SemaDecl.cpp revision f7ed78151d1ca4cf63198b4987bff9bcd650cb40
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLineDefinition())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// \brief Determine whether we allow overloading of the function
223/// PrevDecl with another declaration.
224///
225/// This routine determines whether overloading is possible, not
226/// whether some new function is actually an overload. It will return
227/// true in C++ (where we can always provide overloads) or, as an
228/// extension, in C when the previous function is already an
229/// overloaded function declaration or has the "overloadable"
230/// attribute.
231static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
232  if (Context.getLangOptions().CPlusPlus)
233    return true;
234
235  if (isa<OverloadedFunctionDecl>(PrevDecl))
236    return true;
237
238  return PrevDecl->getAttr<OverloadableAttr>() != 0;
239}
240
241/// Add this decl to the scope shadowed decl chains.
242void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
243  // Move up the scope chain until we find the nearest enclosing
244  // non-transparent context. The declaration will be introduced into this
245  // scope.
246  while (S->getEntity() &&
247         ((DeclContext *)S->getEntity())->isTransparentContext())
248    S = S->getParent();
249
250  S->AddDecl(DeclPtrTy::make(D));
251
252  // Add scoped declarations into their context, so that they can be
253  // found later. Declarations without a context won't be inserted
254  // into any context.
255  CurContext->addDecl(Context, D);
256
257  // C++ [basic.scope]p4:
258  //   -- exactly one declaration shall declare a class name or
259  //   enumeration name that is not a typedef name and the other
260  //   declarations shall all refer to the same object or
261  //   enumerator, or all refer to functions and function templates;
262  //   in this case the class name or enumeration name is hidden.
263  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
264    // We are pushing the name of a tag (enum or class).
265    if (CurContext->getLookupContext()
266          == TD->getDeclContext()->getLookupContext()) {
267      // We're pushing the tag into the current context, which might
268      // require some reshuffling in the identifier resolver.
269      IdentifierResolver::iterator
270        I = IdResolver.begin(TD->getDeclName()),
271        IEnd = IdResolver.end();
272      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
273        NamedDecl *PrevDecl = *I;
274        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
275             PrevDecl = *I, ++I) {
276          if (TD->declarationReplaces(*I)) {
277            // This is a redeclaration. Remove it from the chain and
278            // break out, so that we'll add in the shadowed
279            // declaration.
280            S->RemoveDecl(DeclPtrTy::make(*I));
281            if (PrevDecl == *I) {
282              IdResolver.RemoveDecl(*I);
283              IdResolver.AddDecl(TD);
284              return;
285            } else {
286              IdResolver.RemoveDecl(*I);
287              break;
288            }
289          }
290        }
291
292        // There is already a declaration with the same name in the same
293        // scope, which is not a tag declaration. It must be found
294        // before we find the new declaration, so insert the new
295        // declaration at the end of the chain.
296        IdResolver.AddShadowedDecl(TD, PrevDecl);
297
298        return;
299      }
300    }
301  } else if (isa<FunctionDecl>(D) &&
302             AllowOverloadingOfFunction(D, Context)) {
303    // We are pushing the name of a function, which might be an
304    // overloaded name.
305    FunctionDecl *FD = cast<FunctionDecl>(D);
306    IdentifierResolver::iterator Redecl
307      = std::find_if(IdResolver.begin(FD->getDeclName()),
308                     IdResolver.end(),
309                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
310                                  FD));
311    if (Redecl != IdResolver.end() &&
312        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
313      // There is already a declaration of a function on our
314      // IdResolver chain. Replace it with this declaration.
315      S->RemoveDecl(DeclPtrTy::make(*Redecl));
316      IdResolver.RemoveDecl(*Redecl);
317    }
318  } else if (isa<ObjCInterfaceDecl>(D)) {
319    // We're pushing an Objective-C interface into the current
320    // context. If there is already an alias declaration, remove it first.
321    for (IdentifierResolver::iterator
322           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
323         I != IEnd; ++I) {
324      if (isa<ObjCCompatibleAliasDecl>(*I)) {
325        S->RemoveDecl(DeclPtrTy::make(*I));
326        IdResolver.RemoveDecl(*I);
327        break;
328      }
329    }
330  }
331
332  IdResolver.AddDecl(D);
333}
334
335void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
336  if (S->decl_empty()) return;
337  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
338	 "Scope shouldn't contain decls!");
339
340  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
341       I != E; ++I) {
342    Decl *TmpD = (*I).getAs<Decl>();
343    assert(TmpD && "This decl didn't get pushed??");
344
345    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
346    NamedDecl *D = cast<NamedDecl>(TmpD);
347
348    if (!D->getDeclName()) continue;
349
350    // Remove this name from our lexical scope.
351    IdResolver.RemoveDecl(D);
352  }
353}
354
355/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
356/// return 0 if one not found.
357ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
358  // The third "scope" argument is 0 since we aren't enabling lazy built-in
359  // creation from this context.
360  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
361
362  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
363}
364
365/// getNonFieldDeclScope - Retrieves the innermost scope, starting
366/// from S, where a non-field would be declared. This routine copes
367/// with the difference between C and C++ scoping rules in structs and
368/// unions. For example, the following code is well-formed in C but
369/// ill-formed in C++:
370/// @code
371/// struct S6 {
372///   enum { BAR } e;
373/// };
374///
375/// void test_S6() {
376///   struct S6 a;
377///   a.e = BAR;
378/// }
379/// @endcode
380/// For the declaration of BAR, this routine will return a different
381/// scope. The scope S will be the scope of the unnamed enumeration
382/// within S6. In C++, this routine will return the scope associated
383/// with S6, because the enumeration's scope is a transparent
384/// context but structures can contain non-field names. In C, this
385/// routine will return the translation unit scope, since the
386/// enumeration's scope is a transparent context and structures cannot
387/// contain non-field names.
388Scope *Sema::getNonFieldDeclScope(Scope *S) {
389  while (((S->getFlags() & Scope::DeclScope) == 0) ||
390         (S->getEntity() &&
391          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
392         (S->isClassScope() && !getLangOptions().CPlusPlus))
393    S = S->getParent();
394  return S;
395}
396
397void Sema::InitBuiltinVaListType() {
398  if (!Context.getBuiltinVaListType().isNull())
399    return;
400
401  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
402  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
403  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
404  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
405}
406
407/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
408/// file scope.  lazily create a decl for it. ForRedeclaration is true
409/// if we're creating this built-in in anticipation of redeclaring the
410/// built-in.
411NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
412                                     Scope *S, bool ForRedeclaration,
413                                     SourceLocation Loc) {
414  Builtin::ID BID = (Builtin::ID)bid;
415
416  if (Context.BuiltinInfo.hasVAListUse(BID))
417    InitBuiltinVaListType();
418
419  Builtin::Context::GetBuiltinTypeError Error;
420  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
421  switch (Error) {
422  case Builtin::Context::GE_None:
423    // Okay
424    break;
425
426  case Builtin::Context::GE_Missing_FILE:
427    if (ForRedeclaration)
428      Diag(Loc, diag::err_implicit_decl_requires_stdio)
429        << Context.BuiltinInfo.GetName(BID);
430    return 0;
431  }
432
433  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
434    Diag(Loc, diag::ext_implicit_lib_function_decl)
435      << Context.BuiltinInfo.GetName(BID)
436      << R;
437    if (Context.BuiltinInfo.getHeaderName(BID) &&
438        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
439          != Diagnostic::Ignored)
440      Diag(Loc, diag::note_please_include_header)
441        << Context.BuiltinInfo.getHeaderName(BID)
442        << Context.BuiltinInfo.GetName(BID);
443  }
444
445  FunctionDecl *New = FunctionDecl::Create(Context,
446                                           Context.getTranslationUnitDecl(),
447                                           Loc, II, R,
448                                           FunctionDecl::Extern, false,
449                                           /*hasPrototype=*/true);
450  New->setImplicit();
451
452  // Create Decl objects for each parameter, adding them to the
453  // FunctionDecl.
454  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
455    llvm::SmallVector<ParmVarDecl*, 16> Params;
456    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
457      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
458                                           FT->getArgType(i), VarDecl::None, 0));
459    New->setParams(Context, Params.data(), Params.size());
460  }
461
462  AddKnownFunctionAttributes(New);
463
464  // TUScope is the translation-unit scope to insert this function into.
465  // FIXME: This is hideous. We need to teach PushOnScopeChains to
466  // relate Scopes to DeclContexts, and probably eliminate CurContext
467  // entirely, but we're not there yet.
468  DeclContext *SavedContext = CurContext;
469  CurContext = Context.getTranslationUnitDecl();
470  PushOnScopeChains(New, TUScope);
471  CurContext = SavedContext;
472  return New;
473}
474
475/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
476/// everything from the standard library is defined.
477NamespaceDecl *Sema::GetStdNamespace() {
478  if (!StdNamespace) {
479    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
480    DeclContext *Global = Context.getTranslationUnitDecl();
481    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
482    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
483  }
484  return StdNamespace;
485}
486
487/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
488/// same name and scope as a previous declaration 'Old'.  Figure out
489/// how to resolve this situation, merging decls or emitting
490/// diagnostics as appropriate. If there was an error, set New to be invalid.
491///
492void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
493  // If either decl is known invalid already, set the new one to be invalid and
494  // don't bother doing any merging checks.
495  if (New->isInvalidDecl() || OldD->isInvalidDecl())
496    return New->setInvalidDecl();
497
498  bool objc_types = false;
499
500  // Allow multiple definitions for ObjC built-in typedefs.
501  // FIXME: Verify the underlying types are equivalent!
502  if (getLangOptions().ObjC1) {
503    const IdentifierInfo *TypeID = New->getIdentifier();
504    switch (TypeID->getLength()) {
505    default: break;
506    case 2:
507      if (!TypeID->isStr("id"))
508        break;
509      Context.setObjCIdType(Context.getTypeDeclType(New));
510      objc_types = true;
511      break;
512    case 5:
513      if (!TypeID->isStr("Class"))
514        break;
515      Context.setObjCClassType(Context.getTypeDeclType(New));
516      return;
517    case 3:
518      if (!TypeID->isStr("SEL"))
519        break;
520      Context.setObjCSelType(Context.getTypeDeclType(New));
521      return;
522    case 8:
523      if (!TypeID->isStr("Protocol"))
524        break;
525      Context.setObjCProtoType(New->getUnderlyingType());
526      return;
527    }
528    // Fall through - the typedef name was not a builtin type.
529  }
530  // Verify the old decl was also a type.
531  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
532  if (!Old) {
533    Diag(New->getLocation(), diag::err_redefinition_different_kind)
534      << New->getDeclName();
535    if (OldD->getLocation().isValid())
536      Diag(OldD->getLocation(), diag::note_previous_definition);
537    return New->setInvalidDecl();
538  }
539
540  // Determine the "old" type we'll use for checking and diagnostics.
541  QualType OldType;
542  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
543    OldType = OldTypedef->getUnderlyingType();
544  else
545    OldType = Context.getTypeDeclType(Old);
546
547  // If the typedef types are not identical, reject them in all languages and
548  // with any extensions enabled.
549
550  if (OldType != New->getUnderlyingType() &&
551      Context.getCanonicalType(OldType) !=
552      Context.getCanonicalType(New->getUnderlyingType())) {
553    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
554      << New->getUnderlyingType() << OldType;
555    if (Old->getLocation().isValid())
556      Diag(Old->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  if (objc_types || getLangOptions().Microsoft)
561    return;
562
563  // C++ [dcl.typedef]p2:
564  //   In a given non-class scope, a typedef specifier can be used to
565  //   redefine the name of any type declared in that scope to refer
566  //   to the type to which it already refers.
567  if (getLangOptions().CPlusPlus) {
568    if (!isa<CXXRecordDecl>(CurContext))
569      return;
570    Diag(New->getLocation(), diag::err_redefinition)
571      << New->getDeclName();
572    Diag(Old->getLocation(), diag::note_previous_definition);
573    return New->setInvalidDecl();
574  }
575
576  // If we have a redefinition of a typedef in C, emit a warning.  This warning
577  // is normally mapped to an error, but can be controlled with
578  // -Wtypedef-redefinition.  If either the original was in a system header,
579  // don't emit this for compatibility with GCC.
580  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
581      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
582    return;
583
584  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
585    << New->getDeclName();
586  Diag(Old->getLocation(), diag::note_previous_definition);
587  return;
588}
589
590/// DeclhasAttr - returns true if decl Declaration already has the target
591/// attribute.
592static bool DeclHasAttr(const Decl *decl, const Attr *target) {
593  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
594    if (attr->getKind() == target->getKind())
595      return true;
596
597  return false;
598}
599
600/// MergeAttributes - append attributes from the Old decl to the New one.
601static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
602  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
603    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
604      Attr *NewAttr = attr->clone(C);
605      NewAttr->setInherited(true);
606      New->addAttr(NewAttr);
607    }
608  }
609}
610
611/// Used in MergeFunctionDecl to keep track of function parameters in
612/// C.
613struct GNUCompatibleParamWarning {
614  ParmVarDecl *OldParm;
615  ParmVarDecl *NewParm;
616  QualType PromotedType;
617};
618
619/// MergeFunctionDecl - We just parsed a function 'New' from
620/// declarator D which has the same name and scope as a previous
621/// declaration 'Old'.  Figure out how to resolve this situation,
622/// merging decls or emitting diagnostics as appropriate.
623///
624/// In C++, New and Old must be declarations that are not
625/// overloaded. Use IsOverload to determine whether New and Old are
626/// overloaded, and to select the Old declaration that New should be
627/// merged with.
628///
629/// Returns true if there was an error, false otherwise.
630bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
631  assert(!isa<OverloadedFunctionDecl>(OldD) &&
632         "Cannot merge with an overloaded function declaration");
633
634  // Verify the old decl was also a function.
635  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
636  if (!Old) {
637    Diag(New->getLocation(), diag::err_redefinition_different_kind)
638      << New->getDeclName();
639    Diag(OldD->getLocation(), diag::note_previous_definition);
640    return true;
641  }
642
643  // Determine whether the previous declaration was a definition,
644  // implicit declaration, or a declaration.
645  diag::kind PrevDiag;
646  if (Old->isThisDeclarationADefinition())
647    PrevDiag = diag::note_previous_definition;
648  else if (Old->isImplicit())
649    PrevDiag = diag::note_previous_implicit_declaration;
650  else
651    PrevDiag = diag::note_previous_declaration;
652
653  QualType OldQType = Context.getCanonicalType(Old->getType());
654  QualType NewQType = Context.getCanonicalType(New->getType());
655
656  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
657      New->getStorageClass() == FunctionDecl::Static &&
658      Old->getStorageClass() != FunctionDecl::Static) {
659    Diag(New->getLocation(), diag::err_static_non_static)
660      << New;
661    Diag(Old->getLocation(), PrevDiag);
662    return true;
663  }
664
665  if (getLangOptions().CPlusPlus) {
666    // (C++98 13.1p2):
667    //   Certain function declarations cannot be overloaded:
668    //     -- Function declarations that differ only in the return type
669    //        cannot be overloaded.
670    QualType OldReturnType
671      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
672    QualType NewReturnType
673      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
674    if (OldReturnType != NewReturnType) {
675      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
676      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
677      return true;
678    }
679
680    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
681    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
682    if (OldMethod && NewMethod &&
683        OldMethod->getLexicalDeclContext() ==
684          NewMethod->getLexicalDeclContext()) {
685      //    -- Member function declarations with the same name and the
686      //       same parameter types cannot be overloaded if any of them
687      //       is a static member function declaration.
688      if (OldMethod->isStatic() || NewMethod->isStatic()) {
689        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
690        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
691        return true;
692      }
693
694      // C++ [class.mem]p1:
695      //   [...] A member shall not be declared twice in the
696      //   member-specification, except that a nested class or member
697      //   class template can be declared and then later defined.
698      unsigned NewDiag;
699      if (isa<CXXConstructorDecl>(OldMethod))
700        NewDiag = diag::err_constructor_redeclared;
701      else if (isa<CXXDestructorDecl>(NewMethod))
702        NewDiag = diag::err_destructor_redeclared;
703      else if (isa<CXXConversionDecl>(NewMethod))
704        NewDiag = diag::err_conv_function_redeclared;
705      else
706        NewDiag = diag::err_member_redeclared;
707
708      Diag(New->getLocation(), NewDiag);
709      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
710    }
711
712    // (C++98 8.3.5p3):
713    //   All declarations for a function shall agree exactly in both the
714    //   return type and the parameter-type-list.
715    if (OldQType == NewQType)
716      return MergeCompatibleFunctionDecls(New, Old);
717
718    // Fall through for conflicting redeclarations and redefinitions.
719  }
720
721  // C: Function types need to be compatible, not identical. This handles
722  // duplicate function decls like "void f(int); void f(enum X);" properly.
723  if (!getLangOptions().CPlusPlus &&
724      Context.typesAreCompatible(OldQType, NewQType)) {
725    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
726    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
727    const FunctionProtoType *OldProto = 0;
728    if (isa<FunctionNoProtoType>(NewFuncType) &&
729        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
730      // The old declaration provided a function prototype, but the
731      // new declaration does not. Merge in the prototype.
732      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
733      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
734                                                 OldProto->arg_type_end());
735      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
736                                         ParamTypes.data(), ParamTypes.size(),
737                                         OldProto->isVariadic(),
738                                         OldProto->getTypeQuals());
739      New->setType(NewQType);
740      New->setHasInheritedPrototype();
741
742      // Synthesize a parameter for each argument type.
743      llvm::SmallVector<ParmVarDecl*, 16> Params;
744      for (FunctionProtoType::arg_type_iterator
745             ParamType = OldProto->arg_type_begin(),
746             ParamEnd = OldProto->arg_type_end();
747           ParamType != ParamEnd; ++ParamType) {
748        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
749                                                 SourceLocation(), 0,
750                                                 *ParamType, VarDecl::None,
751                                                 0);
752        Param->setImplicit();
753        Params.push_back(Param);
754      }
755
756      New->setParams(Context, Params.data(), Params.size());
757    }
758
759    return MergeCompatibleFunctionDecls(New, Old);
760  }
761
762  // GNU C permits a K&R definition to follow a prototype declaration
763  // if the declared types of the parameters in the K&R definition
764  // match the types in the prototype declaration, even when the
765  // promoted types of the parameters from the K&R definition differ
766  // from the types in the prototype. GCC then keeps the types from
767  // the prototype.
768  //
769  // If a variadic prototype is followed by a non-variadic K&R definition,
770  // the K&R definition becomes variadic.  This is sort of an edge case, but
771  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
772  // C99 6.9.1p8.
773  if (!getLangOptions().CPlusPlus &&
774      Old->hasPrototype() && !New->hasPrototype() &&
775      New->getType()->getAsFunctionProtoType() &&
776      Old->getNumParams() == New->getNumParams()) {
777    llvm::SmallVector<QualType, 16> ArgTypes;
778    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
779    const FunctionProtoType *OldProto
780      = Old->getType()->getAsFunctionProtoType();
781    const FunctionProtoType *NewProto
782      = New->getType()->getAsFunctionProtoType();
783
784    // Determine whether this is the GNU C extension.
785    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
786                                               NewProto->getResultType());
787    bool LooseCompatible = !MergedReturn.isNull();
788    for (unsigned Idx = 0, End = Old->getNumParams();
789         LooseCompatible && Idx != End; ++Idx) {
790      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
791      ParmVarDecl *NewParm = New->getParamDecl(Idx);
792      if (Context.typesAreCompatible(OldParm->getType(),
793                                     NewProto->getArgType(Idx))) {
794        ArgTypes.push_back(NewParm->getType());
795      } else if (Context.typesAreCompatible(OldParm->getType(),
796                                            NewParm->getType())) {
797        GNUCompatibleParamWarning Warn
798          = { OldParm, NewParm, NewProto->getArgType(Idx) };
799        Warnings.push_back(Warn);
800        ArgTypes.push_back(NewParm->getType());
801      } else
802        LooseCompatible = false;
803    }
804
805    if (LooseCompatible) {
806      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
807        Diag(Warnings[Warn].NewParm->getLocation(),
808             diag::ext_param_promoted_not_compatible_with_prototype)
809          << Warnings[Warn].PromotedType
810          << Warnings[Warn].OldParm->getType();
811        Diag(Warnings[Warn].OldParm->getLocation(),
812             diag::note_previous_declaration);
813      }
814
815      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
816                                           ArgTypes.size(),
817                                           OldProto->isVariadic(), 0));
818      return MergeCompatibleFunctionDecls(New, Old);
819    }
820
821    // Fall through to diagnose conflicting types.
822  }
823
824  // A function that has already been declared has been redeclared or defined
825  // with a different type- show appropriate diagnostic
826  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
827    // The user has declared a builtin function with an incompatible
828    // signature.
829    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
830      // The function the user is redeclaring is a library-defined
831      // function like 'malloc' or 'printf'. Warn about the
832      // redeclaration, then pretend that we don't know about this
833      // library built-in.
834      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
835      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
836        << Old << Old->getType();
837      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
838      Old->setInvalidDecl();
839      return false;
840    }
841
842    PrevDiag = diag::note_previous_builtin_declaration;
843  }
844
845  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
846  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
847  return true;
848}
849
850/// \brief Completes the merge of two function declarations that are
851/// known to be compatible.
852///
853/// This routine handles the merging of attributes and other
854/// properties of function declarations form the old declaration to
855/// the new declaration, once we know that New is in fact a
856/// redeclaration of Old.
857///
858/// \returns false
859bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
860  // Merge the attributes
861  MergeAttributes(New, Old, Context);
862
863  // Merge the storage class.
864  if (Old->getStorageClass() != FunctionDecl::Extern)
865    New->setStorageClass(Old->getStorageClass());
866
867  // Merge "inline"
868  if (Old->isInline())
869    New->setInline(true);
870
871  // If this function declaration by itself qualifies as a C99 inline
872  // definition (C99 6.7.4p6), but the previous definition did not,
873  // then the function is not a C99 inline definition.
874  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
875    New->setC99InlineDefinition(false);
876  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
877    // Mark all preceding definitions as not being C99 inline definitions.
878    for (const FunctionDecl *Prev = Old; Prev;
879         Prev = Prev->getPreviousDeclaration())
880      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
881  }
882
883  // Merge "pure" flag.
884  if (Old->isPure())
885    New->setPure();
886
887  // Merge the "deleted" flag.
888  if (Old->isDeleted())
889    New->setDeleted();
890
891  if (getLangOptions().CPlusPlus)
892    return MergeCXXFunctionDecl(New, Old);
893
894  return false;
895}
896
897/// MergeVarDecl - We just parsed a variable 'New' which has the same name
898/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
899/// situation, merging decls or emitting diagnostics as appropriate.
900///
901/// Tentative definition rules (C99 6.9.2p2) are checked by
902/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
903/// definitions here, since the initializer hasn't been attached.
904///
905void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
906  // If either decl is invalid, make sure the new one is marked invalid and
907  // don't do any other checking.
908  if (New->isInvalidDecl() || OldD->isInvalidDecl())
909    return New->setInvalidDecl();
910
911  // Verify the old decl was also a variable.
912  VarDecl *Old = dyn_cast<VarDecl>(OldD);
913  if (!Old) {
914    Diag(New->getLocation(), diag::err_redefinition_different_kind)
915      << New->getDeclName();
916    Diag(OldD->getLocation(), diag::note_previous_definition);
917    return New->setInvalidDecl();
918  }
919
920  MergeAttributes(New, Old, Context);
921
922  // Merge the types
923  QualType MergedT;
924  if (getLangOptions().CPlusPlus) {
925    if (Context.hasSameType(New->getType(), Old->getType()))
926      MergedT = New->getType();
927  } else {
928    MergedT = Context.mergeTypes(New->getType(), Old->getType());
929  }
930  if (MergedT.isNull()) {
931    Diag(New->getLocation(), diag::err_redefinition_different_type)
932      << New->getDeclName();
933    Diag(Old->getLocation(), diag::note_previous_definition);
934    return New->setInvalidDecl();
935  }
936  New->setType(MergedT);
937
938  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
939  if (New->getStorageClass() == VarDecl::Static &&
940      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
941    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
942    Diag(Old->getLocation(), diag::note_previous_definition);
943    return New->setInvalidDecl();
944  }
945  // C99 6.2.2p4:
946  //   For an identifier declared with the storage-class specifier
947  //   extern in a scope in which a prior declaration of that
948  //   identifier is visible,23) if the prior declaration specifies
949  //   internal or external linkage, the linkage of the identifier at
950  //   the later declaration is the same as the linkage specified at
951  //   the prior declaration. If no prior declaration is visible, or
952  //   if the prior declaration specifies no linkage, then the
953  //   identifier has external linkage.
954  if (New->hasExternalStorage() && Old->hasLinkage())
955    /* Okay */;
956  else if (New->getStorageClass() != VarDecl::Static &&
957           Old->getStorageClass() == VarDecl::Static) {
958    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
959    Diag(Old->getLocation(), diag::note_previous_definition);
960    return New->setInvalidDecl();
961  }
962
963  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
964
965  // FIXME: The test for external storage here seems wrong? We still
966  // need to check for mismatches.
967  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
968      // Don't complain about out-of-line definitions of static members.
969      !(Old->getLexicalDeclContext()->isRecord() &&
970        !New->getLexicalDeclContext()->isRecord())) {
971    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
972    Diag(Old->getLocation(), diag::note_previous_definition);
973    return New->setInvalidDecl();
974  }
975
976  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
977    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
980    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
981    Diag(Old->getLocation(), diag::note_previous_definition);
982  }
983
984  // Keep a chain of previous declarations.
985  New->setPreviousDeclaration(Old);
986}
987
988/// CheckParmsForFunctionDef - Check that the parameters of the given
989/// function are appropriate for the definition of a function. This
990/// takes care of any checks that cannot be performed on the
991/// declaration itself, e.g., that the types of each of the function
992/// parameters are complete.
993bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
994  bool HasInvalidParm = false;
995  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
996    ParmVarDecl *Param = FD->getParamDecl(p);
997
998    // C99 6.7.5.3p4: the parameters in a parameter type list in a
999    // function declarator that is part of a function definition of
1000    // that function shall not have incomplete type.
1001    //
1002    // This is also C++ [dcl.fct]p6.
1003    if (!Param->isInvalidDecl() &&
1004        RequireCompleteType(Param->getLocation(), Param->getType(),
1005                               diag::err_typecheck_decl_incomplete_type)) {
1006      Param->setInvalidDecl();
1007      HasInvalidParm = true;
1008    }
1009
1010    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1011    // declaration of each parameter shall include an identifier.
1012    if (Param->getIdentifier() == 0 &&
1013        !Param->isImplicit() &&
1014        !getLangOptions().CPlusPlus)
1015      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1016  }
1017
1018  return HasInvalidParm;
1019}
1020
1021/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1022/// no declarator (e.g. "struct foo;") is parsed.
1023Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1024  // FIXME: Error on auto/register at file scope
1025  // FIXME: Error on inline/virtual/explicit
1026  // FIXME: Error on invalid restrict
1027  // FIXME: Warn on useless __thread
1028  // FIXME: Warn on useless const/volatile
1029  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1030  // FIXME: Warn on useless attributes
1031  TagDecl *Tag = 0;
1032  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1033      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1034      DS.getTypeSpecType() == DeclSpec::TST_union ||
1035      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1036    if (!DS.getTypeRep()) // We probably had an error
1037      return DeclPtrTy();
1038
1039    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1040  }
1041
1042  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1043    if (!Record->getDeclName() && Record->isDefinition() &&
1044        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1045      if (getLangOptions().CPlusPlus ||
1046          Record->getDeclContext()->isRecord())
1047        return BuildAnonymousStructOrUnion(S, DS, Record);
1048
1049      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1050        << DS.getSourceRange();
1051    }
1052
1053    // Microsoft allows unnamed struct/union fields. Don't complain
1054    // about them.
1055    // FIXME: Should we support Microsoft's extensions in this area?
1056    if (Record->getDeclName() && getLangOptions().Microsoft)
1057      return DeclPtrTy::make(Tag);
1058  }
1059
1060  if (!DS.isMissingDeclaratorOk() &&
1061      DS.getTypeSpecType() != DeclSpec::TST_error) {
1062    // Warn about typedefs of enums without names, since this is an
1063    // extension in both Microsoft an GNU.
1064    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1065        Tag && isa<EnumDecl>(Tag)) {
1066      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1067        << DS.getSourceRange();
1068      return DeclPtrTy::make(Tag);
1069    }
1070
1071    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1072      << DS.getSourceRange();
1073    return DeclPtrTy();
1074  }
1075
1076  return DeclPtrTy::make(Tag);
1077}
1078
1079/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1080/// anonymous struct or union AnonRecord into the owning context Owner
1081/// and scope S. This routine will be invoked just after we realize
1082/// that an unnamed union or struct is actually an anonymous union or
1083/// struct, e.g.,
1084///
1085/// @code
1086/// union {
1087///   int i;
1088///   float f;
1089/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1090///    // f into the surrounding scope.x
1091/// @endcode
1092///
1093/// This routine is recursive, injecting the names of nested anonymous
1094/// structs/unions into the owning context and scope as well.
1095bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1096                                               RecordDecl *AnonRecord) {
1097  bool Invalid = false;
1098  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1099                               FEnd = AnonRecord->field_end(Context);
1100       F != FEnd; ++F) {
1101    if ((*F)->getDeclName()) {
1102      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1103                                                LookupOrdinaryName, true);
1104      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1105        // C++ [class.union]p2:
1106        //   The names of the members of an anonymous union shall be
1107        //   distinct from the names of any other entity in the
1108        //   scope in which the anonymous union is declared.
1109        unsigned diagKind
1110          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1111                                 : diag::err_anonymous_struct_member_redecl;
1112        Diag((*F)->getLocation(), diagKind)
1113          << (*F)->getDeclName();
1114        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1115        Invalid = true;
1116      } else {
1117        // C++ [class.union]p2:
1118        //   For the purpose of name lookup, after the anonymous union
1119        //   definition, the members of the anonymous union are
1120        //   considered to have been defined in the scope in which the
1121        //   anonymous union is declared.
1122        Owner->makeDeclVisibleInContext(Context, *F);
1123        S->AddDecl(DeclPtrTy::make(*F));
1124        IdResolver.AddDecl(*F);
1125      }
1126    } else if (const RecordType *InnerRecordType
1127                 = (*F)->getType()->getAsRecordType()) {
1128      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1129      if (InnerRecord->isAnonymousStructOrUnion())
1130        Invalid = Invalid ||
1131          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1132    }
1133  }
1134
1135  return Invalid;
1136}
1137
1138/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1139/// anonymous structure or union. Anonymous unions are a C++ feature
1140/// (C++ [class.union]) and a GNU C extension; anonymous structures
1141/// are a GNU C and GNU C++ extension.
1142Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1143                                                  RecordDecl *Record) {
1144  DeclContext *Owner = Record->getDeclContext();
1145
1146  // Diagnose whether this anonymous struct/union is an extension.
1147  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1148    Diag(Record->getLocation(), diag::ext_anonymous_union);
1149  else if (!Record->isUnion())
1150    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1151
1152  // C and C++ require different kinds of checks for anonymous
1153  // structs/unions.
1154  bool Invalid = false;
1155  if (getLangOptions().CPlusPlus) {
1156    const char* PrevSpec = 0;
1157    // C++ [class.union]p3:
1158    //   Anonymous unions declared in a named namespace or in the
1159    //   global namespace shall be declared static.
1160    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1161        (isa<TranslationUnitDecl>(Owner) ||
1162         (isa<NamespaceDecl>(Owner) &&
1163          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1164      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1165      Invalid = true;
1166
1167      // Recover by adding 'static'.
1168      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1169    }
1170    // C++ [class.union]p3:
1171    //   A storage class is not allowed in a declaration of an
1172    //   anonymous union in a class scope.
1173    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1174             isa<RecordDecl>(Owner)) {
1175      Diag(DS.getStorageClassSpecLoc(),
1176           diag::err_anonymous_union_with_storage_spec);
1177      Invalid = true;
1178
1179      // Recover by removing the storage specifier.
1180      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1181                             PrevSpec);
1182    }
1183
1184    // C++ [class.union]p2:
1185    //   The member-specification of an anonymous union shall only
1186    //   define non-static data members. [Note: nested types and
1187    //   functions cannot be declared within an anonymous union. ]
1188    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1189                                 MemEnd = Record->decls_end(Context);
1190         Mem != MemEnd; ++Mem) {
1191      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1192        // C++ [class.union]p3:
1193        //   An anonymous union shall not have private or protected
1194        //   members (clause 11).
1195        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1196          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1197            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1198          Invalid = true;
1199        }
1200      } else if ((*Mem)->isImplicit()) {
1201        // Any implicit members are fine.
1202      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1203        // This is a type that showed up in an
1204        // elaborated-type-specifier inside the anonymous struct or
1205        // union, but which actually declares a type outside of the
1206        // anonymous struct or union. It's okay.
1207      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1208        if (!MemRecord->isAnonymousStructOrUnion() &&
1209            MemRecord->getDeclName()) {
1210          // This is a nested type declaration.
1211          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1212            << (int)Record->isUnion();
1213          Invalid = true;
1214        }
1215      } else {
1216        // We have something that isn't a non-static data
1217        // member. Complain about it.
1218        unsigned DK = diag::err_anonymous_record_bad_member;
1219        if (isa<TypeDecl>(*Mem))
1220          DK = diag::err_anonymous_record_with_type;
1221        else if (isa<FunctionDecl>(*Mem))
1222          DK = diag::err_anonymous_record_with_function;
1223        else if (isa<VarDecl>(*Mem))
1224          DK = diag::err_anonymous_record_with_static;
1225        Diag((*Mem)->getLocation(), DK)
1226            << (int)Record->isUnion();
1227          Invalid = true;
1228      }
1229    }
1230  }
1231
1232  if (!Record->isUnion() && !Owner->isRecord()) {
1233    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1234      << (int)getLangOptions().CPlusPlus;
1235    Invalid = true;
1236  }
1237
1238  // Create a declaration for this anonymous struct/union.
1239  NamedDecl *Anon = 0;
1240  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1241    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1242                             /*IdentifierInfo=*/0,
1243                             Context.getTypeDeclType(Record),
1244                             /*BitWidth=*/0, /*Mutable=*/false);
1245    Anon->setAccess(AS_public);
1246    if (getLangOptions().CPlusPlus)
1247      FieldCollector->Add(cast<FieldDecl>(Anon));
1248  } else {
1249    VarDecl::StorageClass SC;
1250    switch (DS.getStorageClassSpec()) {
1251    default: assert(0 && "Unknown storage class!");
1252    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1253    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1254    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1255    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1256    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1257    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1258    case DeclSpec::SCS_mutable:
1259      // mutable can only appear on non-static class members, so it's always
1260      // an error here
1261      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1262      Invalid = true;
1263      SC = VarDecl::None;
1264      break;
1265    }
1266
1267    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1268                           /*IdentifierInfo=*/0,
1269                           Context.getTypeDeclType(Record),
1270                           SC, DS.getSourceRange().getBegin());
1271  }
1272  Anon->setImplicit();
1273
1274  // Add the anonymous struct/union object to the current
1275  // context. We'll be referencing this object when we refer to one of
1276  // its members.
1277  Owner->addDecl(Context, Anon);
1278
1279  // Inject the members of the anonymous struct/union into the owning
1280  // context and into the identifier resolver chain for name lookup
1281  // purposes.
1282  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1283    Invalid = true;
1284
1285  // Mark this as an anonymous struct/union type. Note that we do not
1286  // do this until after we have already checked and injected the
1287  // members of this anonymous struct/union type, because otherwise
1288  // the members could be injected twice: once by DeclContext when it
1289  // builds its lookup table, and once by
1290  // InjectAnonymousStructOrUnionMembers.
1291  Record->setAnonymousStructOrUnion(true);
1292
1293  if (Invalid)
1294    Anon->setInvalidDecl();
1295
1296  return DeclPtrTy::make(Anon);
1297}
1298
1299
1300/// GetNameForDeclarator - Determine the full declaration name for the
1301/// given Declarator.
1302DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1303  switch (D.getKind()) {
1304  case Declarator::DK_Abstract:
1305    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1306    return DeclarationName();
1307
1308  case Declarator::DK_Normal:
1309    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1310    return DeclarationName(D.getIdentifier());
1311
1312  case Declarator::DK_Constructor: {
1313    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1314    Ty = Context.getCanonicalType(Ty);
1315    return Context.DeclarationNames.getCXXConstructorName(Ty);
1316  }
1317
1318  case Declarator::DK_Destructor: {
1319    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1320    Ty = Context.getCanonicalType(Ty);
1321    return Context.DeclarationNames.getCXXDestructorName(Ty);
1322  }
1323
1324  case Declarator::DK_Conversion: {
1325    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1326    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1327    Ty = Context.getCanonicalType(Ty);
1328    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1329  }
1330
1331  case Declarator::DK_Operator:
1332    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1333    return Context.DeclarationNames.getCXXOperatorName(
1334                                                D.getOverloadedOperator());
1335  }
1336
1337  assert(false && "Unknown name kind");
1338  return DeclarationName();
1339}
1340
1341/// isNearlyMatchingFunction - Determine whether the C++ functions
1342/// Declaration and Definition are "nearly" matching. This heuristic
1343/// is used to improve diagnostics in the case where an out-of-line
1344/// function definition doesn't match any declaration within
1345/// the class or namespace.
1346static bool isNearlyMatchingFunction(ASTContext &Context,
1347                                     FunctionDecl *Declaration,
1348                                     FunctionDecl *Definition) {
1349  if (Declaration->param_size() != Definition->param_size())
1350    return false;
1351  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1352    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1353    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1354
1355    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1356    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1357    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1358      return false;
1359  }
1360
1361  return true;
1362}
1363
1364Sema::DeclPtrTy
1365Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1366  DeclarationName Name = GetNameForDeclarator(D);
1367
1368  // All of these full declarators require an identifier.  If it doesn't have
1369  // one, the ParsedFreeStandingDeclSpec action should be used.
1370  if (!Name) {
1371    if (!D.isInvalidType())  // Reject this if we think it is valid.
1372      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1373           diag::err_declarator_need_ident)
1374        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1375    return DeclPtrTy();
1376  }
1377
1378  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1379  // we find one that is.
1380  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1381         (S->getFlags() & Scope::TemplateParamScope) != 0)
1382    S = S->getParent();
1383
1384  DeclContext *DC;
1385  NamedDecl *PrevDecl;
1386  NamedDecl *New;
1387
1388  QualType R = GetTypeForDeclarator(D, S);
1389
1390  // See if this is a redefinition of a variable in the same scope.
1391  if (D.getCXXScopeSpec().isInvalid()) {
1392    DC = CurContext;
1393    PrevDecl = 0;
1394    D.setInvalidType();
1395  } else if (!D.getCXXScopeSpec().isSet()) {
1396    LookupNameKind NameKind = LookupOrdinaryName;
1397
1398    // If the declaration we're planning to build will be a function
1399    // or object with linkage, then look for another declaration with
1400    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1401    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1402      /* Do nothing*/;
1403    else if (R->isFunctionType()) {
1404      if (CurContext->isFunctionOrMethod())
1405        NameKind = LookupRedeclarationWithLinkage;
1406    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1407      NameKind = LookupRedeclarationWithLinkage;
1408
1409    DC = CurContext;
1410    PrevDecl = LookupName(S, Name, NameKind, true,
1411                          D.getDeclSpec().getStorageClassSpec() !=
1412                            DeclSpec::SCS_static,
1413                          D.getIdentifierLoc());
1414  } else { // Something like "int foo::x;"
1415    DC = computeDeclContext(D.getCXXScopeSpec());
1416    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1417    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1418
1419    // C++ 7.3.1.2p2:
1420    // Members (including explicit specializations of templates) of a named
1421    // namespace can also be defined outside that namespace by explicit
1422    // qualification of the name being defined, provided that the entity being
1423    // defined was already declared in the namespace and the definition appears
1424    // after the point of declaration in a namespace that encloses the
1425    // declarations namespace.
1426    //
1427    // Note that we only check the context at this point. We don't yet
1428    // have enough information to make sure that PrevDecl is actually
1429    // the declaration we want to match. For example, given:
1430    //
1431    //   class X {
1432    //     void f();
1433    //     void f(float);
1434    //   };
1435    //
1436    //   void X::f(int) { } // ill-formed
1437    //
1438    // In this case, PrevDecl will point to the overload set
1439    // containing the two f's declared in X, but neither of them
1440    // matches.
1441
1442    // First check whether we named the global scope.
1443    if (isa<TranslationUnitDecl>(DC)) {
1444      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1445        << Name << D.getCXXScopeSpec().getRange();
1446    } else if (!CurContext->Encloses(DC)) {
1447      // The qualifying scope doesn't enclose the original declaration.
1448      // Emit diagnostic based on current scope.
1449      SourceLocation L = D.getIdentifierLoc();
1450      SourceRange R = D.getCXXScopeSpec().getRange();
1451      if (isa<FunctionDecl>(CurContext))
1452        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1453      else
1454        Diag(L, diag::err_invalid_declarator_scope)
1455          << Name << cast<NamedDecl>(DC) << R;
1456      D.setInvalidType();
1457    }
1458  }
1459
1460  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1461    // Maybe we will complain about the shadowed template parameter.
1462    if (!D.isInvalidType())
1463      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1464        D.setInvalidType();
1465
1466    // Just pretend that we didn't see the previous declaration.
1467    PrevDecl = 0;
1468  }
1469
1470  // In C++, the previous declaration we find might be a tag type
1471  // (class or enum). In this case, the new declaration will hide the
1472  // tag type. Note that this does does not apply if we're declaring a
1473  // typedef (C++ [dcl.typedef]p4).
1474  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1475      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1476    PrevDecl = 0;
1477
1478  bool Redeclaration = false;
1479  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1480    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1481  } else if (R->isFunctionType()) {
1482    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1483                                  IsFunctionDefinition, Redeclaration);
1484  } else {
1485    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1486  }
1487
1488  if (New == 0)
1489    return DeclPtrTy();
1490
1491  // If this has an identifier and is not an invalid redeclaration,
1492  // add it to the scope stack.
1493  if (Name && !(Redeclaration && New->isInvalidDecl()))
1494    PushOnScopeChains(New, S);
1495
1496  return DeclPtrTy::make(New);
1497}
1498
1499/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1500/// types into constant array types in certain situations which would otherwise
1501/// be errors (for GCC compatibility).
1502static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1503                                                    ASTContext &Context,
1504                                                    bool &SizeIsNegative) {
1505  // This method tries to turn a variable array into a constant
1506  // array even when the size isn't an ICE.  This is necessary
1507  // for compatibility with code that depends on gcc's buggy
1508  // constant expression folding, like struct {char x[(int)(char*)2];}
1509  SizeIsNegative = false;
1510
1511  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1512    QualType Pointee = PTy->getPointeeType();
1513    QualType FixedType =
1514        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1515    if (FixedType.isNull()) return FixedType;
1516    FixedType = Context.getPointerType(FixedType);
1517    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1518    return FixedType;
1519  }
1520
1521  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1522  if (!VLATy)
1523    return QualType();
1524  // FIXME: We should probably handle this case
1525  if (VLATy->getElementType()->isVariablyModifiedType())
1526    return QualType();
1527
1528  Expr::EvalResult EvalResult;
1529  if (!VLATy->getSizeExpr() ||
1530      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1531      !EvalResult.Val.isInt())
1532    return QualType();
1533
1534  llvm::APSInt &Res = EvalResult.Val.getInt();
1535  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1536    return Context.getConstantArrayType(VLATy->getElementType(),
1537                                        Res, ArrayType::Normal, 0);
1538
1539  SizeIsNegative = true;
1540  return QualType();
1541}
1542
1543/// \brief Register the given locally-scoped external C declaration so
1544/// that it can be found later for redeclarations
1545void
1546Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1547                                       Scope *S) {
1548  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1549         "Decl is not a locally-scoped decl!");
1550  // Note that we have a locally-scoped external with this name.
1551  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1552
1553  if (!PrevDecl)
1554    return;
1555
1556  // If there was a previous declaration of this variable, it may be
1557  // in our identifier chain. Update the identifier chain with the new
1558  // declaration.
1559  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1560    // The previous declaration was found on the identifer resolver
1561    // chain, so remove it from its scope.
1562    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1563      S = S->getParent();
1564
1565    if (S)
1566      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1567  }
1568}
1569
1570/// \brief Diagnose function specifiers on a declaration of an identifier that
1571/// does not identify a function.
1572void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1573  // FIXME: We should probably indicate the identifier in question to avoid
1574  // confusion for constructs like "inline int a(), b;"
1575  if (D.getDeclSpec().isInlineSpecified())
1576    Diag(D.getDeclSpec().getInlineSpecLoc(),
1577         diag::err_inline_non_function);
1578
1579  if (D.getDeclSpec().isVirtualSpecified())
1580    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1581         diag::err_virtual_non_function);
1582
1583  if (D.getDeclSpec().isExplicitSpecified())
1584    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1585         diag::err_explicit_non_function);
1586}
1587
1588NamedDecl*
1589Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1590                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1591  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1592  if (D.getCXXScopeSpec().isSet()) {
1593    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1594      << D.getCXXScopeSpec().getRange();
1595    D.setInvalidType();
1596    // Pretend we didn't see the scope specifier.
1597    DC = 0;
1598  }
1599
1600  if (getLangOptions().CPlusPlus) {
1601    // Check that there are no default arguments (C++ only).
1602    CheckExtraCXXDefaultArguments(D);
1603  }
1604
1605  DiagnoseFunctionSpecifiers(D);
1606
1607  if (D.getDeclSpec().isThreadSpecified())
1608    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1609
1610  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1611  if (!NewTD) return 0;
1612
1613  if (D.isInvalidType())
1614    NewTD->setInvalidDecl();
1615
1616  // Handle attributes prior to checking for duplicates in MergeVarDecl
1617  ProcessDeclAttributes(NewTD, D);
1618  // Merge the decl with the existing one if appropriate. If the decl is
1619  // in an outer scope, it isn't the same thing.
1620  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1621    Redeclaration = true;
1622    MergeTypeDefDecl(NewTD, PrevDecl);
1623  }
1624
1625  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1626  // then it shall have block scope.
1627  QualType T = NewTD->getUnderlyingType();
1628  if (T->isVariablyModifiedType()) {
1629    CurFunctionNeedsScopeChecking = true;
1630
1631    if (S->getFnParent() == 0) {
1632      bool SizeIsNegative;
1633      QualType FixedTy =
1634          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1635      if (!FixedTy.isNull()) {
1636        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1637        NewTD->setUnderlyingType(FixedTy);
1638      } else {
1639        if (SizeIsNegative)
1640          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1641        else if (T->isVariableArrayType())
1642          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1643        else
1644          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1645        NewTD->setInvalidDecl();
1646      }
1647    }
1648  }
1649  return NewTD;
1650}
1651
1652/// \brief Determines whether the given declaration is an out-of-scope
1653/// previous declaration.
1654///
1655/// This routine should be invoked when name lookup has found a
1656/// previous declaration (PrevDecl) that is not in the scope where a
1657/// new declaration by the same name is being introduced. If the new
1658/// declaration occurs in a local scope, previous declarations with
1659/// linkage may still be considered previous declarations (C99
1660/// 6.2.2p4-5, C++ [basic.link]p6).
1661///
1662/// \param PrevDecl the previous declaration found by name
1663/// lookup
1664///
1665/// \param DC the context in which the new declaration is being
1666/// declared.
1667///
1668/// \returns true if PrevDecl is an out-of-scope previous declaration
1669/// for a new delcaration with the same name.
1670static bool
1671isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1672                                ASTContext &Context) {
1673  if (!PrevDecl)
1674    return 0;
1675
1676  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1677  // case we need to check each of the overloaded functions.
1678  if (!PrevDecl->hasLinkage())
1679    return false;
1680
1681  if (Context.getLangOptions().CPlusPlus) {
1682    // C++ [basic.link]p6:
1683    //   If there is a visible declaration of an entity with linkage
1684    //   having the same name and type, ignoring entities declared
1685    //   outside the innermost enclosing namespace scope, the block
1686    //   scope declaration declares that same entity and receives the
1687    //   linkage of the previous declaration.
1688    DeclContext *OuterContext = DC->getLookupContext();
1689    if (!OuterContext->isFunctionOrMethod())
1690      // This rule only applies to block-scope declarations.
1691      return false;
1692    else {
1693      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1694      if (PrevOuterContext->isRecord())
1695        // We found a member function: ignore it.
1696        return false;
1697      else {
1698        // Find the innermost enclosing namespace for the new and
1699        // previous declarations.
1700        while (!OuterContext->isFileContext())
1701          OuterContext = OuterContext->getParent();
1702        while (!PrevOuterContext->isFileContext())
1703          PrevOuterContext = PrevOuterContext->getParent();
1704
1705        // The previous declaration is in a different namespace, so it
1706        // isn't the same function.
1707        if (OuterContext->getPrimaryContext() !=
1708            PrevOuterContext->getPrimaryContext())
1709          return false;
1710      }
1711    }
1712  }
1713
1714  return true;
1715}
1716
1717NamedDecl*
1718Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1719                              QualType R,NamedDecl* PrevDecl,
1720                              bool &Redeclaration) {
1721  DeclarationName Name = GetNameForDeclarator(D);
1722
1723  // Check that there are no default arguments (C++ only).
1724  if (getLangOptions().CPlusPlus)
1725    CheckExtraCXXDefaultArguments(D);
1726
1727  VarDecl *NewVD;
1728  VarDecl::StorageClass SC;
1729  switch (D.getDeclSpec().getStorageClassSpec()) {
1730  default: assert(0 && "Unknown storage class!");
1731  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1732  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1733  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1734  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1735  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1736  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1737  case DeclSpec::SCS_mutable:
1738    // mutable can only appear on non-static class members, so it's always
1739    // an error here
1740    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1741    D.setInvalidType();
1742    SC = VarDecl::None;
1743    break;
1744  }
1745
1746  IdentifierInfo *II = Name.getAsIdentifierInfo();
1747  if (!II) {
1748    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1749      << Name.getAsString();
1750    return 0;
1751  }
1752
1753  DiagnoseFunctionSpecifiers(D);
1754
1755  if (!DC->isRecord() && S->getFnParent() == 0) {
1756    // C99 6.9p2: The storage-class specifiers auto and register shall not
1757    // appear in the declaration specifiers in an external declaration.
1758    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1759
1760      // If this is a register variable with an asm label specified, then this
1761      // is a GNU extension.
1762      if (SC == VarDecl::Register && D.getAsmLabel())
1763        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1764      else
1765        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1766      D.setInvalidType();
1767    }
1768  }
1769  if (DC->isRecord() && !CurContext->isRecord()) {
1770    // This is an out-of-line definition of a static data member.
1771    if (SC == VarDecl::Static) {
1772      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1773           diag::err_static_out_of_line)
1774        << CodeModificationHint::CreateRemoval(
1775                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1776    } else if (SC == VarDecl::None)
1777      SC = VarDecl::Static;
1778  }
1779
1780  // The variable can not
1781  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1782                          II, R, SC,
1783                          // FIXME: Move to DeclGroup...
1784                          D.getDeclSpec().getSourceRange().getBegin());
1785
1786  if (D.isInvalidType())
1787    NewVD->setInvalidDecl();
1788
1789  if (D.getDeclSpec().isThreadSpecified()) {
1790    if (NewVD->hasLocalStorage())
1791      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1792    else if (!Context.Target.isTLSSupported())
1793      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1794    else
1795      NewVD->setThreadSpecified(true);
1796  }
1797
1798  // Set the lexical context. If the declarator has a C++ scope specifier, the
1799  // lexical context will be different from the semantic context.
1800  NewVD->setLexicalDeclContext(CurContext);
1801
1802  // Handle attributes prior to checking for duplicates in MergeVarDecl
1803  ProcessDeclAttributes(NewVD, D);
1804
1805  // Handle GNU asm-label extension (encoded as an attribute).
1806  if (Expr *E = (Expr*) D.getAsmLabel()) {
1807    // The parser guarantees this is a string.
1808    StringLiteral *SE = cast<StringLiteral>(E);
1809    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1810                                                        SE->getByteLength())));
1811  }
1812
1813  // If name lookup finds a previous declaration that is not in the
1814  // same scope as the new declaration, this may still be an
1815  // acceptable redeclaration.
1816  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1817      !(NewVD->hasLinkage() &&
1818        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1819    PrevDecl = 0;
1820
1821  // Merge the decl with the existing one if appropriate.
1822  if (PrevDecl) {
1823    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1824      // The user tried to define a non-static data member
1825      // out-of-line (C++ [dcl.meaning]p1).
1826      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1827        << D.getCXXScopeSpec().getRange();
1828      PrevDecl = 0;
1829      NewVD->setInvalidDecl();
1830    }
1831  } else if (D.getCXXScopeSpec().isSet()) {
1832    // No previous declaration in the qualifying scope.
1833    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1834      << Name << D.getCXXScopeSpec().getRange();
1835    NewVD->setInvalidDecl();
1836  }
1837
1838  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1839
1840  // If this is a locally-scoped extern C variable, update the map of
1841  // such variables.
1842  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1843      !NewVD->isInvalidDecl())
1844    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1845
1846  return NewVD;
1847}
1848
1849/// \brief Perform semantic checking on a newly-created variable
1850/// declaration.
1851///
1852/// This routine performs all of the type-checking required for a
1853/// variable declaration once it has been built. It is used both to
1854/// check variables after they have been parsed and their declarators
1855/// have been translated into a declaration, and to check variables
1856/// that have been instantiated from a template.
1857///
1858/// Sets NewVD->isInvalidDecl() if an error was encountered.
1859void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1860                                    bool &Redeclaration) {
1861  // If the decl is already known invalid, don't check it.
1862  if (NewVD->isInvalidDecl())
1863    return;
1864
1865  QualType T = NewVD->getType();
1866
1867  if (T->isObjCInterfaceType()) {
1868    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1869    return NewVD->setInvalidDecl();
1870  }
1871
1872  // The variable can not have an abstract class type.
1873  if (RequireNonAbstractType(NewVD->getLocation(), T,
1874                             diag::err_abstract_type_in_decl,
1875                             AbstractVariableType))
1876    return NewVD->setInvalidDecl();
1877
1878  // Emit an error if an address space was applied to decl with local storage.
1879  // This includes arrays of objects with address space qualifiers, but not
1880  // automatic variables that point to other address spaces.
1881  // ISO/IEC TR 18037 S5.1.2
1882  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1883    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1884    return NewVD->setInvalidDecl();
1885  }
1886
1887  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1888      && !NewVD->hasAttr<BlocksAttr>())
1889    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1890
1891  bool isVM = T->isVariablyModifiedType();
1892  if (isVM || NewVD->hasAttr<CleanupAttr>())
1893    CurFunctionNeedsScopeChecking = true;
1894
1895  if ((isVM && NewVD->hasLinkage()) ||
1896      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1897    bool SizeIsNegative;
1898    QualType FixedTy =
1899        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1900
1901    if (FixedTy.isNull() && T->isVariableArrayType()) {
1902      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1903      // FIXME: This won't give the correct result for
1904      // int a[10][n];
1905      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1906
1907      if (NewVD->isFileVarDecl())
1908        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1909        << SizeRange;
1910      else if (NewVD->getStorageClass() == VarDecl::Static)
1911        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1912        << SizeRange;
1913      else
1914        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1915        << SizeRange;
1916      return NewVD->setInvalidDecl();
1917    }
1918
1919    if (FixedTy.isNull()) {
1920      if (NewVD->isFileVarDecl())
1921        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1922      else
1923        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1924      return NewVD->setInvalidDecl();
1925    }
1926
1927    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1928    NewVD->setType(FixedTy);
1929  }
1930
1931  if (!PrevDecl && NewVD->isExternC(Context)) {
1932    // Since we did not find anything by this name and we're declaring
1933    // an extern "C" variable, look for a non-visible extern "C"
1934    // declaration with the same name.
1935    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1936      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1937    if (Pos != LocallyScopedExternalDecls.end())
1938      PrevDecl = Pos->second;
1939  }
1940
1941  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1942    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1943      << T;
1944    return NewVD->setInvalidDecl();
1945  }
1946
1947  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1948    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1949    return NewVD->setInvalidDecl();
1950  }
1951
1952  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1953    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1954    return NewVD->setInvalidDecl();
1955  }
1956
1957  if (PrevDecl) {
1958    Redeclaration = true;
1959    MergeVarDecl(NewVD, PrevDecl);
1960  }
1961}
1962
1963NamedDecl*
1964Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1965                              QualType R, NamedDecl* PrevDecl,
1966                              bool IsFunctionDefinition, bool &Redeclaration) {
1967  assert(R.getTypePtr()->isFunctionType());
1968
1969  DeclarationName Name = GetNameForDeclarator(D);
1970  FunctionDecl::StorageClass SC = FunctionDecl::None;
1971  switch (D.getDeclSpec().getStorageClassSpec()) {
1972  default: assert(0 && "Unknown storage class!");
1973  case DeclSpec::SCS_auto:
1974  case DeclSpec::SCS_register:
1975  case DeclSpec::SCS_mutable:
1976    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1977         diag::err_typecheck_sclass_func);
1978    D.setInvalidType();
1979    break;
1980  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1981  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1982  case DeclSpec::SCS_static: {
1983    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1984      // C99 6.7.1p5:
1985      //   The declaration of an identifier for a function that has
1986      //   block scope shall have no explicit storage-class specifier
1987      //   other than extern
1988      // See also (C++ [dcl.stc]p4).
1989      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1990           diag::err_static_block_func);
1991      SC = FunctionDecl::None;
1992    } else
1993      SC = FunctionDecl::Static;
1994    break;
1995  }
1996  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1997  }
1998
1999  if (D.getDeclSpec().isThreadSpecified())
2000    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2001
2002  bool isInline = D.getDeclSpec().isInlineSpecified();
2003  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2004  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2005
2006  // Check that the return type is not an abstract class type.
2007  // For record types, this is done by the AbstractClassUsageDiagnoser once
2008  // the class has been completely parsed.
2009  if (!DC->isRecord() &&
2010      RequireNonAbstractType(D.getIdentifierLoc(),
2011                             R->getAsFunctionType()->getResultType(),
2012                             diag::err_abstract_type_in_decl,
2013                             AbstractReturnType))
2014    D.setInvalidType();
2015
2016  // Do not allow returning a objc interface by-value.
2017  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2018    Diag(D.getIdentifierLoc(),
2019         diag::err_object_cannot_be_passed_returned_by_value) << 0
2020      << R->getAsFunctionType()->getResultType();
2021    D.setInvalidType();
2022  }
2023
2024  bool isVirtualOkay = false;
2025  FunctionDecl *NewFD;
2026  if (D.getKind() == Declarator::DK_Constructor) {
2027    // This is a C++ constructor declaration.
2028    assert(DC->isRecord() &&
2029           "Constructors can only be declared in a member context");
2030
2031    R = CheckConstructorDeclarator(D, R, SC);
2032
2033    // Create the new declaration
2034    NewFD = CXXConstructorDecl::Create(Context,
2035                                       cast<CXXRecordDecl>(DC),
2036                                       D.getIdentifierLoc(), Name, R,
2037                                       isExplicit, isInline,
2038                                       /*isImplicitlyDeclared=*/false);
2039  } else if (D.getKind() == Declarator::DK_Destructor) {
2040    // This is a C++ destructor declaration.
2041    if (DC->isRecord()) {
2042      R = CheckDestructorDeclarator(D, SC);
2043
2044      NewFD = CXXDestructorDecl::Create(Context,
2045                                        cast<CXXRecordDecl>(DC),
2046                                        D.getIdentifierLoc(), Name, R,
2047                                        isInline,
2048                                        /*isImplicitlyDeclared=*/false);
2049
2050      isVirtualOkay = true;
2051    } else {
2052      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2053
2054      // Create a FunctionDecl to satisfy the function definition parsing
2055      // code path.
2056      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2057                                   Name, R, SC, isInline,
2058                                   /*hasPrototype=*/true,
2059                                   // FIXME: Move to DeclGroup...
2060                                   D.getDeclSpec().getSourceRange().getBegin());
2061      D.setInvalidType();
2062    }
2063  } else if (D.getKind() == Declarator::DK_Conversion) {
2064    if (!DC->isRecord()) {
2065      Diag(D.getIdentifierLoc(),
2066           diag::err_conv_function_not_member);
2067      return 0;
2068    }
2069
2070    CheckConversionDeclarator(D, R, SC);
2071    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2072                                      D.getIdentifierLoc(), Name, R,
2073                                      isInline, isExplicit);
2074
2075    isVirtualOkay = true;
2076  } else if (DC->isRecord()) {
2077    // If the of the function is the same as the name of the record, then this
2078    // must be an invalid constructor that has a return type.
2079    // (The parser checks for a return type and makes the declarator a
2080    // constructor if it has no return type).
2081    // must have an invalid constructor that has a return type
2082    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2083      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2084        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2085        << SourceRange(D.getIdentifierLoc());
2086      return 0;
2087    }
2088
2089    // This is a C++ method declaration.
2090    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2091                                  D.getIdentifierLoc(), Name, R,
2092                                  (SC == FunctionDecl::Static), isInline);
2093
2094    isVirtualOkay = (SC != FunctionDecl::Static);
2095  } else {
2096    // Determine whether the function was written with a
2097    // prototype. This true when:
2098    //   - we're in C++ (where every function has a prototype),
2099    //   - there is a prototype in the declarator, or
2100    //   - the type R of the function is some kind of typedef or other reference
2101    //     to a type name (which eventually refers to a function type).
2102    bool HasPrototype =
2103       getLangOptions().CPlusPlus ||
2104       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2105       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2106
2107    NewFD = FunctionDecl::Create(Context, DC,
2108                                 D.getIdentifierLoc(),
2109                                 Name, R, SC, isInline, HasPrototype,
2110                                 // FIXME: Move to DeclGroup...
2111                                 D.getDeclSpec().getSourceRange().getBegin());
2112  }
2113
2114  if (D.isInvalidType())
2115    NewFD->setInvalidDecl();
2116
2117  // Set the lexical context. If the declarator has a C++
2118  // scope specifier, the lexical context will be different
2119  // from the semantic context.
2120  NewFD->setLexicalDeclContext(CurContext);
2121
2122  // C++ [dcl.fct.spec]p5:
2123  //   The virtual specifier shall only be used in declarations of
2124  //   nonstatic class member functions that appear within a
2125  //   member-specification of a class declaration; see 10.3.
2126  //
2127  if (isVirtual && !NewFD->isInvalidDecl()) {
2128    if (!isVirtualOkay) {
2129       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2130           diag::err_virtual_non_function);
2131    } else if (!CurContext->isRecord()) {
2132      // 'virtual' was specified outside of the class.
2133      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2134        << CodeModificationHint::CreateRemoval(
2135                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2136    } else {
2137      // Okay: Add virtual to the method.
2138      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2139      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2140      CurClass->setAggregate(false);
2141      CurClass->setPOD(false);
2142      CurClass->setPolymorphic(true);
2143      CurClass->setHasTrivialConstructor(false);
2144    }
2145  }
2146
2147  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2148    // Look for virtual methods in base classes that this method might override.
2149
2150    BasePaths Paths;
2151    if (LookupInBases(cast<CXXRecordDecl>(DC),
2152                      MemberLookupCriteria(NewMD), Paths)) {
2153      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2154           E = Paths.found_decls_end(); I != E; ++I) {
2155        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2156          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
2157            NewMD->addOverriddenMethod(OldMD);
2158        }
2159      }
2160    }
2161  }
2162
2163  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2164      !CurContext->isRecord()) {
2165    // C++ [class.static]p1:
2166    //   A data or function member of a class may be declared static
2167    //   in a class definition, in which case it is a static member of
2168    //   the class.
2169
2170    // Complain about the 'static' specifier if it's on an out-of-line
2171    // member function definition.
2172    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2173         diag::err_static_out_of_line)
2174      << CodeModificationHint::CreateRemoval(
2175                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2176  }
2177
2178  // Handle GNU asm-label extension (encoded as an attribute).
2179  if (Expr *E = (Expr*) D.getAsmLabel()) {
2180    // The parser guarantees this is a string.
2181    StringLiteral *SE = cast<StringLiteral>(E);
2182    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2183                                                        SE->getByteLength())));
2184  }
2185
2186  // Copy the parameter declarations from the declarator D to the function
2187  // declaration NewFD, if they are available.  First scavenge them into Params.
2188  llvm::SmallVector<ParmVarDecl*, 16> Params;
2189  if (D.getNumTypeObjects() > 0) {
2190    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2191
2192    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2193    // function that takes no arguments, not a function that takes a
2194    // single void argument.
2195    // We let through "const void" here because Sema::GetTypeForDeclarator
2196    // already checks for that case.
2197    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2198        FTI.ArgInfo[0].Param &&
2199        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2200      // Empty arg list, don't push any params.
2201      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2202
2203      // In C++, the empty parameter-type-list must be spelled "void"; a
2204      // typedef of void is not permitted.
2205      if (getLangOptions().CPlusPlus &&
2206          Param->getType().getUnqualifiedType() != Context.VoidTy)
2207        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2208      // FIXME: Leaks decl?
2209    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2210      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2211        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2212    }
2213
2214  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2215    // When we're declaring a function with a typedef, typeof, etc as in the
2216    // following example, we'll need to synthesize (unnamed)
2217    // parameters for use in the declaration.
2218    //
2219    // @code
2220    // typedef void fn(int);
2221    // fn f;
2222    // @endcode
2223
2224    // Synthesize a parameter for each argument type.
2225    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2226         AE = FT->arg_type_end(); AI != AE; ++AI) {
2227      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2228                                               SourceLocation(), 0,
2229                                               *AI, VarDecl::None, 0);
2230      Param->setImplicit();
2231      Params.push_back(Param);
2232    }
2233  } else {
2234    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2235           "Should not need args for typedef of non-prototype fn");
2236  }
2237  // Finally, we know we have the right number of parameters, install them.
2238  NewFD->setParams(Context, Params.data(), Params.size());
2239
2240
2241
2242  // If name lookup finds a previous declaration that is not in the
2243  // same scope as the new declaration, this may still be an
2244  // acceptable redeclaration.
2245  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2246      !(NewFD->hasLinkage() &&
2247        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2248    PrevDecl = 0;
2249
2250  // Perform semantic checking on the function declaration.
2251  bool OverloadableAttrRequired = false; // FIXME: HACK!
2252  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2253                           /*FIXME:*/OverloadableAttrRequired);
2254
2255  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2256    // An out-of-line member function declaration must also be a
2257    // definition (C++ [dcl.meaning]p1).
2258    if (!IsFunctionDefinition) {
2259      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2260        << D.getCXXScopeSpec().getRange();
2261      NewFD->setInvalidDecl();
2262    } else if (!Redeclaration) {
2263      // The user tried to provide an out-of-line definition for a
2264      // function that is a member of a class or namespace, but there
2265      // was no such member function declared (C++ [class.mfct]p2,
2266      // C++ [namespace.memdef]p2). For example:
2267      //
2268      // class X {
2269      //   void f() const;
2270      // };
2271      //
2272      // void X::f() { } // ill-formed
2273      //
2274      // Complain about this problem, and attempt to suggest close
2275      // matches (e.g., those that differ only in cv-qualifiers and
2276      // whether the parameter types are references).
2277      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2278        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2279      NewFD->setInvalidDecl();
2280
2281      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2282                                              true);
2283      assert(!Prev.isAmbiguous() &&
2284             "Cannot have an ambiguity in previous-declaration lookup");
2285      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2286           Func != FuncEnd; ++Func) {
2287        if (isa<FunctionDecl>(*Func) &&
2288            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2289          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2290      }
2291
2292      PrevDecl = 0;
2293    }
2294  }
2295
2296  // Handle attributes. We need to have merged decls when handling attributes
2297  // (for example to check for conflicts, etc).
2298  // FIXME: This needs to happen before we merge declarations. Then,
2299  // let attribute merging cope with attribute conflicts.
2300  ProcessDeclAttributes(NewFD, D);
2301  AddKnownFunctionAttributes(NewFD);
2302
2303  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2304    // If a function name is overloadable in C, then every function
2305    // with that name must be marked "overloadable".
2306    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2307      << Redeclaration << NewFD;
2308    if (PrevDecl)
2309      Diag(PrevDecl->getLocation(),
2310           diag::note_attribute_overloadable_prev_overload);
2311    NewFD->addAttr(::new (Context) OverloadableAttr());
2312  }
2313
2314  // If this is a locally-scoped extern C function, update the
2315  // map of such names.
2316  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2317      && !NewFD->isInvalidDecl())
2318    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2319
2320  return NewFD;
2321}
2322
2323/// \brief Perform semantic checking of a new function declaration.
2324///
2325/// Performs semantic analysis of the new function declaration
2326/// NewFD. This routine performs all semantic checking that does not
2327/// require the actual declarator involved in the declaration, and is
2328/// used both for the declaration of functions as they are parsed
2329/// (called via ActOnDeclarator) and for the declaration of functions
2330/// that have been instantiated via C++ template instantiation (called
2331/// via InstantiateDecl).
2332///
2333/// This sets NewFD->isInvalidDecl() to true if there was an error.
2334void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2335                                    bool &Redeclaration,
2336                                    bool &OverloadableAttrRequired) {
2337  // If NewFD is already known erroneous, don't do any of this checking.
2338  if (NewFD->isInvalidDecl())
2339    return;
2340
2341  if (NewFD->getResultType()->isVariablyModifiedType()) {
2342    // Functions returning a variably modified type violate C99 6.7.5.2p2
2343    // because all functions have linkage.
2344    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2345    return NewFD->setInvalidDecl();
2346  }
2347
2348  // Semantic checking for this function declaration (in isolation).
2349  if (getLangOptions().CPlusPlus) {
2350    // C++-specific checks.
2351    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2352      CheckConstructor(Constructor);
2353    } else if (isa<CXXDestructorDecl>(NewFD)) {
2354      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2355      Record->setUserDeclaredDestructor(true);
2356      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2357      // user-defined destructor.
2358      Record->setPOD(false);
2359
2360      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2361      // declared destructor.
2362      Record->setHasTrivialDestructor(false);
2363    } else if (CXXConversionDecl *Conversion
2364               = dyn_cast<CXXConversionDecl>(NewFD))
2365      ActOnConversionDeclarator(Conversion);
2366
2367    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2368    if (NewFD->isOverloadedOperator() &&
2369        CheckOverloadedOperatorDeclaration(NewFD))
2370      return NewFD->setInvalidDecl();
2371  }
2372
2373  // C99 6.7.4p6:
2374  //   [... ] For a function with external linkage, the following
2375  //   restrictions apply: [...] If all of the file scope declarations
2376  //   for a function in a translation unit include the inline
2377  //   function specifier without extern, then the definition in that
2378  //   translation unit is an inline definition. An inline definition
2379  //   does not provide an external definition for the function, and
2380  //   does not forbid an external definition in another translation
2381  //   unit.
2382  //
2383  // Here we determine whether this function, in isolation, would be a
2384  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2385  // previous declarations.
2386  if (NewFD->isInline() && getLangOptions().C99 &&
2387      NewFD->getStorageClass() == FunctionDecl::None &&
2388      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2389    NewFD->setC99InlineDefinition(true);
2390
2391  // Check for a previous declaration of this name.
2392  if (!PrevDecl && NewFD->isExternC(Context)) {
2393    // Since we did not find anything by this name and we're declaring
2394    // an extern "C" function, look for a non-visible extern "C"
2395    // declaration with the same name.
2396    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2397      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2398    if (Pos != LocallyScopedExternalDecls.end())
2399      PrevDecl = Pos->second;
2400  }
2401
2402  // Merge or overload the declaration with an existing declaration of
2403  // the same name, if appropriate.
2404  if (PrevDecl) {
2405    // Determine whether NewFD is an overload of PrevDecl or
2406    // a declaration that requires merging. If it's an overload,
2407    // there's no more work to do here; we'll just add the new
2408    // function to the scope.
2409    OverloadedFunctionDecl::function_iterator MatchedDecl;
2410
2411    if (!getLangOptions().CPlusPlus &&
2412        AllowOverloadingOfFunction(PrevDecl, Context)) {
2413      OverloadableAttrRequired = true;
2414
2415      // Functions marked "overloadable" must have a prototype (that
2416      // we can't get through declaration merging).
2417      if (!NewFD->getType()->getAsFunctionProtoType()) {
2418        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2419          << NewFD;
2420        Redeclaration = true;
2421
2422        // Turn this into a variadic function with no parameters.
2423        QualType R = Context.getFunctionType(
2424                       NewFD->getType()->getAsFunctionType()->getResultType(),
2425                       0, 0, true, 0);
2426        NewFD->setType(R);
2427        return NewFD->setInvalidDecl();
2428      }
2429    }
2430
2431    if (PrevDecl &&
2432        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2433         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2434      Redeclaration = true;
2435      Decl *OldDecl = PrevDecl;
2436
2437      // If PrevDecl was an overloaded function, extract the
2438      // FunctionDecl that matched.
2439      if (isa<OverloadedFunctionDecl>(PrevDecl))
2440        OldDecl = *MatchedDecl;
2441
2442      // NewFD and OldDecl represent declarations that need to be
2443      // merged.
2444      if (MergeFunctionDecl(NewFD, OldDecl))
2445        return NewFD->setInvalidDecl();
2446
2447      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2448    }
2449  }
2450
2451  // In C++, check default arguments now that we have merged decls. Unless
2452  // the lexical context is the class, because in this case this is done
2453  // during delayed parsing anyway.
2454  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2455    CheckCXXDefaultArguments(NewFD);
2456}
2457
2458bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2459  // FIXME: Need strict checking.  In C89, we need to check for
2460  // any assignment, increment, decrement, function-calls, or
2461  // commas outside of a sizeof.  In C99, it's the same list,
2462  // except that the aforementioned are allowed in unevaluated
2463  // expressions.  Everything else falls under the
2464  // "may accept other forms of constant expressions" exception.
2465  // (We never end up here for C++, so the constant expression
2466  // rules there don't matter.)
2467  if (Init->isConstantInitializer(Context))
2468    return false;
2469  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2470    << Init->getSourceRange();
2471  return true;
2472}
2473
2474void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2475  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2476}
2477
2478/// AddInitializerToDecl - Adds the initializer Init to the
2479/// declaration dcl. If DirectInit is true, this is C++ direct
2480/// initialization rather than copy initialization.
2481void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2482  Decl *RealDecl = dcl.getAs<Decl>();
2483  // If there is no declaration, there was an error parsing it.  Just ignore
2484  // the initializer.
2485  if (RealDecl == 0)
2486    return;
2487
2488  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2489    // With declarators parsed the way they are, the parser cannot
2490    // distinguish between a normal initializer and a pure-specifier.
2491    // Thus this grotesque test.
2492    IntegerLiteral *IL;
2493    Expr *Init = static_cast<Expr *>(init.get());
2494    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2495        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2496      if (Method->isVirtualAsWritten()) {
2497        Method->setPure();
2498
2499        // A class is abstract if at least one function is pure virtual.
2500        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2501      } else if (!Method->isInvalidDecl()) {
2502        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2503          << Method->getDeclName() << Init->getSourceRange();
2504        Method->setInvalidDecl();
2505      }
2506    } else {
2507      Diag(Method->getLocation(), diag::err_member_function_initialization)
2508        << Method->getDeclName() << Init->getSourceRange();
2509      Method->setInvalidDecl();
2510    }
2511    return;
2512  }
2513
2514  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2515  if (!VDecl) {
2516    if (getLangOptions().CPlusPlus &&
2517        RealDecl->getLexicalDeclContext()->isRecord() &&
2518        isa<NamedDecl>(RealDecl))
2519      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2520        << cast<NamedDecl>(RealDecl)->getDeclName();
2521    else
2522      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2523    RealDecl->setInvalidDecl();
2524    return;
2525  }
2526
2527  if (!VDecl->getType()->isArrayType() &&
2528      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2529                          diag::err_typecheck_decl_incomplete_type)) {
2530    RealDecl->setInvalidDecl();
2531    return;
2532  }
2533
2534  const VarDecl *Def = 0;
2535  if (VDecl->getDefinition(Def)) {
2536    Diag(VDecl->getLocation(), diag::err_redefinition)
2537      << VDecl->getDeclName();
2538    Diag(Def->getLocation(), diag::note_previous_definition);
2539    VDecl->setInvalidDecl();
2540    return;
2541  }
2542
2543  // Take ownership of the expression, now that we're sure we have somewhere
2544  // to put it.
2545  Expr *Init = init.takeAs<Expr>();
2546  assert(Init && "missing initializer");
2547
2548  // Get the decls type and save a reference for later, since
2549  // CheckInitializerTypes may change it.
2550  QualType DclT = VDecl->getType(), SavT = DclT;
2551  if (VDecl->isBlockVarDecl()) {
2552    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2553      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2554      VDecl->setInvalidDecl();
2555    } else if (!VDecl->isInvalidDecl()) {
2556      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2557                                VDecl->getDeclName(), DirectInit))
2558        VDecl->setInvalidDecl();
2559
2560      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2561      // Don't check invalid declarations to avoid emitting useless diagnostics.
2562      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2563        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2564          CheckForConstantInitializer(Init, DclT);
2565      }
2566    }
2567  } else if (VDecl->isStaticDataMember() &&
2568             VDecl->getLexicalDeclContext()->isRecord()) {
2569    // This is an in-class initialization for a static data member, e.g.,
2570    //
2571    // struct S {
2572    //   static const int value = 17;
2573    // };
2574
2575    // Attach the initializer
2576    VDecl->setInit(Context, Init);
2577
2578    // C++ [class.mem]p4:
2579    //   A member-declarator can contain a constant-initializer only
2580    //   if it declares a static member (9.4) of const integral or
2581    //   const enumeration type, see 9.4.2.
2582    QualType T = VDecl->getType();
2583    if (!T->isDependentType() &&
2584        (!Context.getCanonicalType(T).isConstQualified() ||
2585         !T->isIntegralType())) {
2586      Diag(VDecl->getLocation(), diag::err_member_initialization)
2587        << VDecl->getDeclName() << Init->getSourceRange();
2588      VDecl->setInvalidDecl();
2589    } else {
2590      // C++ [class.static.data]p4:
2591      //   If a static data member is of const integral or const
2592      //   enumeration type, its declaration in the class definition
2593      //   can specify a constant-initializer which shall be an
2594      //   integral constant expression (5.19).
2595      if (!Init->isTypeDependent() &&
2596          !Init->getType()->isIntegralType()) {
2597        // We have a non-dependent, non-integral or enumeration type.
2598        Diag(Init->getSourceRange().getBegin(),
2599             diag::err_in_class_initializer_non_integral_type)
2600          << Init->getType() << Init->getSourceRange();
2601        VDecl->setInvalidDecl();
2602      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2603        // Check whether the expression is a constant expression.
2604        llvm::APSInt Value;
2605        SourceLocation Loc;
2606        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2607          Diag(Loc, diag::err_in_class_initializer_non_constant)
2608            << Init->getSourceRange();
2609          VDecl->setInvalidDecl();
2610        } else if (!VDecl->getType()->isDependentType())
2611          ImpCastExprToType(Init, VDecl->getType());
2612      }
2613    }
2614  } else if (VDecl->isFileVarDecl()) {
2615    if (VDecl->getStorageClass() == VarDecl::Extern)
2616      Diag(VDecl->getLocation(), diag::warn_extern_init);
2617    if (!VDecl->isInvalidDecl())
2618      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2619                                VDecl->getDeclName(), DirectInit))
2620        VDecl->setInvalidDecl();
2621
2622    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2623    // Don't check invalid declarations to avoid emitting useless diagnostics.
2624    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2625      // C99 6.7.8p4. All file scoped initializers need to be constant.
2626      CheckForConstantInitializer(Init, DclT);
2627    }
2628  }
2629  // If the type changed, it means we had an incomplete type that was
2630  // completed by the initializer. For example:
2631  //   int ary[] = { 1, 3, 5 };
2632  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2633  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2634    VDecl->setType(DclT);
2635    Init->setType(DclT);
2636  }
2637
2638  // Attach the initializer to the decl.
2639  VDecl->setInit(Context, Init);
2640
2641  // If the previous declaration of VDecl was a tentative definition,
2642  // remove it from the set of tentative definitions.
2643  if (VDecl->getPreviousDeclaration() &&
2644      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2645    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2646      = TentativeDefinitions.find(VDecl->getDeclName());
2647    assert(Pos != TentativeDefinitions.end() &&
2648           "Unrecorded tentative definition?");
2649    TentativeDefinitions.erase(Pos);
2650  }
2651
2652  return;
2653}
2654
2655void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2656  Decl *RealDecl = dcl.getAs<Decl>();
2657
2658  // If there is no declaration, there was an error parsing it. Just ignore it.
2659  if (RealDecl == 0)
2660    return;
2661
2662  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2663    QualType Type = Var->getType();
2664
2665    // Record tentative definitions.
2666    if (Var->isTentativeDefinition(Context))
2667      TentativeDefinitions[Var->getDeclName()] = Var;
2668
2669    // C++ [dcl.init.ref]p3:
2670    //   The initializer can be omitted for a reference only in a
2671    //   parameter declaration (8.3.5), in the declaration of a
2672    //   function return type, in the declaration of a class member
2673    //   within its class declaration (9.2), and where the extern
2674    //   specifier is explicitly used.
2675    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2676      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2677        << Var->getDeclName()
2678        << SourceRange(Var->getLocation(), Var->getLocation());
2679      Var->setInvalidDecl();
2680      return;
2681    }
2682
2683    // C++ [dcl.init]p9:
2684    //
2685    //   If no initializer is specified for an object, and the object
2686    //   is of (possibly cv-qualified) non-POD class type (or array
2687    //   thereof), the object shall be default-initialized; if the
2688    //   object is of const-qualified type, the underlying class type
2689    //   shall have a user-declared default constructor.
2690    if (getLangOptions().CPlusPlus) {
2691      QualType InitType = Type;
2692      if (const ArrayType *Array = Context.getAsArrayType(Type))
2693        InitType = Array->getElementType();
2694      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2695          InitType->isRecordType() && !InitType->isDependentType()) {
2696        CXXRecordDecl *RD =
2697          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2698        CXXConstructorDecl *Constructor = 0;
2699        if (!RequireCompleteType(Var->getLocation(), InitType,
2700                                    diag::err_invalid_incomplete_type_use))
2701          Constructor
2702            = PerformInitializationByConstructor(InitType, 0, 0,
2703                                                 Var->getLocation(),
2704                                               SourceRange(Var->getLocation(),
2705                                                           Var->getLocation()),
2706                                                 Var->getDeclName(),
2707                                                 IK_Default);
2708        if (!Constructor)
2709          Var->setInvalidDecl();
2710        else if (!RD->hasTrivialConstructor())
2711          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2712      }
2713    }
2714
2715#if 0
2716    // FIXME: Temporarily disabled because we are not properly parsing
2717    // linkage specifications on declarations, e.g.,
2718    //
2719    //   extern "C" const CGPoint CGPointerZero;
2720    //
2721    // C++ [dcl.init]p9:
2722    //
2723    //     If no initializer is specified for an object, and the
2724    //     object is of (possibly cv-qualified) non-POD class type (or
2725    //     array thereof), the object shall be default-initialized; if
2726    //     the object is of const-qualified type, the underlying class
2727    //     type shall have a user-declared default
2728    //     constructor. Otherwise, if no initializer is specified for
2729    //     an object, the object and its subobjects, if any, have an
2730    //     indeterminate initial value; if the object or any of its
2731    //     subobjects are of const-qualified type, the program is
2732    //     ill-formed.
2733    //
2734    // This isn't technically an error in C, so we don't diagnose it.
2735    //
2736    // FIXME: Actually perform the POD/user-defined default
2737    // constructor check.
2738    if (getLangOptions().CPlusPlus &&
2739        Context.getCanonicalType(Type).isConstQualified() &&
2740        !Var->hasExternalStorage())
2741      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2742        << Var->getName()
2743        << SourceRange(Var->getLocation(), Var->getLocation());
2744#endif
2745  }
2746}
2747
2748Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2749                                                   DeclPtrTy *Group,
2750                                                   unsigned NumDecls) {
2751  llvm::SmallVector<Decl*, 8> Decls;
2752
2753  if (DS.isTypeSpecOwned())
2754    Decls.push_back((Decl*)DS.getTypeRep());
2755
2756  for (unsigned i = 0; i != NumDecls; ++i)
2757    if (Decl *D = Group[i].getAs<Decl>())
2758      Decls.push_back(D);
2759
2760  // Perform semantic analysis that depends on having fully processed both
2761  // the declarator and initializer.
2762  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2763    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2764    if (!IDecl)
2765      continue;
2766    QualType T = IDecl->getType();
2767
2768    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2769    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2770    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2771      if (!IDecl->isInvalidDecl() &&
2772          RequireCompleteType(IDecl->getLocation(), T,
2773                              diag::err_typecheck_decl_incomplete_type))
2774        IDecl->setInvalidDecl();
2775    }
2776    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2777    // object that has file scope without an initializer, and without a
2778    // storage-class specifier or with the storage-class specifier "static",
2779    // constitutes a tentative definition. Note: A tentative definition with
2780    // external linkage is valid (C99 6.2.2p5).
2781    if (IDecl->isTentativeDefinition(Context)) {
2782      QualType CheckType = T;
2783      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2784
2785      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2786      if (ArrayT) {
2787        CheckType = ArrayT->getElementType();
2788        DiagID = diag::err_illegal_decl_array_incomplete_type;
2789      }
2790
2791      if (IDecl->isInvalidDecl()) {
2792        // Do nothing with invalid declarations
2793      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2794                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2795        // C99 6.9.2p3: If the declaration of an identifier for an object is
2796        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2797        // declared type shall not be an incomplete type.
2798        IDecl->setInvalidDecl();
2799      }
2800    }
2801  }
2802  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2803                                                   Decls.data(), Decls.size()));
2804}
2805
2806
2807/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2808/// to introduce parameters into function prototype scope.
2809Sema::DeclPtrTy
2810Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2811  const DeclSpec &DS = D.getDeclSpec();
2812
2813  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2814  VarDecl::StorageClass StorageClass = VarDecl::None;
2815  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2816    StorageClass = VarDecl::Register;
2817  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2818    Diag(DS.getStorageClassSpecLoc(),
2819         diag::err_invalid_storage_class_in_func_decl);
2820    D.getMutableDeclSpec().ClearStorageClassSpecs();
2821  }
2822
2823  if (D.getDeclSpec().isThreadSpecified())
2824    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2825
2826  DiagnoseFunctionSpecifiers(D);
2827
2828  // Check that there are no default arguments inside the type of this
2829  // parameter (C++ only).
2830  if (getLangOptions().CPlusPlus)
2831    CheckExtraCXXDefaultArguments(D);
2832
2833  TagDecl *OwnedDecl = 0;
2834  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2835
2836  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2837    // C++ [dcl.fct]p6:
2838    //   Types shall not be defined in return or parameter types.
2839    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2840      << Context.getTypeDeclType(OwnedDecl);
2841  }
2842
2843  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2844  // Can this happen for params?  We already checked that they don't conflict
2845  // among each other.  Here they can only shadow globals, which is ok.
2846  IdentifierInfo *II = D.getIdentifier();
2847  if (II) {
2848    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2849      if (PrevDecl->isTemplateParameter()) {
2850        // Maybe we will complain about the shadowed template parameter.
2851        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2852        // Just pretend that we didn't see the previous declaration.
2853        PrevDecl = 0;
2854      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2855        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2856
2857        // Recover by removing the name
2858        II = 0;
2859        D.SetIdentifier(0, D.getIdentifierLoc());
2860      }
2861    }
2862  }
2863
2864  // Parameters can not be abstract class types.
2865  // For record types, this is done by the AbstractClassUsageDiagnoser once
2866  // the class has been completely parsed.
2867  if (!CurContext->isRecord() &&
2868      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2869                             diag::err_abstract_type_in_decl,
2870                             AbstractParamType))
2871    D.setInvalidType(true);
2872
2873  QualType T = adjustParameterType(parmDeclType);
2874
2875  ParmVarDecl *New;
2876  if (T == parmDeclType) // parameter type did not need adjustment
2877    New = ParmVarDecl::Create(Context, CurContext,
2878                              D.getIdentifierLoc(), II,
2879                              parmDeclType, StorageClass,
2880                              0);
2881  else // keep track of both the adjusted and unadjusted types
2882    New = OriginalParmVarDecl::Create(Context, CurContext,
2883                                      D.getIdentifierLoc(), II, T,
2884                                      parmDeclType, StorageClass, 0);
2885
2886  if (D.isInvalidType())
2887    New->setInvalidDecl();
2888
2889  // Parameter declarators cannot be interface types. All ObjC objects are
2890  // passed by reference.
2891  if (T->isObjCInterfaceType()) {
2892    Diag(D.getIdentifierLoc(),
2893         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2894    New->setInvalidDecl();
2895  }
2896
2897  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2898  if (D.getCXXScopeSpec().isSet()) {
2899    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2900      << D.getCXXScopeSpec().getRange();
2901    New->setInvalidDecl();
2902  }
2903
2904  // Add the parameter declaration into this scope.
2905  S->AddDecl(DeclPtrTy::make(New));
2906  if (II)
2907    IdResolver.AddDecl(New);
2908
2909  ProcessDeclAttributes(New, D);
2910
2911  if (New->hasAttr<BlocksAttr>()) {
2912    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2913  }
2914  return DeclPtrTy::make(New);
2915}
2916
2917void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2918                                           SourceLocation LocAfterDecls) {
2919  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2920         "Not a function declarator!");
2921  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2922
2923  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2924  // for a K&R function.
2925  if (!FTI.hasPrototype) {
2926    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2927      --i;
2928      if (FTI.ArgInfo[i].Param == 0) {
2929        std::string Code = "  int ";
2930        Code += FTI.ArgInfo[i].Ident->getName();
2931        Code += ";\n";
2932        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2933          << FTI.ArgInfo[i].Ident
2934          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2935
2936        // Implicitly declare the argument as type 'int' for lack of a better
2937        // type.
2938        DeclSpec DS;
2939        const char* PrevSpec; // unused
2940        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2941                           PrevSpec);
2942        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2943        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2944        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2945      }
2946    }
2947  }
2948}
2949
2950Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2951                                              Declarator &D) {
2952  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2953  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2954         "Not a function declarator!");
2955  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2956
2957  if (FTI.hasPrototype) {
2958    // FIXME: Diagnose arguments without names in C.
2959  }
2960
2961  Scope *ParentScope = FnBodyScope->getParent();
2962
2963  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2964  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2965}
2966
2967Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2968  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2969
2970  CurFunctionNeedsScopeChecking = false;
2971
2972  // See if this is a redefinition.
2973  const FunctionDecl *Definition;
2974  if (FD->getBody(Context, Definition)) {
2975    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2976    Diag(Definition->getLocation(), diag::note_previous_definition);
2977  }
2978
2979  // Builtin functions cannot be defined.
2980  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2981    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2982      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2983      FD->setInvalidDecl();
2984    }
2985  }
2986
2987  // The return type of a function definition must be complete
2988  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2989  QualType ResultType = FD->getResultType();
2990  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2991      !FD->isInvalidDecl() &&
2992      RequireCompleteType(FD->getLocation(), ResultType,
2993                          diag::err_func_def_incomplete_result))
2994    FD->setInvalidDecl();
2995
2996  // GNU warning -Wmissing-prototypes:
2997  //   Warn if a global function is defined without a previous
2998  //   prototype declaration. This warning is issued even if the
2999  //   definition itself provides a prototype. The aim is to detect
3000  //   global functions that fail to be declared in header files.
3001  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3002      !FD->isMain()) {
3003    bool MissingPrototype = true;
3004    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3005         Prev; Prev = Prev->getPreviousDeclaration()) {
3006      // Ignore any declarations that occur in function or method
3007      // scope, because they aren't visible from the header.
3008      if (Prev->getDeclContext()->isFunctionOrMethod())
3009        continue;
3010
3011      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3012      break;
3013    }
3014
3015    if (MissingPrototype)
3016      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3017  }
3018
3019  if (FnBodyScope)
3020    PushDeclContext(FnBodyScope, FD);
3021
3022  // Check the validity of our function parameters
3023  CheckParmsForFunctionDef(FD);
3024
3025  // Introduce our parameters into the function scope
3026  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3027    ParmVarDecl *Param = FD->getParamDecl(p);
3028    Param->setOwningFunction(FD);
3029
3030    // If this has an identifier, add it to the scope stack.
3031    if (Param->getIdentifier() && FnBodyScope)
3032      PushOnScopeChains(Param, FnBodyScope);
3033  }
3034
3035  // Checking attributes of current function definition
3036  // dllimport attribute.
3037  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
3038    // dllimport attribute cannot be applied to definition.
3039    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3040      Diag(FD->getLocation(),
3041           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3042        << "dllimport";
3043      FD->setInvalidDecl();
3044      return DeclPtrTy::make(FD);
3045    } else {
3046      // If a symbol previously declared dllimport is later defined, the
3047      // attribute is ignored in subsequent references, and a warning is
3048      // emitted.
3049      Diag(FD->getLocation(),
3050           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3051        << FD->getNameAsCString() << "dllimport";
3052    }
3053  }
3054  return DeclPtrTy::make(FD);
3055}
3056
3057Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3058  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3059}
3060
3061Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3062                                              bool IsInstantiation) {
3063  Decl *dcl = D.getAs<Decl>();
3064  Stmt *Body = BodyArg.takeAs<Stmt>();
3065  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3066    FD->setBody(Body);
3067    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3068  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3069    assert(MD == getCurMethodDecl() && "Method parsing confused");
3070    MD->setBody(Body);
3071  } else {
3072    Body->Destroy(Context);
3073    return DeclPtrTy();
3074  }
3075  if (!IsInstantiation)
3076    PopDeclContext();
3077
3078  // Verify and clean out per-function state.
3079
3080  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3081
3082  // Check goto/label use.
3083  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3084       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3085    LabelStmt *L = I->second;
3086
3087    // Verify that we have no forward references left.  If so, there was a goto
3088    // or address of a label taken, but no definition of it.  Label fwd
3089    // definitions are indicated with a null substmt.
3090    if (L->getSubStmt() != 0)
3091      continue;
3092
3093    // Emit error.
3094    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3095
3096    // At this point, we have gotos that use the bogus label.  Stitch it into
3097    // the function body so that they aren't leaked and that the AST is well
3098    // formed.
3099    if (Body == 0) {
3100      // The whole function wasn't parsed correctly, just delete this.
3101      L->Destroy(Context);
3102      continue;
3103    }
3104
3105    // Otherwise, the body is valid: we want to stitch the label decl into the
3106    // function somewhere so that it is properly owned and so that the goto
3107    // has a valid target.  Do this by creating a new compound stmt with the
3108    // label in it.
3109
3110    // Give the label a sub-statement.
3111    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3112
3113    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3114                               cast<CXXTryStmt>(Body)->getTryBlock() :
3115                               cast<CompoundStmt>(Body);
3116    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3117    Elements.push_back(L);
3118    Compound->setStmts(Context, &Elements[0], Elements.size());
3119  }
3120  FunctionLabelMap.clear();
3121
3122  if (!Body) return D;
3123
3124  // Verify that that gotos and switch cases don't jump into scopes illegally.
3125  if (CurFunctionNeedsScopeChecking)
3126    DiagnoseInvalidJumps(Body);
3127
3128  // C++ constructors that have function-try-blocks can't have return statements
3129  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3130  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3131    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3132
3133  return D;
3134}
3135
3136/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3137/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3138NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3139                                          IdentifierInfo &II, Scope *S) {
3140  // Before we produce a declaration for an implicitly defined
3141  // function, see whether there was a locally-scoped declaration of
3142  // this name as a function or variable. If so, use that
3143  // (non-visible) declaration, and complain about it.
3144  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3145    = LocallyScopedExternalDecls.find(&II);
3146  if (Pos != LocallyScopedExternalDecls.end()) {
3147    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3148    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3149    return Pos->second;
3150  }
3151
3152  // Extension in C99.  Legal in C90, but warn about it.
3153  if (getLangOptions().C99)
3154    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3155  else
3156    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3157
3158  // FIXME: handle stuff like:
3159  // void foo() { extern float X(); }
3160  // void bar() { X(); }  <-- implicit decl for X in another scope.
3161
3162  // Set a Declarator for the implicit definition: int foo();
3163  const char *Dummy;
3164  DeclSpec DS;
3165  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3166  Error = Error; // Silence warning.
3167  assert(!Error && "Error setting up implicit decl!");
3168  Declarator D(DS, Declarator::BlockContext);
3169  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3170                                             0, 0, false, SourceLocation(),
3171                                             false, 0,0,0, Loc, D),
3172                SourceLocation());
3173  D.SetIdentifier(&II, Loc);
3174
3175  // Insert this function into translation-unit scope.
3176
3177  DeclContext *PrevDC = CurContext;
3178  CurContext = Context.getTranslationUnitDecl();
3179
3180  FunctionDecl *FD =
3181 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3182  FD->setImplicit();
3183
3184  CurContext = PrevDC;
3185
3186  AddKnownFunctionAttributes(FD);
3187
3188  return FD;
3189}
3190
3191/// \brief Adds any function attributes that we know a priori based on
3192/// the declaration of this function.
3193///
3194/// These attributes can apply both to implicitly-declared builtins
3195/// (like __builtin___printf_chk) or to library-declared functions
3196/// like NSLog or printf.
3197void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3198  if (FD->isInvalidDecl())
3199    return;
3200
3201  // If this is a built-in function, map its builtin attributes to
3202  // actual attributes.
3203  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3204    // Handle printf-formatting attributes.
3205    unsigned FormatIdx;
3206    bool HasVAListArg;
3207    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3208      if (!FD->getAttr<FormatAttr>())
3209        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3210                                               FormatIdx + 2));
3211    }
3212
3213    // Mark const if we don't care about errno and that is the only
3214    // thing preventing the function from being const. This allows
3215    // IRgen to use LLVM intrinsics for such functions.
3216    if (!getLangOptions().MathErrno &&
3217        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3218      if (!FD->getAttr<ConstAttr>())
3219        FD->addAttr(::new (Context) ConstAttr());
3220    }
3221  }
3222
3223  IdentifierInfo *Name = FD->getIdentifier();
3224  if (!Name)
3225    return;
3226  if ((!getLangOptions().CPlusPlus &&
3227       FD->getDeclContext()->isTranslationUnit()) ||
3228      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3229       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3230       LinkageSpecDecl::lang_c)) {
3231    // Okay: this could be a libc/libm/Objective-C function we know
3232    // about.
3233  } else
3234    return;
3235
3236  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3237    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3238      // FIXME: We known better than our headers.
3239      const_cast<FormatAttr *>(Format)->setType("printf");
3240    } else
3241      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3242  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3243    if (!FD->getAttr<FormatAttr>())
3244      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3245  }
3246}
3247
3248TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3249  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3250  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3251
3252  // Scope manipulation handled by caller.
3253  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3254                                           D.getIdentifierLoc(),
3255                                           D.getIdentifier(),
3256                                           T);
3257
3258  if (TagType *TT = dyn_cast<TagType>(T)) {
3259    TagDecl *TD = TT->getDecl();
3260
3261    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3262    // keep track of the TypedefDecl.
3263    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3264      TD->setTypedefForAnonDecl(NewTD);
3265  }
3266
3267  if (D.isInvalidType())
3268    NewTD->setInvalidDecl();
3269  return NewTD;
3270}
3271
3272
3273/// \brief Determine whether a tag with a given kind is acceptable
3274/// as a redeclaration of the given tag declaration.
3275///
3276/// \returns true if the new tag kind is acceptable, false otherwise.
3277bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3278                                        TagDecl::TagKind NewTag,
3279                                        SourceLocation NewTagLoc,
3280                                        const IdentifierInfo &Name) {
3281  // C++ [dcl.type.elab]p3:
3282  //   The class-key or enum keyword present in the
3283  //   elaborated-type-specifier shall agree in kind with the
3284  //   declaration to which the name in theelaborated-type-specifier
3285  //   refers. This rule also applies to the form of
3286  //   elaborated-type-specifier that declares a class-name or
3287  //   friend class since it can be construed as referring to the
3288  //   definition of the class. Thus, in any
3289  //   elaborated-type-specifier, the enum keyword shall be used to
3290  //   refer to an enumeration (7.2), the union class-keyshall be
3291  //   used to refer to a union (clause 9), and either the class or
3292  //   struct class-key shall be used to refer to a class (clause 9)
3293  //   declared using the class or struct class-key.
3294  TagDecl::TagKind OldTag = Previous->getTagKind();
3295  if (OldTag == NewTag)
3296    return true;
3297
3298  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3299      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3300    // Warn about the struct/class tag mismatch.
3301    bool isTemplate = false;
3302    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3303      isTemplate = Record->getDescribedClassTemplate();
3304
3305    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3306      << (NewTag == TagDecl::TK_class)
3307      << isTemplate << &Name
3308      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3309                              OldTag == TagDecl::TK_class? "class" : "struct");
3310    Diag(Previous->getLocation(), diag::note_previous_use);
3311    return true;
3312  }
3313  return false;
3314}
3315
3316/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3317/// former case, Name will be non-null.  In the later case, Name will be null.
3318/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3319/// reference/declaration/definition of a tag.
3320Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3321                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3322                               IdentifierInfo *Name, SourceLocation NameLoc,
3323                               AttributeList *Attr, AccessSpecifier AS,
3324                               bool &OwnedDecl) {
3325  // If this is not a definition, it must have a name.
3326  assert((Name != 0 || TK == TK_Definition) &&
3327         "Nameless record must be a definition!");
3328
3329  OwnedDecl = false;
3330  TagDecl::TagKind Kind;
3331  switch (TagSpec) {
3332  default: assert(0 && "Unknown tag type!");
3333  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3334  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3335  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3336  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3337  }
3338
3339  DeclContext *SearchDC = CurContext;
3340  DeclContext *DC = CurContext;
3341  NamedDecl *PrevDecl = 0;
3342
3343  bool Invalid = false;
3344
3345  if (Name && SS.isNotEmpty()) {
3346    // We have a nested-name tag ('struct foo::bar').
3347
3348    // Check for invalid 'foo::'.
3349    if (SS.isInvalid()) {
3350      Name = 0;
3351      goto CreateNewDecl;
3352    }
3353
3354    if (RequireCompleteDeclContext(SS))
3355      return DeclPtrTy::make((Decl *)0);
3356
3357    DC = computeDeclContext(SS);
3358    SearchDC = DC;
3359    // Look-up name inside 'foo::'.
3360    PrevDecl
3361      = dyn_cast_or_null<TagDecl>(
3362               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3363
3364    // A tag 'foo::bar' must already exist.
3365    if (PrevDecl == 0) {
3366      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3367      Name = 0;
3368      Invalid = true;
3369      goto CreateNewDecl;
3370    }
3371  } else if (Name) {
3372    // If this is a named struct, check to see if there was a previous forward
3373    // declaration or definition.
3374    // FIXME: We're looking into outer scopes here, even when we
3375    // shouldn't be. Doing so can result in ambiguities that we
3376    // shouldn't be diagnosing.
3377    LookupResult R = LookupName(S, Name, LookupTagName,
3378                                /*RedeclarationOnly=*/(TK != TK_Reference));
3379    if (R.isAmbiguous()) {
3380      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3381      // FIXME: This is not best way to recover from case like:
3382      //
3383      // struct S s;
3384      //
3385      // causes needless "incomplete type" error later.
3386      Name = 0;
3387      PrevDecl = 0;
3388      Invalid = true;
3389    }
3390    else
3391      PrevDecl = R;
3392
3393    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3394      // FIXME: This makes sure that we ignore the contexts associated
3395      // with C structs, unions, and enums when looking for a matching
3396      // tag declaration or definition. See the similar lookup tweak
3397      // in Sema::LookupName; is there a better way to deal with this?
3398      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3399        SearchDC = SearchDC->getParent();
3400    }
3401  }
3402
3403  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3404    // Maybe we will complain about the shadowed template parameter.
3405    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3406    // Just pretend that we didn't see the previous declaration.
3407    PrevDecl = 0;
3408  }
3409
3410  if (PrevDecl) {
3411    // Check whether the previous declaration is usable.
3412    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3413
3414    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3415      // If this is a use of a previous tag, or if the tag is already declared
3416      // in the same scope (so that the definition/declaration completes or
3417      // rementions the tag), reuse the decl.
3418      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3419        // Make sure that this wasn't declared as an enum and now used as a
3420        // struct or something similar.
3421        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3422          bool SafeToContinue
3423            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3424               Kind != TagDecl::TK_enum);
3425          if (SafeToContinue)
3426            Diag(KWLoc, diag::err_use_with_wrong_tag)
3427              << Name
3428              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3429                                                  PrevTagDecl->getKindName());
3430          else
3431            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3432          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3433
3434          if (SafeToContinue)
3435            Kind = PrevTagDecl->getTagKind();
3436          else {
3437            // Recover by making this an anonymous redefinition.
3438            Name = 0;
3439            PrevDecl = 0;
3440            Invalid = true;
3441          }
3442        }
3443
3444        if (!Invalid) {
3445          // If this is a use, just return the declaration we found.
3446
3447          // FIXME: In the future, return a variant or some other clue
3448          // for the consumer of this Decl to know it doesn't own it.
3449          // For our current ASTs this shouldn't be a problem, but will
3450          // need to be changed with DeclGroups.
3451          if (TK == TK_Reference)
3452            return DeclPtrTy::make(PrevDecl);
3453
3454          // Diagnose attempts to redefine a tag.
3455          if (TK == TK_Definition) {
3456            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3457              Diag(NameLoc, diag::err_redefinition) << Name;
3458              Diag(Def->getLocation(), diag::note_previous_definition);
3459              // If this is a redefinition, recover by making this
3460              // struct be anonymous, which will make any later
3461              // references get the previous definition.
3462              Name = 0;
3463              PrevDecl = 0;
3464              Invalid = true;
3465            } else {
3466              // If the type is currently being defined, complain
3467              // about a nested redefinition.
3468              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3469              if (Tag->isBeingDefined()) {
3470                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3471                Diag(PrevTagDecl->getLocation(),
3472                     diag::note_previous_definition);
3473                Name = 0;
3474                PrevDecl = 0;
3475                Invalid = true;
3476              }
3477            }
3478
3479            // Okay, this is definition of a previously declared or referenced
3480            // tag PrevDecl. We're going to create a new Decl for it.
3481          }
3482        }
3483        // If we get here we have (another) forward declaration or we
3484        // have a definition.  Just create a new decl.
3485      } else {
3486        // If we get here, this is a definition of a new tag type in a nested
3487        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3488        // new decl/type.  We set PrevDecl to NULL so that the entities
3489        // have distinct types.
3490        PrevDecl = 0;
3491      }
3492      // If we get here, we're going to create a new Decl. If PrevDecl
3493      // is non-NULL, it's a definition of the tag declared by
3494      // PrevDecl. If it's NULL, we have a new definition.
3495    } else {
3496      // PrevDecl is a namespace, template, or anything else
3497      // that lives in the IDNS_Tag identifier namespace.
3498      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3499        // The tag name clashes with a namespace name, issue an error and
3500        // recover by making this tag be anonymous.
3501        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3502        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3503        Name = 0;
3504        PrevDecl = 0;
3505        Invalid = true;
3506      } else {
3507        // The existing declaration isn't relevant to us; we're in a
3508        // new scope, so clear out the previous declaration.
3509        PrevDecl = 0;
3510      }
3511    }
3512  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3513             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3514    // C++ [basic.scope.pdecl]p5:
3515    //   -- for an elaborated-type-specifier of the form
3516    //
3517    //          class-key identifier
3518    //
3519    //      if the elaborated-type-specifier is used in the
3520    //      decl-specifier-seq or parameter-declaration-clause of a
3521    //      function defined in namespace scope, the identifier is
3522    //      declared as a class-name in the namespace that contains
3523    //      the declaration; otherwise, except as a friend
3524    //      declaration, the identifier is declared in the smallest
3525    //      non-class, non-function-prototype scope that contains the
3526    //      declaration.
3527    //
3528    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3529    // C structs and unions.
3530    //
3531    // GNU C also supports this behavior as part of its incomplete
3532    // enum types extension, while GNU C++ does not.
3533    //
3534    // Find the context where we'll be declaring the tag.
3535    // FIXME: We would like to maintain the current DeclContext as the
3536    // lexical context,
3537    while (SearchDC->isRecord())
3538      SearchDC = SearchDC->getParent();
3539
3540    // Find the scope where we'll be declaring the tag.
3541    while (S->isClassScope() ||
3542           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3543           ((S->getFlags() & Scope::DeclScope) == 0) ||
3544           (S->getEntity() &&
3545            ((DeclContext *)S->getEntity())->isTransparentContext()))
3546      S = S->getParent();
3547  }
3548
3549CreateNewDecl:
3550
3551  // If there is an identifier, use the location of the identifier as the
3552  // location of the decl, otherwise use the location of the struct/union
3553  // keyword.
3554  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3555
3556  // Otherwise, create a new declaration. If there is a previous
3557  // declaration of the same entity, the two will be linked via
3558  // PrevDecl.
3559  TagDecl *New;
3560
3561  if (Kind == TagDecl::TK_enum) {
3562    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3563    // enum X { A, B, C } D;    D should chain to X.
3564    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3565                           cast_or_null<EnumDecl>(PrevDecl));
3566    // If this is an undefined enum, warn.
3567    if (TK != TK_Definition && !Invalid)  {
3568      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3569                                              : diag::ext_forward_ref_enum;
3570      Diag(Loc, DK);
3571    }
3572  } else {
3573    // struct/union/class
3574
3575    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3576    // struct X { int A; } D;    D should chain to X.
3577    if (getLangOptions().CPlusPlus)
3578      // FIXME: Look for a way to use RecordDecl for simple structs.
3579      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3580                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3581    else
3582      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3583                               cast_or_null<RecordDecl>(PrevDecl));
3584  }
3585
3586  if (Kind != TagDecl::TK_enum) {
3587    // Handle #pragma pack: if the #pragma pack stack has non-default
3588    // alignment, make up a packed attribute for this decl. These
3589    // attributes are checked when the ASTContext lays out the
3590    // structure.
3591    //
3592    // It is important for implementing the correct semantics that this
3593    // happen here (in act on tag decl). The #pragma pack stack is
3594    // maintained as a result of parser callbacks which can occur at
3595    // many points during the parsing of a struct declaration (because
3596    // the #pragma tokens are effectively skipped over during the
3597    // parsing of the struct).
3598    if (unsigned Alignment = getPragmaPackAlignment())
3599      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3600  }
3601
3602  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3603    // C++ [dcl.typedef]p3:
3604    //   [...] Similarly, in a given scope, a class or enumeration
3605    //   shall not be declared with the same name as a typedef-name
3606    //   that is declared in that scope and refers to a type other
3607    //   than the class or enumeration itself.
3608    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3609    TypedefDecl *PrevTypedef = 0;
3610    if (Lookup.getKind() == LookupResult::Found)
3611      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3612
3613    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3614        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3615          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3616      Diag(Loc, diag::err_tag_definition_of_typedef)
3617        << Context.getTypeDeclType(New)
3618        << PrevTypedef->getUnderlyingType();
3619      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3620      Invalid = true;
3621    }
3622  }
3623
3624  if (Invalid)
3625    New->setInvalidDecl();
3626
3627  if (Attr)
3628    ProcessDeclAttributeList(New, Attr);
3629
3630  // If we're declaring or defining a tag in function prototype scope
3631  // in C, note that this type can only be used within the function.
3632  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3633    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3634
3635  // Set the lexical context. If the tag has a C++ scope specifier, the
3636  // lexical context will be different from the semantic context.
3637  New->setLexicalDeclContext(CurContext);
3638
3639  // Set the access specifier.
3640  if (!Invalid)
3641    SetMemberAccessSpecifier(New, PrevDecl, AS);
3642
3643  if (TK == TK_Definition)
3644    New->startDefinition();
3645
3646  // If this has an identifier, add it to the scope stack.
3647  if (Name) {
3648    S = getNonFieldDeclScope(S);
3649    PushOnScopeChains(New, S);
3650  } else {
3651    CurContext->addDecl(Context, New);
3652  }
3653
3654  OwnedDecl = true;
3655  return DeclPtrTy::make(New);
3656}
3657
3658void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3659  AdjustDeclIfTemplate(TagD);
3660  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3661
3662  // Enter the tag context.
3663  PushDeclContext(S, Tag);
3664
3665  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3666    FieldCollector->StartClass();
3667
3668    if (Record->getIdentifier()) {
3669      // C++ [class]p2:
3670      //   [...] The class-name is also inserted into the scope of the
3671      //   class itself; this is known as the injected-class-name. For
3672      //   purposes of access checking, the injected-class-name is treated
3673      //   as if it were a public member name.
3674      CXXRecordDecl *InjectedClassName
3675        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3676                                CurContext, Record->getLocation(),
3677                                Record->getIdentifier(), Record);
3678      InjectedClassName->setImplicit();
3679      InjectedClassName->setAccess(AS_public);
3680      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3681        InjectedClassName->setDescribedClassTemplate(Template);
3682      PushOnScopeChains(InjectedClassName, S);
3683      assert(InjectedClassName->isInjectedClassName() &&
3684             "Broken injected-class-name");
3685    }
3686  }
3687}
3688
3689void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3690  AdjustDeclIfTemplate(TagD);
3691  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3692
3693  if (isa<CXXRecordDecl>(Tag))
3694    FieldCollector->FinishClass();
3695
3696  // Exit this scope of this tag's definition.
3697  PopDeclContext();
3698
3699  // Notify the consumer that we've defined a tag.
3700  Consumer.HandleTagDeclDefinition(Tag);
3701}
3702
3703// Note that FieldName may be null for anonymous bitfields.
3704bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3705                          QualType FieldTy, const Expr *BitWidth) {
3706
3707  // C99 6.7.2.1p4 - verify the field type.
3708  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3709  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3710    // Handle incomplete types with specific error.
3711    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3712      return true;
3713    if (FieldName)
3714      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3715        << FieldName << FieldTy << BitWidth->getSourceRange();
3716    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3717      << FieldTy << BitWidth->getSourceRange();
3718  }
3719
3720  // If the bit-width is type- or value-dependent, don't try to check
3721  // it now.
3722  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3723    return false;
3724
3725  llvm::APSInt Value;
3726  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3727    return true;
3728
3729  // Zero-width bitfield is ok for anonymous field.
3730  if (Value == 0 && FieldName)
3731    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3732
3733  if (Value.isSigned() && Value.isNegative()) {
3734    if (FieldName)
3735      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3736               << FieldName << Value.toString(10);
3737    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3738      << Value.toString(10);
3739  }
3740
3741  if (!FieldTy->isDependentType()) {
3742    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3743    if (Value.getZExtValue() > TypeSize) {
3744      if (FieldName)
3745        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3746          << FieldName << (unsigned)TypeSize;
3747      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3748        << (unsigned)TypeSize;
3749    }
3750  }
3751
3752  return false;
3753}
3754
3755/// ActOnField - Each field of a struct/union/class is passed into this in order
3756/// to create a FieldDecl object for it.
3757Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3758                                 SourceLocation DeclStart,
3759                                 Declarator &D, ExprTy *BitfieldWidth) {
3760  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3761                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3762                               AS_public);
3763  return DeclPtrTy::make(Res);
3764}
3765
3766/// HandleField - Analyze a field of a C struct or a C++ data member.
3767///
3768FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3769                             SourceLocation DeclStart,
3770                             Declarator &D, Expr *BitWidth,
3771                             AccessSpecifier AS) {
3772  IdentifierInfo *II = D.getIdentifier();
3773  SourceLocation Loc = DeclStart;
3774  if (II) Loc = D.getIdentifierLoc();
3775
3776  QualType T = GetTypeForDeclarator(D, S);
3777  if (getLangOptions().CPlusPlus)
3778    CheckExtraCXXDefaultArguments(D);
3779
3780  DiagnoseFunctionSpecifiers(D);
3781
3782  if (D.getDeclSpec().isThreadSpecified())
3783    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3784
3785  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3786  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3787    PrevDecl = 0;
3788
3789  FieldDecl *NewFD
3790    = CheckFieldDecl(II, T, Record, Loc,
3791               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3792                     BitWidth, AS, PrevDecl, &D);
3793  if (NewFD->isInvalidDecl() && PrevDecl) {
3794    // Don't introduce NewFD into scope; there's already something
3795    // with the same name in the same scope.
3796  } else if (II) {
3797    PushOnScopeChains(NewFD, S);
3798  } else
3799    Record->addDecl(Context, NewFD);
3800
3801  return NewFD;
3802}
3803
3804/// \brief Build a new FieldDecl and check its well-formedness.
3805///
3806/// This routine builds a new FieldDecl given the fields name, type,
3807/// record, etc. \p PrevDecl should refer to any previous declaration
3808/// with the same name and in the same scope as the field to be
3809/// created.
3810///
3811/// \returns a new FieldDecl.
3812///
3813/// \todo The Declarator argument is a hack. It will be removed once
3814FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3815                                RecordDecl *Record, SourceLocation Loc,
3816                                bool Mutable, Expr *BitWidth,
3817                                AccessSpecifier AS, NamedDecl *PrevDecl,
3818                                Declarator *D) {
3819  IdentifierInfo *II = Name.getAsIdentifierInfo();
3820  bool InvalidDecl = false;
3821  if (D) InvalidDecl = D->isInvalidType();
3822
3823  // If we receive a broken type, recover by assuming 'int' and
3824  // marking this declaration as invalid.
3825  if (T.isNull()) {
3826    InvalidDecl = true;
3827    T = Context.IntTy;
3828  }
3829
3830  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3831  // than a variably modified type.
3832  if (T->isVariablyModifiedType()) {
3833    bool SizeIsNegative;
3834    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3835                                                           SizeIsNegative);
3836    if (!FixedTy.isNull()) {
3837      Diag(Loc, diag::warn_illegal_constant_array_size);
3838      T = FixedTy;
3839    } else {
3840      if (SizeIsNegative)
3841        Diag(Loc, diag::err_typecheck_negative_array_size);
3842      else
3843        Diag(Loc, diag::err_typecheck_field_variable_size);
3844      T = Context.IntTy;
3845      InvalidDecl = true;
3846    }
3847  }
3848
3849  // Fields can not have abstract class types
3850  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3851                             AbstractFieldType))
3852    InvalidDecl = true;
3853
3854  // If this is declared as a bit-field, check the bit-field.
3855  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3856    InvalidDecl = true;
3857    DeleteExpr(BitWidth);
3858    BitWidth = 0;
3859  }
3860
3861  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3862                                       Mutable);
3863  if (InvalidDecl)
3864    NewFD->setInvalidDecl();
3865
3866  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3867    Diag(Loc, diag::err_duplicate_member) << II;
3868    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3869    NewFD->setInvalidDecl();
3870  }
3871
3872  if (getLangOptions().CPlusPlus && !T->isPODType())
3873    cast<CXXRecordDecl>(Record)->setPOD(false);
3874
3875  // FIXME: We need to pass in the attributes given an AST
3876  // representation, not a parser representation.
3877  if (D)
3878    ProcessDeclAttributes(NewFD, *D);
3879
3880  if (T.isObjCGCWeak())
3881    Diag(Loc, diag::warn_attribute_weak_on_field);
3882
3883  NewFD->setAccess(AS);
3884
3885  // C++ [dcl.init.aggr]p1:
3886  //   An aggregate is an array or a class (clause 9) with [...] no
3887  //   private or protected non-static data members (clause 11).
3888  // A POD must be an aggregate.
3889  if (getLangOptions().CPlusPlus &&
3890      (AS == AS_private || AS == AS_protected)) {
3891    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3892    CXXRecord->setAggregate(false);
3893    CXXRecord->setPOD(false);
3894  }
3895
3896  return NewFD;
3897}
3898
3899/// TranslateIvarVisibility - Translate visibility from a token ID to an
3900///  AST enum value.
3901static ObjCIvarDecl::AccessControl
3902TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3903  switch (ivarVisibility) {
3904  default: assert(0 && "Unknown visitibility kind");
3905  case tok::objc_private: return ObjCIvarDecl::Private;
3906  case tok::objc_public: return ObjCIvarDecl::Public;
3907  case tok::objc_protected: return ObjCIvarDecl::Protected;
3908  case tok::objc_package: return ObjCIvarDecl::Package;
3909  }
3910}
3911
3912/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3913/// in order to create an IvarDecl object for it.
3914Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3915                                SourceLocation DeclStart,
3916                                Declarator &D, ExprTy *BitfieldWidth,
3917                                tok::ObjCKeywordKind Visibility) {
3918
3919  IdentifierInfo *II = D.getIdentifier();
3920  Expr *BitWidth = (Expr*)BitfieldWidth;
3921  SourceLocation Loc = DeclStart;
3922  if (II) Loc = D.getIdentifierLoc();
3923
3924  // FIXME: Unnamed fields can be handled in various different ways, for
3925  // example, unnamed unions inject all members into the struct namespace!
3926
3927  QualType T = GetTypeForDeclarator(D, S);
3928
3929  if (BitWidth) {
3930    // 6.7.2.1p3, 6.7.2.1p4
3931    if (VerifyBitField(Loc, II, T, BitWidth)) {
3932      D.setInvalidType();
3933      DeleteExpr(BitWidth);
3934      BitWidth = 0;
3935    }
3936  } else {
3937    // Not a bitfield.
3938
3939    // validate II.
3940
3941  }
3942
3943  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3944  // than a variably modified type.
3945  if (T->isVariablyModifiedType()) {
3946    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3947    D.setInvalidType();
3948  }
3949
3950  // Get the visibility (access control) for this ivar.
3951  ObjCIvarDecl::AccessControl ac =
3952    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3953                                        : ObjCIvarDecl::None;
3954
3955  // Construct the decl.
3956  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3957                                             (Expr *)BitfieldWidth);
3958
3959  if (II) {
3960    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3961    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3962        && !isa<TagDecl>(PrevDecl)) {
3963      Diag(Loc, diag::err_duplicate_member) << II;
3964      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3965      NewID->setInvalidDecl();
3966    }
3967  }
3968
3969  // Process attributes attached to the ivar.
3970  ProcessDeclAttributes(NewID, D);
3971
3972  if (D.isInvalidType())
3973    NewID->setInvalidDecl();
3974
3975  if (II) {
3976    // FIXME: When interfaces are DeclContexts, we'll need to add
3977    // these to the interface.
3978    S->AddDecl(DeclPtrTy::make(NewID));
3979    IdResolver.AddDecl(NewID);
3980  }
3981
3982  return DeclPtrTy::make(NewID);
3983}
3984
3985void Sema::ActOnFields(Scope* S,
3986                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3987                       DeclPtrTy *Fields, unsigned NumFields,
3988                       SourceLocation LBrac, SourceLocation RBrac,
3989                       AttributeList *Attr) {
3990  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3991  assert(EnclosingDecl && "missing record or interface decl");
3992
3993  // If the decl this is being inserted into is invalid, then it may be a
3994  // redeclaration or some other bogus case.  Don't try to add fields to it.
3995  if (EnclosingDecl->isInvalidDecl()) {
3996    // FIXME: Deallocate fields?
3997    return;
3998  }
3999
4000
4001  // Verify that all the fields are okay.
4002  unsigned NumNamedMembers = 0;
4003  llvm::SmallVector<FieldDecl*, 32> RecFields;
4004
4005  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4006  for (unsigned i = 0; i != NumFields; ++i) {
4007    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4008
4009    // Get the type for the field.
4010    Type *FDTy = FD->getType().getTypePtr();
4011
4012    if (!FD->isAnonymousStructOrUnion()) {
4013      // Remember all fields written by the user.
4014      RecFields.push_back(FD);
4015    }
4016
4017    // If the field is already invalid for some reason, don't emit more
4018    // diagnostics about it.
4019    if (FD->isInvalidDecl())
4020      continue;
4021
4022    // C99 6.7.2.1p2:
4023    //   A structure or union shall not contain a member with
4024    //   incomplete or function type (hence, a structure shall not
4025    //   contain an instance of itself, but may contain a pointer to
4026    //   an instance of itself), except that the last member of a
4027    //   structure with more than one named member may have incomplete
4028    //   array type; such a structure (and any union containing,
4029    //   possibly recursively, a member that is such a structure)
4030    //   shall not be a member of a structure or an element of an
4031    //   array.
4032    if (FDTy->isFunctionType()) {
4033      // Field declared as a function.
4034      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4035        << FD->getDeclName();
4036      FD->setInvalidDecl();
4037      EnclosingDecl->setInvalidDecl();
4038      continue;
4039    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4040               Record && Record->isStruct()) {
4041      // Flexible array member.
4042      if (NumNamedMembers < 1) {
4043        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4044          << FD->getDeclName();
4045        FD->setInvalidDecl();
4046        EnclosingDecl->setInvalidDecl();
4047        continue;
4048      }
4049      // Okay, we have a legal flexible array member at the end of the struct.
4050      if (Record)
4051        Record->setHasFlexibleArrayMember(true);
4052    } else if (!FDTy->isDependentType() &&
4053               RequireCompleteType(FD->getLocation(), FD->getType(),
4054                                   diag::err_field_incomplete)) {
4055      // Incomplete type
4056      FD->setInvalidDecl();
4057      EnclosingDecl->setInvalidDecl();
4058      continue;
4059    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4060      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4061        // If this is a member of a union, then entire union becomes "flexible".
4062        if (Record && Record->isUnion()) {
4063          Record->setHasFlexibleArrayMember(true);
4064        } else {
4065          // If this is a struct/class and this is not the last element, reject
4066          // it.  Note that GCC supports variable sized arrays in the middle of
4067          // structures.
4068          if (i != NumFields-1)
4069            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4070              << FD->getDeclName() << FD->getType();
4071          else {
4072            // We support flexible arrays at the end of structs in
4073            // other structs as an extension.
4074            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4075              << FD->getDeclName();
4076            if (Record)
4077              Record->setHasFlexibleArrayMember(true);
4078          }
4079        }
4080      }
4081    } else if (FDTy->isObjCInterfaceType()) {
4082      /// A field cannot be an Objective-c object
4083      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4084      FD->setInvalidDecl();
4085      EnclosingDecl->setInvalidDecl();
4086      continue;
4087    }
4088    // Keep track of the number of named members.
4089    if (FD->getIdentifier())
4090      ++NumNamedMembers;
4091  }
4092
4093  // Okay, we successfully defined 'Record'.
4094  if (Record) {
4095    Record->completeDefinition(Context);
4096  } else {
4097    ObjCIvarDecl **ClsFields =
4098      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4099    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4100      ID->setIVarList(ClsFields, RecFields.size(), Context);
4101      ID->setLocEnd(RBrac);
4102
4103      // Must enforce the rule that ivars in the base classes may not be
4104      // duplicates.
4105      if (ID->getSuperClass()) {
4106        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4107             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4108          ObjCIvarDecl* Ivar = (*IVI);
4109
4110          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4111            ObjCIvarDecl* prevIvar =
4112              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4113            if (prevIvar) {
4114              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4115              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4116            }
4117          }
4118        }
4119      }
4120    } else if (ObjCImplementationDecl *IMPDecl =
4121                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4122      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4123      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4124        // FIXME: Set the DeclContext correctly when we build the
4125        // declarations.
4126        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4127        IMPDecl->addDecl(Context, ClsFields[I]);
4128      }
4129      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4130    }
4131  }
4132
4133  if (Attr)
4134    ProcessDeclAttributeList(Record, Attr);
4135}
4136
4137EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4138                                          EnumConstantDecl *LastEnumConst,
4139                                          SourceLocation IdLoc,
4140                                          IdentifierInfo *Id,
4141                                          ExprArg val) {
4142  Expr *Val = (Expr *)val.get();
4143
4144  llvm::APSInt EnumVal(32);
4145  QualType EltTy;
4146  if (Val && !Val->isTypeDependent()) {
4147    // Make sure to promote the operand type to int.
4148    UsualUnaryConversions(Val);
4149    if (Val != val.get()) {
4150      val.release();
4151      val = Val;
4152    }
4153
4154    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4155    SourceLocation ExpLoc;
4156    if (!Val->isValueDependent() &&
4157        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4158      Val = 0;
4159    } else {
4160      EltTy = Val->getType();
4161    }
4162  }
4163
4164  if (!Val) {
4165    if (LastEnumConst) {
4166      // Assign the last value + 1.
4167      EnumVal = LastEnumConst->getInitVal();
4168      ++EnumVal;
4169
4170      // Check for overflow on increment.
4171      if (EnumVal < LastEnumConst->getInitVal())
4172        Diag(IdLoc, diag::warn_enum_value_overflow);
4173
4174      EltTy = LastEnumConst->getType();
4175    } else {
4176      // First value, set to zero.
4177      EltTy = Context.IntTy;
4178      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4179    }
4180  }
4181
4182  val.release();
4183  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4184                                  Val, EnumVal);
4185}
4186
4187
4188Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4189                                        DeclPtrTy lastEnumConst,
4190                                        SourceLocation IdLoc,
4191                                        IdentifierInfo *Id,
4192                                        SourceLocation EqualLoc, ExprTy *val) {
4193  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4194  EnumConstantDecl *LastEnumConst =
4195    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4196  Expr *Val = static_cast<Expr*>(val);
4197
4198  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4199  // we find one that is.
4200  S = getNonFieldDeclScope(S);
4201
4202  // Verify that there isn't already something declared with this name in this
4203  // scope.
4204  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4205  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4206    // Maybe we will complain about the shadowed template parameter.
4207    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4208    // Just pretend that we didn't see the previous declaration.
4209    PrevDecl = 0;
4210  }
4211
4212  if (PrevDecl) {
4213    // When in C++, we may get a TagDecl with the same name; in this case the
4214    // enum constant will 'hide' the tag.
4215    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4216           "Received TagDecl when not in C++!");
4217    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4218      if (isa<EnumConstantDecl>(PrevDecl))
4219        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4220      else
4221        Diag(IdLoc, diag::err_redefinition) << Id;
4222      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4223      if (Val) Val->Destroy(Context);
4224      return DeclPtrTy();
4225    }
4226  }
4227
4228  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4229                                            IdLoc, Id, Owned(Val));
4230
4231  // Register this decl in the current scope stack.
4232  if (New)
4233    PushOnScopeChains(New, S);
4234
4235  return DeclPtrTy::make(New);
4236}
4237
4238void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4239                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4240                         DeclPtrTy *Elements, unsigned NumElements) {
4241  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4242  QualType EnumType = Context.getTypeDeclType(Enum);
4243
4244  // TODO: If the result value doesn't fit in an int, it must be a long or long
4245  // long value.  ISO C does not support this, but GCC does as an extension,
4246  // emit a warning.
4247  unsigned IntWidth = Context.Target.getIntWidth();
4248
4249  // Verify that all the values are okay, compute the size of the values, and
4250  // reverse the list.
4251  unsigned NumNegativeBits = 0;
4252  unsigned NumPositiveBits = 0;
4253
4254  // Keep track of whether all elements have type int.
4255  bool AllElementsInt = true;
4256
4257  for (unsigned i = 0; i != NumElements; ++i) {
4258    EnumConstantDecl *ECD =
4259      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4260    if (!ECD) continue;  // Already issued a diagnostic.
4261
4262    // If the enum value doesn't fit in an int, emit an extension warning.
4263    const llvm::APSInt &InitVal = ECD->getInitVal();
4264    assert(InitVal.getBitWidth() >= IntWidth &&
4265           "Should have promoted value to int");
4266    if (InitVal.getBitWidth() > IntWidth) {
4267      llvm::APSInt V(InitVal);
4268      V.trunc(IntWidth);
4269      V.extend(InitVal.getBitWidth());
4270      if (V != InitVal)
4271        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4272          << InitVal.toString(10);
4273    }
4274
4275    // Keep track of the size of positive and negative values.
4276    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4277      NumPositiveBits = std::max(NumPositiveBits,
4278                                 (unsigned)InitVal.getActiveBits());
4279    else
4280      NumNegativeBits = std::max(NumNegativeBits,
4281                                 (unsigned)InitVal.getMinSignedBits());
4282
4283    // Keep track of whether every enum element has type int (very commmon).
4284    if (AllElementsInt)
4285      AllElementsInt = ECD->getType() == Context.IntTy;
4286  }
4287
4288  // Figure out the type that should be used for this enum.
4289  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4290  QualType BestType;
4291  unsigned BestWidth;
4292
4293  if (NumNegativeBits) {
4294    // If there is a negative value, figure out the smallest integer type (of
4295    // int/long/longlong) that fits.
4296    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4297      BestType = Context.IntTy;
4298      BestWidth = IntWidth;
4299    } else {
4300      BestWidth = Context.Target.getLongWidth();
4301
4302      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4303        BestType = Context.LongTy;
4304      else {
4305        BestWidth = Context.Target.getLongLongWidth();
4306
4307        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4308          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4309        BestType = Context.LongLongTy;
4310      }
4311    }
4312  } else {
4313    // If there is no negative value, figure out which of uint, ulong, ulonglong
4314    // fits.
4315    if (NumPositiveBits <= IntWidth) {
4316      BestType = Context.UnsignedIntTy;
4317      BestWidth = IntWidth;
4318    } else if (NumPositiveBits <=
4319               (BestWidth = Context.Target.getLongWidth())) {
4320      BestType = Context.UnsignedLongTy;
4321    } else {
4322      BestWidth = Context.Target.getLongLongWidth();
4323      assert(NumPositiveBits <= BestWidth &&
4324             "How could an initializer get larger than ULL?");
4325      BestType = Context.UnsignedLongLongTy;
4326    }
4327  }
4328
4329  // Loop over all of the enumerator constants, changing their types to match
4330  // the type of the enum if needed.
4331  for (unsigned i = 0; i != NumElements; ++i) {
4332    EnumConstantDecl *ECD =
4333      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4334    if (!ECD) continue;  // Already issued a diagnostic.
4335
4336    // Standard C says the enumerators have int type, but we allow, as an
4337    // extension, the enumerators to be larger than int size.  If each
4338    // enumerator value fits in an int, type it as an int, otherwise type it the
4339    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4340    // that X has type 'int', not 'unsigned'.
4341    if (ECD->getType() == Context.IntTy) {
4342      // Make sure the init value is signed.
4343      llvm::APSInt IV = ECD->getInitVal();
4344      IV.setIsSigned(true);
4345      ECD->setInitVal(IV);
4346
4347      if (getLangOptions().CPlusPlus)
4348        // C++ [dcl.enum]p4: Following the closing brace of an
4349        // enum-specifier, each enumerator has the type of its
4350        // enumeration.
4351        ECD->setType(EnumType);
4352      continue;  // Already int type.
4353    }
4354
4355    // Determine whether the value fits into an int.
4356    llvm::APSInt InitVal = ECD->getInitVal();
4357    bool FitsInInt;
4358    if (InitVal.isUnsigned() || !InitVal.isNegative())
4359      FitsInInt = InitVal.getActiveBits() < IntWidth;
4360    else
4361      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4362
4363    // If it fits into an integer type, force it.  Otherwise force it to match
4364    // the enum decl type.
4365    QualType NewTy;
4366    unsigned NewWidth;
4367    bool NewSign;
4368    if (FitsInInt) {
4369      NewTy = Context.IntTy;
4370      NewWidth = IntWidth;
4371      NewSign = true;
4372    } else if (ECD->getType() == BestType) {
4373      // Already the right type!
4374      if (getLangOptions().CPlusPlus)
4375        // C++ [dcl.enum]p4: Following the closing brace of an
4376        // enum-specifier, each enumerator has the type of its
4377        // enumeration.
4378        ECD->setType(EnumType);
4379      continue;
4380    } else {
4381      NewTy = BestType;
4382      NewWidth = BestWidth;
4383      NewSign = BestType->isSignedIntegerType();
4384    }
4385
4386    // Adjust the APSInt value.
4387    InitVal.extOrTrunc(NewWidth);
4388    InitVal.setIsSigned(NewSign);
4389    ECD->setInitVal(InitVal);
4390
4391    // Adjust the Expr initializer and type.
4392    if (ECD->getInitExpr())
4393      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4394                                                      /*isLvalue=*/false));
4395    if (getLangOptions().CPlusPlus)
4396      // C++ [dcl.enum]p4: Following the closing brace of an
4397      // enum-specifier, each enumerator has the type of its
4398      // enumeration.
4399      ECD->setType(EnumType);
4400    else
4401      ECD->setType(NewTy);
4402  }
4403
4404  Enum->completeDefinition(Context, BestType);
4405}
4406
4407Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4408                                            ExprArg expr) {
4409  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4410
4411  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4412                                                   Loc, AsmString);
4413  CurContext->addDecl(Context, New);
4414  return DeclPtrTy::make(New);
4415}
4416