integral or const
3794      //   enumeration type, its declaration in the class definition
3795      //   can specify a constant-initializer which shall be an
3796      //   integral constant expression (5.19).
3797      if (!Init->isTypeDependent() &&
3798          !Init->getType()->isIntegralType()) {
3799        // We have a non-dependent, non-integral or enumeration type.
3800        Diag(Init->getSourceRange().getBegin(),
3801             diag::err_in_class_initializer_non_integral_type)
3802          << Init->getType() << Init->getSourceRange();
3803        VDecl->setInvalidDecl();
3804      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3805        // Check whether the expression is a constant expression.
3806        llvm::APSInt Value;
3807        SourceLocation Loc;
3808        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3809          Diag(Loc, diag::err_in_class_initializer_non_constant)
3810            << Init->getSourceRange();
3811          VDecl->setInvalidDecl();
3812        } else if (!VDecl->getType()->isDependentType())
3813          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3814      }
3815    }
3816  } else if (VDecl->isFileVarDecl()) {
3817    if (VDecl->getStorageClass() == VarDecl::Extern)
3818      Diag(VDecl->getLocation(), diag::warn_extern_init);
3819    if (!VDecl->isInvalidDecl()) {
3820      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3821      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3822                                          MultiExprArg(*this, (void**)&Init, 1),
3823                                                &DclT);
3824      if (Result.isInvalid()) {
3825        VDecl->setInvalidDecl();
3826        return;
3827      }
3828
3829      Init = Result.takeAs<Expr>();
3830    }
3831
3832    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3833    // Don't check invalid declarations to avoid emitting useless diagnostics.
3834    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3835      // C99 6.7.8p4. All file scoped initializers need to be constant.
3836      CheckForConstantInitializer(Init, DclT);
3837    }
3838  }
3839  // If the type changed, it means we had an incomplete type that was
3840  // completed by the initializer. For example:
3841  //   int ary[] = { 1, 3, 5 };
3842  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3843  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3844    VDecl->setType(DclT);
3845    Init->setType(DclT);
3846  }
3847
3848  Init = MaybeCreateCXXExprWithTemporaries(Init);
3849  // Attach the initializer to the decl.
3850  VDecl->setInit(Init);
3851
3852  if (getLangOptions().CPlusPlus) {
3853    // Make sure we mark the destructor as used if necessary.
3854    QualType InitType = VDecl->getType();
3855    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3856      InitType = Context.getBaseElementType(Array);
3857    if (const RecordType *Record = InitType->getAs<RecordType>())
3858      FinalizeVarWithDestructor(VDecl, Record);
3859  }
3860
3861  return;
3862}
3863
3864/// ActOnInitializerError - Given that there was an error parsing an
3865/// initializer for the given declaration, try to return to some form
3866/// of sanity.
3867void Sema::ActOnInitializerError(DeclPtrTy dcl) {
3868  // Our main concern here is re-establishing invariants like "a
3869  // variable's type is either dependent or complete".
3870  Decl *D = dcl.getAs<Decl>();
3871  if (!D || D->isInvalidDecl()) return;
3872
3873  VarDecl *VD = dyn_cast<VarDecl>(D);
3874  if (!VD) return;
3875
3876  QualType Ty = VD->getType();
3877  if (Ty->isDependentType()) return;
3878
3879  // Require a complete type.
3880  if (RequireCompleteType(VD->getLocation(),
3881                          Context.getBaseElementType(Ty),
3882                          diag::err_typecheck_decl_incomplete_type)) {
3883    VD->setInvalidDecl();
3884    return;
3885  }
3886
3887  // Require an abstract type.
3888  if (RequireNonAbstractType(VD->getLocation(), Ty,
3889                             diag::err_abstract_type_in_decl,
3890                             AbstractVariableType)) {
3891    VD->setInvalidDecl();
3892    return;
3893  }
3894
3895  // Don't bother complaining about constructors or destructors,
3896  // though.
3897}
3898
3899void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3900                                  bool TypeContainsUndeducedAuto) {
3901  Decl *RealDecl = dcl.getAs<Decl>();
3902
3903  // If there is no declaration, there was an error parsing it. Just ignore it.
3904  if (RealDecl == 0)
3905    return;
3906
3907  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3908    QualType Type = Var->getType();
3909
3910    // C++0x [dcl.spec.auto]p3
3911    if (TypeContainsUndeducedAuto) {
3912      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3913        << Var->getDeclName() << Type;
3914      Var->setInvalidDecl();
3915      return;
3916    }
3917
3918    switch (Var->isThisDeclarationADefinition()) {
3919    case VarDecl::Definition:
3920      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3921        break;
3922
3923      // We have an out-of-line definition of a static data member
3924      // that has an in-class initializer, so we type-check this like
3925      // a declaration.
3926      //
3927      // Fall through
3928
3929    case VarDecl::DeclarationOnly:
3930      // It's only a declaration.
3931
3932      // Block scope. C99 6.7p7: If an identifier for an object is
3933      // declared with no linkage (C99 6.2.2p6), the type for the
3934      // object shall be complete.
3935      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3936          !Var->getLinkage() && !Var->isInvalidDecl() &&
3937          RequireCompleteType(Var->getLocation(), Type,
3938                              diag::err_typecheck_decl_incomplete_type))
3939        Var->setInvalidDecl();
3940
3941      // Make sure that the type is not abstract.
3942      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3943          RequireNonAbstractType(Var->getLocation(), Type,
3944                                 diag::err_abstract_type_in_decl,
3945                                 AbstractVariableType))
3946        Var->setInvalidDecl();
3947      return;
3948
3949    case VarDecl::TentativeDefinition:
3950      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3951      // object that has file scope without an initializer, and without a
3952      // storage-class specifier or with the storage-class specifier "static",
3953      // constitutes a tentative definition. Note: A tentative definition with
3954      // external linkage is valid (C99 6.2.2p5).
3955      if (!Var->isInvalidDecl()) {
3956        if (const IncompleteArrayType *ArrayT
3957                                    = Context.getAsIncompleteArrayType(Type)) {
3958          if (RequireCompleteType(Var->getLocation(),
3959                                  ArrayT->getElementType(),
3960                                  diag::err_illegal_decl_array_incomplete_type))
3961            Var->setInvalidDecl();
3962        } else if (Var->getStorageClass() == VarDecl::Static) {
3963          // C99 6.9.2p3: If the declaration of an identifier for an object is
3964          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3965          // declared type shall not be an incomplete type.
3966          // NOTE: code such as the following
3967          //     static struct s;
3968          //     struct s { int a; };
3969          // is accepted by gcc. Hence here we issue a warning instead of
3970          // an error and we do not invalidate the static declaration.
3971          // NOTE: to avoid multiple warnings, only check the first declaration.
3972          if (Var->getPreviousDeclaration() == 0)
3973            RequireCompleteType(Var->getLocation(), Type,
3974                                diag::ext_typecheck_decl_incomplete_type);
3975        }
3976      }
3977
3978      // Record the tentative definition; we're done.
3979      if (!Var->isInvalidDecl())
3980        TentativeDefinitions.push_back(Var);
3981      return;
3982    }
3983
3984    // Provide a specific diagnostic for uninitialized variable
3985    // definitions with incomplete array type.
3986    if (Type->isIncompleteArrayType()) {
3987      Diag(Var->getLocation(),
3988           diag::err_typecheck_incomplete_array_needs_initializer);
3989      Var->setInvalidDecl();
3990      return;
3991    }
3992
3993   // Provide a specific diagnostic for uninitialized variable
3994   // definitions with reference type.
3995   if (Type->isReferenceType()) {
3996     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3997       << Var->getDeclName()
3998       << SourceRange(Var->getLocation(), Var->getLocation());
3999     Var->setInvalidDecl();
4000     return;
4001   }
4002
4003    // Do not attempt to type-check the default initializer for a
4004    // variable with dependent type.
4005    if (Type->isDependentType())
4006      return;
4007
4008    if (Var->isInvalidDecl())
4009      return;
4010
4011    if (RequireCompleteType(Var->getLocation(),
4012                            Context.getBaseElementType(Type),
4013                            diag::err_typecheck_decl_incomplete_type)) {
4014      Var->setInvalidDecl();
4015      return;
4016    }
4017
4018    // The variable can not have an abstract class type.
4019    if (RequireNonAbstractType(Var->getLocation(), Type,
4020                               diag::err_abstract_type_in_decl,
4021                               AbstractVariableType)) {
4022      Var->setInvalidDecl();
4023      return;
4024    }
4025
4026    const RecordType *Record
4027      = Context.getBaseElementType(Type)->getAs<RecordType>();
4028    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4029        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4030      // C++03 [dcl.init]p9:
4031      //   If no initializer is specified for an object, and the
4032      //   object is of (possibly cv-qualified) non-POD class type (or
4033      //   array thereof), the object shall be default-initialized; if
4034      //   the object is of const-qualified type, the underlying class
4035      //   type shall have a user-declared default
4036      //   constructor. Otherwise, if no initializer is specified for
4037      //   a non- static object, the object and its subobjects, if
4038      //   any, have an indeterminate initial value); if the object
4039      //   or any of its subobjects are of const-qualified type, the
4040      //   program is ill-formed.
4041      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4042    } else {
4043      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4044      InitializationKind Kind
4045        = InitializationKind::CreateDefault(Var->getLocation());
4046
4047      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4048      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4049                                              MultiExprArg(*this, 0, 0));
4050      if (Init.isInvalid())
4051        Var->setInvalidDecl();
4052      else if (Init.get())
4053        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4054    }
4055
4056    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4057      FinalizeVarWithDestructor(Var, Record);
4058  }
4059}
4060
4061Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4062                                                   DeclPtrTy *Group,
4063                                                   unsigned NumDecls) {
4064  llvm::SmallVector<Decl*, 8> Decls;
4065
4066  if (DS.isTypeSpecOwned())
4067    Decls.push_back((Decl*)DS.getTypeRep());
4068
4069  for (unsigned i = 0; i != NumDecls; ++i)
4070    if (Decl *D = Group[i].getAs<Decl>())
4071      Decls.push_back(D);
4072
4073  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4074                                                   Decls.data(), Decls.size()));
4075}
4076
4077
4078/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4079/// to introduce parameters into function prototype scope.
4080Sema::DeclPtrTy
4081Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4082  const DeclSpec &DS = D.getDeclSpec();
4083
4084  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4085  VarDecl::StorageClass StorageClass = VarDecl::None;
4086  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4087    StorageClass = VarDecl::Register;
4088  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4089    Diag(DS.getStorageClassSpecLoc(),
4090         diag::err_invalid_storage_class_in_func_decl);
4091    D.getMutableDeclSpec().ClearStorageClassSpecs();
4092  }
4093
4094  if (D.getDeclSpec().isThreadSpecified())
4095    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4096
4097  DiagnoseFunctionSpecifiers(D);
4098
4099  // Check that there are no default arguments inside the type of this
4100  // parameter (C++ only).
4101  if (getLangOptions().CPlusPlus)
4102    CheckExtraCXXDefaultArguments(D);
4103
4104  TypeSourceInfo *TInfo = 0;
4105  TagDecl *OwnedDecl = 0;
4106  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4107
4108  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4109    // C++ [dcl.fct]p6:
4110    //   Types shall not be defined in return or parameter types.
4111    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4112      << Context.getTypeDeclType(OwnedDecl);
4113  }
4114
4115  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4116  IdentifierInfo *II = D.getIdentifier();
4117  if (II) {
4118    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4119                   ForRedeclaration);
4120    LookupName(R, S);
4121    if (R.isSingleResult()) {
4122      NamedDecl *PrevDecl = R.getFoundDecl();
4123      if (PrevDecl->isTemplateParameter()) {
4124        // Maybe we will complain about the shadowed template parameter.
4125        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4126        // Just pretend that we didn't see the previous declaration.
4127        PrevDecl = 0;
4128      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4129        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4130        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4131
4132        // Recover by removing the name
4133        II = 0;
4134        D.SetIdentifier(0, D.getIdentifierLoc());
4135        D.setInvalidType(true);
4136      }
4137    }
4138  }
4139
4140  // Temporarily put parameter variables in the translation unit, not
4141  // the enclosing context.  This prevents them from accidentally
4142  // looking like class members in C++.
4143  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4144                                    TInfo, parmDeclType, II,
4145                                    D.getIdentifierLoc(), StorageClass);
4146
4147  if (D.isInvalidType())
4148    New->setInvalidDecl();
4149
4150  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4151  if (D.getCXXScopeSpec().isSet()) {
4152    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4153      << D.getCXXScopeSpec().getRange();
4154    New->setInvalidDecl();
4155  }
4156
4157  // Add the parameter declaration into this scope.
4158  S->AddDecl(DeclPtrTy::make(New));
4159  if (II)
4160    IdResolver.AddDecl(New);
4161
4162  ProcessDeclAttributes(S, New, D);
4163
4164  if (New->hasAttr<BlocksAttr>()) {
4165    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4166  }
4167  return DeclPtrTy::make(New);
4168}
4169
4170ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4171                                  TypeSourceInfo *TSInfo, QualType T,
4172                                  IdentifierInfo *Name,
4173                                  SourceLocation NameLoc,
4174                                  VarDecl::StorageClass StorageClass) {
4175  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4176                                         adjustParameterType(T), TSInfo,
4177                                         StorageClass, 0);
4178
4179  // Parameters can not be abstract class types.
4180  // For record types, this is done by the AbstractClassUsageDiagnoser once
4181  // the class has been completely parsed.
4182  if (!CurContext->isRecord() &&
4183      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4184                             AbstractParamType))
4185    New->setInvalidDecl();
4186
4187  // Parameter declarators cannot be interface types. All ObjC objects are
4188  // passed by reference.
4189  if (T->isObjCInterfaceType()) {
4190    Diag(NameLoc,
4191         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4192    New->setInvalidDecl();
4193  }
4194
4195  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4196  // duration shall not be qualified by an address-space qualifier."
4197  // Since all parameters have automatic store duration, they can not have
4198  // an address space.
4199  if (T.getAddressSpace() != 0) {
4200    Diag(NameLoc, diag::err_arg_with_address_space);
4201    New->setInvalidDecl();
4202  }
4203
4204  return New;
4205}
4206
4207void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
4208  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
4209  Param->setDeclContext(CurContext);
4210}
4211
4212void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4213                                           SourceLocation LocAfterDecls) {
4214  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4215         "Not a function declarator!");
4216  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4217
4218  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4219  // for a K&R function.
4220  if (!FTI.hasPrototype) {
4221    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4222      --i;
4223      if (FTI.ArgInfo[i].Param == 0) {
4224        llvm::SmallString<256> Code;
4225        llvm::raw_svector_ostream(Code) << "  int "
4226                                        << FTI.ArgInfo[i].Ident->getName()
4227                                        << ";\n";
4228        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4229          << FTI.ArgInfo[i].Ident
4230          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4231
4232        // Implicitly declare the argument as type 'int' for lack of a better
4233        // type.
4234        DeclSpec DS;
4235        const char* PrevSpec; // unused
4236        unsigned DiagID; // unused
4237        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4238                           PrevSpec, DiagID);
4239        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4240        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4241        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4242      }
4243    }
4244  }
4245}
4246
4247Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4248                                              Declarator &D) {
4249  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4250  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4251         "Not a function declarator!");
4252  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4253
4254  if (FTI.hasPrototype) {
4255    // FIXME: Diagnose arguments without names in C.
4256  }
4257
4258  Scope *ParentScope = FnBodyScope->getParent();
4259
4260  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4261                                  MultiTemplateParamsArg(*this),
4262                                  /*IsFunctionDefinition=*/true);
4263  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4264}
4265
4266static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4267  // Don't warn about invalid declarations.
4268  if (FD->isInvalidDecl())
4269    return false;
4270
4271  // Or declarations that aren't global.
4272  if (!FD->isGlobal())
4273    return false;
4274
4275  // Don't warn about C++ member functions.
4276  if (isa<CXXMethodDecl>(FD))
4277    return false;
4278
4279  // Don't warn about 'main'.
4280  if (FD->isMain())
4281    return false;
4282
4283  // Don't warn about inline functions.
4284  if (FD->isInlineSpecified())
4285    return false;
4286
4287  // Don't warn about function templates.
4288  if (FD->getDescribedFunctionTemplate())
4289    return false;
4290
4291  // Don't warn about function template specializations.
4292  if (FD->isFunctionTemplateSpecialization())
4293    return false;
4294
4295  bool MissingPrototype = true;
4296  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4297       Prev; Prev = Prev->getPreviousDeclaration()) {
4298    // Ignore any declarations that occur in function or method
4299    // scope, because they aren't visible from the header.
4300    if (Prev->getDeclContext()->isFunctionOrMethod())
4301      continue;
4302
4303    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4304    break;
4305  }
4306
4307  return MissingPrototype;
4308}
4309
4310Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4311  // Clear the last template instantiation error context.
4312  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4313
4314  if (!D)
4315    return D;
4316  FunctionDecl *FD = 0;
4317
4318  if (FunctionTemplateDecl *FunTmpl
4319        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4320    FD = FunTmpl->getTemplatedDecl();
4321  else
4322    FD = cast<FunctionDecl>(D.getAs<Decl>());
4323
4324  // Enter a new function scope
4325  PushFunctionScope();
4326
4327  // See if this is a redefinition.
4328  // But don't complain if we're in GNU89 mode and the previous definition
4329  // was an extern inline function.
4330  const FunctionDecl *Definition;
4331  if (FD->getBody(Definition) &&
4332      !canRedefineFunction(Definition, getLangOptions())) {
4333    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4334    Diag(Definition->getLocation(), diag::note_previous_definition);
4335  }
4336
4337  // Builtin functions cannot be defined.
4338  if (unsigned BuiltinID = FD->getBuiltinID()) {
4339    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4340      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4341      FD->setInvalidDecl();
4342    }
4343  }
4344
4345  // The return type of a function definition must be complete
4346  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4347  QualType ResultType = FD->getResultType();
4348  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4349      !FD->isInvalidDecl() &&
4350      RequireCompleteType(FD->getLocation(), ResultType,
4351                          diag::err_func_def_incomplete_result))
4352    FD->setInvalidDecl();
4353
4354  // GNU warning -Wmissing-prototypes:
4355  //   Warn if a global function is defined without a previous
4356  //   prototype declaration. This warning is issued even if the
4357  //   definition itself provides a prototype. The aim is to detect
4358  //   global functions that fail to be declared in header files.
4359  if (ShouldWarnAboutMissingPrototype(FD))
4360    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4361
4362  if (FnBodyScope)
4363    PushDeclContext(FnBodyScope, FD);
4364
4365  // Check the validity of our function parameters
4366  CheckParmsForFunctionDef(FD);
4367
4368  bool ShouldCheckShadow =
4369    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4370
4371  // Introduce our parameters into the function scope
4372  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4373    ParmVarDecl *Param = FD->getParamDecl(p);
4374    Param->setOwningFunction(FD);
4375
4376    // If this has an identifier, add it to the scope stack.
4377    if (Param->getIdentifier() && FnBodyScope) {
4378      if (ShouldCheckShadow)
4379        CheckShadow(FnBodyScope, Param);
4380
4381      PushOnScopeChains(Param, FnBodyScope);
4382    }
4383  }
4384
4385  // Checking attributes of current function definition
4386  // dllimport attribute.
4387  if (FD->getAttr<DLLImportAttr>() &&
4388      (!FD->getAttr<DLLExportAttr>())) {
4389    // dllimport attribute cannot be applied to definition.
4390    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4391      Diag(FD->getLocation(),
4392           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4393        << "dllimport";
4394      FD->setInvalidDecl();
4395      return DeclPtrTy::make(FD);
4396    }
4397
4398    // Visual C++ appears to not think this is an issue, so only issue
4399    // a warning when Microsoft extensions are disabled.
4400    if (!LangOpts.Microsoft) {
4401      // If a symbol previously declared dllimport is later defined, the
4402      // attribute is ignored in subsequent references, and a warning is
4403      // emitted.
4404      Diag(FD->getLocation(),
4405           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4406        << FD->getNameAsCString() << "dllimport";
4407    }
4408  }
4409  return DeclPtrTy::make(FD);
4410}
4411
4412Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4413  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4414}
4415
4416Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4417                                              bool IsInstantiation) {
4418  Decl *dcl = D.getAs<Decl>();
4419  Stmt *Body = BodyArg.takeAs<Stmt>();
4420
4421  FunctionDecl *FD = 0;
4422  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4423  if (FunTmpl)
4424    FD = FunTmpl->getTemplatedDecl();
4425  else
4426    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4427
4428  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4429
4430  if (FD) {
4431    FD->setBody(Body);
4432    if (FD->isMain()) {
4433      // C and C++ allow for main to automagically return 0.
4434      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4435      FD->setHasImplicitReturnZero(true);
4436      WP.disableCheckFallThrough();
4437    }
4438
4439    if (!FD->isInvalidDecl())
4440      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4441
4442    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4443      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4444
4445    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4446  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4447    assert(MD == getCurMethodDecl() && "Method parsing confused");
4448    MD->setBody(Body);
4449    MD->setEndLoc(Body->getLocEnd());
4450    if (!MD->isInvalidDecl())
4451      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4452  } else {
4453    Body->Destroy(Context);
4454    return DeclPtrTy();
4455  }
4456
4457  // Verify and clean out per-function state.
4458
4459  // Check goto/label use.
4460  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4461       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4462    LabelStmt *L = I->second;
4463
4464    // Verify that we have no forward references left.  If so, there was a goto
4465    // or address of a label taken, but no definition of it.  Label fwd
4466    // definitions are indicated with a null substmt.
4467    if (L->getSubStmt() != 0)
4468      continue;
4469
4470    // Emit error.
4471    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4472
4473    // At this point, we have gotos that use the bogus label.  Stitch it into
4474    // the function body so that they aren't leaked and that the AST is well
4475    // formed.
4476    if (Body == 0) {
4477      // The whole function wasn't parsed correctly, just delete this.
4478      L->Destroy(Context);
4479      continue;
4480    }
4481
4482    // Otherwise, the body is valid: we want to stitch the label decl into the
4483    // function somewhere so that it is properly owned and so that the goto
4484    // has a valid target.  Do this by creating a new compound stmt with the
4485    // label in it.
4486
4487    // Give the label a sub-statement.
4488    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4489
4490    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4491                               cast<CXXTryStmt>(Body)->getTryBlock() :
4492                               cast<CompoundStmt>(Body);
4493    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4494                                          Compound->body_end());
4495    Elements.push_back(L);
4496    Compound->setStmts(Context, Elements.data(), Elements.size());
4497  }
4498
4499  if (Body) {
4500    // C++ constructors that have function-try-blocks can't have return
4501    // statements in the handlers of that block. (C++ [except.handle]p14)
4502    // Verify this.
4503    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4504      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4505
4506    // Verify that that gotos and switch cases don't jump into scopes illegally.
4507    // Verify that that gotos and switch cases don't jump into scopes illegally.
4508    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4509      DiagnoseInvalidJumps(Body);
4510
4511    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4512      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4513                                             Destructor->getParent());
4514
4515    // If any errors have occurred, clear out any temporaries that may have
4516    // been leftover. This ensures that these temporaries won't be picked up for
4517    // deletion in some later function.
4518    if (PP.getDiagnostics().hasErrorOccurred())
4519      ExprTemporaries.clear();
4520    else if (!isa<FunctionTemplateDecl>(dcl)) {
4521      // Since the body is valid, issue any analysis-based warnings that are
4522      // enabled.
4523      QualType ResultType;
4524      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4525        ResultType = FD->getResultType();
4526      }
4527      else {
4528        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4529        ResultType = MD->getResultType();
4530      }
4531      AnalysisWarnings.IssueWarnings(WP, dcl);
4532    }
4533
4534    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4535  }
4536
4537  if (!IsInstantiation)
4538    PopDeclContext();
4539
4540  PopFunctionOrBlockScope();
4541
4542  // If any errors have occurred, clear out any temporaries that may have
4543  // been leftover. This ensures that these temporaries won't be picked up for
4544  // deletion in some later function.
4545  if (getDiagnostics().hasErrorOccurred())
4546    ExprTemporaries.clear();
4547
4548  return D;
4549}
4550
4551/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4552/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4553NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4554                                          IdentifierInfo &II, Scope *S) {
4555  // Before we produce a declaration for an implicitly defined
4556  // function, see whether there was a locally-scoped declaration of
4557  // this name as a function or variable. If so, use that
4558  // (non-visible) declaration, and complain about it.
4559  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4560    = LocallyScopedExternalDecls.find(&II);
4561  if (Pos != LocallyScopedExternalDecls.end()) {
4562    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4563    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4564    return Pos->second;
4565  }
4566
4567  // Extension in C99.  Legal in C90, but warn about it.
4568  if (II.getName().startswith("__builtin_"))
4569    Diag(Loc, diag::warn_builtin_unknown) << &II;
4570  else if (getLangOptions().C99)
4571    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4572  else
4573    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4574
4575  // Set a Declarator for the implicit definition: int foo();
4576  const char *Dummy;
4577  DeclSpec DS;
4578  unsigned DiagID;
4579  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4580  Error = Error; // Silence warning.
4581  assert(!Error && "Error setting up implicit decl!");
4582  Declarator D(DS, Declarator::BlockContext);
4583  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4584                                             0, 0, false, SourceLocation(),
4585                                             false, 0,0,0, Loc, Loc, D),
4586                SourceLocation());
4587  D.SetIdentifier(&II, Loc);
4588
4589  // Insert this function into translation-unit scope.
4590
4591  DeclContext *PrevDC = CurContext;
4592  CurContext = Context.getTranslationUnitDecl();
4593
4594  FunctionDecl *FD =
4595 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4596  FD->setImplicit();
4597
4598  CurContext = PrevDC;
4599
4600  AddKnownFunctionAttributes(FD);
4601
4602  return FD;
4603}
4604
4605/// \brief Adds any function attributes that we know a priori based on
4606/// the declaration of this function.
4607///
4608/// These attributes can apply both to implicitly-declared builtins
4609/// (like __builtin___printf_chk) or to library-declared functions
4610/// like NSLog or printf.
4611void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4612  if (FD->isInvalidDecl())
4613    return;
4614
4615  // If this is a built-in function, map its builtin attributes to
4616  // actual attributes.
4617  if (unsigned BuiltinID = FD->getBuiltinID()) {
4618    // Handle printf-formatting attributes.
4619    unsigned FormatIdx;
4620    bool HasVAListArg;
4621    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4622      if (!FD->getAttr<FormatAttr>())
4623        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4624                                               HasVAListArg ? 0 : FormatIdx+2));
4625    }
4626
4627    // Mark const if we don't care about errno and that is the only
4628    // thing preventing the function from being const. This allows
4629    // IRgen to use LLVM intrinsics for such functions.
4630    if (!getLangOptions().MathErrno &&
4631        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4632      if (!FD->getAttr<ConstAttr>())
4633        FD->addAttr(::new (Context) ConstAttr());
4634    }
4635
4636    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4637      FD->setType(Context.getNoReturnType(FD->getType()));
4638    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4639      FD->addAttr(::new (Context) NoThrowAttr());
4640    if (Context.BuiltinInfo.isConst(BuiltinID))
4641      FD->addAttr(::new (Context) ConstAttr());
4642  }
4643
4644  IdentifierInfo *Name = FD->getIdentifier();
4645  if (!Name)
4646    return;
4647  if ((!getLangOptions().CPlusPlus &&
4648       FD->getDeclContext()->isTranslationUnit()) ||
4649      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4650       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4651       LinkageSpecDecl::lang_c)) {
4652    // Okay: this could be a libc/libm/Objective-C function we know
4653    // about.
4654  } else
4655    return;
4656
4657  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4658    // FIXME: NSLog and NSLogv should be target specific
4659    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4660      // FIXME: We known better than our headers.
4661      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4662    } else
4663      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4664                                             Name->isStr("NSLogv") ? 0 : 2));
4665  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4666    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4667    // target-specific builtins, perhaps?
4668    if (!FD->getAttr<FormatAttr>())
4669      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4670                                             Name->isStr("vasprintf") ? 0 : 3));
4671  }
4672}
4673
4674TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4675                                    TypeSourceInfo *TInfo) {
4676  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4677  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4678
4679  if (!TInfo) {
4680    assert(D.isInvalidType() && "no declarator info for valid type");
4681    TInfo = Context.getTrivialTypeSourceInfo(T);
4682  }
4683
4684  // Scope manipulation handled by caller.
4685  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4686                                           D.getIdentifierLoc(),
4687                                           D.getIdentifier(),
4688                                           TInfo);
4689
4690  if (const TagType *TT = T->getAs<TagType>()) {
4691    TagDecl *TD = TT->getDecl();
4692
4693    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4694    // keep track of the TypedefDecl.
4695    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4696      TD->setTypedefForAnonDecl(NewTD);
4697  }
4698
4699  if (D.isInvalidType())
4700    NewTD->setInvalidDecl();
4701  return NewTD;
4702}
4703
4704
4705/// \brief Determine whether a tag with a given kind is acceptable
4706/// as a redeclaration of the given tag declaration.
4707///
4708/// \returns true if the new tag kind is acceptable, false otherwise.
4709bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4710                                        TagDecl::TagKind NewTag,
4711                                        SourceLocation NewTagLoc,
4712                                        const IdentifierInfo &Name) {
4713  // C++ [dcl.type.elab]p3:
4714  //   The class-key or enum keyword present in the
4715  //   elaborated-type-specifier shall agree in kind with the
4716  //   declaration to which the name in theelaborated-type-specifier
4717  //   refers. This rule also applies to the form of
4718  //   elaborated-type-specifier that declares a class-name or
4719  //   friend class since it can be construed as referring to the
4720  //   definition of the class. Thus, in any
4721  //   elaborated-type-specifier, the enum keyword shall be used to
4722  //   refer to an enumeration (7.2), the union class-keyshall be
4723  //   used to refer to a union (clause 9), and either the class or
4724  //   struct class-key shall be used to refer to a class (clause 9)
4725  //   declared using the class or struct class-key.
4726  TagDecl::TagKind OldTag = Previous->getTagKind();
4727  if (OldTag == NewTag)
4728    return true;
4729
4730  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4731      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4732    // Warn about the struct/class tag mismatch.
4733    bool isTemplate = false;
4734    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4735      isTemplate = Record->getDescribedClassTemplate();
4736
4737    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4738      << (NewTag == TagDecl::TK_class)
4739      << isTemplate << &Name
4740      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4741                              OldTag == TagDecl::TK_class? "class" : "struct");
4742    Diag(Previous->getLocation(), diag::note_previous_use);
4743    return true;
4744  }
4745  return false;
4746}
4747
4748/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4749/// former case, Name will be non-null.  In the later case, Name will be null.
4750/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4751/// reference/declaration/definition of a tag.
4752Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4753                               SourceLocation KWLoc, CXXScopeSpec &SS,
4754                               IdentifierInfo *Name, SourceLocation NameLoc,
4755                               AttributeList *Attr, AccessSpecifier AS,
4756                               MultiTemplateParamsArg TemplateParameterLists,
4757                               bool &OwnedDecl, bool &IsDependent) {
4758  // If this is not a definition, it must have a name.
4759  assert((Name != 0 || TUK == TUK_Definition) &&
4760         "Nameless record must be a definition!");
4761
4762  OwnedDecl = false;
4763  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4764
4765  // FIXME: Check explicit specializations more carefully.
4766  bool isExplicitSpecialization = false;
4767  if (TUK != TUK_Reference) {
4768    if (TemplateParameterList *TemplateParams
4769          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4770                        (TemplateParameterList**)TemplateParameterLists.get(),
4771                                              TemplateParameterLists.size(),
4772                                                    TUK == TUK_Friend,
4773                                                    isExplicitSpecialization)) {
4774      if (TemplateParams->size() > 0) {
4775        // This is a declaration or definition of a class template (which may
4776        // be a member of another template).
4777        OwnedDecl = false;
4778        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4779                                               SS, Name, NameLoc, Attr,
4780                                               TemplateParams,
4781                                               AS);
4782        TemplateParameterLists.release();
4783        return Result.get();
4784      } else {
4785        // The "template<>" header is extraneous.
4786        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4787          << ElaboratedType::getNameForTagKind(Kind) << Name;
4788        isExplicitSpecialization = true;
4789      }
4790    }
4791
4792    TemplateParameterLists.release();
4793  }
4794
4795  DeclContext *SearchDC = CurContext;
4796  DeclContext *DC = CurContext;
4797  bool isStdBadAlloc = false;
4798  bool Invalid = false;
4799
4800  RedeclarationKind Redecl = ForRedeclaration;
4801  if (TUK == TUK_Friend || TUK == TUK_Reference)
4802    Redecl = NotForRedeclaration;
4803
4804  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4805
4806  if (Name && SS.isNotEmpty()) {
4807    // We have a nested-name tag ('struct foo::bar').
4808
4809    // Check for invalid 'foo::'.
4810    if (SS.isInvalid()) {
4811      Name = 0;
4812      goto CreateNewDecl;
4813    }
4814
4815    // If this is a friend or a reference to a class in a dependent
4816    // context, don't try to make a decl for it.
4817    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4818      DC = computeDeclContext(SS, false);
4819      if (!DC) {
4820        IsDependent = true;
4821        return DeclPtrTy();
4822      }
4823    }
4824
4825    if (RequireCompleteDeclContext(SS))
4826      return DeclPtrTy::make((Decl *)0);
4827
4828    DC = computeDeclContext(SS, true);
4829    SearchDC = DC;
4830    // Look-up name inside 'foo::'.
4831    LookupQualifiedName(Previous, DC);
4832
4833    if (Previous.isAmbiguous())
4834      return DeclPtrTy();
4835
4836    if (Previous.empty()) {
4837      // Name lookup did not find anything. However, if the
4838      // nested-name-specifier refers to the current instantiation,
4839      // and that current instantiation has any dependent base
4840      // classes, we might find something at instantiation time: treat
4841      // this as a dependent elaborated-type-specifier.
4842      if (Previous.wasNotFoundInCurrentInstantiation()) {
4843        IsDependent = true;
4844        return DeclPtrTy();
4845      }
4846
4847      // A tag 'foo::bar' must already exist.
4848      Diag(NameLoc, diag::err_not_tag_in_scope)
4849        << Kind << Name << DC << SS.getRange();
4850      Name = 0;
4851      Invalid = true;
4852      goto CreateNewDecl;
4853    }
4854  } else if (Name) {
4855    // If this is a named struct, check to see if there was a previous forward
4856    // declaration or definition.
4857    // FIXME: We're looking into outer scopes here, even when we
4858    // shouldn't be. Doing so can result in ambiguities that we
4859    // shouldn't be diagnosing.
4860    LookupName(Previous, S);
4861
4862    // Note:  there used to be some attempt at recovery here.
4863    if (Previous.isAmbiguous())
4864      return DeclPtrTy();
4865
4866    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4867      // FIXME: This makes sure that we ignore the contexts associated
4868      // with C structs, unions, and enums when looking for a matching
4869      // tag declaration or definition. See the similar lookup tweak
4870      // in Sema::LookupName; is there a better way to deal with this?
4871      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4872        SearchDC = SearchDC->getParent();
4873    }
4874  }
4875
4876  if (Previous.isSingleResult() &&
4877      Previous.getFoundDecl()->isTemplateParameter()) {
4878    // Maybe we will complain about the shadowed template parameter.
4879    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4880    // Just pretend that we didn't see the previous declaration.
4881    Previous.clear();
4882  }
4883
4884  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4885      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4886    // This is a declaration of or a reference to "std::bad_alloc".
4887    isStdBadAlloc = true;
4888
4889    if (Previous.empty() && StdBadAlloc) {
4890      // std::bad_alloc has been implicitly declared (but made invisible to
4891      // name lookup). Fill in this implicit declaration as the previous
4892      // declaration, so that the declarations get chained appropriately.
4893      Previous.addDecl(StdBadAlloc);
4894    }
4895  }
4896
4897  // If we didn't find a previous declaration, and this is a reference
4898  // (or friend reference), move to the correct scope.  In C++, we
4899  // also need to do a redeclaration lookup there, just in case
4900  // there's a shadow friend decl.
4901  if (Name && Previous.empty() &&
4902      (TUK == TUK_Reference || TUK == TUK_Friend)) {
4903    if (Invalid) goto CreateNewDecl;
4904    assert(SS.isEmpty());
4905
4906    if (TUK == TUK_Reference) {
4907      // C++ [basic.scope.pdecl]p5:
4908      //   -- for an elaborated-type-specifier of the form
4909      //
4910      //          class-key identifier
4911      //
4912      //      if the elaborated-type-specifier is used in the
4913      //      decl-specifier-seq or parameter-declaration-clause of a
4914      //      function defined in namespace scope, the identifier is
4915      //      declared as a class-name in the namespace that contains
4916      //      the declaration; otherwise, except as a friend
4917      //      declaration, the identifier is declared in the smallest
4918      //      non-class, non-function-prototype scope that contains the
4919      //      declaration.
4920      //
4921      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4922      // C structs and unions.
4923      //
4924      // It is an error in C++ to declare (rather than define) an enum
4925      // type, including via an elaborated type specifier.  We'll
4926      // diagnose that later; for now, declare the enum in the same
4927      // scope as we would have picked for any other tag type.
4928      //
4929      // GNU C also supports this behavior as part of its incomplete
4930      // enum types extension, while GNU C++ does not.
4931      //
4932      // Find the context where we'll be declaring the tag.
4933      // FIXME: We would like to maintain the current DeclContext as the
4934      // lexical context,
4935      while (SearchDC->isRecord())
4936        SearchDC = SearchDC->getParent();
4937
4938      // Find the scope where we'll be declaring the tag.
4939      while (S->isClassScope() ||
4940             (getLangOptions().CPlusPlus &&
4941              S->isFunctionPrototypeScope()) ||
4942             ((S->getFlags() & Scope::DeclScope) == 0) ||
4943             (S->getEntity() &&
4944              ((DeclContext *)S->getEntity())->isTransparentContext()))
4945        S = S->getParent();
4946    } else {
4947      assert(TUK == TUK_Friend);
4948      // C++ [namespace.memdef]p3:
4949      //   If a friend declaration in a non-local class first declares a
4950      //   class or function, the friend class or function is a member of
4951      //   the innermost enclosing namespace.
4952      SearchDC = SearchDC->getEnclosingNamespaceContext();
4953    }
4954
4955    // In C++, look for a shadow friend decl.
4956    if (getLangOptions().CPlusPlus) {
4957      Previous.setRedeclarationKind(ForRedeclaration);
4958      LookupQualifiedName(Previous, SearchDC);
4959    }
4960  }
4961
4962  if (!Previous.empty()) {
4963    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
4964    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4965      // If this is a use of a previous tag, or if the tag is already declared
4966      // in the same scope (so that the definition/declaration completes or
4967      // rementions the tag), reuse the decl.
4968      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4969          isDeclInScope(PrevDecl, SearchDC, S)) {
4970        // Make sure that this wasn't declared as an enum and now used as a
4971        // struct or something similar.
4972        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4973          bool SafeToContinue
4974            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4975               Kind != TagDecl::TK_enum);
4976          if (SafeToContinue)
4977            Diag(KWLoc, diag::err_use_with_wrong_tag)
4978              << Name
4979              << FixItHint::CreateReplacement(SourceRange(KWLoc),
4980                                              PrevTagDecl->getKindName());
4981          else
4982            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4983          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4984
4985          if (SafeToContinue)
4986            Kind = PrevTagDecl->getTagKind();
4987          else {
4988            // Recover by making this an anonymous redefinition.
4989            Name = 0;
4990            Previous.clear();
4991            Invalid = true;
4992          }
4993        }
4994
4995        if (!Invalid) {
4996          // If this is a use, just return the declaration we found.
4997
4998          // FIXME: In the future, return a variant or some other clue
4999          // for the consumer of this Decl to know it doesn't own it.
5000          // For our current ASTs this shouldn't be a problem, but will
5001          // need to be changed with DeclGroups.
5002          if (TUK == TUK_Reference || TUK == TUK_Friend)
5003            return DeclPtrTy::make(PrevTagDecl);
5004
5005          // Diagnose attempts to redefine a tag.
5006          if (TUK == TUK_Definition) {
5007            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5008              // If we're defining a specialization and the previous definition
5009              // is from an implicit instantiation, don't emit an error
5010              // here; we'll catch this in the general case below.
5011              if (!isExplicitSpecialization ||
5012                  !isa<CXXRecordDecl>(Def) ||
5013                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5014                                               == TSK_ExplicitSpecialization) {
5015                Diag(NameLoc, diag::err_redefinition) << Name;
5016                Diag(Def->getLocation(), diag::note_previous_definition);
5017                // If this is a redefinition, recover by making this
5018                // struct be anonymous, which will make any later
5019                // references get the previous definition.
5020                Name = 0;
5021                Previous.clear();
5022                Invalid = true;
5023              }
5024            } else {
5025              // If the type is currently being defined, complain
5026              // about a nested redefinition.
5027              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5028              if (Tag->isBeingDefined()) {
5029                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5030                Diag(PrevTagDecl->getLocation(),
5031                     diag::note_previous_definition);
5032                Name = 0;
5033                Previous.clear();
5034                Invalid = true;
5035              }
5036            }
5037
5038            // Okay, this is definition of a previously declared or referenced
5039            // tag PrevDecl. We're going to create a new Decl for it.
5040          }
5041        }
5042        // If we get here we have (another) forward declaration or we
5043        // have a definition.  Just create a new decl.
5044
5045      } else {
5046        // If we get here, this is a definition of a new tag type in a nested
5047        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5048        // new decl/type.  We set PrevDecl to NULL so that the entities
5049        // have distinct types.
5050        Previous.clear();
5051      }
5052      // If we get here, we're going to create a new Decl. If PrevDecl
5053      // is non-NULL, it's a definition of the tag declared by
5054      // PrevDecl. If it's NULL, we have a new definition.
5055    } else {
5056      // PrevDecl is a namespace, template, or anything else
5057      // that lives in the IDNS_Tag identifier namespace.
5058      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5059          isDeclInScope(PrevDecl, SearchDC, S)) {
5060        // The tag name clashes with a namespace name, issue an error and
5061        // recover by making this tag be anonymous.
5062        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5063        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5064        Name = 0;
5065        Previous.clear();
5066        Invalid = true;
5067      } else {
5068        // The existing declaration isn't relevant to us; we're in a
5069        // new scope, so clear out the previous declaration.
5070        Previous.clear();
5071      }
5072    }
5073  }
5074
5075CreateNewDecl:
5076
5077  TagDecl *PrevDecl = 0;
5078  if (Previous.isSingleResult())
5079    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5080
5081  // If there is an identifier, use the location of the identifier as the
5082  // location of the decl, otherwise use the location of the struct/union
5083  // keyword.
5084  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5085
5086  // Otherwise, create a new declaration. If there is a previous
5087  // declaration of the same entity, the two will be linked via
5088  // PrevDecl.
5089  TagDecl *New;
5090
5091  if (Kind == TagDecl::TK_enum) {
5092    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5093    // enum X { A, B, C } D;    D should chain to X.
5094    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5095                           cast_or_null<EnumDecl>(PrevDecl));
5096    // If this is an undefined enum, warn.
5097    if (TUK != TUK_Definition && !Invalid)  {
5098      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5099                                              : diag::ext_forward_ref_enum;
5100      Diag(Loc, DK);
5101    }
5102  } else {
5103    // struct/union/class
5104
5105    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5106    // struct X { int A; } D;    D should chain to X.
5107    if (getLangOptions().CPlusPlus) {
5108      // FIXME: Look for a way to use RecordDecl for simple structs.
5109      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5110                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5111
5112      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5113        StdBadAlloc = cast<CXXRecordDecl>(New);
5114    } else
5115      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5116                               cast_or_null<RecordDecl>(PrevDecl));
5117  }
5118
5119  // Maybe add qualifier info.
5120  if (SS.isNotEmpty()) {
5121    NestedNameSpecifier *NNS
5122      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5123    New->setQualifierInfo(NNS, SS.getRange());
5124  }
5125
5126  if (Kind != TagDecl::TK_enum) {
5127    // Handle #pragma pack: if the #pragma pack stack has non-default
5128    // alignment, make up a packed attribute for this decl. These
5129    // attributes are checked when the ASTContext lays out the
5130    // structure.
5131    //
5132    // It is important for implementing the correct semantics that this
5133    // happen here (in act on tag decl). The #pragma pack stack is
5134    // maintained as a result of parser callbacks which can occur at
5135    // many points during the parsing of a struct declaration (because
5136    // the #pragma tokens are effectively skipped over during the
5137    // parsing of the struct).
5138    if (unsigned Alignment = getPragmaPackAlignment())
5139      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5140  }
5141
5142  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5143    // C++ [dcl.typedef]p3:
5144    //   [...] Similarly, in a given scope, a class or enumeration
5145    //   shall not be declared with the same name as a typedef-name
5146    //   that is declared in that scope and refers to a type other
5147    //   than the class or enumeration itself.
5148    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5149                        ForRedeclaration);
5150    LookupName(Lookup, S);
5151    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5152    NamedDecl *PrevTypedefNamed = PrevTypedef;
5153    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5154        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5155          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5156      Diag(Loc, diag::err_tag_definition_of_typedef)
5157        << Context.getTypeDeclType(New)
5158        << PrevTypedef->getUnderlyingType();
5159      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5160      Invalid = true;
5161    }
5162  }
5163
5164  // If this is a specialization of a member class (of a class template),
5165  // check the specialization.
5166  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5167    Invalid = true;
5168
5169  if (Invalid)
5170    New->setInvalidDecl();
5171
5172  if (Attr)
5173    ProcessDeclAttributeList(S, New, Attr);
5174
5175  // If we're declaring or defining a tag in function prototype scope
5176  // in C, note that this type can only be used within the function.
5177  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5178    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5179
5180  // Set the lexical context. If the tag has a C++ scope specifier, the
5181  // lexical context will be different from the semantic context.
5182  New->setLexicalDeclContext(CurContext);
5183
5184  // Mark this as a friend decl if applicable.
5185  if (TUK == TUK_Friend)
5186    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5187
5188  // Set the access specifier.
5189  if (!Invalid && SearchDC->isRecord())
5190    SetMemberAccessSpecifier(New, PrevDecl, AS);
5191
5192  if (TUK == TUK_Definition)
5193    New->startDefinition();
5194
5195  // If this has an identifier, add it to the scope stack.
5196  if (TUK == TUK_Friend) {
5197    // We might be replacing an existing declaration in the lookup tables;
5198    // if so, borrow its access specifier.
5199    if (PrevDecl)
5200      New->setAccess(PrevDecl->getAccess());
5201
5202    DeclContext *DC = New->getDeclContext()->getLookupContext();
5203    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5204    if (Name) // can be null along some error paths
5205      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5206        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5207  } else if (Name) {
5208    S = getNonFieldDeclScope(S);
5209    PushOnScopeChains(New, S);
5210  } else {
5211    CurContext->addDecl(New);
5212  }
5213
5214  // If this is the C FILE type, notify the AST context.
5215  if (IdentifierInfo *II = New->getIdentifier())
5216    if (!New->isInvalidDecl() &&
5217        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5218        II->isStr("FILE"))
5219      Context.setFILEDecl(New);
5220
5221  OwnedDecl = true;
5222  return DeclPtrTy::make(New);
5223}
5224
5225void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5226  AdjustDeclIfTemplate(TagD);
5227  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5228
5229  // Enter the tag context.
5230  PushDeclContext(S, Tag);
5231}
5232
5233void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5234                                           SourceLocation LBraceLoc) {
5235  AdjustDeclIfTemplate(TagD);
5236  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5237
5238  FieldCollector->StartClass();
5239
5240  if (!Record->getIdentifier())
5241    return;
5242
5243  // C++ [class]p2:
5244  //   [...] The class-name is also inserted into the scope of the
5245  //   class itself; this is known as the injected-class-name. For
5246  //   purposes of access checking, the injected-class-name is treated
5247  //   as if it were a public member name.
5248  CXXRecordDecl *InjectedClassName
5249    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5250                            CurContext, Record->getLocation(),
5251                            Record->getIdentifier(),
5252                            Record->getTagKeywordLoc(),
5253                            Record);
5254  InjectedClassName->setImplicit();
5255  InjectedClassName->setAccess(AS_public);
5256  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5257      InjectedClassName->setDescribedClassTemplate(Template);
5258  PushOnScopeChains(InjectedClassName, S);
5259  assert(InjectedClassName->isInjectedClassName() &&
5260         "Broken injected-class-name");
5261}
5262
5263// Traverses the class and any nested classes, making a note of any
5264// dynamic classes that have no key function so that we can mark all of
5265// their virtual member functions as "used" at the end of the translation
5266// unit. This ensures that all functions needed by the vtable will get
5267// instantiated/synthesized.
5268static void
5269RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5270                                      SourceLocation Loc) {
5271  // We don't look at dependent or undefined classes.
5272  if (Record->isDependentContext() || !Record->isDefinition())
5273    return;
5274
5275  if (Record->isDynamicClass()) {
5276    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5277
5278    if (!KeyFunction)
5279      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5280                                                                   Loc));
5281
5282    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5283        && Record->getLinkage() == ExternalLinkage)
5284      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5285  }
5286  for (DeclContext::decl_iterator D = Record->decls_begin(),
5287                               DEnd = Record->decls_end();
5288       D != DEnd; ++D) {
5289    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5290      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5291  }
5292}
5293
5294void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5295                                    SourceLocation RBraceLoc) {
5296  AdjustDeclIfTemplate(TagD);
5297  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5298  Tag->setRBraceLoc(RBraceLoc);
5299
5300  if (isa<CXXRecordDecl>(Tag))
5301    FieldCollector->FinishClass();
5302
5303  // Exit this scope of this tag's definition.
5304  PopDeclContext();
5305
5306  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5307    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5308                                          RBraceLoc);
5309
5310  // Notify the consumer that we've defined a tag.
5311  Consumer.HandleTagDeclDefinition(Tag);
5312}
5313
5314void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5315  AdjustDeclIfTemplate(TagD);
5316  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5317  Tag->setInvalidDecl();
5318
5319  // We're undoing ActOnTagStartDefinition here, not
5320  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5321  // the FieldCollector.
5322
5323  PopDeclContext();
5324}
5325
5326// Note that FieldName may be null for anonymous bitfields.
5327bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5328                          QualType FieldTy, const Expr *BitWidth,
5329                          bool *ZeroWidth) {
5330  // Default to true; that shouldn't confuse checks for emptiness
5331  if (ZeroWidth)
5332    *ZeroWidth = true;
5333
5334  // C99 6.7.2.1p4 - verify the field type.
5335  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5336  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5337    // Handle incomplete types with specific error.
5338    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5339      return true;
5340    if (FieldName)
5341      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5342        << FieldName << FieldTy << BitWidth->getSourceRange();
5343    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5344      << FieldTy << BitWidth->getSourceRange();
5345  }
5346
5347  // If the bit-width is type- or value-dependent, don't try to check
5348  // it now.
5349  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5350    return false;
5351
5352  llvm::APSInt Value;
5353  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5354    return true;
5355
5356  if (Value != 0 && ZeroWidth)
5357    *ZeroWidth = false;
5358
5359  // Zero-width bitfield is ok for anonymous field.
5360  if (Value == 0 && FieldName)
5361    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5362
5363  if (Value.isSigned() && Value.isNegative()) {
5364    if (FieldName)
5365      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5366               << FieldName << Value.toString(10);
5367    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5368      << Value.toString(10);
5369  }
5370
5371  if (!FieldTy->isDependentType()) {
5372    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5373    if (Value.getZExtValue() > TypeSize) {
5374      if (FieldName)
5375        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5376          << FieldName << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5377      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5378        << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5379    }
5380  }
5381
5382  return false;
5383}
5384
5385/// ActOnField - Each field of a struct/union/class is passed into this in order
5386/// to create a FieldDecl object for it.
5387Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5388                                 SourceLocation DeclStart,
5389                                 Declarator &D, ExprTy *BitfieldWidth) {
5390  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5391                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5392                               AS_public);
5393  return DeclPtrTy::make(Res);
5394}
5395
5396/// HandleField - Analyze a field of a C struct or a C++ data member.
5397///
5398FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5399                             SourceLocation DeclStart,
5400                             Declarator &D, Expr *BitWidth,
5401                             AccessSpecifier AS) {
5402  IdentifierInfo *II = D.getIdentifier();
5403  SourceLocation Loc = DeclStart;
5404  if (II) Loc = D.getIdentifierLoc();
5405
5406  TypeSourceInfo *TInfo = 0;
5407  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5408  if (getLangOptions().CPlusPlus)
5409    CheckExtraCXXDefaultArguments(D);
5410
5411  DiagnoseFunctionSpecifiers(D);
5412
5413  if (D.getDeclSpec().isThreadSpecified())
5414    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5415
5416  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5417                                         ForRedeclaration);
5418
5419  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5420    // Maybe we will complain about the shadowed template parameter.
5421    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5422    // Just pretend that we didn't see the previous declaration.
5423    PrevDecl = 0;
5424  }
5425
5426  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5427    PrevDecl = 0;
5428
5429  bool Mutable
5430    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5431  SourceLocation TSSL = D.getSourceRange().getBegin();
5432  FieldDecl *NewFD
5433    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5434                     AS, PrevDecl, &D);
5435
5436  if (NewFD->isInvalidDecl())
5437    Record->setInvalidDecl();
5438
5439  if (NewFD->isInvalidDecl() && PrevDecl) {
5440    // Don't introduce NewFD into scope; there's already something
5441    // with the same name in the same scope.
5442  } else if (II) {
5443    PushOnScopeChains(NewFD, S);
5444  } else
5445    Record->addDecl(NewFD);
5446
5447  return NewFD;
5448}
5449
5450/// \brief Build a new FieldDecl and check its well-formedness.
5451///
5452/// This routine builds a new FieldDecl given the fields name, type,
5453/// record, etc. \p PrevDecl should refer to any previous declaration
5454/// with the same name and in the same scope as the field to be
5455/// created.
5456///
5457/// \returns a new FieldDecl.
5458///
5459/// \todo The Declarator argument is a hack. It will be removed once
5460FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5461                                TypeSourceInfo *TInfo,
5462                                RecordDecl *Record, SourceLocation Loc,
5463                                bool Mutable, Expr *BitWidth,
5464                                SourceLocation TSSL,
5465                                AccessSpecifier AS, NamedDecl *PrevDecl,
5466                                Declarator *D) {
5467  IdentifierInfo *II = Name.getAsIdentifierInfo();
5468  bool InvalidDecl = false;
5469  if (D) InvalidDecl = D->isInvalidType();
5470
5471  // If we receive a broken type, recover by assuming 'int' and
5472  // marking this declaration as invalid.
5473  if (T.isNull()) {
5474    InvalidDecl = true;
5475    T = Context.IntTy;
5476  }
5477
5478  QualType EltTy = Context.getBaseElementType(T);
5479  if (!EltTy->isDependentType() &&
5480      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5481    InvalidDecl = true;
5482
5483  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5484  // than a variably modified type.
5485  if (!InvalidDecl && T->isVariablyModifiedType()) {
5486    bool SizeIsNegative;
5487    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5488                                                           SizeIsNegative);
5489    if (!FixedTy.isNull()) {
5490      Diag(Loc, diag::warn_illegal_constant_array_size);
5491      T = FixedTy;
5492    } else {
5493      if (SizeIsNegative)
5494        Diag(Loc, diag::err_typecheck_negative_array_size);
5495      else
5496        Diag(Loc, diag::err_typecheck_field_variable_size);
5497      InvalidDecl = true;
5498    }
5499  }
5500
5501  // Fields can not have abstract class types
5502  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5503                                             diag::err_abstract_type_in_decl,
5504                                             AbstractFieldType))
5505    InvalidDecl = true;
5506
5507  bool ZeroWidth = false;
5508  // If this is declared as a bit-field, check the bit-field.
5509  if (!InvalidDecl && BitWidth &&
5510      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5511    InvalidDecl = true;
5512    DeleteExpr(BitWidth);
5513    BitWidth = 0;
5514    ZeroWidth = false;
5515  }
5516
5517  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5518                                       BitWidth, Mutable);
5519  if (InvalidDecl)
5520    NewFD->setInvalidDecl();
5521
5522  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5523    Diag(Loc, diag::err_duplicate_member) << II;
5524    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5525    NewFD->setInvalidDecl();
5526  }
5527
5528  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5529    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5530
5531    if (!T->isPODType())
5532      CXXRecord->setPOD(false);
5533    if (!ZeroWidth)
5534      CXXRecord->setEmpty(false);
5535
5536    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5537      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5538
5539      if (!RDecl->hasTrivialConstructor())
5540        CXXRecord->setHasTrivialConstructor(false);
5541      if (!RDecl->hasTrivialCopyConstructor())
5542        CXXRecord->setHasTrivialCopyConstructor(false);
5543      if (!RDecl->hasTrivialCopyAssignment())
5544        CXXRecord->setHasTrivialCopyAssignment(false);
5545      if (!RDecl->hasTrivialDestructor())
5546        CXXRecord->setHasTrivialDestructor(false);
5547
5548      // C++ 9.5p1: An object of a class with a non-trivial
5549      // constructor, a non-trivial copy constructor, a non-trivial
5550      // destructor, or a non-trivial copy assignment operator
5551      // cannot be a member of a union, nor can an array of such
5552      // objects.
5553      // TODO: C++0x alters this restriction significantly.
5554      if (Record->isUnion()) {
5555        // We check for copy constructors before constructors
5556        // because otherwise we'll never get complaints about
5557        // copy constructors.
5558
5559        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5560
5561        CXXSpecialMember member;
5562        if (!RDecl->hasTrivialCopyConstructor())
5563          member = CXXCopyConstructor;
5564        else if (!RDecl->hasTrivialConstructor())
5565          member = CXXDefaultConstructor;
5566        else if (!RDecl->hasTrivialCopyAssignment())
5567          member = CXXCopyAssignment;
5568        else if (!RDecl->hasTrivialDestructor())
5569          member = CXXDestructor;
5570        else
5571          member = invalid;
5572
5573        if (member != invalid) {
5574          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5575          DiagnoseNontrivial(RT, member);
5576          NewFD->setInvalidDecl();
5577        }
5578      }
5579    }
5580  }
5581
5582  // FIXME: We need to pass in the attributes given an AST
5583  // representation, not a parser representation.
5584  if (D)
5585    // FIXME: What to pass instead of TUScope?
5586    ProcessDeclAttributes(TUScope, NewFD, *D);
5587
5588  if (T.isObjCGCWeak())
5589    Diag(Loc, diag::warn_attribute_weak_on_field);
5590
5591  NewFD->setAccess(AS);
5592
5593  // C++ [dcl.init.aggr]p1:
5594  //   An aggregate is an array or a class (clause 9) with [...] no
5595  //   private or protected non-static data members (clause 11).
5596  // A POD must be an aggregate.
5597  if (getLangOptions().CPlusPlus &&
5598      (AS == AS_private || AS == AS_protected)) {
5599    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5600    CXXRecord->setAggregate(false);
5601    CXXRecord->setPOD(false);
5602  }
5603
5604  return NewFD;
5605}
5606
5607/// DiagnoseNontrivial - Given that a class has a non-trivial
5608/// special member, figure out why.
5609void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5610  QualType QT(T, 0U);
5611  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5612
5613  // Check whether the member was user-declared.
5614  switch (member) {
5615  case CXXDefaultConstructor:
5616    if (RD->hasUserDeclaredConstructor()) {
5617      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5618      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5619        const FunctionDecl *body = 0;
5620        ci->getBody(body);
5621        if (!body ||
5622            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5623          SourceLocation CtorLoc = ci->getLocation();
5624          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5625          return;
5626        }
5627      }
5628
5629      assert(0 && "found no user-declared constructors");
5630      return;
5631    }
5632    break;
5633
5634  case CXXCopyConstructor:
5635    if (RD->hasUserDeclaredCopyConstructor()) {
5636      SourceLocation CtorLoc =
5637        RD->getCopyConstructor(Context, 0)->getLocation();
5638      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5639      return;
5640    }
5641    break;
5642
5643  case CXXCopyAssignment:
5644    if (RD->hasUserDeclaredCopyAssignment()) {
5645      // FIXME: this should use the location of the copy
5646      // assignment, not the type.
5647      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5648      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5649      return;
5650    }
5651    break;
5652
5653  case CXXDestructor:
5654    if (RD->hasUserDeclaredDestructor()) {
5655      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5656      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5657      return;
5658    }
5659    break;
5660  }
5661
5662  typedef CXXRecordDecl::base_class_iterator base_iter;
5663
5664  // Virtual bases and members inhibit trivial copying/construction,
5665  // but not trivial destruction.
5666  if (member != CXXDestructor) {
5667    // Check for virtual bases.  vbases includes indirect virtual bases,
5668    // so we just iterate through the direct bases.
5669    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5670      if (bi->isVirtual()) {
5671        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5672        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5673        return;
5674      }
5675
5676    // Check for virtual methods.
5677    typedef CXXRecordDecl::method_iterator meth_iter;
5678    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5679         ++mi) {
5680      if (mi->isVirtual()) {
5681        SourceLocation MLoc = mi->getSourceRange().getBegin();
5682        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5683        return;
5684      }
5685    }
5686  }
5687
5688  bool (CXXRecordDecl::*hasTrivial)() const;
5689  switch (member) {
5690  case CXXDefaultConstructor:
5691    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5692  case CXXCopyConstructor:
5693    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5694  case CXXCopyAssignment:
5695    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5696  case CXXDestructor:
5697    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5698  default:
5699    assert(0 && "unexpected special member"); return;
5700  }
5701
5702  // Check for nontrivial bases (and recurse).
5703  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5704    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5705    assert(BaseRT && "Don't know how to handle dependent bases");
5706    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5707    if (!(BaseRecTy->*hasTrivial)()) {
5708      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5709      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5710      DiagnoseNontrivial(BaseRT, member);
5711      return;
5712    }
5713  }
5714
5715  // Check for nontrivial members (and recurse).
5716  typedef RecordDecl::field_iterator field_iter;
5717  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5718       ++fi) {
5719    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5720    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5721      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5722
5723      if (!(EltRD->*hasTrivial)()) {
5724        SourceLocation FLoc = (*fi)->getLocation();
5725        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5726        DiagnoseNontrivial(EltRT, member);
5727        return;
5728      }
5729    }
5730  }
5731
5732  assert(0 && "found no explanation for non-trivial member");
5733}
5734
5735/// TranslateIvarVisibility - Translate visibility from a token ID to an
5736///  AST enum value.
5737static ObjCIvarDecl::AccessControl
5738TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5739  switch (ivarVisibility) {
5740  default: assert(0 && "Unknown visitibility kind");
5741  case tok::objc_private: return ObjCIvarDecl::Private;
5742  case tok::objc_public: return ObjCIvarDecl::Public;
5743  case tok::objc_protected: return ObjCIvarDecl::Protected;
5744  case tok::objc_package: return ObjCIvarDecl::Package;
5745  }
5746}
5747
5748/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5749/// in order to create an IvarDecl object for it.
5750Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5751                                SourceLocation DeclStart,
5752                                DeclPtrTy IntfDecl,
5753                                Declarator &D, ExprTy *BitfieldWidth,
5754                                tok::ObjCKeywordKind Visibility) {
5755
5756  IdentifierInfo *II = D.getIdentifier();
5757  Expr *BitWidth = (Expr*)BitfieldWidth;
5758  SourceLocation Loc = DeclStart;
5759  if (II) Loc = D.getIdentifierLoc();
5760
5761  // FIXME: Unnamed fields can be handled in various different ways, for
5762  // example, unnamed unions inject all members into the struct namespace!
5763
5764  TypeSourceInfo *TInfo = 0;
5765  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5766
5767  if (BitWidth) {
5768    // 6.7.2.1p3, 6.7.2.1p4
5769    if (VerifyBitField(Loc, II, T, BitWidth)) {
5770      D.setInvalidType();
5771      DeleteExpr(BitWidth);
5772      BitWidth = 0;
5773    }
5774  } else {
5775    // Not a bitfield.
5776
5777    // validate II.
5778
5779  }
5780
5781  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5782  // than a variably modified type.
5783  if (T->isVariablyModifiedType()) {
5784    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5785    D.setInvalidType();
5786  }
5787
5788  // Get the visibility (access control) for this ivar.
5789  ObjCIvarDecl::AccessControl ac =
5790    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5791                                        : ObjCIvarDecl::None;
5792  // Must set ivar's DeclContext to its enclosing interface.
5793  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
5794  ObjCContainerDecl *EnclosingContext;
5795  if (ObjCImplementationDecl *IMPDecl =
5796      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5797    // Case of ivar declared in an implementation. Context is that of its class.
5798    EnclosingContext = IMPDecl->getClassInterface();
5799    assert(EnclosingContext && "Implementation has no class interface!");
5800  } else {
5801    if (ObjCCategoryDecl *CDecl =
5802        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5803      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
5804        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5805        return DeclPtrTy();
5806      }
5807    }
5808    EnclosingContext = EnclosingDecl;
5809  }
5810
5811  // Construct the decl.
5812  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5813                                             EnclosingContext, Loc, II, T,
5814                                             TInfo, ac, (Expr *)BitfieldWidth);
5815
5816  if (II) {
5817    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5818                                           ForRedeclaration);
5819    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5820        && !isa<TagDecl>(PrevDecl)) {
5821      Diag(Loc, diag::err_duplicate_member) << II;
5822      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5823      NewID->setInvalidDecl();
5824    }
5825  }
5826
5827  // Process attributes attached to the ivar.
5828  ProcessDeclAttributes(S, NewID, D);
5829
5830  if (D.isInvalidType())
5831    NewID->setInvalidDecl();
5832
5833  if (II) {
5834    // FIXME: When interfaces are DeclContexts, we'll need to add
5835    // these to the interface.
5836    S->AddDecl(DeclPtrTy::make(NewID));
5837    IdResolver.AddDecl(NewID);
5838  }
5839
5840  return DeclPtrTy::make(NewID);
5841}
5842
5843void Sema::ActOnFields(Scope* S,
5844                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5845                       DeclPtrTy *Fields, unsigned NumFields,
5846                       SourceLocation LBrac, SourceLocation RBrac,
5847                       AttributeList *Attr) {
5848  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5849  assert(EnclosingDecl && "missing record or interface decl");
5850
5851  // If the decl this is being inserted into is invalid, then it may be a
5852  // redeclaration or some other bogus case.  Don't try to add fields to it.
5853  if (EnclosingDecl->isInvalidDecl()) {
5854    // FIXME: Deallocate fields?
5855    return;
5856  }
5857
5858
5859  // Verify that all the fields are okay.
5860  unsigned NumNamedMembers = 0;
5861  llvm::SmallVector<FieldDecl*, 32> RecFields;
5862
5863  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5864  for (unsigned i = 0; i != NumFields; ++i) {
5865    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5866
5867    // Get the type for the field.
5868    Type *FDTy = FD->getType().getTypePtr();
5869
5870    if (!FD->isAnonymousStructOrUnion()) {
5871      // Remember all fields written by the user.
5872      RecFields.push_back(FD);
5873    }
5874
5875    // If the field is already invalid for some reason, don't emit more
5876    // diagnostics about it.
5877    if (FD->isInvalidDecl()) {
5878      EnclosingDecl->setInvalidDecl();
5879      continue;
5880    }
5881
5882    // C99 6.7.2.1p2:
5883    //   A structure or union shall not contain a member with
5884    //   incomplete or function type (hence, a structure shall not
5885    //   contain an instance of itself, but may contain a pointer to
5886    //   an instance of itself), except that the last member of a
5887    //   structure with more than one named member may have incomplete
5888    //   array type; such a structure (and any union containing,
5889    //   possibly recursively, a member that is such a structure)
5890    //   shall not be a member of a structure or an element of an
5891    //   array.
5892    if (FDTy->isFunctionType()) {
5893      // Field declared as a function.
5894      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5895        << FD->getDeclName();
5896      FD->setInvalidDecl();
5897      EnclosingDecl->setInvalidDecl();
5898      continue;
5899    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5900               Record && Record->isStruct()) {
5901      // Flexible array member.
5902      if (NumNamedMembers < 1) {
5903        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5904          << FD->getDeclName();
5905        FD->setInvalidDecl();
5906        EnclosingDecl->setInvalidDecl();
5907        continue;
5908      }
5909      // Okay, we have a legal flexible array member at the end of the struct.
5910      if (Record)
5911        Record->setHasFlexibleArrayMember(true);
5912    } else if (!FDTy->isDependentType() &&
5913               RequireCompleteType(FD->getLocation(), FD->getType(),
5914                                   diag::err_field_incomplete)) {
5915      // Incomplete type
5916      FD->setInvalidDecl();
5917      EnclosingDecl->setInvalidDecl();
5918      continue;
5919    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5920      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5921        // If this is a member of a union, then entire union becomes "flexible".
5922        if (Record && Record->isUnion()) {
5923          Record->setHasFlexibleArrayMember(true);
5924        } else {
5925          // If this is a struct/class and this is not the last element, reject
5926          // it.  Note that GCC supports variable sized arrays in the middle of
5927          // structures.
5928          if (i != NumFields-1)
5929            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5930              << FD->getDeclName() << FD->getType();
5931          else {
5932            // We support flexible arrays at the end of structs in
5933            // other structs as an extension.
5934            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5935              << FD->getDeclName();
5936            if (Record)
5937              Record->setHasFlexibleArrayMember(true);
5938          }
5939        }
5940      }
5941      if (Record && FDTTy->getDecl()->hasObjectMember())
5942        Record->setHasObjectMember(true);
5943    } else if (FDTy->isObjCInterfaceType()) {
5944      /// A field cannot be an Objective-c object
5945      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5946      FD->setInvalidDecl();
5947      EnclosingDecl->setInvalidDecl();
5948      continue;
5949    } else if (getLangOptions().ObjC1 &&
5950               getLangOptions().getGCMode() != LangOptions::NonGC &&
5951               Record &&
5952               (FD->getType()->isObjCObjectPointerType() ||
5953                FD->getType().isObjCGCStrong()))
5954      Record->setHasObjectMember(true);
5955    // Keep track of the number of named members.
5956    if (FD->getIdentifier())
5957      ++NumNamedMembers;
5958  }
5959
5960  // Okay, we successfully defined 'Record'.
5961  if (Record) {
5962    Record->completeDefinition();
5963  } else {
5964    ObjCIvarDecl **ClsFields =
5965      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5966    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5967      ID->setLocEnd(RBrac);
5968      // Add ivar's to class's DeclContext.
5969      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5970        ClsFields[i]->setLexicalDeclContext(ID);
5971        ID->addDecl(ClsFields[i]);
5972      }
5973      // Must enforce the rule that ivars in the base classes may not be
5974      // duplicates.
5975      if (ID->getSuperClass())
5976        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
5977    } else if (ObjCImplementationDecl *IMPDecl =
5978                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5979      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5980      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5981        // Ivar declared in @implementation never belongs to the implementation.
5982        // Only it is in implementation's lexical context.
5983        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5984      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5985    } else if (ObjCCategoryDecl *CDecl =
5986                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5987      // case of ivars in class extension; all other cases have been
5988      // reported as errors elsewhere.
5989      // FIXME. Class extension does not have a LocEnd field.
5990      // CDecl->setLocEnd(RBrac);
5991      // Add ivar's to class extension's DeclContext.
5992      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5993        ClsFields[i]->setLexicalDeclContext(CDecl);
5994        CDecl->addDecl(ClsFields[i]);
5995      }
5996    }
5997  }
5998
5999  if (Attr)
6000    ProcessDeclAttributeList(S, Record, Attr);
6001}
6002
6003/// \brief Determine whether the given integral value is representable within
6004/// the given type T.
6005static bool isRepresentableIntegerValue(ASTContext &Context,
6006                                        llvm::APSInt &Value,
6007                                        QualType T) {
6008  assert(T->isIntegralType() && "Integral type required!");
6009  unsigned BitWidth = Context.getIntWidth(T);
6010
6011  if (Value.isUnsigned() || Value.isNonNegative())
6012    return Value.getActiveBits() < BitWidth;
6013
6014  return Value.getMinSignedBits() <= BitWidth;
6015}
6016
6017// \brief Given an integral type, return the next larger integral type
6018// (or a NULL type of no such type exists).
6019static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6020  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6021  // enum checking below.
6022  assert(T->isIntegralType() && "Integral type required!");
6023  const unsigned NumTypes = 4;
6024  QualType SignedIntegralTypes[NumTypes] = {
6025    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6026  };
6027  QualType UnsignedIntegralTypes[NumTypes] = {
6028    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6029    Context.UnsignedLongLongTy
6030  };
6031
6032  unsigned BitWidth = Context.getTypeSize(T);
6033  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6034                                            : UnsignedIntegralTypes;
6035  for (unsigned I = 0; I != NumTypes; ++I)
6036    if (Context.getTypeSize(Types[I]) > BitWidth)
6037      return Types[I];
6038
6039  return QualType();
6040}
6041
6042EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6043                                          EnumConstantDecl *LastEnumConst,
6044                                          SourceLocation IdLoc,
6045                                          IdentifierInfo *Id,
6046                                          ExprArg val) {
6047  Expr *Val = (Expr *)val.get();
6048
6049  unsigned IntWidth = Context.Target.getIntWidth();
6050  llvm::APSInt EnumVal(IntWidth);
6051  QualType EltTy;
6052  if (Val) {
6053    if (Enum->isDependentType() || Val->isTypeDependent())
6054      EltTy = Context.DependentTy;
6055    else {
6056      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6057      SourceLocation ExpLoc;
6058      if (!Val->isValueDependent() &&
6059          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6060        Val = 0;
6061      } else {
6062        if (!getLangOptions().CPlusPlus) {
6063          // C99 6.7.2.2p2:
6064          //   The expression that defines the value of an enumeration constant
6065          //   shall be an integer constant expression that has a value
6066          //   representable as an int.
6067
6068          // Complain if the value is not representable in an int.
6069          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6070            Diag(IdLoc, diag::ext_enum_value_not_int)
6071              << EnumVal.toString(10) << Val->getSourceRange()
6072              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6073          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6074            // Force the type of the expression to 'int'.
6075            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6076
6077            if (Val != val.get()) {
6078              val.release();
6079              val = Val;
6080            }
6081          }
6082        }
6083
6084        // C++0x [dcl.enum]p5:
6085        //   If the underlying type is not fixed, the type of each enumerator
6086        //   is the type of its initializing value:
6087        //     - If an initializer is specified for an enumerator, the
6088        //       initializing value has the same type as the expression.
6089        EltTy = Val->getType();
6090      }
6091    }
6092  }
6093
6094  if (!Val) {
6095    if (Enum->isDependentType())
6096      EltTy = Context.DependentTy;
6097    else if (!LastEnumConst) {
6098      // C++0x [dcl.enum]p5:
6099      //   If the underlying type is not fixed, the type of each enumerator
6100      //   is the type of its initializing value:
6101      //     - If no initializer is specified for the first enumerator, the
6102      //       initializing value has an unspecified integral type.
6103      //
6104      // GCC uses 'int' for its unspecified integral type, as does
6105      // C99 6.7.2.2p3.
6106      EltTy = Context.IntTy;
6107    } else {
6108      // Assign the last value + 1.
6109      EnumVal = LastEnumConst->getInitVal();
6110      ++EnumVal;
6111      EltTy = LastEnumConst->getType();
6112
6113      // Check for overflow on increment.
6114      if (EnumVal < LastEnumConst->getInitVal()) {
6115        // C++0x [dcl.enum]p5:
6116        //   If the underlying type is not fixed, the type of each enumerator
6117        //   is the type of its initializing value:
6118        //
6119        //     - Otherwise the type of the initializing value is the same as
6120        //       the type of the initializing value of the preceding enumerator
6121        //       unless the incremented value is not representable in that type,
6122        //       in which case the type is an unspecified integral type
6123        //       sufficient to contain the incremented value. If no such type
6124        //       exists, the program is ill-formed.
6125        QualType T = getNextLargerIntegralType(Context, EltTy);
6126        if (T.isNull()) {
6127          // There is no integral type larger enough to represent this
6128          // value. Complain, then allow the value to wrap around.
6129          EnumVal = LastEnumConst->getInitVal();
6130          EnumVal.zext(EnumVal.getBitWidth() * 2);
6131          Diag(IdLoc, diag::warn_enumerator_too_large)
6132            << EnumVal.toString(10);
6133        } else {
6134          EltTy = T;
6135        }
6136
6137        // Retrieve the last enumerator's value, extent that type to the
6138        // type that is supposed to be large enough to represent the incremented
6139        // value, then increment.
6140        EnumVal = LastEnumConst->getInitVal();
6141        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6142        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6143        ++EnumVal;
6144
6145        // If we're not in C++, diagnose the overflow of enumerator values,
6146        // which in C99 means that the enumerator value is not representable in
6147        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6148        // permits enumerator values that are representable in some larger
6149        // integral type.
6150        if (!getLangOptions().CPlusPlus && !T.isNull())
6151          Diag(IdLoc, diag::warn_enum_value_overflow);
6152      } else if (!getLangOptions().CPlusPlus &&
6153                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6154        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6155        Diag(IdLoc, diag::ext_enum_value_not_int)
6156          << EnumVal.toString(10) << 1;
6157      }
6158    }
6159  }
6160
6161  if (!EltTy->isDependentType()) {
6162    // Make the enumerator value match the signedness and size of the
6163    // enumerator's type.
6164    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6165    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6166  }
6167
6168  val.release();
6169  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6170                                  Val, EnumVal);
6171}
6172
6173
6174Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6175                                        DeclPtrTy lastEnumConst,
6176                                        SourceLocation IdLoc,
6177                                        IdentifierInfo *Id,
6178                                        SourceLocation EqualLoc, ExprTy *val) {
6179  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6180  EnumConstantDecl *LastEnumConst =
6181    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6182  Expr *Val = static_cast<Expr*>(val);
6183
6184  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6185  // we find one that is.
6186  S = getNonFieldDeclScope(S);
6187
6188  // Verify that there isn't already something declared with this name in this
6189  // scope.
6190  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
6191                                         ForRedeclaration);
6192  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6193    // Maybe we will complain about the shadowed template parameter.
6194    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6195    // Just pretend that we didn't see the previous declaration.
6196    PrevDecl = 0;
6197  }
6198
6199  if (PrevDecl) {
6200    // When in C++, we may get a TagDecl with the same name; in this case the
6201    // enum constant will 'hide' the tag.
6202    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6203           "Received TagDecl when not in C++!");
6204    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6205      if (isa<EnumConstantDecl>(PrevDecl))
6206        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6207      else
6208        Diag(IdLoc, diag::err_redefinition) << Id;
6209      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6210      if (Val) Val->Destroy(Context);
6211      return DeclPtrTy();
6212    }
6213  }
6214
6215  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6216                                            IdLoc, Id, Owned(Val));
6217
6218  // Register this decl in the current scope stack.
6219  if (New) {
6220    New->setAccess(TheEnumDecl->getAccess());
6221    PushOnScopeChains(New, S);
6222  }
6223
6224  return DeclPtrTy::make(New);
6225}
6226
6227void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6228                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6229                         DeclPtrTy *Elements, unsigned NumElements,
6230                         Scope *S, AttributeList *Attr) {
6231  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6232  QualType EnumType = Context.getTypeDeclType(Enum);
6233
6234  if (Attr)
6235    ProcessDeclAttributeList(S, Enum, Attr);
6236
6237  if (Enum->isDependentType()) {
6238    for (unsigned i = 0; i != NumElements; ++i) {
6239      EnumConstantDecl *ECD =
6240        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6241      if (!ECD) continue;
6242
6243      ECD->setType(EnumType);
6244    }
6245
6246    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6247    return;
6248  }
6249
6250  // TODO: If the result value doesn't fit in an int, it must be a long or long
6251  // long value.  ISO C does not support this, but GCC does as an extension,
6252  // emit a warning.
6253  unsigned IntWidth = Context.Target.getIntWidth();
6254  unsigned CharWidth = Context.Target.getCharWidth();
6255  unsigned ShortWidth = Context.Target.getShortWidth();
6256
6257  // Verify that all the values are okay, compute the size of the values, and
6258  // reverse the list.
6259  unsigned NumNegativeBits = 0;
6260  unsigned NumPositiveBits = 0;
6261
6262  // Keep track of whether all elements have type int.
6263  bool AllElementsInt = true;
6264
6265  for (unsigned i = 0; i != NumElements; ++i) {
6266    EnumConstantDecl *ECD =
6267      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6268    if (!ECD) continue;  // Already issued a diagnostic.
6269
6270    const llvm::APSInt &InitVal = ECD->getInitVal();
6271
6272    // Keep track of the size of positive and negative values.
6273    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6274      NumPositiveBits = std::max(NumPositiveBits,
6275                                 (unsigned)InitVal.getActiveBits());
6276    else
6277      NumNegativeBits = std::max(NumNegativeBits,
6278                                 (unsigned)InitVal.getMinSignedBits());
6279
6280    // Keep track of whether every enum element has type int (very commmon).
6281    if (AllElementsInt)
6282      AllElementsInt = ECD->getType() == Context.IntTy;
6283  }
6284
6285  // Figure out the type that should be used for this enum.
6286  // FIXME: Support -fshort-enums.
6287  QualType BestType;
6288  unsigned BestWidth;
6289
6290  // C++0x N3000 [conv.prom]p3:
6291  //   An rvalue of an unscoped enumeration type whose underlying
6292  //   type is not fixed can be converted to an rvalue of the first
6293  //   of the following types that can represent all the values of
6294  //   the enumeration: int, unsigned int, long int, unsigned long
6295  //   int, long long int, or unsigned long long int.
6296  // C99 6.4.4.3p2:
6297  //   An identifier declared as an enumeration constant has type int.
6298  // The C99 rule is modified by a gcc extension
6299  QualType BestPromotionType;
6300
6301  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6302
6303  if (NumNegativeBits) {
6304    // If there is a negative value, figure out the smallest integer type (of
6305    // int/long/longlong) that fits.
6306    // If it's packed, check also if it fits a char or a short.
6307    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6308      BestType = Context.SignedCharTy;
6309      BestWidth = CharWidth;
6310    } else if (Packed && NumNegativeBits <= ShortWidth &&
6311               NumPositiveBits < ShortWidth) {
6312      BestType = Context.ShortTy;
6313      BestWidth = ShortWidth;
6314    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6315      BestType = Context.IntTy;
6316      BestWidth = IntWidth;
6317    } else {
6318      BestWidth = Context.Target.getLongWidth();
6319
6320      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6321        BestType = Context.LongTy;
6322      } else {
6323        BestWidth = Context.Target.getLongLongWidth();
6324
6325        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6326          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6327        BestType = Context.LongLongTy;
6328      }
6329    }
6330    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6331  } else {
6332    // If there is no negative value, figure out the smallest type that fits
6333    // all of the enumerator values.
6334    // If it's packed, check also if it fits a char or a short.
6335    if (Packed && NumPositiveBits <= CharWidth) {
6336      BestType = Context.UnsignedCharTy;
6337      BestPromotionType = Context.IntTy;
6338      BestWidth = CharWidth;
6339    } else if (Packed && NumPositiveBits <= ShortWidth) {
6340      BestType = Context.UnsignedShortTy;
6341      BestPromotionType = Context.IntTy;
6342      BestWidth = ShortWidth;
6343    } else if (NumPositiveBits <= IntWidth) {
6344      BestType = Context.UnsignedIntTy;
6345      BestWidth = IntWidth;
6346      BestPromotionType
6347        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6348                           ? Context.UnsignedIntTy : Context.IntTy;
6349    } else if (NumPositiveBits <=
6350               (BestWidth = Context.Target.getLongWidth())) {
6351      BestType = Context.UnsignedLongTy;
6352      BestPromotionType
6353        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6354                           ? Context.UnsignedLongTy : Context.LongTy;
6355    } else {
6356      BestWidth = Context.Target.getLongLongWidth();
6357      assert(NumPositiveBits <= BestWidth &&
6358             "How could an initializer get larger than ULL?");
6359      BestType = Context.UnsignedLongLongTy;
6360      BestPromotionType
6361        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6362                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6363    }
6364  }
6365
6366  // Loop over all of the enumerator constants, changing their types to match
6367  // the type of the enum if needed.
6368  for (unsigned i = 0; i != NumElements; ++i) {
6369    EnumConstantDecl *ECD =
6370      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6371    if (!ECD) continue;  // Already issued a diagnostic.
6372
6373    // Standard C says the enumerators have int type, but we allow, as an
6374    // extension, the enumerators to be larger than int size.  If each
6375    // enumerator value fits in an int, type it as an int, otherwise type it the
6376    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6377    // that X has type 'int', not 'unsigned'.
6378
6379    // Determine whether the value fits into an int.
6380    llvm::APSInt InitVal = ECD->getInitVal();
6381
6382    // If it fits into an integer type, force it.  Otherwise force it to match
6383    // the enum decl type.
6384    QualType NewTy;
6385    unsigned NewWidth;
6386    bool NewSign;
6387    if (!getLangOptions().CPlusPlus &&
6388        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6389      NewTy = Context.IntTy;
6390      NewWidth = IntWidth;
6391      NewSign = true;
6392    } else if (ECD->getType() == BestType) {
6393      // Already the right type!
6394      if (getLangOptions().CPlusPlus)
6395        // C++ [dcl.enum]p4: Following the closing brace of an
6396        // enum-specifier, each enumerator has the type of its
6397        // enumeration.
6398        ECD->setType(EnumType);
6399      continue;
6400    } else {
6401      NewTy = BestType;
6402      NewWidth = BestWidth;
6403      NewSign = BestType->isSignedIntegerType();
6404    }
6405
6406    // Adjust the APSInt value.
6407    InitVal.extOrTrunc(NewWidth);
6408    InitVal.setIsSigned(NewSign);
6409    ECD->setInitVal(InitVal);
6410
6411    // Adjust the Expr initializer and type.
6412    if (ECD->getInitExpr())
6413      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6414                                                      CastExpr::CK_IntegralCast,
6415                                                      ECD->getInitExpr(),
6416                                                      /*isLvalue=*/false));
6417    if (getLangOptions().CPlusPlus)
6418      // C++ [dcl.enum]p4: Following the closing brace of an
6419      // enum-specifier, each enumerator has the type of its
6420      // enumeration.
6421      ECD->setType(EnumType);
6422    else
6423      ECD->setType(NewTy);
6424  }
6425
6426  Enum->completeDefinition(BestType, BestPromotionType);
6427}
6428
6429Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6430                                            ExprArg expr) {
6431  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6432
6433  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6434                                                   Loc, AsmString);
6435  CurContext->addDecl(New);
6436  return DeclPtrTy::make(New);
6437}
6438
6439void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6440                             SourceLocation PragmaLoc,
6441                             SourceLocation NameLoc) {
6442  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6443
6444  if (PrevDecl) {
6445    PrevDecl->addAttr(::new (Context) WeakAttr());
6446  } else {
6447    (void)WeakUndeclaredIdentifiers.insert(
6448      std::pair<IdentifierInfo*,WeakInfo>
6449        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6450  }
6451}
6452
6453void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6454                                IdentifierInfo* AliasName,
6455                                SourceLocation PragmaLoc,
6456                                SourceLocation NameLoc,
6457                                SourceLocation AliasNameLoc) {
6458  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6459  WeakInfo W = WeakInfo(Name, NameLoc);
6460
6461  if (PrevDecl) {
6462    if (!PrevDecl->hasAttr<AliasAttr>())
6463      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6464        DeclApplyPragmaWeak(TUScope, ND, W);
6465  } else {
6466    (void)WeakUndeclaredIdentifiers.insert(
6467      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6468  }
6469}
6470