SemaDecl.cpp revision f7613d53619d11f46fb07ddb0ea90c9fb0cad027
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous:
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134
135  case LookupResult::Found:
136    IIDecl = Result.getFoundDecl();
137    break;
138  }
139
140  assert(IIDecl && "Didn't find decl");
141
142  QualType T;
143  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
144    DiagnoseUseOfDecl(IIDecl, NameLoc);
145
146    // C++ [temp.local]p2:
147    //   Within the scope of a class template specialization or
148    //   partial specialization, when the injected-class-name is
149    //   not followed by a <, it is equivalent to the
150    //   injected-class-name followed by the template-argument s
151    //   of the class template specialization or partial
152    //   specialization enclosed in <>.
153    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
154      if (RD->isInjectedClassName())
155        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
156          T = Template->getInjectedClassNameType(Context);
157
158    if (T.isNull())
159      T = Context.getTypeDeclType(TD);
160
161    if (SS)
162      T = getQualifiedNameType(*SS, T);
163
164  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
165    DiagnoseUseOfDecl(IIDecl, NameLoc);
166    T = Context.getObjCInterfaceType(IDecl);
167  } else
168    return 0;
169
170  return T.getAsOpaquePtr();
171}
172
173/// isTagName() - This method is called *for error recovery purposes only*
174/// to determine if the specified name is a valid tag name ("struct foo").  If
175/// so, this returns the TST for the tag corresponding to it (TST_enum,
176/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
177/// where the user forgot to specify the tag.
178DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
179  // Do a tag name lookup in this scope.
180  LookupResult R;
181  LookupName(R, S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
196                                   SourceLocation IILoc,
197                                   Scope *S,
198                                   const CXXScopeSpec *SS,
199                                   TypeTy *&SuggestedType) {
200  // We don't have anything to suggest (yet).
201  SuggestedType = 0;
202
203  // FIXME: Should we move the logic that tries to recover from a missing tag
204  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
205
206  if (!SS)
207    Diag(IILoc, diag::err_unknown_typename) << &II;
208  else if (DeclContext *DC = computeDeclContext(*SS, false))
209    Diag(IILoc, diag::err_typename_nested_not_found)
210      << &II << DC << SS->getRange();
211  else if (isDependentScopeSpecifier(*SS)) {
212    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
213      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
214      << SourceRange(SS->getRange().getBegin(), IILoc)
215      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
216                                               "typename ");
217    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
218  } else {
219    assert(SS && SS->isInvalid() &&
220           "Invalid scope specifier has already been diagnosed");
221  }
222
223  return true;
224}
225
226// Determines the context to return to after temporarily entering a
227// context.  This depends in an unnecessarily complicated way on the
228// exact ordering of callbacks from the parser.
229DeclContext *Sema::getContainingDC(DeclContext *DC) {
230
231  // Functions defined inline within classes aren't parsed until we've
232  // finished parsing the top-level class, so the top-level class is
233  // the context we'll need to return to.
234  if (isa<FunctionDecl>(DC)) {
235    DC = DC->getLexicalParent();
236
237    // A function not defined within a class will always return to its
238    // lexical context.
239    if (!isa<CXXRecordDecl>(DC))
240      return DC;
241
242    // A C++ inline method/friend is parsed *after* the topmost class
243    // it was declared in is fully parsed ("complete");  the topmost
244    // class is the context we need to return to.
245    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
246      DC = RD;
247
248    // Return the declaration context of the topmost class the inline method is
249    // declared in.
250    return DC;
251  }
252
253  if (isa<ObjCMethodDecl>(DC))
254    return Context.getTranslationUnitDecl();
255
256  return DC->getLexicalParent();
257}
258
259void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
260  assert(getContainingDC(DC) == CurContext &&
261      "The next DeclContext should be lexically contained in the current one.");
262  CurContext = DC;
263  S->setEntity(DC);
264}
265
266void Sema::PopDeclContext() {
267  assert(CurContext && "DeclContext imbalance!");
268
269  CurContext = getContainingDC(CurContext);
270}
271
272/// EnterDeclaratorContext - Used when we must lookup names in the context
273/// of a declarator's nested name specifier.
274void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
275  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
276  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
277  CurContext = DC;
278  assert(CurContext && "No context?");
279  S->setEntity(CurContext);
280}
281
282void Sema::ExitDeclaratorContext(Scope *S) {
283  S->setEntity(PreDeclaratorDC);
284  PreDeclaratorDC = 0;
285
286  // Reset CurContext to the nearest enclosing context.
287  while (!S->getEntity() && S->getParent())
288    S = S->getParent();
289  CurContext = static_cast<DeclContext*>(S->getEntity());
290  assert(CurContext && "No context?");
291}
292
293/// \brief Determine whether we allow overloading of the function
294/// PrevDecl with another declaration.
295///
296/// This routine determines whether overloading is possible, not
297/// whether some new function is actually an overload. It will return
298/// true in C++ (where we can always provide overloads) or, as an
299/// extension, in C when the previous function is already an
300/// overloaded function declaration or has the "overloadable"
301/// attribute.
302static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
303  if (Context.getLangOptions().CPlusPlus)
304    return true;
305
306  if (isa<OverloadedFunctionDecl>(PrevDecl))
307    return true;
308
309  return PrevDecl->getAttr<OverloadableAttr>() != 0;
310}
311
312/// Add this decl to the scope shadowed decl chains.
313void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
314  // Move up the scope chain until we find the nearest enclosing
315  // non-transparent context. The declaration will be introduced into this
316  // scope.
317  while (S->getEntity() &&
318         ((DeclContext *)S->getEntity())->isTransparentContext())
319    S = S->getParent();
320
321  // Add scoped declarations into their context, so that they can be
322  // found later. Declarations without a context won't be inserted
323  // into any context.
324  if (AddToContext)
325    CurContext->addDecl(D);
326
327  // Out-of-line function and variable definitions should not be pushed into
328  // scope.
329  if ((isa<FunctionTemplateDecl>(D) &&
330       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
331      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
332      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
333    return;
334
335  // If this replaces anything in the current scope,
336  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
337                               IEnd = IdResolver.end();
338  for (; I != IEnd; ++I) {
339    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
340      S->RemoveDecl(DeclPtrTy::make(*I));
341      IdResolver.RemoveDecl(*I);
342
343      // Should only need to replace one decl.
344      break;
345    }
346  }
347
348  S->AddDecl(DeclPtrTy::make(D));
349  IdResolver.AddDecl(D);
350}
351
352bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
353  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
354    // Look inside the overload set to determine if any of the declarations
355    // are in scope. (Possibly) build a new overload set containing only
356    // those declarations that are in scope.
357    OverloadedFunctionDecl *NewOvl = 0;
358    bool FoundInScope = false;
359    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
360         FEnd = Ovl->function_end();
361         F != FEnd; ++F) {
362      NamedDecl *FD = F->get();
363      if (!isDeclInScope(FD, Ctx, S)) {
364        if (!NewOvl && F != Ovl->function_begin()) {
365          NewOvl = OverloadedFunctionDecl::Create(Context,
366                                                  F->get()->getDeclContext(),
367                                                  F->get()->getDeclName());
368          D = NewOvl;
369          for (OverloadedFunctionDecl::function_iterator
370               First = Ovl->function_begin();
371               First != F; ++First)
372            NewOvl->addOverload(*First);
373        }
374      } else {
375        FoundInScope = true;
376        if (NewOvl)
377          NewOvl->addOverload(*F);
378      }
379    }
380
381    return FoundInScope;
382  }
383
384  return IdResolver.isDeclInScope(D, Ctx, Context, S);
385}
386
387static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
388  if (D->isUsed() || D->hasAttr<UnusedAttr>())
389    return false;
390
391  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
392    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
393      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
394        if (!RD->hasTrivialConstructor())
395          return false;
396        if (!RD->hasTrivialDestructor())
397          return false;
398      }
399    }
400  }
401
402  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
403          !isa<ImplicitParamDecl>(D) &&
404          D->getDeclContext()->isFunctionOrMethod());
405}
406
407void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
408  if (S->decl_empty()) return;
409  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
410         "Scope shouldn't contain decls!");
411
412  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
413       I != E; ++I) {
414    Decl *TmpD = (*I).getAs<Decl>();
415    assert(TmpD && "This decl didn't get pushed??");
416
417    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
418    NamedDecl *D = cast<NamedDecl>(TmpD);
419
420    if (!D->getDeclName()) continue;
421
422    // Diagnose unused variables in this scope.
423    if (ShouldDiagnoseUnusedDecl(D))
424      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
425
426    // Remove this name from our lexical scope.
427    IdResolver.RemoveDecl(D);
428  }
429}
430
431/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
432/// return 0 if one not found.
433ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
434  // The third "scope" argument is 0 since we aren't enabling lazy built-in
435  // creation from this context.
436  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
437
438  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
439}
440
441/// getNonFieldDeclScope - Retrieves the innermost scope, starting
442/// from S, where a non-field would be declared. This routine copes
443/// with the difference between C and C++ scoping rules in structs and
444/// unions. For example, the following code is well-formed in C but
445/// ill-formed in C++:
446/// @code
447/// struct S6 {
448///   enum { BAR } e;
449/// };
450///
451/// void test_S6() {
452///   struct S6 a;
453///   a.e = BAR;
454/// }
455/// @endcode
456/// For the declaration of BAR, this routine will return a different
457/// scope. The scope S will be the scope of the unnamed enumeration
458/// within S6. In C++, this routine will return the scope associated
459/// with S6, because the enumeration's scope is a transparent
460/// context but structures can contain non-field names. In C, this
461/// routine will return the translation unit scope, since the
462/// enumeration's scope is a transparent context and structures cannot
463/// contain non-field names.
464Scope *Sema::getNonFieldDeclScope(Scope *S) {
465  while (((S->getFlags() & Scope::DeclScope) == 0) ||
466         (S->getEntity() &&
467          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
468         (S->isClassScope() && !getLangOptions().CPlusPlus))
469    S = S->getParent();
470  return S;
471}
472
473void Sema::InitBuiltinVaListType() {
474  if (!Context.getBuiltinVaListType().isNull())
475    return;
476
477  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
478  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
479  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
480  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
481}
482
483/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
484/// file scope.  lazily create a decl for it. ForRedeclaration is true
485/// if we're creating this built-in in anticipation of redeclaring the
486/// built-in.
487NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
488                                     Scope *S, bool ForRedeclaration,
489                                     SourceLocation Loc) {
490  Builtin::ID BID = (Builtin::ID)bid;
491
492  if (Context.BuiltinInfo.hasVAListUse(BID))
493    InitBuiltinVaListType();
494
495  ASTContext::GetBuiltinTypeError Error;
496  QualType R = Context.GetBuiltinType(BID, Error);
497  switch (Error) {
498  case ASTContext::GE_None:
499    // Okay
500    break;
501
502  case ASTContext::GE_Missing_stdio:
503    if (ForRedeclaration)
504      Diag(Loc, diag::err_implicit_decl_requires_stdio)
505        << Context.BuiltinInfo.GetName(BID);
506    return 0;
507
508  case ASTContext::GE_Missing_setjmp:
509    if (ForRedeclaration)
510      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
511        << Context.BuiltinInfo.GetName(BID);
512    return 0;
513  }
514
515  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
516    Diag(Loc, diag::ext_implicit_lib_function_decl)
517      << Context.BuiltinInfo.GetName(BID)
518      << R;
519    if (Context.BuiltinInfo.getHeaderName(BID) &&
520        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
521          != Diagnostic::Ignored)
522      Diag(Loc, diag::note_please_include_header)
523        << Context.BuiltinInfo.getHeaderName(BID)
524        << Context.BuiltinInfo.GetName(BID);
525  }
526
527  FunctionDecl *New = FunctionDecl::Create(Context,
528                                           Context.getTranslationUnitDecl(),
529                                           Loc, II, R, /*DInfo=*/0,
530                                           FunctionDecl::Extern, false,
531                                           /*hasPrototype=*/true);
532  New->setImplicit();
533
534  // Create Decl objects for each parameter, adding them to the
535  // FunctionDecl.
536  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
537    llvm::SmallVector<ParmVarDecl*, 16> Params;
538    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
539      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
540                                           FT->getArgType(i), /*DInfo=*/0,
541                                           VarDecl::None, 0));
542    New->setParams(Context, Params.data(), Params.size());
543  }
544
545  AddKnownFunctionAttributes(New);
546
547  // TUScope is the translation-unit scope to insert this function into.
548  // FIXME: This is hideous. We need to teach PushOnScopeChains to
549  // relate Scopes to DeclContexts, and probably eliminate CurContext
550  // entirely, but we're not there yet.
551  DeclContext *SavedContext = CurContext;
552  CurContext = Context.getTranslationUnitDecl();
553  PushOnScopeChains(New, TUScope);
554  CurContext = SavedContext;
555  return New;
556}
557
558/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
559/// same name and scope as a previous declaration 'Old'.  Figure out
560/// how to resolve this situation, merging decls or emitting
561/// diagnostics as appropriate. If there was an error, set New to be invalid.
562///
563void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
564  // If either decl is known invalid already, set the new one to be invalid and
565  // don't bother doing any merging checks.
566  if (New->isInvalidDecl() || OldD->isInvalidDecl())
567    return New->setInvalidDecl();
568
569  // Allow multiple definitions for ObjC built-in typedefs.
570  // FIXME: Verify the underlying types are equivalent!
571  if (getLangOptions().ObjC1) {
572    const IdentifierInfo *TypeID = New->getIdentifier();
573    switch (TypeID->getLength()) {
574    default: break;
575    case 2:
576      if (!TypeID->isStr("id"))
577        break;
578      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
579      // Install the built-in type for 'id', ignoring the current definition.
580      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
581      return;
582    case 5:
583      if (!TypeID->isStr("Class"))
584        break;
585      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
586      // Install the built-in type for 'Class', ignoring the current definition.
587      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
588      return;
589    case 3:
590      if (!TypeID->isStr("SEL"))
591        break;
592      Context.setObjCSelType(Context.getTypeDeclType(New));
593      return;
594    case 8:
595      if (!TypeID->isStr("Protocol"))
596        break;
597      Context.setObjCProtoType(New->getUnderlyingType());
598      return;
599    }
600    // Fall through - the typedef name was not a builtin type.
601  }
602  // Verify the old decl was also a type.
603  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
604  if (!Old) {
605    Diag(New->getLocation(), diag::err_redefinition_different_kind)
606      << New->getDeclName();
607    if (OldD->getLocation().isValid())
608      Diag(OldD->getLocation(), diag::note_previous_definition);
609    return New->setInvalidDecl();
610  }
611
612  // Determine the "old" type we'll use for checking and diagnostics.
613  QualType OldType;
614  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
615    OldType = OldTypedef->getUnderlyingType();
616  else
617    OldType = Context.getTypeDeclType(Old);
618
619  // If the typedef types are not identical, reject them in all languages and
620  // with any extensions enabled.
621
622  if (OldType != New->getUnderlyingType() &&
623      Context.getCanonicalType(OldType) !=
624      Context.getCanonicalType(New->getUnderlyingType())) {
625    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
626      << New->getUnderlyingType() << OldType;
627    if (Old->getLocation().isValid())
628      Diag(Old->getLocation(), diag::note_previous_definition);
629    return New->setInvalidDecl();
630  }
631
632  if (getLangOptions().Microsoft)
633    return;
634
635  // C++ [dcl.typedef]p2:
636  //   In a given non-class scope, a typedef specifier can be used to
637  //   redefine the name of any type declared in that scope to refer
638  //   to the type to which it already refers.
639  if (getLangOptions().CPlusPlus) {
640    if (!isa<CXXRecordDecl>(CurContext))
641      return;
642    Diag(New->getLocation(), diag::err_redefinition)
643      << New->getDeclName();
644    Diag(Old->getLocation(), diag::note_previous_definition);
645    return New->setInvalidDecl();
646  }
647
648  // If we have a redefinition of a typedef in C, emit a warning.  This warning
649  // is normally mapped to an error, but can be controlled with
650  // -Wtypedef-redefinition.  If either the original or the redefinition is
651  // in a system header, don't emit this for compatibility with GCC.
652  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
653      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
654       Context.getSourceManager().isInSystemHeader(New->getLocation())))
655    return;
656
657  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
658    << New->getDeclName();
659  Diag(Old->getLocation(), diag::note_previous_definition);
660  return;
661}
662
663/// DeclhasAttr - returns true if decl Declaration already has the target
664/// attribute.
665static bool
666DeclHasAttr(const Decl *decl, const Attr *target) {
667  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
668    if (attr->getKind() == target->getKind())
669      return true;
670
671  return false;
672}
673
674/// MergeAttributes - append attributes from the Old decl to the New one.
675static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
676  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
677    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
678      Attr *NewAttr = attr->clone(C);
679      NewAttr->setInherited(true);
680      New->addAttr(NewAttr);
681    }
682  }
683}
684
685/// Used in MergeFunctionDecl to keep track of function parameters in
686/// C.
687struct GNUCompatibleParamWarning {
688  ParmVarDecl *OldParm;
689  ParmVarDecl *NewParm;
690  QualType PromotedType;
691};
692
693/// MergeFunctionDecl - We just parsed a function 'New' from
694/// declarator D which has the same name and scope as a previous
695/// declaration 'Old'.  Figure out how to resolve this situation,
696/// merging decls or emitting diagnostics as appropriate.
697///
698/// In C++, New and Old must be declarations that are not
699/// overloaded. Use IsOverload to determine whether New and Old are
700/// overloaded, and to select the Old declaration that New should be
701/// merged with.
702///
703/// Returns true if there was an error, false otherwise.
704bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
705  assert(!isa<OverloadedFunctionDecl>(OldD) &&
706         "Cannot merge with an overloaded function declaration");
707
708  // Verify the old decl was also a function.
709  FunctionDecl *Old = 0;
710  if (FunctionTemplateDecl *OldFunctionTemplate
711        = dyn_cast<FunctionTemplateDecl>(OldD))
712    Old = OldFunctionTemplate->getTemplatedDecl();
713  else
714    Old = dyn_cast<FunctionDecl>(OldD);
715  if (!Old) {
716    Diag(New->getLocation(), diag::err_redefinition_different_kind)
717      << New->getDeclName();
718    Diag(OldD->getLocation(), diag::note_previous_definition);
719    return true;
720  }
721
722  // Determine whether the previous declaration was a definition,
723  // implicit declaration, or a declaration.
724  diag::kind PrevDiag;
725  if (Old->isThisDeclarationADefinition())
726    PrevDiag = diag::note_previous_definition;
727  else if (Old->isImplicit())
728    PrevDiag = diag::note_previous_implicit_declaration;
729  else
730    PrevDiag = diag::note_previous_declaration;
731
732  QualType OldQType = Context.getCanonicalType(Old->getType());
733  QualType NewQType = Context.getCanonicalType(New->getType());
734
735  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
736      New->getStorageClass() == FunctionDecl::Static &&
737      Old->getStorageClass() != FunctionDecl::Static) {
738    Diag(New->getLocation(), diag::err_static_non_static)
739      << New;
740    Diag(Old->getLocation(), PrevDiag);
741    return true;
742  }
743
744  if (getLangOptions().CPlusPlus) {
745    // (C++98 13.1p2):
746    //   Certain function declarations cannot be overloaded:
747    //     -- Function declarations that differ only in the return type
748    //        cannot be overloaded.
749    QualType OldReturnType
750      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
751    QualType NewReturnType
752      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
753    if (OldReturnType != NewReturnType) {
754      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
755      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
756      return true;
757    }
758
759    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
760    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
761    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
762        NewMethod->getLexicalDeclContext()->isRecord()) {
763      //    -- Member function declarations with the same name and the
764      //       same parameter types cannot be overloaded if any of them
765      //       is a static member function declaration.
766      if (OldMethod->isStatic() || NewMethod->isStatic()) {
767        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
768        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
769        return true;
770      }
771
772      // C++ [class.mem]p1:
773      //   [...] A member shall not be declared twice in the
774      //   member-specification, except that a nested class or member
775      //   class template can be declared and then later defined.
776      unsigned NewDiag;
777      if (isa<CXXConstructorDecl>(OldMethod))
778        NewDiag = diag::err_constructor_redeclared;
779      else if (isa<CXXDestructorDecl>(NewMethod))
780        NewDiag = diag::err_destructor_redeclared;
781      else if (isa<CXXConversionDecl>(NewMethod))
782        NewDiag = diag::err_conv_function_redeclared;
783      else
784        NewDiag = diag::err_member_redeclared;
785
786      Diag(New->getLocation(), NewDiag);
787      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
788    }
789
790    // (C++98 8.3.5p3):
791    //   All declarations for a function shall agree exactly in both the
792    //   return type and the parameter-type-list.
793    if (OldQType == NewQType)
794      return MergeCompatibleFunctionDecls(New, Old);
795
796    // Fall through for conflicting redeclarations and redefinitions.
797  }
798
799  // C: Function types need to be compatible, not identical. This handles
800  // duplicate function decls like "void f(int); void f(enum X);" properly.
801  if (!getLangOptions().CPlusPlus &&
802      Context.typesAreCompatible(OldQType, NewQType)) {
803    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
804    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
805    const FunctionProtoType *OldProto = 0;
806    if (isa<FunctionNoProtoType>(NewFuncType) &&
807        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
808      // The old declaration provided a function prototype, but the
809      // new declaration does not. Merge in the prototype.
810      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
811      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
812                                                 OldProto->arg_type_end());
813      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
814                                         ParamTypes.data(), ParamTypes.size(),
815                                         OldProto->isVariadic(),
816                                         OldProto->getTypeQuals());
817      New->setType(NewQType);
818      New->setHasInheritedPrototype();
819
820      // Synthesize a parameter for each argument type.
821      llvm::SmallVector<ParmVarDecl*, 16> Params;
822      for (FunctionProtoType::arg_type_iterator
823             ParamType = OldProto->arg_type_begin(),
824             ParamEnd = OldProto->arg_type_end();
825           ParamType != ParamEnd; ++ParamType) {
826        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
827                                                 SourceLocation(), 0,
828                                                 *ParamType, /*DInfo=*/0,
829                                                 VarDecl::None, 0);
830        Param->setImplicit();
831        Params.push_back(Param);
832      }
833
834      New->setParams(Context, Params.data(), Params.size());
835    }
836
837    return MergeCompatibleFunctionDecls(New, Old);
838  }
839
840  // GNU C permits a K&R definition to follow a prototype declaration
841  // if the declared types of the parameters in the K&R definition
842  // match the types in the prototype declaration, even when the
843  // promoted types of the parameters from the K&R definition differ
844  // from the types in the prototype. GCC then keeps the types from
845  // the prototype.
846  //
847  // If a variadic prototype is followed by a non-variadic K&R definition,
848  // the K&R definition becomes variadic.  This is sort of an edge case, but
849  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
850  // C99 6.9.1p8.
851  if (!getLangOptions().CPlusPlus &&
852      Old->hasPrototype() && !New->hasPrototype() &&
853      New->getType()->getAs<FunctionProtoType>() &&
854      Old->getNumParams() == New->getNumParams()) {
855    llvm::SmallVector<QualType, 16> ArgTypes;
856    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
857    const FunctionProtoType *OldProto
858      = Old->getType()->getAs<FunctionProtoType>();
859    const FunctionProtoType *NewProto
860      = New->getType()->getAs<FunctionProtoType>();
861
862    // Determine whether this is the GNU C extension.
863    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
864                                               NewProto->getResultType());
865    bool LooseCompatible = !MergedReturn.isNull();
866    for (unsigned Idx = 0, End = Old->getNumParams();
867         LooseCompatible && Idx != End; ++Idx) {
868      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
869      ParmVarDecl *NewParm = New->getParamDecl(Idx);
870      if (Context.typesAreCompatible(OldParm->getType(),
871                                     NewProto->getArgType(Idx))) {
872        ArgTypes.push_back(NewParm->getType());
873      } else if (Context.typesAreCompatible(OldParm->getType(),
874                                            NewParm->getType())) {
875        GNUCompatibleParamWarning Warn
876          = { OldParm, NewParm, NewProto->getArgType(Idx) };
877        Warnings.push_back(Warn);
878        ArgTypes.push_back(NewParm->getType());
879      } else
880        LooseCompatible = false;
881    }
882
883    if (LooseCompatible) {
884      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
885        Diag(Warnings[Warn].NewParm->getLocation(),
886             diag::ext_param_promoted_not_compatible_with_prototype)
887          << Warnings[Warn].PromotedType
888          << Warnings[Warn].OldParm->getType();
889        Diag(Warnings[Warn].OldParm->getLocation(),
890             diag::note_previous_declaration);
891      }
892
893      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
894                                           ArgTypes.size(),
895                                           OldProto->isVariadic(), 0));
896      return MergeCompatibleFunctionDecls(New, Old);
897    }
898
899    // Fall through to diagnose conflicting types.
900  }
901
902  // A function that has already been declared has been redeclared or defined
903  // with a different type- show appropriate diagnostic
904  if (unsigned BuiltinID = Old->getBuiltinID()) {
905    // The user has declared a builtin function with an incompatible
906    // signature.
907    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
908      // The function the user is redeclaring is a library-defined
909      // function like 'malloc' or 'printf'. Warn about the
910      // redeclaration, then pretend that we don't know about this
911      // library built-in.
912      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
913      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
914        << Old << Old->getType();
915      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
916      Old->setInvalidDecl();
917      return false;
918    }
919
920    PrevDiag = diag::note_previous_builtin_declaration;
921  }
922
923  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
924  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
925  return true;
926}
927
928/// \brief Completes the merge of two function declarations that are
929/// known to be compatible.
930///
931/// This routine handles the merging of attributes and other
932/// properties of function declarations form the old declaration to
933/// the new declaration, once we know that New is in fact a
934/// redeclaration of Old.
935///
936/// \returns false
937bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
938  // Merge the attributes
939  MergeAttributes(New, Old, Context);
940
941  // Merge the storage class.
942  if (Old->getStorageClass() != FunctionDecl::Extern &&
943      Old->getStorageClass() != FunctionDecl::None)
944    New->setStorageClass(Old->getStorageClass());
945
946  // Merge "pure" flag.
947  if (Old->isPure())
948    New->setPure();
949
950  // Merge the "deleted" flag.
951  if (Old->isDeleted())
952    New->setDeleted();
953
954  if (getLangOptions().CPlusPlus)
955    return MergeCXXFunctionDecl(New, Old);
956
957  return false;
958}
959
960/// MergeVarDecl - We just parsed a variable 'New' which has the same name
961/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
962/// situation, merging decls or emitting diagnostics as appropriate.
963///
964/// Tentative definition rules (C99 6.9.2p2) are checked by
965/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
966/// definitions here, since the initializer hasn't been attached.
967///
968void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
969  // If either decl is invalid, make sure the new one is marked invalid and
970  // don't do any other checking.
971  if (New->isInvalidDecl() || OldD->isInvalidDecl())
972    return New->setInvalidDecl();
973
974  // Verify the old decl was also a variable.
975  VarDecl *Old = dyn_cast<VarDecl>(OldD);
976  if (!Old) {
977    Diag(New->getLocation(), diag::err_redefinition_different_kind)
978      << New->getDeclName();
979    Diag(OldD->getLocation(), diag::note_previous_definition);
980    return New->setInvalidDecl();
981  }
982
983  MergeAttributes(New, Old, Context);
984
985  // Merge the types
986  QualType MergedT;
987  if (getLangOptions().CPlusPlus) {
988    if (Context.hasSameType(New->getType(), Old->getType()))
989      MergedT = New->getType();
990    // C++ [basic.types]p7:
991    //   [...] The declared type of an array object might be an array of
992    //   unknown size and therefore be incomplete at one point in a
993    //   translation unit and complete later on; [...]
994    else if (Old->getType()->isIncompleteArrayType() &&
995             New->getType()->isArrayType()) {
996      CanQual<ArrayType> OldArray
997        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
998      CanQual<ArrayType> NewArray
999        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1000      if (OldArray->getElementType() == NewArray->getElementType())
1001        MergedT = New->getType();
1002    }
1003  } else {
1004    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1005  }
1006  if (MergedT.isNull()) {
1007    Diag(New->getLocation(), diag::err_redefinition_different_type)
1008      << New->getDeclName();
1009    Diag(Old->getLocation(), diag::note_previous_definition);
1010    return New->setInvalidDecl();
1011  }
1012  New->setType(MergedT);
1013
1014  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1015  if (New->getStorageClass() == VarDecl::Static &&
1016      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1017    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1018    Diag(Old->getLocation(), diag::note_previous_definition);
1019    return New->setInvalidDecl();
1020  }
1021  // C99 6.2.2p4:
1022  //   For an identifier declared with the storage-class specifier
1023  //   extern in a scope in which a prior declaration of that
1024  //   identifier is visible,23) if the prior declaration specifies
1025  //   internal or external linkage, the linkage of the identifier at
1026  //   the later declaration is the same as the linkage specified at
1027  //   the prior declaration. If no prior declaration is visible, or
1028  //   if the prior declaration specifies no linkage, then the
1029  //   identifier has external linkage.
1030  if (New->hasExternalStorage() && Old->hasLinkage())
1031    /* Okay */;
1032  else if (New->getStorageClass() != VarDecl::Static &&
1033           Old->getStorageClass() == VarDecl::Static) {
1034    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1035    Diag(Old->getLocation(), diag::note_previous_definition);
1036    return New->setInvalidDecl();
1037  }
1038
1039  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1040
1041  // FIXME: The test for external storage here seems wrong? We still
1042  // need to check for mismatches.
1043  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1044      // Don't complain about out-of-line definitions of static members.
1045      !(Old->getLexicalDeclContext()->isRecord() &&
1046        !New->getLexicalDeclContext()->isRecord())) {
1047    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1048    Diag(Old->getLocation(), diag::note_previous_definition);
1049    return New->setInvalidDecl();
1050  }
1051
1052  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1053    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1054    Diag(Old->getLocation(), diag::note_previous_definition);
1055  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1056    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1057    Diag(Old->getLocation(), diag::note_previous_definition);
1058  }
1059
1060  // Keep a chain of previous declarations.
1061  New->setPreviousDeclaration(Old);
1062}
1063
1064/// CheckFallThrough - Check that we don't fall off the end of a
1065/// Statement that should return a value.
1066///
1067/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1068/// MaybeFallThrough iff we might or might not fall off the end,
1069/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1070/// return.  We assume NeverFallThrough iff we never fall off the end of the
1071/// statement but we may return.  We assume that functions not marked noreturn
1072/// will return.
1073Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1074  // FIXME: Eventually share this CFG object when we have other warnings based
1075  // of the CFG.  This can be done using AnalysisContext.
1076  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1077
1078  // FIXME: They should never return 0, fix that, delete this code.
1079  if (cfg == 0)
1080    // FIXME: This should be NeverFallThrough
1081    return NeverFallThroughOrReturn;
1082  // The CFG leaves in dead things, and we don't want to dead code paths to
1083  // confuse us, so we mark all live things first.
1084  std::queue<CFGBlock*> workq;
1085  llvm::BitVector live(cfg->getNumBlockIDs());
1086  // Prep work queue
1087  workq.push(&cfg->getEntry());
1088  // Solve
1089  while (!workq.empty()) {
1090    CFGBlock *item = workq.front();
1091    workq.pop();
1092    live.set(item->getBlockID());
1093    for (CFGBlock::succ_iterator I=item->succ_begin(),
1094           E=item->succ_end();
1095         I != E;
1096         ++I) {
1097      if ((*I) && !live[(*I)->getBlockID()]) {
1098        live.set((*I)->getBlockID());
1099        workq.push(*I);
1100      }
1101    }
1102  }
1103
1104  // Now we know what is live, we check the live precessors of the exit block
1105  // and look for fall through paths, being careful to ignore normal returns,
1106  // and exceptional paths.
1107  bool HasLiveReturn = false;
1108  bool HasFakeEdge = false;
1109  bool HasPlainEdge = false;
1110  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1111         E = cfg->getExit().pred_end();
1112       I != E;
1113       ++I) {
1114    CFGBlock& B = **I;
1115    if (!live[B.getBlockID()])
1116      continue;
1117    if (B.size() == 0) {
1118      // A labeled empty statement, or the entry block...
1119      HasPlainEdge = true;
1120      continue;
1121    }
1122    Stmt *S = B[B.size()-1];
1123    if (isa<ReturnStmt>(S)) {
1124      HasLiveReturn = true;
1125      continue;
1126    }
1127    if (isa<ObjCAtThrowStmt>(S)) {
1128      HasFakeEdge = true;
1129      continue;
1130    }
1131    if (isa<CXXThrowExpr>(S)) {
1132      HasFakeEdge = true;
1133      continue;
1134    }
1135    bool NoReturnEdge = false;
1136    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1137      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1138      if (CEE->getType().getNoReturnAttr()) {
1139        NoReturnEdge = true;
1140        HasFakeEdge = true;
1141      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1142        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1143          if (FD->hasAttr<NoReturnAttr>()) {
1144            NoReturnEdge = true;
1145            HasFakeEdge = true;
1146          }
1147        }
1148      }
1149    }
1150    // FIXME: Add noreturn message sends.
1151    if (NoReturnEdge == false)
1152      HasPlainEdge = true;
1153  }
1154  if (!HasPlainEdge) {
1155    if (HasLiveReturn)
1156      return NeverFallThrough;
1157    return NeverFallThroughOrReturn;
1158  }
1159  if (HasFakeEdge || HasLiveReturn)
1160    return MaybeFallThrough;
1161  // This says AlwaysFallThrough for calls to functions that are not marked
1162  // noreturn, that don't return.  If people would like this warning to be more
1163  // accurate, such functions should be marked as noreturn.
1164  return AlwaysFallThrough;
1165}
1166
1167/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1168/// function that should return a value.  Check that we don't fall off the end
1169/// of a noreturn function.  We assume that functions and blocks not marked
1170/// noreturn will return.
1171void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1172  // FIXME: Would be nice if we had a better way to control cascading errors,
1173  // but for now, avoid them.  The problem is that when Parse sees:
1174  //   int foo() { return a; }
1175  // The return is eaten and the Sema code sees just:
1176  //   int foo() { }
1177  // which this code would then warn about.
1178  if (getDiagnostics().hasErrorOccurred())
1179    return;
1180
1181  bool ReturnsVoid = false;
1182  bool HasNoReturn = false;
1183  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1184    // If the result type of the function is a dependent type, we don't know
1185    // whether it will be void or not, so don't
1186    if (FD->getResultType()->isDependentType())
1187      return;
1188    if (FD->getResultType()->isVoidType())
1189      ReturnsVoid = true;
1190    if (FD->hasAttr<NoReturnAttr>())
1191      HasNoReturn = true;
1192  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1193    if (MD->getResultType()->isVoidType())
1194      ReturnsVoid = true;
1195    if (MD->hasAttr<NoReturnAttr>())
1196      HasNoReturn = true;
1197  }
1198
1199  // Short circuit for compilation speed.
1200  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1201       == Diagnostic::Ignored || ReturnsVoid)
1202      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1203          == Diagnostic::Ignored || !HasNoReturn)
1204      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1205          == Diagnostic::Ignored || !ReturnsVoid))
1206    return;
1207  // FIXME: Function try block
1208  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1209    switch (CheckFallThrough(Body)) {
1210    case MaybeFallThrough:
1211      if (HasNoReturn)
1212        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1213      else if (!ReturnsVoid)
1214        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1215      break;
1216    case AlwaysFallThrough:
1217      if (HasNoReturn)
1218        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1219      else if (!ReturnsVoid)
1220        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1221      break;
1222    case NeverFallThroughOrReturn:
1223      if (ReturnsVoid && !HasNoReturn)
1224        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1225      break;
1226    case NeverFallThrough:
1227      break;
1228    }
1229  }
1230}
1231
1232/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1233/// that should return a value.  Check that we don't fall off the end of a
1234/// noreturn block.  We assume that functions and blocks not marked noreturn
1235/// will return.
1236void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1237  // FIXME: Would be nice if we had a better way to control cascading errors,
1238  // but for now, avoid them.  The problem is that when Parse sees:
1239  //   int foo() { return a; }
1240  // The return is eaten and the Sema code sees just:
1241  //   int foo() { }
1242  // which this code would then warn about.
1243  if (getDiagnostics().hasErrorOccurred())
1244    return;
1245  bool ReturnsVoid = false;
1246  bool HasNoReturn = false;
1247  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1248    if (FT->getResultType()->isVoidType())
1249      ReturnsVoid = true;
1250    if (FT->getNoReturnAttr())
1251      HasNoReturn = true;
1252  }
1253
1254  // Short circuit for compilation speed.
1255  if (ReturnsVoid
1256      && !HasNoReturn
1257      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1258          == Diagnostic::Ignored || !ReturnsVoid))
1259    return;
1260  // FIXME: Funtion try block
1261  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1262    switch (CheckFallThrough(Body)) {
1263    case MaybeFallThrough:
1264      if (HasNoReturn)
1265        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1266      else if (!ReturnsVoid)
1267        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1268      break;
1269    case AlwaysFallThrough:
1270      if (HasNoReturn)
1271        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1272      else if (!ReturnsVoid)
1273        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1274      break;
1275    case NeverFallThroughOrReturn:
1276      if (ReturnsVoid)
1277        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1278      break;
1279    case NeverFallThrough:
1280      break;
1281    }
1282  }
1283}
1284
1285/// CheckParmsForFunctionDef - Check that the parameters of the given
1286/// function are appropriate for the definition of a function. This
1287/// takes care of any checks that cannot be performed on the
1288/// declaration itself, e.g., that the types of each of the function
1289/// parameters are complete.
1290bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1291  bool HasInvalidParm = false;
1292  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1293    ParmVarDecl *Param = FD->getParamDecl(p);
1294
1295    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1296    // function declarator that is part of a function definition of
1297    // that function shall not have incomplete type.
1298    //
1299    // This is also C++ [dcl.fct]p6.
1300    if (!Param->isInvalidDecl() &&
1301        RequireCompleteType(Param->getLocation(), Param->getType(),
1302                               diag::err_typecheck_decl_incomplete_type)) {
1303      Param->setInvalidDecl();
1304      HasInvalidParm = true;
1305    }
1306
1307    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1308    // declaration of each parameter shall include an identifier.
1309    if (Param->getIdentifier() == 0 &&
1310        !Param->isImplicit() &&
1311        !getLangOptions().CPlusPlus)
1312      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1313  }
1314
1315  return HasInvalidParm;
1316}
1317
1318/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1319/// no declarator (e.g. "struct foo;") is parsed.
1320Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1321  // FIXME: Error on auto/register at file scope
1322  // FIXME: Error on inline/virtual/explicit
1323  // FIXME: Error on invalid restrict
1324  // FIXME: Warn on useless __thread
1325  // FIXME: Warn on useless const/volatile
1326  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1327  // FIXME: Warn on useless attributes
1328  Decl *TagD = 0;
1329  TagDecl *Tag = 0;
1330  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1331      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1332      DS.getTypeSpecType() == DeclSpec::TST_union ||
1333      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1334    TagD = static_cast<Decl *>(DS.getTypeRep());
1335
1336    if (!TagD) // We probably had an error
1337      return DeclPtrTy();
1338
1339    // Note that the above type specs guarantee that the
1340    // type rep is a Decl, whereas in many of the others
1341    // it's a Type.
1342    Tag = dyn_cast<TagDecl>(TagD);
1343  }
1344
1345  if (DS.isFriendSpecified()) {
1346    // If we're dealing with a class template decl, assume that the
1347    // template routines are handling it.
1348    if (TagD && isa<ClassTemplateDecl>(TagD))
1349      return DeclPtrTy();
1350    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1351  }
1352
1353  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1354    // If there are attributes in the DeclSpec, apply them to the record.
1355    if (const AttributeList *AL = DS.getAttributes())
1356      ProcessDeclAttributeList(S, Record, AL);
1357
1358    if (!Record->getDeclName() && Record->isDefinition() &&
1359        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1360      if (getLangOptions().CPlusPlus ||
1361          Record->getDeclContext()->isRecord())
1362        return BuildAnonymousStructOrUnion(S, DS, Record);
1363
1364      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1365        << DS.getSourceRange();
1366    }
1367
1368    // Microsoft allows unnamed struct/union fields. Don't complain
1369    // about them.
1370    // FIXME: Should we support Microsoft's extensions in this area?
1371    if (Record->getDeclName() && getLangOptions().Microsoft)
1372      return DeclPtrTy::make(Tag);
1373  }
1374
1375  if (!DS.isMissingDeclaratorOk() &&
1376      DS.getTypeSpecType() != DeclSpec::TST_error) {
1377    // Warn about typedefs of enums without names, since this is an
1378    // extension in both Microsoft an GNU.
1379    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1380        Tag && isa<EnumDecl>(Tag)) {
1381      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1382        << DS.getSourceRange();
1383      return DeclPtrTy::make(Tag);
1384    }
1385
1386    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1387      << DS.getSourceRange();
1388    return DeclPtrTy();
1389  }
1390
1391  return DeclPtrTy::make(Tag);
1392}
1393
1394/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1395/// anonymous struct or union AnonRecord into the owning context Owner
1396/// and scope S. This routine will be invoked just after we realize
1397/// that an unnamed union or struct is actually an anonymous union or
1398/// struct, e.g.,
1399///
1400/// @code
1401/// union {
1402///   int i;
1403///   float f;
1404/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1405///    // f into the surrounding scope.x
1406/// @endcode
1407///
1408/// This routine is recursive, injecting the names of nested anonymous
1409/// structs/unions into the owning context and scope as well.
1410bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1411                                               RecordDecl *AnonRecord) {
1412  bool Invalid = false;
1413  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1414                               FEnd = AnonRecord->field_end();
1415       F != FEnd; ++F) {
1416    if ((*F)->getDeclName()) {
1417      LookupResult R;
1418      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1419                          LookupOrdinaryName, true);
1420      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1421      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1422        // C++ [class.union]p2:
1423        //   The names of the members of an anonymous union shall be
1424        //   distinct from the names of any other entity in the
1425        //   scope in which the anonymous union is declared.
1426        unsigned diagKind
1427          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1428                                 : diag::err_anonymous_struct_member_redecl;
1429        Diag((*F)->getLocation(), diagKind)
1430          << (*F)->getDeclName();
1431        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1432        Invalid = true;
1433      } else {
1434        // C++ [class.union]p2:
1435        //   For the purpose of name lookup, after the anonymous union
1436        //   definition, the members of the anonymous union are
1437        //   considered to have been defined in the scope in which the
1438        //   anonymous union is declared.
1439        Owner->makeDeclVisibleInContext(*F);
1440        S->AddDecl(DeclPtrTy::make(*F));
1441        IdResolver.AddDecl(*F);
1442      }
1443    } else if (const RecordType *InnerRecordType
1444                 = (*F)->getType()->getAs<RecordType>()) {
1445      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1446      if (InnerRecord->isAnonymousStructOrUnion())
1447        Invalid = Invalid ||
1448          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1449    }
1450  }
1451
1452  return Invalid;
1453}
1454
1455/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1456/// anonymous structure or union. Anonymous unions are a C++ feature
1457/// (C++ [class.union]) and a GNU C extension; anonymous structures
1458/// are a GNU C and GNU C++ extension.
1459Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1460                                                  RecordDecl *Record) {
1461  DeclContext *Owner = Record->getDeclContext();
1462
1463  // Diagnose whether this anonymous struct/union is an extension.
1464  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1465    Diag(Record->getLocation(), diag::ext_anonymous_union);
1466  else if (!Record->isUnion())
1467    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1468
1469  // C and C++ require different kinds of checks for anonymous
1470  // structs/unions.
1471  bool Invalid = false;
1472  if (getLangOptions().CPlusPlus) {
1473    const char* PrevSpec = 0;
1474    unsigned DiagID;
1475    // C++ [class.union]p3:
1476    //   Anonymous unions declared in a named namespace or in the
1477    //   global namespace shall be declared static.
1478    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1479        (isa<TranslationUnitDecl>(Owner) ||
1480         (isa<NamespaceDecl>(Owner) &&
1481          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1482      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1483      Invalid = true;
1484
1485      // Recover by adding 'static'.
1486      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1487                             PrevSpec, DiagID);
1488    }
1489    // C++ [class.union]p3:
1490    //   A storage class is not allowed in a declaration of an
1491    //   anonymous union in a class scope.
1492    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1493             isa<RecordDecl>(Owner)) {
1494      Diag(DS.getStorageClassSpecLoc(),
1495           diag::err_anonymous_union_with_storage_spec);
1496      Invalid = true;
1497
1498      // Recover by removing the storage specifier.
1499      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1500                             PrevSpec, DiagID);
1501    }
1502
1503    // C++ [class.union]p2:
1504    //   The member-specification of an anonymous union shall only
1505    //   define non-static data members. [Note: nested types and
1506    //   functions cannot be declared within an anonymous union. ]
1507    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1508                                 MemEnd = Record->decls_end();
1509         Mem != MemEnd; ++Mem) {
1510      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1511        // C++ [class.union]p3:
1512        //   An anonymous union shall not have private or protected
1513        //   members (clause 11).
1514        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1515          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1516            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1517          Invalid = true;
1518        }
1519      } else if ((*Mem)->isImplicit()) {
1520        // Any implicit members are fine.
1521      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1522        // This is a type that showed up in an
1523        // elaborated-type-specifier inside the anonymous struct or
1524        // union, but which actually declares a type outside of the
1525        // anonymous struct or union. It's okay.
1526      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1527        if (!MemRecord->isAnonymousStructOrUnion() &&
1528            MemRecord->getDeclName()) {
1529          // This is a nested type declaration.
1530          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1531            << (int)Record->isUnion();
1532          Invalid = true;
1533        }
1534      } else {
1535        // We have something that isn't a non-static data
1536        // member. Complain about it.
1537        unsigned DK = diag::err_anonymous_record_bad_member;
1538        if (isa<TypeDecl>(*Mem))
1539          DK = diag::err_anonymous_record_with_type;
1540        else if (isa<FunctionDecl>(*Mem))
1541          DK = diag::err_anonymous_record_with_function;
1542        else if (isa<VarDecl>(*Mem))
1543          DK = diag::err_anonymous_record_with_static;
1544        Diag((*Mem)->getLocation(), DK)
1545            << (int)Record->isUnion();
1546          Invalid = true;
1547      }
1548    }
1549  }
1550
1551  if (!Record->isUnion() && !Owner->isRecord()) {
1552    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1553      << (int)getLangOptions().CPlusPlus;
1554    Invalid = true;
1555  }
1556
1557  // Mock up a declarator.
1558  Declarator Dc(DS, Declarator::TypeNameContext);
1559  DeclaratorInfo *DInfo = 0;
1560  GetTypeForDeclarator(Dc, S, &DInfo);
1561  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1562
1563  // Create a declaration for this anonymous struct/union.
1564  NamedDecl *Anon = 0;
1565  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1566    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1567                             /*IdentifierInfo=*/0,
1568                             Context.getTypeDeclType(Record),
1569                             DInfo,
1570                             /*BitWidth=*/0, /*Mutable=*/false);
1571    Anon->setAccess(AS_public);
1572    if (getLangOptions().CPlusPlus)
1573      FieldCollector->Add(cast<FieldDecl>(Anon));
1574  } else {
1575    VarDecl::StorageClass SC;
1576    switch (DS.getStorageClassSpec()) {
1577    default: assert(0 && "Unknown storage class!");
1578    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1579    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1580    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1581    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1582    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1583    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1584    case DeclSpec::SCS_mutable:
1585      // mutable can only appear on non-static class members, so it's always
1586      // an error here
1587      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1588      Invalid = true;
1589      SC = VarDecl::None;
1590      break;
1591    }
1592
1593    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1594                           /*IdentifierInfo=*/0,
1595                           Context.getTypeDeclType(Record),
1596                           DInfo,
1597                           SC);
1598  }
1599  Anon->setImplicit();
1600
1601  // Add the anonymous struct/union object to the current
1602  // context. We'll be referencing this object when we refer to one of
1603  // its members.
1604  Owner->addDecl(Anon);
1605
1606  // Inject the members of the anonymous struct/union into the owning
1607  // context and into the identifier resolver chain for name lookup
1608  // purposes.
1609  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1610    Invalid = true;
1611
1612  // Mark this as an anonymous struct/union type. Note that we do not
1613  // do this until after we have already checked and injected the
1614  // members of this anonymous struct/union type, because otherwise
1615  // the members could be injected twice: once by DeclContext when it
1616  // builds its lookup table, and once by
1617  // InjectAnonymousStructOrUnionMembers.
1618  Record->setAnonymousStructOrUnion(true);
1619
1620  if (Invalid)
1621    Anon->setInvalidDecl();
1622
1623  return DeclPtrTy::make(Anon);
1624}
1625
1626
1627/// GetNameForDeclarator - Determine the full declaration name for the
1628/// given Declarator.
1629DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1630  return GetNameFromUnqualifiedId(D.getName());
1631}
1632
1633/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1634DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1635  switch (Name.getKind()) {
1636    case UnqualifiedId::IK_Identifier:
1637      return DeclarationName(Name.Identifier);
1638
1639    case UnqualifiedId::IK_OperatorFunctionId:
1640      return Context.DeclarationNames.getCXXOperatorName(
1641                                                         Name.OperatorFunctionId.Operator);
1642
1643    case UnqualifiedId::IK_ConversionFunctionId: {
1644      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1645      if (Ty.isNull())
1646        return DeclarationName();
1647
1648      return Context.DeclarationNames.getCXXConversionFunctionName(
1649                                                                   Context.getCanonicalType(Ty));
1650    }
1651
1652    case UnqualifiedId::IK_ConstructorName: {
1653      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1654      if (Ty.isNull())
1655        return DeclarationName();
1656
1657      return Context.DeclarationNames.getCXXConstructorName(
1658                                                            Context.getCanonicalType(Ty));
1659    }
1660
1661    case UnqualifiedId::IK_DestructorName: {
1662      QualType Ty = GetTypeFromParser(Name.DestructorName);
1663      if (Ty.isNull())
1664        return DeclarationName();
1665
1666      return Context.DeclarationNames.getCXXDestructorName(
1667                                                           Context.getCanonicalType(Ty));
1668    }
1669
1670    case UnqualifiedId::IK_TemplateId: {
1671      TemplateName TName
1672      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1673      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1674        return Template->getDeclName();
1675      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1676        return Ovl->getDeclName();
1677
1678      return DeclarationName();
1679    }
1680  }
1681
1682  assert(false && "Unknown name kind");
1683  return DeclarationName();
1684}
1685
1686/// isNearlyMatchingFunction - Determine whether the C++ functions
1687/// Declaration and Definition are "nearly" matching. This heuristic
1688/// is used to improve diagnostics in the case where an out-of-line
1689/// function definition doesn't match any declaration within
1690/// the class or namespace.
1691static bool isNearlyMatchingFunction(ASTContext &Context,
1692                                     FunctionDecl *Declaration,
1693                                     FunctionDecl *Definition) {
1694  if (Declaration->param_size() != Definition->param_size())
1695    return false;
1696  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1697    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1698    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1699
1700    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1701    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1702    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1703      return false;
1704  }
1705
1706  return true;
1707}
1708
1709Sema::DeclPtrTy
1710Sema::HandleDeclarator(Scope *S, Declarator &D,
1711                       MultiTemplateParamsArg TemplateParamLists,
1712                       bool IsFunctionDefinition) {
1713  DeclarationName Name = GetNameForDeclarator(D);
1714
1715  // All of these full declarators require an identifier.  If it doesn't have
1716  // one, the ParsedFreeStandingDeclSpec action should be used.
1717  if (!Name) {
1718    if (!D.isInvalidType())  // Reject this if we think it is valid.
1719      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1720           diag::err_declarator_need_ident)
1721        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1722    return DeclPtrTy();
1723  }
1724
1725  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1726  // we find one that is.
1727  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1728         (S->getFlags() & Scope::TemplateParamScope) != 0)
1729    S = S->getParent();
1730
1731  // If this is an out-of-line definition of a member of a class template
1732  // or class template partial specialization, we may need to rebuild the
1733  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1734  // for more information.
1735  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1736  // handle expressions properly.
1737  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1738  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1739      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1740      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1741       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1742       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1743       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1744    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1745      // FIXME: Preserve type source info.
1746      QualType T = GetTypeFromParser(DS.getTypeRep());
1747      EnterDeclaratorContext(S, DC);
1748      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1749      ExitDeclaratorContext(S);
1750      if (T.isNull())
1751        return DeclPtrTy();
1752      DS.UpdateTypeRep(T.getAsOpaquePtr());
1753    }
1754  }
1755
1756  DeclContext *DC;
1757  NamedDecl *PrevDecl;
1758  NamedDecl *New;
1759
1760  DeclaratorInfo *DInfo = 0;
1761  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1762
1763  // See if this is a redefinition of a variable in the same scope.
1764  if (D.getCXXScopeSpec().isInvalid()) {
1765    DC = CurContext;
1766    PrevDecl = 0;
1767    D.setInvalidType();
1768  } else if (!D.getCXXScopeSpec().isSet()) {
1769    LookupNameKind NameKind = LookupOrdinaryName;
1770
1771    // If the declaration we're planning to build will be a function
1772    // or object with linkage, then look for another declaration with
1773    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1774    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1775      /* Do nothing*/;
1776    else if (R->isFunctionType()) {
1777      if (CurContext->isFunctionOrMethod() ||
1778          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1779        NameKind = LookupRedeclarationWithLinkage;
1780    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1781      NameKind = LookupRedeclarationWithLinkage;
1782    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1783             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1784      NameKind = LookupRedeclarationWithLinkage;
1785
1786    DC = CurContext;
1787    LookupResult R;
1788    LookupName(R, S, Name, NameKind, true,
1789               NameKind == LookupRedeclarationWithLinkage,
1790               D.getIdentifierLoc());
1791    PrevDecl = R.getAsSingleDecl(Context);
1792  } else { // Something like "int foo::x;"
1793    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1794
1795    if (!DC) {
1796      // If we could not compute the declaration context, it's because the
1797      // declaration context is dependent but does not refer to a class,
1798      // class template, or class template partial specialization. Complain
1799      // and return early, to avoid the coming semantic disaster.
1800      Diag(D.getIdentifierLoc(),
1801           diag::err_template_qualified_declarator_no_match)
1802        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1803        << D.getCXXScopeSpec().getRange();
1804      return DeclPtrTy();
1805    }
1806
1807    if (!DC->isDependentContext() &&
1808        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1809      return DeclPtrTy();
1810
1811    LookupResult Res;
1812    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1813    PrevDecl = Res.getAsSingleDecl(Context);
1814
1815    // C++ 7.3.1.2p2:
1816    // Members (including explicit specializations of templates) of a named
1817    // namespace can also be defined outside that namespace by explicit
1818    // qualification of the name being defined, provided that the entity being
1819    // defined was already declared in the namespace and the definition appears
1820    // after the point of declaration in a namespace that encloses the
1821    // declarations namespace.
1822    //
1823    // Note that we only check the context at this point. We don't yet
1824    // have enough information to make sure that PrevDecl is actually
1825    // the declaration we want to match. For example, given:
1826    //
1827    //   class X {
1828    //     void f();
1829    //     void f(float);
1830    //   };
1831    //
1832    //   void X::f(int) { } // ill-formed
1833    //
1834    // In this case, PrevDecl will point to the overload set
1835    // containing the two f's declared in X, but neither of them
1836    // matches.
1837
1838    // First check whether we named the global scope.
1839    if (isa<TranslationUnitDecl>(DC)) {
1840      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1841        << Name << D.getCXXScopeSpec().getRange();
1842    } else if (!CurContext->Encloses(DC)) {
1843      // The qualifying scope doesn't enclose the original declaration.
1844      // Emit diagnostic based on current scope.
1845      SourceLocation L = D.getIdentifierLoc();
1846      SourceRange R = D.getCXXScopeSpec().getRange();
1847      if (isa<FunctionDecl>(CurContext))
1848        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1849      else
1850        Diag(L, diag::err_invalid_declarator_scope)
1851          << Name << cast<NamedDecl>(DC) << R;
1852      D.setInvalidType();
1853    }
1854  }
1855
1856  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1857    // Maybe we will complain about the shadowed template parameter.
1858    if (!D.isInvalidType())
1859      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1860        D.setInvalidType();
1861
1862    // Just pretend that we didn't see the previous declaration.
1863    PrevDecl = 0;
1864  }
1865
1866  // In C++, the previous declaration we find might be a tag type
1867  // (class or enum). In this case, the new declaration will hide the
1868  // tag type. Note that this does does not apply if we're declaring a
1869  // typedef (C++ [dcl.typedef]p4).
1870  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1871      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1872    PrevDecl = 0;
1873
1874  bool Redeclaration = false;
1875  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1876    if (TemplateParamLists.size()) {
1877      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1878      return DeclPtrTy();
1879    }
1880
1881    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1882  } else if (R->isFunctionType()) {
1883    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1884                                  move(TemplateParamLists),
1885                                  IsFunctionDefinition, Redeclaration);
1886  } else {
1887    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1888                                  move(TemplateParamLists),
1889                                  Redeclaration);
1890  }
1891
1892  if (New == 0)
1893    return DeclPtrTy();
1894
1895  // If this has an identifier and is not an invalid redeclaration or
1896  // function template specialization, add it to the scope stack.
1897  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1898      !(isa<FunctionDecl>(New) &&
1899        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1900    PushOnScopeChains(New, S);
1901
1902  return DeclPtrTy::make(New);
1903}
1904
1905/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1906/// types into constant array types in certain situations which would otherwise
1907/// be errors (for GCC compatibility).
1908static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1909                                                    ASTContext &Context,
1910                                                    bool &SizeIsNegative) {
1911  // This method tries to turn a variable array into a constant
1912  // array even when the size isn't an ICE.  This is necessary
1913  // for compatibility with code that depends on gcc's buggy
1914  // constant expression folding, like struct {char x[(int)(char*)2];}
1915  SizeIsNegative = false;
1916
1917  QualifierCollector Qs;
1918  const Type *Ty = Qs.strip(T);
1919
1920  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1921    QualType Pointee = PTy->getPointeeType();
1922    QualType FixedType =
1923        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1924    if (FixedType.isNull()) return FixedType;
1925    FixedType = Context.getPointerType(FixedType);
1926    return Qs.apply(FixedType);
1927  }
1928
1929  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1930  if (!VLATy)
1931    return QualType();
1932  // FIXME: We should probably handle this case
1933  if (VLATy->getElementType()->isVariablyModifiedType())
1934    return QualType();
1935
1936  Expr::EvalResult EvalResult;
1937  if (!VLATy->getSizeExpr() ||
1938      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1939      !EvalResult.Val.isInt())
1940    return QualType();
1941
1942  llvm::APSInt &Res = EvalResult.Val.getInt();
1943  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1944    // TODO: preserve the size expression in declarator info
1945    return Context.getConstantArrayType(VLATy->getElementType(),
1946                                        Res, ArrayType::Normal, 0);
1947  }
1948
1949  SizeIsNegative = true;
1950  return QualType();
1951}
1952
1953/// \brief Register the given locally-scoped external C declaration so
1954/// that it can be found later for redeclarations
1955void
1956Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1957                                       Scope *S) {
1958  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1959         "Decl is not a locally-scoped decl!");
1960  // Note that we have a locally-scoped external with this name.
1961  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1962
1963  if (!PrevDecl)
1964    return;
1965
1966  // If there was a previous declaration of this variable, it may be
1967  // in our identifier chain. Update the identifier chain with the new
1968  // declaration.
1969  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1970    // The previous declaration was found on the identifer resolver
1971    // chain, so remove it from its scope.
1972    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1973      S = S->getParent();
1974
1975    if (S)
1976      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1977  }
1978}
1979
1980/// \brief Diagnose function specifiers on a declaration of an identifier that
1981/// does not identify a function.
1982void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1983  // FIXME: We should probably indicate the identifier in question to avoid
1984  // confusion for constructs like "inline int a(), b;"
1985  if (D.getDeclSpec().isInlineSpecified())
1986    Diag(D.getDeclSpec().getInlineSpecLoc(),
1987         diag::err_inline_non_function);
1988
1989  if (D.getDeclSpec().isVirtualSpecified())
1990    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1991         diag::err_virtual_non_function);
1992
1993  if (D.getDeclSpec().isExplicitSpecified())
1994    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1995         diag::err_explicit_non_function);
1996}
1997
1998NamedDecl*
1999Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2000                             QualType R,  DeclaratorInfo *DInfo,
2001                             NamedDecl* PrevDecl, bool &Redeclaration) {
2002  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2003  if (D.getCXXScopeSpec().isSet()) {
2004    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2005      << D.getCXXScopeSpec().getRange();
2006    D.setInvalidType();
2007    // Pretend we didn't see the scope specifier.
2008    DC = 0;
2009  }
2010
2011  if (getLangOptions().CPlusPlus) {
2012    // Check that there are no default arguments (C++ only).
2013    CheckExtraCXXDefaultArguments(D);
2014  }
2015
2016  DiagnoseFunctionSpecifiers(D);
2017
2018  if (D.getDeclSpec().isThreadSpecified())
2019    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2020
2021  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2022  if (!NewTD) return 0;
2023
2024  // Handle attributes prior to checking for duplicates in MergeVarDecl
2025  ProcessDeclAttributes(S, NewTD, D);
2026  // Merge the decl with the existing one if appropriate. If the decl is
2027  // in an outer scope, it isn't the same thing.
2028  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2029    Redeclaration = true;
2030    MergeTypeDefDecl(NewTD, PrevDecl);
2031  }
2032
2033  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2034  // then it shall have block scope.
2035  QualType T = NewTD->getUnderlyingType();
2036  if (T->isVariablyModifiedType()) {
2037    CurFunctionNeedsScopeChecking = true;
2038
2039    if (S->getFnParent() == 0) {
2040      bool SizeIsNegative;
2041      QualType FixedTy =
2042          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2043      if (!FixedTy.isNull()) {
2044        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2045        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2046      } else {
2047        if (SizeIsNegative)
2048          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2049        else if (T->isVariableArrayType())
2050          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2051        else
2052          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2053        NewTD->setInvalidDecl();
2054      }
2055    }
2056  }
2057
2058  // If this is the C FILE type, notify the AST context.
2059  if (IdentifierInfo *II = NewTD->getIdentifier())
2060    if (!NewTD->isInvalidDecl() &&
2061        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2062      if (II->isStr("FILE"))
2063        Context.setFILEDecl(NewTD);
2064      else if (II->isStr("jmp_buf"))
2065        Context.setjmp_bufDecl(NewTD);
2066      else if (II->isStr("sigjmp_buf"))
2067        Context.setsigjmp_bufDecl(NewTD);
2068    }
2069
2070  return NewTD;
2071}
2072
2073/// \brief Determines whether the given declaration is an out-of-scope
2074/// previous declaration.
2075///
2076/// This routine should be invoked when name lookup has found a
2077/// previous declaration (PrevDecl) that is not in the scope where a
2078/// new declaration by the same name is being introduced. If the new
2079/// declaration occurs in a local scope, previous declarations with
2080/// linkage may still be considered previous declarations (C99
2081/// 6.2.2p4-5, C++ [basic.link]p6).
2082///
2083/// \param PrevDecl the previous declaration found by name
2084/// lookup
2085///
2086/// \param DC the context in which the new declaration is being
2087/// declared.
2088///
2089/// \returns true if PrevDecl is an out-of-scope previous declaration
2090/// for a new delcaration with the same name.
2091static bool
2092isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2093                                ASTContext &Context) {
2094  if (!PrevDecl)
2095    return 0;
2096
2097  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2098  // case we need to check each of the overloaded functions.
2099  if (!PrevDecl->hasLinkage())
2100    return false;
2101
2102  if (Context.getLangOptions().CPlusPlus) {
2103    // C++ [basic.link]p6:
2104    //   If there is a visible declaration of an entity with linkage
2105    //   having the same name and type, ignoring entities declared
2106    //   outside the innermost enclosing namespace scope, the block
2107    //   scope declaration declares that same entity and receives the
2108    //   linkage of the previous declaration.
2109    DeclContext *OuterContext = DC->getLookupContext();
2110    if (!OuterContext->isFunctionOrMethod())
2111      // This rule only applies to block-scope declarations.
2112      return false;
2113    else {
2114      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2115      if (PrevOuterContext->isRecord())
2116        // We found a member function: ignore it.
2117        return false;
2118      else {
2119        // Find the innermost enclosing namespace for the new and
2120        // previous declarations.
2121        while (!OuterContext->isFileContext())
2122          OuterContext = OuterContext->getParent();
2123        while (!PrevOuterContext->isFileContext())
2124          PrevOuterContext = PrevOuterContext->getParent();
2125
2126        // The previous declaration is in a different namespace, so it
2127        // isn't the same function.
2128        if (OuterContext->getPrimaryContext() !=
2129            PrevOuterContext->getPrimaryContext())
2130          return false;
2131      }
2132    }
2133  }
2134
2135  return true;
2136}
2137
2138NamedDecl*
2139Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2140                              QualType R, DeclaratorInfo *DInfo,
2141                              NamedDecl* PrevDecl,
2142                              MultiTemplateParamsArg TemplateParamLists,
2143                              bool &Redeclaration) {
2144  DeclarationName Name = GetNameForDeclarator(D);
2145
2146  // Check that there are no default arguments (C++ only).
2147  if (getLangOptions().CPlusPlus)
2148    CheckExtraCXXDefaultArguments(D);
2149
2150  VarDecl *NewVD;
2151  VarDecl::StorageClass SC;
2152  switch (D.getDeclSpec().getStorageClassSpec()) {
2153  default: assert(0 && "Unknown storage class!");
2154  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2155  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2156  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2157  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2158  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2159  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2160  case DeclSpec::SCS_mutable:
2161    // mutable can only appear on non-static class members, so it's always
2162    // an error here
2163    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2164    D.setInvalidType();
2165    SC = VarDecl::None;
2166    break;
2167  }
2168
2169  IdentifierInfo *II = Name.getAsIdentifierInfo();
2170  if (!II) {
2171    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2172      << Name.getAsString();
2173    return 0;
2174  }
2175
2176  DiagnoseFunctionSpecifiers(D);
2177
2178  if (!DC->isRecord() && S->getFnParent() == 0) {
2179    // C99 6.9p2: The storage-class specifiers auto and register shall not
2180    // appear in the declaration specifiers in an external declaration.
2181    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2182
2183      // If this is a register variable with an asm label specified, then this
2184      // is a GNU extension.
2185      if (SC == VarDecl::Register && D.getAsmLabel())
2186        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2187      else
2188        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2189      D.setInvalidType();
2190    }
2191  }
2192  if (DC->isRecord() && !CurContext->isRecord()) {
2193    // This is an out-of-line definition of a static data member.
2194    if (SC == VarDecl::Static) {
2195      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2196           diag::err_static_out_of_line)
2197        << CodeModificationHint::CreateRemoval(
2198                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2199    } else if (SC == VarDecl::None)
2200      SC = VarDecl::Static;
2201  }
2202  if (SC == VarDecl::Static) {
2203    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2204      if (RD->isLocalClass())
2205        Diag(D.getIdentifierLoc(),
2206             diag::err_static_data_member_not_allowed_in_local_class)
2207          << Name << RD->getDeclName();
2208    }
2209  }
2210
2211  // Match up the template parameter lists with the scope specifier, then
2212  // determine whether we have a template or a template specialization.
2213  bool isExplicitSpecialization = false;
2214  if (TemplateParameterList *TemplateParams
2215        = MatchTemplateParametersToScopeSpecifier(
2216                                  D.getDeclSpec().getSourceRange().getBegin(),
2217                                                  D.getCXXScopeSpec(),
2218                        (TemplateParameterList**)TemplateParamLists.get(),
2219                                                   TemplateParamLists.size(),
2220                                                  isExplicitSpecialization)) {
2221    if (TemplateParams->size() > 0) {
2222      // There is no such thing as a variable template.
2223      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2224        << II
2225        << SourceRange(TemplateParams->getTemplateLoc(),
2226                       TemplateParams->getRAngleLoc());
2227      return 0;
2228    } else {
2229      // There is an extraneous 'template<>' for this variable. Complain
2230      // about it, but allow the declaration of the variable.
2231      Diag(TemplateParams->getTemplateLoc(),
2232           diag::err_template_variable_noparams)
2233        << II
2234        << SourceRange(TemplateParams->getTemplateLoc(),
2235                       TemplateParams->getRAngleLoc());
2236
2237      isExplicitSpecialization = true;
2238    }
2239  }
2240
2241  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2242                          II, R, DInfo, SC);
2243
2244  if (D.isInvalidType())
2245    NewVD->setInvalidDecl();
2246
2247  if (D.getDeclSpec().isThreadSpecified()) {
2248    if (NewVD->hasLocalStorage())
2249      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2250    else if (!Context.Target.isTLSSupported())
2251      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2252    else
2253      NewVD->setThreadSpecified(true);
2254  }
2255
2256  // Set the lexical context. If the declarator has a C++ scope specifier, the
2257  // lexical context will be different from the semantic context.
2258  NewVD->setLexicalDeclContext(CurContext);
2259
2260  // Handle attributes prior to checking for duplicates in MergeVarDecl
2261  ProcessDeclAttributes(S, NewVD, D);
2262
2263  // Handle GNU asm-label extension (encoded as an attribute).
2264  if (Expr *E = (Expr*) D.getAsmLabel()) {
2265    // The parser guarantees this is a string.
2266    StringLiteral *SE = cast<StringLiteral>(E);
2267    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2268                                                        SE->getByteLength())));
2269  }
2270
2271  // If name lookup finds a previous declaration that is not in the
2272  // same scope as the new declaration, this may still be an
2273  // acceptable redeclaration.
2274  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2275      !(NewVD->hasLinkage() &&
2276        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2277    PrevDecl = 0;
2278
2279  // Merge the decl with the existing one if appropriate.
2280  if (PrevDecl) {
2281    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2282      // The user tried to define a non-static data member
2283      // out-of-line (C++ [dcl.meaning]p1).
2284      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2285        << D.getCXXScopeSpec().getRange();
2286      PrevDecl = 0;
2287      NewVD->setInvalidDecl();
2288    }
2289  } else if (D.getCXXScopeSpec().isSet()) {
2290    // No previous declaration in the qualifying scope.
2291    Diag(D.getIdentifierLoc(), diag::err_no_member)
2292      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2293      << D.getCXXScopeSpec().getRange();
2294    NewVD->setInvalidDecl();
2295  }
2296
2297  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2298
2299  // This is an explicit specialization of a static data member. Check it.
2300  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2301      CheckMemberSpecialization(NewVD, PrevDecl))
2302    NewVD->setInvalidDecl();
2303
2304  // attributes declared post-definition are currently ignored
2305  if (PrevDecl) {
2306    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2307    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2308      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2309      Diag(Def->getLocation(), diag::note_previous_definition);
2310    }
2311  }
2312
2313  // If this is a locally-scoped extern C variable, update the map of
2314  // such variables.
2315  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2316      !NewVD->isInvalidDecl())
2317    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2318
2319  return NewVD;
2320}
2321
2322/// \brief Perform semantic checking on a newly-created variable
2323/// declaration.
2324///
2325/// This routine performs all of the type-checking required for a
2326/// variable declaration once it has been built. It is used both to
2327/// check variables after they have been parsed and their declarators
2328/// have been translated into a declaration, and to check variables
2329/// that have been instantiated from a template.
2330///
2331/// Sets NewVD->isInvalidDecl() if an error was encountered.
2332void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2333                                    bool &Redeclaration) {
2334  // If the decl is already known invalid, don't check it.
2335  if (NewVD->isInvalidDecl())
2336    return;
2337
2338  QualType T = NewVD->getType();
2339
2340  if (T->isObjCInterfaceType()) {
2341    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2342    return NewVD->setInvalidDecl();
2343  }
2344
2345  // The variable can not have an abstract class type.
2346  if (RequireNonAbstractType(NewVD->getLocation(), T,
2347                             diag::err_abstract_type_in_decl,
2348                             AbstractVariableType))
2349    return NewVD->setInvalidDecl();
2350
2351  // Emit an error if an address space was applied to decl with local storage.
2352  // This includes arrays of objects with address space qualifiers, but not
2353  // automatic variables that point to other address spaces.
2354  // ISO/IEC TR 18037 S5.1.2
2355  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2356    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2357    return NewVD->setInvalidDecl();
2358  }
2359
2360  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2361      && !NewVD->hasAttr<BlocksAttr>())
2362    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2363
2364  bool isVM = T->isVariablyModifiedType();
2365  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2366      NewVD->hasAttr<BlocksAttr>())
2367    CurFunctionNeedsScopeChecking = true;
2368
2369  if ((isVM && NewVD->hasLinkage()) ||
2370      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2371    bool SizeIsNegative;
2372    QualType FixedTy =
2373        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2374
2375    if (FixedTy.isNull() && T->isVariableArrayType()) {
2376      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2377      // FIXME: This won't give the correct result for
2378      // int a[10][n];
2379      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2380
2381      if (NewVD->isFileVarDecl())
2382        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2383        << SizeRange;
2384      else if (NewVD->getStorageClass() == VarDecl::Static)
2385        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2386        << SizeRange;
2387      else
2388        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2389        << SizeRange;
2390      return NewVD->setInvalidDecl();
2391    }
2392
2393    if (FixedTy.isNull()) {
2394      if (NewVD->isFileVarDecl())
2395        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2396      else
2397        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2398      return NewVD->setInvalidDecl();
2399    }
2400
2401    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2402    NewVD->setType(FixedTy);
2403  }
2404
2405  if (!PrevDecl && NewVD->isExternC()) {
2406    // Since we did not find anything by this name and we're declaring
2407    // an extern "C" variable, look for a non-visible extern "C"
2408    // declaration with the same name.
2409    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2410      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2411    if (Pos != LocallyScopedExternalDecls.end())
2412      PrevDecl = Pos->second;
2413  }
2414
2415  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2416    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2417      << T;
2418    return NewVD->setInvalidDecl();
2419  }
2420
2421  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2422    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2423    return NewVD->setInvalidDecl();
2424  }
2425
2426  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2427    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2428    return NewVD->setInvalidDecl();
2429  }
2430
2431  if (PrevDecl) {
2432    Redeclaration = true;
2433    MergeVarDecl(NewVD, PrevDecl);
2434  }
2435}
2436
2437static bool isUsingDecl(Decl *D) {
2438  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2439}
2440
2441/// \brief Data used with FindOverriddenMethod
2442struct FindOverriddenMethodData {
2443  Sema *S;
2444  CXXMethodDecl *Method;
2445};
2446
2447/// \brief Member lookup function that determines whether a given C++
2448/// method overrides a method in a base class, to be used with
2449/// CXXRecordDecl::lookupInBases().
2450static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2451                                 CXXBasePath &Path,
2452                                 void *UserData) {
2453  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2454
2455  FindOverriddenMethodData *Data
2456    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2457  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2458       Path.Decls.first != Path.Decls.second;
2459       ++Path.Decls.first) {
2460    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2461      OverloadedFunctionDecl::function_iterator MatchedDecl;
2462      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2463        return true;
2464    }
2465  }
2466
2467  return false;
2468}
2469
2470NamedDecl*
2471Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2472                              QualType R, DeclaratorInfo *DInfo,
2473                              NamedDecl* PrevDecl,
2474                              MultiTemplateParamsArg TemplateParamLists,
2475                              bool IsFunctionDefinition, bool &Redeclaration) {
2476  assert(R.getTypePtr()->isFunctionType());
2477
2478  DeclarationName Name = GetNameForDeclarator(D);
2479  FunctionDecl::StorageClass SC = FunctionDecl::None;
2480  switch (D.getDeclSpec().getStorageClassSpec()) {
2481  default: assert(0 && "Unknown storage class!");
2482  case DeclSpec::SCS_auto:
2483  case DeclSpec::SCS_register:
2484  case DeclSpec::SCS_mutable:
2485    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2486         diag::err_typecheck_sclass_func);
2487    D.setInvalidType();
2488    break;
2489  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2490  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2491  case DeclSpec::SCS_static: {
2492    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2493      // C99 6.7.1p5:
2494      //   The declaration of an identifier for a function that has
2495      //   block scope shall have no explicit storage-class specifier
2496      //   other than extern
2497      // See also (C++ [dcl.stc]p4).
2498      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2499           diag::err_static_block_func);
2500      SC = FunctionDecl::None;
2501    } else
2502      SC = FunctionDecl::Static;
2503    break;
2504  }
2505  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2506  }
2507
2508  if (D.getDeclSpec().isThreadSpecified())
2509    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2510
2511  bool isFriend = D.getDeclSpec().isFriendSpecified();
2512  bool isInline = D.getDeclSpec().isInlineSpecified();
2513  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2514  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2515
2516  // Check that the return type is not an abstract class type.
2517  // For record types, this is done by the AbstractClassUsageDiagnoser once
2518  // the class has been completely parsed.
2519  if (!DC->isRecord() &&
2520      RequireNonAbstractType(D.getIdentifierLoc(),
2521                             R->getAs<FunctionType>()->getResultType(),
2522                             diag::err_abstract_type_in_decl,
2523                             AbstractReturnType))
2524    D.setInvalidType();
2525
2526  // Do not allow returning a objc interface by-value.
2527  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2528    Diag(D.getIdentifierLoc(),
2529         diag::err_object_cannot_be_passed_returned_by_value) << 0
2530      << R->getAs<FunctionType>()->getResultType();
2531    D.setInvalidType();
2532  }
2533
2534  bool isVirtualOkay = false;
2535  FunctionDecl *NewFD;
2536
2537  if (isFriend) {
2538    // DC is the namespace in which the function is being declared.
2539    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2540           "friend function being created in a non-namespace context");
2541
2542    // C++ [class.friend]p5
2543    //   A function can be defined in a friend declaration of a
2544    //   class . . . . Such a function is implicitly inline.
2545    isInline |= IsFunctionDefinition;
2546  }
2547
2548  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2549    // This is a C++ constructor declaration.
2550    assert(DC->isRecord() &&
2551           "Constructors can only be declared in a member context");
2552
2553    R = CheckConstructorDeclarator(D, R, SC);
2554
2555    // Create the new declaration
2556    NewFD = CXXConstructorDecl::Create(Context,
2557                                       cast<CXXRecordDecl>(DC),
2558                                       D.getIdentifierLoc(), Name, R, DInfo,
2559                                       isExplicit, isInline,
2560                                       /*isImplicitlyDeclared=*/false);
2561  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2562    // This is a C++ destructor declaration.
2563    if (DC->isRecord()) {
2564      R = CheckDestructorDeclarator(D, SC);
2565
2566      NewFD = CXXDestructorDecl::Create(Context,
2567                                        cast<CXXRecordDecl>(DC),
2568                                        D.getIdentifierLoc(), Name, R,
2569                                        isInline,
2570                                        /*isImplicitlyDeclared=*/false);
2571
2572      isVirtualOkay = true;
2573    } else {
2574      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2575
2576      // Create a FunctionDecl to satisfy the function definition parsing
2577      // code path.
2578      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2579                                   Name, R, DInfo, SC, isInline,
2580                                   /*hasPrototype=*/true);
2581      D.setInvalidType();
2582    }
2583  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2584    if (!DC->isRecord()) {
2585      Diag(D.getIdentifierLoc(),
2586           diag::err_conv_function_not_member);
2587      return 0;
2588    }
2589
2590    CheckConversionDeclarator(D, R, SC);
2591    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2592                                      D.getIdentifierLoc(), Name, R, DInfo,
2593                                      isInline, isExplicit);
2594
2595    isVirtualOkay = true;
2596  } else if (DC->isRecord()) {
2597    // If the of the function is the same as the name of the record, then this
2598    // must be an invalid constructor that has a return type.
2599    // (The parser checks for a return type and makes the declarator a
2600    // constructor if it has no return type).
2601    // must have an invalid constructor that has a return type
2602    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2603      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2604        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2605        << SourceRange(D.getIdentifierLoc());
2606      return 0;
2607    }
2608
2609    // This is a C++ method declaration.
2610    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2611                                  D.getIdentifierLoc(), Name, R, DInfo,
2612                                  (SC == FunctionDecl::Static), isInline);
2613
2614    isVirtualOkay = (SC != FunctionDecl::Static);
2615  } else {
2616    // Determine whether the function was written with a
2617    // prototype. This true when:
2618    //   - we're in C++ (where every function has a prototype),
2619    //   - there is a prototype in the declarator, or
2620    //   - the type R of the function is some kind of typedef or other reference
2621    //     to a type name (which eventually refers to a function type).
2622    bool HasPrototype =
2623       getLangOptions().CPlusPlus ||
2624       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2625       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2626
2627    NewFD = FunctionDecl::Create(Context, DC,
2628                                 D.getIdentifierLoc(),
2629                                 Name, R, DInfo, SC, isInline, HasPrototype);
2630  }
2631
2632  if (D.isInvalidType())
2633    NewFD->setInvalidDecl();
2634
2635  // Set the lexical context. If the declarator has a C++
2636  // scope specifier, or is the object of a friend declaration, the
2637  // lexical context will be different from the semantic context.
2638  NewFD->setLexicalDeclContext(CurContext);
2639
2640  // Match up the template parameter lists with the scope specifier, then
2641  // determine whether we have a template or a template specialization.
2642  FunctionTemplateDecl *FunctionTemplate = 0;
2643  bool isExplicitSpecialization = false;
2644  bool isFunctionTemplateSpecialization = false;
2645  if (TemplateParameterList *TemplateParams
2646        = MatchTemplateParametersToScopeSpecifier(
2647                                  D.getDeclSpec().getSourceRange().getBegin(),
2648                                  D.getCXXScopeSpec(),
2649                           (TemplateParameterList**)TemplateParamLists.get(),
2650                                                  TemplateParamLists.size(),
2651                                                  isExplicitSpecialization)) {
2652    if (TemplateParams->size() > 0) {
2653      // This is a function template
2654
2655      // Check that we can declare a template here.
2656      if (CheckTemplateDeclScope(S, TemplateParams))
2657        return 0;
2658
2659      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2660                                                      NewFD->getLocation(),
2661                                                      Name, TemplateParams,
2662                                                      NewFD);
2663      FunctionTemplate->setLexicalDeclContext(CurContext);
2664      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2665    } else {
2666      // This is a function template specialization.
2667      isFunctionTemplateSpecialization = true;
2668    }
2669
2670    // FIXME: Free this memory properly.
2671    TemplateParamLists.release();
2672  }
2673
2674  // C++ [dcl.fct.spec]p5:
2675  //   The virtual specifier shall only be used in declarations of
2676  //   nonstatic class member functions that appear within a
2677  //   member-specification of a class declaration; see 10.3.
2678  //
2679  if (isVirtual && !NewFD->isInvalidDecl()) {
2680    if (!isVirtualOkay) {
2681       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2682           diag::err_virtual_non_function);
2683    } else if (!CurContext->isRecord()) {
2684      // 'virtual' was specified outside of the class.
2685      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2686        << CodeModificationHint::CreateRemoval(
2687                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2688    } else {
2689      // Okay: Add virtual to the method.
2690      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2691      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2692      CurClass->setAggregate(false);
2693      CurClass->setPOD(false);
2694      CurClass->setEmpty(false);
2695      CurClass->setPolymorphic(true);
2696      CurClass->setHasTrivialConstructor(false);
2697      CurClass->setHasTrivialCopyConstructor(false);
2698      CurClass->setHasTrivialCopyAssignment(false);
2699    }
2700  }
2701
2702  if (isFriend) {
2703    if (FunctionTemplate) {
2704      FunctionTemplate->setObjectOfFriendDecl(
2705                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2706      FunctionTemplate->setAccess(AS_public);
2707    }
2708    else
2709      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2710
2711    NewFD->setAccess(AS_public);
2712  }
2713
2714
2715  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2716    // Look for virtual methods in base classes that this method might override.
2717    CXXBasePaths Paths;
2718    FindOverriddenMethodData Data;
2719    Data.Method = NewMD;
2720    Data.S = this;
2721    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2722                                                Paths)) {
2723      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2724           E = Paths.found_decls_end(); I != E; ++I) {
2725        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2726          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2727              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2728            NewMD->addOverriddenMethod(OldMD);
2729        }
2730      }
2731    }
2732  }
2733
2734  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2735      !CurContext->isRecord()) {
2736    // C++ [class.static]p1:
2737    //   A data or function member of a class may be declared static
2738    //   in a class definition, in which case it is a static member of
2739    //   the class.
2740
2741    // Complain about the 'static' specifier if it's on an out-of-line
2742    // member function definition.
2743    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2744         diag::err_static_out_of_line)
2745      << CodeModificationHint::CreateRemoval(
2746                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2747  }
2748
2749  // Handle GNU asm-label extension (encoded as an attribute).
2750  if (Expr *E = (Expr*) D.getAsmLabel()) {
2751    // The parser guarantees this is a string.
2752    StringLiteral *SE = cast<StringLiteral>(E);
2753    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2754                                                        SE->getByteLength())));
2755  }
2756
2757  // Copy the parameter declarations from the declarator D to the function
2758  // declaration NewFD, if they are available.  First scavenge them into Params.
2759  llvm::SmallVector<ParmVarDecl*, 16> Params;
2760  if (D.getNumTypeObjects() > 0) {
2761    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2762
2763    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2764    // function that takes no arguments, not a function that takes a
2765    // single void argument.
2766    // We let through "const void" here because Sema::GetTypeForDeclarator
2767    // already checks for that case.
2768    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2769        FTI.ArgInfo[0].Param &&
2770        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2771      // Empty arg list, don't push any params.
2772      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2773
2774      // In C++, the empty parameter-type-list must be spelled "void"; a
2775      // typedef of void is not permitted.
2776      if (getLangOptions().CPlusPlus &&
2777          Param->getType().getUnqualifiedType() != Context.VoidTy)
2778        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2779      // FIXME: Leaks decl?
2780    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2781      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2782        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2783        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2784        Param->setDeclContext(NewFD);
2785        Params.push_back(Param);
2786      }
2787    }
2788
2789  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2790    // When we're declaring a function with a typedef, typeof, etc as in the
2791    // following example, we'll need to synthesize (unnamed)
2792    // parameters for use in the declaration.
2793    //
2794    // @code
2795    // typedef void fn(int);
2796    // fn f;
2797    // @endcode
2798
2799    // Synthesize a parameter for each argument type.
2800    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2801         AE = FT->arg_type_end(); AI != AE; ++AI) {
2802      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2803                                               SourceLocation(), 0,
2804                                               *AI, /*DInfo=*/0,
2805                                               VarDecl::None, 0);
2806      Param->setImplicit();
2807      Params.push_back(Param);
2808    }
2809  } else {
2810    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2811           "Should not need args for typedef of non-prototype fn");
2812  }
2813  // Finally, we know we have the right number of parameters, install them.
2814  NewFD->setParams(Context, Params.data(), Params.size());
2815
2816  // If name lookup finds a previous declaration that is not in the
2817  // same scope as the new declaration, this may still be an
2818  // acceptable redeclaration.
2819  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2820      !(NewFD->hasLinkage() &&
2821        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2822    PrevDecl = 0;
2823
2824  // If the declarator is a template-id, translate the parser's template
2825  // argument list into our AST format.
2826  bool HasExplicitTemplateArgs = false;
2827  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2828  SourceLocation LAngleLoc, RAngleLoc;
2829  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2830    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2831    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2832                                       TemplateId->getTemplateArgs(),
2833                                       TemplateId->getTemplateArgIsType(),
2834                                       TemplateId->NumArgs);
2835    translateTemplateArguments(TemplateArgsPtr,
2836                               TemplateId->getTemplateArgLocations(),
2837                               TemplateArgs);
2838    TemplateArgsPtr.release();
2839
2840    HasExplicitTemplateArgs = true;
2841    LAngleLoc = TemplateId->LAngleLoc;
2842    RAngleLoc = TemplateId->RAngleLoc;
2843
2844    if (FunctionTemplate) {
2845      // FIXME: Diagnose function template with explicit template
2846      // arguments.
2847      HasExplicitTemplateArgs = false;
2848    } else if (!isFunctionTemplateSpecialization &&
2849               !D.getDeclSpec().isFriendSpecified()) {
2850      // We have encountered something that the user meant to be a
2851      // specialization (because it has explicitly-specified template
2852      // arguments) but that was not introduced with a "template<>" (or had
2853      // too few of them).
2854      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2855        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2856        << CodeModificationHint::CreateInsertion(
2857                                   D.getDeclSpec().getSourceRange().getBegin(),
2858                                                 "template<> ");
2859      isFunctionTemplateSpecialization = true;
2860    }
2861  }
2862
2863  if (isFunctionTemplateSpecialization) {
2864      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2865                                              LAngleLoc, TemplateArgs.data(),
2866                                              TemplateArgs.size(), RAngleLoc,
2867                                              PrevDecl))
2868        NewFD->setInvalidDecl();
2869  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2870             CheckMemberSpecialization(NewFD, PrevDecl))
2871    NewFD->setInvalidDecl();
2872
2873  // Perform semantic checking on the function declaration.
2874  bool OverloadableAttrRequired = false; // FIXME: HACK!
2875  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2876                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2877
2878  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2879    // An out-of-line member function declaration must also be a
2880    // definition (C++ [dcl.meaning]p1).
2881    // Note that this is not the case for explicit specializations of
2882    // function templates or member functions of class templates, per
2883    // C++ [temp.expl.spec]p2.
2884    if (!IsFunctionDefinition && !isFriend &&
2885        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2886      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2887        << D.getCXXScopeSpec().getRange();
2888      NewFD->setInvalidDecl();
2889    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2890      // The user tried to provide an out-of-line definition for a
2891      // function that is a member of a class or namespace, but there
2892      // was no such member function declared (C++ [class.mfct]p2,
2893      // C++ [namespace.memdef]p2). For example:
2894      //
2895      // class X {
2896      //   void f() const;
2897      // };
2898      //
2899      // void X::f() { } // ill-formed
2900      //
2901      // Complain about this problem, and attempt to suggest close
2902      // matches (e.g., those that differ only in cv-qualifiers and
2903      // whether the parameter types are references).
2904      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2905        << Name << DC << D.getCXXScopeSpec().getRange();
2906      NewFD->setInvalidDecl();
2907
2908      LookupResult Prev;
2909      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2910      assert(!Prev.isAmbiguous() &&
2911             "Cannot have an ambiguity in previous-declaration lookup");
2912      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2913           Func != FuncEnd; ++Func) {
2914        if (isa<FunctionDecl>(*Func) &&
2915            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2916          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2917      }
2918
2919      PrevDecl = 0;
2920    }
2921  }
2922
2923  // Handle attributes. We need to have merged decls when handling attributes
2924  // (for example to check for conflicts, etc).
2925  // FIXME: This needs to happen before we merge declarations. Then,
2926  // let attribute merging cope with attribute conflicts.
2927  ProcessDeclAttributes(S, NewFD, D);
2928
2929  // attributes declared post-definition are currently ignored
2930  if (Redeclaration && PrevDecl) {
2931    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2932    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2933      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2934      Diag(Def->getLocation(), diag::note_previous_definition);
2935    }
2936  }
2937
2938  AddKnownFunctionAttributes(NewFD);
2939
2940  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2941    // If a function name is overloadable in C, then every function
2942    // with that name must be marked "overloadable".
2943    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2944      << Redeclaration << NewFD;
2945    if (PrevDecl)
2946      Diag(PrevDecl->getLocation(),
2947           diag::note_attribute_overloadable_prev_overload);
2948    NewFD->addAttr(::new (Context) OverloadableAttr());
2949  }
2950
2951  // If this is a locally-scoped extern C function, update the
2952  // map of such names.
2953  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2954      && !NewFD->isInvalidDecl())
2955    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2956
2957  // Set this FunctionDecl's range up to the right paren.
2958  NewFD->setLocEnd(D.getSourceRange().getEnd());
2959
2960  if (FunctionTemplate && NewFD->isInvalidDecl())
2961    FunctionTemplate->setInvalidDecl();
2962
2963  if (FunctionTemplate)
2964    return FunctionTemplate;
2965
2966  return NewFD;
2967}
2968
2969/// \brief Perform semantic checking of a new function declaration.
2970///
2971/// Performs semantic analysis of the new function declaration
2972/// NewFD. This routine performs all semantic checking that does not
2973/// require the actual declarator involved in the declaration, and is
2974/// used both for the declaration of functions as they are parsed
2975/// (called via ActOnDeclarator) and for the declaration of functions
2976/// that have been instantiated via C++ template instantiation (called
2977/// via InstantiateDecl).
2978///
2979/// \param IsExplicitSpecialiation whether this new function declaration is
2980/// an explicit specialization of the previous declaration.
2981///
2982/// This sets NewFD->isInvalidDecl() to true if there was an error.
2983void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2984                                    bool IsExplicitSpecialization,
2985                                    bool &Redeclaration,
2986                                    bool &OverloadableAttrRequired) {
2987  // If NewFD is already known erroneous, don't do any of this checking.
2988  if (NewFD->isInvalidDecl())
2989    return;
2990
2991  if (NewFD->getResultType()->isVariablyModifiedType()) {
2992    // Functions returning a variably modified type violate C99 6.7.5.2p2
2993    // because all functions have linkage.
2994    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2995    return NewFD->setInvalidDecl();
2996  }
2997
2998  if (NewFD->isMain())
2999    CheckMain(NewFD);
3000
3001  // Check for a previous declaration of this name.
3002  if (!PrevDecl && NewFD->isExternC()) {
3003    // Since we did not find anything by this name and we're declaring
3004    // an extern "C" function, look for a non-visible extern "C"
3005    // declaration with the same name.
3006    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3007      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3008    if (Pos != LocallyScopedExternalDecls.end())
3009      PrevDecl = Pos->second;
3010  }
3011
3012  // Merge or overload the declaration with an existing declaration of
3013  // the same name, if appropriate.
3014  if (PrevDecl) {
3015    // Determine whether NewFD is an overload of PrevDecl or
3016    // a declaration that requires merging. If it's an overload,
3017    // there's no more work to do here; we'll just add the new
3018    // function to the scope.
3019    OverloadedFunctionDecl::function_iterator MatchedDecl;
3020
3021    if (!getLangOptions().CPlusPlus &&
3022        AllowOverloadingOfFunction(PrevDecl, Context)) {
3023      OverloadableAttrRequired = true;
3024
3025      // Functions marked "overloadable" must have a prototype (that
3026      // we can't get through declaration merging).
3027      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3028        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3029          << NewFD;
3030        Redeclaration = true;
3031
3032        // Turn this into a variadic function with no parameters.
3033        QualType R = Context.getFunctionType(
3034                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3035                       0, 0, true, 0);
3036        NewFD->setType(R);
3037        return NewFD->setInvalidDecl();
3038      }
3039    }
3040
3041    if (PrevDecl &&
3042        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3043         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3044      Redeclaration = true;
3045      Decl *OldDecl = PrevDecl;
3046
3047      // If PrevDecl was an overloaded function, extract the
3048      // FunctionDecl that matched.
3049      if (isa<OverloadedFunctionDecl>(PrevDecl))
3050        OldDecl = *MatchedDecl;
3051
3052      // NewFD and OldDecl represent declarations that need to be
3053      // merged.
3054      if (MergeFunctionDecl(NewFD, OldDecl))
3055        return NewFD->setInvalidDecl();
3056
3057      if (FunctionTemplateDecl *OldTemplateDecl
3058                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3059        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3060        FunctionTemplateDecl *NewTemplateDecl
3061          = NewFD->getDescribedFunctionTemplate();
3062        assert(NewTemplateDecl && "Template/non-template mismatch");
3063        if (CXXMethodDecl *Method
3064              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3065          Method->setAccess(OldTemplateDecl->getAccess());
3066          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3067        }
3068
3069        // If this is an explicit specialization of a member that is a function
3070        // template, mark it as a member specialization.
3071        if (IsExplicitSpecialization &&
3072            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3073          NewTemplateDecl->setMemberSpecialization();
3074          assert(OldTemplateDecl->isMemberSpecialization());
3075        }
3076      } else {
3077        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3078          NewFD->setAccess(OldDecl->getAccess());
3079        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3080      }
3081    }
3082  }
3083
3084  // Semantic checking for this function declaration (in isolation).
3085  if (getLangOptions().CPlusPlus) {
3086    // C++-specific checks.
3087    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3088      CheckConstructor(Constructor);
3089    } else if (isa<CXXDestructorDecl>(NewFD)) {
3090      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3091      QualType ClassType = Context.getTypeDeclType(Record);
3092      if (!ClassType->isDependentType()) {
3093        DeclarationName Name
3094          = Context.DeclarationNames.getCXXDestructorName(
3095                                        Context.getCanonicalType(ClassType));
3096        if (NewFD->getDeclName() != Name) {
3097          Diag(NewFD->getLocation(), diag::err_destructor_name);
3098          return NewFD->setInvalidDecl();
3099        }
3100      }
3101      Record->setUserDeclaredDestructor(true);
3102      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3103      // user-defined destructor.
3104      Record->setPOD(false);
3105
3106      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3107      // declared destructor.
3108      // FIXME: C++0x: don't do this for "= default" destructors
3109      Record->setHasTrivialDestructor(false);
3110    } else if (CXXConversionDecl *Conversion
3111               = dyn_cast<CXXConversionDecl>(NewFD))
3112      ActOnConversionDeclarator(Conversion);
3113
3114    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3115    if (NewFD->isOverloadedOperator() &&
3116        CheckOverloadedOperatorDeclaration(NewFD))
3117      return NewFD->setInvalidDecl();
3118
3119    // In C++, check default arguments now that we have merged decls. Unless
3120    // the lexical context is the class, because in this case this is done
3121    // during delayed parsing anyway.
3122    if (!CurContext->isRecord())
3123      CheckCXXDefaultArguments(NewFD);
3124  }
3125}
3126
3127void Sema::CheckMain(FunctionDecl* FD) {
3128  // C++ [basic.start.main]p3:  A program that declares main to be inline
3129  //   or static is ill-formed.
3130  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3131  //   shall not appear in a declaration of main.
3132  // static main is not an error under C99, but we should warn about it.
3133  bool isInline = FD->isInlineSpecified();
3134  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3135  if (isInline || isStatic) {
3136    unsigned diagID = diag::warn_unusual_main_decl;
3137    if (isInline || getLangOptions().CPlusPlus)
3138      diagID = diag::err_unusual_main_decl;
3139
3140    int which = isStatic + (isInline << 1) - 1;
3141    Diag(FD->getLocation(), diagID) << which;
3142  }
3143
3144  QualType T = FD->getType();
3145  assert(T->isFunctionType() && "function decl is not of function type");
3146  const FunctionType* FT = T->getAs<FunctionType>();
3147
3148  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3149    // TODO: add a replacement fixit to turn the return type into 'int'.
3150    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3151    FD->setInvalidDecl(true);
3152  }
3153
3154  // Treat protoless main() as nullary.
3155  if (isa<FunctionNoProtoType>(FT)) return;
3156
3157  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3158  unsigned nparams = FTP->getNumArgs();
3159  assert(FD->getNumParams() == nparams);
3160
3161  if (nparams > 3) {
3162    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3163    FD->setInvalidDecl(true);
3164    nparams = 3;
3165  }
3166
3167  // FIXME: a lot of the following diagnostics would be improved
3168  // if we had some location information about types.
3169
3170  QualType CharPP =
3171    Context.getPointerType(Context.getPointerType(Context.CharTy));
3172  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3173
3174  for (unsigned i = 0; i < nparams; ++i) {
3175    QualType AT = FTP->getArgType(i);
3176
3177    bool mismatch = true;
3178
3179    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3180      mismatch = false;
3181    else if (Expected[i] == CharPP) {
3182      // As an extension, the following forms are okay:
3183      //   char const **
3184      //   char const * const *
3185      //   char * const *
3186
3187      QualifierCollector qs;
3188      const PointerType* PT;
3189      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3190          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3191          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3192        qs.removeConst();
3193        mismatch = !qs.empty();
3194      }
3195    }
3196
3197    if (mismatch) {
3198      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3199      // TODO: suggest replacing given type with expected type
3200      FD->setInvalidDecl(true);
3201    }
3202  }
3203
3204  if (nparams == 1 && !FD->isInvalidDecl()) {
3205    Diag(FD->getLocation(), diag::warn_main_one_arg);
3206  }
3207}
3208
3209bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3210  // FIXME: Need strict checking.  In C89, we need to check for
3211  // any assignment, increment, decrement, function-calls, or
3212  // commas outside of a sizeof.  In C99, it's the same list,
3213  // except that the aforementioned are allowed in unevaluated
3214  // expressions.  Everything else falls under the
3215  // "may accept other forms of constant expressions" exception.
3216  // (We never end up here for C++, so the constant expression
3217  // rules there don't matter.)
3218  if (Init->isConstantInitializer(Context))
3219    return false;
3220  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3221    << Init->getSourceRange();
3222  return true;
3223}
3224
3225void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3226  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3227}
3228
3229/// AddInitializerToDecl - Adds the initializer Init to the
3230/// declaration dcl. If DirectInit is true, this is C++ direct
3231/// initialization rather than copy initialization.
3232void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3233  Decl *RealDecl = dcl.getAs<Decl>();
3234  // If there is no declaration, there was an error parsing it.  Just ignore
3235  // the initializer.
3236  if (RealDecl == 0)
3237    return;
3238
3239  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3240    // With declarators parsed the way they are, the parser cannot
3241    // distinguish between a normal initializer and a pure-specifier.
3242    // Thus this grotesque test.
3243    IntegerLiteral *IL;
3244    Expr *Init = static_cast<Expr *>(init.get());
3245    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3246        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3247      if (Method->isVirtualAsWritten()) {
3248        Method->setPure();
3249
3250        // A class is abstract if at least one function is pure virtual.
3251        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3252      } else if (!Method->isInvalidDecl()) {
3253        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3254          << Method->getDeclName() << Init->getSourceRange();
3255        Method->setInvalidDecl();
3256      }
3257    } else {
3258      Diag(Method->getLocation(), diag::err_member_function_initialization)
3259        << Method->getDeclName() << Init->getSourceRange();
3260      Method->setInvalidDecl();
3261    }
3262    return;
3263  }
3264
3265  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3266  if (!VDecl) {
3267    if (getLangOptions().CPlusPlus &&
3268        RealDecl->getLexicalDeclContext()->isRecord() &&
3269        isa<NamedDecl>(RealDecl))
3270      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3271        << cast<NamedDecl>(RealDecl)->getDeclName();
3272    else
3273      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3274    RealDecl->setInvalidDecl();
3275    return;
3276  }
3277
3278  if (!VDecl->getType()->isArrayType() &&
3279      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3280                          diag::err_typecheck_decl_incomplete_type)) {
3281    RealDecl->setInvalidDecl();
3282    return;
3283  }
3284
3285  const VarDecl *Def = 0;
3286  if (VDecl->getDefinition(Def)) {
3287    Diag(VDecl->getLocation(), diag::err_redefinition)
3288      << VDecl->getDeclName();
3289    Diag(Def->getLocation(), diag::note_previous_definition);
3290    VDecl->setInvalidDecl();
3291    return;
3292  }
3293
3294  // Take ownership of the expression, now that we're sure we have somewhere
3295  // to put it.
3296  Expr *Init = init.takeAs<Expr>();
3297  assert(Init && "missing initializer");
3298
3299  // Get the decls type and save a reference for later, since
3300  // CheckInitializerTypes may change it.
3301  QualType DclT = VDecl->getType(), SavT = DclT;
3302  if (VDecl->isBlockVarDecl()) {
3303    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3304      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3305      VDecl->setInvalidDecl();
3306    } else if (!VDecl->isInvalidDecl()) {
3307      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3308                                VDecl->getDeclName(), DirectInit))
3309        VDecl->setInvalidDecl();
3310
3311      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3312      // Don't check invalid declarations to avoid emitting useless diagnostics.
3313      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3314        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3315          CheckForConstantInitializer(Init, DclT);
3316      }
3317    }
3318  } else if (VDecl->isStaticDataMember() &&
3319             VDecl->getLexicalDeclContext()->isRecord()) {
3320    // This is an in-class initialization for a static data member, e.g.,
3321    //
3322    // struct S {
3323    //   static const int value = 17;
3324    // };
3325
3326    // Attach the initializer
3327    VDecl->setInit(Context, Init);
3328
3329    // C++ [class.mem]p4:
3330    //   A member-declarator can contain a constant-initializer only
3331    //   if it declares a static member (9.4) of const integral or
3332    //   const enumeration type, see 9.4.2.
3333    QualType T = VDecl->getType();
3334    if (!T->isDependentType() &&
3335        (!Context.getCanonicalType(T).isConstQualified() ||
3336         !T->isIntegralType())) {
3337      Diag(VDecl->getLocation(), diag::err_member_initialization)
3338        << VDecl->getDeclName() << Init->getSourceRange();
3339      VDecl->setInvalidDecl();
3340    } else {
3341      // C++ [class.static.data]p4:
3342      //   If a static data member is of const integral or const
3343      //   enumeration type, its declaration in the class definition
3344      //   can specify a constant-initializer which shall be an
3345      //   integral constant expression (5.19).
3346      if (!Init->isTypeDependent() &&
3347          !Init->getType()->isIntegralType()) {
3348        // We have a non-dependent, non-integral or enumeration type.
3349        Diag(Init->getSourceRange().getBegin(),
3350             diag::err_in_class_initializer_non_integral_type)
3351          << Init->getType() << Init->getSourceRange();
3352        VDecl->setInvalidDecl();
3353      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3354        // Check whether the expression is a constant expression.
3355        llvm::APSInt Value;
3356        SourceLocation Loc;
3357        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3358          Diag(Loc, diag::err_in_class_initializer_non_constant)
3359            << Init->getSourceRange();
3360          VDecl->setInvalidDecl();
3361        } else if (!VDecl->getType()->isDependentType())
3362          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3363      }
3364    }
3365  } else if (VDecl->isFileVarDecl()) {
3366    if (VDecl->getStorageClass() == VarDecl::Extern)
3367      Diag(VDecl->getLocation(), diag::warn_extern_init);
3368    if (!VDecl->isInvalidDecl())
3369      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3370                                VDecl->getDeclName(), DirectInit))
3371        VDecl->setInvalidDecl();
3372
3373    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3374    // Don't check invalid declarations to avoid emitting useless diagnostics.
3375    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3376      // C99 6.7.8p4. All file scoped initializers need to be constant.
3377      CheckForConstantInitializer(Init, DclT);
3378    }
3379  }
3380  // If the type changed, it means we had an incomplete type that was
3381  // completed by the initializer. For example:
3382  //   int ary[] = { 1, 3, 5 };
3383  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3384  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3385    VDecl->setType(DclT);
3386    Init->setType(DclT);
3387  }
3388
3389  Init = MaybeCreateCXXExprWithTemporaries(Init,
3390                                           /*ShouldDestroyTemporaries=*/true);
3391  // Attach the initializer to the decl.
3392  VDecl->setInit(Context, Init);
3393
3394  // If the previous declaration of VDecl was a tentative definition,
3395  // remove it from the set of tentative definitions.
3396  if (VDecl->getPreviousDeclaration() &&
3397      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3398    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3399    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3400  }
3401
3402  return;
3403}
3404
3405void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3406                                  bool TypeContainsUndeducedAuto) {
3407  Decl *RealDecl = dcl.getAs<Decl>();
3408
3409  // If there is no declaration, there was an error parsing it. Just ignore it.
3410  if (RealDecl == 0)
3411    return;
3412
3413  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3414    QualType Type = Var->getType();
3415
3416    // Record tentative definitions.
3417    if (Var->isTentativeDefinition(Context)) {
3418      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3419        InsertPair =
3420           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3421
3422      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3423      // want the second one in the map.
3424      InsertPair.first->second = Var;
3425
3426      // However, for the list, we don't care about the order, just make sure
3427      // that there are no dupes for a given declaration name.
3428      if (InsertPair.second)
3429        TentativeDefinitionList.push_back(Var->getDeclName());
3430    }
3431
3432    // C++ [dcl.init.ref]p3:
3433    //   The initializer can be omitted for a reference only in a
3434    //   parameter declaration (8.3.5), in the declaration of a
3435    //   function return type, in the declaration of a class member
3436    //   within its class declaration (9.2), and where the extern
3437    //   specifier is explicitly used.
3438    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3439      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3440        << Var->getDeclName()
3441        << SourceRange(Var->getLocation(), Var->getLocation());
3442      Var->setInvalidDecl();
3443      return;
3444    }
3445
3446    // C++0x [dcl.spec.auto]p3
3447    if (TypeContainsUndeducedAuto) {
3448      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3449        << Var->getDeclName() << Type;
3450      Var->setInvalidDecl();
3451      return;
3452    }
3453
3454    // An array without size is an incomplete type, and there are no special
3455    // rules in C++ to make such a definition acceptable.
3456    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3457        !Var->hasExternalStorage()) {
3458      Diag(Var->getLocation(),
3459           diag::err_typecheck_incomplete_array_needs_initializer);
3460      Var->setInvalidDecl();
3461      return;
3462    }
3463
3464    // C++ [temp.expl.spec]p15:
3465    //   An explicit specialization of a static data member of a template is a
3466    //   definition if the declaration includes an initializer; otherwise, it
3467    //   is a declaration.
3468    if (Var->isStaticDataMember() &&
3469        Var->getInstantiatedFromStaticDataMember() &&
3470        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3471      return;
3472
3473    // C++ [dcl.init]p9:
3474    //   If no initializer is specified for an object, and the object
3475    //   is of (possibly cv-qualified) non-POD class type (or array
3476    //   thereof), the object shall be default-initialized; if the
3477    //   object is of const-qualified type, the underlying class type
3478    //   shall have a user-declared default constructor.
3479    //
3480    // FIXME: Diagnose the "user-declared default constructor" bit.
3481    if (getLangOptions().CPlusPlus) {
3482      QualType InitType = Type;
3483      if (const ArrayType *Array = Context.getAsArrayType(Type))
3484        InitType = Context.getBaseElementType(Array);
3485      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3486          InitType->isRecordType() && !InitType->isDependentType()) {
3487        if (!RequireCompleteType(Var->getLocation(), InitType,
3488                                 diag::err_invalid_incomplete_type_use)) {
3489          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3490
3491          CXXConstructorDecl *Constructor
3492            = PerformInitializationByConstructor(InitType,
3493                                                 MultiExprArg(*this, 0, 0),
3494                                                 Var->getLocation(),
3495                                               SourceRange(Var->getLocation(),
3496                                                           Var->getLocation()),
3497                                                 Var->getDeclName(),
3498                                                 IK_Default,
3499                                                 ConstructorArgs);
3500
3501          // FIXME: Location info for the variable initialization?
3502          if (!Constructor)
3503            Var->setInvalidDecl();
3504          else {
3505            // FIXME: Cope with initialization of arrays
3506            if (!Constructor->isTrivial() &&
3507                InitializeVarWithConstructor(Var, Constructor,
3508                                             move_arg(ConstructorArgs)))
3509              Var->setInvalidDecl();
3510
3511            FinalizeVarWithDestructor(Var, InitType);
3512          }
3513        } else {
3514          Var->setInvalidDecl();
3515        }
3516      }
3517    }
3518
3519#if 0
3520    // FIXME: Temporarily disabled because we are not properly parsing
3521    // linkage specifications on declarations, e.g.,
3522    //
3523    //   extern "C" const CGPoint CGPointerZero;
3524    //
3525    // C++ [dcl.init]p9:
3526    //
3527    //     If no initializer is specified for an object, and the
3528    //     object is of (possibly cv-qualified) non-POD class type (or
3529    //     array thereof), the object shall be default-initialized; if
3530    //     the object is of const-qualified type, the underlying class
3531    //     type shall have a user-declared default
3532    //     constructor. Otherwise, if no initializer is specified for
3533    //     an object, the object and its subobjects, if any, have an
3534    //     indeterminate initial value; if the object or any of its
3535    //     subobjects are of const-qualified type, the program is
3536    //     ill-formed.
3537    //
3538    // This isn't technically an error in C, so we don't diagnose it.
3539    //
3540    // FIXME: Actually perform the POD/user-defined default
3541    // constructor check.
3542    if (getLangOptions().CPlusPlus &&
3543        Context.getCanonicalType(Type).isConstQualified() &&
3544        !Var->hasExternalStorage())
3545      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3546        << Var->getName()
3547        << SourceRange(Var->getLocation(), Var->getLocation());
3548#endif
3549  }
3550}
3551
3552Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3553                                                   DeclPtrTy *Group,
3554                                                   unsigned NumDecls) {
3555  llvm::SmallVector<Decl*, 8> Decls;
3556
3557  if (DS.isTypeSpecOwned())
3558    Decls.push_back((Decl*)DS.getTypeRep());
3559
3560  for (unsigned i = 0; i != NumDecls; ++i)
3561    if (Decl *D = Group[i].getAs<Decl>())
3562      Decls.push_back(D);
3563
3564  // Perform semantic analysis that depends on having fully processed both
3565  // the declarator and initializer.
3566  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3567    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3568    if (!IDecl)
3569      continue;
3570    QualType T = IDecl->getType();
3571
3572    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3573    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3574    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3575      if (T->isDependentType()) {
3576        // If T is dependent, we should not require a complete type.
3577        // (RequireCompleteType shouldn't be called with dependent types.)
3578        // But we still can at least check if we've got an array of unspecified
3579        // size without an initializer.
3580        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3581            !IDecl->getInit()) {
3582          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3583            << T;
3584          IDecl->setInvalidDecl();
3585        }
3586      } else if (!IDecl->isInvalidDecl()) {
3587        // If T is an incomplete array type with an initializer list that is
3588        // dependent on something, its size has not been fixed. We could attempt
3589        // to fix the size for such arrays, but we would still have to check
3590        // here for initializers containing a C++0x vararg expansion, e.g.
3591        // template <typename... Args> void f(Args... args) {
3592        //   int vals[] = { args };
3593        // }
3594        const IncompleteArrayType *IAT = T->getAs<IncompleteArrayType>();
3595        Expr *Init = IDecl->getInit();
3596        if (IAT && Init &&
3597            (Init->isTypeDependent() || Init->isValueDependent())) {
3598          // Check that the member type of the array is complete, at least.
3599          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3600                                  diag::err_typecheck_decl_incomplete_type))
3601            IDecl->setInvalidDecl();
3602        } else if (RequireCompleteType(IDecl->getLocation(), T,
3603                                      diag::err_typecheck_decl_incomplete_type))
3604          IDecl->setInvalidDecl();
3605      }
3606    }
3607    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3608    // object that has file scope without an initializer, and without a
3609    // storage-class specifier or with the storage-class specifier "static",
3610    // constitutes a tentative definition. Note: A tentative definition with
3611    // external linkage is valid (C99 6.2.2p5).
3612    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3613      if (const IncompleteArrayType *ArrayT
3614          = Context.getAsIncompleteArrayType(T)) {
3615        if (RequireCompleteType(IDecl->getLocation(),
3616                                ArrayT->getElementType(),
3617                                diag::err_illegal_decl_array_incomplete_type))
3618          IDecl->setInvalidDecl();
3619      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3620        // C99 6.9.2p3: If the declaration of an identifier for an object is
3621        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3622        // declared type shall not be an incomplete type.
3623        // NOTE: code such as the following
3624        //     static struct s;
3625        //     struct s { int a; };
3626        // is accepted by gcc. Hence here we issue a warning instead of
3627        // an error and we do not invalidate the static declaration.
3628        // NOTE: to avoid multiple warnings, only check the first declaration.
3629        if (IDecl->getPreviousDeclaration() == 0)
3630          RequireCompleteType(IDecl->getLocation(), T,
3631                              diag::ext_typecheck_decl_incomplete_type);
3632      }
3633    }
3634  }
3635  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3636                                                   Decls.data(), Decls.size()));
3637}
3638
3639
3640/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3641/// to introduce parameters into function prototype scope.
3642Sema::DeclPtrTy
3643Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3644  const DeclSpec &DS = D.getDeclSpec();
3645
3646  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3647  VarDecl::StorageClass StorageClass = VarDecl::None;
3648  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3649    StorageClass = VarDecl::Register;
3650  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3651    Diag(DS.getStorageClassSpecLoc(),
3652         diag::err_invalid_storage_class_in_func_decl);
3653    D.getMutableDeclSpec().ClearStorageClassSpecs();
3654  }
3655
3656  if (D.getDeclSpec().isThreadSpecified())
3657    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3658
3659  DiagnoseFunctionSpecifiers(D);
3660
3661  // Check that there are no default arguments inside the type of this
3662  // parameter (C++ only).
3663  if (getLangOptions().CPlusPlus)
3664    CheckExtraCXXDefaultArguments(D);
3665
3666  DeclaratorInfo *DInfo = 0;
3667  TagDecl *OwnedDecl = 0;
3668  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3669
3670  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3671    // C++ [dcl.fct]p6:
3672    //   Types shall not be defined in return or parameter types.
3673    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3674      << Context.getTypeDeclType(OwnedDecl);
3675  }
3676
3677  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3678  // Can this happen for params?  We already checked that they don't conflict
3679  // among each other.  Here they can only shadow globals, which is ok.
3680  IdentifierInfo *II = D.getIdentifier();
3681  if (II) {
3682    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3683      if (PrevDecl->isTemplateParameter()) {
3684        // Maybe we will complain about the shadowed template parameter.
3685        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3686        // Just pretend that we didn't see the previous declaration.
3687        PrevDecl = 0;
3688      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3689        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3690
3691        // Recover by removing the name
3692        II = 0;
3693        D.SetIdentifier(0, D.getIdentifierLoc());
3694      }
3695    }
3696  }
3697
3698  // Parameters can not be abstract class types.
3699  // For record types, this is done by the AbstractClassUsageDiagnoser once
3700  // the class has been completely parsed.
3701  if (!CurContext->isRecord() &&
3702      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3703                             diag::err_abstract_type_in_decl,
3704                             AbstractParamType))
3705    D.setInvalidType(true);
3706
3707  QualType T = adjustParameterType(parmDeclType);
3708
3709  ParmVarDecl *New
3710    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3711                          T, DInfo, StorageClass, 0);
3712
3713  if (D.isInvalidType())
3714    New->setInvalidDecl();
3715
3716  // Parameter declarators cannot be interface types. All ObjC objects are
3717  // passed by reference.
3718  if (T->isObjCInterfaceType()) {
3719    Diag(D.getIdentifierLoc(),
3720         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3721    New->setInvalidDecl();
3722  }
3723
3724  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3725  if (D.getCXXScopeSpec().isSet()) {
3726    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3727      << D.getCXXScopeSpec().getRange();
3728    New->setInvalidDecl();
3729  }
3730
3731  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3732  // duration shall not be qualified by an address-space qualifier."
3733  // Since all parameters have automatic store duration, they can not have
3734  // an address space.
3735  if (T.getAddressSpace() != 0) {
3736    Diag(D.getIdentifierLoc(),
3737         diag::err_arg_with_address_space);
3738    New->setInvalidDecl();
3739  }
3740
3741
3742  // Add the parameter declaration into this scope.
3743  S->AddDecl(DeclPtrTy::make(New));
3744  if (II)
3745    IdResolver.AddDecl(New);
3746
3747  ProcessDeclAttributes(S, New, D);
3748
3749  if (New->hasAttr<BlocksAttr>()) {
3750    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3751  }
3752  return DeclPtrTy::make(New);
3753}
3754
3755void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3756                                           SourceLocation LocAfterDecls) {
3757  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3758         "Not a function declarator!");
3759  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3760
3761  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3762  // for a K&R function.
3763  if (!FTI.hasPrototype) {
3764    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3765      --i;
3766      if (FTI.ArgInfo[i].Param == 0) {
3767        llvm::SmallString<256> Code;
3768        llvm::raw_svector_ostream(Code) << "  int "
3769                                        << FTI.ArgInfo[i].Ident->getName()
3770                                        << ";\n";
3771        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3772          << FTI.ArgInfo[i].Ident
3773          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3774
3775        // Implicitly declare the argument as type 'int' for lack of a better
3776        // type.
3777        DeclSpec DS;
3778        const char* PrevSpec; // unused
3779        unsigned DiagID; // unused
3780        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3781                           PrevSpec, DiagID);
3782        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3783        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3784        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3785      }
3786    }
3787  }
3788}
3789
3790Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3791                                              Declarator &D) {
3792  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3793  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3794         "Not a function declarator!");
3795  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3796
3797  if (FTI.hasPrototype) {
3798    // FIXME: Diagnose arguments without names in C.
3799  }
3800
3801  Scope *ParentScope = FnBodyScope->getParent();
3802
3803  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3804                                  MultiTemplateParamsArg(*this),
3805                                  /*IsFunctionDefinition=*/true);
3806  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3807}
3808
3809Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3810  // Clear the last template instantiation error context.
3811  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3812
3813  if (!D)
3814    return D;
3815  FunctionDecl *FD = 0;
3816
3817  if (FunctionTemplateDecl *FunTmpl
3818        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3819    FD = FunTmpl->getTemplatedDecl();
3820  else
3821    FD = cast<FunctionDecl>(D.getAs<Decl>());
3822
3823  CurFunctionNeedsScopeChecking = false;
3824
3825  // See if this is a redefinition.
3826  const FunctionDecl *Definition;
3827  if (FD->getBody(Definition)) {
3828    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3829    Diag(Definition->getLocation(), diag::note_previous_definition);
3830  }
3831
3832  // Builtin functions cannot be defined.
3833  if (unsigned BuiltinID = FD->getBuiltinID()) {
3834    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3835      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3836      FD->setInvalidDecl();
3837    }
3838  }
3839
3840  // The return type of a function definition must be complete
3841  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3842  QualType ResultType = FD->getResultType();
3843  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3844      !FD->isInvalidDecl() &&
3845      RequireCompleteType(FD->getLocation(), ResultType,
3846                          diag::err_func_def_incomplete_result))
3847    FD->setInvalidDecl();
3848
3849  // GNU warning -Wmissing-prototypes:
3850  //   Warn if a global function is defined without a previous
3851  //   prototype declaration. This warning is issued even if the
3852  //   definition itself provides a prototype. The aim is to detect
3853  //   global functions that fail to be declared in header files.
3854  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3855      !FD->isMain()) {
3856    bool MissingPrototype = true;
3857    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3858         Prev; Prev = Prev->getPreviousDeclaration()) {
3859      // Ignore any declarations that occur in function or method
3860      // scope, because they aren't visible from the header.
3861      if (Prev->getDeclContext()->isFunctionOrMethod())
3862        continue;
3863
3864      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3865      break;
3866    }
3867
3868    if (MissingPrototype)
3869      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3870  }
3871
3872  if (FnBodyScope)
3873    PushDeclContext(FnBodyScope, FD);
3874
3875  // Check the validity of our function parameters
3876  CheckParmsForFunctionDef(FD);
3877
3878  // Introduce our parameters into the function scope
3879  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3880    ParmVarDecl *Param = FD->getParamDecl(p);
3881    Param->setOwningFunction(FD);
3882
3883    // If this has an identifier, add it to the scope stack.
3884    if (Param->getIdentifier() && FnBodyScope)
3885      PushOnScopeChains(Param, FnBodyScope);
3886  }
3887
3888  // Checking attributes of current function definition
3889  // dllimport attribute.
3890  if (FD->getAttr<DLLImportAttr>() &&
3891      (!FD->getAttr<DLLExportAttr>())) {
3892    // dllimport attribute cannot be applied to definition.
3893    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3894      Diag(FD->getLocation(),
3895           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3896        << "dllimport";
3897      FD->setInvalidDecl();
3898      return DeclPtrTy::make(FD);
3899    } else {
3900      // If a symbol previously declared dllimport is later defined, the
3901      // attribute is ignored in subsequent references, and a warning is
3902      // emitted.
3903      Diag(FD->getLocation(),
3904           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3905        << FD->getNameAsCString() << "dllimport";
3906    }
3907  }
3908  return DeclPtrTy::make(FD);
3909}
3910
3911Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3912  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3913}
3914
3915Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3916                                              bool IsInstantiation) {
3917  Decl *dcl = D.getAs<Decl>();
3918  Stmt *Body = BodyArg.takeAs<Stmt>();
3919
3920  FunctionDecl *FD = 0;
3921  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3922  if (FunTmpl)
3923    FD = FunTmpl->getTemplatedDecl();
3924  else
3925    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3926
3927  if (FD) {
3928    FD->setBody(Body);
3929    if (FD->isMain())
3930      // C and C++ allow for main to automagically return 0.
3931      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3932      FD->setHasImplicitReturnZero(true);
3933    else
3934      CheckFallThroughForFunctionDef(FD, Body);
3935
3936    if (!FD->isInvalidDecl())
3937      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3938
3939    // C++ [basic.def.odr]p2:
3940    //   [...] A virtual member function is used if it is not pure. [...]
3941    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3942      if (Method->isVirtual() && !Method->isPure())
3943        MarkDeclarationReferenced(Method->getLocation(), Method);
3944
3945    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3946  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3947    assert(MD == getCurMethodDecl() && "Method parsing confused");
3948    MD->setBody(Body);
3949    CheckFallThroughForFunctionDef(MD, Body);
3950    MD->setEndLoc(Body->getLocEnd());
3951
3952    if (!MD->isInvalidDecl())
3953      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3954  } else {
3955    Body->Destroy(Context);
3956    return DeclPtrTy();
3957  }
3958  if (!IsInstantiation)
3959    PopDeclContext();
3960
3961  // Verify and clean out per-function state.
3962
3963  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3964
3965  // Check goto/label use.
3966  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3967       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3968    LabelStmt *L = I->second;
3969
3970    // Verify that we have no forward references left.  If so, there was a goto
3971    // or address of a label taken, but no definition of it.  Label fwd
3972    // definitions are indicated with a null substmt.
3973    if (L->getSubStmt() != 0)
3974      continue;
3975
3976    // Emit error.
3977    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3978
3979    // At this point, we have gotos that use the bogus label.  Stitch it into
3980    // the function body so that they aren't leaked and that the AST is well
3981    // formed.
3982    if (Body == 0) {
3983      // The whole function wasn't parsed correctly, just delete this.
3984      L->Destroy(Context);
3985      continue;
3986    }
3987
3988    // Otherwise, the body is valid: we want to stitch the label decl into the
3989    // function somewhere so that it is properly owned and so that the goto
3990    // has a valid target.  Do this by creating a new compound stmt with the
3991    // label in it.
3992
3993    // Give the label a sub-statement.
3994    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3995
3996    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3997                               cast<CXXTryStmt>(Body)->getTryBlock() :
3998                               cast<CompoundStmt>(Body);
3999    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4000    Elements.push_back(L);
4001    Compound->setStmts(Context, &Elements[0], Elements.size());
4002  }
4003  FunctionLabelMap.clear();
4004
4005  if (!Body) return D;
4006
4007  // Verify that that gotos and switch cases don't jump into scopes illegally.
4008  if (CurFunctionNeedsScopeChecking)
4009    DiagnoseInvalidJumps(Body);
4010
4011  // C++ constructors that have function-try-blocks can't have return
4012  // statements in the handlers of that block. (C++ [except.handle]p14)
4013  // Verify this.
4014  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4015    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4016
4017  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4018    computeBaseOrMembersToDestroy(Destructor);
4019  return D;
4020}
4021
4022/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4023/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4024NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4025                                          IdentifierInfo &II, Scope *S) {
4026  // Before we produce a declaration for an implicitly defined
4027  // function, see whether there was a locally-scoped declaration of
4028  // this name as a function or variable. If so, use that
4029  // (non-visible) declaration, and complain about it.
4030  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4031    = LocallyScopedExternalDecls.find(&II);
4032  if (Pos != LocallyScopedExternalDecls.end()) {
4033    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4034    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4035    return Pos->second;
4036  }
4037
4038  // Extension in C99.  Legal in C90, but warn about it.
4039  if (II.getName().startswith("__builtin_"))
4040    Diag(Loc, diag::warn_builtin_unknown) << &II;
4041  else if (getLangOptions().C99)
4042    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4043  else
4044    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4045
4046  // Set a Declarator for the implicit definition: int foo();
4047  const char *Dummy;
4048  DeclSpec DS;
4049  unsigned DiagID;
4050  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4051  Error = Error; // Silence warning.
4052  assert(!Error && "Error setting up implicit decl!");
4053  Declarator D(DS, Declarator::BlockContext);
4054  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4055                                             0, 0, false, SourceLocation(),
4056                                             false, 0,0,0, Loc, Loc, D),
4057                SourceLocation());
4058  D.SetIdentifier(&II, Loc);
4059
4060  // Insert this function into translation-unit scope.
4061
4062  DeclContext *PrevDC = CurContext;
4063  CurContext = Context.getTranslationUnitDecl();
4064
4065  FunctionDecl *FD =
4066 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4067  FD->setImplicit();
4068
4069  CurContext = PrevDC;
4070
4071  AddKnownFunctionAttributes(FD);
4072
4073  return FD;
4074}
4075
4076/// \brief Adds any function attributes that we know a priori based on
4077/// the declaration of this function.
4078///
4079/// These attributes can apply both to implicitly-declared builtins
4080/// (like __builtin___printf_chk) or to library-declared functions
4081/// like NSLog or printf.
4082void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4083  if (FD->isInvalidDecl())
4084    return;
4085
4086  // If this is a built-in function, map its builtin attributes to
4087  // actual attributes.
4088  if (unsigned BuiltinID = FD->getBuiltinID()) {
4089    // Handle printf-formatting attributes.
4090    unsigned FormatIdx;
4091    bool HasVAListArg;
4092    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4093      if (!FD->getAttr<FormatAttr>())
4094        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4095                                             HasVAListArg ? 0 : FormatIdx + 2));
4096    }
4097
4098    // Mark const if we don't care about errno and that is the only
4099    // thing preventing the function from being const. This allows
4100    // IRgen to use LLVM intrinsics for such functions.
4101    if (!getLangOptions().MathErrno &&
4102        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4103      if (!FD->getAttr<ConstAttr>())
4104        FD->addAttr(::new (Context) ConstAttr());
4105    }
4106
4107    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4108      FD->addAttr(::new (Context) NoReturnAttr());
4109  }
4110
4111  IdentifierInfo *Name = FD->getIdentifier();
4112  if (!Name)
4113    return;
4114  if ((!getLangOptions().CPlusPlus &&
4115       FD->getDeclContext()->isTranslationUnit()) ||
4116      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4117       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4118       LinkageSpecDecl::lang_c)) {
4119    // Okay: this could be a libc/libm/Objective-C function we know
4120    // about.
4121  } else
4122    return;
4123
4124  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4125    // FIXME: NSLog and NSLogv should be target specific
4126    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4127      // FIXME: We known better than our headers.
4128      const_cast<FormatAttr *>(Format)->setType("printf");
4129    } else
4130      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4131                                             Name->isStr("NSLogv") ? 0 : 2));
4132  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4133    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4134    // target-specific builtins, perhaps?
4135    if (!FD->getAttr<FormatAttr>())
4136      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4137                                             Name->isStr("vasprintf") ? 0 : 3));
4138  }
4139}
4140
4141TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4142                                    DeclaratorInfo *DInfo) {
4143  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4144  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4145
4146  if (!DInfo) {
4147    assert(D.isInvalidType() && "no declarator info for valid type");
4148    DInfo = Context.getTrivialDeclaratorInfo(T);
4149  }
4150
4151  // Scope manipulation handled by caller.
4152  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4153                                           D.getIdentifierLoc(),
4154                                           D.getIdentifier(),
4155                                           DInfo);
4156
4157  if (const TagType *TT = T->getAs<TagType>()) {
4158    TagDecl *TD = TT->getDecl();
4159
4160    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4161    // keep track of the TypedefDecl.
4162    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4163      TD->setTypedefForAnonDecl(NewTD);
4164  }
4165
4166  if (D.isInvalidType())
4167    NewTD->setInvalidDecl();
4168  return NewTD;
4169}
4170
4171
4172/// \brief Determine whether a tag with a given kind is acceptable
4173/// as a redeclaration of the given tag declaration.
4174///
4175/// \returns true if the new tag kind is acceptable, false otherwise.
4176bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4177                                        TagDecl::TagKind NewTag,
4178                                        SourceLocation NewTagLoc,
4179                                        const IdentifierInfo &Name) {
4180  // C++ [dcl.type.elab]p3:
4181  //   The class-key or enum keyword present in the
4182  //   elaborated-type-specifier shall agree in kind with the
4183  //   declaration to which the name in theelaborated-type-specifier
4184  //   refers. This rule also applies to the form of
4185  //   elaborated-type-specifier that declares a class-name or
4186  //   friend class since it can be construed as referring to the
4187  //   definition of the class. Thus, in any
4188  //   elaborated-type-specifier, the enum keyword shall be used to
4189  //   refer to an enumeration (7.2), the union class-keyshall be
4190  //   used to refer to a union (clause 9), and either the class or
4191  //   struct class-key shall be used to refer to a class (clause 9)
4192  //   declared using the class or struct class-key.
4193  TagDecl::TagKind OldTag = Previous->getTagKind();
4194  if (OldTag == NewTag)
4195    return true;
4196
4197  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4198      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4199    // Warn about the struct/class tag mismatch.
4200    bool isTemplate = false;
4201    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4202      isTemplate = Record->getDescribedClassTemplate();
4203
4204    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4205      << (NewTag == TagDecl::TK_class)
4206      << isTemplate << &Name
4207      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4208                              OldTag == TagDecl::TK_class? "class" : "struct");
4209    Diag(Previous->getLocation(), diag::note_previous_use);
4210    return true;
4211  }
4212  return false;
4213}
4214
4215/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4216/// former case, Name will be non-null.  In the later case, Name will be null.
4217/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4218/// reference/declaration/definition of a tag.
4219Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4220                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4221                               IdentifierInfo *Name, SourceLocation NameLoc,
4222                               AttributeList *Attr, AccessSpecifier AS,
4223                               MultiTemplateParamsArg TemplateParameterLists,
4224                               bool &OwnedDecl, bool &IsDependent) {
4225  // If this is not a definition, it must have a name.
4226  assert((Name != 0 || TUK == TUK_Definition) &&
4227         "Nameless record must be a definition!");
4228
4229  OwnedDecl = false;
4230  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4231
4232  // FIXME: Check explicit specializations more carefully.
4233  bool isExplicitSpecialization = false;
4234  if (TUK != TUK_Reference) {
4235    if (TemplateParameterList *TemplateParams
4236          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4237                        (TemplateParameterList**)TemplateParameterLists.get(),
4238                                              TemplateParameterLists.size(),
4239                                                    isExplicitSpecialization)) {
4240      if (TemplateParams->size() > 0) {
4241        // This is a declaration or definition of a class template (which may
4242        // be a member of another template).
4243        OwnedDecl = false;
4244        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4245                                               SS, Name, NameLoc, Attr,
4246                                               TemplateParams,
4247                                               AS);
4248        TemplateParameterLists.release();
4249        return Result.get();
4250      } else {
4251        // The "template<>" header is extraneous.
4252        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4253          << ElaboratedType::getNameForTagKind(Kind) << Name;
4254        isExplicitSpecialization = true;
4255      }
4256    }
4257
4258    TemplateParameterLists.release();
4259  }
4260
4261  DeclContext *SearchDC = CurContext;
4262  DeclContext *DC = CurContext;
4263  NamedDecl *PrevDecl = 0;
4264  bool isStdBadAlloc = false;
4265  bool Invalid = false;
4266
4267  bool RedeclarationOnly = (TUK != TUK_Reference);
4268
4269  if (Name && SS.isNotEmpty()) {
4270    // We have a nested-name tag ('struct foo::bar').
4271
4272    // Check for invalid 'foo::'.
4273    if (SS.isInvalid()) {
4274      Name = 0;
4275      goto CreateNewDecl;
4276    }
4277
4278    // If this is a friend or a reference to a class in a dependent
4279    // context, don't try to make a decl for it.
4280    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4281      DC = computeDeclContext(SS, false);
4282      if (!DC) {
4283        IsDependent = true;
4284        return DeclPtrTy();
4285      }
4286    }
4287
4288    if (RequireCompleteDeclContext(SS))
4289      return DeclPtrTy::make((Decl *)0);
4290
4291    DC = computeDeclContext(SS, true);
4292    SearchDC = DC;
4293    // Look-up name inside 'foo::'.
4294    LookupResult R;
4295    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4296
4297    if (R.isAmbiguous()) {
4298      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4299      return DeclPtrTy();
4300    }
4301
4302    if (R.getKind() == LookupResult::Found)
4303      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4304
4305    // A tag 'foo::bar' must already exist.
4306    if (!PrevDecl) {
4307      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4308      Name = 0;
4309      Invalid = true;
4310      goto CreateNewDecl;
4311    }
4312  } else if (Name) {
4313    // If this is a named struct, check to see if there was a previous forward
4314    // declaration or definition.
4315    // FIXME: We're looking into outer scopes here, even when we
4316    // shouldn't be. Doing so can result in ambiguities that we
4317    // shouldn't be diagnosing.
4318    LookupResult R;
4319    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4320    if (R.isAmbiguous()) {
4321      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4322      // FIXME: This is not best way to recover from case like:
4323      //
4324      // struct S s;
4325      //
4326      // causes needless "incomplete type" error later.
4327      Name = 0;
4328      PrevDecl = 0;
4329      Invalid = true;
4330    } else
4331      PrevDecl = R.getAsSingleDecl(Context);
4332
4333    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4334      // FIXME: This makes sure that we ignore the contexts associated
4335      // with C structs, unions, and enums when looking for a matching
4336      // tag declaration or definition. See the similar lookup tweak
4337      // in Sema::LookupName; is there a better way to deal with this?
4338      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4339        SearchDC = SearchDC->getParent();
4340    }
4341  }
4342
4343  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4344    // Maybe we will complain about the shadowed template parameter.
4345    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4346    // Just pretend that we didn't see the previous declaration.
4347    PrevDecl = 0;
4348  }
4349
4350  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4351      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4352    // This is a declaration of or a reference to "std::bad_alloc".
4353    isStdBadAlloc = true;
4354
4355    if (!PrevDecl && StdBadAlloc) {
4356      // std::bad_alloc has been implicitly declared (but made invisible to
4357      // name lookup). Fill in this implicit declaration as the previous
4358      // declaration, so that the declarations get chained appropriately.
4359      PrevDecl = StdBadAlloc;
4360    }
4361  }
4362
4363  if (PrevDecl) {
4364    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4365      // If this is a use of a previous tag, or if the tag is already declared
4366      // in the same scope (so that the definition/declaration completes or
4367      // rementions the tag), reuse the decl.
4368      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4369          isDeclInScope(PrevDecl, SearchDC, S)) {
4370        // Make sure that this wasn't declared as an enum and now used as a
4371        // struct or something similar.
4372        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4373          bool SafeToContinue
4374            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4375               Kind != TagDecl::TK_enum);
4376          if (SafeToContinue)
4377            Diag(KWLoc, diag::err_use_with_wrong_tag)
4378              << Name
4379              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4380                                                  PrevTagDecl->getKindName());
4381          else
4382            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4383          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4384
4385          if (SafeToContinue)
4386            Kind = PrevTagDecl->getTagKind();
4387          else {
4388            // Recover by making this an anonymous redefinition.
4389            Name = 0;
4390            PrevDecl = 0;
4391            Invalid = true;
4392          }
4393        }
4394
4395        if (!Invalid) {
4396          // If this is a use, just return the declaration we found.
4397
4398          // FIXME: In the future, return a variant or some other clue
4399          // for the consumer of this Decl to know it doesn't own it.
4400          // For our current ASTs this shouldn't be a problem, but will
4401          // need to be changed with DeclGroups.
4402          if (TUK == TUK_Reference || TUK == TUK_Friend)
4403            return DeclPtrTy::make(PrevDecl);
4404
4405          // Diagnose attempts to redefine a tag.
4406          if (TUK == TUK_Definition) {
4407            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4408              // If we're defining a specialization and the previous definition
4409              // is from an implicit instantiation, don't emit an error
4410              // here; we'll catch this in the general case below.
4411              if (!isExplicitSpecialization ||
4412                  !isa<CXXRecordDecl>(Def) ||
4413                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4414                                               == TSK_ExplicitSpecialization) {
4415                Diag(NameLoc, diag::err_redefinition) << Name;
4416                Diag(Def->getLocation(), diag::note_previous_definition);
4417                // If this is a redefinition, recover by making this
4418                // struct be anonymous, which will make any later
4419                // references get the previous definition.
4420                Name = 0;
4421                PrevDecl = 0;
4422                Invalid = true;
4423              }
4424            } else {
4425              // If the type is currently being defined, complain
4426              // about a nested redefinition.
4427              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4428              if (Tag->isBeingDefined()) {
4429                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4430                Diag(PrevTagDecl->getLocation(),
4431                     diag::note_previous_definition);
4432                Name = 0;
4433                PrevDecl = 0;
4434                Invalid = true;
4435              }
4436            }
4437
4438            // Okay, this is definition of a previously declared or referenced
4439            // tag PrevDecl. We're going to create a new Decl for it.
4440          }
4441        }
4442        // If we get here we have (another) forward declaration or we
4443        // have a definition.  Just create a new decl.
4444
4445      } else {
4446        // If we get here, this is a definition of a new tag type in a nested
4447        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4448        // new decl/type.  We set PrevDecl to NULL so that the entities
4449        // have distinct types.
4450        PrevDecl = 0;
4451      }
4452      // If we get here, we're going to create a new Decl. If PrevDecl
4453      // is non-NULL, it's a definition of the tag declared by
4454      // PrevDecl. If it's NULL, we have a new definition.
4455    } else {
4456      // PrevDecl is a namespace, template, or anything else
4457      // that lives in the IDNS_Tag identifier namespace.
4458      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4459        // The tag name clashes with a namespace name, issue an error and
4460        // recover by making this tag be anonymous.
4461        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4462        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4463        Name = 0;
4464        PrevDecl = 0;
4465        Invalid = true;
4466      } else {
4467        // The existing declaration isn't relevant to us; we're in a
4468        // new scope, so clear out the previous declaration.
4469        PrevDecl = 0;
4470      }
4471    }
4472  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4473             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4474    // C++ [basic.scope.pdecl]p5:
4475    //   -- for an elaborated-type-specifier of the form
4476    //
4477    //          class-key identifier
4478    //
4479    //      if the elaborated-type-specifier is used in the
4480    //      decl-specifier-seq or parameter-declaration-clause of a
4481    //      function defined in namespace scope, the identifier is
4482    //      declared as a class-name in the namespace that contains
4483    //      the declaration; otherwise, except as a friend
4484    //      declaration, the identifier is declared in the smallest
4485    //      non-class, non-function-prototype scope that contains the
4486    //      declaration.
4487    //
4488    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4489    // C structs and unions.
4490    //
4491    // GNU C also supports this behavior as part of its incomplete
4492    // enum types extension, while GNU C++ does not.
4493    //
4494    // Find the context where we'll be declaring the tag.
4495    // FIXME: We would like to maintain the current DeclContext as the
4496    // lexical context,
4497    while (SearchDC->isRecord())
4498      SearchDC = SearchDC->getParent();
4499
4500    // Find the scope where we'll be declaring the tag.
4501    while (S->isClassScope() ||
4502           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4503           ((S->getFlags() & Scope::DeclScope) == 0) ||
4504           (S->getEntity() &&
4505            ((DeclContext *)S->getEntity())->isTransparentContext()))
4506      S = S->getParent();
4507
4508  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4509    // C++ [namespace.memdef]p3:
4510    //   If a friend declaration in a non-local class first declares a
4511    //   class or function, the friend class or function is a member of
4512    //   the innermost enclosing namespace.
4513    while (!SearchDC->isFileContext())
4514      SearchDC = SearchDC->getParent();
4515
4516    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4517    while (S->getEntity() != SearchDC)
4518      S = S->getParent();
4519  }
4520
4521CreateNewDecl:
4522
4523  // If there is an identifier, use the location of the identifier as the
4524  // location of the decl, otherwise use the location of the struct/union
4525  // keyword.
4526  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4527
4528  // Otherwise, create a new declaration. If there is a previous
4529  // declaration of the same entity, the two will be linked via
4530  // PrevDecl.
4531  TagDecl *New;
4532
4533  if (Kind == TagDecl::TK_enum) {
4534    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4535    // enum X { A, B, C } D;    D should chain to X.
4536    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4537                           cast_or_null<EnumDecl>(PrevDecl));
4538    // If this is an undefined enum, warn.
4539    if (TUK != TUK_Definition && !Invalid)  {
4540      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4541                                              : diag::ext_forward_ref_enum;
4542      Diag(Loc, DK);
4543    }
4544  } else {
4545    // struct/union/class
4546
4547    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4548    // struct X { int A; } D;    D should chain to X.
4549    if (getLangOptions().CPlusPlus) {
4550      // FIXME: Look for a way to use RecordDecl for simple structs.
4551      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4552                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4553
4554      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4555        StdBadAlloc = cast<CXXRecordDecl>(New);
4556    } else
4557      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4558                               cast_or_null<RecordDecl>(PrevDecl));
4559  }
4560
4561  if (Kind != TagDecl::TK_enum) {
4562    // Handle #pragma pack: if the #pragma pack stack has non-default
4563    // alignment, make up a packed attribute for this decl. These
4564    // attributes are checked when the ASTContext lays out the
4565    // structure.
4566    //
4567    // It is important for implementing the correct semantics that this
4568    // happen here (in act on tag decl). The #pragma pack stack is
4569    // maintained as a result of parser callbacks which can occur at
4570    // many points during the parsing of a struct declaration (because
4571    // the #pragma tokens are effectively skipped over during the
4572    // parsing of the struct).
4573    if (unsigned Alignment = getPragmaPackAlignment())
4574      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4575  }
4576
4577  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4578    // C++ [dcl.typedef]p3:
4579    //   [...] Similarly, in a given scope, a class or enumeration
4580    //   shall not be declared with the same name as a typedef-name
4581    //   that is declared in that scope and refers to a type other
4582    //   than the class or enumeration itself.
4583    LookupResult Lookup;
4584    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4585    TypedefDecl *PrevTypedef = 0;
4586    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4587      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4588
4589    NamedDecl *PrevTypedefNamed = PrevTypedef;
4590    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4591        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4592          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4593      Diag(Loc, diag::err_tag_definition_of_typedef)
4594        << Context.getTypeDeclType(New)
4595        << PrevTypedef->getUnderlyingType();
4596      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4597      Invalid = true;
4598    }
4599  }
4600
4601  // If this is a specialization of a member class (of a class template),
4602  // check the specialization.
4603  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4604    Invalid = true;
4605
4606  if (Invalid)
4607    New->setInvalidDecl();
4608
4609  if (Attr)
4610    ProcessDeclAttributeList(S, New, Attr);
4611
4612  // If we're declaring or defining a tag in function prototype scope
4613  // in C, note that this type can only be used within the function.
4614  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4615    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4616
4617  // Set the lexical context. If the tag has a C++ scope specifier, the
4618  // lexical context will be different from the semantic context.
4619  New->setLexicalDeclContext(CurContext);
4620
4621  // Mark this as a friend decl if applicable.
4622  if (TUK == TUK_Friend)
4623    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4624
4625  // Set the access specifier.
4626  if (!Invalid && TUK != TUK_Friend)
4627    SetMemberAccessSpecifier(New, PrevDecl, AS);
4628
4629  if (TUK == TUK_Definition)
4630    New->startDefinition();
4631
4632  // If this has an identifier, add it to the scope stack.
4633  if (TUK == TUK_Friend) {
4634    // We might be replacing an existing declaration in the lookup tables;
4635    // if so, borrow its access specifier.
4636    if (PrevDecl)
4637      New->setAccess(PrevDecl->getAccess());
4638
4639    // Friend tag decls are visible in fairly strange ways.
4640    if (!CurContext->isDependentContext()) {
4641      DeclContext *DC = New->getDeclContext()->getLookupContext();
4642      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4643      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4644        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4645    }
4646  } else if (Name) {
4647    S = getNonFieldDeclScope(S);
4648    PushOnScopeChains(New, S);
4649  } else {
4650    CurContext->addDecl(New);
4651  }
4652
4653  // If this is the C FILE type, notify the AST context.
4654  if (IdentifierInfo *II = New->getIdentifier())
4655    if (!New->isInvalidDecl() &&
4656        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4657        II->isStr("FILE"))
4658      Context.setFILEDecl(New);
4659
4660  OwnedDecl = true;
4661  return DeclPtrTy::make(New);
4662}
4663
4664void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4665  AdjustDeclIfTemplate(TagD);
4666  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4667
4668  // Enter the tag context.
4669  PushDeclContext(S, Tag);
4670
4671  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4672    FieldCollector->StartClass();
4673
4674    if (Record->getIdentifier()) {
4675      // C++ [class]p2:
4676      //   [...] The class-name is also inserted into the scope of the
4677      //   class itself; this is known as the injected-class-name. For
4678      //   purposes of access checking, the injected-class-name is treated
4679      //   as if it were a public member name.
4680      CXXRecordDecl *InjectedClassName
4681        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4682                                CurContext, Record->getLocation(),
4683                                Record->getIdentifier(),
4684                                Record->getTagKeywordLoc(),
4685                                Record);
4686      InjectedClassName->setImplicit();
4687      InjectedClassName->setAccess(AS_public);
4688      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4689        InjectedClassName->setDescribedClassTemplate(Template);
4690      PushOnScopeChains(InjectedClassName, S);
4691      assert(InjectedClassName->isInjectedClassName() &&
4692             "Broken injected-class-name");
4693    }
4694  }
4695}
4696
4697void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4698                                    SourceLocation RBraceLoc) {
4699  AdjustDeclIfTemplate(TagD);
4700  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4701  Tag->setRBraceLoc(RBraceLoc);
4702
4703  if (isa<CXXRecordDecl>(Tag))
4704    FieldCollector->FinishClass();
4705
4706  // Exit this scope of this tag's definition.
4707  PopDeclContext();
4708
4709  // Notify the consumer that we've defined a tag.
4710  Consumer.HandleTagDeclDefinition(Tag);
4711}
4712
4713// Note that FieldName may be null for anonymous bitfields.
4714bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4715                          QualType FieldTy, const Expr *BitWidth,
4716                          bool *ZeroWidth) {
4717  // Default to true; that shouldn't confuse checks for emptiness
4718  if (ZeroWidth)
4719    *ZeroWidth = true;
4720
4721  // C99 6.7.2.1p4 - verify the field type.
4722  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4723  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4724    // Handle incomplete types with specific error.
4725    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4726      return true;
4727    if (FieldName)
4728      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4729        << FieldName << FieldTy << BitWidth->getSourceRange();
4730    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4731      << FieldTy << BitWidth->getSourceRange();
4732  }
4733
4734  // If the bit-width is type- or value-dependent, don't try to check
4735  // it now.
4736  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4737    return false;
4738
4739  llvm::APSInt Value;
4740  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4741    return true;
4742
4743  if (Value != 0 && ZeroWidth)
4744    *ZeroWidth = false;
4745
4746  // Zero-width bitfield is ok for anonymous field.
4747  if (Value == 0 && FieldName)
4748    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4749
4750  if (Value.isSigned() && Value.isNegative()) {
4751    if (FieldName)
4752      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4753               << FieldName << Value.toString(10);
4754    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4755      << Value.toString(10);
4756  }
4757
4758  if (!FieldTy->isDependentType()) {
4759    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4760    if (Value.getZExtValue() > TypeSize) {
4761      if (FieldName)
4762        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4763          << FieldName << (unsigned)TypeSize;
4764      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4765        << (unsigned)TypeSize;
4766    }
4767  }
4768
4769  return false;
4770}
4771
4772/// ActOnField - Each field of a struct/union/class is passed into this in order
4773/// to create a FieldDecl object for it.
4774Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4775                                 SourceLocation DeclStart,
4776                                 Declarator &D, ExprTy *BitfieldWidth) {
4777  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4778                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4779                               AS_public);
4780  return DeclPtrTy::make(Res);
4781}
4782
4783/// HandleField - Analyze a field of a C struct or a C++ data member.
4784///
4785FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4786                             SourceLocation DeclStart,
4787                             Declarator &D, Expr *BitWidth,
4788                             AccessSpecifier AS) {
4789  IdentifierInfo *II = D.getIdentifier();
4790  SourceLocation Loc = DeclStart;
4791  if (II) Loc = D.getIdentifierLoc();
4792
4793  DeclaratorInfo *DInfo = 0;
4794  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4795  if (getLangOptions().CPlusPlus)
4796    CheckExtraCXXDefaultArguments(D);
4797
4798  DiagnoseFunctionSpecifiers(D);
4799
4800  if (D.getDeclSpec().isThreadSpecified())
4801    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4802
4803  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4804
4805  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4806    // Maybe we will complain about the shadowed template parameter.
4807    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4808    // Just pretend that we didn't see the previous declaration.
4809    PrevDecl = 0;
4810  }
4811
4812  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4813    PrevDecl = 0;
4814
4815  bool Mutable
4816    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4817  SourceLocation TSSL = D.getSourceRange().getBegin();
4818  FieldDecl *NewFD
4819    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4820                     AS, PrevDecl, &D);
4821  if (NewFD->isInvalidDecl() && PrevDecl) {
4822    // Don't introduce NewFD into scope; there's already something
4823    // with the same name in the same scope.
4824  } else if (II) {
4825    PushOnScopeChains(NewFD, S);
4826  } else
4827    Record->addDecl(NewFD);
4828
4829  return NewFD;
4830}
4831
4832/// \brief Build a new FieldDecl and check its well-formedness.
4833///
4834/// This routine builds a new FieldDecl given the fields name, type,
4835/// record, etc. \p PrevDecl should refer to any previous declaration
4836/// with the same name and in the same scope as the field to be
4837/// created.
4838///
4839/// \returns a new FieldDecl.
4840///
4841/// \todo The Declarator argument is a hack. It will be removed once
4842FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4843                                DeclaratorInfo *DInfo,
4844                                RecordDecl *Record, SourceLocation Loc,
4845                                bool Mutable, Expr *BitWidth,
4846                                SourceLocation TSSL,
4847                                AccessSpecifier AS, NamedDecl *PrevDecl,
4848                                Declarator *D) {
4849  IdentifierInfo *II = Name.getAsIdentifierInfo();
4850  bool InvalidDecl = false;
4851  if (D) InvalidDecl = D->isInvalidType();
4852
4853  // If we receive a broken type, recover by assuming 'int' and
4854  // marking this declaration as invalid.
4855  if (T.isNull()) {
4856    InvalidDecl = true;
4857    T = Context.IntTy;
4858  }
4859
4860  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4861  // than a variably modified type.
4862  if (T->isVariablyModifiedType()) {
4863    bool SizeIsNegative;
4864    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4865                                                           SizeIsNegative);
4866    if (!FixedTy.isNull()) {
4867      Diag(Loc, diag::warn_illegal_constant_array_size);
4868      T = FixedTy;
4869    } else {
4870      if (SizeIsNegative)
4871        Diag(Loc, diag::err_typecheck_negative_array_size);
4872      else
4873        Diag(Loc, diag::err_typecheck_field_variable_size);
4874      InvalidDecl = true;
4875    }
4876  }
4877
4878  // Fields can not have abstract class types
4879  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4880                             AbstractFieldType))
4881    InvalidDecl = true;
4882
4883  bool ZeroWidth = false;
4884  // If this is declared as a bit-field, check the bit-field.
4885  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4886    InvalidDecl = true;
4887    DeleteExpr(BitWidth);
4888    BitWidth = 0;
4889    ZeroWidth = false;
4890  }
4891
4892  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4893                                       BitWidth, Mutable);
4894  if (InvalidDecl)
4895    NewFD->setInvalidDecl();
4896
4897  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4898    Diag(Loc, diag::err_duplicate_member) << II;
4899    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4900    NewFD->setInvalidDecl();
4901  }
4902
4903  if (getLangOptions().CPlusPlus) {
4904    QualType EltTy = Context.getBaseElementType(T);
4905
4906    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4907
4908    if (!T->isPODType())
4909      CXXRecord->setPOD(false);
4910    if (!ZeroWidth)
4911      CXXRecord->setEmpty(false);
4912
4913    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4914      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4915
4916      if (!RDecl->hasTrivialConstructor())
4917        CXXRecord->setHasTrivialConstructor(false);
4918      if (!RDecl->hasTrivialCopyConstructor())
4919        CXXRecord->setHasTrivialCopyConstructor(false);
4920      if (!RDecl->hasTrivialCopyAssignment())
4921        CXXRecord->setHasTrivialCopyAssignment(false);
4922      if (!RDecl->hasTrivialDestructor())
4923        CXXRecord->setHasTrivialDestructor(false);
4924
4925      // C++ 9.5p1: An object of a class with a non-trivial
4926      // constructor, a non-trivial copy constructor, a non-trivial
4927      // destructor, or a non-trivial copy assignment operator
4928      // cannot be a member of a union, nor can an array of such
4929      // objects.
4930      // TODO: C++0x alters this restriction significantly.
4931      if (Record->isUnion()) {
4932        // We check for copy constructors before constructors
4933        // because otherwise we'll never get complaints about
4934        // copy constructors.
4935
4936        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4937
4938        CXXSpecialMember member;
4939        if (!RDecl->hasTrivialCopyConstructor())
4940          member = CXXCopyConstructor;
4941        else if (!RDecl->hasTrivialConstructor())
4942          member = CXXDefaultConstructor;
4943        else if (!RDecl->hasTrivialCopyAssignment())
4944          member = CXXCopyAssignment;
4945        else if (!RDecl->hasTrivialDestructor())
4946          member = CXXDestructor;
4947        else
4948          member = invalid;
4949
4950        if (member != invalid) {
4951          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4952          DiagnoseNontrivial(RT, member);
4953          NewFD->setInvalidDecl();
4954        }
4955      }
4956    }
4957  }
4958
4959  // FIXME: We need to pass in the attributes given an AST
4960  // representation, not a parser representation.
4961  if (D)
4962    // FIXME: What to pass instead of TUScope?
4963    ProcessDeclAttributes(TUScope, NewFD, *D);
4964
4965  if (T.isObjCGCWeak())
4966    Diag(Loc, diag::warn_attribute_weak_on_field);
4967
4968  NewFD->setAccess(AS);
4969
4970  // C++ [dcl.init.aggr]p1:
4971  //   An aggregate is an array or a class (clause 9) with [...] no
4972  //   private or protected non-static data members (clause 11).
4973  // A POD must be an aggregate.
4974  if (getLangOptions().CPlusPlus &&
4975      (AS == AS_private || AS == AS_protected)) {
4976    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4977    CXXRecord->setAggregate(false);
4978    CXXRecord->setPOD(false);
4979  }
4980
4981  return NewFD;
4982}
4983
4984/// DiagnoseNontrivial - Given that a class has a non-trivial
4985/// special member, figure out why.
4986void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4987  QualType QT(T, 0U);
4988  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4989
4990  // Check whether the member was user-declared.
4991  switch (member) {
4992  case CXXDefaultConstructor:
4993    if (RD->hasUserDeclaredConstructor()) {
4994      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4995      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
4996        const FunctionDecl *body = 0;
4997        ci->getBody(body);
4998        if (!body ||
4999            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5000          SourceLocation CtorLoc = ci->getLocation();
5001          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5002          return;
5003        }
5004      }
5005
5006      assert(0 && "found no user-declared constructors");
5007      return;
5008    }
5009    break;
5010
5011  case CXXCopyConstructor:
5012    if (RD->hasUserDeclaredCopyConstructor()) {
5013      SourceLocation CtorLoc =
5014        RD->getCopyConstructor(Context, 0)->getLocation();
5015      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5016      return;
5017    }
5018    break;
5019
5020  case CXXCopyAssignment:
5021    if (RD->hasUserDeclaredCopyAssignment()) {
5022      // FIXME: this should use the location of the copy
5023      // assignment, not the type.
5024      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5025      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5026      return;
5027    }
5028    break;
5029
5030  case CXXDestructor:
5031    if (RD->hasUserDeclaredDestructor()) {
5032      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5033      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5034      return;
5035    }
5036    break;
5037  }
5038
5039  typedef CXXRecordDecl::base_class_iterator base_iter;
5040
5041  // Virtual bases and members inhibit trivial copying/construction,
5042  // but not trivial destruction.
5043  if (member != CXXDestructor) {
5044    // Check for virtual bases.  vbases includes indirect virtual bases,
5045    // so we just iterate through the direct bases.
5046    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5047      if (bi->isVirtual()) {
5048        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5049        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5050        return;
5051      }
5052
5053    // Check for virtual methods.
5054    typedef CXXRecordDecl::method_iterator meth_iter;
5055    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5056         ++mi) {
5057      if (mi->isVirtual()) {
5058        SourceLocation MLoc = mi->getSourceRange().getBegin();
5059        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5060        return;
5061      }
5062    }
5063  }
5064
5065  bool (CXXRecordDecl::*hasTrivial)() const;
5066  switch (member) {
5067  case CXXDefaultConstructor:
5068    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5069  case CXXCopyConstructor:
5070    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5071  case CXXCopyAssignment:
5072    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5073  case CXXDestructor:
5074    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5075  default:
5076    assert(0 && "unexpected special member"); return;
5077  }
5078
5079  // Check for nontrivial bases (and recurse).
5080  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5081    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5082    assert(BaseRT && "Don't know how to handle dependent bases");
5083    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5084    if (!(BaseRecTy->*hasTrivial)()) {
5085      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5086      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5087      DiagnoseNontrivial(BaseRT, member);
5088      return;
5089    }
5090  }
5091
5092  // Check for nontrivial members (and recurse).
5093  typedef RecordDecl::field_iterator field_iter;
5094  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5095       ++fi) {
5096    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5097    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5098      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5099
5100      if (!(EltRD->*hasTrivial)()) {
5101        SourceLocation FLoc = (*fi)->getLocation();
5102        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5103        DiagnoseNontrivial(EltRT, member);
5104        return;
5105      }
5106    }
5107  }
5108
5109  assert(0 && "found no explanation for non-trivial member");
5110}
5111
5112/// TranslateIvarVisibility - Translate visibility from a token ID to an
5113///  AST enum value.
5114static ObjCIvarDecl::AccessControl
5115TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5116  switch (ivarVisibility) {
5117  default: assert(0 && "Unknown visitibility kind");
5118  case tok::objc_private: return ObjCIvarDecl::Private;
5119  case tok::objc_public: return ObjCIvarDecl::Public;
5120  case tok::objc_protected: return ObjCIvarDecl::Protected;
5121  case tok::objc_package: return ObjCIvarDecl::Package;
5122  }
5123}
5124
5125/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5126/// in order to create an IvarDecl object for it.
5127Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5128                                SourceLocation DeclStart,
5129                                DeclPtrTy IntfDecl,
5130                                Declarator &D, ExprTy *BitfieldWidth,
5131                                tok::ObjCKeywordKind Visibility) {
5132
5133  IdentifierInfo *II = D.getIdentifier();
5134  Expr *BitWidth = (Expr*)BitfieldWidth;
5135  SourceLocation Loc = DeclStart;
5136  if (II) Loc = D.getIdentifierLoc();
5137
5138  // FIXME: Unnamed fields can be handled in various different ways, for
5139  // example, unnamed unions inject all members into the struct namespace!
5140
5141  DeclaratorInfo *DInfo = 0;
5142  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5143
5144  if (BitWidth) {
5145    // 6.7.2.1p3, 6.7.2.1p4
5146    if (VerifyBitField(Loc, II, T, BitWidth)) {
5147      D.setInvalidType();
5148      DeleteExpr(BitWidth);
5149      BitWidth = 0;
5150    }
5151  } else {
5152    // Not a bitfield.
5153
5154    // validate II.
5155
5156  }
5157
5158  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5159  // than a variably modified type.
5160  if (T->isVariablyModifiedType()) {
5161    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5162    D.setInvalidType();
5163  }
5164
5165  // Get the visibility (access control) for this ivar.
5166  ObjCIvarDecl::AccessControl ac =
5167    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5168                                        : ObjCIvarDecl::None;
5169  // Must set ivar's DeclContext to its enclosing interface.
5170  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5171  DeclContext *EnclosingContext;
5172  if (ObjCImplementationDecl *IMPDecl =
5173      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5174    // Case of ivar declared in an implementation. Context is that of its class.
5175    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5176    assert(IDecl && "No class- ActOnIvar");
5177    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5178  } else
5179    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5180  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5181
5182  // Construct the decl.
5183  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5184                                             EnclosingContext, Loc, II, T,
5185                                             DInfo, ac, (Expr *)BitfieldWidth);
5186
5187  if (II) {
5188    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5189    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5190        && !isa<TagDecl>(PrevDecl)) {
5191      Diag(Loc, diag::err_duplicate_member) << II;
5192      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5193      NewID->setInvalidDecl();
5194    }
5195  }
5196
5197  // Process attributes attached to the ivar.
5198  ProcessDeclAttributes(S, NewID, D);
5199
5200  if (D.isInvalidType())
5201    NewID->setInvalidDecl();
5202
5203  if (II) {
5204    // FIXME: When interfaces are DeclContexts, we'll need to add
5205    // these to the interface.
5206    S->AddDecl(DeclPtrTy::make(NewID));
5207    IdResolver.AddDecl(NewID);
5208  }
5209
5210  return DeclPtrTy::make(NewID);
5211}
5212
5213void Sema::ActOnFields(Scope* S,
5214                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5215                       DeclPtrTy *Fields, unsigned NumFields,
5216                       SourceLocation LBrac, SourceLocation RBrac,
5217                       AttributeList *Attr) {
5218  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5219  assert(EnclosingDecl && "missing record or interface decl");
5220
5221  // If the decl this is being inserted into is invalid, then it may be a
5222  // redeclaration or some other bogus case.  Don't try to add fields to it.
5223  if (EnclosingDecl->isInvalidDecl()) {
5224    // FIXME: Deallocate fields?
5225    return;
5226  }
5227
5228
5229  // Verify that all the fields are okay.
5230  unsigned NumNamedMembers = 0;
5231  llvm::SmallVector<FieldDecl*, 32> RecFields;
5232
5233  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5234  for (unsigned i = 0; i != NumFields; ++i) {
5235    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5236
5237    // Get the type for the field.
5238    Type *FDTy = FD->getType().getTypePtr();
5239
5240    if (!FD->isAnonymousStructOrUnion()) {
5241      // Remember all fields written by the user.
5242      RecFields.push_back(FD);
5243    }
5244
5245    // If the field is already invalid for some reason, don't emit more
5246    // diagnostics about it.
5247    if (FD->isInvalidDecl())
5248      continue;
5249
5250    // C99 6.7.2.1p2:
5251    //   A structure or union shall not contain a member with
5252    //   incomplete or function type (hence, a structure shall not
5253    //   contain an instance of itself, but may contain a pointer to
5254    //   an instance of itself), except that the last member of a
5255    //   structure with more than one named member may have incomplete
5256    //   array type; such a structure (and any union containing,
5257    //   possibly recursively, a member that is such a structure)
5258    //   shall not be a member of a structure or an element of an
5259    //   array.
5260    if (FDTy->isFunctionType()) {
5261      // Field declared as a function.
5262      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5263        << FD->getDeclName();
5264      FD->setInvalidDecl();
5265      EnclosingDecl->setInvalidDecl();
5266      continue;
5267    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5268               Record && Record->isStruct()) {
5269      // Flexible array member.
5270      if (NumNamedMembers < 1) {
5271        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5272          << FD->getDeclName();
5273        FD->setInvalidDecl();
5274        EnclosingDecl->setInvalidDecl();
5275        continue;
5276      }
5277      // Okay, we have a legal flexible array member at the end of the struct.
5278      if (Record)
5279        Record->setHasFlexibleArrayMember(true);
5280    } else if (!FDTy->isDependentType() &&
5281               RequireCompleteType(FD->getLocation(), FD->getType(),
5282                                   diag::err_field_incomplete)) {
5283      // Incomplete type
5284      FD->setInvalidDecl();
5285      EnclosingDecl->setInvalidDecl();
5286      continue;
5287    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5288      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5289        // If this is a member of a union, then entire union becomes "flexible".
5290        if (Record && Record->isUnion()) {
5291          Record->setHasFlexibleArrayMember(true);
5292        } else {
5293          // If this is a struct/class and this is not the last element, reject
5294          // it.  Note that GCC supports variable sized arrays in the middle of
5295          // structures.
5296          if (i != NumFields-1)
5297            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5298              << FD->getDeclName() << FD->getType();
5299          else {
5300            // We support flexible arrays at the end of structs in
5301            // other structs as an extension.
5302            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5303              << FD->getDeclName();
5304            if (Record)
5305              Record->setHasFlexibleArrayMember(true);
5306          }
5307        }
5308      }
5309      if (Record && FDTTy->getDecl()->hasObjectMember())
5310        Record->setHasObjectMember(true);
5311    } else if (FDTy->isObjCInterfaceType()) {
5312      /// A field cannot be an Objective-c object
5313      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5314      FD->setInvalidDecl();
5315      EnclosingDecl->setInvalidDecl();
5316      continue;
5317    } else if (getLangOptions().ObjC1 &&
5318               getLangOptions().getGCMode() != LangOptions::NonGC &&
5319               Record &&
5320               (FD->getType()->isObjCObjectPointerType() ||
5321                FD->getType().isObjCGCStrong()))
5322      Record->setHasObjectMember(true);
5323    // Keep track of the number of named members.
5324    if (FD->getIdentifier())
5325      ++NumNamedMembers;
5326  }
5327
5328  // Okay, we successfully defined 'Record'.
5329  if (Record) {
5330    Record->completeDefinition(Context);
5331  } else {
5332    ObjCIvarDecl **ClsFields =
5333      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5334    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5335      ID->setIVarList(ClsFields, RecFields.size(), Context);
5336      ID->setLocEnd(RBrac);
5337      // Add ivar's to class's DeclContext.
5338      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5339        ClsFields[i]->setLexicalDeclContext(ID);
5340        ID->addDecl(ClsFields[i]);
5341      }
5342      // Must enforce the rule that ivars in the base classes may not be
5343      // duplicates.
5344      if (ID->getSuperClass()) {
5345        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5346             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5347          ObjCIvarDecl* Ivar = (*IVI);
5348
5349          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5350            ObjCIvarDecl* prevIvar =
5351              ID->getSuperClass()->lookupInstanceVariable(II);
5352            if (prevIvar) {
5353              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5354              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5355            }
5356          }
5357        }
5358      }
5359    } else if (ObjCImplementationDecl *IMPDecl =
5360                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5361      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5362      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5363        // Ivar declared in @implementation never belongs to the implementation.
5364        // Only it is in implementation's lexical context.
5365        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5366      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5367    }
5368  }
5369
5370  if (Attr)
5371    ProcessDeclAttributeList(S, Record, Attr);
5372}
5373
5374EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5375                                          EnumConstantDecl *LastEnumConst,
5376                                          SourceLocation IdLoc,
5377                                          IdentifierInfo *Id,
5378                                          ExprArg val) {
5379  Expr *Val = (Expr *)val.get();
5380
5381  llvm::APSInt EnumVal(32);
5382  QualType EltTy;
5383  if (Val) {
5384    if (Val->isTypeDependent())
5385      EltTy = Context.DependentTy;
5386    else {
5387      // Make sure to promote the operand type to int.
5388      UsualUnaryConversions(Val);
5389      if (Val != val.get()) {
5390        val.release();
5391        val = Val;
5392      }
5393
5394      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5395      SourceLocation ExpLoc;
5396      if (!Val->isValueDependent() &&
5397          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5398        Val = 0;
5399      } else {
5400        EltTy = Val->getType();
5401      }
5402    }
5403  }
5404
5405  if (!Val) {
5406    if (LastEnumConst) {
5407      // Assign the last value + 1.
5408      EnumVal = LastEnumConst->getInitVal();
5409      ++EnumVal;
5410
5411      // Check for overflow on increment.
5412      if (EnumVal < LastEnumConst->getInitVal())
5413        Diag(IdLoc, diag::warn_enum_value_overflow);
5414
5415      EltTy = LastEnumConst->getType();
5416    } else {
5417      // First value, set to zero.
5418      EltTy = Context.IntTy;
5419      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5420    }
5421  }
5422
5423  assert(!EltTy.isNull() && "Enum constant with NULL type");
5424
5425  val.release();
5426  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5427                                  Val, EnumVal);
5428}
5429
5430
5431Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5432                                        DeclPtrTy lastEnumConst,
5433                                        SourceLocation IdLoc,
5434                                        IdentifierInfo *Id,
5435                                        SourceLocation EqualLoc, ExprTy *val) {
5436  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5437  EnumConstantDecl *LastEnumConst =
5438    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5439  Expr *Val = static_cast<Expr*>(val);
5440
5441  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5442  // we find one that is.
5443  S = getNonFieldDeclScope(S);
5444
5445  // Verify that there isn't already something declared with this name in this
5446  // scope.
5447  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5448  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5449    // Maybe we will complain about the shadowed template parameter.
5450    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5451    // Just pretend that we didn't see the previous declaration.
5452    PrevDecl = 0;
5453  }
5454
5455  if (PrevDecl) {
5456    // When in C++, we may get a TagDecl with the same name; in this case the
5457    // enum constant will 'hide' the tag.
5458    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5459           "Received TagDecl when not in C++!");
5460    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5461      if (isa<EnumConstantDecl>(PrevDecl))
5462        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5463      else
5464        Diag(IdLoc, diag::err_redefinition) << Id;
5465      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5466      if (Val) Val->Destroy(Context);
5467      return DeclPtrTy();
5468    }
5469  }
5470
5471  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5472                                            IdLoc, Id, Owned(Val));
5473
5474  // Register this decl in the current scope stack.
5475  if (New)
5476    PushOnScopeChains(New, S);
5477
5478  return DeclPtrTy::make(New);
5479}
5480
5481void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5482                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5483                         DeclPtrTy *Elements, unsigned NumElements,
5484                         Scope *S, AttributeList *Attr) {
5485  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5486  QualType EnumType = Context.getTypeDeclType(Enum);
5487
5488  if (Attr)
5489    ProcessDeclAttributeList(S, Enum, Attr);
5490
5491  // TODO: If the result value doesn't fit in an int, it must be a long or long
5492  // long value.  ISO C does not support this, but GCC does as an extension,
5493  // emit a warning.
5494  unsigned IntWidth = Context.Target.getIntWidth();
5495  unsigned CharWidth = Context.Target.getCharWidth();
5496  unsigned ShortWidth = Context.Target.getShortWidth();
5497
5498  // Verify that all the values are okay, compute the size of the values, and
5499  // reverse the list.
5500  unsigned NumNegativeBits = 0;
5501  unsigned NumPositiveBits = 0;
5502
5503  // Keep track of whether all elements have type int.
5504  bool AllElementsInt = true;
5505
5506  for (unsigned i = 0; i != NumElements; ++i) {
5507    EnumConstantDecl *ECD =
5508      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5509    if (!ECD) continue;  // Already issued a diagnostic.
5510
5511    // If the enum value doesn't fit in an int, emit an extension warning.
5512    const llvm::APSInt &InitVal = ECD->getInitVal();
5513    assert(InitVal.getBitWidth() >= IntWidth &&
5514           "Should have promoted value to int");
5515    if (InitVal.getBitWidth() > IntWidth) {
5516      llvm::APSInt V(InitVal);
5517      V.trunc(IntWidth);
5518      V.extend(InitVal.getBitWidth());
5519      if (V != InitVal)
5520        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5521          << InitVal.toString(10);
5522    }
5523
5524    // Keep track of the size of positive and negative values.
5525    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5526      NumPositiveBits = std::max(NumPositiveBits,
5527                                 (unsigned)InitVal.getActiveBits());
5528    else
5529      NumNegativeBits = std::max(NumNegativeBits,
5530                                 (unsigned)InitVal.getMinSignedBits());
5531
5532    // Keep track of whether every enum element has type int (very commmon).
5533    if (AllElementsInt)
5534      AllElementsInt = ECD->getType() == Context.IntTy;
5535  }
5536
5537  // Figure out the type that should be used for this enum.
5538  // FIXME: Support -fshort-enums.
5539  QualType BestType;
5540  unsigned BestWidth;
5541
5542  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5543
5544  if (NumNegativeBits) {
5545    // If there is a negative value, figure out the smallest integer type (of
5546    // int/long/longlong) that fits.
5547    // If it's packed, check also if it fits a char or a short.
5548    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5549        BestType = Context.SignedCharTy;
5550        BestWidth = CharWidth;
5551    } else if (Packed && NumNegativeBits <= ShortWidth &&
5552               NumPositiveBits < ShortWidth) {
5553        BestType = Context.ShortTy;
5554        BestWidth = ShortWidth;
5555    }
5556    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5557      BestType = Context.IntTy;
5558      BestWidth = IntWidth;
5559    } else {
5560      BestWidth = Context.Target.getLongWidth();
5561
5562      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5563        BestType = Context.LongTy;
5564      else {
5565        BestWidth = Context.Target.getLongLongWidth();
5566
5567        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5568          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5569        BestType = Context.LongLongTy;
5570      }
5571    }
5572  } else {
5573    // If there is no negative value, figure out which of uint, ulong, ulonglong
5574    // fits.
5575    // If it's packed, check also if it fits a char or a short.
5576    if (Packed && NumPositiveBits <= CharWidth) {
5577        BestType = Context.UnsignedCharTy;
5578        BestWidth = CharWidth;
5579    } else if (Packed && NumPositiveBits <= ShortWidth) {
5580        BestType = Context.UnsignedShortTy;
5581        BestWidth = ShortWidth;
5582    }
5583    else if (NumPositiveBits <= IntWidth) {
5584      BestType = Context.UnsignedIntTy;
5585      BestWidth = IntWidth;
5586    } else if (NumPositiveBits <=
5587               (BestWidth = Context.Target.getLongWidth())) {
5588      BestType = Context.UnsignedLongTy;
5589    } else {
5590      BestWidth = Context.Target.getLongLongWidth();
5591      assert(NumPositiveBits <= BestWidth &&
5592             "How could an initializer get larger than ULL?");
5593      BestType = Context.UnsignedLongLongTy;
5594    }
5595  }
5596
5597  // Loop over all of the enumerator constants, changing their types to match
5598  // the type of the enum if needed.
5599  for (unsigned i = 0; i != NumElements; ++i) {
5600    EnumConstantDecl *ECD =
5601      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5602    if (!ECD) continue;  // Already issued a diagnostic.
5603
5604    // Standard C says the enumerators have int type, but we allow, as an
5605    // extension, the enumerators to be larger than int size.  If each
5606    // enumerator value fits in an int, type it as an int, otherwise type it the
5607    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5608    // that X has type 'int', not 'unsigned'.
5609    if (ECD->getType() == Context.IntTy) {
5610      // Make sure the init value is signed.
5611      llvm::APSInt IV = ECD->getInitVal();
5612      IV.setIsSigned(true);
5613      ECD->setInitVal(IV);
5614
5615      if (getLangOptions().CPlusPlus)
5616        // C++ [dcl.enum]p4: Following the closing brace of an
5617        // enum-specifier, each enumerator has the type of its
5618        // enumeration.
5619        ECD->setType(EnumType);
5620      continue;  // Already int type.
5621    }
5622
5623    // Determine whether the value fits into an int.
5624    llvm::APSInt InitVal = ECD->getInitVal();
5625    bool FitsInInt;
5626    if (InitVal.isUnsigned() || !InitVal.isNegative())
5627      FitsInInt = InitVal.getActiveBits() < IntWidth;
5628    else
5629      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5630
5631    // If it fits into an integer type, force it.  Otherwise force it to match
5632    // the enum decl type.
5633    QualType NewTy;
5634    unsigned NewWidth;
5635    bool NewSign;
5636    if (FitsInInt) {
5637      NewTy = Context.IntTy;
5638      NewWidth = IntWidth;
5639      NewSign = true;
5640    } else if (ECD->getType() == BestType) {
5641      // Already the right type!
5642      if (getLangOptions().CPlusPlus)
5643        // C++ [dcl.enum]p4: Following the closing brace of an
5644        // enum-specifier, each enumerator has the type of its
5645        // enumeration.
5646        ECD->setType(EnumType);
5647      continue;
5648    } else {
5649      NewTy = BestType;
5650      NewWidth = BestWidth;
5651      NewSign = BestType->isSignedIntegerType();
5652    }
5653
5654    // Adjust the APSInt value.
5655    InitVal.extOrTrunc(NewWidth);
5656    InitVal.setIsSigned(NewSign);
5657    ECD->setInitVal(InitVal);
5658
5659    // Adjust the Expr initializer and type.
5660    if (ECD->getInitExpr())
5661      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5662                                                      CastExpr::CK_IntegralCast,
5663                                                      ECD->getInitExpr(),
5664                                                      /*isLvalue=*/false));
5665    if (getLangOptions().CPlusPlus)
5666      // C++ [dcl.enum]p4: Following the closing brace of an
5667      // enum-specifier, each enumerator has the type of its
5668      // enumeration.
5669      ECD->setType(EnumType);
5670    else
5671      ECD->setType(NewTy);
5672  }
5673
5674  Enum->completeDefinition(Context, BestType);
5675}
5676
5677Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5678                                            ExprArg expr) {
5679  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5680
5681  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5682                                                   Loc, AsmString);
5683  CurContext->addDecl(New);
5684  return DeclPtrTy::make(New);
5685}
5686
5687void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5688                             SourceLocation PragmaLoc,
5689                             SourceLocation NameLoc) {
5690  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5691
5692  if (PrevDecl) {
5693    PrevDecl->addAttr(::new (Context) WeakAttr());
5694  } else {
5695    (void)WeakUndeclaredIdentifiers.insert(
5696      std::pair<IdentifierInfo*,WeakInfo>
5697        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5698  }
5699}
5700
5701void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5702                                IdentifierInfo* AliasName,
5703                                SourceLocation PragmaLoc,
5704                                SourceLocation NameLoc,
5705                                SourceLocation AliasNameLoc) {
5706  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5707  WeakInfo W = WeakInfo(Name, NameLoc);
5708
5709  if (PrevDecl) {
5710    if (!PrevDecl->hasAttr<AliasAttr>())
5711      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5712        DeclApplyPragmaWeak(TUScope, ND, W);
5713  } else {
5714    (void)WeakUndeclaredIdentifiers.insert(
5715      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5716  }
5717}
5718