SemaDecl.cpp revision f7687944a88b6e5117443af2c8518cdd8fe77161
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // Check whether we can use this type
68      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // Check whether we can use this interface.
75      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end()) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false);
338  New->setImplicit();
339
340  // Create Decl objects for each parameter, adding them to the
341  // FunctionDecl.
342  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
343    llvm::SmallVector<ParmVarDecl*, 16> Params;
344    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
345      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
346                                           FT->getArgType(i), VarDecl::None, 0));
347    New->setParams(Context, &Params[0], Params.size());
348  }
349
350  AddKnownFunctionAttributes(New);
351
352  // TUScope is the translation-unit scope to insert this function into.
353  // FIXME: This is hideous. We need to teach PushOnScopeChains to
354  // relate Scopes to DeclContexts, and probably eliminate CurContext
355  // entirely, but we're not there yet.
356  DeclContext *SavedContext = CurContext;
357  CurContext = Context.getTranslationUnitDecl();
358  PushOnScopeChains(New, TUScope);
359  CurContext = SavedContext;
360  return New;
361}
362
363/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
364/// everything from the standard library is defined.
365NamespaceDecl *Sema::GetStdNamespace() {
366  if (!StdNamespace) {
367    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
368    DeclContext *Global = Context.getTranslationUnitDecl();
369    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
370    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
371  }
372  return StdNamespace;
373}
374
375/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
376/// same name and scope as a previous declaration 'Old'.  Figure out
377/// how to resolve this situation, merging decls or emitting
378/// diagnostics as appropriate. Returns true if there was an error,
379/// false otherwise.
380///
381bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
382  bool objc_types = false;
383  // Allow multiple definitions for ObjC built-in typedefs.
384  // FIXME: Verify the underlying types are equivalent!
385  if (getLangOptions().ObjC1) {
386    const IdentifierInfo *TypeID = New->getIdentifier();
387    switch (TypeID->getLength()) {
388    default: break;
389    case 2:
390      if (!TypeID->isStr("id"))
391        break;
392      Context.setObjCIdType(New);
393      objc_types = true;
394      break;
395    case 5:
396      if (!TypeID->isStr("Class"))
397        break;
398      Context.setObjCClassType(New);
399      objc_types = true;
400      return false;
401    case 3:
402      if (!TypeID->isStr("SEL"))
403        break;
404      Context.setObjCSelType(New);
405      objc_types = true;
406      return false;
407    case 8:
408      if (!TypeID->isStr("Protocol"))
409        break;
410      Context.setObjCProtoType(New->getUnderlyingType());
411      objc_types = true;
412      return false;
413    }
414    // Fall through - the typedef name was not a builtin type.
415  }
416  // Verify the old decl was also a type.
417  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
418  if (!Old) {
419    Diag(New->getLocation(), diag::err_redefinition_different_kind)
420      << New->getDeclName();
421    if (!objc_types)
422      Diag(OldD->getLocation(), diag::note_previous_definition);
423    return true;
424  }
425
426  // Determine the "old" type we'll use for checking and diagnostics.
427  QualType OldType;
428  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
429    OldType = OldTypedef->getUnderlyingType();
430  else
431    OldType = Context.getTypeDeclType(Old);
432
433  // If the typedef types are not identical, reject them in all languages and
434  // with any extensions enabled.
435
436  if (OldType != New->getUnderlyingType() &&
437      Context.getCanonicalType(OldType) !=
438      Context.getCanonicalType(New->getUnderlyingType())) {
439    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
440      << New->getUnderlyingType() << OldType;
441    if (!objc_types)
442      Diag(Old->getLocation(), diag::note_previous_definition);
443    return true;
444  }
445  if (objc_types) return false;
446  if (getLangOptions().Microsoft) return false;
447
448  // C++ [dcl.typedef]p2:
449  //   In a given non-class scope, a typedef specifier can be used to
450  //   redefine the name of any type declared in that scope to refer
451  //   to the type to which it already refers.
452  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
453    return false;
454
455  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
456  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
457  // *either* declaration is in a system header. The code below implements
458  // this adhoc compatibility rule. FIXME: The following code will not
459  // work properly when compiling ".i" files (containing preprocessed output).
460  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
461    SourceManager &SrcMgr = Context.getSourceManager();
462    if (SrcMgr.isInSystemHeader(Old->getLocation()))
463      return false;
464    if (SrcMgr.isInSystemHeader(New->getLocation()))
465      return false;
466  }
467
468  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
469  Diag(Old->getLocation(), diag::note_previous_definition);
470  return true;
471}
472
473/// DeclhasAttr - returns true if decl Declaration already has the target
474/// attribute.
475static bool DeclHasAttr(const Decl *decl, const Attr *target) {
476  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
477    if (attr->getKind() == target->getKind())
478      return true;
479
480  return false;
481}
482
483/// MergeAttributes - append attributes from the Old decl to the New one.
484static void MergeAttributes(Decl *New, Decl *Old) {
485  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
486
487  while (attr) {
488    tmp = attr;
489    attr = attr->getNext();
490
491    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
492      tmp->setInherited(true);
493      New->addAttr(tmp);
494    } else {
495      tmp->setNext(0);
496      delete(tmp);
497    }
498  }
499
500  Old->invalidateAttrs();
501}
502
503/// MergeFunctionDecl - We just parsed a function 'New' from
504/// declarator D which has the same name and scope as a previous
505/// declaration 'Old'.  Figure out how to resolve this situation,
506/// merging decls or emitting diagnostics as appropriate.
507///
508/// In C++, New and Old must be declarations that are not
509/// overloaded. Use IsOverload to determine whether New and Old are
510/// overloaded, and to select the Old declaration that New should be
511/// merged with.
512///
513/// Returns true if there was an error, false otherwise.
514bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
515  assert(!isa<OverloadedFunctionDecl>(OldD) &&
516         "Cannot merge with an overloaded function declaration");
517
518  // Verify the old decl was also a function.
519  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
520  if (!Old) {
521    Diag(New->getLocation(), diag::err_redefinition_different_kind)
522      << New->getDeclName();
523    Diag(OldD->getLocation(), diag::note_previous_definition);
524    return true;
525  }
526
527  // Determine whether the previous declaration was a definition,
528  // implicit declaration, or a declaration.
529  diag::kind PrevDiag;
530  if (Old->isThisDeclarationADefinition())
531    PrevDiag = diag::note_previous_definition;
532  else if (Old->isImplicit())
533    PrevDiag = diag::note_previous_implicit_declaration;
534  else
535    PrevDiag = diag::note_previous_declaration;
536
537  QualType OldQType = Context.getCanonicalType(Old->getType());
538  QualType NewQType = Context.getCanonicalType(New->getType());
539
540  if (getLangOptions().CPlusPlus) {
541    // (C++98 13.1p2):
542    //   Certain function declarations cannot be overloaded:
543    //     -- Function declarations that differ only in the return type
544    //        cannot be overloaded.
545    QualType OldReturnType
546      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
547    QualType NewReturnType
548      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
549    if (OldReturnType != NewReturnType) {
550      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
551      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
552      return true;
553    }
554
555    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
556    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
557    if (OldMethod && NewMethod) {
558      //    -- Member function declarations with the same name and the
559      //       same parameter types cannot be overloaded if any of them
560      //       is a static member function declaration.
561      if (OldMethod->isStatic() || NewMethod->isStatic()) {
562        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
563        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
564        return true;
565      }
566
567      // C++ [class.mem]p1:
568      //   [...] A member shall not be declared twice in the
569      //   member-specification, except that a nested class or member
570      //   class template can be declared and then later defined.
571      if (OldMethod->getLexicalDeclContext() ==
572            NewMethod->getLexicalDeclContext()) {
573        unsigned NewDiag;
574        if (isa<CXXConstructorDecl>(OldMethod))
575          NewDiag = diag::err_constructor_redeclared;
576        else if (isa<CXXDestructorDecl>(NewMethod))
577          NewDiag = diag::err_destructor_redeclared;
578        else if (isa<CXXConversionDecl>(NewMethod))
579          NewDiag = diag::err_conv_function_redeclared;
580        else
581          NewDiag = diag::err_member_redeclared;
582
583        Diag(New->getLocation(), NewDiag);
584        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
585      }
586    }
587
588    // (C++98 8.3.5p3):
589    //   All declarations for a function shall agree exactly in both the
590    //   return type and the parameter-type-list.
591    if (OldQType == NewQType) {
592      // We have a redeclaration.
593      MergeAttributes(New, Old);
594
595      // Merge the "deleted" flag.
596      if (Old->isDeleted())
597        New->setDeleted();
598
599      return MergeCXXFunctionDecl(New, Old);
600    }
601
602    // Fall through for conflicting redeclarations and redefinitions.
603  }
604
605  // C: Function types need to be compatible, not identical. This handles
606  // duplicate function decls like "void f(int); void f(enum X);" properly.
607  if (!getLangOptions().CPlusPlus &&
608      Context.typesAreCompatible(OldQType, NewQType)) {
609    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
610    const FunctionTypeProto *OldProto = 0;
611    if (isa<FunctionTypeNoProto>(NewFuncType) &&
612        (OldProto = OldQType->getAsFunctionTypeProto())) {
613      // The old declaration provided a function prototype, but the
614      // new declaration does not. Merge in the prototype.
615      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
616                                                 OldProto->arg_type_end());
617      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
618                                         &ParamTypes[0], ParamTypes.size(),
619                                         OldProto->isVariadic(),
620                                         OldProto->getTypeQuals());
621      New->setType(NewQType);
622      New->setInheritedPrototype();
623
624      // Synthesize a parameter for each argument type.
625      llvm::SmallVector<ParmVarDecl*, 16> Params;
626      for (FunctionTypeProto::arg_type_iterator
627             ParamType = OldProto->arg_type_begin(),
628             ParamEnd = OldProto->arg_type_end();
629           ParamType != ParamEnd; ++ParamType) {
630        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
631                                                 SourceLocation(), 0,
632                                                 *ParamType, VarDecl::None,
633                                                 0);
634        Param->setImplicit();
635        Params.push_back(Param);
636      }
637
638      New->setParams(Context, &Params[0], Params.size());
639
640    }
641
642    MergeAttributes(New, Old);
643
644    // Merge the "deleted" flag.
645    if (Old->isDeleted())
646      New->setDeleted();
647
648    return false;
649  }
650
651  // A function that has already been declared has been redeclared or defined
652  // with a different type- show appropriate diagnostic
653  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
654    // The user has declared a builtin function with an incompatible
655    // signature.
656    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
657      // The function the user is redeclaring is a library-defined
658      // function like 'malloc' or 'printf'. Warn about the
659      // redeclaration, then ignore it.
660      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
661      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
662        << Old << Old->getType();
663      return true;
664    }
665
666    PrevDiag = diag::note_previous_builtin_declaration;
667  }
668
669  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
670  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
671  return true;
672}
673
674/// Predicate for C "tentative" external object definitions (C99 6.9.2).
675static bool isTentativeDefinition(VarDecl *VD) {
676  if (VD->isFileVarDecl())
677    return (!VD->getInit() &&
678            (VD->getStorageClass() == VarDecl::None ||
679             VD->getStorageClass() == VarDecl::Static));
680  return false;
681}
682
683/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
684/// when dealing with C "tentative" external object definitions (C99 6.9.2).
685void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
686  bool VDIsTentative = isTentativeDefinition(VD);
687  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
688
689  // FIXME: I don't think this will actually see all of the
690  // redefinitions. Can't we check this property on-the-fly?
691  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
692                                    E = IdResolver.end();
693       I != E; ++I) {
694    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
695      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
696
697      // Handle the following case:
698      //   int a[10];
699      //   int a[];   - the code below makes sure we set the correct type.
700      //   int a[11]; - this is an error, size isn't 10.
701      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
702          OldDecl->getType()->isConstantArrayType())
703        VD->setType(OldDecl->getType());
704
705      // Check for "tentative" definitions. We can't accomplish this in
706      // MergeVarDecl since the initializer hasn't been attached.
707      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
708        continue;
709
710      // Handle __private_extern__ just like extern.
711      if (OldDecl->getStorageClass() != VarDecl::Extern &&
712          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
713          VD->getStorageClass() != VarDecl::Extern &&
714          VD->getStorageClass() != VarDecl::PrivateExtern) {
715        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
716        Diag(OldDecl->getLocation(), diag::note_previous_definition);
717        // One redefinition error is enough.
718        break;
719      }
720    }
721  }
722}
723
724/// MergeVarDecl - We just parsed a variable 'New' which has the same name
725/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
726/// situation, merging decls or emitting diagnostics as appropriate.
727///
728/// Tentative definition rules (C99 6.9.2p2) are checked by
729/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
730/// definitions here, since the initializer hasn't been attached.
731///
732bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
733  // Verify the old decl was also a variable.
734  VarDecl *Old = dyn_cast<VarDecl>(OldD);
735  if (!Old) {
736    Diag(New->getLocation(), diag::err_redefinition_different_kind)
737      << New->getDeclName();
738    Diag(OldD->getLocation(), diag::note_previous_definition);
739    return true;
740  }
741
742  MergeAttributes(New, Old);
743
744  // Merge the types
745  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
746  if (MergedT.isNull()) {
747    Diag(New->getLocation(), diag::err_redefinition_different_type)
748      << New->getDeclName();
749    Diag(Old->getLocation(), diag::note_previous_definition);
750    return true;
751  }
752  New->setType(MergedT);
753  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
754  if (New->getStorageClass() == VarDecl::Static &&
755      (Old->getStorageClass() == VarDecl::None ||
756       Old->getStorageClass() == VarDecl::Extern)) {
757    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
758    Diag(Old->getLocation(), diag::note_previous_definition);
759    return true;
760  }
761  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
762  if (New->getStorageClass() != VarDecl::Static &&
763      Old->getStorageClass() == VarDecl::Static) {
764    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
765    Diag(Old->getLocation(), diag::note_previous_definition);
766    return true;
767  }
768  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
769  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
770    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
771    Diag(Old->getLocation(), diag::note_previous_definition);
772    return true;
773  }
774  return false;
775}
776
777/// CheckParmsForFunctionDef - Check that the parameters of the given
778/// function are appropriate for the definition of a function. This
779/// takes care of any checks that cannot be performed on the
780/// declaration itself, e.g., that the types of each of the function
781/// parameters are complete.
782bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
783  bool HasInvalidParm = false;
784  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
785    ParmVarDecl *Param = FD->getParamDecl(p);
786
787    // C99 6.7.5.3p4: the parameters in a parameter type list in a
788    // function declarator that is part of a function definition of
789    // that function shall not have incomplete type.
790    if (!Param->isInvalidDecl() &&
791        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
792                               diag::err_typecheck_decl_incomplete_type)) {
793      Param->setInvalidDecl();
794      HasInvalidParm = true;
795    }
796
797    // C99 6.9.1p5: If the declarator includes a parameter type list, the
798    // declaration of each parameter shall include an identifier.
799    if (Param->getIdentifier() == 0 &&
800        !Param->isImplicit() &&
801        !getLangOptions().CPlusPlus)
802      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
803  }
804
805  return HasInvalidParm;
806}
807
808/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
809/// no declarator (e.g. "struct foo;") is parsed.
810Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
811  TagDecl *Tag = 0;
812  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
813      DS.getTypeSpecType() == DeclSpec::TST_struct ||
814      DS.getTypeSpecType() == DeclSpec::TST_union ||
815      DS.getTypeSpecType() == DeclSpec::TST_enum)
816    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
817
818  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
819    if (!Record->getDeclName() && Record->isDefinition() &&
820        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
821      return BuildAnonymousStructOrUnion(S, DS, Record);
822
823    // Microsoft allows unnamed struct/union fields. Don't complain
824    // about them.
825    // FIXME: Should we support Microsoft's extensions in this area?
826    if (Record->getDeclName() && getLangOptions().Microsoft)
827      return Tag;
828  }
829
830  if (!DS.isMissingDeclaratorOk() &&
831      DS.getTypeSpecType() != DeclSpec::TST_error) {
832    // Warn about typedefs of enums without names, since this is an
833    // extension in both Microsoft an GNU.
834    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
835        Tag && isa<EnumDecl>(Tag)) {
836      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
837        << DS.getSourceRange();
838      return Tag;
839    }
840
841    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
842      << DS.getSourceRange();
843    return 0;
844  }
845
846  return Tag;
847}
848
849/// InjectAnonymousStructOrUnionMembers - Inject the members of the
850/// anonymous struct or union AnonRecord into the owning context Owner
851/// and scope S. This routine will be invoked just after we realize
852/// that an unnamed union or struct is actually an anonymous union or
853/// struct, e.g.,
854///
855/// @code
856/// union {
857///   int i;
858///   float f;
859/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
860///    // f into the surrounding scope.x
861/// @endcode
862///
863/// This routine is recursive, injecting the names of nested anonymous
864/// structs/unions into the owning context and scope as well.
865bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
866                                               RecordDecl *AnonRecord) {
867  bool Invalid = false;
868  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
869                               FEnd = AnonRecord->field_end();
870       F != FEnd; ++F) {
871    if ((*F)->getDeclName()) {
872      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
873                                                LookupOrdinaryName, true);
874      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
875        // C++ [class.union]p2:
876        //   The names of the members of an anonymous union shall be
877        //   distinct from the names of any other entity in the
878        //   scope in which the anonymous union is declared.
879        unsigned diagKind
880          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
881                                 : diag::err_anonymous_struct_member_redecl;
882        Diag((*F)->getLocation(), diagKind)
883          << (*F)->getDeclName();
884        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
885        Invalid = true;
886      } else {
887        // C++ [class.union]p2:
888        //   For the purpose of name lookup, after the anonymous union
889        //   definition, the members of the anonymous union are
890        //   considered to have been defined in the scope in which the
891        //   anonymous union is declared.
892        Owner->makeDeclVisibleInContext(*F);
893        S->AddDecl(*F);
894        IdResolver.AddDecl(*F);
895      }
896    } else if (const RecordType *InnerRecordType
897                 = (*F)->getType()->getAsRecordType()) {
898      RecordDecl *InnerRecord = InnerRecordType->getDecl();
899      if (InnerRecord->isAnonymousStructOrUnion())
900        Invalid = Invalid ||
901          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
902    }
903  }
904
905  return Invalid;
906}
907
908/// ActOnAnonymousStructOrUnion - Handle the declaration of an
909/// anonymous structure or union. Anonymous unions are a C++ feature
910/// (C++ [class.union]) and a GNU C extension; anonymous structures
911/// are a GNU C and GNU C++ extension.
912Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
913                                                RecordDecl *Record) {
914  DeclContext *Owner = Record->getDeclContext();
915
916  // Diagnose whether this anonymous struct/union is an extension.
917  if (Record->isUnion() && !getLangOptions().CPlusPlus)
918    Diag(Record->getLocation(), diag::ext_anonymous_union);
919  else if (!Record->isUnion())
920    Diag(Record->getLocation(), diag::ext_anonymous_struct);
921
922  // C and C++ require different kinds of checks for anonymous
923  // structs/unions.
924  bool Invalid = false;
925  if (getLangOptions().CPlusPlus) {
926    const char* PrevSpec = 0;
927    // C++ [class.union]p3:
928    //   Anonymous unions declared in a named namespace or in the
929    //   global namespace shall be declared static.
930    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
931        (isa<TranslationUnitDecl>(Owner) ||
932         (isa<NamespaceDecl>(Owner) &&
933          cast<NamespaceDecl>(Owner)->getDeclName()))) {
934      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
935      Invalid = true;
936
937      // Recover by adding 'static'.
938      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
939    }
940    // C++ [class.union]p3:
941    //   A storage class is not allowed in a declaration of an
942    //   anonymous union in a class scope.
943    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
944             isa<RecordDecl>(Owner)) {
945      Diag(DS.getStorageClassSpecLoc(),
946           diag::err_anonymous_union_with_storage_spec);
947      Invalid = true;
948
949      // Recover by removing the storage specifier.
950      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
951                             PrevSpec);
952    }
953
954    // C++ [class.union]p2:
955    //   The member-specification of an anonymous union shall only
956    //   define non-static data members. [Note: nested types and
957    //   functions cannot be declared within an anonymous union. ]
958    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
959                                 MemEnd = Record->decls_end();
960         Mem != MemEnd; ++Mem) {
961      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
962        // C++ [class.union]p3:
963        //   An anonymous union shall not have private or protected
964        //   members (clause 11).
965        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
966          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
967            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
968          Invalid = true;
969        }
970      } else if ((*Mem)->isImplicit()) {
971        // Any implicit members are fine.
972      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
973        // This is a type that showed up in an
974        // elaborated-type-specifier inside the anonymous struct or
975        // union, but which actually declares a type outside of the
976        // anonymous struct or union. It's okay.
977      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
978        if (!MemRecord->isAnonymousStructOrUnion() &&
979            MemRecord->getDeclName()) {
980          // This is a nested type declaration.
981          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
982            << (int)Record->isUnion();
983          Invalid = true;
984        }
985      } else {
986        // We have something that isn't a non-static data
987        // member. Complain about it.
988        unsigned DK = diag::err_anonymous_record_bad_member;
989        if (isa<TypeDecl>(*Mem))
990          DK = diag::err_anonymous_record_with_type;
991        else if (isa<FunctionDecl>(*Mem))
992          DK = diag::err_anonymous_record_with_function;
993        else if (isa<VarDecl>(*Mem))
994          DK = diag::err_anonymous_record_with_static;
995        Diag((*Mem)->getLocation(), DK)
996            << (int)Record->isUnion();
997          Invalid = true;
998      }
999    }
1000  } else {
1001    // FIXME: Check GNU C semantics
1002    if (Record->isUnion() && !Owner->isRecord()) {
1003      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1004        << (int)getLangOptions().CPlusPlus;
1005      Invalid = true;
1006    }
1007  }
1008
1009  if (!Record->isUnion() && !Owner->isRecord()) {
1010    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1011      << (int)getLangOptions().CPlusPlus;
1012    Invalid = true;
1013  }
1014
1015  // Create a declaration for this anonymous struct/union.
1016  NamedDecl *Anon = 0;
1017  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1018    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1019                             /*IdentifierInfo=*/0,
1020                             Context.getTypeDeclType(Record),
1021                             /*BitWidth=*/0, /*Mutable=*/false);
1022    Anon->setAccess(AS_public);
1023    if (getLangOptions().CPlusPlus)
1024      FieldCollector->Add(cast<FieldDecl>(Anon));
1025  } else {
1026    VarDecl::StorageClass SC;
1027    switch (DS.getStorageClassSpec()) {
1028    default: assert(0 && "Unknown storage class!");
1029    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1030    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1031    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1032    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1033    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1034    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1035    case DeclSpec::SCS_mutable:
1036      // mutable can only appear on non-static class members, so it's always
1037      // an error here
1038      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1039      Invalid = true;
1040      SC = VarDecl::None;
1041      break;
1042    }
1043
1044    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1045                           /*IdentifierInfo=*/0,
1046                           Context.getTypeDeclType(Record),
1047                           SC, DS.getSourceRange().getBegin());
1048  }
1049  Anon->setImplicit();
1050
1051  // Add the anonymous struct/union object to the current
1052  // context. We'll be referencing this object when we refer to one of
1053  // its members.
1054  Owner->addDecl(Anon);
1055
1056  // Inject the members of the anonymous struct/union into the owning
1057  // context and into the identifier resolver chain for name lookup
1058  // purposes.
1059  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1060    Invalid = true;
1061
1062  // Mark this as an anonymous struct/union type. Note that we do not
1063  // do this until after we have already checked and injected the
1064  // members of this anonymous struct/union type, because otherwise
1065  // the members could be injected twice: once by DeclContext when it
1066  // builds its lookup table, and once by
1067  // InjectAnonymousStructOrUnionMembers.
1068  Record->setAnonymousStructOrUnion(true);
1069
1070  if (Invalid)
1071    Anon->setInvalidDecl();
1072
1073  return Anon;
1074}
1075
1076bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1077                                  bool DirectInit) {
1078  // Get the type before calling CheckSingleAssignmentConstraints(), since
1079  // it can promote the expression.
1080  QualType InitType = Init->getType();
1081
1082  if (getLangOptions().CPlusPlus) {
1083    // FIXME: I dislike this error message. A lot.
1084    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1085      return Diag(Init->getSourceRange().getBegin(),
1086                  diag::err_typecheck_convert_incompatible)
1087        << DeclType << Init->getType() << "initializing"
1088        << Init->getSourceRange();
1089
1090    return false;
1091  }
1092
1093  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1094  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1095                                  InitType, Init, "initializing");
1096}
1097
1098bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1099  const ArrayType *AT = Context.getAsArrayType(DeclT);
1100
1101  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1102    // C99 6.7.8p14. We have an array of character type with unknown size
1103    // being initialized to a string literal.
1104    llvm::APSInt ConstVal(32);
1105    ConstVal = strLiteral->getByteLength() + 1;
1106    // Return a new array type (C99 6.7.8p22).
1107    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1108                                         ArrayType::Normal, 0);
1109  } else {
1110    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1111    // C99 6.7.8p14. We have an array of character type with known size.
1112    // FIXME: Avoid truncation for 64-bit length strings.
1113    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1114      Diag(strLiteral->getSourceRange().getBegin(),
1115           diag::warn_initializer_string_for_char_array_too_long)
1116        << strLiteral->getSourceRange();
1117  }
1118  // Set type from "char *" to "constant array of char".
1119  strLiteral->setType(DeclT);
1120  // For now, we always return false (meaning success).
1121  return false;
1122}
1123
1124StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1125  const ArrayType *AT = Context.getAsArrayType(DeclType);
1126  if (AT && AT->getElementType()->isCharType()) {
1127    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1128  }
1129  return 0;
1130}
1131
1132bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1133                                 SourceLocation InitLoc,
1134                                 DeclarationName InitEntity,
1135                                 bool DirectInit) {
1136  if (DeclType->isDependentType() || Init->isTypeDependent())
1137    return false;
1138
1139  // C++ [dcl.init.ref]p1:
1140  //   A variable declared to be a T&, that is "reference to type T"
1141  //   (8.3.2), shall be initialized by an object, or function, of
1142  //   type T or by an object that can be converted into a T.
1143  if (DeclType->isReferenceType())
1144    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1145
1146  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1147  // of unknown size ("[]") or an object type that is not a variable array type.
1148  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1149    return Diag(InitLoc,  diag::err_variable_object_no_init)
1150      << VAT->getSizeExpr()->getSourceRange();
1151
1152  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1153  if (!InitList) {
1154    // FIXME: Handle wide strings
1155    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1156      return CheckStringLiteralInit(strLiteral, DeclType);
1157
1158    // C++ [dcl.init]p14:
1159    //   -- If the destination type is a (possibly cv-qualified) class
1160    //      type:
1161    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1162      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1163      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1164
1165      //   -- If the initialization is direct-initialization, or if it is
1166      //      copy-initialization where the cv-unqualified version of the
1167      //      source type is the same class as, or a derived class of, the
1168      //      class of the destination, constructors are considered.
1169      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1170          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1171        CXXConstructorDecl *Constructor
1172          = PerformInitializationByConstructor(DeclType, &Init, 1,
1173                                               InitLoc, Init->getSourceRange(),
1174                                               InitEntity,
1175                                               DirectInit? IK_Direct : IK_Copy);
1176        return Constructor == 0;
1177      }
1178
1179      //   -- Otherwise (i.e., for the remaining copy-initialization
1180      //      cases), user-defined conversion sequences that can
1181      //      convert from the source type to the destination type or
1182      //      (when a conversion function is used) to a derived class
1183      //      thereof are enumerated as described in 13.3.1.4, and the
1184      //      best one is chosen through overload resolution
1185      //      (13.3). If the conversion cannot be done or is
1186      //      ambiguous, the initialization is ill-formed. The
1187      //      function selected is called with the initializer
1188      //      expression as its argument; if the function is a
1189      //      constructor, the call initializes a temporary of the
1190      //      destination type.
1191      // FIXME: We're pretending to do copy elision here; return to
1192      // this when we have ASTs for such things.
1193      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1194        return false;
1195
1196      if (InitEntity)
1197        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1198          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1199          << Init->getType() << Init->getSourceRange();
1200      else
1201        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1202          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1203          << Init->getType() << Init->getSourceRange();
1204    }
1205
1206    // C99 6.7.8p16.
1207    if (DeclType->isArrayType())
1208      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1209        << Init->getSourceRange();
1210
1211    return CheckSingleInitializer(Init, DeclType, DirectInit);
1212  }
1213
1214  bool hadError = CheckInitList(InitList, DeclType);
1215  Init = InitList;
1216  return hadError;
1217}
1218
1219/// GetNameForDeclarator - Determine the full declaration name for the
1220/// given Declarator.
1221DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1222  switch (D.getKind()) {
1223  case Declarator::DK_Abstract:
1224    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1225    return DeclarationName();
1226
1227  case Declarator::DK_Normal:
1228    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1229    return DeclarationName(D.getIdentifier());
1230
1231  case Declarator::DK_Constructor: {
1232    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1233    Ty = Context.getCanonicalType(Ty);
1234    return Context.DeclarationNames.getCXXConstructorName(Ty);
1235  }
1236
1237  case Declarator::DK_Destructor: {
1238    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1239    Ty = Context.getCanonicalType(Ty);
1240    return Context.DeclarationNames.getCXXDestructorName(Ty);
1241  }
1242
1243  case Declarator::DK_Conversion: {
1244    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1245    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1246    Ty = Context.getCanonicalType(Ty);
1247    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1248  }
1249
1250  case Declarator::DK_Operator:
1251    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1252    return Context.DeclarationNames.getCXXOperatorName(
1253                                                D.getOverloadedOperator());
1254  }
1255
1256  assert(false && "Unknown name kind");
1257  return DeclarationName();
1258}
1259
1260/// isNearlyMatchingFunction - Determine whether the C++ functions
1261/// Declaration and Definition are "nearly" matching. This heuristic
1262/// is used to improve diagnostics in the case where an out-of-line
1263/// function definition doesn't match any declaration within
1264/// the class or namespace.
1265static bool isNearlyMatchingFunction(ASTContext &Context,
1266                                     FunctionDecl *Declaration,
1267                                     FunctionDecl *Definition) {
1268  if (Declaration->param_size() != Definition->param_size())
1269    return false;
1270  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1271    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1272    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1273
1274    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1275    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1276    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1277      return false;
1278  }
1279
1280  return true;
1281}
1282
1283Sema::DeclTy *
1284Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1285                      bool IsFunctionDefinition) {
1286  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1287  DeclarationName Name = GetNameForDeclarator(D);
1288
1289  // All of these full declarators require an identifier.  If it doesn't have
1290  // one, the ParsedFreeStandingDeclSpec action should be used.
1291  if (!Name) {
1292    if (!D.getInvalidType())  // Reject this if we think it is valid.
1293      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1294           diag::err_declarator_need_ident)
1295        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1296    return 0;
1297  }
1298
1299  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1300  // we find one that is.
1301  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1302         (S->getFlags() & Scope::TemplateParamScope) != 0)
1303    S = S->getParent();
1304
1305  DeclContext *DC;
1306  NamedDecl *PrevDecl;
1307  NamedDecl *New;
1308  bool InvalidDecl = false;
1309
1310  // See if this is a redefinition of a variable in the same scope.
1311  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1312    DC = CurContext;
1313    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true,
1314                          D.getDeclSpec().getStorageClassSpec() !=
1315                            DeclSpec::SCS_static,
1316                          D.getIdentifierLoc());
1317  } else { // Something like "int foo::x;"
1318    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1319    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1320
1321    // C++ 7.3.1.2p2:
1322    // Members (including explicit specializations of templates) of a named
1323    // namespace can also be defined outside that namespace by explicit
1324    // qualification of the name being defined, provided that the entity being
1325    // defined was already declared in the namespace and the definition appears
1326    // after the point of declaration in a namespace that encloses the
1327    // declarations namespace.
1328    //
1329    // Note that we only check the context at this point. We don't yet
1330    // have enough information to make sure that PrevDecl is actually
1331    // the declaration we want to match. For example, given:
1332    //
1333    //   class X {
1334    //     void f();
1335    //     void f(float);
1336    //   };
1337    //
1338    //   void X::f(int) { } // ill-formed
1339    //
1340    // In this case, PrevDecl will point to the overload set
1341    // containing the two f's declared in X, but neither of them
1342    // matches.
1343
1344    // First check whether we named the global scope.
1345    if (isa<TranslationUnitDecl>(DC)) {
1346      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1347        << Name << D.getCXXScopeSpec().getRange();
1348    } else if (!CurContext->Encloses(DC)) {
1349      // The qualifying scope doesn't enclose the original declaration.
1350      // Emit diagnostic based on current scope.
1351      SourceLocation L = D.getIdentifierLoc();
1352      SourceRange R = D.getCXXScopeSpec().getRange();
1353      if (isa<FunctionDecl>(CurContext))
1354        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1355      else
1356        Diag(L, diag::err_invalid_declarator_scope)
1357          << Name << cast<NamedDecl>(DC) << R;
1358      InvalidDecl = true;
1359    }
1360  }
1361
1362  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1363    // Maybe we will complain about the shadowed template parameter.
1364    InvalidDecl = InvalidDecl
1365      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1366    // Just pretend that we didn't see the previous declaration.
1367    PrevDecl = 0;
1368  }
1369
1370  // In C++, the previous declaration we find might be a tag type
1371  // (class or enum). In this case, the new declaration will hide the
1372  // tag type. Note that this does does not apply if we're declaring a
1373  // typedef (C++ [dcl.typedef]p4).
1374  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1375      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1376    PrevDecl = 0;
1377
1378  QualType R = GetTypeForDeclarator(D, S);
1379  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1380
1381  bool Redeclaration = false;
1382  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1383    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1384                                 InvalidDecl, Redeclaration);
1385  } else if (R.getTypePtr()->isFunctionType()) {
1386    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1387                                  IsFunctionDefinition, InvalidDecl,
1388                                  Redeclaration);
1389  } else {
1390    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1391                                  InvalidDecl, Redeclaration);
1392  }
1393
1394  if (New == 0)
1395    return 0;
1396
1397  // Set the lexical context. If the declarator has a C++ scope specifier, the
1398  // lexical context will be different from the semantic context.
1399  New->setLexicalDeclContext(CurContext);
1400
1401  // If this has an identifier and is not an invalid redeclaration,
1402  // add it to the scope stack.
1403  if (Name && !(Redeclaration && InvalidDecl))
1404    PushOnScopeChains(New, S);
1405  // If any semantic error occurred, mark the decl as invalid.
1406  if (D.getInvalidType() || InvalidDecl)
1407    New->setInvalidDecl();
1408
1409  return New;
1410}
1411
1412NamedDecl*
1413Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1414                             QualType R, Decl* LastDeclarator,
1415                             Decl* PrevDecl, bool& InvalidDecl,
1416                             bool &Redeclaration) {
1417  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1418  if (D.getCXXScopeSpec().isSet()) {
1419    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1420      << D.getCXXScopeSpec().getRange();
1421    InvalidDecl = true;
1422    // Pretend we didn't see the scope specifier.
1423    DC = 0;
1424  }
1425
1426  // Check that there are no default arguments (C++ only).
1427  if (getLangOptions().CPlusPlus)
1428    CheckExtraCXXDefaultArguments(D);
1429
1430  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1431  if (!NewTD) return 0;
1432
1433  // Handle attributes prior to checking for duplicates in MergeVarDecl
1434  ProcessDeclAttributes(NewTD, D);
1435  // Merge the decl with the existing one if appropriate. If the decl is
1436  // in an outer scope, it isn't the same thing.
1437  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1438    Redeclaration = true;
1439    if (MergeTypeDefDecl(NewTD, PrevDecl))
1440      InvalidDecl = true;
1441  }
1442
1443  if (S->getFnParent() == 0) {
1444    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1445    // then it shall have block scope.
1446    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1447      if (NewTD->getUnderlyingType()->isVariableArrayType())
1448        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1449      else
1450        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1451
1452      InvalidDecl = true;
1453    }
1454  }
1455  return NewTD;
1456}
1457
1458NamedDecl*
1459Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1460                              QualType R, Decl* LastDeclarator,
1461                              Decl* PrevDecl, bool& InvalidDecl,
1462                              bool &Redeclaration) {
1463  DeclarationName Name = GetNameForDeclarator(D);
1464
1465  // Check that there are no default arguments (C++ only).
1466  if (getLangOptions().CPlusPlus)
1467    CheckExtraCXXDefaultArguments(D);
1468
1469  if (R.getTypePtr()->isObjCInterfaceType()) {
1470    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1471      << D.getIdentifier();
1472    InvalidDecl = true;
1473  }
1474
1475  VarDecl *NewVD;
1476  VarDecl::StorageClass SC;
1477  switch (D.getDeclSpec().getStorageClassSpec()) {
1478  default: assert(0 && "Unknown storage class!");
1479  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1480  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1481  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1482  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1483  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1484  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1485  case DeclSpec::SCS_mutable:
1486    // mutable can only appear on non-static class members, so it's always
1487    // an error here
1488    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1489    InvalidDecl = true;
1490    SC = VarDecl::None;
1491    break;
1492  }
1493
1494  IdentifierInfo *II = Name.getAsIdentifierInfo();
1495  if (!II) {
1496    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1497      << Name.getAsString();
1498    return 0;
1499  }
1500
1501  if (DC->isRecord()) {
1502    // This is a static data member for a C++ class.
1503    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1504                                    D.getIdentifierLoc(), II,
1505                                    R);
1506  } else {
1507    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1508    if (S->getFnParent() == 0) {
1509      // C99 6.9p2: The storage-class specifiers auto and register shall not
1510      // appear in the declaration specifiers in an external declaration.
1511      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1512        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1513        InvalidDecl = true;
1514      }
1515    }
1516    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1517                            II, R, SC,
1518                            // FIXME: Move to DeclGroup...
1519                            D.getDeclSpec().getSourceRange().getBegin());
1520    NewVD->setThreadSpecified(ThreadSpecified);
1521  }
1522  NewVD->setNextDeclarator(LastDeclarator);
1523
1524  // Handle attributes prior to checking for duplicates in MergeVarDecl
1525  ProcessDeclAttributes(NewVD, D);
1526
1527  // Handle GNU asm-label extension (encoded as an attribute).
1528  if (Expr *E = (Expr*) D.getAsmLabel()) {
1529    // The parser guarantees this is a string.
1530    StringLiteral *SE = cast<StringLiteral>(E);
1531    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1532                                                SE->getByteLength())));
1533  }
1534
1535  // Emit an error if an address space was applied to decl with local storage.
1536  // This includes arrays of objects with address space qualifiers, but not
1537  // automatic variables that point to other address spaces.
1538  // ISO/IEC TR 18037 S5.1.2
1539  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1540    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1541    InvalidDecl = true;
1542  }
1543  // Merge the decl with the existing one if appropriate. If the decl is
1544  // in an outer scope, it isn't the same thing.
1545  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1546    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1547      // The user tried to define a non-static data member
1548      // out-of-line (C++ [dcl.meaning]p1).
1549      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1550        << D.getCXXScopeSpec().getRange();
1551      NewVD->Destroy(Context);
1552      return 0;
1553    }
1554
1555    Redeclaration = true;
1556    if (MergeVarDecl(NewVD, PrevDecl))
1557      InvalidDecl = true;
1558
1559    if (D.getCXXScopeSpec().isSet()) {
1560      // No previous declaration in the qualifying scope.
1561      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1562        << Name << D.getCXXScopeSpec().getRange();
1563      InvalidDecl = true;
1564    }
1565  }
1566  return NewVD;
1567}
1568
1569NamedDecl*
1570Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1571                              QualType R, Decl *LastDeclarator,
1572                              Decl* PrevDecl, bool IsFunctionDefinition,
1573                              bool& InvalidDecl, bool &Redeclaration) {
1574  assert(R.getTypePtr()->isFunctionType());
1575
1576  DeclarationName Name = GetNameForDeclarator(D);
1577  FunctionDecl::StorageClass SC = FunctionDecl::None;
1578  switch (D.getDeclSpec().getStorageClassSpec()) {
1579  default: assert(0 && "Unknown storage class!");
1580  case DeclSpec::SCS_auto:
1581  case DeclSpec::SCS_register:
1582  case DeclSpec::SCS_mutable:
1583    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1584    InvalidDecl = true;
1585    break;
1586  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1587  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1588  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1589  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1590  }
1591
1592  bool isInline = D.getDeclSpec().isInlineSpecified();
1593  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1594  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1595
1596  FunctionDecl *NewFD;
1597  if (D.getKind() == Declarator::DK_Constructor) {
1598    // This is a C++ constructor declaration.
1599    assert(DC->isRecord() &&
1600           "Constructors can only be declared in a member context");
1601
1602    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1603
1604    // Create the new declaration
1605    NewFD = CXXConstructorDecl::Create(Context,
1606                                       cast<CXXRecordDecl>(DC),
1607                                       D.getIdentifierLoc(), Name, R,
1608                                       isExplicit, isInline,
1609                                       /*isImplicitlyDeclared=*/false);
1610
1611    if (InvalidDecl)
1612      NewFD->setInvalidDecl();
1613  } else if (D.getKind() == Declarator::DK_Destructor) {
1614    // This is a C++ destructor declaration.
1615    if (DC->isRecord()) {
1616      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1617
1618      NewFD = CXXDestructorDecl::Create(Context,
1619                                        cast<CXXRecordDecl>(DC),
1620                                        D.getIdentifierLoc(), Name, R,
1621                                        isInline,
1622                                        /*isImplicitlyDeclared=*/false);
1623
1624      if (InvalidDecl)
1625        NewFD->setInvalidDecl();
1626    } else {
1627      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1628
1629      // Create a FunctionDecl to satisfy the function definition parsing
1630      // code path.
1631      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1632                                   Name, R, SC, isInline,
1633                                   // FIXME: Move to DeclGroup...
1634                                   D.getDeclSpec().getSourceRange().getBegin());
1635      InvalidDecl = true;
1636      NewFD->setInvalidDecl();
1637    }
1638  } else if (D.getKind() == Declarator::DK_Conversion) {
1639    if (!DC->isRecord()) {
1640      Diag(D.getIdentifierLoc(),
1641           diag::err_conv_function_not_member);
1642      return 0;
1643    } else {
1644      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1645
1646      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1647                                        D.getIdentifierLoc(), Name, R,
1648                                        isInline, isExplicit);
1649
1650      if (InvalidDecl)
1651        NewFD->setInvalidDecl();
1652    }
1653  } else if (DC->isRecord()) {
1654    // This is a C++ method declaration.
1655    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1656                                  D.getIdentifierLoc(), Name, R,
1657                                  (SC == FunctionDecl::Static), isInline);
1658  } else {
1659    NewFD = FunctionDecl::Create(Context, DC,
1660                                 D.getIdentifierLoc(),
1661                                 Name, R, SC, isInline,
1662                                 // FIXME: Move to DeclGroup...
1663                                 D.getDeclSpec().getSourceRange().getBegin());
1664  }
1665  NewFD->setNextDeclarator(LastDeclarator);
1666
1667  // Set the lexical context. If the declarator has a C++
1668  // scope specifier, the lexical context will be different
1669  // from the semantic context.
1670  NewFD->setLexicalDeclContext(CurContext);
1671
1672  // Handle GNU asm-label extension (encoded as an attribute).
1673  if (Expr *E = (Expr*) D.getAsmLabel()) {
1674    // The parser guarantees this is a string.
1675    StringLiteral *SE = cast<StringLiteral>(E);
1676    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1677                                                SE->getByteLength())));
1678  }
1679
1680  // Copy the parameter declarations from the declarator D to
1681  // the function declaration NewFD, if they are available.
1682  if (D.getNumTypeObjects() > 0) {
1683    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1684
1685    // Create Decl objects for each parameter, adding them to the
1686    // FunctionDecl.
1687    llvm::SmallVector<ParmVarDecl*, 16> Params;
1688
1689    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1690    // function that takes no arguments, not a function that takes a
1691    // single void argument.
1692    // We let through "const void" here because Sema::GetTypeForDeclarator
1693    // already checks for that case.
1694    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1695        FTI.ArgInfo[0].Param &&
1696        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1697      // empty arg list, don't push any params.
1698      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1699
1700      // In C++, the empty parameter-type-list must be spelled "void"; a
1701      // typedef of void is not permitted.
1702      if (getLangOptions().CPlusPlus &&
1703          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1704        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1705      }
1706    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1707      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1708        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1709    }
1710
1711    NewFD->setParams(Context, &Params[0], Params.size());
1712  } else if (R->getAsTypedefType()) {
1713    // When we're declaring a function with a typedef, as in the
1714    // following example, we'll need to synthesize (unnamed)
1715    // parameters for use in the declaration.
1716    //
1717    // @code
1718    // typedef void fn(int);
1719    // fn f;
1720    // @endcode
1721    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1722    if (!FT) {
1723      // This is a typedef of a function with no prototype, so we
1724      // don't need to do anything.
1725    } else if ((FT->getNumArgs() == 0) ||
1726               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1727                FT->getArgType(0)->isVoidType())) {
1728      // This is a zero-argument function. We don't need to do anything.
1729    } else {
1730      // Synthesize a parameter for each argument type.
1731      llvm::SmallVector<ParmVarDecl*, 16> Params;
1732      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1733           ArgType != FT->arg_type_end(); ++ArgType) {
1734        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1735                                                 SourceLocation(), 0,
1736                                                 *ArgType, VarDecl::None,
1737                                                 0);
1738        Param->setImplicit();
1739        Params.push_back(Param);
1740      }
1741
1742      NewFD->setParams(Context, &Params[0], Params.size());
1743    }
1744  }
1745
1746  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1747    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1748  else if (isa<CXXDestructorDecl>(NewFD)) {
1749    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1750    Record->setUserDeclaredDestructor(true);
1751    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1752    // user-defined destructor.
1753    Record->setPOD(false);
1754  } else if (CXXConversionDecl *Conversion =
1755             dyn_cast<CXXConversionDecl>(NewFD))
1756    ActOnConversionDeclarator(Conversion);
1757
1758  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1759  if (NewFD->isOverloadedOperator() &&
1760      CheckOverloadedOperatorDeclaration(NewFD))
1761    NewFD->setInvalidDecl();
1762
1763  // Merge the decl with the existing one if appropriate. Since C functions
1764  // are in a flat namespace, make sure we consider decls in outer scopes.
1765  bool OverloadableAttrRequired = false;
1766  if (PrevDecl &&
1767      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1768    // Determine whether NewFD is an overload of PrevDecl or
1769    // a declaration that requires merging. If it's an overload,
1770    // there's no more work to do here; we'll just add the new
1771    // function to the scope.
1772    OverloadedFunctionDecl::function_iterator MatchedDecl;
1773
1774    if (!getLangOptions().CPlusPlus &&
1775        AllowOverloadingOfFunction(PrevDecl, Context)) {
1776      OverloadableAttrRequired = true;
1777
1778      // Functions marked "overloadable" must have a prototype (that
1779      // we can't get through declaration merging).
1780      if (!R->getAsFunctionTypeProto()) {
1781        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1782          << NewFD;
1783        InvalidDecl = true;
1784        Redeclaration = true;
1785
1786        // Turn this into a variadic function with no parameters.
1787        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1788                                    0, 0, true, 0);
1789        NewFD->setType(R);
1790      }
1791    }
1792
1793    if (PrevDecl &&
1794        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1795         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1796      Redeclaration = true;
1797      Decl *OldDecl = PrevDecl;
1798
1799      // If PrevDecl was an overloaded function, extract the
1800      // FunctionDecl that matched.
1801      if (isa<OverloadedFunctionDecl>(PrevDecl))
1802        OldDecl = *MatchedDecl;
1803
1804      // NewFD and PrevDecl represent declarations that need to be
1805      // merged.
1806      if (MergeFunctionDecl(NewFD, OldDecl))
1807        InvalidDecl = true;
1808
1809      if (!InvalidDecl) {
1810        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1811
1812        // An out-of-line member function declaration must also be a
1813        // definition (C++ [dcl.meaning]p1).
1814        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1815            !InvalidDecl) {
1816          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1817            << D.getCXXScopeSpec().getRange();
1818          NewFD->setInvalidDecl();
1819        }
1820      }
1821    }
1822  }
1823
1824  if (D.getCXXScopeSpec().isSet() &&
1825      (!PrevDecl || !Redeclaration)) {
1826    // The user tried to provide an out-of-line definition for a
1827    // function that is a member of a class or namespace, but there
1828    // was no such member function declared (C++ [class.mfct]p2,
1829    // C++ [namespace.memdef]p2). For example:
1830    //
1831    // class X {
1832    //   void f() const;
1833    // };
1834    //
1835    // void X::f() { } // ill-formed
1836    //
1837    // Complain about this problem, and attempt to suggest close
1838    // matches (e.g., those that differ only in cv-qualifiers and
1839    // whether the parameter types are references).
1840    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1841      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1842    InvalidDecl = true;
1843
1844    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1845                                            true);
1846    assert(!Prev.isAmbiguous() &&
1847           "Cannot have an ambiguity in previous-declaration lookup");
1848    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1849         Func != FuncEnd; ++Func) {
1850      if (isa<FunctionDecl>(*Func) &&
1851          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1852        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1853    }
1854
1855    PrevDecl = 0;
1856  }
1857
1858  // Handle attributes. We need to have merged decls when handling attributes
1859  // (for example to check for conflicts, etc).
1860  ProcessDeclAttributes(NewFD, D);
1861  AddKnownFunctionAttributes(NewFD);
1862
1863  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1864    // If a function name is overloadable in C, then every function
1865    // with that name must be marked "overloadable".
1866    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1867      << Redeclaration << NewFD;
1868    if (PrevDecl)
1869      Diag(PrevDecl->getLocation(),
1870           diag::note_attribute_overloadable_prev_overload);
1871    NewFD->addAttr(new OverloadableAttr);
1872  }
1873
1874  if (getLangOptions().CPlusPlus) {
1875    // In C++, check default arguments now that we have merged decls. Unless
1876    // the lexical context is the class, because in this case this is done
1877    // during delayed parsing anyway.
1878    if (!CurContext->isRecord())
1879      CheckCXXDefaultArguments(NewFD);
1880
1881    // An out-of-line member function declaration must also be a
1882    // definition (C++ [dcl.meaning]p1).
1883    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1884      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1885        << D.getCXXScopeSpec().getRange();
1886      InvalidDecl = true;
1887    }
1888  }
1889  return NewFD;
1890}
1891
1892void Sema::InitializerElementNotConstant(const Expr *Init) {
1893  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1894    << Init->getSourceRange();
1895}
1896
1897bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1898  switch (Init->getStmtClass()) {
1899  default:
1900    InitializerElementNotConstant(Init);
1901    return true;
1902  case Expr::ParenExprClass: {
1903    const ParenExpr* PE = cast<ParenExpr>(Init);
1904    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1905  }
1906  case Expr::CompoundLiteralExprClass:
1907    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1908  case Expr::DeclRefExprClass:
1909  case Expr::QualifiedDeclRefExprClass: {
1910    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1911    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1912      if (VD->hasGlobalStorage())
1913        return false;
1914      InitializerElementNotConstant(Init);
1915      return true;
1916    }
1917    if (isa<FunctionDecl>(D))
1918      return false;
1919    InitializerElementNotConstant(Init);
1920    return true;
1921  }
1922  case Expr::MemberExprClass: {
1923    const MemberExpr *M = cast<MemberExpr>(Init);
1924    if (M->isArrow())
1925      return CheckAddressConstantExpression(M->getBase());
1926    return CheckAddressConstantExpressionLValue(M->getBase());
1927  }
1928  case Expr::ArraySubscriptExprClass: {
1929    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1930    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1931    return CheckAddressConstantExpression(ASE->getBase()) ||
1932           CheckArithmeticConstantExpression(ASE->getIdx());
1933  }
1934  case Expr::StringLiteralClass:
1935  case Expr::PredefinedExprClass:
1936    return false;
1937  case Expr::UnaryOperatorClass: {
1938    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1939
1940    // C99 6.6p9
1941    if (Exp->getOpcode() == UnaryOperator::Deref)
1942      return CheckAddressConstantExpression(Exp->getSubExpr());
1943
1944    InitializerElementNotConstant(Init);
1945    return true;
1946  }
1947  }
1948}
1949
1950bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1951  switch (Init->getStmtClass()) {
1952  default:
1953    InitializerElementNotConstant(Init);
1954    return true;
1955  case Expr::ParenExprClass:
1956    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1957  case Expr::StringLiteralClass:
1958  case Expr::ObjCStringLiteralClass:
1959    return false;
1960  case Expr::CallExprClass:
1961  case Expr::CXXOperatorCallExprClass:
1962    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1963    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1964           Builtin::BI__builtin___CFStringMakeConstantString)
1965      return false;
1966
1967    InitializerElementNotConstant(Init);
1968    return true;
1969
1970  case Expr::UnaryOperatorClass: {
1971    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1972
1973    // C99 6.6p9
1974    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1975      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1976
1977    if (Exp->getOpcode() == UnaryOperator::Extension)
1978      return CheckAddressConstantExpression(Exp->getSubExpr());
1979
1980    InitializerElementNotConstant(Init);
1981    return true;
1982  }
1983  case Expr::BinaryOperatorClass: {
1984    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1985    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1986
1987    Expr *PExp = Exp->getLHS();
1988    Expr *IExp = Exp->getRHS();
1989    if (IExp->getType()->isPointerType())
1990      std::swap(PExp, IExp);
1991
1992    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1993    return CheckAddressConstantExpression(PExp) ||
1994           CheckArithmeticConstantExpression(IExp);
1995  }
1996  case Expr::ImplicitCastExprClass:
1997  case Expr::CStyleCastExprClass: {
1998    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1999    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
2000      // Check for implicit promotion
2001      if (SubExpr->getType()->isFunctionType() ||
2002          SubExpr->getType()->isArrayType())
2003        return CheckAddressConstantExpressionLValue(SubExpr);
2004    }
2005
2006    // Check for pointer->pointer cast
2007    if (SubExpr->getType()->isPointerType())
2008      return CheckAddressConstantExpression(SubExpr);
2009
2010    if (SubExpr->getType()->isIntegralType()) {
2011      // Check for the special-case of a pointer->int->pointer cast;
2012      // this isn't standard, but some code requires it. See
2013      // PR2720 for an example.
2014      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
2015        if (SubCast->getSubExpr()->getType()->isPointerType()) {
2016          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
2017          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2018          if (IntWidth >= PointerWidth) {
2019            return CheckAddressConstantExpression(SubCast->getSubExpr());
2020          }
2021        }
2022      }
2023    }
2024    if (SubExpr->getType()->isArithmeticType()) {
2025      return CheckArithmeticConstantExpression(SubExpr);
2026    }
2027
2028    InitializerElementNotConstant(Init);
2029    return true;
2030  }
2031  case Expr::ConditionalOperatorClass: {
2032    // FIXME: Should we pedwarn here?
2033    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2034    if (!Exp->getCond()->getType()->isArithmeticType()) {
2035      InitializerElementNotConstant(Init);
2036      return true;
2037    }
2038    if (CheckArithmeticConstantExpression(Exp->getCond()))
2039      return true;
2040    if (Exp->getLHS() &&
2041        CheckAddressConstantExpression(Exp->getLHS()))
2042      return true;
2043    return CheckAddressConstantExpression(Exp->getRHS());
2044  }
2045  case Expr::AddrLabelExprClass:
2046    return false;
2047  }
2048}
2049
2050static const Expr* FindExpressionBaseAddress(const Expr* E);
2051
2052static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2053  switch (E->getStmtClass()) {
2054  default:
2055    return E;
2056  case Expr::ParenExprClass: {
2057    const ParenExpr* PE = cast<ParenExpr>(E);
2058    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2059  }
2060  case Expr::MemberExprClass: {
2061    const MemberExpr *M = cast<MemberExpr>(E);
2062    if (M->isArrow())
2063      return FindExpressionBaseAddress(M->getBase());
2064    return FindExpressionBaseAddressLValue(M->getBase());
2065  }
2066  case Expr::ArraySubscriptExprClass: {
2067    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2068    return FindExpressionBaseAddress(ASE->getBase());
2069  }
2070  case Expr::UnaryOperatorClass: {
2071    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2072
2073    if (Exp->getOpcode() == UnaryOperator::Deref)
2074      return FindExpressionBaseAddress(Exp->getSubExpr());
2075
2076    return E;
2077  }
2078  }
2079}
2080
2081static const Expr* FindExpressionBaseAddress(const Expr* E) {
2082  switch (E->getStmtClass()) {
2083  default:
2084    return E;
2085  case Expr::ParenExprClass: {
2086    const ParenExpr* PE = cast<ParenExpr>(E);
2087    return FindExpressionBaseAddress(PE->getSubExpr());
2088  }
2089  case Expr::UnaryOperatorClass: {
2090    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2091
2092    // C99 6.6p9
2093    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2094      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2095
2096    if (Exp->getOpcode() == UnaryOperator::Extension)
2097      return FindExpressionBaseAddress(Exp->getSubExpr());
2098
2099    return E;
2100  }
2101  case Expr::BinaryOperatorClass: {
2102    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2103
2104    Expr *PExp = Exp->getLHS();
2105    Expr *IExp = Exp->getRHS();
2106    if (IExp->getType()->isPointerType())
2107      std::swap(PExp, IExp);
2108
2109    return FindExpressionBaseAddress(PExp);
2110  }
2111  case Expr::ImplicitCastExprClass: {
2112    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2113
2114    // Check for implicit promotion
2115    if (SubExpr->getType()->isFunctionType() ||
2116        SubExpr->getType()->isArrayType())
2117      return FindExpressionBaseAddressLValue(SubExpr);
2118
2119    // Check for pointer->pointer cast
2120    if (SubExpr->getType()->isPointerType())
2121      return FindExpressionBaseAddress(SubExpr);
2122
2123    // We assume that we have an arithmetic expression here;
2124    // if we don't, we'll figure it out later
2125    return 0;
2126  }
2127  case Expr::CStyleCastExprClass: {
2128    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2129
2130    // Check for pointer->pointer cast
2131    if (SubExpr->getType()->isPointerType())
2132      return FindExpressionBaseAddress(SubExpr);
2133
2134    // We assume that we have an arithmetic expression here;
2135    // if we don't, we'll figure it out later
2136    return 0;
2137  }
2138  }
2139}
2140
2141bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2142  switch (Init->getStmtClass()) {
2143  default:
2144    InitializerElementNotConstant(Init);
2145    return true;
2146  case Expr::ParenExprClass: {
2147    const ParenExpr* PE = cast<ParenExpr>(Init);
2148    return CheckArithmeticConstantExpression(PE->getSubExpr());
2149  }
2150  case Expr::FloatingLiteralClass:
2151  case Expr::IntegerLiteralClass:
2152  case Expr::CharacterLiteralClass:
2153  case Expr::ImaginaryLiteralClass:
2154  case Expr::TypesCompatibleExprClass:
2155  case Expr::CXXBoolLiteralExprClass:
2156    return false;
2157  case Expr::CallExprClass:
2158  case Expr::CXXOperatorCallExprClass: {
2159    const CallExpr *CE = cast<CallExpr>(Init);
2160
2161    // Allow any constant foldable calls to builtins.
2162    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2163      return false;
2164
2165    InitializerElementNotConstant(Init);
2166    return true;
2167  }
2168  case Expr::DeclRefExprClass:
2169  case Expr::QualifiedDeclRefExprClass: {
2170    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2171    if (isa<EnumConstantDecl>(D))
2172      return false;
2173    InitializerElementNotConstant(Init);
2174    return true;
2175  }
2176  case Expr::CompoundLiteralExprClass:
2177    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2178    // but vectors are allowed to be magic.
2179    if (Init->getType()->isVectorType())
2180      return false;
2181    InitializerElementNotConstant(Init);
2182    return true;
2183  case Expr::UnaryOperatorClass: {
2184    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2185
2186    switch (Exp->getOpcode()) {
2187    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2188    // See C99 6.6p3.
2189    default:
2190      InitializerElementNotConstant(Init);
2191      return true;
2192    case UnaryOperator::OffsetOf:
2193      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2194        return false;
2195      InitializerElementNotConstant(Init);
2196      return true;
2197    case UnaryOperator::Extension:
2198    case UnaryOperator::LNot:
2199    case UnaryOperator::Plus:
2200    case UnaryOperator::Minus:
2201    case UnaryOperator::Not:
2202      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2203    }
2204  }
2205  case Expr::SizeOfAlignOfExprClass: {
2206    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2207    // Special check for void types, which are allowed as an extension
2208    if (Exp->getTypeOfArgument()->isVoidType())
2209      return false;
2210    // alignof always evaluates to a constant.
2211    // FIXME: is sizeof(int[3.0]) a constant expression?
2212    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2213      InitializerElementNotConstant(Init);
2214      return true;
2215    }
2216    return false;
2217  }
2218  case Expr::BinaryOperatorClass: {
2219    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2220
2221    if (Exp->getLHS()->getType()->isArithmeticType() &&
2222        Exp->getRHS()->getType()->isArithmeticType()) {
2223      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2224             CheckArithmeticConstantExpression(Exp->getRHS());
2225    }
2226
2227    if (Exp->getLHS()->getType()->isPointerType() &&
2228        Exp->getRHS()->getType()->isPointerType()) {
2229      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2230      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2231
2232      // Only allow a null (constant integer) base; we could
2233      // allow some additional cases if necessary, but this
2234      // is sufficient to cover offsetof-like constructs.
2235      if (!LHSBase && !RHSBase) {
2236        return CheckAddressConstantExpression(Exp->getLHS()) ||
2237               CheckAddressConstantExpression(Exp->getRHS());
2238      }
2239    }
2240
2241    InitializerElementNotConstant(Init);
2242    return true;
2243  }
2244  case Expr::ImplicitCastExprClass:
2245  case Expr::CStyleCastExprClass: {
2246    const CastExpr *CE = cast<CastExpr>(Init);
2247    const Expr *SubExpr = CE->getSubExpr();
2248
2249    if (SubExpr->getType()->isArithmeticType())
2250      return CheckArithmeticConstantExpression(SubExpr);
2251
2252    if (SubExpr->getType()->isPointerType()) {
2253      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2254      if (Base) {
2255        // the cast is only valid if done to a wide enough type
2256        if (Context.getTypeSize(CE->getType()) >=
2257            Context.getTypeSize(SubExpr->getType()))
2258          return false;
2259      } else {
2260        // If the pointer has a null base, this is an offsetof-like construct
2261        return CheckAddressConstantExpression(SubExpr);
2262      }
2263    }
2264
2265    InitializerElementNotConstant(Init);
2266    return true;
2267  }
2268  case Expr::ConditionalOperatorClass: {
2269    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2270
2271    // If GNU extensions are disabled, we require all operands to be arithmetic
2272    // constant expressions.
2273    if (getLangOptions().NoExtensions) {
2274      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2275          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2276             CheckArithmeticConstantExpression(Exp->getRHS());
2277    }
2278
2279    // Otherwise, we have to emulate some of the behavior of fold here.
2280    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2281    // because it can constant fold things away.  To retain compatibility with
2282    // GCC code, we see if we can fold the condition to a constant (which we
2283    // should always be able to do in theory).  If so, we only require the
2284    // specified arm of the conditional to be a constant.  This is a horrible
2285    // hack, but is require by real world code that uses __builtin_constant_p.
2286    Expr::EvalResult EvalResult;
2287    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2288        EvalResult.HasSideEffects) {
2289      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2290      // won't be able to either.  Use it to emit the diagnostic though.
2291      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2292      assert(Res && "Evaluate couldn't evaluate this constant?");
2293      return Res;
2294    }
2295
2296    // Verify that the side following the condition is also a constant.
2297    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2298    if (EvalResult.Val.getInt() == 0)
2299      std::swap(TrueSide, FalseSide);
2300
2301    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2302      return true;
2303
2304    // Okay, the evaluated side evaluates to a constant, so we accept this.
2305    // Check to see if the other side is obviously not a constant.  If so,
2306    // emit a warning that this is a GNU extension.
2307    if (FalseSide && !FalseSide->isEvaluatable(Context))
2308      Diag(Init->getExprLoc(),
2309           diag::ext_typecheck_expression_not_constant_but_accepted)
2310        << FalseSide->getSourceRange();
2311    return false;
2312  }
2313  }
2314}
2315
2316bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2317  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2318    Init = DIE->getInit();
2319
2320  Init = Init->IgnoreParens();
2321
2322  if (Init->isEvaluatable(Context))
2323    return false;
2324
2325  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2326  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2327    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2328
2329  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2330    return CheckForConstantInitializer(e->getInitializer(), DclT);
2331
2332  if (isa<ImplicitValueInitExpr>(Init)) {
2333    // FIXME: In C++, check for non-POD types.
2334    return false;
2335  }
2336
2337  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2338    unsigned numInits = Exp->getNumInits();
2339    for (unsigned i = 0; i < numInits; i++) {
2340      // FIXME: Need to get the type of the declaration for C++,
2341      // because it could be a reference?
2342
2343      if (CheckForConstantInitializer(Exp->getInit(i),
2344                                      Exp->getInit(i)->getType()))
2345        return true;
2346    }
2347    return false;
2348  }
2349
2350  // FIXME: We can probably remove some of this code below, now that
2351  // Expr::Evaluate is doing the heavy lifting for scalars.
2352
2353  if (Init->isNullPointerConstant(Context))
2354    return false;
2355  if (Init->getType()->isArithmeticType()) {
2356    QualType InitTy = Context.getCanonicalType(Init->getType())
2357                             .getUnqualifiedType();
2358    if (InitTy == Context.BoolTy) {
2359      // Special handling for pointers implicitly cast to bool;
2360      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2361      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2362        Expr* SubE = ICE->getSubExpr();
2363        if (SubE->getType()->isPointerType() ||
2364            SubE->getType()->isArrayType() ||
2365            SubE->getType()->isFunctionType()) {
2366          return CheckAddressConstantExpression(Init);
2367        }
2368      }
2369    } else if (InitTy->isIntegralType()) {
2370      Expr* SubE = 0;
2371      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2372        SubE = CE->getSubExpr();
2373      // Special check for pointer cast to int; we allow as an extension
2374      // an address constant cast to an integer if the integer
2375      // is of an appropriate width (this sort of code is apparently used
2376      // in some places).
2377      // FIXME: Add pedwarn?
2378      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2379      if (SubE && (SubE->getType()->isPointerType() ||
2380                   SubE->getType()->isArrayType() ||
2381                   SubE->getType()->isFunctionType())) {
2382        unsigned IntWidth = Context.getTypeSize(Init->getType());
2383        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2384        if (IntWidth >= PointerWidth)
2385          return CheckAddressConstantExpression(Init);
2386      }
2387    }
2388
2389    return CheckArithmeticConstantExpression(Init);
2390  }
2391
2392  if (Init->getType()->isPointerType())
2393    return CheckAddressConstantExpression(Init);
2394
2395  // An array type at the top level that isn't an init-list must
2396  // be a string literal
2397  if (Init->getType()->isArrayType())
2398    return false;
2399
2400  if (Init->getType()->isFunctionType())
2401    return false;
2402
2403  // Allow block exprs at top level.
2404  if (Init->getType()->isBlockPointerType())
2405    return false;
2406
2407  // GCC cast to union extension
2408  // note: the validity of the cast expr is checked by CheckCastTypes()
2409  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2410    QualType T = C->getType();
2411    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2412  }
2413
2414  InitializerElementNotConstant(Init);
2415  return true;
2416}
2417
2418void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2419  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2420}
2421
2422/// AddInitializerToDecl - Adds the initializer Init to the
2423/// declaration dcl. If DirectInit is true, this is C++ direct
2424/// initialization rather than copy initialization.
2425void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2426  Decl *RealDecl = static_cast<Decl *>(dcl);
2427  Expr *Init = static_cast<Expr *>(init.release());
2428  assert(Init && "missing initializer");
2429
2430  // If there is no declaration, there was an error parsing it.  Just ignore
2431  // the initializer.
2432  if (RealDecl == 0) {
2433    Init->Destroy(Context);
2434    return;
2435  }
2436
2437  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2438  if (!VDecl) {
2439    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2440    RealDecl->setInvalidDecl();
2441    return;
2442  }
2443  // Get the decls type and save a reference for later, since
2444  // CheckInitializerTypes may change it.
2445  QualType DclT = VDecl->getType(), SavT = DclT;
2446  if (VDecl->isBlockVarDecl()) {
2447    VarDecl::StorageClass SC = VDecl->getStorageClass();
2448    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2449      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2450      VDecl->setInvalidDecl();
2451    } else if (!VDecl->isInvalidDecl()) {
2452      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2453                                VDecl->getDeclName(), DirectInit))
2454        VDecl->setInvalidDecl();
2455
2456      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2457      if (!getLangOptions().CPlusPlus) {
2458        if (SC == VarDecl::Static) // C99 6.7.8p4.
2459          CheckForConstantInitializer(Init, DclT);
2460      }
2461    }
2462  } else if (VDecl->isFileVarDecl()) {
2463    if (VDecl->getStorageClass() == VarDecl::Extern)
2464      Diag(VDecl->getLocation(), diag::warn_extern_init);
2465    if (!VDecl->isInvalidDecl())
2466      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2467                                VDecl->getDeclName(), DirectInit))
2468        VDecl->setInvalidDecl();
2469
2470    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2471    if (!getLangOptions().CPlusPlus) {
2472      // C99 6.7.8p4. All file scoped initializers need to be constant.
2473      CheckForConstantInitializer(Init, DclT);
2474    }
2475  }
2476  // If the type changed, it means we had an incomplete type that was
2477  // completed by the initializer. For example:
2478  //   int ary[] = { 1, 3, 5 };
2479  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2480  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2481    VDecl->setType(DclT);
2482    Init->setType(DclT);
2483  }
2484
2485  // Attach the initializer to the decl.
2486  VDecl->setInit(Init);
2487  return;
2488}
2489
2490void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2491  Decl *RealDecl = static_cast<Decl *>(dcl);
2492
2493  // If there is no declaration, there was an error parsing it. Just ignore it.
2494  if (RealDecl == 0)
2495    return;
2496
2497  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2498    QualType Type = Var->getType();
2499    // C++ [dcl.init.ref]p3:
2500    //   The initializer can be omitted for a reference only in a
2501    //   parameter declaration (8.3.5), in the declaration of a
2502    //   function return type, in the declaration of a class member
2503    //   within its class declaration (9.2), and where the extern
2504    //   specifier is explicitly used.
2505    if (Type->isReferenceType() &&
2506        Var->getStorageClass() != VarDecl::Extern &&
2507        Var->getStorageClass() != VarDecl::PrivateExtern) {
2508      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2509        << Var->getDeclName()
2510        << SourceRange(Var->getLocation(), Var->getLocation());
2511      Var->setInvalidDecl();
2512      return;
2513    }
2514
2515    // C++ [dcl.init]p9:
2516    //
2517    //   If no initializer is specified for an object, and the object
2518    //   is of (possibly cv-qualified) non-POD class type (or array
2519    //   thereof), the object shall be default-initialized; if the
2520    //   object is of const-qualified type, the underlying class type
2521    //   shall have a user-declared default constructor.
2522    if (getLangOptions().CPlusPlus) {
2523      QualType InitType = Type;
2524      if (const ArrayType *Array = Context.getAsArrayType(Type))
2525        InitType = Array->getElementType();
2526      if (Var->getStorageClass() != VarDecl::Extern &&
2527          Var->getStorageClass() != VarDecl::PrivateExtern &&
2528          InitType->isRecordType()) {
2529        const CXXConstructorDecl *Constructor
2530          = PerformInitializationByConstructor(InitType, 0, 0,
2531                                               Var->getLocation(),
2532                                               SourceRange(Var->getLocation(),
2533                                                           Var->getLocation()),
2534                                               Var->getDeclName(),
2535                                               IK_Default);
2536        if (!Constructor)
2537          Var->setInvalidDecl();
2538      }
2539    }
2540
2541#if 0
2542    // FIXME: Temporarily disabled because we are not properly parsing
2543    // linkage specifications on declarations, e.g.,
2544    //
2545    //   extern "C" const CGPoint CGPointerZero;
2546    //
2547    // C++ [dcl.init]p9:
2548    //
2549    //     If no initializer is specified for an object, and the
2550    //     object is of (possibly cv-qualified) non-POD class type (or
2551    //     array thereof), the object shall be default-initialized; if
2552    //     the object is of const-qualified type, the underlying class
2553    //     type shall have a user-declared default
2554    //     constructor. Otherwise, if no initializer is specified for
2555    //     an object, the object and its subobjects, if any, have an
2556    //     indeterminate initial value; if the object or any of its
2557    //     subobjects are of const-qualified type, the program is
2558    //     ill-formed.
2559    //
2560    // This isn't technically an error in C, so we don't diagnose it.
2561    //
2562    // FIXME: Actually perform the POD/user-defined default
2563    // constructor check.
2564    if (getLangOptions().CPlusPlus &&
2565        Context.getCanonicalType(Type).isConstQualified() &&
2566        Var->getStorageClass() != VarDecl::Extern)
2567      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2568        << Var->getName()
2569        << SourceRange(Var->getLocation(), Var->getLocation());
2570#endif
2571  }
2572}
2573
2574/// The declarators are chained together backwards, reverse the list.
2575Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2576  // Often we have single declarators, handle them quickly.
2577  Decl *Group = static_cast<Decl*>(group);
2578  if (Group == 0)
2579    return 0;
2580
2581  Decl *NewGroup = 0;
2582  if (Group->getNextDeclarator() == 0)
2583    NewGroup = Group;
2584  else { // reverse the list.
2585    while (Group) {
2586      Decl *Next = Group->getNextDeclarator();
2587      Group->setNextDeclarator(NewGroup);
2588      NewGroup = Group;
2589      Group = Next;
2590    }
2591  }
2592  // Perform semantic analysis that depends on having fully processed both
2593  // the declarator and initializer.
2594  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2595    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2596    if (!IDecl)
2597      continue;
2598    QualType T = IDecl->getType();
2599
2600    if (T->isVariableArrayType()) {
2601      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2602
2603      // FIXME: This won't give the correct result for
2604      // int a[10][n];
2605      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2606      if (IDecl->isFileVarDecl()) {
2607        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2608          SizeRange;
2609
2610        IDecl->setInvalidDecl();
2611      } else {
2612        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2613        // static storage duration, it shall not have a variable length array.
2614        if (IDecl->getStorageClass() == VarDecl::Static) {
2615          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2616            << SizeRange;
2617          IDecl->setInvalidDecl();
2618        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2619          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2620            << SizeRange;
2621          IDecl->setInvalidDecl();
2622        }
2623      }
2624    } else if (T->isVariablyModifiedType()) {
2625      if (IDecl->isFileVarDecl()) {
2626        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2627        IDecl->setInvalidDecl();
2628      } else {
2629        if (IDecl->getStorageClass() == VarDecl::Extern) {
2630          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2631          IDecl->setInvalidDecl();
2632        }
2633      }
2634    }
2635
2636    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2637    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2638    if (IDecl->isBlockVarDecl() &&
2639        IDecl->getStorageClass() != VarDecl::Extern) {
2640      if (!IDecl->isInvalidDecl() &&
2641          DiagnoseIncompleteType(IDecl->getLocation(), T,
2642                                 diag::err_typecheck_decl_incomplete_type))
2643        IDecl->setInvalidDecl();
2644    }
2645    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2646    // object that has file scope without an initializer, and without a
2647    // storage-class specifier or with the storage-class specifier "static",
2648    // constitutes a tentative definition. Note: A tentative definition with
2649    // external linkage is valid (C99 6.2.2p5).
2650    if (isTentativeDefinition(IDecl)) {
2651      if (T->isIncompleteArrayType()) {
2652        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2653        // array to be completed. Don't issue a diagnostic.
2654      } else if (!IDecl->isInvalidDecl() &&
2655                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2656                                        diag::err_typecheck_decl_incomplete_type))
2657        // C99 6.9.2p3: If the declaration of an identifier for an object is
2658        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2659        // declared type shall not be an incomplete type.
2660        IDecl->setInvalidDecl();
2661    }
2662    if (IDecl->isFileVarDecl())
2663      CheckForFileScopedRedefinitions(S, IDecl);
2664  }
2665  return NewGroup;
2666}
2667
2668/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2669/// to introduce parameters into function prototype scope.
2670Sema::DeclTy *
2671Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2672  const DeclSpec &DS = D.getDeclSpec();
2673
2674  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2675  VarDecl::StorageClass StorageClass = VarDecl::None;
2676  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2677    StorageClass = VarDecl::Register;
2678  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2679    Diag(DS.getStorageClassSpecLoc(),
2680         diag::err_invalid_storage_class_in_func_decl);
2681    D.getMutableDeclSpec().ClearStorageClassSpecs();
2682  }
2683  if (DS.isThreadSpecified()) {
2684    Diag(DS.getThreadSpecLoc(),
2685         diag::err_invalid_storage_class_in_func_decl);
2686    D.getMutableDeclSpec().ClearStorageClassSpecs();
2687  }
2688
2689  // Check that there are no default arguments inside the type of this
2690  // parameter (C++ only).
2691  if (getLangOptions().CPlusPlus)
2692    CheckExtraCXXDefaultArguments(D);
2693
2694  // In this context, we *do not* check D.getInvalidType(). If the declarator
2695  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2696  // though it will not reflect the user specified type.
2697  QualType parmDeclType = GetTypeForDeclarator(D, S);
2698
2699  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2700
2701  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2702  // Can this happen for params?  We already checked that they don't conflict
2703  // among each other.  Here they can only shadow globals, which is ok.
2704  IdentifierInfo *II = D.getIdentifier();
2705  if (II) {
2706    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2707      if (PrevDecl->isTemplateParameter()) {
2708        // Maybe we will complain about the shadowed template parameter.
2709        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2710        // Just pretend that we didn't see the previous declaration.
2711        PrevDecl = 0;
2712      } else if (S->isDeclScope(PrevDecl)) {
2713        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2714
2715        // Recover by removing the name
2716        II = 0;
2717        D.SetIdentifier(0, D.getIdentifierLoc());
2718      }
2719    }
2720  }
2721
2722  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2723  // Doing the promotion here has a win and a loss. The win is the type for
2724  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2725  // code generator). The loss is the orginal type isn't preserved. For example:
2726  //
2727  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2728  //    int blockvardecl[5];
2729  //    sizeof(parmvardecl);  // size == 4
2730  //    sizeof(blockvardecl); // size == 20
2731  // }
2732  //
2733  // For expressions, all implicit conversions are captured using the
2734  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2735  //
2736  // FIXME: If a source translation tool needs to see the original type, then
2737  // we need to consider storing both types (in ParmVarDecl)...
2738  //
2739  if (parmDeclType->isArrayType()) {
2740    // int x[restrict 4] ->  int *restrict
2741    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2742  } else if (parmDeclType->isFunctionType())
2743    parmDeclType = Context.getPointerType(parmDeclType);
2744
2745  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2746                                         D.getIdentifierLoc(), II,
2747                                         parmDeclType, StorageClass,
2748                                         0);
2749
2750  if (D.getInvalidType())
2751    New->setInvalidDecl();
2752
2753  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2754  if (D.getCXXScopeSpec().isSet()) {
2755    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2756      << D.getCXXScopeSpec().getRange();
2757    New->setInvalidDecl();
2758  }
2759
2760  // Add the parameter declaration into this scope.
2761  S->AddDecl(New);
2762  if (II)
2763    IdResolver.AddDecl(New);
2764
2765  ProcessDeclAttributes(New, D);
2766  return New;
2767
2768}
2769
2770void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2771  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2772         "Not a function declarator!");
2773  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2774
2775  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2776  // for a K&R function.
2777  if (!FTI.hasPrototype) {
2778    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2779      if (FTI.ArgInfo[i].Param == 0) {
2780        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2781          << FTI.ArgInfo[i].Ident;
2782        // Implicitly declare the argument as type 'int' for lack of a better
2783        // type.
2784        DeclSpec DS;
2785        const char* PrevSpec; // unused
2786        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2787                           PrevSpec);
2788        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2789        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2790        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2791      }
2792    }
2793  }
2794}
2795
2796Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2797  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2798  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2799         "Not a function declarator!");
2800  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2801
2802  if (FTI.hasPrototype) {
2803    // FIXME: Diagnose arguments without names in C.
2804  }
2805
2806  Scope *ParentScope = FnBodyScope->getParent();
2807
2808  return ActOnStartOfFunctionDef(FnBodyScope,
2809                                 ActOnDeclarator(ParentScope, D, 0,
2810                                                 /*IsFunctionDefinition=*/true));
2811}
2812
2813Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2814  Decl *decl = static_cast<Decl*>(D);
2815  FunctionDecl *FD = cast<FunctionDecl>(decl);
2816
2817  // See if this is a redefinition.
2818  const FunctionDecl *Definition;
2819  if (FD->getBody(Definition)) {
2820    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2821    Diag(Definition->getLocation(), diag::note_previous_definition);
2822  }
2823
2824  // Builtin functions cannot be defined.
2825  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2826    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2827      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2828      FD->setInvalidDecl();
2829    }
2830  }
2831
2832  PushDeclContext(FnBodyScope, FD);
2833
2834  // Check the validity of our function parameters
2835  CheckParmsForFunctionDef(FD);
2836
2837  // Introduce our parameters into the function scope
2838  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2839    ParmVarDecl *Param = FD->getParamDecl(p);
2840    Param->setOwningFunction(FD);
2841
2842    // If this has an identifier, add it to the scope stack.
2843    if (Param->getIdentifier())
2844      PushOnScopeChains(Param, FnBodyScope);
2845  }
2846
2847  // Checking attributes of current function definition
2848  // dllimport attribute.
2849  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2850    // dllimport attribute cannot be applied to definition.
2851    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2852      Diag(FD->getLocation(),
2853           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2854        << "dllimport";
2855      FD->setInvalidDecl();
2856      return FD;
2857    } else {
2858      // If a symbol previously declared dllimport is later defined, the
2859      // attribute is ignored in subsequent references, and a warning is
2860      // emitted.
2861      Diag(FD->getLocation(),
2862           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2863        << FD->getNameAsCString() << "dllimport";
2864    }
2865  }
2866  return FD;
2867}
2868
2869Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2870  Decl *dcl = static_cast<Decl *>(D);
2871  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2872  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2873    FD->setBody(Body);
2874    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2875  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2876    assert(MD == getCurMethodDecl() && "Method parsing confused");
2877    MD->setBody((Stmt*)Body);
2878  } else {
2879    Body->Destroy(Context);
2880    return 0;
2881  }
2882  PopDeclContext();
2883  // Verify and clean out per-function state.
2884
2885  // Check goto/label use.
2886  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2887       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2888    // Verify that we have no forward references left.  If so, there was a goto
2889    // or address of a label taken, but no definition of it.  Label fwd
2890    // definitions are indicated with a null substmt.
2891    if (I->second->getSubStmt() == 0) {
2892      LabelStmt *L = I->second;
2893      // Emit error.
2894      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2895
2896      // At this point, we have gotos that use the bogus label.  Stitch it into
2897      // the function body so that they aren't leaked and that the AST is well
2898      // formed.
2899      if (Body) {
2900#if 0
2901        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2902        // and the AST is malformed anyway.  We should just blow away 'L'.
2903        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2904        cast<CompoundStmt>(Body)->push_back(L);
2905#else
2906        L->Destroy(Context);
2907#endif
2908      } else {
2909        // The whole function wasn't parsed correctly, just delete this.
2910        L->Destroy(Context);
2911      }
2912    }
2913  }
2914  LabelMap.clear();
2915
2916  return D;
2917}
2918
2919/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2920/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2921NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2922                                          IdentifierInfo &II, Scope *S) {
2923  // Extension in C99.  Legal in C90, but warn about it.
2924  if (getLangOptions().C99)
2925    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2926  else
2927    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2928
2929  // FIXME: handle stuff like:
2930  // void foo() { extern float X(); }
2931  // void bar() { X(); }  <-- implicit decl for X in another scope.
2932
2933  // Set a Declarator for the implicit definition: int foo();
2934  const char *Dummy;
2935  DeclSpec DS;
2936  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2937  Error = Error; // Silence warning.
2938  assert(!Error && "Error setting up implicit decl!");
2939  Declarator D(DS, Declarator::BlockContext);
2940  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2941                                             0, 0, 0, Loc, D),
2942                SourceLocation());
2943  D.SetIdentifier(&II, Loc);
2944
2945  // Insert this function into translation-unit scope.
2946
2947  DeclContext *PrevDC = CurContext;
2948  CurContext = Context.getTranslationUnitDecl();
2949
2950  FunctionDecl *FD =
2951    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2952  FD->setImplicit();
2953
2954  CurContext = PrevDC;
2955
2956  AddKnownFunctionAttributes(FD);
2957
2958  return FD;
2959}
2960
2961/// \brief Adds any function attributes that we know a priori based on
2962/// the declaration of this function.
2963///
2964/// These attributes can apply both to implicitly-declared builtins
2965/// (like __builtin___printf_chk) or to library-declared functions
2966/// like NSLog or printf.
2967void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2968  if (FD->isInvalidDecl())
2969    return;
2970
2971  // If this is a built-in function, map its builtin attributes to
2972  // actual attributes.
2973  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2974    // Handle printf-formatting attributes.
2975    unsigned FormatIdx;
2976    bool HasVAListArg;
2977    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2978      if (!FD->getAttr<FormatAttr>())
2979        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2980    }
2981
2982    // Mark const if we don't care about errno and that is the only
2983    // thing preventing the function from being const. This allows
2984    // IRgen to use LLVM intrinsics for such functions.
2985    if (!getLangOptions().MathErrno &&
2986        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2987      if (!FD->getAttr<ConstAttr>())
2988        FD->addAttr(new ConstAttr());
2989    }
2990  }
2991
2992  IdentifierInfo *Name = FD->getIdentifier();
2993  if (!Name)
2994    return;
2995  if ((!getLangOptions().CPlusPlus &&
2996       FD->getDeclContext()->isTranslationUnit()) ||
2997      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2998       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2999       LinkageSpecDecl::lang_c)) {
3000    // Okay: this could be a libc/libm/Objective-C function we know
3001    // about.
3002  } else
3003    return;
3004
3005  unsigned KnownID;
3006  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3007    if (KnownFunctionIDs[KnownID] == Name)
3008      break;
3009
3010  switch (KnownID) {
3011  case id_NSLog:
3012  case id_NSLogv:
3013    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3014      // FIXME: We known better than our headers.
3015      const_cast<FormatAttr *>(Format)->setType("printf");
3016    } else
3017      FD->addAttr(new FormatAttr("printf", 1, 2));
3018    break;
3019
3020  case id_asprintf:
3021  case id_vasprintf:
3022    if (!FD->getAttr<FormatAttr>())
3023      FD->addAttr(new FormatAttr("printf", 2, 3));
3024    break;
3025
3026  default:
3027    // Unknown function or known function without any attributes to
3028    // add. Do nothing.
3029    break;
3030  }
3031}
3032
3033TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3034                                    Decl *LastDeclarator) {
3035  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3036  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3037
3038  // Scope manipulation handled by caller.
3039  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3040                                           D.getIdentifierLoc(),
3041                                           D.getIdentifier(),
3042                                           T);
3043  NewTD->setNextDeclarator(LastDeclarator);
3044  if (D.getInvalidType())
3045    NewTD->setInvalidDecl();
3046  return NewTD;
3047}
3048
3049/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3050/// former case, Name will be non-null.  In the later case, Name will be null.
3051/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3052/// reference/declaration/definition of a tag.
3053Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3054                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3055                             IdentifierInfo *Name, SourceLocation NameLoc,
3056                             AttributeList *Attr) {
3057  // If this is not a definition, it must have a name.
3058  assert((Name != 0 || TK == TK_Definition) &&
3059         "Nameless record must be a definition!");
3060
3061  TagDecl::TagKind Kind;
3062  switch (TagSpec) {
3063  default: assert(0 && "Unknown tag type!");
3064  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3065  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3066  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3067  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3068  }
3069
3070  DeclContext *SearchDC = CurContext;
3071  DeclContext *DC = CurContext;
3072  NamedDecl *PrevDecl = 0;
3073
3074  bool Invalid = false;
3075
3076  if (Name && SS.isNotEmpty()) {
3077    // We have a nested-name tag ('struct foo::bar').
3078
3079    // Check for invalid 'foo::'.
3080    if (SS.isInvalid()) {
3081      Name = 0;
3082      goto CreateNewDecl;
3083    }
3084
3085    DC = static_cast<DeclContext*>(SS.getScopeRep());
3086    SearchDC = DC;
3087    // Look-up name inside 'foo::'.
3088    PrevDecl = dyn_cast_or_null<TagDecl>(
3089                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3090
3091    // A tag 'foo::bar' must already exist.
3092    if (PrevDecl == 0) {
3093      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3094      Name = 0;
3095      goto CreateNewDecl;
3096    }
3097  } else if (Name) {
3098    // If this is a named struct, check to see if there was a previous forward
3099    // declaration or definition.
3100    // FIXME: We're looking into outer scopes here, even when we
3101    // shouldn't be. Doing so can result in ambiguities that we
3102    // shouldn't be diagnosing.
3103    LookupResult R = LookupName(S, Name, LookupTagName,
3104                                /*RedeclarationOnly=*/(TK != TK_Reference));
3105    if (R.isAmbiguous()) {
3106      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3107      // FIXME: This is not best way to recover from case like:
3108      //
3109      // struct S s;
3110      //
3111      // causes needless err_ovl_no_viable_function_in_init latter.
3112      Name = 0;
3113      PrevDecl = 0;
3114      Invalid = true;
3115    }
3116    else
3117      PrevDecl = R;
3118
3119    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3120      // FIXME: This makes sure that we ignore the contexts associated
3121      // with C structs, unions, and enums when looking for a matching
3122      // tag declaration or definition. See the similar lookup tweak
3123      // in Sema::LookupName; is there a better way to deal with this?
3124      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3125        SearchDC = SearchDC->getParent();
3126    }
3127  }
3128
3129  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3130    // Maybe we will complain about the shadowed template parameter.
3131    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3132    // Just pretend that we didn't see the previous declaration.
3133    PrevDecl = 0;
3134  }
3135
3136  if (PrevDecl) {
3137    // Check whether the previous declaration is usable.
3138    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3139
3140    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3141      // If this is a use of a previous tag, or if the tag is already declared
3142      // in the same scope (so that the definition/declaration completes or
3143      // rementions the tag), reuse the decl.
3144      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3145        // Make sure that this wasn't declared as an enum and now used as a
3146        // struct or something similar.
3147        if (PrevTagDecl->getTagKind() != Kind) {
3148          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3149          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3150          // Recover by making this an anonymous redefinition.
3151          Name = 0;
3152          PrevDecl = 0;
3153          Invalid = true;
3154        } else {
3155          // If this is a use, just return the declaration we found.
3156
3157          // FIXME: In the future, return a variant or some other clue
3158          // for the consumer of this Decl to know it doesn't own it.
3159          // For our current ASTs this shouldn't be a problem, but will
3160          // need to be changed with DeclGroups.
3161          if (TK == TK_Reference)
3162            return PrevDecl;
3163
3164          // Diagnose attempts to redefine a tag.
3165          if (TK == TK_Definition) {
3166            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3167              Diag(NameLoc, diag::err_redefinition) << Name;
3168              Diag(Def->getLocation(), diag::note_previous_definition);
3169              // If this is a redefinition, recover by making this
3170              // struct be anonymous, which will make any later
3171              // references get the previous definition.
3172              Name = 0;
3173              PrevDecl = 0;
3174              Invalid = true;
3175            } else {
3176              // If the type is currently being defined, complain
3177              // about a nested redefinition.
3178              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3179              if (Tag->isBeingDefined()) {
3180                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3181                Diag(PrevTagDecl->getLocation(),
3182                     diag::note_previous_definition);
3183                Name = 0;
3184                PrevDecl = 0;
3185                Invalid = true;
3186              }
3187            }
3188
3189            // Okay, this is definition of a previously declared or referenced
3190            // tag PrevDecl. We're going to create a new Decl for it.
3191          }
3192        }
3193        // If we get here we have (another) forward declaration or we
3194        // have a definition.  Just create a new decl.
3195      } else {
3196        // If we get here, this is a definition of a new tag type in a nested
3197        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3198        // new decl/type.  We set PrevDecl to NULL so that the entities
3199        // have distinct types.
3200        PrevDecl = 0;
3201      }
3202      // If we get here, we're going to create a new Decl. If PrevDecl
3203      // is non-NULL, it's a definition of the tag declared by
3204      // PrevDecl. If it's NULL, we have a new definition.
3205    } else {
3206      // PrevDecl is a namespace, template, or anything else
3207      // that lives in the IDNS_Tag identifier namespace.
3208      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3209        // The tag name clashes with a namespace name, issue an error and
3210        // recover by making this tag be anonymous.
3211        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3212        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3213        Name = 0;
3214        PrevDecl = 0;
3215        Invalid = true;
3216      } else {
3217        // The existing declaration isn't relevant to us; we're in a
3218        // new scope, so clear out the previous declaration.
3219        PrevDecl = 0;
3220      }
3221    }
3222  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3223             (Kind != TagDecl::TK_enum))  {
3224    // C++ [basic.scope.pdecl]p5:
3225    //   -- for an elaborated-type-specifier of the form
3226    //
3227    //          class-key identifier
3228    //
3229    //      if the elaborated-type-specifier is used in the
3230    //      decl-specifier-seq or parameter-declaration-clause of a
3231    //      function defined in namespace scope, the identifier is
3232    //      declared as a class-name in the namespace that contains
3233    //      the declaration; otherwise, except as a friend
3234    //      declaration, the identifier is declared in the smallest
3235    //      non-class, non-function-prototype scope that contains the
3236    //      declaration.
3237    //
3238    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3239    // C structs and unions.
3240
3241    // Find the context where we'll be declaring the tag.
3242    // FIXME: We would like to maintain the current DeclContext as the
3243    // lexical context,
3244    while (SearchDC->isRecord())
3245      SearchDC = SearchDC->getParent();
3246
3247    // Find the scope where we'll be declaring the tag.
3248    while (S->isClassScope() ||
3249           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3250           ((S->getFlags() & Scope::DeclScope) == 0) ||
3251           (S->getEntity() &&
3252            ((DeclContext *)S->getEntity())->isTransparentContext()))
3253      S = S->getParent();
3254  }
3255
3256CreateNewDecl:
3257
3258  // If there is an identifier, use the location of the identifier as the
3259  // location of the decl, otherwise use the location of the struct/union
3260  // keyword.
3261  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3262
3263  // Otherwise, create a new declaration. If there is a previous
3264  // declaration of the same entity, the two will be linked via
3265  // PrevDecl.
3266  TagDecl *New;
3267
3268  if (Kind == TagDecl::TK_enum) {
3269    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3270    // enum X { A, B, C } D;    D should chain to X.
3271    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3272                           cast_or_null<EnumDecl>(PrevDecl));
3273    // If this is an undefined enum, warn.
3274    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3275  } else {
3276    // struct/union/class
3277
3278    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3279    // struct X { int A; } D;    D should chain to X.
3280    if (getLangOptions().CPlusPlus)
3281      // FIXME: Look for a way to use RecordDecl for simple structs.
3282      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3283                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3284    else
3285      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3286                               cast_or_null<RecordDecl>(PrevDecl));
3287  }
3288
3289  if (Kind != TagDecl::TK_enum) {
3290    // Handle #pragma pack: if the #pragma pack stack has non-default
3291    // alignment, make up a packed attribute for this decl. These
3292    // attributes are checked when the ASTContext lays out the
3293    // structure.
3294    //
3295    // It is important for implementing the correct semantics that this
3296    // happen here (in act on tag decl). The #pragma pack stack is
3297    // maintained as a result of parser callbacks which can occur at
3298    // many points during the parsing of a struct declaration (because
3299    // the #pragma tokens are effectively skipped over during the
3300    // parsing of the struct).
3301    if (unsigned Alignment = getPragmaPackAlignment())
3302      New->addAttr(new PackedAttr(Alignment * 8));
3303  }
3304
3305  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3306    // C++ [dcl.typedef]p3:
3307    //   [...] Similarly, in a given scope, a class or enumeration
3308    //   shall not be declared with the same name as a typedef-name
3309    //   that is declared in that scope and refers to a type other
3310    //   than the class or enumeration itself.
3311    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3312    TypedefDecl *PrevTypedef = 0;
3313    if (Lookup.getKind() == LookupResult::Found)
3314      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3315
3316    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3317        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3318          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3319      Diag(Loc, diag::err_tag_definition_of_typedef)
3320        << Context.getTypeDeclType(New)
3321        << PrevTypedef->getUnderlyingType();
3322      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3323      Invalid = true;
3324    }
3325  }
3326
3327  if (Invalid)
3328    New->setInvalidDecl();
3329
3330  if (Attr)
3331    ProcessDeclAttributeList(New, Attr);
3332
3333  // If we're declaring or defining a tag in function prototype scope
3334  // in C, note that this type can only be used within the function.
3335  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3336    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3337
3338  // Set the lexical context. If the tag has a C++ scope specifier, the
3339  // lexical context will be different from the semantic context.
3340  New->setLexicalDeclContext(CurContext);
3341
3342  if (TK == TK_Definition)
3343    New->startDefinition();
3344
3345  // If this has an identifier, add it to the scope stack.
3346  if (Name) {
3347    S = getNonFieldDeclScope(S);
3348    PushOnScopeChains(New, S);
3349  } else {
3350    CurContext->addDecl(New);
3351  }
3352
3353  return New;
3354}
3355
3356void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3357  AdjustDeclIfTemplate(TagD);
3358  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3359
3360  // Enter the tag context.
3361  PushDeclContext(S, Tag);
3362
3363  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3364    FieldCollector->StartClass();
3365
3366    if (Record->getIdentifier()) {
3367      // C++ [class]p2:
3368      //   [...] The class-name is also inserted into the scope of the
3369      //   class itself; this is known as the injected-class-name. For
3370      //   purposes of access checking, the injected-class-name is treated
3371      //   as if it were a public member name.
3372      RecordDecl *InjectedClassName
3373        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3374                                CurContext, Record->getLocation(),
3375                                Record->getIdentifier(), Record);
3376      InjectedClassName->setImplicit();
3377      PushOnScopeChains(InjectedClassName, S);
3378    }
3379  }
3380}
3381
3382void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3383  AdjustDeclIfTemplate(TagD);
3384  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3385
3386  if (isa<CXXRecordDecl>(Tag))
3387    FieldCollector->FinishClass();
3388
3389  // Exit this scope of this tag's definition.
3390  PopDeclContext();
3391
3392  // Notify the consumer that we've defined a tag.
3393  Consumer.HandleTagDeclDefinition(Tag);
3394}
3395
3396/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3397/// types into constant array types in certain situations which would otherwise
3398/// be errors (for GCC compatibility).
3399static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3400                                                    ASTContext &Context,
3401                                                    bool &SizeIsNegative) {
3402  // This method tries to turn a variable array into a constant
3403  // array even when the size isn't an ICE.  This is necessary
3404  // for compatibility with code that depends on gcc's buggy
3405  // constant expression folding, like struct {char x[(int)(char*)2];}
3406  SizeIsNegative = false;
3407
3408  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3409  if (!VLATy) return QualType();
3410
3411  Expr::EvalResult EvalResult;
3412  if (!VLATy->getSizeExpr() ||
3413      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3414    return QualType();
3415
3416  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3417  llvm::APSInt &Res = EvalResult.Val.getInt();
3418  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3419    return Context.getConstantArrayType(VLATy->getElementType(),
3420                                        Res, ArrayType::Normal, 0);
3421
3422  SizeIsNegative = true;
3423  return QualType();
3424}
3425
3426bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3427                          QualType FieldTy, const Expr *BitWidth) {
3428  // FIXME: 6.7.2.1p4 - verify the field type.
3429
3430  llvm::APSInt Value;
3431  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3432    return true;
3433
3434  // Zero-width bitfield is ok for anonymous field.
3435  if (Value == 0 && FieldName)
3436    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3437
3438  if (Value.isNegative())
3439    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3440
3441  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3442  // FIXME: We won't need the 0 size once we check that the field type is valid.
3443  if (TypeSize && Value.getZExtValue() > TypeSize)
3444    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3445       << FieldName << (unsigned)TypeSize;
3446
3447  return false;
3448}
3449
3450/// ActOnField - Each field of a struct/union/class is passed into this in order
3451/// to create a FieldDecl object for it.
3452Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3453                               SourceLocation DeclStart,
3454                               Declarator &D, ExprTy *BitfieldWidth) {
3455  IdentifierInfo *II = D.getIdentifier();
3456  Expr *BitWidth = (Expr*)BitfieldWidth;
3457  SourceLocation Loc = DeclStart;
3458  RecordDecl *Record = (RecordDecl *)TagD;
3459  if (II) Loc = D.getIdentifierLoc();
3460
3461  // FIXME: Unnamed fields can be handled in various different ways, for
3462  // example, unnamed unions inject all members into the struct namespace!
3463
3464  QualType T = GetTypeForDeclarator(D, S);
3465  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3466  bool InvalidDecl = false;
3467
3468  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3469  // than a variably modified type.
3470  if (T->isVariablyModifiedType()) {
3471    bool SizeIsNegative;
3472    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3473                                                           SizeIsNegative);
3474    if (!FixedTy.isNull()) {
3475      Diag(Loc, diag::warn_illegal_constant_array_size);
3476      T = FixedTy;
3477    } else {
3478      if (SizeIsNegative)
3479        Diag(Loc, diag::err_typecheck_negative_array_size);
3480      else
3481        Diag(Loc, diag::err_typecheck_field_variable_size);
3482      T = Context.IntTy;
3483      InvalidDecl = true;
3484    }
3485  }
3486
3487  if (BitWidth) {
3488    if (VerifyBitField(Loc, II, T, BitWidth))
3489      InvalidDecl = true;
3490  } else {
3491    // Not a bitfield.
3492
3493    // validate II.
3494
3495  }
3496
3497  // FIXME: Chain fielddecls together.
3498  FieldDecl *NewFD;
3499
3500  NewFD = FieldDecl::Create(Context, Record,
3501                            Loc, II, T, BitWidth,
3502                            D.getDeclSpec().getStorageClassSpec() ==
3503                              DeclSpec::SCS_mutable);
3504
3505  if (II) {
3506    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3507    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3508        && !isa<TagDecl>(PrevDecl)) {
3509      Diag(Loc, diag::err_duplicate_member) << II;
3510      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3511      NewFD->setInvalidDecl();
3512      Record->setInvalidDecl();
3513    }
3514  }
3515
3516  if (getLangOptions().CPlusPlus) {
3517    CheckExtraCXXDefaultArguments(D);
3518    if (!T->isPODType())
3519      cast<CXXRecordDecl>(Record)->setPOD(false);
3520  }
3521
3522  ProcessDeclAttributes(NewFD, D);
3523  if (T.isObjCGCWeak())
3524    Diag(Loc, diag::warn_attribute_weak_on_field);
3525
3526  if (D.getInvalidType() || InvalidDecl)
3527    NewFD->setInvalidDecl();
3528
3529  if (II) {
3530    PushOnScopeChains(NewFD, S);
3531  } else
3532    Record->addDecl(NewFD);
3533
3534  return NewFD;
3535}
3536
3537/// TranslateIvarVisibility - Translate visibility from a token ID to an
3538///  AST enum value.
3539static ObjCIvarDecl::AccessControl
3540TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3541  switch (ivarVisibility) {
3542  default: assert(0 && "Unknown visitibility kind");
3543  case tok::objc_private: return ObjCIvarDecl::Private;
3544  case tok::objc_public: return ObjCIvarDecl::Public;
3545  case tok::objc_protected: return ObjCIvarDecl::Protected;
3546  case tok::objc_package: return ObjCIvarDecl::Package;
3547  }
3548}
3549
3550/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3551/// in order to create an IvarDecl object for it.
3552Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3553                              SourceLocation DeclStart,
3554                              Declarator &D, ExprTy *BitfieldWidth,
3555                              tok::ObjCKeywordKind Visibility) {
3556
3557  IdentifierInfo *II = D.getIdentifier();
3558  Expr *BitWidth = (Expr*)BitfieldWidth;
3559  SourceLocation Loc = DeclStart;
3560  if (II) Loc = D.getIdentifierLoc();
3561
3562  // FIXME: Unnamed fields can be handled in various different ways, for
3563  // example, unnamed unions inject all members into the struct namespace!
3564
3565  QualType T = GetTypeForDeclarator(D, S);
3566  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3567  bool InvalidDecl = false;
3568
3569  if (BitWidth) {
3570    // TODO: Validate.
3571    //printf("WARNING: BITFIELDS IGNORED!\n");
3572
3573    // 6.7.2.1p3
3574    // 6.7.2.1p4
3575
3576  } else {
3577    // Not a bitfield.
3578
3579    // validate II.
3580
3581  }
3582
3583  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3584  // than a variably modified type.
3585  if (T->isVariablyModifiedType()) {
3586    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3587    InvalidDecl = true;
3588  }
3589
3590  // Get the visibility (access control) for this ivar.
3591  ObjCIvarDecl::AccessControl ac =
3592    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3593                                        : ObjCIvarDecl::None;
3594
3595  // Construct the decl.
3596  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3597                                             (Expr *)BitfieldWidth);
3598
3599  if (II) {
3600    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3601    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3602        && !isa<TagDecl>(PrevDecl)) {
3603      Diag(Loc, diag::err_duplicate_member) << II;
3604      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3605      NewID->setInvalidDecl();
3606    }
3607  }
3608
3609  // Process attributes attached to the ivar.
3610  ProcessDeclAttributes(NewID, D);
3611
3612  if (D.getInvalidType() || InvalidDecl)
3613    NewID->setInvalidDecl();
3614
3615  if (II) {
3616    // FIXME: When interfaces are DeclContexts, we'll need to add
3617    // these to the interface.
3618    S->AddDecl(NewID);
3619    IdResolver.AddDecl(NewID);
3620  }
3621
3622  return NewID;
3623}
3624
3625void Sema::ActOnFields(Scope* S,
3626                       SourceLocation RecLoc, DeclTy *RecDecl,
3627                       DeclTy **Fields, unsigned NumFields,
3628                       SourceLocation LBrac, SourceLocation RBrac,
3629                       AttributeList *Attr) {
3630  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3631  assert(EnclosingDecl && "missing record or interface decl");
3632  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3633
3634  // Verify that all the fields are okay.
3635  unsigned NumNamedMembers = 0;
3636  llvm::SmallVector<FieldDecl*, 32> RecFields;
3637
3638  for (unsigned i = 0; i != NumFields; ++i) {
3639    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3640    assert(FD && "missing field decl");
3641
3642    // Get the type for the field.
3643    Type *FDTy = FD->getType().getTypePtr();
3644
3645    if (!FD->isAnonymousStructOrUnion()) {
3646      // Remember all fields written by the user.
3647      RecFields.push_back(FD);
3648    }
3649
3650    // C99 6.7.2.1p2 - A field may not be a function type.
3651    if (FDTy->isFunctionType()) {
3652      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3653        << FD->getDeclName();
3654      FD->setInvalidDecl();
3655      EnclosingDecl->setInvalidDecl();
3656      continue;
3657    }
3658    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3659    if (FDTy->isIncompleteType()) {
3660      if (!Record) {  // Incomplete ivar type is always an error.
3661        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3662                               diag::err_field_incomplete);
3663        FD->setInvalidDecl();
3664        EnclosingDecl->setInvalidDecl();
3665        continue;
3666      }
3667      if (i != NumFields-1 ||                   // ... that the last member ...
3668          !Record->isStruct() ||  // ... of a structure ...
3669          !FDTy->isArrayType()) {         //... may have incomplete array type.
3670        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3671                               diag::err_field_incomplete);
3672        FD->setInvalidDecl();
3673        EnclosingDecl->setInvalidDecl();
3674        continue;
3675      }
3676      if (NumNamedMembers < 1) {  //... must have more than named member ...
3677        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3678          << FD->getDeclName();
3679        FD->setInvalidDecl();
3680        EnclosingDecl->setInvalidDecl();
3681        continue;
3682      }
3683      // Okay, we have a legal flexible array member at the end of the struct.
3684      if (Record)
3685        Record->setHasFlexibleArrayMember(true);
3686    }
3687    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3688    /// field of another structure or the element of an array.
3689    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3690      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3691        // If this is a member of a union, then entire union becomes "flexible".
3692        if (Record && Record->isUnion()) {
3693          Record->setHasFlexibleArrayMember(true);
3694        } else {
3695          // If this is a struct/class and this is not the last element, reject
3696          // it.  Note that GCC supports variable sized arrays in the middle of
3697          // structures.
3698          if (i != NumFields-1) {
3699            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3700              << FD->getDeclName();
3701            FD->setInvalidDecl();
3702            EnclosingDecl->setInvalidDecl();
3703            continue;
3704          }
3705          // We support flexible arrays at the end of structs in other structs
3706          // as an extension.
3707          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3708            << FD->getDeclName();
3709          if (Record)
3710            Record->setHasFlexibleArrayMember(true);
3711        }
3712      }
3713    }
3714    /// A field cannot be an Objective-c object
3715    if (FDTy->isObjCInterfaceType()) {
3716      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3717        << FD->getDeclName();
3718      FD->setInvalidDecl();
3719      EnclosingDecl->setInvalidDecl();
3720      continue;
3721    }
3722    // Keep track of the number of named members.
3723    if (FD->getIdentifier())
3724      ++NumNamedMembers;
3725  }
3726
3727  // Okay, we successfully defined 'Record'.
3728  if (Record) {
3729    Record->completeDefinition(Context);
3730  } else {
3731    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3732    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3733      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3734      // Must enforce the rule that ivars in the base classes may not be
3735      // duplicates.
3736      if (ID->getSuperClass()) {
3737        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3738             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3739          ObjCIvarDecl* Ivar = (*IVI);
3740          IdentifierInfo *II = Ivar->getIdentifier();
3741          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3742          if (prevIvar) {
3743            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3744            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3745          }
3746        }
3747      }
3748    }
3749    else if (ObjCImplementationDecl *IMPDecl =
3750               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3751      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3752      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3753      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3754    }
3755  }
3756
3757  if (Attr)
3758    ProcessDeclAttributeList(Record, Attr);
3759}
3760
3761Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3762                                      DeclTy *lastEnumConst,
3763                                      SourceLocation IdLoc, IdentifierInfo *Id,
3764                                      SourceLocation EqualLoc, ExprTy *val) {
3765  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3766  EnumConstantDecl *LastEnumConst =
3767    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3768  Expr *Val = static_cast<Expr*>(val);
3769
3770  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3771  // we find one that is.
3772  S = getNonFieldDeclScope(S);
3773
3774  // Verify that there isn't already something declared with this name in this
3775  // scope.
3776  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3777  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3778    // Maybe we will complain about the shadowed template parameter.
3779    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3780    // Just pretend that we didn't see the previous declaration.
3781    PrevDecl = 0;
3782  }
3783
3784  if (PrevDecl) {
3785    // When in C++, we may get a TagDecl with the same name; in this case the
3786    // enum constant will 'hide' the tag.
3787    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3788           "Received TagDecl when not in C++!");
3789    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3790      if (isa<EnumConstantDecl>(PrevDecl))
3791        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3792      else
3793        Diag(IdLoc, diag::err_redefinition) << Id;
3794      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3795      Val->Destroy(Context);
3796      return 0;
3797    }
3798  }
3799
3800  llvm::APSInt EnumVal(32);
3801  QualType EltTy;
3802  if (Val) {
3803    // Make sure to promote the operand type to int.
3804    UsualUnaryConversions(Val);
3805
3806    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3807    SourceLocation ExpLoc;
3808    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3809      Val->Destroy(Context);
3810      Val = 0;  // Just forget about it.
3811    } else {
3812      EltTy = Val->getType();
3813    }
3814  }
3815
3816  if (!Val) {
3817    if (LastEnumConst) {
3818      // Assign the last value + 1.
3819      EnumVal = LastEnumConst->getInitVal();
3820      ++EnumVal;
3821
3822      // Check for overflow on increment.
3823      if (EnumVal < LastEnumConst->getInitVal())
3824        Diag(IdLoc, diag::warn_enum_value_overflow);
3825
3826      EltTy = LastEnumConst->getType();
3827    } else {
3828      // First value, set to zero.
3829      EltTy = Context.IntTy;
3830      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3831    }
3832  }
3833
3834  EnumConstantDecl *New =
3835    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3836                             Val, EnumVal);
3837
3838  // Register this decl in the current scope stack.
3839  PushOnScopeChains(New, S);
3840
3841  return New;
3842}
3843
3844// FIXME: For consistency with ActOnFields(), we should have the parser
3845// pass in the source location for the left/right braces.
3846void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3847                         DeclTy **Elements, unsigned NumElements) {
3848  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3849  QualType EnumType = Context.getTypeDeclType(Enum);
3850
3851  // TODO: If the result value doesn't fit in an int, it must be a long or long
3852  // long value.  ISO C does not support this, but GCC does as an extension,
3853  // emit a warning.
3854  unsigned IntWidth = Context.Target.getIntWidth();
3855
3856  // Verify that all the values are okay, compute the size of the values, and
3857  // reverse the list.
3858  unsigned NumNegativeBits = 0;
3859  unsigned NumPositiveBits = 0;
3860
3861  // Keep track of whether all elements have type int.
3862  bool AllElementsInt = true;
3863
3864  for (unsigned i = 0; i != NumElements; ++i) {
3865    EnumConstantDecl *ECD =
3866      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3867    if (!ECD) continue;  // Already issued a diagnostic.
3868
3869    // If the enum value doesn't fit in an int, emit an extension warning.
3870    const llvm::APSInt &InitVal = ECD->getInitVal();
3871    assert(InitVal.getBitWidth() >= IntWidth &&
3872           "Should have promoted value to int");
3873    if (InitVal.getBitWidth() > IntWidth) {
3874      llvm::APSInt V(InitVal);
3875      V.trunc(IntWidth);
3876      V.extend(InitVal.getBitWidth());
3877      if (V != InitVal)
3878        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3879          << InitVal.toString(10);
3880    }
3881
3882    // Keep track of the size of positive and negative values.
3883    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3884      NumPositiveBits = std::max(NumPositiveBits,
3885                                 (unsigned)InitVal.getActiveBits());
3886    else
3887      NumNegativeBits = std::max(NumNegativeBits,
3888                                 (unsigned)InitVal.getMinSignedBits());
3889
3890    // Keep track of whether every enum element has type int (very commmon).
3891    if (AllElementsInt)
3892      AllElementsInt = ECD->getType() == Context.IntTy;
3893  }
3894
3895  // Figure out the type that should be used for this enum.
3896  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3897  QualType BestType;
3898  unsigned BestWidth;
3899
3900  if (NumNegativeBits) {
3901    // If there is a negative value, figure out the smallest integer type (of
3902    // int/long/longlong) that fits.
3903    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3904      BestType = Context.IntTy;
3905      BestWidth = IntWidth;
3906    } else {
3907      BestWidth = Context.Target.getLongWidth();
3908
3909      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3910        BestType = Context.LongTy;
3911      else {
3912        BestWidth = Context.Target.getLongLongWidth();
3913
3914        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3915          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3916        BestType = Context.LongLongTy;
3917      }
3918    }
3919  } else {
3920    // If there is no negative value, figure out which of uint, ulong, ulonglong
3921    // fits.
3922    if (NumPositiveBits <= IntWidth) {
3923      BestType = Context.UnsignedIntTy;
3924      BestWidth = IntWidth;
3925    } else if (NumPositiveBits <=
3926               (BestWidth = Context.Target.getLongWidth())) {
3927      BestType = Context.UnsignedLongTy;
3928    } else {
3929      BestWidth = Context.Target.getLongLongWidth();
3930      assert(NumPositiveBits <= BestWidth &&
3931             "How could an initializer get larger than ULL?");
3932      BestType = Context.UnsignedLongLongTy;
3933    }
3934  }
3935
3936  // Loop over all of the enumerator constants, changing their types to match
3937  // the type of the enum if needed.
3938  for (unsigned i = 0; i != NumElements; ++i) {
3939    EnumConstantDecl *ECD =
3940      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3941    if (!ECD) continue;  // Already issued a diagnostic.
3942
3943    // Standard C says the enumerators have int type, but we allow, as an
3944    // extension, the enumerators to be larger than int size.  If each
3945    // enumerator value fits in an int, type it as an int, otherwise type it the
3946    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3947    // that X has type 'int', not 'unsigned'.
3948    if (ECD->getType() == Context.IntTy) {
3949      // Make sure the init value is signed.
3950      llvm::APSInt IV = ECD->getInitVal();
3951      IV.setIsSigned(true);
3952      ECD->setInitVal(IV);
3953
3954      if (getLangOptions().CPlusPlus)
3955        // C++ [dcl.enum]p4: Following the closing brace of an
3956        // enum-specifier, each enumerator has the type of its
3957        // enumeration.
3958        ECD->setType(EnumType);
3959      continue;  // Already int type.
3960    }
3961
3962    // Determine whether the value fits into an int.
3963    llvm::APSInt InitVal = ECD->getInitVal();
3964    bool FitsInInt;
3965    if (InitVal.isUnsigned() || !InitVal.isNegative())
3966      FitsInInt = InitVal.getActiveBits() < IntWidth;
3967    else
3968      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3969
3970    // If it fits into an integer type, force it.  Otherwise force it to match
3971    // the enum decl type.
3972    QualType NewTy;
3973    unsigned NewWidth;
3974    bool NewSign;
3975    if (FitsInInt) {
3976      NewTy = Context.IntTy;
3977      NewWidth = IntWidth;
3978      NewSign = true;
3979    } else if (ECD->getType() == BestType) {
3980      // Already the right type!
3981      if (getLangOptions().CPlusPlus)
3982        // C++ [dcl.enum]p4: Following the closing brace of an
3983        // enum-specifier, each enumerator has the type of its
3984        // enumeration.
3985        ECD->setType(EnumType);
3986      continue;
3987    } else {
3988      NewTy = BestType;
3989      NewWidth = BestWidth;
3990      NewSign = BestType->isSignedIntegerType();
3991    }
3992
3993    // Adjust the APSInt value.
3994    InitVal.extOrTrunc(NewWidth);
3995    InitVal.setIsSigned(NewSign);
3996    ECD->setInitVal(InitVal);
3997
3998    // Adjust the Expr initializer and type.
3999    if (ECD->getInitExpr())
4000      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4001                                                      /*isLvalue=*/false));
4002    if (getLangOptions().CPlusPlus)
4003      // C++ [dcl.enum]p4: Following the closing brace of an
4004      // enum-specifier, each enumerator has the type of its
4005      // enumeration.
4006      ECD->setType(EnumType);
4007    else
4008      ECD->setType(NewTy);
4009  }
4010
4011  Enum->completeDefinition(Context, BestType);
4012}
4013
4014Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4015                                          ExprArg expr) {
4016  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4017
4018  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4019}
4020
4021