SemaDecl.cpp revision f7306d7435ca4f99ccf262abbb8ec93479bb778e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName) {
66  // C++ [temp.res]p3:
67  //   A qualified-id that refers to a type and in which the
68  //   nested-name-specifier depends on a template-parameter (14.6.2)
69  //   shall be prefixed by the keyword typename to indicate that the
70  //   qualified-id denotes a type, forming an
71  //   elaborated-type-specifier (7.1.5.3).
72  //
73  // We therefore do not perform any name lookup if the result would
74  // refer to a member of an unknown specialization.
75  if (SS && isUnknownSpecialization(*SS)) {
76    if (!isClassName)
77      return 0;
78
79    // We know from the grammar that this name refers to a type, so build a
80    // TypenameType node to describe the type.
81    // FIXME: Record somewhere that this TypenameType node has no "typename"
82    // keyword associated with it.
83    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
84                             II, SS->getRange()).getAsOpaquePtr();
85  }
86
87  LookupResult Result
88    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
89
90  NamedDecl *IIDecl = 0;
91  switch (Result.getKind()) {
92  case LookupResult::NotFound:
93  case LookupResult::FoundOverloaded:
94    return 0;
95
96  case LookupResult::AmbiguousBaseSubobjectTypes:
97  case LookupResult::AmbiguousBaseSubobjects:
98  case LookupResult::AmbiguousReference: {
99    // Look to see if we have a type anywhere in the list of results.
100    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
101         Res != ResEnd; ++Res) {
102      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
103        if (!IIDecl ||
104            (*Res)->getLocation().getRawEncoding() <
105              IIDecl->getLocation().getRawEncoding())
106          IIDecl = *Res;
107      }
108    }
109
110    if (!IIDecl) {
111      // None of the entities we found is a type, so there is no way
112      // to even assume that the result is a type. In this case, don't
113      // complain about the ambiguity. The parser will either try to
114      // perform this lookup again (e.g., as an object name), which
115      // will produce the ambiguity, or will complain that it expected
116      // a type name.
117      Result.Destroy();
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getAsDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195
196// Determines the context to return to after temporarily entering a
197// context.  This depends in an unnecessarily complicated way on the
198// exact ordering of callbacks from the parser.
199DeclContext *Sema::getContainingDC(DeclContext *DC) {
200
201  // Functions defined inline within classes aren't parsed until we've
202  // finished parsing the top-level class, so the top-level class is
203  // the context we'll need to return to.
204  if (isa<FunctionDecl>(DC)) {
205    DC = DC->getLexicalParent();
206
207    // A function not defined within a class will always return to its
208    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  // Add scoped declarations into their context, so that they can be
292  // found later. Declarations without a context won't be inserted
293  // into any context.
294  if (AddToContext)
295    CurContext->addDecl(D);
296
297  // Out-of-line function and variable definitions should not be pushed into
298  // scope.
299  if ((isa<FunctionTemplateDecl>(D) &&
300       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
301      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
302      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
303    return;
304
305  S->AddDecl(DeclPtrTy::make(D));
306
307  // C++ [basic.scope]p4:
308  //   -- exactly one declaration shall declare a class name or
309  //   enumeration name that is not a typedef name and the other
310  //   declarations shall all refer to the same object or
311  //   enumerator, or all refer to functions and function templates;
312  //   in this case the class name or enumeration name is hidden.
313  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
314    // We are pushing the name of a tag (enum or class).
315    if (CurContext->getLookupContext()
316          == TD->getDeclContext()->getLookupContext()) {
317      // We're pushing the tag into the current context, which might
318      // require some reshuffling in the identifier resolver.
319      IdentifierResolver::iterator
320        I = IdResolver.begin(TD->getDeclName()),
321        IEnd = IdResolver.end();
322      NamedDecl *ID = *I;
323      if (I != IEnd && isDeclInScope(ID, CurContext, S)) {
324        NamedDecl *PrevDecl = *I;
325        for (; I != IEnd && isDeclInScope(ID, CurContext, S);
326             PrevDecl = *I, ++I) {
327          if (TD->declarationReplaces(*I)) {
328            // This is a redeclaration. Remove it from the chain and
329            // break out, so that we'll add in the shadowed
330            // declaration.
331            S->RemoveDecl(DeclPtrTy::make(*I));
332            if (PrevDecl == *I) {
333              IdResolver.RemoveDecl(*I);
334              IdResolver.AddDecl(TD);
335              return;
336            } else {
337              IdResolver.RemoveDecl(*I);
338              break;
339            }
340          }
341        }
342
343        // There is already a declaration with the same name in the same
344        // scope, which is not a tag declaration. It must be found
345        // before we find the new declaration, so insert the new
346        // declaration at the end of the chain.
347        IdResolver.AddShadowedDecl(TD, PrevDecl);
348
349        return;
350      }
351    }
352  } else if ((isa<FunctionDecl>(D) &&
353              AllowOverloadingOfFunction(D, Context)) ||
354             isa<FunctionTemplateDecl>(D)) {
355    // We are pushing the name of a function or function template,
356    // which might be an overloaded name.
357    IdentifierResolver::iterator Redecl
358      = std::find_if(IdResolver.begin(D->getDeclName()),
359                     IdResolver.end(),
360                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
361                                  D));
362    if (Redecl != IdResolver.end() &&
363        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
364      // There is already a declaration of a function on our
365      // IdResolver chain. Replace it with this declaration.
366      S->RemoveDecl(DeclPtrTy::make(*Redecl));
367      IdResolver.RemoveDecl(*Redecl);
368    }
369  } else if (isa<ObjCInterfaceDecl>(D)) {
370    // We're pushing an Objective-C interface into the current
371    // context. If there is already an alias declaration, remove it first.
372    for (IdentifierResolver::iterator
373           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
374         I != IEnd; ++I) {
375      if (isa<ObjCCompatibleAliasDecl>(*I)) {
376        S->RemoveDecl(DeclPtrTy::make(*I));
377        IdResolver.RemoveDecl(*I);
378        break;
379      }
380    }
381  }
382
383  IdResolver.AddDecl(D);
384}
385
386bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
387  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
388    // Look inside the overload set to determine if any of the declarations
389    // are in scope. (Possibly) build a new overload set containing only
390    // those declarations that are in scope.
391    OverloadedFunctionDecl *NewOvl = 0;
392    bool FoundInScope = false;
393    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
394         FEnd = Ovl->function_end();
395         F != FEnd; ++F) {
396      NamedDecl *FD = F->get();
397      if (!isDeclInScope(FD, Ctx, S)) {
398        if (!NewOvl && F != Ovl->function_begin()) {
399          NewOvl = OverloadedFunctionDecl::Create(Context,
400                                                  F->get()->getDeclContext(),
401                                                  F->get()->getDeclName());
402          D = NewOvl;
403          for (OverloadedFunctionDecl::function_iterator
404               First = Ovl->function_begin();
405               First != F; ++First)
406            NewOvl->addOverload(*First);
407        }
408      } else {
409        FoundInScope = true;
410        if (NewOvl)
411          NewOvl->addOverload(*F);
412      }
413    }
414
415    return FoundInScope;
416  }
417
418  return IdResolver.isDeclInScope(D, Ctx, Context, S);
419}
420
421void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
422  if (S->decl_empty()) return;
423  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
424         "Scope shouldn't contain decls!");
425
426  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
427       I != E; ++I) {
428    Decl *TmpD = (*I).getAs<Decl>();
429    assert(TmpD && "This decl didn't get pushed??");
430
431    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
432    NamedDecl *D = cast<NamedDecl>(TmpD);
433
434    if (!D->getDeclName()) continue;
435
436    // Remove this name from our lexical scope.
437    IdResolver.RemoveDecl(D);
438  }
439}
440
441/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
442/// return 0 if one not found.
443ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
444  // The third "scope" argument is 0 since we aren't enabling lazy built-in
445  // creation from this context.
446  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
447
448  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
449}
450
451/// getNonFieldDeclScope - Retrieves the innermost scope, starting
452/// from S, where a non-field would be declared. This routine copes
453/// with the difference between C and C++ scoping rules in structs and
454/// unions. For example, the following code is well-formed in C but
455/// ill-formed in C++:
456/// @code
457/// struct S6 {
458///   enum { BAR } e;
459/// };
460///
461/// void test_S6() {
462///   struct S6 a;
463///   a.e = BAR;
464/// }
465/// @endcode
466/// For the declaration of BAR, this routine will return a different
467/// scope. The scope S will be the scope of the unnamed enumeration
468/// within S6. In C++, this routine will return the scope associated
469/// with S6, because the enumeration's scope is a transparent
470/// context but structures can contain non-field names. In C, this
471/// routine will return the translation unit scope, since the
472/// enumeration's scope is a transparent context and structures cannot
473/// contain non-field names.
474Scope *Sema::getNonFieldDeclScope(Scope *S) {
475  while (((S->getFlags() & Scope::DeclScope) == 0) ||
476         (S->getEntity() &&
477          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
478         (S->isClassScope() && !getLangOptions().CPlusPlus))
479    S = S->getParent();
480  return S;
481}
482
483void Sema::InitBuiltinVaListType() {
484  if (!Context.getBuiltinVaListType().isNull())
485    return;
486
487  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
488  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
489  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
490  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
491}
492
493/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
494/// file scope.  lazily create a decl for it. ForRedeclaration is true
495/// if we're creating this built-in in anticipation of redeclaring the
496/// built-in.
497NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
498                                     Scope *S, bool ForRedeclaration,
499                                     SourceLocation Loc) {
500  Builtin::ID BID = (Builtin::ID)bid;
501
502  if (Context.BuiltinInfo.hasVAListUse(BID))
503    InitBuiltinVaListType();
504
505  ASTContext::GetBuiltinTypeError Error;
506  QualType R = Context.GetBuiltinType(BID, Error);
507  switch (Error) {
508  case ASTContext::GE_None:
509    // Okay
510    break;
511
512  case ASTContext::GE_Missing_stdio:
513    if (ForRedeclaration)
514      Diag(Loc, diag::err_implicit_decl_requires_stdio)
515        << Context.BuiltinInfo.GetName(BID);
516    return 0;
517
518  case ASTContext::GE_Missing_setjmp:
519    if (ForRedeclaration)
520      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
521        << Context.BuiltinInfo.GetName(BID);
522    return 0;
523  }
524
525  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
526    Diag(Loc, diag::ext_implicit_lib_function_decl)
527      << Context.BuiltinInfo.GetName(BID)
528      << R;
529    if (Context.BuiltinInfo.getHeaderName(BID) &&
530        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
531          != Diagnostic::Ignored)
532      Diag(Loc, diag::note_please_include_header)
533        << Context.BuiltinInfo.getHeaderName(BID)
534        << Context.BuiltinInfo.GetName(BID);
535  }
536
537  FunctionDecl *New = FunctionDecl::Create(Context,
538                                           Context.getTranslationUnitDecl(),
539                                           Loc, II, R, /*DInfo=*/0,
540                                           FunctionDecl::Extern, false,
541                                           /*hasPrototype=*/true);
542  New->setImplicit();
543
544  // Create Decl objects for each parameter, adding them to the
545  // FunctionDecl.
546  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
547    llvm::SmallVector<ParmVarDecl*, 16> Params;
548    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
549      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
550                                           FT->getArgType(i), /*DInfo=*/0,
551                                           VarDecl::None, 0));
552    New->setParams(Context, Params.data(), Params.size());
553  }
554
555  AddKnownFunctionAttributes(New);
556
557  // TUScope is the translation-unit scope to insert this function into.
558  // FIXME: This is hideous. We need to teach PushOnScopeChains to
559  // relate Scopes to DeclContexts, and probably eliminate CurContext
560  // entirely, but we're not there yet.
561  DeclContext *SavedContext = CurContext;
562  CurContext = Context.getTranslationUnitDecl();
563  PushOnScopeChains(New, TUScope);
564  CurContext = SavedContext;
565  return New;
566}
567
568/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
569/// same name and scope as a previous declaration 'Old'.  Figure out
570/// how to resolve this situation, merging decls or emitting
571/// diagnostics as appropriate. If there was an error, set New to be invalid.
572///
573void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
574  // If either decl is known invalid already, set the new one to be invalid and
575  // don't bother doing any merging checks.
576  if (New->isInvalidDecl() || OldD->isInvalidDecl())
577    return New->setInvalidDecl();
578
579  // Allow multiple definitions for ObjC built-in typedefs.
580  // FIXME: Verify the underlying types are equivalent!
581  if (getLangOptions().ObjC1) {
582    const IdentifierInfo *TypeID = New->getIdentifier();
583    switch (TypeID->getLength()) {
584    default: break;
585    case 2:
586      if (!TypeID->isStr("id"))
587        break;
588      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
589      // Install the built-in type for 'id', ignoring the current definition.
590      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
591      return;
592    case 5:
593      if (!TypeID->isStr("Class"))
594        break;
595      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
596      // Install the built-in type for 'Class', ignoring the current definition.
597      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
598      return;
599    case 3:
600      if (!TypeID->isStr("SEL"))
601        break;
602      Context.setObjCSelType(Context.getTypeDeclType(New));
603      return;
604    case 8:
605      if (!TypeID->isStr("Protocol"))
606        break;
607      Context.setObjCProtoType(New->getUnderlyingType());
608      return;
609    }
610    // Fall through - the typedef name was not a builtin type.
611  }
612  // Verify the old decl was also a type.
613  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
614  if (!Old) {
615    Diag(New->getLocation(), diag::err_redefinition_different_kind)
616      << New->getDeclName();
617    if (OldD->getLocation().isValid())
618      Diag(OldD->getLocation(), diag::note_previous_definition);
619    return New->setInvalidDecl();
620  }
621
622  // Determine the "old" type we'll use for checking and diagnostics.
623  QualType OldType;
624  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
625    OldType = OldTypedef->getUnderlyingType();
626  else
627    OldType = Context.getTypeDeclType(Old);
628
629  // If the typedef types are not identical, reject them in all languages and
630  // with any extensions enabled.
631
632  if (OldType != New->getUnderlyingType() &&
633      Context.getCanonicalType(OldType) !=
634      Context.getCanonicalType(New->getUnderlyingType())) {
635    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
636      << New->getUnderlyingType() << OldType;
637    if (Old->getLocation().isValid())
638      Diag(Old->getLocation(), diag::note_previous_definition);
639    return New->setInvalidDecl();
640  }
641
642  if (getLangOptions().Microsoft)
643    return;
644
645  // C++ [dcl.typedef]p2:
646  //   In a given non-class scope, a typedef specifier can be used to
647  //   redefine the name of any type declared in that scope to refer
648  //   to the type to which it already refers.
649  if (getLangOptions().CPlusPlus) {
650    if (!isa<CXXRecordDecl>(CurContext))
651      return;
652    Diag(New->getLocation(), diag::err_redefinition)
653      << New->getDeclName();
654    Diag(Old->getLocation(), diag::note_previous_definition);
655    return New->setInvalidDecl();
656  }
657
658  // If we have a redefinition of a typedef in C, emit a warning.  This warning
659  // is normally mapped to an error, but can be controlled with
660  // -Wtypedef-redefinition.  If either the original or the redefinition is
661  // in a system header, don't emit this for compatibility with GCC.
662  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
663      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
664       Context.getSourceManager().isInSystemHeader(New->getLocation())))
665    return;
666
667  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
668    << New->getDeclName();
669  Diag(Old->getLocation(), diag::note_previous_definition);
670  return;
671}
672
673/// DeclhasAttr - returns true if decl Declaration already has the target
674/// attribute.
675static bool
676DeclHasAttr(const Decl *decl, const Attr *target) {
677  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
678    if (attr->getKind() == target->getKind())
679      return true;
680
681  return false;
682}
683
684/// MergeAttributes - append attributes from the Old decl to the New one.
685static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
686  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
687    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
688      Attr *NewAttr = attr->clone(C);
689      NewAttr->setInherited(true);
690      New->addAttr(NewAttr);
691    }
692  }
693}
694
695/// Used in MergeFunctionDecl to keep track of function parameters in
696/// C.
697struct GNUCompatibleParamWarning {
698  ParmVarDecl *OldParm;
699  ParmVarDecl *NewParm;
700  QualType PromotedType;
701};
702
703/// MergeFunctionDecl - We just parsed a function 'New' from
704/// declarator D which has the same name and scope as a previous
705/// declaration 'Old'.  Figure out how to resolve this situation,
706/// merging decls or emitting diagnostics as appropriate.
707///
708/// In C++, New and Old must be declarations that are not
709/// overloaded. Use IsOverload to determine whether New and Old are
710/// overloaded, and to select the Old declaration that New should be
711/// merged with.
712///
713/// Returns true if there was an error, false otherwise.
714bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
715  assert(!isa<OverloadedFunctionDecl>(OldD) &&
716         "Cannot merge with an overloaded function declaration");
717
718  // Verify the old decl was also a function.
719  FunctionDecl *Old = 0;
720  if (FunctionTemplateDecl *OldFunctionTemplate
721        = dyn_cast<FunctionTemplateDecl>(OldD))
722    Old = OldFunctionTemplate->getTemplatedDecl();
723  else
724    Old = dyn_cast<FunctionDecl>(OldD);
725  if (!Old) {
726    Diag(New->getLocation(), diag::err_redefinition_different_kind)
727      << New->getDeclName();
728    Diag(OldD->getLocation(), diag::note_previous_definition);
729    return true;
730  }
731
732  // Determine whether the previous declaration was a definition,
733  // implicit declaration, or a declaration.
734  diag::kind PrevDiag;
735  if (Old->isThisDeclarationADefinition())
736    PrevDiag = diag::note_previous_definition;
737  else if (Old->isImplicit())
738    PrevDiag = diag::note_previous_implicit_declaration;
739  else
740    PrevDiag = diag::note_previous_declaration;
741
742  QualType OldQType = Context.getCanonicalType(Old->getType());
743  QualType NewQType = Context.getCanonicalType(New->getType());
744
745  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
746      New->getStorageClass() == FunctionDecl::Static &&
747      Old->getStorageClass() != FunctionDecl::Static) {
748    Diag(New->getLocation(), diag::err_static_non_static)
749      << New;
750    Diag(Old->getLocation(), PrevDiag);
751    return true;
752  }
753
754  if (getLangOptions().CPlusPlus) {
755    // (C++98 13.1p2):
756    //   Certain function declarations cannot be overloaded:
757    //     -- Function declarations that differ only in the return type
758    //        cannot be overloaded.
759    QualType OldReturnType
760      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
761    QualType NewReturnType
762      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
763    if (OldReturnType != NewReturnType) {
764      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
765      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
766      return true;
767    }
768
769    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
770    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
771    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
772        NewMethod->getLexicalDeclContext()->isRecord()) {
773      //    -- Member function declarations with the same name and the
774      //       same parameter types cannot be overloaded if any of them
775      //       is a static member function declaration.
776      if (OldMethod->isStatic() || NewMethod->isStatic()) {
777        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
778        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
779        return true;
780      }
781
782      // C++ [class.mem]p1:
783      //   [...] A member shall not be declared twice in the
784      //   member-specification, except that a nested class or member
785      //   class template can be declared and then later defined.
786      unsigned NewDiag;
787      if (isa<CXXConstructorDecl>(OldMethod))
788        NewDiag = diag::err_constructor_redeclared;
789      else if (isa<CXXDestructorDecl>(NewMethod))
790        NewDiag = diag::err_destructor_redeclared;
791      else if (isa<CXXConversionDecl>(NewMethod))
792        NewDiag = diag::err_conv_function_redeclared;
793      else
794        NewDiag = diag::err_member_redeclared;
795
796      Diag(New->getLocation(), NewDiag);
797      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
798    }
799
800    // (C++98 8.3.5p3):
801    //   All declarations for a function shall agree exactly in both the
802    //   return type and the parameter-type-list.
803    if (OldQType == NewQType)
804      return MergeCompatibleFunctionDecls(New, Old);
805
806    // Fall through for conflicting redeclarations and redefinitions.
807  }
808
809  // C: Function types need to be compatible, not identical. This handles
810  // duplicate function decls like "void f(int); void f(enum X);" properly.
811  if (!getLangOptions().CPlusPlus &&
812      Context.typesAreCompatible(OldQType, NewQType)) {
813    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
814    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
815    const FunctionProtoType *OldProto = 0;
816    if (isa<FunctionNoProtoType>(NewFuncType) &&
817        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
818      // The old declaration provided a function prototype, but the
819      // new declaration does not. Merge in the prototype.
820      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
821      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
822                                                 OldProto->arg_type_end());
823      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
824                                         ParamTypes.data(), ParamTypes.size(),
825                                         OldProto->isVariadic(),
826                                         OldProto->getTypeQuals());
827      New->setType(NewQType);
828      New->setHasInheritedPrototype();
829
830      // Synthesize a parameter for each argument type.
831      llvm::SmallVector<ParmVarDecl*, 16> Params;
832      for (FunctionProtoType::arg_type_iterator
833             ParamType = OldProto->arg_type_begin(),
834             ParamEnd = OldProto->arg_type_end();
835           ParamType != ParamEnd; ++ParamType) {
836        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
837                                                 SourceLocation(), 0,
838                                                 *ParamType, /*DInfo=*/0,
839                                                 VarDecl::None, 0);
840        Param->setImplicit();
841        Params.push_back(Param);
842      }
843
844      New->setParams(Context, Params.data(), Params.size());
845    }
846
847    return MergeCompatibleFunctionDecls(New, Old);
848  }
849
850  // GNU C permits a K&R definition to follow a prototype declaration
851  // if the declared types of the parameters in the K&R definition
852  // match the types in the prototype declaration, even when the
853  // promoted types of the parameters from the K&R definition differ
854  // from the types in the prototype. GCC then keeps the types from
855  // the prototype.
856  //
857  // If a variadic prototype is followed by a non-variadic K&R definition,
858  // the K&R definition becomes variadic.  This is sort of an edge case, but
859  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
860  // C99 6.9.1p8.
861  if (!getLangOptions().CPlusPlus &&
862      Old->hasPrototype() && !New->hasPrototype() &&
863      New->getType()->getAs<FunctionProtoType>() &&
864      Old->getNumParams() == New->getNumParams()) {
865    llvm::SmallVector<QualType, 16> ArgTypes;
866    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
867    const FunctionProtoType *OldProto
868      = Old->getType()->getAs<FunctionProtoType>();
869    const FunctionProtoType *NewProto
870      = New->getType()->getAs<FunctionProtoType>();
871
872    // Determine whether this is the GNU C extension.
873    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
874                                               NewProto->getResultType());
875    bool LooseCompatible = !MergedReturn.isNull();
876    for (unsigned Idx = 0, End = Old->getNumParams();
877         LooseCompatible && Idx != End; ++Idx) {
878      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
879      ParmVarDecl *NewParm = New->getParamDecl(Idx);
880      if (Context.typesAreCompatible(OldParm->getType(),
881                                     NewProto->getArgType(Idx))) {
882        ArgTypes.push_back(NewParm->getType());
883      } else if (Context.typesAreCompatible(OldParm->getType(),
884                                            NewParm->getType())) {
885        GNUCompatibleParamWarning Warn
886          = { OldParm, NewParm, NewProto->getArgType(Idx) };
887        Warnings.push_back(Warn);
888        ArgTypes.push_back(NewParm->getType());
889      } else
890        LooseCompatible = false;
891    }
892
893    if (LooseCompatible) {
894      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
895        Diag(Warnings[Warn].NewParm->getLocation(),
896             diag::ext_param_promoted_not_compatible_with_prototype)
897          << Warnings[Warn].PromotedType
898          << Warnings[Warn].OldParm->getType();
899        Diag(Warnings[Warn].OldParm->getLocation(),
900             diag::note_previous_declaration);
901      }
902
903      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
904                                           ArgTypes.size(),
905                                           OldProto->isVariadic(), 0));
906      return MergeCompatibleFunctionDecls(New, Old);
907    }
908
909    // Fall through to diagnose conflicting types.
910  }
911
912  // A function that has already been declared has been redeclared or defined
913  // with a different type- show appropriate diagnostic
914  if (unsigned BuiltinID = Old->getBuiltinID()) {
915    // The user has declared a builtin function with an incompatible
916    // signature.
917    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
918      // The function the user is redeclaring is a library-defined
919      // function like 'malloc' or 'printf'. Warn about the
920      // redeclaration, then pretend that we don't know about this
921      // library built-in.
922      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
923      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
924        << Old << Old->getType();
925      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
926      Old->setInvalidDecl();
927      return false;
928    }
929
930    PrevDiag = diag::note_previous_builtin_declaration;
931  }
932
933  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
934  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
935  return true;
936}
937
938/// \brief Completes the merge of two function declarations that are
939/// known to be compatible.
940///
941/// This routine handles the merging of attributes and other
942/// properties of function declarations form the old declaration to
943/// the new declaration, once we know that New is in fact a
944/// redeclaration of Old.
945///
946/// \returns false
947bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
948  // Merge the attributes
949  MergeAttributes(New, Old, Context);
950
951  // Merge the storage class.
952  if (Old->getStorageClass() != FunctionDecl::Extern &&
953      Old->getStorageClass() != FunctionDecl::None)
954    New->setStorageClass(Old->getStorageClass());
955
956  // Merge "pure" flag.
957  if (Old->isPure())
958    New->setPure();
959
960  // Merge the "deleted" flag.
961  if (Old->isDeleted())
962    New->setDeleted();
963
964  if (getLangOptions().CPlusPlus)
965    return MergeCXXFunctionDecl(New, Old);
966
967  return false;
968}
969
970/// MergeVarDecl - We just parsed a variable 'New' which has the same name
971/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
972/// situation, merging decls or emitting diagnostics as appropriate.
973///
974/// Tentative definition rules (C99 6.9.2p2) are checked by
975/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
976/// definitions here, since the initializer hasn't been attached.
977///
978void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
979  // If either decl is invalid, make sure the new one is marked invalid and
980  // don't do any other checking.
981  if (New->isInvalidDecl() || OldD->isInvalidDecl())
982    return New->setInvalidDecl();
983
984  // Verify the old decl was also a variable.
985  VarDecl *Old = dyn_cast<VarDecl>(OldD);
986  if (!Old) {
987    Diag(New->getLocation(), diag::err_redefinition_different_kind)
988      << New->getDeclName();
989    Diag(OldD->getLocation(), diag::note_previous_definition);
990    return New->setInvalidDecl();
991  }
992
993  MergeAttributes(New, Old, Context);
994
995  // Merge the types
996  QualType MergedT;
997  if (getLangOptions().CPlusPlus) {
998    if (Context.hasSameType(New->getType(), Old->getType()))
999      MergedT = New->getType();
1000    // C++ [basic.types]p7:
1001    //   [...] The declared type of an array object might be an array of
1002    //   unknown size and therefore be incomplete at one point in a
1003    //   translation unit and complete later on; [...]
1004    else if (Old->getType()->isIncompleteArrayType() &&
1005             New->getType()->isArrayType()) {
1006      CanQual<ArrayType> OldArray
1007        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1008      CanQual<ArrayType> NewArray
1009        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1010      if (OldArray->getElementType() == NewArray->getElementType())
1011        MergedT = New->getType();
1012    }
1013  } else {
1014    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1015  }
1016  if (MergedT.isNull()) {
1017    Diag(New->getLocation(), diag::err_redefinition_different_type)
1018      << New->getDeclName();
1019    Diag(Old->getLocation(), diag::note_previous_definition);
1020    return New->setInvalidDecl();
1021  }
1022  New->setType(MergedT);
1023
1024  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1025  if (New->getStorageClass() == VarDecl::Static &&
1026      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1027    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1028    Diag(Old->getLocation(), diag::note_previous_definition);
1029    return New->setInvalidDecl();
1030  }
1031  // C99 6.2.2p4:
1032  //   For an identifier declared with the storage-class specifier
1033  //   extern in a scope in which a prior declaration of that
1034  //   identifier is visible,23) if the prior declaration specifies
1035  //   internal or external linkage, the linkage of the identifier at
1036  //   the later declaration is the same as the linkage specified at
1037  //   the prior declaration. If no prior declaration is visible, or
1038  //   if the prior declaration specifies no linkage, then the
1039  //   identifier has external linkage.
1040  if (New->hasExternalStorage() && Old->hasLinkage())
1041    /* Okay */;
1042  else if (New->getStorageClass() != VarDecl::Static &&
1043           Old->getStorageClass() == VarDecl::Static) {
1044    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1045    Diag(Old->getLocation(), diag::note_previous_definition);
1046    return New->setInvalidDecl();
1047  }
1048
1049  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1050
1051  // FIXME: The test for external storage here seems wrong? We still
1052  // need to check for mismatches.
1053  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1054      // Don't complain about out-of-line definitions of static members.
1055      !(Old->getLexicalDeclContext()->isRecord() &&
1056        !New->getLexicalDeclContext()->isRecord())) {
1057    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1058    Diag(Old->getLocation(), diag::note_previous_definition);
1059    return New->setInvalidDecl();
1060  }
1061
1062  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1063    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1064    Diag(Old->getLocation(), diag::note_previous_definition);
1065  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1066    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1067    Diag(Old->getLocation(), diag::note_previous_definition);
1068  }
1069
1070  // Keep a chain of previous declarations.
1071  New->setPreviousDeclaration(Old);
1072}
1073
1074/// CheckFallThrough - Check that we don't fall off the end of a
1075/// Statement that should return a value.
1076///
1077/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1078/// MaybeFallThrough iff we might or might not fall off the end and
1079/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1080/// that functions not marked noreturn will return.
1081Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1082  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1083
1084  // FIXME: They should never return 0, fix that, delete this code.
1085  if (cfg == 0)
1086    return NeverFallThrough;
1087  // The CFG leaves in dead things, and we don't want to dead code paths to
1088  // confuse us, so we mark all live things first.
1089  std::queue<CFGBlock*> workq;
1090  llvm::BitVector live(cfg->getNumBlockIDs());
1091  // Prep work queue
1092  workq.push(&cfg->getEntry());
1093  // Solve
1094  while (!workq.empty()) {
1095    CFGBlock *item = workq.front();
1096    workq.pop();
1097    live.set(item->getBlockID());
1098    for (CFGBlock::succ_iterator I=item->succ_begin(),
1099           E=item->succ_end();
1100         I != E;
1101         ++I) {
1102      if ((*I) && !live[(*I)->getBlockID()]) {
1103        live.set((*I)->getBlockID());
1104        workq.push(*I);
1105      }
1106    }
1107  }
1108
1109  // Now we know what is live, we check the live precessors of the exit block
1110  // and look for fall through paths, being careful to ignore normal returns,
1111  // and exceptional paths.
1112  bool HasLiveReturn = false;
1113  bool HasFakeEdge = false;
1114  bool HasPlainEdge = false;
1115  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1116         E = cfg->getExit().pred_end();
1117       I != E;
1118       ++I) {
1119    CFGBlock& B = **I;
1120    if (!live[B.getBlockID()])
1121      continue;
1122    if (B.size() == 0) {
1123      // A labeled empty statement, or the entry block...
1124      HasPlainEdge = true;
1125      continue;
1126    }
1127    Stmt *S = B[B.size()-1];
1128    if (isa<ReturnStmt>(S)) {
1129      HasLiveReturn = true;
1130      continue;
1131    }
1132    if (isa<ObjCAtThrowStmt>(S)) {
1133      HasFakeEdge = true;
1134      continue;
1135    }
1136    if (isa<CXXThrowExpr>(S)) {
1137      HasFakeEdge = true;
1138      continue;
1139    }
1140    bool NoReturnEdge = false;
1141    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1142      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1143      if (CEE->getType().getNoReturnAttr()) {
1144        NoReturnEdge = true;
1145        HasFakeEdge = true;
1146      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1147        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1148          if (FD->hasAttr<NoReturnAttr>()) {
1149            NoReturnEdge = true;
1150            HasFakeEdge = true;
1151          }
1152        }
1153      }
1154    }
1155    // FIXME: Add noreturn message sends.
1156    if (NoReturnEdge == false)
1157      HasPlainEdge = true;
1158  }
1159  if (!HasPlainEdge)
1160    return NeverFallThrough;
1161  if (HasFakeEdge || HasLiveReturn)
1162    return MaybeFallThrough;
1163  // This says AlwaysFallThrough for calls to functions that are not marked
1164  // noreturn, that don't return.  If people would like this warning to be more
1165  // accurate, such functions should be marked as noreturn.
1166  return AlwaysFallThrough;
1167}
1168
1169/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1170/// function that should return a value.  Check that we don't fall off the end
1171/// of a noreturn function.  We assume that functions and blocks not marked
1172/// noreturn will return.
1173void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1174  // FIXME: Would be nice if we had a better way to control cascading errors,
1175  // but for now, avoid them.  The problem is that when Parse sees:
1176  //   int foo() { return a; }
1177  // The return is eaten and the Sema code sees just:
1178  //   int foo() { }
1179  // which this code would then warn about.
1180  if (getDiagnostics().hasErrorOccurred())
1181    return;
1182  bool ReturnsVoid = false;
1183  bool HasNoReturn = false;
1184  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1185    if (FD->getResultType()->isVoidType())
1186      ReturnsVoid = true;
1187    if (FD->hasAttr<NoReturnAttr>())
1188      HasNoReturn = true;
1189  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1190    if (MD->getResultType()->isVoidType())
1191      ReturnsVoid = true;
1192    if (MD->hasAttr<NoReturnAttr>())
1193      HasNoReturn = true;
1194  }
1195
1196  // Short circuit for compilation speed.
1197  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1198       == Diagnostic::Ignored || ReturnsVoid)
1199      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1200          == Diagnostic::Ignored || !HasNoReturn)
1201      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1202          == Diagnostic::Ignored || !ReturnsVoid))
1203    return;
1204  // FIXME: Funtion try block
1205  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1206    switch (CheckFallThrough(Body)) {
1207    case MaybeFallThrough:
1208      if (HasNoReturn)
1209        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1210      else if (!ReturnsVoid)
1211        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1212      break;
1213    case AlwaysFallThrough:
1214      if (HasNoReturn)
1215        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1216      else if (!ReturnsVoid)
1217        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1218      break;
1219    case NeverFallThrough:
1220      if (ReturnsVoid)
1221        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1222      break;
1223    }
1224  }
1225}
1226
1227/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1228/// that should return a value.  Check that we don't fall off the end of a
1229/// noreturn block.  We assume that functions and blocks not marked noreturn
1230/// will return.
1231void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1232  // FIXME: Would be nice if we had a better way to control cascading errors,
1233  // but for now, avoid them.  The problem is that when Parse sees:
1234  //   int foo() { return a; }
1235  // The return is eaten and the Sema code sees just:
1236  //   int foo() { }
1237  // which this code would then warn about.
1238  if (getDiagnostics().hasErrorOccurred())
1239    return;
1240  bool ReturnsVoid = false;
1241  bool HasNoReturn = false;
1242  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1243    if (FT->getResultType()->isVoidType())
1244      ReturnsVoid = true;
1245    if (FT->getNoReturnAttr())
1246      HasNoReturn = true;
1247  }
1248
1249  // Short circuit for compilation speed.
1250  if (ReturnsVoid
1251      && !HasNoReturn
1252      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1253          == Diagnostic::Ignored || !ReturnsVoid))
1254    return;
1255  // FIXME: Funtion try block
1256  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1257    switch (CheckFallThrough(Body)) {
1258    case MaybeFallThrough:
1259      if (HasNoReturn)
1260        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1261      else if (!ReturnsVoid)
1262        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1263      break;
1264    case AlwaysFallThrough:
1265      if (HasNoReturn)
1266        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1267      else if (!ReturnsVoid)
1268        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1269      break;
1270    case NeverFallThrough:
1271      if (ReturnsVoid)
1272        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1273      break;
1274    }
1275  }
1276}
1277
1278/// CheckParmsForFunctionDef - Check that the parameters of the given
1279/// function are appropriate for the definition of a function. This
1280/// takes care of any checks that cannot be performed on the
1281/// declaration itself, e.g., that the types of each of the function
1282/// parameters are complete.
1283bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1284  bool HasInvalidParm = false;
1285  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1286    ParmVarDecl *Param = FD->getParamDecl(p);
1287
1288    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1289    // function declarator that is part of a function definition of
1290    // that function shall not have incomplete type.
1291    //
1292    // This is also C++ [dcl.fct]p6.
1293    if (!Param->isInvalidDecl() &&
1294        RequireCompleteType(Param->getLocation(), Param->getType(),
1295                               diag::err_typecheck_decl_incomplete_type)) {
1296      Param->setInvalidDecl();
1297      HasInvalidParm = true;
1298    }
1299
1300    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1301    // declaration of each parameter shall include an identifier.
1302    if (Param->getIdentifier() == 0 &&
1303        !Param->isImplicit() &&
1304        !getLangOptions().CPlusPlus)
1305      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1306  }
1307
1308  return HasInvalidParm;
1309}
1310
1311/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1312/// no declarator (e.g. "struct foo;") is parsed.
1313Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1314  // FIXME: Error on auto/register at file scope
1315  // FIXME: Error on inline/virtual/explicit
1316  // FIXME: Error on invalid restrict
1317  // FIXME: Warn on useless __thread
1318  // FIXME: Warn on useless const/volatile
1319  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1320  // FIXME: Warn on useless attributes
1321  TagDecl *Tag = 0;
1322  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1323      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1324      DS.getTypeSpecType() == DeclSpec::TST_union ||
1325      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1326    if (!DS.getTypeRep()) // We probably had an error
1327      return DeclPtrTy();
1328
1329    // Note that the above type specs guarantee that the
1330    // type rep is a Decl, whereas in many of the others
1331    // it's a Type.
1332    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1333  }
1334
1335  if (DS.isFriendSpecified()) {
1336    // We have a "friend" declaration that does not have a declarator.
1337    // Look at the type to see if the friend declaration was handled
1338    // elsewhere (e.g., for friend classes and friend class templates).
1339    // If not, produce a suitable diagnostic or go try to befriend the
1340    // type itself.
1341    QualType T;
1342    if (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1343        DS.getTypeSpecType() == DeclSpec::TST_typeofType)
1344      T = QualType::getFromOpaquePtr(DS.getTypeRep());
1345    else if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1346             DS.getTypeSpecType() == DeclSpec::TST_decltype)
1347      T = ((Expr *)DS.getTypeRep())->getType();
1348    else if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1349             DS.getTypeSpecType() == DeclSpec::TST_struct ||
1350             DS.getTypeSpecType() == DeclSpec::TST_union)
1351      return DeclPtrTy::make(Tag);
1352
1353    if (T.isNull()) {
1354      // Fall through to diagnose this error, below.
1355    } else if (const RecordType *RecordT = T->getAs<RecordType>()) {
1356      // C++ [class.friend]p2:
1357      //   An elaborated-type-specifier shall be used in a friend declaration
1358      //   for a class.
1359
1360      // We have something like "friend C;", where C is the name of a
1361      // class type but is missing an elaborated type specifier. Complain,
1362      // but tell the user exactly how to fix the problem.
1363      RecordDecl *RecordD = RecordT->getDecl();
1364      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
1365        << (unsigned)RecordD->getTagKind()
1366        << QualType(RecordT, 0)
1367        << SourceRange(DS.getFriendSpecLoc())
1368        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
1369                                  RecordD->getKindName() + std::string(" "));
1370
1371      // FIXME: We could go into ActOnTag to actually make the friend
1372      // declaration happen at this point.
1373      return DeclPtrTy();
1374    }
1375
1376    if (!T.isNull() && T->isDependentType()) {
1377      // Since T is a dependent type, handle it as a friend type
1378      // declaration.
1379      return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1380    }
1381
1382    // Complain about any non-dependent friend type here.
1383    Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
1384      << DS.getSourceRange();
1385    return DeclPtrTy();
1386  }
1387
1388  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1389    if (!Record->getDeclName() && Record->isDefinition() &&
1390        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1391      if (getLangOptions().CPlusPlus ||
1392          Record->getDeclContext()->isRecord())
1393        return BuildAnonymousStructOrUnion(S, DS, Record);
1394
1395      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1396        << DS.getSourceRange();
1397    }
1398
1399    // Microsoft allows unnamed struct/union fields. Don't complain
1400    // about them.
1401    // FIXME: Should we support Microsoft's extensions in this area?
1402    if (Record->getDeclName() && getLangOptions().Microsoft)
1403      return DeclPtrTy::make(Tag);
1404  }
1405
1406  if (!DS.isMissingDeclaratorOk() &&
1407      DS.getTypeSpecType() != DeclSpec::TST_error) {
1408    // Warn about typedefs of enums without names, since this is an
1409    // extension in both Microsoft an GNU.
1410    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1411        Tag && isa<EnumDecl>(Tag)) {
1412      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1413        << DS.getSourceRange();
1414      return DeclPtrTy::make(Tag);
1415    }
1416
1417    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1418      << DS.getSourceRange();
1419    return DeclPtrTy();
1420  }
1421
1422  return DeclPtrTy::make(Tag);
1423}
1424
1425/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1426/// anonymous struct or union AnonRecord into the owning context Owner
1427/// and scope S. This routine will be invoked just after we realize
1428/// that an unnamed union or struct is actually an anonymous union or
1429/// struct, e.g.,
1430///
1431/// @code
1432/// union {
1433///   int i;
1434///   float f;
1435/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1436///    // f into the surrounding scope.x
1437/// @endcode
1438///
1439/// This routine is recursive, injecting the names of nested anonymous
1440/// structs/unions into the owning context and scope as well.
1441bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1442                                               RecordDecl *AnonRecord) {
1443  bool Invalid = false;
1444  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1445                               FEnd = AnonRecord->field_end();
1446       F != FEnd; ++F) {
1447    if ((*F)->getDeclName()) {
1448      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1449                                                LookupOrdinaryName, true);
1450      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1451        // C++ [class.union]p2:
1452        //   The names of the members of an anonymous union shall be
1453        //   distinct from the names of any other entity in the
1454        //   scope in which the anonymous union is declared.
1455        unsigned diagKind
1456          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1457                                 : diag::err_anonymous_struct_member_redecl;
1458        Diag((*F)->getLocation(), diagKind)
1459          << (*F)->getDeclName();
1460        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1461        Invalid = true;
1462      } else {
1463        // C++ [class.union]p2:
1464        //   For the purpose of name lookup, after the anonymous union
1465        //   definition, the members of the anonymous union are
1466        //   considered to have been defined in the scope in which the
1467        //   anonymous union is declared.
1468        Owner->makeDeclVisibleInContext(*F);
1469        S->AddDecl(DeclPtrTy::make(*F));
1470        IdResolver.AddDecl(*F);
1471      }
1472    } else if (const RecordType *InnerRecordType
1473                 = (*F)->getType()->getAs<RecordType>()) {
1474      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1475      if (InnerRecord->isAnonymousStructOrUnion())
1476        Invalid = Invalid ||
1477          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1478    }
1479  }
1480
1481  return Invalid;
1482}
1483
1484/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1485/// anonymous structure or union. Anonymous unions are a C++ feature
1486/// (C++ [class.union]) and a GNU C extension; anonymous structures
1487/// are a GNU C and GNU C++ extension.
1488Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1489                                                  RecordDecl *Record) {
1490  DeclContext *Owner = Record->getDeclContext();
1491
1492  // Diagnose whether this anonymous struct/union is an extension.
1493  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1494    Diag(Record->getLocation(), diag::ext_anonymous_union);
1495  else if (!Record->isUnion())
1496    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1497
1498  // C and C++ require different kinds of checks for anonymous
1499  // structs/unions.
1500  bool Invalid = false;
1501  if (getLangOptions().CPlusPlus) {
1502    const char* PrevSpec = 0;
1503    unsigned DiagID;
1504    // C++ [class.union]p3:
1505    //   Anonymous unions declared in a named namespace or in the
1506    //   global namespace shall be declared static.
1507    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1508        (isa<TranslationUnitDecl>(Owner) ||
1509         (isa<NamespaceDecl>(Owner) &&
1510          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1511      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1512      Invalid = true;
1513
1514      // Recover by adding 'static'.
1515      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1516                             PrevSpec, DiagID);
1517    }
1518    // C++ [class.union]p3:
1519    //   A storage class is not allowed in a declaration of an
1520    //   anonymous union in a class scope.
1521    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1522             isa<RecordDecl>(Owner)) {
1523      Diag(DS.getStorageClassSpecLoc(),
1524           diag::err_anonymous_union_with_storage_spec);
1525      Invalid = true;
1526
1527      // Recover by removing the storage specifier.
1528      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1529                             PrevSpec, DiagID);
1530    }
1531
1532    // C++ [class.union]p2:
1533    //   The member-specification of an anonymous union shall only
1534    //   define non-static data members. [Note: nested types and
1535    //   functions cannot be declared within an anonymous union. ]
1536    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1537                                 MemEnd = Record->decls_end();
1538         Mem != MemEnd; ++Mem) {
1539      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1540        // C++ [class.union]p3:
1541        //   An anonymous union shall not have private or protected
1542        //   members (clause 11).
1543        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1544          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1545            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1546          Invalid = true;
1547        }
1548      } else if ((*Mem)->isImplicit()) {
1549        // Any implicit members are fine.
1550      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1551        // This is a type that showed up in an
1552        // elaborated-type-specifier inside the anonymous struct or
1553        // union, but which actually declares a type outside of the
1554        // anonymous struct or union. It's okay.
1555      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1556        if (!MemRecord->isAnonymousStructOrUnion() &&
1557            MemRecord->getDeclName()) {
1558          // This is a nested type declaration.
1559          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1560            << (int)Record->isUnion();
1561          Invalid = true;
1562        }
1563      } else {
1564        // We have something that isn't a non-static data
1565        // member. Complain about it.
1566        unsigned DK = diag::err_anonymous_record_bad_member;
1567        if (isa<TypeDecl>(*Mem))
1568          DK = diag::err_anonymous_record_with_type;
1569        else if (isa<FunctionDecl>(*Mem))
1570          DK = diag::err_anonymous_record_with_function;
1571        else if (isa<VarDecl>(*Mem))
1572          DK = diag::err_anonymous_record_with_static;
1573        Diag((*Mem)->getLocation(), DK)
1574            << (int)Record->isUnion();
1575          Invalid = true;
1576      }
1577    }
1578  }
1579
1580  if (!Record->isUnion() && !Owner->isRecord()) {
1581    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1582      << (int)getLangOptions().CPlusPlus;
1583    Invalid = true;
1584  }
1585
1586  // Create a declaration for this anonymous struct/union.
1587  NamedDecl *Anon = 0;
1588  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1589    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1590                             /*IdentifierInfo=*/0,
1591                             Context.getTypeDeclType(Record),
1592                             // FIXME: Type source info.
1593                             /*DInfo=*/0,
1594                             /*BitWidth=*/0, /*Mutable=*/false);
1595    Anon->setAccess(AS_public);
1596    if (getLangOptions().CPlusPlus)
1597      FieldCollector->Add(cast<FieldDecl>(Anon));
1598  } else {
1599    VarDecl::StorageClass SC;
1600    switch (DS.getStorageClassSpec()) {
1601    default: assert(0 && "Unknown storage class!");
1602    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1603    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1604    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1605    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1606    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1607    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1608    case DeclSpec::SCS_mutable:
1609      // mutable can only appear on non-static class members, so it's always
1610      // an error here
1611      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1612      Invalid = true;
1613      SC = VarDecl::None;
1614      break;
1615    }
1616
1617    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1618                           /*IdentifierInfo=*/0,
1619                           Context.getTypeDeclType(Record),
1620                           // FIXME: Type source info.
1621                           /*DInfo=*/0,
1622                           SC);
1623  }
1624  Anon->setImplicit();
1625
1626  // Add the anonymous struct/union object to the current
1627  // context. We'll be referencing this object when we refer to one of
1628  // its members.
1629  Owner->addDecl(Anon);
1630
1631  // Inject the members of the anonymous struct/union into the owning
1632  // context and into the identifier resolver chain for name lookup
1633  // purposes.
1634  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1635    Invalid = true;
1636
1637  // Mark this as an anonymous struct/union type. Note that we do not
1638  // do this until after we have already checked and injected the
1639  // members of this anonymous struct/union type, because otherwise
1640  // the members could be injected twice: once by DeclContext when it
1641  // builds its lookup table, and once by
1642  // InjectAnonymousStructOrUnionMembers.
1643  Record->setAnonymousStructOrUnion(true);
1644
1645  if (Invalid)
1646    Anon->setInvalidDecl();
1647
1648  return DeclPtrTy::make(Anon);
1649}
1650
1651
1652/// GetNameForDeclarator - Determine the full declaration name for the
1653/// given Declarator.
1654DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1655  switch (D.getKind()) {
1656  case Declarator::DK_Abstract:
1657    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1658    return DeclarationName();
1659
1660  case Declarator::DK_Normal:
1661    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1662    return DeclarationName(D.getIdentifier());
1663
1664  case Declarator::DK_Constructor: {
1665    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1666    return Context.DeclarationNames.getCXXConstructorName(
1667                                                Context.getCanonicalType(Ty));
1668  }
1669
1670  case Declarator::DK_Destructor: {
1671    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1672    return Context.DeclarationNames.getCXXDestructorName(
1673                                                Context.getCanonicalType(Ty));
1674  }
1675
1676  case Declarator::DK_Conversion: {
1677    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1678    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1679    return Context.DeclarationNames.getCXXConversionFunctionName(
1680                                                Context.getCanonicalType(Ty));
1681  }
1682
1683  case Declarator::DK_Operator:
1684    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1685    return Context.DeclarationNames.getCXXOperatorName(
1686                                                D.getOverloadedOperator());
1687
1688  case Declarator::DK_TemplateId: {
1689    TemplateName Name
1690      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1691    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1692      return Template->getDeclName();
1693    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1694      return Ovl->getDeclName();
1695
1696    return DeclarationName();
1697  }
1698  }
1699
1700  assert(false && "Unknown name kind");
1701  return DeclarationName();
1702}
1703
1704/// isNearlyMatchingFunction - Determine whether the C++ functions
1705/// Declaration and Definition are "nearly" matching. This heuristic
1706/// is used to improve diagnostics in the case where an out-of-line
1707/// function definition doesn't match any declaration within
1708/// the class or namespace.
1709static bool isNearlyMatchingFunction(ASTContext &Context,
1710                                     FunctionDecl *Declaration,
1711                                     FunctionDecl *Definition) {
1712  if (Declaration->param_size() != Definition->param_size())
1713    return false;
1714  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1715    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1716    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1717
1718    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1719    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1720    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1721      return false;
1722  }
1723
1724  return true;
1725}
1726
1727Sema::DeclPtrTy
1728Sema::HandleDeclarator(Scope *S, Declarator &D,
1729                       MultiTemplateParamsArg TemplateParamLists,
1730                       bool IsFunctionDefinition) {
1731  DeclarationName Name = GetNameForDeclarator(D);
1732
1733  // All of these full declarators require an identifier.  If it doesn't have
1734  // one, the ParsedFreeStandingDeclSpec action should be used.
1735  if (!Name) {
1736    if (!D.isInvalidType())  // Reject this if we think it is valid.
1737      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1738           diag::err_declarator_need_ident)
1739        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1740    return DeclPtrTy();
1741  }
1742
1743  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1744  // we find one that is.
1745  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1746         (S->getFlags() & Scope::TemplateParamScope) != 0)
1747    S = S->getParent();
1748
1749  // If this is an out-of-line definition of a member of a class template
1750  // or class template partial specialization, we may need to rebuild the
1751  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1752  // for more information.
1753  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1754  // handle expressions properly.
1755  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1756  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1757      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1758      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1759       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1760       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1761       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1762    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1763      // FIXME: Preserve type source info.
1764      QualType T = GetTypeFromParser(DS.getTypeRep());
1765      EnterDeclaratorContext(S, DC);
1766      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1767      ExitDeclaratorContext(S);
1768      if (T.isNull())
1769        return DeclPtrTy();
1770      DS.UpdateTypeRep(T.getAsOpaquePtr());
1771    }
1772  }
1773
1774  DeclContext *DC;
1775  NamedDecl *PrevDecl;
1776  NamedDecl *New;
1777
1778  DeclaratorInfo *DInfo = 0;
1779  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1780
1781  // See if this is a redefinition of a variable in the same scope.
1782  if (D.getCXXScopeSpec().isInvalid()) {
1783    DC = CurContext;
1784    PrevDecl = 0;
1785    D.setInvalidType();
1786  } else if (!D.getCXXScopeSpec().isSet()) {
1787    LookupNameKind NameKind = LookupOrdinaryName;
1788
1789    // If the declaration we're planning to build will be a function
1790    // or object with linkage, then look for another declaration with
1791    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1792    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1793      /* Do nothing*/;
1794    else if (R->isFunctionType()) {
1795      if (CurContext->isFunctionOrMethod() ||
1796          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1797        NameKind = LookupRedeclarationWithLinkage;
1798    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1799      NameKind = LookupRedeclarationWithLinkage;
1800    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1801             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1802      NameKind = LookupRedeclarationWithLinkage;
1803
1804    DC = CurContext;
1805    PrevDecl = LookupName(S, Name, NameKind, true,
1806                          NameKind == LookupRedeclarationWithLinkage,
1807                          D.getIdentifierLoc());
1808  } else { // Something like "int foo::x;"
1809    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1810
1811    if (!DC) {
1812      // If we could not compute the declaration context, it's because the
1813      // declaration context is dependent but does not refer to a class,
1814      // class template, or class template partial specialization. Complain
1815      // and return early, to avoid the coming semantic disaster.
1816      Diag(D.getIdentifierLoc(),
1817           diag::err_template_qualified_declarator_no_match)
1818        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1819        << D.getCXXScopeSpec().getRange();
1820      return DeclPtrTy();
1821    }
1822
1823    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1824
1825    // C++ 7.3.1.2p2:
1826    // Members (including explicit specializations of templates) of a named
1827    // namespace can also be defined outside that namespace by explicit
1828    // qualification of the name being defined, provided that the entity being
1829    // defined was already declared in the namespace and the definition appears
1830    // after the point of declaration in a namespace that encloses the
1831    // declarations namespace.
1832    //
1833    // Note that we only check the context at this point. We don't yet
1834    // have enough information to make sure that PrevDecl is actually
1835    // the declaration we want to match. For example, given:
1836    //
1837    //   class X {
1838    //     void f();
1839    //     void f(float);
1840    //   };
1841    //
1842    //   void X::f(int) { } // ill-formed
1843    //
1844    // In this case, PrevDecl will point to the overload set
1845    // containing the two f's declared in X, but neither of them
1846    // matches.
1847
1848    // First check whether we named the global scope.
1849    if (isa<TranslationUnitDecl>(DC)) {
1850      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1851        << Name << D.getCXXScopeSpec().getRange();
1852    } else if (!CurContext->Encloses(DC)) {
1853      // The qualifying scope doesn't enclose the original declaration.
1854      // Emit diagnostic based on current scope.
1855      SourceLocation L = D.getIdentifierLoc();
1856      SourceRange R = D.getCXXScopeSpec().getRange();
1857      if (isa<FunctionDecl>(CurContext))
1858        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1859      else
1860        Diag(L, diag::err_invalid_declarator_scope)
1861          << Name << cast<NamedDecl>(DC) << R;
1862      D.setInvalidType();
1863    }
1864  }
1865
1866  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1867    // Maybe we will complain about the shadowed template parameter.
1868    if (!D.isInvalidType())
1869      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1870        D.setInvalidType();
1871
1872    // Just pretend that we didn't see the previous declaration.
1873    PrevDecl = 0;
1874  }
1875
1876  // In C++, the previous declaration we find might be a tag type
1877  // (class or enum). In this case, the new declaration will hide the
1878  // tag type. Note that this does does not apply if we're declaring a
1879  // typedef (C++ [dcl.typedef]p4).
1880  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1881      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1882    PrevDecl = 0;
1883
1884  bool Redeclaration = false;
1885  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1886    if (TemplateParamLists.size()) {
1887      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1888      return DeclPtrTy();
1889    }
1890
1891    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1892  } else if (R->isFunctionType()) {
1893    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1894                                  move(TemplateParamLists),
1895                                  IsFunctionDefinition, Redeclaration);
1896  } else {
1897    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1898                                  move(TemplateParamLists),
1899                                  Redeclaration);
1900  }
1901
1902  if (New == 0)
1903    return DeclPtrTy();
1904
1905  // If this has an identifier and is not an invalid redeclaration or
1906  // function template specialization, add it to the scope stack.
1907  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1908      !(isa<FunctionDecl>(New) &&
1909        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1910    PushOnScopeChains(New, S);
1911
1912  return DeclPtrTy::make(New);
1913}
1914
1915/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1916/// types into constant array types in certain situations which would otherwise
1917/// be errors (for GCC compatibility).
1918static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1919                                                    ASTContext &Context,
1920                                                    bool &SizeIsNegative) {
1921  // This method tries to turn a variable array into a constant
1922  // array even when the size isn't an ICE.  This is necessary
1923  // for compatibility with code that depends on gcc's buggy
1924  // constant expression folding, like struct {char x[(int)(char*)2];}
1925  SizeIsNegative = false;
1926
1927  QualifierCollector Qs;
1928  const Type *Ty = Qs.strip(T);
1929
1930  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1931    QualType Pointee = PTy->getPointeeType();
1932    QualType FixedType =
1933        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1934    if (FixedType.isNull()) return FixedType;
1935    FixedType = Context.getPointerType(FixedType);
1936    return Qs.apply(FixedType);
1937  }
1938
1939  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1940  if (!VLATy)
1941    return QualType();
1942  // FIXME: We should probably handle this case
1943  if (VLATy->getElementType()->isVariablyModifiedType())
1944    return QualType();
1945
1946  Expr::EvalResult EvalResult;
1947  if (!VLATy->getSizeExpr() ||
1948      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1949      !EvalResult.Val.isInt())
1950    return QualType();
1951
1952  llvm::APSInt &Res = EvalResult.Val.getInt();
1953  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1954    Expr* ArySizeExpr = VLATy->getSizeExpr();
1955    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1956    // so as to transfer ownership to the ConstantArrayWithExpr.
1957    // Alternatively, we could "clone" it (how?).
1958    // Since we don't know how to do things above, we just use the
1959    // very same Expr*.
1960    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1961                                                Res, ArySizeExpr,
1962                                                ArrayType::Normal, 0,
1963                                                VLATy->getBracketsRange());
1964  }
1965
1966  SizeIsNegative = true;
1967  return QualType();
1968}
1969
1970/// \brief Register the given locally-scoped external C declaration so
1971/// that it can be found later for redeclarations
1972void
1973Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1974                                       Scope *S) {
1975  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1976         "Decl is not a locally-scoped decl!");
1977  // Note that we have a locally-scoped external with this name.
1978  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1979
1980  if (!PrevDecl)
1981    return;
1982
1983  // If there was a previous declaration of this variable, it may be
1984  // in our identifier chain. Update the identifier chain with the new
1985  // declaration.
1986  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1987    // The previous declaration was found on the identifer resolver
1988    // chain, so remove it from its scope.
1989    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1990      S = S->getParent();
1991
1992    if (S)
1993      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1994  }
1995}
1996
1997/// \brief Diagnose function specifiers on a declaration of an identifier that
1998/// does not identify a function.
1999void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2000  // FIXME: We should probably indicate the identifier in question to avoid
2001  // confusion for constructs like "inline int a(), b;"
2002  if (D.getDeclSpec().isInlineSpecified())
2003    Diag(D.getDeclSpec().getInlineSpecLoc(),
2004         diag::err_inline_non_function);
2005
2006  if (D.getDeclSpec().isVirtualSpecified())
2007    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2008         diag::err_virtual_non_function);
2009
2010  if (D.getDeclSpec().isExplicitSpecified())
2011    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2012         diag::err_explicit_non_function);
2013}
2014
2015NamedDecl*
2016Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2017                             QualType R,  DeclaratorInfo *DInfo,
2018                             NamedDecl* PrevDecl, bool &Redeclaration) {
2019  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2020  if (D.getCXXScopeSpec().isSet()) {
2021    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2022      << D.getCXXScopeSpec().getRange();
2023    D.setInvalidType();
2024    // Pretend we didn't see the scope specifier.
2025    DC = 0;
2026  }
2027
2028  if (getLangOptions().CPlusPlus) {
2029    // Check that there are no default arguments (C++ only).
2030    CheckExtraCXXDefaultArguments(D);
2031  }
2032
2033  DiagnoseFunctionSpecifiers(D);
2034
2035  if (D.getDeclSpec().isThreadSpecified())
2036    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2037
2038  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
2039  if (!NewTD) return 0;
2040
2041  if (D.isInvalidType())
2042    NewTD->setInvalidDecl();
2043
2044  // Handle attributes prior to checking for duplicates in MergeVarDecl
2045  ProcessDeclAttributes(S, NewTD, D);
2046  // Merge the decl with the existing one if appropriate. If the decl is
2047  // in an outer scope, it isn't the same thing.
2048  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2049    Redeclaration = true;
2050    MergeTypeDefDecl(NewTD, PrevDecl);
2051  }
2052
2053  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2054  // then it shall have block scope.
2055  QualType T = NewTD->getUnderlyingType();
2056  if (T->isVariablyModifiedType()) {
2057    CurFunctionNeedsScopeChecking = true;
2058
2059    if (S->getFnParent() == 0) {
2060      bool SizeIsNegative;
2061      QualType FixedTy =
2062          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2063      if (!FixedTy.isNull()) {
2064        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2065        NewTD->setUnderlyingType(FixedTy);
2066      } else {
2067        if (SizeIsNegative)
2068          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2069        else if (T->isVariableArrayType())
2070          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2071        else
2072          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2073        NewTD->setInvalidDecl();
2074      }
2075    }
2076  }
2077
2078  // If this is the C FILE type, notify the AST context.
2079  if (IdentifierInfo *II = NewTD->getIdentifier())
2080    if (!NewTD->isInvalidDecl() &&
2081        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2082      if (II->isStr("FILE"))
2083        Context.setFILEDecl(NewTD);
2084      else if (II->isStr("jmp_buf"))
2085        Context.setjmp_bufDecl(NewTD);
2086      else if (II->isStr("sigjmp_buf"))
2087        Context.setsigjmp_bufDecl(NewTD);
2088    }
2089
2090  return NewTD;
2091}
2092
2093/// \brief Determines whether the given declaration is an out-of-scope
2094/// previous declaration.
2095///
2096/// This routine should be invoked when name lookup has found a
2097/// previous declaration (PrevDecl) that is not in the scope where a
2098/// new declaration by the same name is being introduced. If the new
2099/// declaration occurs in a local scope, previous declarations with
2100/// linkage may still be considered previous declarations (C99
2101/// 6.2.2p4-5, C++ [basic.link]p6).
2102///
2103/// \param PrevDecl the previous declaration found by name
2104/// lookup
2105///
2106/// \param DC the context in which the new declaration is being
2107/// declared.
2108///
2109/// \returns true if PrevDecl is an out-of-scope previous declaration
2110/// for a new delcaration with the same name.
2111static bool
2112isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2113                                ASTContext &Context) {
2114  if (!PrevDecl)
2115    return 0;
2116
2117  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2118  // case we need to check each of the overloaded functions.
2119  if (!PrevDecl->hasLinkage())
2120    return false;
2121
2122  if (Context.getLangOptions().CPlusPlus) {
2123    // C++ [basic.link]p6:
2124    //   If there is a visible declaration of an entity with linkage
2125    //   having the same name and type, ignoring entities declared
2126    //   outside the innermost enclosing namespace scope, the block
2127    //   scope declaration declares that same entity and receives the
2128    //   linkage of the previous declaration.
2129    DeclContext *OuterContext = DC->getLookupContext();
2130    if (!OuterContext->isFunctionOrMethod())
2131      // This rule only applies to block-scope declarations.
2132      return false;
2133    else {
2134      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2135      if (PrevOuterContext->isRecord())
2136        // We found a member function: ignore it.
2137        return false;
2138      else {
2139        // Find the innermost enclosing namespace for the new and
2140        // previous declarations.
2141        while (!OuterContext->isFileContext())
2142          OuterContext = OuterContext->getParent();
2143        while (!PrevOuterContext->isFileContext())
2144          PrevOuterContext = PrevOuterContext->getParent();
2145
2146        // The previous declaration is in a different namespace, so it
2147        // isn't the same function.
2148        if (OuterContext->getPrimaryContext() !=
2149            PrevOuterContext->getPrimaryContext())
2150          return false;
2151      }
2152    }
2153  }
2154
2155  return true;
2156}
2157
2158NamedDecl*
2159Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2160                              QualType R, DeclaratorInfo *DInfo,
2161                              NamedDecl* PrevDecl,
2162                              MultiTemplateParamsArg TemplateParamLists,
2163                              bool &Redeclaration) {
2164  DeclarationName Name = GetNameForDeclarator(D);
2165
2166  // Check that there are no default arguments (C++ only).
2167  if (getLangOptions().CPlusPlus)
2168    CheckExtraCXXDefaultArguments(D);
2169
2170  VarDecl *NewVD;
2171  VarDecl::StorageClass SC;
2172  switch (D.getDeclSpec().getStorageClassSpec()) {
2173  default: assert(0 && "Unknown storage class!");
2174  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2175  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2176  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2177  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2178  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2179  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2180  case DeclSpec::SCS_mutable:
2181    // mutable can only appear on non-static class members, so it's always
2182    // an error here
2183    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2184    D.setInvalidType();
2185    SC = VarDecl::None;
2186    break;
2187  }
2188
2189  IdentifierInfo *II = Name.getAsIdentifierInfo();
2190  if (!II) {
2191    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2192      << Name.getAsString();
2193    return 0;
2194  }
2195
2196  DiagnoseFunctionSpecifiers(D);
2197
2198  if (!DC->isRecord() && S->getFnParent() == 0) {
2199    // C99 6.9p2: The storage-class specifiers auto and register shall not
2200    // appear in the declaration specifiers in an external declaration.
2201    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2202
2203      // If this is a register variable with an asm label specified, then this
2204      // is a GNU extension.
2205      if (SC == VarDecl::Register && D.getAsmLabel())
2206        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2207      else
2208        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2209      D.setInvalidType();
2210    }
2211  }
2212  if (DC->isRecord() && !CurContext->isRecord()) {
2213    // This is an out-of-line definition of a static data member.
2214    if (SC == VarDecl::Static) {
2215      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2216           diag::err_static_out_of_line)
2217        << CodeModificationHint::CreateRemoval(
2218                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2219    } else if (SC == VarDecl::None)
2220      SC = VarDecl::Static;
2221  }
2222  if (SC == VarDecl::Static) {
2223    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2224      if (RD->isLocalClass())
2225        Diag(D.getIdentifierLoc(),
2226             diag::err_static_data_member_not_allowed_in_local_class)
2227          << Name << RD->getDeclName();
2228    }
2229  }
2230
2231  // Match up the template parameter lists with the scope specifier, then
2232  // determine whether we have a template or a template specialization.
2233  if (TemplateParameterList *TemplateParams
2234      = MatchTemplateParametersToScopeSpecifier(
2235                                  D.getDeclSpec().getSourceRange().getBegin(),
2236                                                D.getCXXScopeSpec(),
2237                        (TemplateParameterList**)TemplateParamLists.get(),
2238                                                 TemplateParamLists.size())) {
2239    if (TemplateParams->size() > 0) {
2240      // There is no such thing as a variable template.
2241      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2242        << II
2243        << SourceRange(TemplateParams->getTemplateLoc(),
2244                       TemplateParams->getRAngleLoc());
2245      return 0;
2246    } else {
2247      // There is an extraneous 'template<>' for this variable. Complain
2248      // about it, but allow the declaration of the variable.
2249      Diag(TemplateParams->getTemplateLoc(),
2250           diag::err_template_variable_noparams)
2251        << II
2252        << SourceRange(TemplateParams->getTemplateLoc(),
2253                       TemplateParams->getRAngleLoc());
2254    }
2255  }
2256
2257  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2258                          II, R, DInfo, SC);
2259
2260  if (D.isInvalidType())
2261    NewVD->setInvalidDecl();
2262
2263  if (D.getDeclSpec().isThreadSpecified()) {
2264    if (NewVD->hasLocalStorage())
2265      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2266    else if (!Context.Target.isTLSSupported())
2267      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2268    else
2269      NewVD->setThreadSpecified(true);
2270  }
2271
2272  // Set the lexical context. If the declarator has a C++ scope specifier, the
2273  // lexical context will be different from the semantic context.
2274  NewVD->setLexicalDeclContext(CurContext);
2275
2276  // Handle attributes prior to checking for duplicates in MergeVarDecl
2277  ProcessDeclAttributes(S, NewVD, D);
2278
2279  // Handle GNU asm-label extension (encoded as an attribute).
2280  if (Expr *E = (Expr*) D.getAsmLabel()) {
2281    // The parser guarantees this is a string.
2282    StringLiteral *SE = cast<StringLiteral>(E);
2283    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2284                                                        SE->getByteLength())));
2285  }
2286
2287  // If name lookup finds a previous declaration that is not in the
2288  // same scope as the new declaration, this may still be an
2289  // acceptable redeclaration.
2290  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2291      !(NewVD->hasLinkage() &&
2292        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2293    PrevDecl = 0;
2294
2295  // Merge the decl with the existing one if appropriate.
2296  if (PrevDecl) {
2297    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2298      // The user tried to define a non-static data member
2299      // out-of-line (C++ [dcl.meaning]p1).
2300      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2301        << D.getCXXScopeSpec().getRange();
2302      PrevDecl = 0;
2303      NewVD->setInvalidDecl();
2304    }
2305  } else if (D.getCXXScopeSpec().isSet()) {
2306    // No previous declaration in the qualifying scope.
2307    NestedNameSpecifier *NNS =
2308      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2309    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2310                          D.getCXXScopeSpec().getRange());
2311    NewVD->setInvalidDecl();
2312  }
2313
2314  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2315
2316  // attributes declared post-definition are currently ignored
2317  if (PrevDecl) {
2318    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2319    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2320      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2321      Diag(Def->getLocation(), diag::note_previous_definition);
2322    }
2323  }
2324
2325  // If this is a locally-scoped extern C variable, update the map of
2326  // such variables.
2327  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2328      !NewVD->isInvalidDecl())
2329    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2330
2331  return NewVD;
2332}
2333
2334/// \brief Perform semantic checking on a newly-created variable
2335/// declaration.
2336///
2337/// This routine performs all of the type-checking required for a
2338/// variable declaration once it has been built. It is used both to
2339/// check variables after they have been parsed and their declarators
2340/// have been translated into a declaration, and to check variables
2341/// that have been instantiated from a template.
2342///
2343/// Sets NewVD->isInvalidDecl() if an error was encountered.
2344void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2345                                    bool &Redeclaration) {
2346  // If the decl is already known invalid, don't check it.
2347  if (NewVD->isInvalidDecl())
2348    return;
2349
2350  QualType T = NewVD->getType();
2351
2352  if (T->isObjCInterfaceType()) {
2353    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2354    return NewVD->setInvalidDecl();
2355  }
2356
2357  // The variable can not have an abstract class type.
2358  if (RequireNonAbstractType(NewVD->getLocation(), T,
2359                             diag::err_abstract_type_in_decl,
2360                             AbstractVariableType))
2361    return NewVD->setInvalidDecl();
2362
2363  // Emit an error if an address space was applied to decl with local storage.
2364  // This includes arrays of objects with address space qualifiers, but not
2365  // automatic variables that point to other address spaces.
2366  // ISO/IEC TR 18037 S5.1.2
2367  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2368    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2369    return NewVD->setInvalidDecl();
2370  }
2371
2372  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2373      && !NewVD->hasAttr<BlocksAttr>())
2374    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2375
2376  bool isVM = T->isVariablyModifiedType();
2377  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2378      NewVD->hasAttr<BlocksAttr>())
2379    CurFunctionNeedsScopeChecking = true;
2380
2381  if ((isVM && NewVD->hasLinkage()) ||
2382      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2383    bool SizeIsNegative;
2384    QualType FixedTy =
2385        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2386
2387    if (FixedTy.isNull() && T->isVariableArrayType()) {
2388      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2389      // FIXME: This won't give the correct result for
2390      // int a[10][n];
2391      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2392
2393      if (NewVD->isFileVarDecl())
2394        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2395        << SizeRange;
2396      else if (NewVD->getStorageClass() == VarDecl::Static)
2397        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2398        << SizeRange;
2399      else
2400        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2401        << SizeRange;
2402      return NewVD->setInvalidDecl();
2403    }
2404
2405    if (FixedTy.isNull()) {
2406      if (NewVD->isFileVarDecl())
2407        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2408      else
2409        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2410      return NewVD->setInvalidDecl();
2411    }
2412
2413    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2414    NewVD->setType(FixedTy);
2415  }
2416
2417  if (!PrevDecl && NewVD->isExternC()) {
2418    // Since we did not find anything by this name and we're declaring
2419    // an extern "C" variable, look for a non-visible extern "C"
2420    // declaration with the same name.
2421    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2422      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2423    if (Pos != LocallyScopedExternalDecls.end())
2424      PrevDecl = Pos->second;
2425  }
2426
2427  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2428    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2429      << T;
2430    return NewVD->setInvalidDecl();
2431  }
2432
2433  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2434    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2435    return NewVD->setInvalidDecl();
2436  }
2437
2438  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2439    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2440    return NewVD->setInvalidDecl();
2441  }
2442
2443  if (PrevDecl) {
2444    Redeclaration = true;
2445    MergeVarDecl(NewVD, PrevDecl);
2446  }
2447}
2448
2449static bool isUsingDecl(Decl *D) {
2450  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2451}
2452
2453NamedDecl*
2454Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2455                              QualType R, DeclaratorInfo *DInfo,
2456                              NamedDecl* PrevDecl,
2457                              MultiTemplateParamsArg TemplateParamLists,
2458                              bool IsFunctionDefinition, bool &Redeclaration) {
2459  assert(R.getTypePtr()->isFunctionType());
2460
2461  DeclarationName Name = GetNameForDeclarator(D);
2462  FunctionDecl::StorageClass SC = FunctionDecl::None;
2463  switch (D.getDeclSpec().getStorageClassSpec()) {
2464  default: assert(0 && "Unknown storage class!");
2465  case DeclSpec::SCS_auto:
2466  case DeclSpec::SCS_register:
2467  case DeclSpec::SCS_mutable:
2468    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2469         diag::err_typecheck_sclass_func);
2470    D.setInvalidType();
2471    break;
2472  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2473  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2474  case DeclSpec::SCS_static: {
2475    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2476      // C99 6.7.1p5:
2477      //   The declaration of an identifier for a function that has
2478      //   block scope shall have no explicit storage-class specifier
2479      //   other than extern
2480      // See also (C++ [dcl.stc]p4).
2481      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2482           diag::err_static_block_func);
2483      SC = FunctionDecl::None;
2484    } else
2485      SC = FunctionDecl::Static;
2486    break;
2487  }
2488  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2489  }
2490
2491  if (D.getDeclSpec().isThreadSpecified())
2492    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2493
2494  bool isFriend = D.getDeclSpec().isFriendSpecified();
2495  bool isInline = D.getDeclSpec().isInlineSpecified();
2496  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2497  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2498
2499  // Check that the return type is not an abstract class type.
2500  // For record types, this is done by the AbstractClassUsageDiagnoser once
2501  // the class has been completely parsed.
2502  if (!DC->isRecord() &&
2503      RequireNonAbstractType(D.getIdentifierLoc(),
2504                             R->getAs<FunctionType>()->getResultType(),
2505                             diag::err_abstract_type_in_decl,
2506                             AbstractReturnType))
2507    D.setInvalidType();
2508
2509  // Do not allow returning a objc interface by-value.
2510  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2511    Diag(D.getIdentifierLoc(),
2512         diag::err_object_cannot_be_passed_returned_by_value) << 0
2513      << R->getAs<FunctionType>()->getResultType();
2514    D.setInvalidType();
2515  }
2516
2517  bool isVirtualOkay = false;
2518  FunctionDecl *NewFD;
2519
2520  if (isFriend) {
2521    // DC is the namespace in which the function is being declared.
2522    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2523           "friend function being created in a non-namespace context");
2524
2525    // C++ [class.friend]p5
2526    //   A function can be defined in a friend declaration of a
2527    //   class . . . . Such a function is implicitly inline.
2528    isInline |= IsFunctionDefinition;
2529  }
2530
2531  if (D.getKind() == Declarator::DK_Constructor) {
2532    // This is a C++ constructor declaration.
2533    assert(DC->isRecord() &&
2534           "Constructors can only be declared in a member context");
2535
2536    R = CheckConstructorDeclarator(D, R, SC);
2537
2538    // Create the new declaration
2539    NewFD = CXXConstructorDecl::Create(Context,
2540                                       cast<CXXRecordDecl>(DC),
2541                                       D.getIdentifierLoc(), Name, R, DInfo,
2542                                       isExplicit, isInline,
2543                                       /*isImplicitlyDeclared=*/false);
2544  } else if (D.getKind() == Declarator::DK_Destructor) {
2545    // This is a C++ destructor declaration.
2546    if (DC->isRecord()) {
2547      R = CheckDestructorDeclarator(D, SC);
2548
2549      NewFD = CXXDestructorDecl::Create(Context,
2550                                        cast<CXXRecordDecl>(DC),
2551                                        D.getIdentifierLoc(), Name, R,
2552                                        isInline,
2553                                        /*isImplicitlyDeclared=*/false);
2554
2555      isVirtualOkay = true;
2556    } else {
2557      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2558
2559      // Create a FunctionDecl to satisfy the function definition parsing
2560      // code path.
2561      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2562                                   Name, R, DInfo, SC, isInline,
2563                                   /*hasPrototype=*/true);
2564      D.setInvalidType();
2565    }
2566  } else if (D.getKind() == Declarator::DK_Conversion) {
2567    if (!DC->isRecord()) {
2568      Diag(D.getIdentifierLoc(),
2569           diag::err_conv_function_not_member);
2570      return 0;
2571    }
2572
2573    CheckConversionDeclarator(D, R, SC);
2574    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2575                                      D.getIdentifierLoc(), Name, R, DInfo,
2576                                      isInline, isExplicit);
2577
2578    isVirtualOkay = true;
2579  } else if (DC->isRecord()) {
2580    // If the of the function is the same as the name of the record, then this
2581    // must be an invalid constructor that has a return type.
2582    // (The parser checks for a return type and makes the declarator a
2583    // constructor if it has no return type).
2584    // must have an invalid constructor that has a return type
2585    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2586      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2587        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2588        << SourceRange(D.getIdentifierLoc());
2589      return 0;
2590    }
2591
2592    // This is a C++ method declaration.
2593    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2594                                  D.getIdentifierLoc(), Name, R, DInfo,
2595                                  (SC == FunctionDecl::Static), isInline);
2596
2597    isVirtualOkay = (SC != FunctionDecl::Static);
2598  } else {
2599    // Determine whether the function was written with a
2600    // prototype. This true when:
2601    //   - we're in C++ (where every function has a prototype),
2602    //   - there is a prototype in the declarator, or
2603    //   - the type R of the function is some kind of typedef or other reference
2604    //     to a type name (which eventually refers to a function type).
2605    bool HasPrototype =
2606       getLangOptions().CPlusPlus ||
2607       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2608       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2609
2610    NewFD = FunctionDecl::Create(Context, DC,
2611                                 D.getIdentifierLoc(),
2612                                 Name, R, DInfo, SC, isInline, HasPrototype);
2613  }
2614
2615  if (D.isInvalidType())
2616    NewFD->setInvalidDecl();
2617
2618  // Set the lexical context. If the declarator has a C++
2619  // scope specifier, or is the object of a friend declaration, the
2620  // lexical context will be different from the semantic context.
2621  NewFD->setLexicalDeclContext(CurContext);
2622
2623  if (isFriend)
2624    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2625
2626  // Match up the template parameter lists with the scope specifier, then
2627  // determine whether we have a template or a template specialization.
2628  FunctionTemplateDecl *FunctionTemplate = 0;
2629  bool isFunctionTemplateSpecialization = false;
2630  if (TemplateParameterList *TemplateParams
2631        = MatchTemplateParametersToScopeSpecifier(
2632                                  D.getDeclSpec().getSourceRange().getBegin(),
2633                                  D.getCXXScopeSpec(),
2634                           (TemplateParameterList**)TemplateParamLists.get(),
2635                                                  TemplateParamLists.size())) {
2636    if (TemplateParams->size() > 0) {
2637      // This is a function template
2638
2639      // Check that we can declare a template here.
2640      if (CheckTemplateDeclScope(S, TemplateParams))
2641        return 0;
2642
2643      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2644                                                      NewFD->getLocation(),
2645                                                      Name, TemplateParams,
2646                                                      NewFD);
2647      FunctionTemplate->setLexicalDeclContext(CurContext);
2648      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2649    } else {
2650      // This is a function template specialization.
2651      isFunctionTemplateSpecialization = true;
2652    }
2653
2654    // FIXME: Free this memory properly.
2655    TemplateParamLists.release();
2656  }
2657
2658  // C++ [dcl.fct.spec]p5:
2659  //   The virtual specifier shall only be used in declarations of
2660  //   nonstatic class member functions that appear within a
2661  //   member-specification of a class declaration; see 10.3.
2662  //
2663  if (isVirtual && !NewFD->isInvalidDecl()) {
2664    if (!isVirtualOkay) {
2665       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2666           diag::err_virtual_non_function);
2667    } else if (!CurContext->isRecord()) {
2668      // 'virtual' was specified outside of the class.
2669      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2670        << CodeModificationHint::CreateRemoval(
2671                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2672    } else {
2673      // Okay: Add virtual to the method.
2674      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2675      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2676      CurClass->setAggregate(false);
2677      CurClass->setPOD(false);
2678      CurClass->setEmpty(false);
2679      CurClass->setPolymorphic(true);
2680      CurClass->setHasTrivialConstructor(false);
2681      CurClass->setHasTrivialCopyConstructor(false);
2682      CurClass->setHasTrivialCopyAssignment(false);
2683    }
2684  }
2685
2686  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2687    // Look for virtual methods in base classes that this method might override.
2688
2689    BasePaths Paths;
2690    if (LookupInBases(cast<CXXRecordDecl>(DC),
2691                      MemberLookupCriteria(NewMD), Paths)) {
2692      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2693           E = Paths.found_decls_end(); I != E; ++I) {
2694        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2695          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2696              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2697            NewMD->addOverriddenMethod(OldMD);
2698        }
2699      }
2700    }
2701  }
2702
2703  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2704      !CurContext->isRecord()) {
2705    // C++ [class.static]p1:
2706    //   A data or function member of a class may be declared static
2707    //   in a class definition, in which case it is a static member of
2708    //   the class.
2709
2710    // Complain about the 'static' specifier if it's on an out-of-line
2711    // member function definition.
2712    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2713         diag::err_static_out_of_line)
2714      << CodeModificationHint::CreateRemoval(
2715                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2716  }
2717
2718  // Handle GNU asm-label extension (encoded as an attribute).
2719  if (Expr *E = (Expr*) D.getAsmLabel()) {
2720    // The parser guarantees this is a string.
2721    StringLiteral *SE = cast<StringLiteral>(E);
2722    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2723                                                        SE->getByteLength())));
2724  }
2725
2726  // Copy the parameter declarations from the declarator D to the function
2727  // declaration NewFD, if they are available.  First scavenge them into Params.
2728  llvm::SmallVector<ParmVarDecl*, 16> Params;
2729  if (D.getNumTypeObjects() > 0) {
2730    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2731
2732    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2733    // function that takes no arguments, not a function that takes a
2734    // single void argument.
2735    // We let through "const void" here because Sema::GetTypeForDeclarator
2736    // already checks for that case.
2737    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2738        FTI.ArgInfo[0].Param &&
2739        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2740      // Empty arg list, don't push any params.
2741      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2742
2743      // In C++, the empty parameter-type-list must be spelled "void"; a
2744      // typedef of void is not permitted.
2745      if (getLangOptions().CPlusPlus &&
2746          Param->getType().getUnqualifiedType() != Context.VoidTy)
2747        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2748      // FIXME: Leaks decl?
2749    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2750      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2751        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2752        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2753        Param->setDeclContext(NewFD);
2754        Params.push_back(Param);
2755      }
2756    }
2757
2758  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2759    // When we're declaring a function with a typedef, typeof, etc as in the
2760    // following example, we'll need to synthesize (unnamed)
2761    // parameters for use in the declaration.
2762    //
2763    // @code
2764    // typedef void fn(int);
2765    // fn f;
2766    // @endcode
2767
2768    // Synthesize a parameter for each argument type.
2769    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2770         AE = FT->arg_type_end(); AI != AE; ++AI) {
2771      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2772                                               SourceLocation(), 0,
2773                                               *AI, /*DInfo=*/0,
2774                                               VarDecl::None, 0);
2775      Param->setImplicit();
2776      Params.push_back(Param);
2777    }
2778  } else {
2779    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2780           "Should not need args for typedef of non-prototype fn");
2781  }
2782  // Finally, we know we have the right number of parameters, install them.
2783  NewFD->setParams(Context, Params.data(), Params.size());
2784
2785  // If name lookup finds a previous declaration that is not in the
2786  // same scope as the new declaration, this may still be an
2787  // acceptable redeclaration.
2788  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2789      !(NewFD->hasLinkage() &&
2790        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2791    PrevDecl = 0;
2792
2793  // If the declarator is a template-id, translate the parser's template
2794  // argument list into our AST format.
2795  bool HasExplicitTemplateArgs = false;
2796  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2797  SourceLocation LAngleLoc, RAngleLoc;
2798  if (D.getKind() == Declarator::DK_TemplateId) {
2799    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2800    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2801                                       TemplateId->getTemplateArgs(),
2802                                       TemplateId->getTemplateArgIsType(),
2803                                       TemplateId->NumArgs);
2804    translateTemplateArguments(TemplateArgsPtr,
2805                               TemplateId->getTemplateArgLocations(),
2806                               TemplateArgs);
2807    TemplateArgsPtr.release();
2808
2809    HasExplicitTemplateArgs = true;
2810    LAngleLoc = TemplateId->LAngleLoc;
2811    RAngleLoc = TemplateId->RAngleLoc;
2812
2813    if (FunctionTemplate) {
2814      // FIXME: Diagnostic function template with explicit template
2815      // arguments.
2816      HasExplicitTemplateArgs = false;
2817    } else if (!isFunctionTemplateSpecialization &&
2818               !D.getDeclSpec().isFriendSpecified()) {
2819      // We have encountered something that the user meant to be a
2820      // specialization (because it has explicitly-specified template
2821      // arguments) but that was not introduced with a "template<>" (or had
2822      // too few of them).
2823      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2824        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2825        << CodeModificationHint::CreateInsertion(
2826                                   D.getDeclSpec().getSourceRange().getBegin(),
2827                                                 "template<> ");
2828      isFunctionTemplateSpecialization = true;
2829    }
2830  }
2831
2832  if (isFunctionTemplateSpecialization &&
2833      CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2834                                          LAngleLoc, TemplateArgs.data(),
2835                                          TemplateArgs.size(), RAngleLoc,
2836                                          PrevDecl))
2837    NewFD->setInvalidDecl();
2838
2839  // Perform semantic checking on the function declaration.
2840  bool OverloadableAttrRequired = false; // FIXME: HACK!
2841  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2842                           /*FIXME:*/OverloadableAttrRequired);
2843
2844  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2845    // An out-of-line member function declaration must also be a
2846    // definition (C++ [dcl.meaning]p1).
2847    // FIXME: Find a better way to recognize out-of-line specializations!
2848    if (!IsFunctionDefinition && !isFriend &&
2849        !(TemplateParamLists.size() && !FunctionTemplate)) {
2850      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2851        << D.getCXXScopeSpec().getRange();
2852      NewFD->setInvalidDecl();
2853    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2854      // The user tried to provide an out-of-line definition for a
2855      // function that is a member of a class or namespace, but there
2856      // was no such member function declared (C++ [class.mfct]p2,
2857      // C++ [namespace.memdef]p2). For example:
2858      //
2859      // class X {
2860      //   void f() const;
2861      // };
2862      //
2863      // void X::f() { } // ill-formed
2864      //
2865      // Complain about this problem, and attempt to suggest close
2866      // matches (e.g., those that differ only in cv-qualifiers and
2867      // whether the parameter types are references).
2868      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2869        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2870      NewFD->setInvalidDecl();
2871
2872      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2873                                              true);
2874      assert(!Prev.isAmbiguous() &&
2875             "Cannot have an ambiguity in previous-declaration lookup");
2876      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2877           Func != FuncEnd; ++Func) {
2878        if (isa<FunctionDecl>(*Func) &&
2879            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2880          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2881      }
2882
2883      PrevDecl = 0;
2884    }
2885  }
2886
2887  // Handle attributes. We need to have merged decls when handling attributes
2888  // (for example to check for conflicts, etc).
2889  // FIXME: This needs to happen before we merge declarations. Then,
2890  // let attribute merging cope with attribute conflicts.
2891  ProcessDeclAttributes(S, NewFD, D);
2892
2893  // attributes declared post-definition are currently ignored
2894  if (Redeclaration && PrevDecl) {
2895    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2896    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2897      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2898      Diag(Def->getLocation(), diag::note_previous_definition);
2899    }
2900  }
2901
2902  AddKnownFunctionAttributes(NewFD);
2903
2904  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2905    // If a function name is overloadable in C, then every function
2906    // with that name must be marked "overloadable".
2907    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2908      << Redeclaration << NewFD;
2909    if (PrevDecl)
2910      Diag(PrevDecl->getLocation(),
2911           diag::note_attribute_overloadable_prev_overload);
2912    NewFD->addAttr(::new (Context) OverloadableAttr());
2913  }
2914
2915  // If this is a locally-scoped extern C function, update the
2916  // map of such names.
2917  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2918      && !NewFD->isInvalidDecl())
2919    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2920
2921  // Set this FunctionDecl's range up to the right paren.
2922  NewFD->setLocEnd(D.getSourceRange().getEnd());
2923
2924  if (FunctionTemplate && NewFD->isInvalidDecl())
2925    FunctionTemplate->setInvalidDecl();
2926
2927  if (FunctionTemplate)
2928    return FunctionTemplate;
2929
2930  return NewFD;
2931}
2932
2933/// \brief Perform semantic checking of a new function declaration.
2934///
2935/// Performs semantic analysis of the new function declaration
2936/// NewFD. This routine performs all semantic checking that does not
2937/// require the actual declarator involved in the declaration, and is
2938/// used both for the declaration of functions as they are parsed
2939/// (called via ActOnDeclarator) and for the declaration of functions
2940/// that have been instantiated via C++ template instantiation (called
2941/// via InstantiateDecl).
2942///
2943/// This sets NewFD->isInvalidDecl() to true if there was an error.
2944void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2945                                    bool &Redeclaration,
2946                                    bool &OverloadableAttrRequired) {
2947  // If NewFD is already known erroneous, don't do any of this checking.
2948  if (NewFD->isInvalidDecl())
2949    return;
2950
2951  if (NewFD->getResultType()->isVariablyModifiedType()) {
2952    // Functions returning a variably modified type violate C99 6.7.5.2p2
2953    // because all functions have linkage.
2954    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2955    return NewFD->setInvalidDecl();
2956  }
2957
2958  if (NewFD->isMain())
2959    CheckMain(NewFD);
2960
2961  // Check for a previous declaration of this name.
2962  if (!PrevDecl && NewFD->isExternC()) {
2963    // Since we did not find anything by this name and we're declaring
2964    // an extern "C" function, look for a non-visible extern "C"
2965    // declaration with the same name.
2966    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2967      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2968    if (Pos != LocallyScopedExternalDecls.end())
2969      PrevDecl = Pos->second;
2970  }
2971
2972  // Merge or overload the declaration with an existing declaration of
2973  // the same name, if appropriate.
2974  if (PrevDecl) {
2975    // Determine whether NewFD is an overload of PrevDecl or
2976    // a declaration that requires merging. If it's an overload,
2977    // there's no more work to do here; we'll just add the new
2978    // function to the scope.
2979    OverloadedFunctionDecl::function_iterator MatchedDecl;
2980
2981    if (!getLangOptions().CPlusPlus &&
2982        AllowOverloadingOfFunction(PrevDecl, Context)) {
2983      OverloadableAttrRequired = true;
2984
2985      // Functions marked "overloadable" must have a prototype (that
2986      // we can't get through declaration merging).
2987      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2988        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2989          << NewFD;
2990        Redeclaration = true;
2991
2992        // Turn this into a variadic function with no parameters.
2993        QualType R = Context.getFunctionType(
2994                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
2995                       0, 0, true, 0);
2996        NewFD->setType(R);
2997        return NewFD->setInvalidDecl();
2998      }
2999    }
3000
3001    if (PrevDecl &&
3002        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3003         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3004      Redeclaration = true;
3005      Decl *OldDecl = PrevDecl;
3006
3007      // If PrevDecl was an overloaded function, extract the
3008      // FunctionDecl that matched.
3009      if (isa<OverloadedFunctionDecl>(PrevDecl))
3010        OldDecl = *MatchedDecl;
3011
3012      // NewFD and OldDecl represent declarations that need to be
3013      // merged.
3014      if (MergeFunctionDecl(NewFD, OldDecl))
3015        return NewFD->setInvalidDecl();
3016
3017      if (FunctionTemplateDecl *OldTemplateDecl
3018            = dyn_cast<FunctionTemplateDecl>(OldDecl))
3019        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3020      else {
3021        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3022          NewFD->setAccess(OldDecl->getAccess());
3023        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3024      }
3025    }
3026  }
3027
3028  // Semantic checking for this function declaration (in isolation).
3029  if (getLangOptions().CPlusPlus) {
3030    // C++-specific checks.
3031    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3032      CheckConstructor(Constructor);
3033    } else if (isa<CXXDestructorDecl>(NewFD)) {
3034      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3035      QualType ClassType = Context.getTypeDeclType(Record);
3036      if (!ClassType->isDependentType()) {
3037        DeclarationName Name
3038          = Context.DeclarationNames.getCXXDestructorName(
3039                                        Context.getCanonicalType(ClassType));
3040        if (NewFD->getDeclName() != Name) {
3041          Diag(NewFD->getLocation(), diag::err_destructor_name);
3042          return NewFD->setInvalidDecl();
3043        }
3044      }
3045      Record->setUserDeclaredDestructor(true);
3046      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3047      // user-defined destructor.
3048      Record->setPOD(false);
3049
3050      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3051      // declared destructor.
3052      // FIXME: C++0x: don't do this for "= default" destructors
3053      Record->setHasTrivialDestructor(false);
3054    } else if (CXXConversionDecl *Conversion
3055               = dyn_cast<CXXConversionDecl>(NewFD))
3056      ActOnConversionDeclarator(Conversion);
3057
3058    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3059    if (NewFD->isOverloadedOperator() &&
3060        CheckOverloadedOperatorDeclaration(NewFD))
3061      return NewFD->setInvalidDecl();
3062
3063    // In C++, check default arguments now that we have merged decls. Unless
3064    // the lexical context is the class, because in this case this is done
3065    // during delayed parsing anyway.
3066    if (!CurContext->isRecord())
3067      CheckCXXDefaultArguments(NewFD);
3068  }
3069}
3070
3071void Sema::CheckMain(FunctionDecl* FD) {
3072  // C++ [basic.start.main]p3:  A program that declares main to be inline
3073  //   or static is ill-formed.
3074  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3075  //   shall not appear in a declaration of main.
3076  // static main is not an error under C99, but we should warn about it.
3077  bool isInline = FD->isInline();
3078  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3079  if (isInline || isStatic) {
3080    unsigned diagID = diag::warn_unusual_main_decl;
3081    if (isInline || getLangOptions().CPlusPlus)
3082      diagID = diag::err_unusual_main_decl;
3083
3084    int which = isStatic + (isInline << 1) - 1;
3085    Diag(FD->getLocation(), diagID) << which;
3086  }
3087
3088  QualType T = FD->getType();
3089  assert(T->isFunctionType() && "function decl is not of function type");
3090  const FunctionType* FT = T->getAs<FunctionType>();
3091
3092  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3093    // TODO: add a replacement fixit to turn the return type into 'int'.
3094    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3095    FD->setInvalidDecl(true);
3096  }
3097
3098  // Treat protoless main() as nullary.
3099  if (isa<FunctionNoProtoType>(FT)) return;
3100
3101  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3102  unsigned nparams = FTP->getNumArgs();
3103  assert(FD->getNumParams() == nparams);
3104
3105  if (nparams > 3) {
3106    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3107    FD->setInvalidDecl(true);
3108    nparams = 3;
3109  }
3110
3111  // FIXME: a lot of the following diagnostics would be improved
3112  // if we had some location information about types.
3113
3114  QualType CharPP =
3115    Context.getPointerType(Context.getPointerType(Context.CharTy));
3116  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3117
3118  for (unsigned i = 0; i < nparams; ++i) {
3119    QualType AT = FTP->getArgType(i);
3120
3121    bool mismatch = true;
3122
3123    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3124      mismatch = false;
3125    else if (Expected[i] == CharPP) {
3126      // As an extension, the following forms are okay:
3127      //   char const **
3128      //   char const * const *
3129      //   char * const *
3130
3131      QualifierCollector qs;
3132      const PointerType* PT;
3133      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3134          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3135          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3136        qs.removeConst();
3137        mismatch = !qs.empty();
3138      }
3139    }
3140
3141    if (mismatch) {
3142      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3143      // TODO: suggest replacing given type with expected type
3144      FD->setInvalidDecl(true);
3145    }
3146  }
3147
3148  if (nparams == 1 && !FD->isInvalidDecl()) {
3149    Diag(FD->getLocation(), diag::warn_main_one_arg);
3150  }
3151}
3152
3153bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3154  // FIXME: Need strict checking.  In C89, we need to check for
3155  // any assignment, increment, decrement, function-calls, or
3156  // commas outside of a sizeof.  In C99, it's the same list,
3157  // except that the aforementioned are allowed in unevaluated
3158  // expressions.  Everything else falls under the
3159  // "may accept other forms of constant expressions" exception.
3160  // (We never end up here for C++, so the constant expression
3161  // rules there don't matter.)
3162  if (Init->isConstantInitializer(Context))
3163    return false;
3164  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3165    << Init->getSourceRange();
3166  return true;
3167}
3168
3169void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3170  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3171}
3172
3173/// AddInitializerToDecl - Adds the initializer Init to the
3174/// declaration dcl. If DirectInit is true, this is C++ direct
3175/// initialization rather than copy initialization.
3176void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3177  Decl *RealDecl = dcl.getAs<Decl>();
3178  // If there is no declaration, there was an error parsing it.  Just ignore
3179  // the initializer.
3180  if (RealDecl == 0)
3181    return;
3182
3183  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3184    // With declarators parsed the way they are, the parser cannot
3185    // distinguish between a normal initializer and a pure-specifier.
3186    // Thus this grotesque test.
3187    IntegerLiteral *IL;
3188    Expr *Init = static_cast<Expr *>(init.get());
3189    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3190        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3191      if (Method->isVirtualAsWritten()) {
3192        Method->setPure();
3193
3194        // A class is abstract if at least one function is pure virtual.
3195        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3196      } else if (!Method->isInvalidDecl()) {
3197        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3198          << Method->getDeclName() << Init->getSourceRange();
3199        Method->setInvalidDecl();
3200      }
3201    } else {
3202      Diag(Method->getLocation(), diag::err_member_function_initialization)
3203        << Method->getDeclName() << Init->getSourceRange();
3204      Method->setInvalidDecl();
3205    }
3206    return;
3207  }
3208
3209  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3210  if (!VDecl) {
3211    if (getLangOptions().CPlusPlus &&
3212        RealDecl->getLexicalDeclContext()->isRecord() &&
3213        isa<NamedDecl>(RealDecl))
3214      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3215        << cast<NamedDecl>(RealDecl)->getDeclName();
3216    else
3217      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3218    RealDecl->setInvalidDecl();
3219    return;
3220  }
3221
3222  if (!VDecl->getType()->isArrayType() &&
3223      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3224                          diag::err_typecheck_decl_incomplete_type)) {
3225    RealDecl->setInvalidDecl();
3226    return;
3227  }
3228
3229  const VarDecl *Def = 0;
3230  if (VDecl->getDefinition(Def)) {
3231    Diag(VDecl->getLocation(), diag::err_redefinition)
3232      << VDecl->getDeclName();
3233    Diag(Def->getLocation(), diag::note_previous_definition);
3234    VDecl->setInvalidDecl();
3235    return;
3236  }
3237
3238  // Take ownership of the expression, now that we're sure we have somewhere
3239  // to put it.
3240  Expr *Init = init.takeAs<Expr>();
3241  assert(Init && "missing initializer");
3242
3243  // Get the decls type and save a reference for later, since
3244  // CheckInitializerTypes may change it.
3245  QualType DclT = VDecl->getType(), SavT = DclT;
3246  if (VDecl->isBlockVarDecl()) {
3247    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3248      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3249      VDecl->setInvalidDecl();
3250    } else if (!VDecl->isInvalidDecl()) {
3251      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3252                                VDecl->getDeclName(), DirectInit))
3253        VDecl->setInvalidDecl();
3254
3255      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3256      // Don't check invalid declarations to avoid emitting useless diagnostics.
3257      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3258        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3259          CheckForConstantInitializer(Init, DclT);
3260      }
3261    }
3262  } else if (VDecl->isStaticDataMember() &&
3263             VDecl->getLexicalDeclContext()->isRecord()) {
3264    // This is an in-class initialization for a static data member, e.g.,
3265    //
3266    // struct S {
3267    //   static const int value = 17;
3268    // };
3269
3270    // Attach the initializer
3271    VDecl->setInit(Context, Init);
3272
3273    // C++ [class.mem]p4:
3274    //   A member-declarator can contain a constant-initializer only
3275    //   if it declares a static member (9.4) of const integral or
3276    //   const enumeration type, see 9.4.2.
3277    QualType T = VDecl->getType();
3278    if (!T->isDependentType() &&
3279        (!Context.getCanonicalType(T).isConstQualified() ||
3280         !T->isIntegralType())) {
3281      Diag(VDecl->getLocation(), diag::err_member_initialization)
3282        << VDecl->getDeclName() << Init->getSourceRange();
3283      VDecl->setInvalidDecl();
3284    } else {
3285      // C++ [class.static.data]p4:
3286      //   If a static data member is of const integral or const
3287      //   enumeration type, its declaration in the class definition
3288      //   can specify a constant-initializer which shall be an
3289      //   integral constant expression (5.19).
3290      if (!Init->isTypeDependent() &&
3291          !Init->getType()->isIntegralType()) {
3292        // We have a non-dependent, non-integral or enumeration type.
3293        Diag(Init->getSourceRange().getBegin(),
3294             diag::err_in_class_initializer_non_integral_type)
3295          << Init->getType() << Init->getSourceRange();
3296        VDecl->setInvalidDecl();
3297      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3298        // Check whether the expression is a constant expression.
3299        llvm::APSInt Value;
3300        SourceLocation Loc;
3301        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3302          Diag(Loc, diag::err_in_class_initializer_non_constant)
3303            << Init->getSourceRange();
3304          VDecl->setInvalidDecl();
3305        } else if (!VDecl->getType()->isDependentType())
3306          ImpCastExprToType(Init, VDecl->getType());
3307      }
3308    }
3309  } else if (VDecl->isFileVarDecl()) {
3310    if (VDecl->getStorageClass() == VarDecl::Extern)
3311      Diag(VDecl->getLocation(), diag::warn_extern_init);
3312    if (!VDecl->isInvalidDecl())
3313      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3314                                VDecl->getDeclName(), DirectInit))
3315        VDecl->setInvalidDecl();
3316
3317    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3318    // Don't check invalid declarations to avoid emitting useless diagnostics.
3319    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3320      // C99 6.7.8p4. All file scoped initializers need to be constant.
3321      CheckForConstantInitializer(Init, DclT);
3322    }
3323  }
3324  // If the type changed, it means we had an incomplete type that was
3325  // completed by the initializer. For example:
3326  //   int ary[] = { 1, 3, 5 };
3327  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3328  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3329    VDecl->setType(DclT);
3330    Init->setType(DclT);
3331  }
3332
3333  Init = MaybeCreateCXXExprWithTemporaries(Init,
3334                                           /*ShouldDestroyTemporaries=*/true);
3335  // Attach the initializer to the decl.
3336  VDecl->setInit(Context, Init);
3337
3338  // If the previous declaration of VDecl was a tentative definition,
3339  // remove it from the set of tentative definitions.
3340  if (VDecl->getPreviousDeclaration() &&
3341      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3342    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3343    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3344  }
3345
3346  return;
3347}
3348
3349void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3350                                  bool TypeContainsUndeducedAuto) {
3351  Decl *RealDecl = dcl.getAs<Decl>();
3352
3353  // If there is no declaration, there was an error parsing it. Just ignore it.
3354  if (RealDecl == 0)
3355    return;
3356
3357  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3358    QualType Type = Var->getType();
3359
3360    // Record tentative definitions.
3361    if (Var->isTentativeDefinition(Context)) {
3362      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3363        InsertPair =
3364           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3365
3366      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3367      // want the second one in the map.
3368      InsertPair.first->second = Var;
3369
3370      // However, for the list, we don't care about the order, just make sure
3371      // that there are no dupes for a given declaration name.
3372      if (InsertPair.second)
3373        TentativeDefinitionList.push_back(Var->getDeclName());
3374    }
3375
3376    // C++ [dcl.init.ref]p3:
3377    //   The initializer can be omitted for a reference only in a
3378    //   parameter declaration (8.3.5), in the declaration of a
3379    //   function return type, in the declaration of a class member
3380    //   within its class declaration (9.2), and where the extern
3381    //   specifier is explicitly used.
3382    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3383      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3384        << Var->getDeclName()
3385        << SourceRange(Var->getLocation(), Var->getLocation());
3386      Var->setInvalidDecl();
3387      return;
3388    }
3389
3390    // C++0x [dcl.spec.auto]p3
3391    if (TypeContainsUndeducedAuto) {
3392      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3393        << Var->getDeclName() << Type;
3394      Var->setInvalidDecl();
3395      return;
3396    }
3397
3398    // C++ [dcl.init]p9:
3399    //   If no initializer is specified for an object, and the object
3400    //   is of (possibly cv-qualified) non-POD class type (or array
3401    //   thereof), the object shall be default-initialized; if the
3402    //   object is of const-qualified type, the underlying class type
3403    //   shall have a user-declared default constructor.
3404    //
3405    // FIXME: Diagnose the "user-declared default constructor" bit.
3406    if (getLangOptions().CPlusPlus) {
3407      QualType InitType = Type;
3408      if (const ArrayType *Array = Context.getAsArrayType(Type))
3409        InitType = Array->getElementType();
3410      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3411          InitType->isRecordType() && !InitType->isDependentType()) {
3412        if (!RequireCompleteType(Var->getLocation(), InitType,
3413                                 diag::err_invalid_incomplete_type_use)) {
3414          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3415
3416          CXXConstructorDecl *Constructor
3417            = PerformInitializationByConstructor(InitType,
3418                                                 MultiExprArg(*this, 0, 0),
3419                                                 Var->getLocation(),
3420                                               SourceRange(Var->getLocation(),
3421                                                           Var->getLocation()),
3422                                                 Var->getDeclName(),
3423                                                 IK_Default,
3424                                                 ConstructorArgs);
3425
3426          // FIXME: Location info for the variable initialization?
3427          if (!Constructor)
3428            Var->setInvalidDecl();
3429          else {
3430            // FIXME: Cope with initialization of arrays
3431            if (!Constructor->isTrivial() &&
3432                InitializeVarWithConstructor(Var, Constructor, InitType,
3433                                             move_arg(ConstructorArgs)))
3434              Var->setInvalidDecl();
3435
3436            FinalizeVarWithDestructor(Var, InitType);
3437          }
3438        }
3439      }
3440    }
3441
3442#if 0
3443    // FIXME: Temporarily disabled because we are not properly parsing
3444    // linkage specifications on declarations, e.g.,
3445    //
3446    //   extern "C" const CGPoint CGPointerZero;
3447    //
3448    // C++ [dcl.init]p9:
3449    //
3450    //     If no initializer is specified for an object, and the
3451    //     object is of (possibly cv-qualified) non-POD class type (or
3452    //     array thereof), the object shall be default-initialized; if
3453    //     the object is of const-qualified type, the underlying class
3454    //     type shall have a user-declared default
3455    //     constructor. Otherwise, if no initializer is specified for
3456    //     an object, the object and its subobjects, if any, have an
3457    //     indeterminate initial value; if the object or any of its
3458    //     subobjects are of const-qualified type, the program is
3459    //     ill-formed.
3460    //
3461    // This isn't technically an error in C, so we don't diagnose it.
3462    //
3463    // FIXME: Actually perform the POD/user-defined default
3464    // constructor check.
3465    if (getLangOptions().CPlusPlus &&
3466        Context.getCanonicalType(Type).isConstQualified() &&
3467        !Var->hasExternalStorage())
3468      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3469        << Var->getName()
3470        << SourceRange(Var->getLocation(), Var->getLocation());
3471#endif
3472  }
3473}
3474
3475Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3476                                                   DeclPtrTy *Group,
3477                                                   unsigned NumDecls) {
3478  llvm::SmallVector<Decl*, 8> Decls;
3479
3480  if (DS.isTypeSpecOwned())
3481    Decls.push_back((Decl*)DS.getTypeRep());
3482
3483  for (unsigned i = 0; i != NumDecls; ++i)
3484    if (Decl *D = Group[i].getAs<Decl>())
3485      Decls.push_back(D);
3486
3487  // Perform semantic analysis that depends on having fully processed both
3488  // the declarator and initializer.
3489  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3490    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3491    if (!IDecl)
3492      continue;
3493    QualType T = IDecl->getType();
3494
3495    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3496    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3497    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3498      if (!IDecl->isInvalidDecl() &&
3499          RequireCompleteType(IDecl->getLocation(), T,
3500                              diag::err_typecheck_decl_incomplete_type))
3501        IDecl->setInvalidDecl();
3502    }
3503    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3504    // object that has file scope without an initializer, and without a
3505    // storage-class specifier or with the storage-class specifier "static",
3506    // constitutes a tentative definition. Note: A tentative definition with
3507    // external linkage is valid (C99 6.2.2p5).
3508    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3509      if (const IncompleteArrayType *ArrayT
3510          = Context.getAsIncompleteArrayType(T)) {
3511        if (RequireCompleteType(IDecl->getLocation(),
3512                                ArrayT->getElementType(),
3513                                diag::err_illegal_decl_array_incomplete_type))
3514          IDecl->setInvalidDecl();
3515      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3516        // C99 6.9.2p3: If the declaration of an identifier for an object is
3517        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3518        // declared type shall not be an incomplete type.
3519        // NOTE: code such as the following
3520        //     static struct s;
3521        //     struct s { int a; };
3522        // is accepted by gcc. Hence here we issue a warning instead of
3523        // an error and we do not invalidate the static declaration.
3524        // NOTE: to avoid multiple warnings, only check the first declaration.
3525        if (IDecl->getPreviousDeclaration() == 0)
3526          RequireCompleteType(IDecl->getLocation(), T,
3527                              diag::ext_typecheck_decl_incomplete_type);
3528      }
3529    }
3530  }
3531  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3532                                                   Decls.data(), Decls.size()));
3533}
3534
3535
3536/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3537/// to introduce parameters into function prototype scope.
3538Sema::DeclPtrTy
3539Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3540  const DeclSpec &DS = D.getDeclSpec();
3541
3542  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3543  VarDecl::StorageClass StorageClass = VarDecl::None;
3544  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3545    StorageClass = VarDecl::Register;
3546  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3547    Diag(DS.getStorageClassSpecLoc(),
3548         diag::err_invalid_storage_class_in_func_decl);
3549    D.getMutableDeclSpec().ClearStorageClassSpecs();
3550  }
3551
3552  if (D.getDeclSpec().isThreadSpecified())
3553    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3554
3555  DiagnoseFunctionSpecifiers(D);
3556
3557  // Check that there are no default arguments inside the type of this
3558  // parameter (C++ only).
3559  if (getLangOptions().CPlusPlus)
3560    CheckExtraCXXDefaultArguments(D);
3561
3562  DeclaratorInfo *DInfo = 0;
3563  TagDecl *OwnedDecl = 0;
3564  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3565                                               &OwnedDecl);
3566
3567  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3568    // C++ [dcl.fct]p6:
3569    //   Types shall not be defined in return or parameter types.
3570    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3571      << Context.getTypeDeclType(OwnedDecl);
3572  }
3573
3574  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3575  // Can this happen for params?  We already checked that they don't conflict
3576  // among each other.  Here they can only shadow globals, which is ok.
3577  IdentifierInfo *II = D.getIdentifier();
3578  if (II) {
3579    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3580      if (PrevDecl->isTemplateParameter()) {
3581        // Maybe we will complain about the shadowed template parameter.
3582        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3583        // Just pretend that we didn't see the previous declaration.
3584        PrevDecl = 0;
3585      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3586        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3587
3588        // Recover by removing the name
3589        II = 0;
3590        D.SetIdentifier(0, D.getIdentifierLoc());
3591      }
3592    }
3593  }
3594
3595  // Parameters can not be abstract class types.
3596  // For record types, this is done by the AbstractClassUsageDiagnoser once
3597  // the class has been completely parsed.
3598  if (!CurContext->isRecord() &&
3599      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3600                             diag::err_abstract_type_in_decl,
3601                             AbstractParamType))
3602    D.setInvalidType(true);
3603
3604  QualType T = adjustParameterType(parmDeclType);
3605
3606  ParmVarDecl *New;
3607  if (T == parmDeclType) // parameter type did not need adjustment
3608    New = ParmVarDecl::Create(Context, CurContext,
3609                              D.getIdentifierLoc(), II,
3610                              parmDeclType, DInfo, StorageClass,
3611                              0);
3612  else // keep track of both the adjusted and unadjusted types
3613    New = OriginalParmVarDecl::Create(Context, CurContext,
3614                                      D.getIdentifierLoc(), II, T, DInfo,
3615                                      parmDeclType, StorageClass, 0);
3616
3617  if (D.isInvalidType())
3618    New->setInvalidDecl();
3619
3620  // Parameter declarators cannot be interface types. All ObjC objects are
3621  // passed by reference.
3622  if (T->isObjCInterfaceType()) {
3623    Diag(D.getIdentifierLoc(),
3624         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3625    New->setInvalidDecl();
3626  }
3627
3628  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3629  if (D.getCXXScopeSpec().isSet()) {
3630    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3631      << D.getCXXScopeSpec().getRange();
3632    New->setInvalidDecl();
3633  }
3634
3635  // Add the parameter declaration into this scope.
3636  S->AddDecl(DeclPtrTy::make(New));
3637  if (II)
3638    IdResolver.AddDecl(New);
3639
3640  ProcessDeclAttributes(S, New, D);
3641
3642  if (New->hasAttr<BlocksAttr>()) {
3643    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3644  }
3645  return DeclPtrTy::make(New);
3646}
3647
3648void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3649                                           SourceLocation LocAfterDecls) {
3650  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3651         "Not a function declarator!");
3652  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3653
3654  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3655  // for a K&R function.
3656  if (!FTI.hasPrototype) {
3657    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3658      --i;
3659      if (FTI.ArgInfo[i].Param == 0) {
3660        std::string Code = "  int ";
3661        Code += FTI.ArgInfo[i].Ident->getName();
3662        Code += ";\n";
3663        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3664          << FTI.ArgInfo[i].Ident
3665          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3666
3667        // Implicitly declare the argument as type 'int' for lack of a better
3668        // type.
3669        DeclSpec DS;
3670        const char* PrevSpec; // unused
3671        unsigned DiagID; // unused
3672        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3673                           PrevSpec, DiagID);
3674        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3675        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3676        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3677      }
3678    }
3679  }
3680}
3681
3682Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3683                                              Declarator &D) {
3684  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3685  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3686         "Not a function declarator!");
3687  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3688
3689  if (FTI.hasPrototype) {
3690    // FIXME: Diagnose arguments without names in C.
3691  }
3692
3693  Scope *ParentScope = FnBodyScope->getParent();
3694
3695  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3696                                  MultiTemplateParamsArg(*this),
3697                                  /*IsFunctionDefinition=*/true);
3698  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3699}
3700
3701Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3702  if (!D)
3703    return D;
3704  FunctionDecl *FD = 0;
3705
3706  if (FunctionTemplateDecl *FunTmpl
3707        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3708    FD = FunTmpl->getTemplatedDecl();
3709  else
3710    FD = cast<FunctionDecl>(D.getAs<Decl>());
3711
3712  CurFunctionNeedsScopeChecking = false;
3713
3714  // See if this is a redefinition.
3715  const FunctionDecl *Definition;
3716  if (FD->getBody(Definition)) {
3717    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3718    Diag(Definition->getLocation(), diag::note_previous_definition);
3719  }
3720
3721  // Builtin functions cannot be defined.
3722  if (unsigned BuiltinID = FD->getBuiltinID()) {
3723    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3724      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3725      FD->setInvalidDecl();
3726    }
3727  }
3728
3729  // The return type of a function definition must be complete
3730  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3731  QualType ResultType = FD->getResultType();
3732  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3733      !FD->isInvalidDecl() &&
3734      RequireCompleteType(FD->getLocation(), ResultType,
3735                          diag::err_func_def_incomplete_result))
3736    FD->setInvalidDecl();
3737
3738  // GNU warning -Wmissing-prototypes:
3739  //   Warn if a global function is defined without a previous
3740  //   prototype declaration. This warning is issued even if the
3741  //   definition itself provides a prototype. The aim is to detect
3742  //   global functions that fail to be declared in header files.
3743  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3744      !FD->isMain()) {
3745    bool MissingPrototype = true;
3746    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3747         Prev; Prev = Prev->getPreviousDeclaration()) {
3748      // Ignore any declarations that occur in function or method
3749      // scope, because they aren't visible from the header.
3750      if (Prev->getDeclContext()->isFunctionOrMethod())
3751        continue;
3752
3753      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3754      break;
3755    }
3756
3757    if (MissingPrototype)
3758      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3759  }
3760
3761  if (FnBodyScope)
3762    PushDeclContext(FnBodyScope, FD);
3763
3764  // Check the validity of our function parameters
3765  CheckParmsForFunctionDef(FD);
3766
3767  // Introduce our parameters into the function scope
3768  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3769    ParmVarDecl *Param = FD->getParamDecl(p);
3770    Param->setOwningFunction(FD);
3771
3772    // If this has an identifier, add it to the scope stack.
3773    if (Param->getIdentifier() && FnBodyScope)
3774      PushOnScopeChains(Param, FnBodyScope);
3775  }
3776
3777  // Checking attributes of current function definition
3778  // dllimport attribute.
3779  if (FD->getAttr<DLLImportAttr>() &&
3780      (!FD->getAttr<DLLExportAttr>())) {
3781    // dllimport attribute cannot be applied to definition.
3782    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3783      Diag(FD->getLocation(),
3784           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3785        << "dllimport";
3786      FD->setInvalidDecl();
3787      return DeclPtrTy::make(FD);
3788    } else {
3789      // If a symbol previously declared dllimport is later defined, the
3790      // attribute is ignored in subsequent references, and a warning is
3791      // emitted.
3792      Diag(FD->getLocation(),
3793           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3794        << FD->getNameAsCString() << "dllimport";
3795    }
3796  }
3797  return DeclPtrTy::make(FD);
3798}
3799
3800Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3801  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3802}
3803
3804Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3805                                              bool IsInstantiation) {
3806  Decl *dcl = D.getAs<Decl>();
3807  Stmt *Body = BodyArg.takeAs<Stmt>();
3808
3809  FunctionDecl *FD = 0;
3810  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3811  if (FunTmpl)
3812    FD = FunTmpl->getTemplatedDecl();
3813  else
3814    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3815
3816  if (FD) {
3817    FD->setBody(Body);
3818    if (FD->isMain())
3819      // C and C++ allow for main to automagically return 0.
3820      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3821      FD->setHasImplicitReturnZero(true);
3822    else
3823      CheckFallThroughForFunctionDef(FD, Body);
3824
3825    if (!FD->isInvalidDecl())
3826      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3827
3828    // C++ [basic.def.odr]p2:
3829    //   [...] A virtual member function is used if it is not pure. [...]
3830    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3831      if (Method->isVirtual() && !Method->isPure())
3832        MarkDeclarationReferenced(Method->getLocation(), Method);
3833
3834    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3835  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3836    assert(MD == getCurMethodDecl() && "Method parsing confused");
3837    MD->setBody(Body);
3838    CheckFallThroughForFunctionDef(MD, Body);
3839    MD->setEndLoc(Body->getLocEnd());
3840
3841    if (!MD->isInvalidDecl())
3842      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3843  } else {
3844    Body->Destroy(Context);
3845    return DeclPtrTy();
3846  }
3847  if (!IsInstantiation)
3848    PopDeclContext();
3849
3850  // Verify and clean out per-function state.
3851
3852  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3853
3854  // Check goto/label use.
3855  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3856       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3857    LabelStmt *L = I->second;
3858
3859    // Verify that we have no forward references left.  If so, there was a goto
3860    // or address of a label taken, but no definition of it.  Label fwd
3861    // definitions are indicated with a null substmt.
3862    if (L->getSubStmt() != 0)
3863      continue;
3864
3865    // Emit error.
3866    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3867
3868    // At this point, we have gotos that use the bogus label.  Stitch it into
3869    // the function body so that they aren't leaked and that the AST is well
3870    // formed.
3871    if (Body == 0) {
3872      // The whole function wasn't parsed correctly, just delete this.
3873      L->Destroy(Context);
3874      continue;
3875    }
3876
3877    // Otherwise, the body is valid: we want to stitch the label decl into the
3878    // function somewhere so that it is properly owned and so that the goto
3879    // has a valid target.  Do this by creating a new compound stmt with the
3880    // label in it.
3881
3882    // Give the label a sub-statement.
3883    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3884
3885    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3886                               cast<CXXTryStmt>(Body)->getTryBlock() :
3887                               cast<CompoundStmt>(Body);
3888    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3889    Elements.push_back(L);
3890    Compound->setStmts(Context, &Elements[0], Elements.size());
3891  }
3892  FunctionLabelMap.clear();
3893
3894  if (!Body) return D;
3895
3896  // Verify that that gotos and switch cases don't jump into scopes illegally.
3897  if (CurFunctionNeedsScopeChecking)
3898    DiagnoseInvalidJumps(Body);
3899
3900  // C++ constructors that have function-try-blocks can't have return
3901  // statements in the handlers of that block. (C++ [except.handle]p14)
3902  // Verify this.
3903  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3904    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3905
3906  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3907    computeBaseOrMembersToDestroy(Destructor);
3908  return D;
3909}
3910
3911/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3912/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3913NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3914                                          IdentifierInfo &II, Scope *S) {
3915  // Before we produce a declaration for an implicitly defined
3916  // function, see whether there was a locally-scoped declaration of
3917  // this name as a function or variable. If so, use that
3918  // (non-visible) declaration, and complain about it.
3919  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3920    = LocallyScopedExternalDecls.find(&II);
3921  if (Pos != LocallyScopedExternalDecls.end()) {
3922    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3923    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3924    return Pos->second;
3925  }
3926
3927  // Extension in C99.  Legal in C90, but warn about it.
3928  if (getLangOptions().C99)
3929    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3930  else
3931    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3932
3933  // FIXME: handle stuff like:
3934  // void foo() { extern float X(); }
3935  // void bar() { X(); }  <-- implicit decl for X in another scope.
3936
3937  // Set a Declarator for the implicit definition: int foo();
3938  const char *Dummy;
3939  DeclSpec DS;
3940  unsigned DiagID;
3941  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3942  Error = Error; // Silence warning.
3943  assert(!Error && "Error setting up implicit decl!");
3944  Declarator D(DS, Declarator::BlockContext);
3945  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3946                                             0, 0, false, SourceLocation(),
3947                                             false, 0,0,0, Loc, Loc, D),
3948                SourceLocation());
3949  D.SetIdentifier(&II, Loc);
3950
3951  // Insert this function into translation-unit scope.
3952
3953  DeclContext *PrevDC = CurContext;
3954  CurContext = Context.getTranslationUnitDecl();
3955
3956  FunctionDecl *FD =
3957 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3958  FD->setImplicit();
3959
3960  CurContext = PrevDC;
3961
3962  AddKnownFunctionAttributes(FD);
3963
3964  return FD;
3965}
3966
3967/// \brief Adds any function attributes that we know a priori based on
3968/// the declaration of this function.
3969///
3970/// These attributes can apply both to implicitly-declared builtins
3971/// (like __builtin___printf_chk) or to library-declared functions
3972/// like NSLog or printf.
3973void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3974  if (FD->isInvalidDecl())
3975    return;
3976
3977  // If this is a built-in function, map its builtin attributes to
3978  // actual attributes.
3979  if (unsigned BuiltinID = FD->getBuiltinID()) {
3980    // Handle printf-formatting attributes.
3981    unsigned FormatIdx;
3982    bool HasVAListArg;
3983    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3984      if (!FD->getAttr<FormatAttr>())
3985        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3986                                             HasVAListArg ? 0 : FormatIdx + 2));
3987    }
3988
3989    // Mark const if we don't care about errno and that is the only
3990    // thing preventing the function from being const. This allows
3991    // IRgen to use LLVM intrinsics for such functions.
3992    if (!getLangOptions().MathErrno &&
3993        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3994      if (!FD->getAttr<ConstAttr>())
3995        FD->addAttr(::new (Context) ConstAttr());
3996    }
3997
3998    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3999      FD->addAttr(::new (Context) NoReturnAttr());
4000  }
4001
4002  IdentifierInfo *Name = FD->getIdentifier();
4003  if (!Name)
4004    return;
4005  if ((!getLangOptions().CPlusPlus &&
4006       FD->getDeclContext()->isTranslationUnit()) ||
4007      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4008       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4009       LinkageSpecDecl::lang_c)) {
4010    // Okay: this could be a libc/libm/Objective-C function we know
4011    // about.
4012  } else
4013    return;
4014
4015  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4016    // FIXME: NSLog and NSLogv should be target specific
4017    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4018      // FIXME: We known better than our headers.
4019      const_cast<FormatAttr *>(Format)->setType("printf");
4020    } else
4021      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4022                                             Name->isStr("NSLogv") ? 0 : 2));
4023  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4024    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4025    // target-specific builtins, perhaps?
4026    if (!FD->getAttr<FormatAttr>())
4027      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4028                                             Name->isStr("vasprintf") ? 0 : 3));
4029  }
4030}
4031
4032TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4033  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4034  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4035
4036  // Scope manipulation handled by caller.
4037  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4038                                           D.getIdentifierLoc(),
4039                                           D.getIdentifier(),
4040                                           T);
4041
4042  if (const TagType *TT = T->getAs<TagType>()) {
4043    TagDecl *TD = TT->getDecl();
4044
4045    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4046    // keep track of the TypedefDecl.
4047    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4048      TD->setTypedefForAnonDecl(NewTD);
4049  }
4050
4051  if (D.isInvalidType())
4052    NewTD->setInvalidDecl();
4053  return NewTD;
4054}
4055
4056
4057/// \brief Determine whether a tag with a given kind is acceptable
4058/// as a redeclaration of the given tag declaration.
4059///
4060/// \returns true if the new tag kind is acceptable, false otherwise.
4061bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4062                                        TagDecl::TagKind NewTag,
4063                                        SourceLocation NewTagLoc,
4064                                        const IdentifierInfo &Name) {
4065  // C++ [dcl.type.elab]p3:
4066  //   The class-key or enum keyword present in the
4067  //   elaborated-type-specifier shall agree in kind with the
4068  //   declaration to which the name in theelaborated-type-specifier
4069  //   refers. This rule also applies to the form of
4070  //   elaborated-type-specifier that declares a class-name or
4071  //   friend class since it can be construed as referring to the
4072  //   definition of the class. Thus, in any
4073  //   elaborated-type-specifier, the enum keyword shall be used to
4074  //   refer to an enumeration (7.2), the union class-keyshall be
4075  //   used to refer to a union (clause 9), and either the class or
4076  //   struct class-key shall be used to refer to a class (clause 9)
4077  //   declared using the class or struct class-key.
4078  TagDecl::TagKind OldTag = Previous->getTagKind();
4079  if (OldTag == NewTag)
4080    return true;
4081
4082  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4083      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4084    // Warn about the struct/class tag mismatch.
4085    bool isTemplate = false;
4086    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4087      isTemplate = Record->getDescribedClassTemplate();
4088
4089    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4090      << (NewTag == TagDecl::TK_class)
4091      << isTemplate << &Name
4092      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4093                              OldTag == TagDecl::TK_class? "class" : "struct");
4094    Diag(Previous->getLocation(), diag::note_previous_use);
4095    return true;
4096  }
4097  return false;
4098}
4099
4100/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4101/// former case, Name will be non-null.  In the later case, Name will be null.
4102/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4103/// reference/declaration/definition of a tag.
4104Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4105                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4106                               IdentifierInfo *Name, SourceLocation NameLoc,
4107                               AttributeList *Attr, AccessSpecifier AS,
4108                               MultiTemplateParamsArg TemplateParameterLists,
4109                               bool &OwnedDecl, bool &IsDependent) {
4110  // If this is not a definition, it must have a name.
4111  assert((Name != 0 || TUK == TUK_Definition) &&
4112         "Nameless record must be a definition!");
4113
4114  OwnedDecl = false;
4115  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4116
4117  if (TUK != TUK_Reference) {
4118    if (TemplateParameterList *TemplateParams
4119          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4120                        (TemplateParameterList**)TemplateParameterLists.get(),
4121                                              TemplateParameterLists.size())) {
4122      if (TemplateParams->size() > 0) {
4123        // This is a declaration or definition of a class template (which may
4124        // be a member of another template).
4125        OwnedDecl = false;
4126        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4127                                               SS, Name, NameLoc, Attr,
4128                                               TemplateParams,
4129                                               AS);
4130        TemplateParameterLists.release();
4131        return Result.get();
4132      } else {
4133        // FIXME: diagnose the extraneous 'template<>', once we recover
4134        // slightly better in ParseTemplate.cpp from bogus template
4135        // parameters.
4136      }
4137    }
4138  }
4139
4140  DeclContext *SearchDC = CurContext;
4141  DeclContext *DC = CurContext;
4142  NamedDecl *PrevDecl = 0;
4143  bool isStdBadAlloc = false;
4144  bool Invalid = false;
4145
4146  if (Name && SS.isNotEmpty()) {
4147    // We have a nested-name tag ('struct foo::bar').
4148
4149    // Check for invalid 'foo::'.
4150    if (SS.isInvalid()) {
4151      Name = 0;
4152      goto CreateNewDecl;
4153    }
4154
4155    // If this is a friend or a reference to a class in a dependent
4156    // context, don't try to make a decl for it.
4157    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4158      DC = computeDeclContext(SS, false);
4159      if (!DC) {
4160        IsDependent = true;
4161        return DeclPtrTy();
4162      }
4163    }
4164
4165    if (RequireCompleteDeclContext(SS))
4166      return DeclPtrTy::make((Decl *)0);
4167
4168    DC = computeDeclContext(SS, true);
4169    SearchDC = DC;
4170    // Look-up name inside 'foo::'.
4171    PrevDecl
4172      = dyn_cast_or_null<TagDecl>(
4173               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4174
4175    // A tag 'foo::bar' must already exist.
4176    if (PrevDecl == 0) {
4177      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4178      Name = 0;
4179      Invalid = true;
4180      goto CreateNewDecl;
4181    }
4182  } else if (Name) {
4183    // If this is a named struct, check to see if there was a previous forward
4184    // declaration or definition.
4185    // FIXME: We're looking into outer scopes here, even when we
4186    // shouldn't be. Doing so can result in ambiguities that we
4187    // shouldn't be diagnosing.
4188    LookupResult R = LookupName(S, Name, LookupTagName,
4189                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4190    if (R.isAmbiguous()) {
4191      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4192      // FIXME: This is not best way to recover from case like:
4193      //
4194      // struct S s;
4195      //
4196      // causes needless "incomplete type" error later.
4197      Name = 0;
4198      PrevDecl = 0;
4199      Invalid = true;
4200    } else
4201      PrevDecl = R;
4202
4203    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4204      // FIXME: This makes sure that we ignore the contexts associated
4205      // with C structs, unions, and enums when looking for a matching
4206      // tag declaration or definition. See the similar lookup tweak
4207      // in Sema::LookupName; is there a better way to deal with this?
4208      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4209        SearchDC = SearchDC->getParent();
4210    }
4211  }
4212
4213  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4214    // Maybe we will complain about the shadowed template parameter.
4215    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4216    // Just pretend that we didn't see the previous declaration.
4217    PrevDecl = 0;
4218  }
4219
4220  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4221      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4222    // This is a declaration of or a reference to "std::bad_alloc".
4223    isStdBadAlloc = true;
4224
4225    if (!PrevDecl && StdBadAlloc) {
4226      // std::bad_alloc has been implicitly declared (but made invisible to
4227      // name lookup). Fill in this implicit declaration as the previous
4228      // declaration, so that the declarations get chained appropriately.
4229      PrevDecl = StdBadAlloc;
4230    }
4231  }
4232
4233  if (PrevDecl) {
4234    // Check whether the previous declaration is usable.
4235    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4236
4237    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4238      // If this is a use of a previous tag, or if the tag is already declared
4239      // in the same scope (so that the definition/declaration completes or
4240      // rementions the tag), reuse the decl.
4241      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4242          isDeclInScope(PrevDecl, SearchDC, S)) {
4243        // Make sure that this wasn't declared as an enum and now used as a
4244        // struct or something similar.
4245        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4246          bool SafeToContinue
4247            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4248               Kind != TagDecl::TK_enum);
4249          if (SafeToContinue)
4250            Diag(KWLoc, diag::err_use_with_wrong_tag)
4251              << Name
4252              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4253                                                  PrevTagDecl->getKindName());
4254          else
4255            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4256          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4257
4258          if (SafeToContinue)
4259            Kind = PrevTagDecl->getTagKind();
4260          else {
4261            // Recover by making this an anonymous redefinition.
4262            Name = 0;
4263            PrevDecl = 0;
4264            Invalid = true;
4265          }
4266        }
4267
4268        if (!Invalid) {
4269          // If this is a use, just return the declaration we found.
4270
4271          // FIXME: In the future, return a variant or some other clue
4272          // for the consumer of this Decl to know it doesn't own it.
4273          // For our current ASTs this shouldn't be a problem, but will
4274          // need to be changed with DeclGroups.
4275          if (TUK == TUK_Reference)
4276            return DeclPtrTy::make(PrevDecl);
4277
4278          // If this is a friend, make sure we create the new
4279          // declaration in the appropriate semantic context.
4280          if (TUK == TUK_Friend)
4281            SearchDC = PrevDecl->getDeclContext();
4282
4283          // Diagnose attempts to redefine a tag.
4284          if (TUK == TUK_Definition) {
4285            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4286              Diag(NameLoc, diag::err_redefinition) << Name;
4287              Diag(Def->getLocation(), diag::note_previous_definition);
4288              // If this is a redefinition, recover by making this
4289              // struct be anonymous, which will make any later
4290              // references get the previous definition.
4291              Name = 0;
4292              PrevDecl = 0;
4293              Invalid = true;
4294            } else {
4295              // If the type is currently being defined, complain
4296              // about a nested redefinition.
4297              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4298              if (Tag->isBeingDefined()) {
4299                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4300                Diag(PrevTagDecl->getLocation(),
4301                     diag::note_previous_definition);
4302                Name = 0;
4303                PrevDecl = 0;
4304                Invalid = true;
4305              }
4306            }
4307
4308            // Okay, this is definition of a previously declared or referenced
4309            // tag PrevDecl. We're going to create a new Decl for it.
4310          }
4311        }
4312        // If we get here we have (another) forward declaration or we
4313        // have a definition.  Just create a new decl.
4314
4315      } else {
4316        // If we get here, this is a definition of a new tag type in a nested
4317        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4318        // new decl/type.  We set PrevDecl to NULL so that the entities
4319        // have distinct types.
4320        PrevDecl = 0;
4321      }
4322      // If we get here, we're going to create a new Decl. If PrevDecl
4323      // is non-NULL, it's a definition of the tag declared by
4324      // PrevDecl. If it's NULL, we have a new definition.
4325    } else {
4326      // PrevDecl is a namespace, template, or anything else
4327      // that lives in the IDNS_Tag identifier namespace.
4328      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4329        // The tag name clashes with a namespace name, issue an error and
4330        // recover by making this tag be anonymous.
4331        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4332        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4333        Name = 0;
4334        PrevDecl = 0;
4335        Invalid = true;
4336      } else {
4337        // The existing declaration isn't relevant to us; we're in a
4338        // new scope, so clear out the previous declaration.
4339        PrevDecl = 0;
4340      }
4341    }
4342  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4343             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4344    // C++ [basic.scope.pdecl]p5:
4345    //   -- for an elaborated-type-specifier of the form
4346    //
4347    //          class-key identifier
4348    //
4349    //      if the elaborated-type-specifier is used in the
4350    //      decl-specifier-seq or parameter-declaration-clause of a
4351    //      function defined in namespace scope, the identifier is
4352    //      declared as a class-name in the namespace that contains
4353    //      the declaration; otherwise, except as a friend
4354    //      declaration, the identifier is declared in the smallest
4355    //      non-class, non-function-prototype scope that contains the
4356    //      declaration.
4357    //
4358    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4359    // C structs and unions.
4360    //
4361    // GNU C also supports this behavior as part of its incomplete
4362    // enum types extension, while GNU C++ does not.
4363    //
4364    // Find the context where we'll be declaring the tag.
4365    // FIXME: We would like to maintain the current DeclContext as the
4366    // lexical context,
4367    while (SearchDC->isRecord())
4368      SearchDC = SearchDC->getParent();
4369
4370    // Find the scope where we'll be declaring the tag.
4371    while (S->isClassScope() ||
4372           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4373           ((S->getFlags() & Scope::DeclScope) == 0) ||
4374           (S->getEntity() &&
4375            ((DeclContext *)S->getEntity())->isTransparentContext()))
4376      S = S->getParent();
4377
4378  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4379    // C++ [namespace.memdef]p3:
4380    //   If a friend declaration in a non-local class first declares a
4381    //   class or function, the friend class or function is a member of
4382    //   the innermost enclosing namespace.
4383    while (!SearchDC->isFileContext())
4384      SearchDC = SearchDC->getParent();
4385
4386    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4387    while (S->getEntity() != SearchDC)
4388      S = S->getParent();
4389  }
4390
4391CreateNewDecl:
4392
4393  // If there is an identifier, use the location of the identifier as the
4394  // location of the decl, otherwise use the location of the struct/union
4395  // keyword.
4396  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4397
4398  // Otherwise, create a new declaration. If there is a previous
4399  // declaration of the same entity, the two will be linked via
4400  // PrevDecl.
4401  TagDecl *New;
4402
4403  if (Kind == TagDecl::TK_enum) {
4404    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4405    // enum X { A, B, C } D;    D should chain to X.
4406    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4407                           cast_or_null<EnumDecl>(PrevDecl));
4408    // If this is an undefined enum, warn.
4409    if (TUK != TUK_Definition && !Invalid)  {
4410      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4411                                              : diag::ext_forward_ref_enum;
4412      Diag(Loc, DK);
4413    }
4414  } else {
4415    // struct/union/class
4416
4417    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4418    // struct X { int A; } D;    D should chain to X.
4419    if (getLangOptions().CPlusPlus) {
4420      // FIXME: Look for a way to use RecordDecl for simple structs.
4421      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4422                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4423
4424      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4425        StdBadAlloc = cast<CXXRecordDecl>(New);
4426    } else
4427      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4428                               cast_or_null<RecordDecl>(PrevDecl));
4429  }
4430
4431  if (Kind != TagDecl::TK_enum) {
4432    // Handle #pragma pack: if the #pragma pack stack has non-default
4433    // alignment, make up a packed attribute for this decl. These
4434    // attributes are checked when the ASTContext lays out the
4435    // structure.
4436    //
4437    // It is important for implementing the correct semantics that this
4438    // happen here (in act on tag decl). The #pragma pack stack is
4439    // maintained as a result of parser callbacks which can occur at
4440    // many points during the parsing of a struct declaration (because
4441    // the #pragma tokens are effectively skipped over during the
4442    // parsing of the struct).
4443    if (unsigned Alignment = getPragmaPackAlignment())
4444      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4445  }
4446
4447  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4448    // C++ [dcl.typedef]p3:
4449    //   [...] Similarly, in a given scope, a class or enumeration
4450    //   shall not be declared with the same name as a typedef-name
4451    //   that is declared in that scope and refers to a type other
4452    //   than the class or enumeration itself.
4453    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4454    TypedefDecl *PrevTypedef = 0;
4455    if (Lookup.getKind() == LookupResult::Found)
4456      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4457
4458    NamedDecl *PrevTypedefNamed = PrevTypedef;
4459    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4460        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4461          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4462      Diag(Loc, diag::err_tag_definition_of_typedef)
4463        << Context.getTypeDeclType(New)
4464        << PrevTypedef->getUnderlyingType();
4465      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4466      Invalid = true;
4467    }
4468  }
4469
4470  if (Invalid)
4471    New->setInvalidDecl();
4472
4473  if (Attr)
4474    ProcessDeclAttributeList(S, New, Attr);
4475
4476  // If we're declaring or defining a tag in function prototype scope
4477  // in C, note that this type can only be used within the function.
4478  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4479    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4480
4481  // Set the lexical context. If the tag has a C++ scope specifier, the
4482  // lexical context will be different from the semantic context.
4483  New->setLexicalDeclContext(CurContext);
4484
4485  // Mark this as a friend decl if applicable.
4486  if (TUK == TUK_Friend)
4487    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4488
4489  // Set the access specifier.
4490  if (!Invalid && TUK != TUK_Friend)
4491    SetMemberAccessSpecifier(New, PrevDecl, AS);
4492
4493  if (TUK == TUK_Definition)
4494    New->startDefinition();
4495
4496  // If this has an identifier, add it to the scope stack.
4497  if (TUK == TUK_Friend) {
4498    // We might be replacing an existing declaration in the lookup tables;
4499    // if so, borrow its access specifier.
4500    if (PrevDecl)
4501      New->setAccess(PrevDecl->getAccess());
4502
4503    // Friend tag decls are visible in fairly strange ways.
4504    if (!CurContext->isDependentContext()) {
4505      DeclContext *DC = New->getDeclContext()->getLookupContext();
4506      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4507      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4508        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4509    }
4510  } else if (Name) {
4511    S = getNonFieldDeclScope(S);
4512    PushOnScopeChains(New, S);
4513  } else {
4514    CurContext->addDecl(New);
4515  }
4516
4517  // If this is the C FILE type, notify the AST context.
4518  if (IdentifierInfo *II = New->getIdentifier())
4519    if (!New->isInvalidDecl() &&
4520        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4521        II->isStr("FILE"))
4522      Context.setFILEDecl(New);
4523
4524  OwnedDecl = true;
4525  return DeclPtrTy::make(New);
4526}
4527
4528void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4529  AdjustDeclIfTemplate(TagD);
4530  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4531
4532  // Enter the tag context.
4533  PushDeclContext(S, Tag);
4534
4535  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4536    FieldCollector->StartClass();
4537
4538    if (Record->getIdentifier()) {
4539      // C++ [class]p2:
4540      //   [...] The class-name is also inserted into the scope of the
4541      //   class itself; this is known as the injected-class-name. For
4542      //   purposes of access checking, the injected-class-name is treated
4543      //   as if it were a public member name.
4544      CXXRecordDecl *InjectedClassName
4545        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4546                                CurContext, Record->getLocation(),
4547                                Record->getIdentifier(),
4548                                Record->getTagKeywordLoc(),
4549                                Record);
4550      InjectedClassName->setImplicit();
4551      InjectedClassName->setAccess(AS_public);
4552      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4553        InjectedClassName->setDescribedClassTemplate(Template);
4554      PushOnScopeChains(InjectedClassName, S);
4555      assert(InjectedClassName->isInjectedClassName() &&
4556             "Broken injected-class-name");
4557    }
4558  }
4559}
4560
4561void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4562                                    SourceLocation RBraceLoc) {
4563  AdjustDeclIfTemplate(TagD);
4564  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4565  Tag->setRBraceLoc(RBraceLoc);
4566
4567  if (isa<CXXRecordDecl>(Tag))
4568    FieldCollector->FinishClass();
4569
4570  // Exit this scope of this tag's definition.
4571  PopDeclContext();
4572
4573  // Notify the consumer that we've defined a tag.
4574  Consumer.HandleTagDeclDefinition(Tag);
4575}
4576
4577// Note that FieldName may be null for anonymous bitfields.
4578bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4579                          QualType FieldTy, const Expr *BitWidth,
4580                          bool *ZeroWidth) {
4581  // Default to true; that shouldn't confuse checks for emptiness
4582  if (ZeroWidth)
4583    *ZeroWidth = true;
4584
4585  // C99 6.7.2.1p4 - verify the field type.
4586  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4587  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4588    // Handle incomplete types with specific error.
4589    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4590      return true;
4591    if (FieldName)
4592      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4593        << FieldName << FieldTy << BitWidth->getSourceRange();
4594    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4595      << FieldTy << BitWidth->getSourceRange();
4596  }
4597
4598  // If the bit-width is type- or value-dependent, don't try to check
4599  // it now.
4600  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4601    return false;
4602
4603  llvm::APSInt Value;
4604  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4605    return true;
4606
4607  if (Value != 0 && ZeroWidth)
4608    *ZeroWidth = false;
4609
4610  // Zero-width bitfield is ok for anonymous field.
4611  if (Value == 0 && FieldName)
4612    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4613
4614  if (Value.isSigned() && Value.isNegative()) {
4615    if (FieldName)
4616      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4617               << FieldName << Value.toString(10);
4618    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4619      << Value.toString(10);
4620  }
4621
4622  if (!FieldTy->isDependentType()) {
4623    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4624    if (Value.getZExtValue() > TypeSize) {
4625      if (FieldName)
4626        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4627          << FieldName << (unsigned)TypeSize;
4628      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4629        << (unsigned)TypeSize;
4630    }
4631  }
4632
4633  return false;
4634}
4635
4636/// ActOnField - Each field of a struct/union/class is passed into this in order
4637/// to create a FieldDecl object for it.
4638Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4639                                 SourceLocation DeclStart,
4640                                 Declarator &D, ExprTy *BitfieldWidth) {
4641  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4642                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4643                               AS_public);
4644  return DeclPtrTy::make(Res);
4645}
4646
4647/// HandleField - Analyze a field of a C struct or a C++ data member.
4648///
4649FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4650                             SourceLocation DeclStart,
4651                             Declarator &D, Expr *BitWidth,
4652                             AccessSpecifier AS) {
4653  IdentifierInfo *II = D.getIdentifier();
4654  SourceLocation Loc = DeclStart;
4655  if (II) Loc = D.getIdentifierLoc();
4656
4657  DeclaratorInfo *DInfo = 0;
4658  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4659  if (getLangOptions().CPlusPlus)
4660    CheckExtraCXXDefaultArguments(D);
4661
4662  DiagnoseFunctionSpecifiers(D);
4663
4664  if (D.getDeclSpec().isThreadSpecified())
4665    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4666
4667  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4668
4669  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4670    // Maybe we will complain about the shadowed template parameter.
4671    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4672    // Just pretend that we didn't see the previous declaration.
4673    PrevDecl = 0;
4674  }
4675
4676  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4677    PrevDecl = 0;
4678
4679  bool Mutable
4680    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4681  SourceLocation TSSL = D.getSourceRange().getBegin();
4682  FieldDecl *NewFD
4683    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4684                     AS, PrevDecl, &D);
4685  if (NewFD->isInvalidDecl() && PrevDecl) {
4686    // Don't introduce NewFD into scope; there's already something
4687    // with the same name in the same scope.
4688  } else if (II) {
4689    PushOnScopeChains(NewFD, S);
4690  } else
4691    Record->addDecl(NewFD);
4692
4693  return NewFD;
4694}
4695
4696/// \brief Build a new FieldDecl and check its well-formedness.
4697///
4698/// This routine builds a new FieldDecl given the fields name, type,
4699/// record, etc. \p PrevDecl should refer to any previous declaration
4700/// with the same name and in the same scope as the field to be
4701/// created.
4702///
4703/// \returns a new FieldDecl.
4704///
4705/// \todo The Declarator argument is a hack. It will be removed once
4706FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4707                                DeclaratorInfo *DInfo,
4708                                RecordDecl *Record, SourceLocation Loc,
4709                                bool Mutable, Expr *BitWidth,
4710                                SourceLocation TSSL,
4711                                AccessSpecifier AS, NamedDecl *PrevDecl,
4712                                Declarator *D) {
4713  IdentifierInfo *II = Name.getAsIdentifierInfo();
4714  bool InvalidDecl = false;
4715  if (D) InvalidDecl = D->isInvalidType();
4716
4717  // If we receive a broken type, recover by assuming 'int' and
4718  // marking this declaration as invalid.
4719  if (T.isNull()) {
4720    InvalidDecl = true;
4721    T = Context.IntTy;
4722  }
4723
4724  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4725  // than a variably modified type.
4726  if (T->isVariablyModifiedType()) {
4727    bool SizeIsNegative;
4728    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4729                                                           SizeIsNegative);
4730    if (!FixedTy.isNull()) {
4731      Diag(Loc, diag::warn_illegal_constant_array_size);
4732      T = FixedTy;
4733    } else {
4734      if (SizeIsNegative)
4735        Diag(Loc, diag::err_typecheck_negative_array_size);
4736      else
4737        Diag(Loc, diag::err_typecheck_field_variable_size);
4738      InvalidDecl = true;
4739    }
4740  }
4741
4742  // Fields can not have abstract class types
4743  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4744                             AbstractFieldType))
4745    InvalidDecl = true;
4746
4747  bool ZeroWidth = false;
4748  // If this is declared as a bit-field, check the bit-field.
4749  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4750    InvalidDecl = true;
4751    DeleteExpr(BitWidth);
4752    BitWidth = 0;
4753    ZeroWidth = false;
4754  }
4755
4756  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4757                                       BitWidth, Mutable);
4758  if (InvalidDecl)
4759    NewFD->setInvalidDecl();
4760
4761  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4762    Diag(Loc, diag::err_duplicate_member) << II;
4763    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4764    NewFD->setInvalidDecl();
4765  }
4766
4767  if (getLangOptions().CPlusPlus) {
4768    QualType EltTy = Context.getBaseElementType(T);
4769
4770    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4771
4772    if (!T->isPODType())
4773      CXXRecord->setPOD(false);
4774    if (!ZeroWidth)
4775      CXXRecord->setEmpty(false);
4776
4777    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4778      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4779
4780      if (!RDecl->hasTrivialConstructor())
4781        CXXRecord->setHasTrivialConstructor(false);
4782      if (!RDecl->hasTrivialCopyConstructor())
4783        CXXRecord->setHasTrivialCopyConstructor(false);
4784      if (!RDecl->hasTrivialCopyAssignment())
4785        CXXRecord->setHasTrivialCopyAssignment(false);
4786      if (!RDecl->hasTrivialDestructor())
4787        CXXRecord->setHasTrivialDestructor(false);
4788
4789      // C++ 9.5p1: An object of a class with a non-trivial
4790      // constructor, a non-trivial copy constructor, a non-trivial
4791      // destructor, or a non-trivial copy assignment operator
4792      // cannot be a member of a union, nor can an array of such
4793      // objects.
4794      // TODO: C++0x alters this restriction significantly.
4795      if (Record->isUnion()) {
4796        // We check for copy constructors before constructors
4797        // because otherwise we'll never get complaints about
4798        // copy constructors.
4799
4800        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4801
4802        CXXSpecialMember member;
4803        if (!RDecl->hasTrivialCopyConstructor())
4804          member = CXXCopyConstructor;
4805        else if (!RDecl->hasTrivialConstructor())
4806          member = CXXDefaultConstructor;
4807        else if (!RDecl->hasTrivialCopyAssignment())
4808          member = CXXCopyAssignment;
4809        else if (!RDecl->hasTrivialDestructor())
4810          member = CXXDestructor;
4811        else
4812          member = invalid;
4813
4814        if (member != invalid) {
4815          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4816          DiagnoseNontrivial(RT, member);
4817          NewFD->setInvalidDecl();
4818        }
4819      }
4820    }
4821  }
4822
4823  // FIXME: We need to pass in the attributes given an AST
4824  // representation, not a parser representation.
4825  if (D)
4826    // FIXME: What to pass instead of TUScope?
4827    ProcessDeclAttributes(TUScope, NewFD, *D);
4828
4829  if (T.isObjCGCWeak())
4830    Diag(Loc, diag::warn_attribute_weak_on_field);
4831
4832  NewFD->setAccess(AS);
4833
4834  // C++ [dcl.init.aggr]p1:
4835  //   An aggregate is an array or a class (clause 9) with [...] no
4836  //   private or protected non-static data members (clause 11).
4837  // A POD must be an aggregate.
4838  if (getLangOptions().CPlusPlus &&
4839      (AS == AS_private || AS == AS_protected)) {
4840    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4841    CXXRecord->setAggregate(false);
4842    CXXRecord->setPOD(false);
4843  }
4844
4845  return NewFD;
4846}
4847
4848/// DiagnoseNontrivial - Given that a class has a non-trivial
4849/// special member, figure out why.
4850void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4851  QualType QT(T, 0U);
4852  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4853
4854  // Check whether the member was user-declared.
4855  switch (member) {
4856  case CXXDefaultConstructor:
4857    if (RD->hasUserDeclaredConstructor()) {
4858      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4859      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4860        if (!ci->isImplicitlyDefined(Context)) {
4861          SourceLocation CtorLoc = ci->getLocation();
4862          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4863          return;
4864        }
4865
4866      assert(0 && "found no user-declared constructors");
4867      return;
4868    }
4869    break;
4870
4871  case CXXCopyConstructor:
4872    if (RD->hasUserDeclaredCopyConstructor()) {
4873      SourceLocation CtorLoc =
4874        RD->getCopyConstructor(Context, 0)->getLocation();
4875      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4876      return;
4877    }
4878    break;
4879
4880  case CXXCopyAssignment:
4881    if (RD->hasUserDeclaredCopyAssignment()) {
4882      // FIXME: this should use the location of the copy
4883      // assignment, not the type.
4884      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4885      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4886      return;
4887    }
4888    break;
4889
4890  case CXXDestructor:
4891    if (RD->hasUserDeclaredDestructor()) {
4892      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4893      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4894      return;
4895    }
4896    break;
4897  }
4898
4899  typedef CXXRecordDecl::base_class_iterator base_iter;
4900
4901  // Virtual bases and members inhibit trivial copying/construction,
4902  // but not trivial destruction.
4903  if (member != CXXDestructor) {
4904    // Check for virtual bases.  vbases includes indirect virtual bases,
4905    // so we just iterate through the direct bases.
4906    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4907      if (bi->isVirtual()) {
4908        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4909        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4910        return;
4911      }
4912
4913    // Check for virtual methods.
4914    typedef CXXRecordDecl::method_iterator meth_iter;
4915    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4916         ++mi) {
4917      if (mi->isVirtual()) {
4918        SourceLocation MLoc = mi->getSourceRange().getBegin();
4919        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4920        return;
4921      }
4922    }
4923  }
4924
4925  bool (CXXRecordDecl::*hasTrivial)() const;
4926  switch (member) {
4927  case CXXDefaultConstructor:
4928    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4929  case CXXCopyConstructor:
4930    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4931  case CXXCopyAssignment:
4932    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4933  case CXXDestructor:
4934    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4935  default:
4936    assert(0 && "unexpected special member"); return;
4937  }
4938
4939  // Check for nontrivial bases (and recurse).
4940  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4941    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4942    assert(BaseRT);
4943    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4944    if (!(BaseRecTy->*hasTrivial)()) {
4945      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4946      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4947      DiagnoseNontrivial(BaseRT, member);
4948      return;
4949    }
4950  }
4951
4952  // Check for nontrivial members (and recurse).
4953  typedef RecordDecl::field_iterator field_iter;
4954  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4955       ++fi) {
4956    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4957    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4958      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4959
4960      if (!(EltRD->*hasTrivial)()) {
4961        SourceLocation FLoc = (*fi)->getLocation();
4962        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4963        DiagnoseNontrivial(EltRT, member);
4964        return;
4965      }
4966    }
4967  }
4968
4969  assert(0 && "found no explanation for non-trivial member");
4970}
4971
4972/// TranslateIvarVisibility - Translate visibility from a token ID to an
4973///  AST enum value.
4974static ObjCIvarDecl::AccessControl
4975TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4976  switch (ivarVisibility) {
4977  default: assert(0 && "Unknown visitibility kind");
4978  case tok::objc_private: return ObjCIvarDecl::Private;
4979  case tok::objc_public: return ObjCIvarDecl::Public;
4980  case tok::objc_protected: return ObjCIvarDecl::Protected;
4981  case tok::objc_package: return ObjCIvarDecl::Package;
4982  }
4983}
4984
4985/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4986/// in order to create an IvarDecl object for it.
4987Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4988                                SourceLocation DeclStart,
4989                                DeclPtrTy IntfDecl,
4990                                Declarator &D, ExprTy *BitfieldWidth,
4991                                tok::ObjCKeywordKind Visibility) {
4992
4993  IdentifierInfo *II = D.getIdentifier();
4994  Expr *BitWidth = (Expr*)BitfieldWidth;
4995  SourceLocation Loc = DeclStart;
4996  if (II) Loc = D.getIdentifierLoc();
4997
4998  // FIXME: Unnamed fields can be handled in various different ways, for
4999  // example, unnamed unions inject all members into the struct namespace!
5000
5001  DeclaratorInfo *DInfo = 0;
5002  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5003
5004  if (BitWidth) {
5005    // 6.7.2.1p3, 6.7.2.1p4
5006    if (VerifyBitField(Loc, II, T, BitWidth)) {
5007      D.setInvalidType();
5008      DeleteExpr(BitWidth);
5009      BitWidth = 0;
5010    }
5011  } else {
5012    // Not a bitfield.
5013
5014    // validate II.
5015
5016  }
5017
5018  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5019  // than a variably modified type.
5020  if (T->isVariablyModifiedType()) {
5021    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5022    D.setInvalidType();
5023  }
5024
5025  // Get the visibility (access control) for this ivar.
5026  ObjCIvarDecl::AccessControl ac =
5027    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5028                                        : ObjCIvarDecl::None;
5029  // Must set ivar's DeclContext to its enclosing interface.
5030  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5031  DeclContext *EnclosingContext;
5032  if (ObjCImplementationDecl *IMPDecl =
5033      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5034    // Case of ivar declared in an implementation. Context is that of its class.
5035    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5036    assert(IDecl && "No class- ActOnIvar");
5037    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5038  } else
5039    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5040  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5041
5042  // Construct the decl.
5043  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5044                                             EnclosingContext, Loc, II, T,
5045                                             DInfo, ac, (Expr *)BitfieldWidth);
5046
5047  if (II) {
5048    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
5049    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5050        && !isa<TagDecl>(PrevDecl)) {
5051      Diag(Loc, diag::err_duplicate_member) << II;
5052      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5053      NewID->setInvalidDecl();
5054    }
5055  }
5056
5057  // Process attributes attached to the ivar.
5058  ProcessDeclAttributes(S, NewID, D);
5059
5060  if (D.isInvalidType())
5061    NewID->setInvalidDecl();
5062
5063  if (II) {
5064    // FIXME: When interfaces are DeclContexts, we'll need to add
5065    // these to the interface.
5066    S->AddDecl(DeclPtrTy::make(NewID));
5067    IdResolver.AddDecl(NewID);
5068  }
5069
5070  return DeclPtrTy::make(NewID);
5071}
5072
5073void Sema::ActOnFields(Scope* S,
5074                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5075                       DeclPtrTy *Fields, unsigned NumFields,
5076                       SourceLocation LBrac, SourceLocation RBrac,
5077                       AttributeList *Attr) {
5078  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5079  assert(EnclosingDecl && "missing record or interface decl");
5080
5081  // If the decl this is being inserted into is invalid, then it may be a
5082  // redeclaration or some other bogus case.  Don't try to add fields to it.
5083  if (EnclosingDecl->isInvalidDecl()) {
5084    // FIXME: Deallocate fields?
5085    return;
5086  }
5087
5088
5089  // Verify that all the fields are okay.
5090  unsigned NumNamedMembers = 0;
5091  llvm::SmallVector<FieldDecl*, 32> RecFields;
5092
5093  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5094  for (unsigned i = 0; i != NumFields; ++i) {
5095    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5096
5097    // Get the type for the field.
5098    Type *FDTy = FD->getType().getTypePtr();
5099
5100    if (!FD->isAnonymousStructOrUnion()) {
5101      // Remember all fields written by the user.
5102      RecFields.push_back(FD);
5103    }
5104
5105    // If the field is already invalid for some reason, don't emit more
5106    // diagnostics about it.
5107    if (FD->isInvalidDecl())
5108      continue;
5109
5110    // C99 6.7.2.1p2:
5111    //   A structure or union shall not contain a member with
5112    //   incomplete or function type (hence, a structure shall not
5113    //   contain an instance of itself, but may contain a pointer to
5114    //   an instance of itself), except that the last member of a
5115    //   structure with more than one named member may have incomplete
5116    //   array type; such a structure (and any union containing,
5117    //   possibly recursively, a member that is such a structure)
5118    //   shall not be a member of a structure or an element of an
5119    //   array.
5120    if (FDTy->isFunctionType()) {
5121      // Field declared as a function.
5122      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5123        << FD->getDeclName();
5124      FD->setInvalidDecl();
5125      EnclosingDecl->setInvalidDecl();
5126      continue;
5127    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5128               Record && Record->isStruct()) {
5129      // Flexible array member.
5130      if (NumNamedMembers < 1) {
5131        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5132          << FD->getDeclName();
5133        FD->setInvalidDecl();
5134        EnclosingDecl->setInvalidDecl();
5135        continue;
5136      }
5137      // Okay, we have a legal flexible array member at the end of the struct.
5138      if (Record)
5139        Record->setHasFlexibleArrayMember(true);
5140    } else if (!FDTy->isDependentType() &&
5141               RequireCompleteType(FD->getLocation(), FD->getType(),
5142                                   diag::err_field_incomplete)) {
5143      // Incomplete type
5144      FD->setInvalidDecl();
5145      EnclosingDecl->setInvalidDecl();
5146      continue;
5147    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5148      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5149        // If this is a member of a union, then entire union becomes "flexible".
5150        if (Record && Record->isUnion()) {
5151          Record->setHasFlexibleArrayMember(true);
5152        } else {
5153          // If this is a struct/class and this is not the last element, reject
5154          // it.  Note that GCC supports variable sized arrays in the middle of
5155          // structures.
5156          if (i != NumFields-1)
5157            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5158              << FD->getDeclName() << FD->getType();
5159          else {
5160            // We support flexible arrays at the end of structs in
5161            // other structs as an extension.
5162            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5163              << FD->getDeclName();
5164            if (Record)
5165              Record->setHasFlexibleArrayMember(true);
5166          }
5167        }
5168      }
5169      if (Record && FDTTy->getDecl()->hasObjectMember())
5170        Record->setHasObjectMember(true);
5171    } else if (FDTy->isObjCInterfaceType()) {
5172      /// A field cannot be an Objective-c object
5173      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5174      FD->setInvalidDecl();
5175      EnclosingDecl->setInvalidDecl();
5176      continue;
5177    } else if (getLangOptions().ObjC1 &&
5178               getLangOptions().getGCMode() != LangOptions::NonGC &&
5179               Record &&
5180               (FD->getType()->isObjCObjectPointerType() ||
5181                FD->getType().isObjCGCStrong()))
5182      Record->setHasObjectMember(true);
5183    // Keep track of the number of named members.
5184    if (FD->getIdentifier())
5185      ++NumNamedMembers;
5186  }
5187
5188  // Okay, we successfully defined 'Record'.
5189  if (Record) {
5190    Record->completeDefinition(Context);
5191  } else {
5192    ObjCIvarDecl **ClsFields =
5193      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5194    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5195      ID->setIVarList(ClsFields, RecFields.size(), Context);
5196      ID->setLocEnd(RBrac);
5197      // Add ivar's to class's DeclContext.
5198      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5199        ClsFields[i]->setLexicalDeclContext(ID);
5200        ID->addDecl(ClsFields[i]);
5201      }
5202      // Must enforce the rule that ivars in the base classes may not be
5203      // duplicates.
5204      if (ID->getSuperClass()) {
5205        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5206             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5207          ObjCIvarDecl* Ivar = (*IVI);
5208
5209          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5210            ObjCIvarDecl* prevIvar =
5211              ID->getSuperClass()->lookupInstanceVariable(II);
5212            if (prevIvar) {
5213              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5214              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5215            }
5216          }
5217        }
5218      }
5219    } else if (ObjCImplementationDecl *IMPDecl =
5220                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5221      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5222      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5223        // Ivar declared in @implementation never belongs to the implementation.
5224        // Only it is in implementation's lexical context.
5225        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5226      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5227    }
5228  }
5229
5230  if (Attr)
5231    ProcessDeclAttributeList(S, Record, Attr);
5232}
5233
5234EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5235                                          EnumConstantDecl *LastEnumConst,
5236                                          SourceLocation IdLoc,
5237                                          IdentifierInfo *Id,
5238                                          ExprArg val) {
5239  Expr *Val = (Expr *)val.get();
5240
5241  llvm::APSInt EnumVal(32);
5242  QualType EltTy;
5243  if (Val && !Val->isTypeDependent()) {
5244    // Make sure to promote the operand type to int.
5245    UsualUnaryConversions(Val);
5246    if (Val != val.get()) {
5247      val.release();
5248      val = Val;
5249    }
5250
5251    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5252    SourceLocation ExpLoc;
5253    if (!Val->isValueDependent() &&
5254        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5255      Val = 0;
5256    } else {
5257      EltTy = Val->getType();
5258    }
5259  }
5260
5261  if (!Val) {
5262    if (LastEnumConst) {
5263      // Assign the last value + 1.
5264      EnumVal = LastEnumConst->getInitVal();
5265      ++EnumVal;
5266
5267      // Check for overflow on increment.
5268      if (EnumVal < LastEnumConst->getInitVal())
5269        Diag(IdLoc, diag::warn_enum_value_overflow);
5270
5271      EltTy = LastEnumConst->getType();
5272    } else {
5273      // First value, set to zero.
5274      EltTy = Context.IntTy;
5275      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5276    }
5277  }
5278
5279  val.release();
5280  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5281                                  Val, EnumVal);
5282}
5283
5284
5285Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5286                                        DeclPtrTy lastEnumConst,
5287                                        SourceLocation IdLoc,
5288                                        IdentifierInfo *Id,
5289                                        SourceLocation EqualLoc, ExprTy *val) {
5290  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5291  EnumConstantDecl *LastEnumConst =
5292    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5293  Expr *Val = static_cast<Expr*>(val);
5294
5295  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5296  // we find one that is.
5297  S = getNonFieldDeclScope(S);
5298
5299  // Verify that there isn't already something declared with this name in this
5300  // scope.
5301  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5302  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5303    // Maybe we will complain about the shadowed template parameter.
5304    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5305    // Just pretend that we didn't see the previous declaration.
5306    PrevDecl = 0;
5307  }
5308
5309  if (PrevDecl) {
5310    // When in C++, we may get a TagDecl with the same name; in this case the
5311    // enum constant will 'hide' the tag.
5312    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5313           "Received TagDecl when not in C++!");
5314    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5315      if (isa<EnumConstantDecl>(PrevDecl))
5316        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5317      else
5318        Diag(IdLoc, diag::err_redefinition) << Id;
5319      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5320      if (Val) Val->Destroy(Context);
5321      return DeclPtrTy();
5322    }
5323  }
5324
5325  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5326                                            IdLoc, Id, Owned(Val));
5327
5328  // Register this decl in the current scope stack.
5329  if (New)
5330    PushOnScopeChains(New, S);
5331
5332  return DeclPtrTy::make(New);
5333}
5334
5335void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5336                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5337                         DeclPtrTy *Elements, unsigned NumElements,
5338                         Scope *S, AttributeList *Attr) {
5339  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5340  QualType EnumType = Context.getTypeDeclType(Enum);
5341
5342  if (Attr)
5343    ProcessDeclAttributeList(S, Enum, Attr);
5344
5345  // TODO: If the result value doesn't fit in an int, it must be a long or long
5346  // long value.  ISO C does not support this, but GCC does as an extension,
5347  // emit a warning.
5348  unsigned IntWidth = Context.Target.getIntWidth();
5349  unsigned CharWidth = Context.Target.getCharWidth();
5350  unsigned ShortWidth = Context.Target.getShortWidth();
5351
5352  // Verify that all the values are okay, compute the size of the values, and
5353  // reverse the list.
5354  unsigned NumNegativeBits = 0;
5355  unsigned NumPositiveBits = 0;
5356
5357  // Keep track of whether all elements have type int.
5358  bool AllElementsInt = true;
5359
5360  for (unsigned i = 0; i != NumElements; ++i) {
5361    EnumConstantDecl *ECD =
5362      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5363    if (!ECD) continue;  // Already issued a diagnostic.
5364
5365    // If the enum value doesn't fit in an int, emit an extension warning.
5366    const llvm::APSInt &InitVal = ECD->getInitVal();
5367    assert(InitVal.getBitWidth() >= IntWidth &&
5368           "Should have promoted value to int");
5369    if (InitVal.getBitWidth() > IntWidth) {
5370      llvm::APSInt V(InitVal);
5371      V.trunc(IntWidth);
5372      V.extend(InitVal.getBitWidth());
5373      if (V != InitVal)
5374        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5375          << InitVal.toString(10);
5376    }
5377
5378    // Keep track of the size of positive and negative values.
5379    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5380      NumPositiveBits = std::max(NumPositiveBits,
5381                                 (unsigned)InitVal.getActiveBits());
5382    else
5383      NumNegativeBits = std::max(NumNegativeBits,
5384                                 (unsigned)InitVal.getMinSignedBits());
5385
5386    // Keep track of whether every enum element has type int (very commmon).
5387    if (AllElementsInt)
5388      AllElementsInt = ECD->getType() == Context.IntTy;
5389  }
5390
5391  // Figure out the type that should be used for this enum.
5392  // FIXME: Support -fshort-enums.
5393  QualType BestType;
5394  unsigned BestWidth;
5395
5396  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5397
5398  if (NumNegativeBits) {
5399    // If there is a negative value, figure out the smallest integer type (of
5400    // int/long/longlong) that fits.
5401    // If it's packed, check also if it fits a char or a short.
5402    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5403        BestType = Context.SignedCharTy;
5404        BestWidth = CharWidth;
5405    } else if (Packed && NumNegativeBits <= ShortWidth &&
5406               NumPositiveBits < ShortWidth) {
5407        BestType = Context.ShortTy;
5408        BestWidth = ShortWidth;
5409    }
5410    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5411      BestType = Context.IntTy;
5412      BestWidth = IntWidth;
5413    } else {
5414      BestWidth = Context.Target.getLongWidth();
5415
5416      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5417        BestType = Context.LongTy;
5418      else {
5419        BestWidth = Context.Target.getLongLongWidth();
5420
5421        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5422          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5423        BestType = Context.LongLongTy;
5424      }
5425    }
5426  } else {
5427    // If there is no negative value, figure out which of uint, ulong, ulonglong
5428    // fits.
5429    // If it's packed, check also if it fits a char or a short.
5430    if (Packed && NumPositiveBits <= CharWidth) {
5431        BestType = Context.UnsignedCharTy;
5432        BestWidth = CharWidth;
5433    } else if (Packed && NumPositiveBits <= ShortWidth) {
5434        BestType = Context.UnsignedShortTy;
5435        BestWidth = ShortWidth;
5436    }
5437    else if (NumPositiveBits <= IntWidth) {
5438      BestType = Context.UnsignedIntTy;
5439      BestWidth = IntWidth;
5440    } else if (NumPositiveBits <=
5441               (BestWidth = Context.Target.getLongWidth())) {
5442      BestType = Context.UnsignedLongTy;
5443    } else {
5444      BestWidth = Context.Target.getLongLongWidth();
5445      assert(NumPositiveBits <= BestWidth &&
5446             "How could an initializer get larger than ULL?");
5447      BestType = Context.UnsignedLongLongTy;
5448    }
5449  }
5450
5451  // Loop over all of the enumerator constants, changing their types to match
5452  // the type of the enum if needed.
5453  for (unsigned i = 0; i != NumElements; ++i) {
5454    EnumConstantDecl *ECD =
5455      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5456    if (!ECD) continue;  // Already issued a diagnostic.
5457
5458    // Standard C says the enumerators have int type, but we allow, as an
5459    // extension, the enumerators to be larger than int size.  If each
5460    // enumerator value fits in an int, type it as an int, otherwise type it the
5461    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5462    // that X has type 'int', not 'unsigned'.
5463    if (ECD->getType() == Context.IntTy) {
5464      // Make sure the init value is signed.
5465      llvm::APSInt IV = ECD->getInitVal();
5466      IV.setIsSigned(true);
5467      ECD->setInitVal(IV);
5468
5469      if (getLangOptions().CPlusPlus)
5470        // C++ [dcl.enum]p4: Following the closing brace of an
5471        // enum-specifier, each enumerator has the type of its
5472        // enumeration.
5473        ECD->setType(EnumType);
5474      continue;  // Already int type.
5475    }
5476
5477    // Determine whether the value fits into an int.
5478    llvm::APSInt InitVal = ECD->getInitVal();
5479    bool FitsInInt;
5480    if (InitVal.isUnsigned() || !InitVal.isNegative())
5481      FitsInInt = InitVal.getActiveBits() < IntWidth;
5482    else
5483      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5484
5485    // If it fits into an integer type, force it.  Otherwise force it to match
5486    // the enum decl type.
5487    QualType NewTy;
5488    unsigned NewWidth;
5489    bool NewSign;
5490    if (FitsInInt) {
5491      NewTy = Context.IntTy;
5492      NewWidth = IntWidth;
5493      NewSign = true;
5494    } else if (ECD->getType() == BestType) {
5495      // Already the right type!
5496      if (getLangOptions().CPlusPlus)
5497        // C++ [dcl.enum]p4: Following the closing brace of an
5498        // enum-specifier, each enumerator has the type of its
5499        // enumeration.
5500        ECD->setType(EnumType);
5501      continue;
5502    } else {
5503      NewTy = BestType;
5504      NewWidth = BestWidth;
5505      NewSign = BestType->isSignedIntegerType();
5506    }
5507
5508    // Adjust the APSInt value.
5509    InitVal.extOrTrunc(NewWidth);
5510    InitVal.setIsSigned(NewSign);
5511    ECD->setInitVal(InitVal);
5512
5513    // Adjust the Expr initializer and type.
5514    if (ECD->getInitExpr())
5515      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5516                                                      CastExpr::CK_Unknown,
5517                                                      ECD->getInitExpr(),
5518                                                      /*isLvalue=*/false));
5519    if (getLangOptions().CPlusPlus)
5520      // C++ [dcl.enum]p4: Following the closing brace of an
5521      // enum-specifier, each enumerator has the type of its
5522      // enumeration.
5523      ECD->setType(EnumType);
5524    else
5525      ECD->setType(NewTy);
5526  }
5527
5528  Enum->completeDefinition(Context, BestType);
5529}
5530
5531Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5532                                            ExprArg expr) {
5533  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5534
5535  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5536                                                   Loc, AsmString);
5537  CurContext->addDecl(New);
5538  return DeclPtrTy::make(New);
5539}
5540
5541void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5542                             SourceLocation PragmaLoc,
5543                             SourceLocation NameLoc) {
5544  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5545
5546  if (PrevDecl) {
5547    PrevDecl->addAttr(::new (Context) WeakAttr());
5548  } else {
5549    (void)WeakUndeclaredIdentifiers.insert(
5550      std::pair<IdentifierInfo*,WeakInfo>
5551        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5552  }
5553}
5554
5555void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5556                                IdentifierInfo* AliasName,
5557                                SourceLocation PragmaLoc,
5558                                SourceLocation NameLoc,
5559                                SourceLocation AliasNameLoc) {
5560  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5561  WeakInfo W = WeakInfo(Name, NameLoc);
5562
5563  if (PrevDecl) {
5564    if (!PrevDecl->hasAttr<AliasAttr>())
5565      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5566        DeclApplyPragmaWeak(TUScope, ND, W);
5567  } else {
5568    (void)WeakUndeclaredIdentifiers.insert(
5569      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5570  }
5571}
5572