SemaDecl.cpp revision f8c4921c73d73123e2b79221ad4f1775ce984cfd
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/PathSensitive/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/Triple.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName,
67                                TypeTy *ObjectTypePtr) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isSet()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return 0;
90
91        // We know from the grammar that this name refers to a type, so build a
92        // TypenameType node to describe the type.
93        // FIXME: Record somewhere that this TypenameType node has no "typename"
94        // keyword associated with it.
95        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
96                                 II, SS->getRange()).getAsOpaquePtr();
97      }
98
99      return 0;
100    }
101
102    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    // C++ [temp.local]p2:
191    //   Within the scope of a class template specialization or
192    //   partial specialization, when the injected-class-name is
193    //   not followed by a <, it is equivalent to the
194    //   injected-class-name followed by the template-argument s
195    //   of the class template specialization or partial
196    //   specialization enclosed in <>.
197    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
198      if (RD->isInjectedClassName())
199        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
200          T = Template->getInjectedClassNameType(Context);
201
202    if (T.isNull())
203      T = Context.getTypeDeclType(TD);
204
205    if (SS)
206      T = getQualifiedNameType(*SS, T);
207
208  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
209    T = Context.getObjCInterfaceType(IDecl);
210  } else if (UnresolvedUsingTypenameDecl *UUDecl =
211               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
212    // FIXME: preserve source structure information.
213    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
214  } else {
215    // If it's not plausibly a type, suppress diagnostics.
216    Result.suppressDiagnostics();
217    return 0;
218  }
219
220  return T.getAsOpaquePtr();
221}
222
223/// isTagName() - This method is called *for error recovery purposes only*
224/// to determine if the specified name is a valid tag name ("struct foo").  If
225/// so, this returns the TST for the tag corresponding to it (TST_enum,
226/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
227/// where the user forgot to specify the tag.
228DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
229  // Do a tag name lookup in this scope.
230  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
231  LookupName(R, S, false);
232  R.suppressDiagnostics();
233  if (R.getResultKind() == LookupResult::Found)
234    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
235      switch (TD->getTagKind()) {
236      case TagDecl::TK_struct: return DeclSpec::TST_struct;
237      case TagDecl::TK_union:  return DeclSpec::TST_union;
238      case TagDecl::TK_class:  return DeclSpec::TST_class;
239      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
240      }
241    }
242
243  return DeclSpec::TST_unspecified;
244}
245
246bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
247                                   SourceLocation IILoc,
248                                   Scope *S,
249                                   const CXXScopeSpec *SS,
250                                   TypeTy *&SuggestedType) {
251  // We don't have anything to suggest (yet).
252  SuggestedType = 0;
253
254  // There may have been a typo in the name of the type. Look up typo
255  // results, in case we have something that we can suggest.
256  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
257                      NotForRedeclaration);
258
259  // FIXME: It would be nice if we could correct for typos in built-in
260  // names, such as "itn" for "int".
261
262  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
263    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
264    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
265        !Result->isInvalidDecl()) {
266      // We found a similarly-named type or interface; suggest that.
267      if (!SS || !SS->isSet())
268        Diag(IILoc, diag::err_unknown_typename_suggest)
269          << &II << Lookup.getLookupName()
270          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
271                                                     Result->getNameAsString());
272      else if (DeclContext *DC = computeDeclContext(*SS, false))
273        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
274          << &II << DC << Lookup.getLookupName() << SS->getRange()
275          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
276                                                     Result->getNameAsString());
277      else
278        llvm_unreachable("could not have corrected a typo here");
279
280      Diag(Result->getLocation(), diag::note_previous_decl)
281        << Result->getDeclName();
282
283      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
284      return true;
285    }
286  }
287
288  // FIXME: Should we move the logic that tries to recover from a missing tag
289  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
290
291  if (!SS || (!SS->isSet() && !SS->isInvalid()))
292    Diag(IILoc, diag::err_unknown_typename) << &II;
293  else if (DeclContext *DC = computeDeclContext(*SS, false))
294    Diag(IILoc, diag::err_typename_nested_not_found)
295      << &II << DC << SS->getRange();
296  else if (isDependentScopeSpecifier(*SS)) {
297    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
298      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
299      << SourceRange(SS->getRange().getBegin(), IILoc)
300      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
301                                               "typename ");
302    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
303  } else {
304    assert(SS && SS->isInvalid() &&
305           "Invalid scope specifier has already been diagnosed");
306  }
307
308  return true;
309}
310
311// Determines the context to return to after temporarily entering a
312// context.  This depends in an unnecessarily complicated way on the
313// exact ordering of callbacks from the parser.
314DeclContext *Sema::getContainingDC(DeclContext *DC) {
315
316  // Functions defined inline within classes aren't parsed until we've
317  // finished parsing the top-level class, so the top-level class is
318  // the context we'll need to return to.
319  if (isa<FunctionDecl>(DC)) {
320    DC = DC->getLexicalParent();
321
322    // A function not defined within a class will always return to its
323    // lexical context.
324    if (!isa<CXXRecordDecl>(DC))
325      return DC;
326
327    // A C++ inline method/friend is parsed *after* the topmost class
328    // it was declared in is fully parsed ("complete");  the topmost
329    // class is the context we need to return to.
330    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
331      DC = RD;
332
333    // Return the declaration context of the topmost class the inline method is
334    // declared in.
335    return DC;
336  }
337
338  if (isa<ObjCMethodDecl>(DC))
339    return Context.getTranslationUnitDecl();
340
341  return DC->getLexicalParent();
342}
343
344void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
345  assert(getContainingDC(DC) == CurContext &&
346      "The next DeclContext should be lexically contained in the current one.");
347  CurContext = DC;
348  S->setEntity(DC);
349}
350
351void Sema::PopDeclContext() {
352  assert(CurContext && "DeclContext imbalance!");
353
354  CurContext = getContainingDC(CurContext);
355}
356
357/// EnterDeclaratorContext - Used when we must lookup names in the context
358/// of a declarator's nested name specifier.
359///
360void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
361  // C++0x [basic.lookup.unqual]p13:
362  //   A name used in the definition of a static data member of class
363  //   X (after the qualified-id of the static member) is looked up as
364  //   if the name was used in a member function of X.
365  // C++0x [basic.lookup.unqual]p14:
366  //   If a variable member of a namespace is defined outside of the
367  //   scope of its namespace then any name used in the definition of
368  //   the variable member (after the declarator-id) is looked up as
369  //   if the definition of the variable member occurred in its
370  //   namespace.
371  // Both of these imply that we should push a scope whose context
372  // is the semantic context of the declaration.  We can't use
373  // PushDeclContext here because that context is not necessarily
374  // lexically contained in the current context.  Fortunately,
375  // the containing scope should have the appropriate information.
376
377  assert(!S->getEntity() && "scope already has entity");
378
379#ifndef NDEBUG
380  Scope *Ancestor = S->getParent();
381  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
382  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
383#endif
384
385  CurContext = DC;
386  S->setEntity(DC);
387}
388
389void Sema::ExitDeclaratorContext(Scope *S) {
390  assert(S->getEntity() == CurContext && "Context imbalance!");
391
392  // Switch back to the lexical context.  The safety of this is
393  // enforced by an assert in EnterDeclaratorContext.
394  Scope *Ancestor = S->getParent();
395  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
396  CurContext = (DeclContext*) Ancestor->getEntity();
397
398  // We don't need to do anything with the scope, which is going to
399  // disappear.
400}
401
402/// \brief Determine whether we allow overloading of the function
403/// PrevDecl with another declaration.
404///
405/// This routine determines whether overloading is possible, not
406/// whether some new function is actually an overload. It will return
407/// true in C++ (where we can always provide overloads) or, as an
408/// extension, in C when the previous function is already an
409/// overloaded function declaration or has the "overloadable"
410/// attribute.
411static bool AllowOverloadingOfFunction(LookupResult &Previous,
412                                       ASTContext &Context) {
413  if (Context.getLangOptions().CPlusPlus)
414    return true;
415
416  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
417    return true;
418
419  return (Previous.getResultKind() == LookupResult::Found
420          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
421}
422
423/// Add this decl to the scope shadowed decl chains.
424void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
425  // Move up the scope chain until we find the nearest enclosing
426  // non-transparent context. The declaration will be introduced into this
427  // scope.
428  while (S->getEntity() &&
429         ((DeclContext *)S->getEntity())->isTransparentContext())
430    S = S->getParent();
431
432  // Add scoped declarations into their context, so that they can be
433  // found later. Declarations without a context won't be inserted
434  // into any context.
435  if (AddToContext)
436    CurContext->addDecl(D);
437
438  // Out-of-line function and variable definitions should not be pushed into
439  // scope.
440  if ((isa<FunctionTemplateDecl>(D) &&
441       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
442      (isa<FunctionDecl>(D) &&
443       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
444        cast<FunctionDecl>(D)->isOutOfLine())) ||
445      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
446    return;
447
448  // If this replaces anything in the current scope,
449  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
450                               IEnd = IdResolver.end();
451  for (; I != IEnd; ++I) {
452    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
453      S->RemoveDecl(DeclPtrTy::make(*I));
454      IdResolver.RemoveDecl(*I);
455
456      // Should only need to replace one decl.
457      break;
458    }
459  }
460
461  S->AddDecl(DeclPtrTy::make(D));
462  IdResolver.AddDecl(D);
463}
464
465bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
466  return IdResolver.isDeclInScope(D, Ctx, Context, S);
467}
468
469static bool isOutOfScopePreviousDeclaration(NamedDecl *,
470                                            DeclContext*,
471                                            ASTContext&);
472
473/// Filters out lookup results that don't fall within the given scope
474/// as determined by isDeclInScope.
475static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
476                                 DeclContext *Ctx, Scope *S,
477                                 bool ConsiderLinkage) {
478  LookupResult::Filter F = R.makeFilter();
479  while (F.hasNext()) {
480    NamedDecl *D = F.next();
481
482    if (SemaRef.isDeclInScope(D, Ctx, S))
483      continue;
484
485    if (ConsiderLinkage &&
486        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
487      continue;
488
489    F.erase();
490  }
491
492  F.done();
493}
494
495static bool isUsingDecl(NamedDecl *D) {
496  return isa<UsingShadowDecl>(D) ||
497         isa<UnresolvedUsingTypenameDecl>(D) ||
498         isa<UnresolvedUsingValueDecl>(D);
499}
500
501/// Removes using shadow declarations from the lookup results.
502static void RemoveUsingDecls(LookupResult &R) {
503  LookupResult::Filter F = R.makeFilter();
504  while (F.hasNext())
505    if (isUsingDecl(F.next()))
506      F.erase();
507
508  F.done();
509}
510
511static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
512  if (D->isUsed() || D->hasAttr<UnusedAttr>())
513    return false;
514
515  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
516    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
517      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
518        if (!RD->hasTrivialConstructor())
519          return false;
520        if (!RD->hasTrivialDestructor())
521          return false;
522      }
523    }
524  }
525
526  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
527          !isa<ImplicitParamDecl>(D) &&
528          D->getDeclContext()->isFunctionOrMethod());
529}
530
531void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
532  if (S->decl_empty()) return;
533  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
534         "Scope shouldn't contain decls!");
535
536  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
537       I != E; ++I) {
538    Decl *TmpD = (*I).getAs<Decl>();
539    assert(TmpD && "This decl didn't get pushed??");
540
541    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
542    NamedDecl *D = cast<NamedDecl>(TmpD);
543
544    if (!D->getDeclName()) continue;
545
546    // Diagnose unused variables in this scope.
547    if (ShouldDiagnoseUnusedDecl(D))
548      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
549
550    // Remove this name from our lexical scope.
551    IdResolver.RemoveDecl(D);
552  }
553}
554
555/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
556/// return 0 if one not found.
557///
558/// \param Id the name of the Objective-C class we're looking for. If
559/// typo-correction fixes this name, the Id will be updated
560/// to the fixed name.
561///
562/// \param RecoverLoc if provided, this routine will attempt to
563/// recover from a typo in the name of an existing Objective-C class
564/// and, if successful, will return the lookup that results from
565/// typo-correction.
566ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
567                                              SourceLocation RecoverLoc) {
568  // The third "scope" argument is 0 since we aren't enabling lazy built-in
569  // creation from this context.
570  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
571
572  if (!IDecl && !RecoverLoc.isInvalid()) {
573    // Perform typo correction at the given location, but only if we
574    // find an Objective-C class name.
575    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
576    if (CorrectTypo(R, TUScope, 0) &&
577        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
578      Diag(RecoverLoc, diag::err_undef_interface_suggest)
579        << Id << IDecl->getDeclName()
580        << CodeModificationHint::CreateReplacement(RecoverLoc,
581                                                   IDecl->getNameAsString());
582      Diag(IDecl->getLocation(), diag::note_previous_decl)
583        << IDecl->getDeclName();
584
585      Id = IDecl->getIdentifier();
586    }
587  }
588
589  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
590}
591
592/// getNonFieldDeclScope - Retrieves the innermost scope, starting
593/// from S, where a non-field would be declared. This routine copes
594/// with the difference between C and C++ scoping rules in structs and
595/// unions. For example, the following code is well-formed in C but
596/// ill-formed in C++:
597/// @code
598/// struct S6 {
599///   enum { BAR } e;
600/// };
601///
602/// void test_S6() {
603///   struct S6 a;
604///   a.e = BAR;
605/// }
606/// @endcode
607/// For the declaration of BAR, this routine will return a different
608/// scope. The scope S will be the scope of the unnamed enumeration
609/// within S6. In C++, this routine will return the scope associated
610/// with S6, because the enumeration's scope is a transparent
611/// context but structures can contain non-field names. In C, this
612/// routine will return the translation unit scope, since the
613/// enumeration's scope is a transparent context and structures cannot
614/// contain non-field names.
615Scope *Sema::getNonFieldDeclScope(Scope *S) {
616  while (((S->getFlags() & Scope::DeclScope) == 0) ||
617         (S->getEntity() &&
618          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
619         (S->isClassScope() && !getLangOptions().CPlusPlus))
620    S = S->getParent();
621  return S;
622}
623
624void Sema::InitBuiltinVaListType() {
625  if (!Context.getBuiltinVaListType().isNull())
626    return;
627
628  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
629  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
630  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
631  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
632}
633
634/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
635/// file scope.  lazily create a decl for it. ForRedeclaration is true
636/// if we're creating this built-in in anticipation of redeclaring the
637/// built-in.
638NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
639                                     Scope *S, bool ForRedeclaration,
640                                     SourceLocation Loc) {
641  Builtin::ID BID = (Builtin::ID)bid;
642
643  if (Context.BuiltinInfo.hasVAListUse(BID))
644    InitBuiltinVaListType();
645
646  ASTContext::GetBuiltinTypeError Error;
647  QualType R = Context.GetBuiltinType(BID, Error);
648  switch (Error) {
649  case ASTContext::GE_None:
650    // Okay
651    break;
652
653  case ASTContext::GE_Missing_stdio:
654    if (ForRedeclaration)
655      Diag(Loc, diag::err_implicit_decl_requires_stdio)
656        << Context.BuiltinInfo.GetName(BID);
657    return 0;
658
659  case ASTContext::GE_Missing_setjmp:
660    if (ForRedeclaration)
661      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
662        << Context.BuiltinInfo.GetName(BID);
663    return 0;
664  }
665
666  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
667    Diag(Loc, diag::ext_implicit_lib_function_decl)
668      << Context.BuiltinInfo.GetName(BID)
669      << R;
670    if (Context.BuiltinInfo.getHeaderName(BID) &&
671        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
672          != Diagnostic::Ignored)
673      Diag(Loc, diag::note_please_include_header)
674        << Context.BuiltinInfo.getHeaderName(BID)
675        << Context.BuiltinInfo.GetName(BID);
676  }
677
678  FunctionDecl *New = FunctionDecl::Create(Context,
679                                           Context.getTranslationUnitDecl(),
680                                           Loc, II, R, /*TInfo=*/0,
681                                           FunctionDecl::Extern, false,
682                                           /*hasPrototype=*/true);
683  New->setImplicit();
684
685  // Create Decl objects for each parameter, adding them to the
686  // FunctionDecl.
687  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
688    llvm::SmallVector<ParmVarDecl*, 16> Params;
689    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
690      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
691                                           FT->getArgType(i), /*TInfo=*/0,
692                                           VarDecl::None, 0));
693    New->setParams(Context, Params.data(), Params.size());
694  }
695
696  AddKnownFunctionAttributes(New);
697
698  // TUScope is the translation-unit scope to insert this function into.
699  // FIXME: This is hideous. We need to teach PushOnScopeChains to
700  // relate Scopes to DeclContexts, and probably eliminate CurContext
701  // entirely, but we're not there yet.
702  DeclContext *SavedContext = CurContext;
703  CurContext = Context.getTranslationUnitDecl();
704  PushOnScopeChains(New, TUScope);
705  CurContext = SavedContext;
706  return New;
707}
708
709/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
710/// same name and scope as a previous declaration 'Old'.  Figure out
711/// how to resolve this situation, merging decls or emitting
712/// diagnostics as appropriate. If there was an error, set New to be invalid.
713///
714void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
715  // If the new decl is known invalid already, don't bother doing any
716  // merging checks.
717  if (New->isInvalidDecl()) return;
718
719  // Allow multiple definitions for ObjC built-in typedefs.
720  // FIXME: Verify the underlying types are equivalent!
721  if (getLangOptions().ObjC1) {
722    const IdentifierInfo *TypeID = New->getIdentifier();
723    switch (TypeID->getLength()) {
724    default: break;
725    case 2:
726      if (!TypeID->isStr("id"))
727        break;
728      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
729      // Install the built-in type for 'id', ignoring the current definition.
730      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
731      return;
732    case 5:
733      if (!TypeID->isStr("Class"))
734        break;
735      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
736      // Install the built-in type for 'Class', ignoring the current definition.
737      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
738      return;
739    case 3:
740      if (!TypeID->isStr("SEL"))
741        break;
742      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
743      // Install the built-in type for 'SEL', ignoring the current definition.
744      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
745      return;
746    case 8:
747      if (!TypeID->isStr("Protocol"))
748        break;
749      Context.setObjCProtoType(New->getUnderlyingType());
750      return;
751    }
752    // Fall through - the typedef name was not a builtin type.
753  }
754
755  // Verify the old decl was also a type.
756  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
757  if (!Old) {
758    Diag(New->getLocation(), diag::err_redefinition_different_kind)
759      << New->getDeclName();
760
761    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
762    if (OldD->getLocation().isValid())
763      Diag(OldD->getLocation(), diag::note_previous_definition);
764
765    return New->setInvalidDecl();
766  }
767
768  // If the old declaration is invalid, just give up here.
769  if (Old->isInvalidDecl())
770    return New->setInvalidDecl();
771
772  // Determine the "old" type we'll use for checking and diagnostics.
773  QualType OldType;
774  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
775    OldType = OldTypedef->getUnderlyingType();
776  else
777    OldType = Context.getTypeDeclType(Old);
778
779  // If the typedef types are not identical, reject them in all languages and
780  // with any extensions enabled.
781
782  if (OldType != New->getUnderlyingType() &&
783      Context.getCanonicalType(OldType) !=
784      Context.getCanonicalType(New->getUnderlyingType())) {
785    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
786      << New->getUnderlyingType() << OldType;
787    if (Old->getLocation().isValid())
788      Diag(Old->getLocation(), diag::note_previous_definition);
789    return New->setInvalidDecl();
790  }
791
792  // The types match.  Link up the redeclaration chain if the old
793  // declaration was a typedef.
794  // FIXME: this is a potential source of wierdness if the type
795  // spellings don't match exactly.
796  if (isa<TypedefDecl>(Old))
797    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
798
799  if (getLangOptions().Microsoft)
800    return;
801
802  if (getLangOptions().CPlusPlus) {
803    // C++ [dcl.typedef]p2:
804    //   In a given non-class scope, a typedef specifier can be used to
805    //   redefine the name of any type declared in that scope to refer
806    //   to the type to which it already refers.
807    if (!isa<CXXRecordDecl>(CurContext))
808      return;
809
810    // C++0x [dcl.typedef]p4:
811    //   In a given class scope, a typedef specifier can be used to redefine
812    //   any class-name declared in that scope that is not also a typedef-name
813    //   to refer to the type to which it already refers.
814    //
815    // This wording came in via DR424, which was a correction to the
816    // wording in DR56, which accidentally banned code like:
817    //
818    //   struct S {
819    //     typedef struct A { } A;
820    //   };
821    //
822    // in the C++03 standard. We implement the C++0x semantics, which
823    // allow the above but disallow
824    //
825    //   struct S {
826    //     typedef int I;
827    //     typedef int I;
828    //   };
829    //
830    // since that was the intent of DR56.
831    if (!isa<TypedefDecl >(Old))
832      return;
833
834    Diag(New->getLocation(), diag::err_redefinition)
835      << New->getDeclName();
836    Diag(Old->getLocation(), diag::note_previous_definition);
837    return New->setInvalidDecl();
838  }
839
840  // If we have a redefinition of a typedef in C, emit a warning.  This warning
841  // is normally mapped to an error, but can be controlled with
842  // -Wtypedef-redefinition.  If either the original or the redefinition is
843  // in a system header, don't emit this for compatibility with GCC.
844  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
845      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
846       Context.getSourceManager().isInSystemHeader(New->getLocation())))
847    return;
848
849  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
850    << New->getDeclName();
851  Diag(Old->getLocation(), diag::note_previous_definition);
852  return;
853}
854
855/// DeclhasAttr - returns true if decl Declaration already has the target
856/// attribute.
857static bool
858DeclHasAttr(const Decl *decl, const Attr *target) {
859  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
860    if (attr->getKind() == target->getKind())
861      return true;
862
863  return false;
864}
865
866/// MergeAttributes - append attributes from the Old decl to the New one.
867static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
868  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
869    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
870      Attr *NewAttr = attr->clone(C);
871      NewAttr->setInherited(true);
872      New->addAttr(NewAttr);
873    }
874  }
875}
876
877/// Used in MergeFunctionDecl to keep track of function parameters in
878/// C.
879struct GNUCompatibleParamWarning {
880  ParmVarDecl *OldParm;
881  ParmVarDecl *NewParm;
882  QualType PromotedType;
883};
884
885
886/// getSpecialMember - get the special member enum for a method.
887static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
888                                               const CXXMethodDecl *MD) {
889  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
890    if (Ctor->isDefaultConstructor())
891      return Sema::CXXDefaultConstructor;
892    if (Ctor->isCopyConstructor())
893      return Sema::CXXCopyConstructor;
894  }
895
896  if (isa<CXXDestructorDecl>(MD))
897    return Sema::CXXDestructor;
898
899  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
900  return Sema::CXXCopyAssignment;
901}
902
903/// MergeFunctionDecl - We just parsed a function 'New' from
904/// declarator D which has the same name and scope as a previous
905/// declaration 'Old'.  Figure out how to resolve this situation,
906/// merging decls or emitting diagnostics as appropriate.
907///
908/// In C++, New and Old must be declarations that are not
909/// overloaded. Use IsOverload to determine whether New and Old are
910/// overloaded, and to select the Old declaration that New should be
911/// merged with.
912///
913/// Returns true if there was an error, false otherwise.
914bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
915  // Verify the old decl was also a function.
916  FunctionDecl *Old = 0;
917  if (FunctionTemplateDecl *OldFunctionTemplate
918        = dyn_cast<FunctionTemplateDecl>(OldD))
919    Old = OldFunctionTemplate->getTemplatedDecl();
920  else
921    Old = dyn_cast<FunctionDecl>(OldD);
922  if (!Old) {
923    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
924      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
925      Diag(Shadow->getTargetDecl()->getLocation(),
926           diag::note_using_decl_target);
927      Diag(Shadow->getUsingDecl()->getLocation(),
928           diag::note_using_decl) << 0;
929      return true;
930    }
931
932    Diag(New->getLocation(), diag::err_redefinition_different_kind)
933      << New->getDeclName();
934    Diag(OldD->getLocation(), diag::note_previous_definition);
935    return true;
936  }
937
938  // Determine whether the previous declaration was a definition,
939  // implicit declaration, or a declaration.
940  diag::kind PrevDiag;
941  if (Old->isThisDeclarationADefinition())
942    PrevDiag = diag::note_previous_definition;
943  else if (Old->isImplicit())
944    PrevDiag = diag::note_previous_implicit_declaration;
945  else
946    PrevDiag = diag::note_previous_declaration;
947
948  QualType OldQType = Context.getCanonicalType(Old->getType());
949  QualType NewQType = Context.getCanonicalType(New->getType());
950
951  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
952      New->getStorageClass() == FunctionDecl::Static &&
953      Old->getStorageClass() != FunctionDecl::Static) {
954    Diag(New->getLocation(), diag::err_static_non_static)
955      << New;
956    Diag(Old->getLocation(), PrevDiag);
957    return true;
958  }
959
960  if (getLangOptions().CPlusPlus) {
961    // (C++98 13.1p2):
962    //   Certain function declarations cannot be overloaded:
963    //     -- Function declarations that differ only in the return type
964    //        cannot be overloaded.
965    QualType OldReturnType
966      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
967    QualType NewReturnType
968      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
969    if (OldReturnType != NewReturnType) {
970      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
971      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
972      return true;
973    }
974
975    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
976    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
977    if (OldMethod && NewMethod) {
978      if (!NewMethod->getFriendObjectKind() &&
979          NewMethod->getLexicalDeclContext()->isRecord()) {
980        //    -- Member function declarations with the same name and the
981        //       same parameter types cannot be overloaded if any of them
982        //       is a static member function declaration.
983        if (OldMethod->isStatic() || NewMethod->isStatic()) {
984          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
985          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
986          return true;
987        }
988
989        // C++ [class.mem]p1:
990        //   [...] A member shall not be declared twice in the
991        //   member-specification, except that a nested class or member
992        //   class template can be declared and then later defined.
993        unsigned NewDiag;
994        if (isa<CXXConstructorDecl>(OldMethod))
995          NewDiag = diag::err_constructor_redeclared;
996        else if (isa<CXXDestructorDecl>(NewMethod))
997          NewDiag = diag::err_destructor_redeclared;
998        else if (isa<CXXConversionDecl>(NewMethod))
999          NewDiag = diag::err_conv_function_redeclared;
1000        else
1001          NewDiag = diag::err_member_redeclared;
1002
1003        Diag(New->getLocation(), NewDiag);
1004        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1005      } else {
1006        if (OldMethod->isImplicit()) {
1007          Diag(NewMethod->getLocation(),
1008               diag::err_definition_of_implicitly_declared_member)
1009          << New << getSpecialMember(Context, OldMethod);
1010
1011          Diag(OldMethod->getLocation(),
1012               diag::note_previous_implicit_declaration);
1013          return true;
1014        }
1015      }
1016    }
1017
1018    // (C++98 8.3.5p3):
1019    //   All declarations for a function shall agree exactly in both the
1020    //   return type and the parameter-type-list.
1021    // attributes should be ignored when comparing.
1022    if (Context.getNoReturnType(OldQType, false) ==
1023        Context.getNoReturnType(NewQType, false))
1024      return MergeCompatibleFunctionDecls(New, Old);
1025
1026    // Fall through for conflicting redeclarations and redefinitions.
1027  }
1028
1029  // C: Function types need to be compatible, not identical. This handles
1030  // duplicate function decls like "void f(int); void f(enum X);" properly.
1031  if (!getLangOptions().CPlusPlus &&
1032      Context.typesAreCompatible(OldQType, NewQType)) {
1033    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1034    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1035    const FunctionProtoType *OldProto = 0;
1036    if (isa<FunctionNoProtoType>(NewFuncType) &&
1037        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1038      // The old declaration provided a function prototype, but the
1039      // new declaration does not. Merge in the prototype.
1040      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1041      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1042                                                 OldProto->arg_type_end());
1043      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1044                                         ParamTypes.data(), ParamTypes.size(),
1045                                         OldProto->isVariadic(),
1046                                         OldProto->getTypeQuals());
1047      New->setType(NewQType);
1048      New->setHasInheritedPrototype();
1049
1050      // Synthesize a parameter for each argument type.
1051      llvm::SmallVector<ParmVarDecl*, 16> Params;
1052      for (FunctionProtoType::arg_type_iterator
1053             ParamType = OldProto->arg_type_begin(),
1054             ParamEnd = OldProto->arg_type_end();
1055           ParamType != ParamEnd; ++ParamType) {
1056        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1057                                                 SourceLocation(), 0,
1058                                                 *ParamType, /*TInfo=*/0,
1059                                                 VarDecl::None, 0);
1060        Param->setImplicit();
1061        Params.push_back(Param);
1062      }
1063
1064      New->setParams(Context, Params.data(), Params.size());
1065    }
1066
1067    return MergeCompatibleFunctionDecls(New, Old);
1068  }
1069
1070  // GNU C permits a K&R definition to follow a prototype declaration
1071  // if the declared types of the parameters in the K&R definition
1072  // match the types in the prototype declaration, even when the
1073  // promoted types of the parameters from the K&R definition differ
1074  // from the types in the prototype. GCC then keeps the types from
1075  // the prototype.
1076  //
1077  // If a variadic prototype is followed by a non-variadic K&R definition,
1078  // the K&R definition becomes variadic.  This is sort of an edge case, but
1079  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1080  // C99 6.9.1p8.
1081  if (!getLangOptions().CPlusPlus &&
1082      Old->hasPrototype() && !New->hasPrototype() &&
1083      New->getType()->getAs<FunctionProtoType>() &&
1084      Old->getNumParams() == New->getNumParams()) {
1085    llvm::SmallVector<QualType, 16> ArgTypes;
1086    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1087    const FunctionProtoType *OldProto
1088      = Old->getType()->getAs<FunctionProtoType>();
1089    const FunctionProtoType *NewProto
1090      = New->getType()->getAs<FunctionProtoType>();
1091
1092    // Determine whether this is the GNU C extension.
1093    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1094                                               NewProto->getResultType());
1095    bool LooseCompatible = !MergedReturn.isNull();
1096    for (unsigned Idx = 0, End = Old->getNumParams();
1097         LooseCompatible && Idx != End; ++Idx) {
1098      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1099      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1100      if (Context.typesAreCompatible(OldParm->getType(),
1101                                     NewProto->getArgType(Idx))) {
1102        ArgTypes.push_back(NewParm->getType());
1103      } else if (Context.typesAreCompatible(OldParm->getType(),
1104                                            NewParm->getType())) {
1105        GNUCompatibleParamWarning Warn
1106          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1107        Warnings.push_back(Warn);
1108        ArgTypes.push_back(NewParm->getType());
1109      } else
1110        LooseCompatible = false;
1111    }
1112
1113    if (LooseCompatible) {
1114      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1115        Diag(Warnings[Warn].NewParm->getLocation(),
1116             diag::ext_param_promoted_not_compatible_with_prototype)
1117          << Warnings[Warn].PromotedType
1118          << Warnings[Warn].OldParm->getType();
1119        Diag(Warnings[Warn].OldParm->getLocation(),
1120             diag::note_previous_declaration);
1121      }
1122
1123      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1124                                           ArgTypes.size(),
1125                                           OldProto->isVariadic(), 0));
1126      return MergeCompatibleFunctionDecls(New, Old);
1127    }
1128
1129    // Fall through to diagnose conflicting types.
1130  }
1131
1132  // A function that has already been declared has been redeclared or defined
1133  // with a different type- show appropriate diagnostic
1134  if (unsigned BuiltinID = Old->getBuiltinID()) {
1135    // The user has declared a builtin function with an incompatible
1136    // signature.
1137    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1138      // The function the user is redeclaring is a library-defined
1139      // function like 'malloc' or 'printf'. Warn about the
1140      // redeclaration, then pretend that we don't know about this
1141      // library built-in.
1142      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1143      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1144        << Old << Old->getType();
1145      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1146      Old->setInvalidDecl();
1147      return false;
1148    }
1149
1150    PrevDiag = diag::note_previous_builtin_declaration;
1151  }
1152
1153  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1154  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1155  return true;
1156}
1157
1158/// \brief Completes the merge of two function declarations that are
1159/// known to be compatible.
1160///
1161/// This routine handles the merging of attributes and other
1162/// properties of function declarations form the old declaration to
1163/// the new declaration, once we know that New is in fact a
1164/// redeclaration of Old.
1165///
1166/// \returns false
1167bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1168  // Merge the attributes
1169  MergeAttributes(New, Old, Context);
1170
1171  // Merge the storage class.
1172  if (Old->getStorageClass() != FunctionDecl::Extern &&
1173      Old->getStorageClass() != FunctionDecl::None)
1174    New->setStorageClass(Old->getStorageClass());
1175
1176  // Merge "pure" flag.
1177  if (Old->isPure())
1178    New->setPure();
1179
1180  // Merge the "deleted" flag.
1181  if (Old->isDeleted())
1182    New->setDeleted();
1183
1184  if (getLangOptions().CPlusPlus)
1185    return MergeCXXFunctionDecl(New, Old);
1186
1187  return false;
1188}
1189
1190/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1191/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1192/// situation, merging decls or emitting diagnostics as appropriate.
1193///
1194/// Tentative definition rules (C99 6.9.2p2) are checked by
1195/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1196/// definitions here, since the initializer hasn't been attached.
1197///
1198void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1199  // If the new decl is already invalid, don't do any other checking.
1200  if (New->isInvalidDecl())
1201    return;
1202
1203  // Verify the old decl was also a variable.
1204  VarDecl *Old = 0;
1205  if (!Previous.isSingleResult() ||
1206      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1207    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1208      << New->getDeclName();
1209    Diag(Previous.getRepresentativeDecl()->getLocation(),
1210         diag::note_previous_definition);
1211    return New->setInvalidDecl();
1212  }
1213
1214  MergeAttributes(New, Old, Context);
1215
1216  // Merge the types
1217  QualType MergedT;
1218  if (getLangOptions().CPlusPlus) {
1219    if (Context.hasSameType(New->getType(), Old->getType()))
1220      MergedT = New->getType();
1221    // C++ [basic.link]p10:
1222    //   [...] the types specified by all declarations referring to a given
1223    //   object or function shall be identical, except that declarations for an
1224    //   array object can specify array types that differ by the presence or
1225    //   absence of a major array bound (8.3.4).
1226    else if (Old->getType()->isIncompleteArrayType() &&
1227             New->getType()->isArrayType()) {
1228      CanQual<ArrayType> OldArray
1229        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1230      CanQual<ArrayType> NewArray
1231        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1232      if (OldArray->getElementType() == NewArray->getElementType())
1233        MergedT = New->getType();
1234    } else if (Old->getType()->isArrayType() &&
1235             New->getType()->isIncompleteArrayType()) {
1236      CanQual<ArrayType> OldArray
1237        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1238      CanQual<ArrayType> NewArray
1239        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1240      if (OldArray->getElementType() == NewArray->getElementType())
1241        MergedT = Old->getType();
1242    }
1243  } else {
1244    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1245  }
1246  if (MergedT.isNull()) {
1247    Diag(New->getLocation(), diag::err_redefinition_different_type)
1248      << New->getDeclName();
1249    Diag(Old->getLocation(), diag::note_previous_definition);
1250    return New->setInvalidDecl();
1251  }
1252  New->setType(MergedT);
1253
1254  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1255  if (New->getStorageClass() == VarDecl::Static &&
1256      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1257    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1258    Diag(Old->getLocation(), diag::note_previous_definition);
1259    return New->setInvalidDecl();
1260  }
1261  // C99 6.2.2p4:
1262  //   For an identifier declared with the storage-class specifier
1263  //   extern in a scope in which a prior declaration of that
1264  //   identifier is visible,23) if the prior declaration specifies
1265  //   internal or external linkage, the linkage of the identifier at
1266  //   the later declaration is the same as the linkage specified at
1267  //   the prior declaration. If no prior declaration is visible, or
1268  //   if the prior declaration specifies no linkage, then the
1269  //   identifier has external linkage.
1270  if (New->hasExternalStorage() && Old->hasLinkage())
1271    /* Okay */;
1272  else if (New->getStorageClass() != VarDecl::Static &&
1273           Old->getStorageClass() == VarDecl::Static) {
1274    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1275    Diag(Old->getLocation(), diag::note_previous_definition);
1276    return New->setInvalidDecl();
1277  }
1278
1279  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1280
1281  // FIXME: The test for external storage here seems wrong? We still
1282  // need to check for mismatches.
1283  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1284      // Don't complain about out-of-line definitions of static members.
1285      !(Old->getLexicalDeclContext()->isRecord() &&
1286        !New->getLexicalDeclContext()->isRecord())) {
1287    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1288    Diag(Old->getLocation(), diag::note_previous_definition);
1289    return New->setInvalidDecl();
1290  }
1291
1292  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1293    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1294    Diag(Old->getLocation(), diag::note_previous_definition);
1295  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1296    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1297    Diag(Old->getLocation(), diag::note_previous_definition);
1298  }
1299
1300  // Keep a chain of previous declarations.
1301  New->setPreviousDeclaration(Old);
1302
1303  // Inherit access appropriately.
1304  New->setAccess(Old->getAccess());
1305}
1306
1307/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1308/// no declarator (e.g. "struct foo;") is parsed.
1309Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1310  // FIXME: Error on auto/register at file scope
1311  // FIXME: Error on inline/virtual/explicit
1312  // FIXME: Warn on useless __thread
1313  // FIXME: Warn on useless const/volatile
1314  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1315  // FIXME: Warn on useless attributes
1316  Decl *TagD = 0;
1317  TagDecl *Tag = 0;
1318  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1319      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1320      DS.getTypeSpecType() == DeclSpec::TST_union ||
1321      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1322    TagD = static_cast<Decl *>(DS.getTypeRep());
1323
1324    if (!TagD) // We probably had an error
1325      return DeclPtrTy();
1326
1327    // Note that the above type specs guarantee that the
1328    // type rep is a Decl, whereas in many of the others
1329    // it's a Type.
1330    Tag = dyn_cast<TagDecl>(TagD);
1331  }
1332
1333  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1334    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1335    // or incomplete types shall not be restrict-qualified."
1336    if (TypeQuals & DeclSpec::TQ_restrict)
1337      Diag(DS.getRestrictSpecLoc(),
1338           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1339           << DS.getSourceRange();
1340  }
1341
1342  if (DS.isFriendSpecified()) {
1343    // If we're dealing with a class template decl, assume that the
1344    // template routines are handling it.
1345    if (TagD && isa<ClassTemplateDecl>(TagD))
1346      return DeclPtrTy();
1347    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1348  }
1349
1350  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1351    // If there are attributes in the DeclSpec, apply them to the record.
1352    if (const AttributeList *AL = DS.getAttributes())
1353      ProcessDeclAttributeList(S, Record, AL);
1354
1355    if (!Record->getDeclName() && Record->isDefinition() &&
1356        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1357      if (getLangOptions().CPlusPlus ||
1358          Record->getDeclContext()->isRecord())
1359        return BuildAnonymousStructOrUnion(S, DS, Record);
1360
1361      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1362        << DS.getSourceRange();
1363    }
1364
1365    // Microsoft allows unnamed struct/union fields. Don't complain
1366    // about them.
1367    // FIXME: Should we support Microsoft's extensions in this area?
1368    if (Record->getDeclName() && getLangOptions().Microsoft)
1369      return DeclPtrTy::make(Tag);
1370  }
1371
1372  if (!DS.isMissingDeclaratorOk() &&
1373      DS.getTypeSpecType() != DeclSpec::TST_error) {
1374    // Warn about typedefs of enums without names, since this is an
1375    // extension in both Microsoft an GNU.
1376    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1377        Tag && isa<EnumDecl>(Tag)) {
1378      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1379        << DS.getSourceRange();
1380      return DeclPtrTy::make(Tag);
1381    }
1382
1383    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1384      << DS.getSourceRange();
1385    return DeclPtrTy();
1386  }
1387
1388  return DeclPtrTy::make(Tag);
1389}
1390
1391/// We are trying to inject an anonymous member into the given scope;
1392/// check if there's an existing declaration that can't be overloaded.
1393///
1394/// \return true if this is a forbidden redeclaration
1395static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1396                                         Scope *S,
1397                                         DeclarationName Name,
1398                                         SourceLocation NameLoc,
1399                                         unsigned diagnostic) {
1400  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1401                 Sema::ForRedeclaration);
1402  if (!SemaRef.LookupName(R, S)) return false;
1403
1404  if (R.getAsSingle<TagDecl>())
1405    return false;
1406
1407  // Pick a representative declaration.
1408  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1409
1410  SemaRef.Diag(NameLoc, diagnostic) << Name;
1411  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1412
1413  return true;
1414}
1415
1416/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1417/// anonymous struct or union AnonRecord into the owning context Owner
1418/// and scope S. This routine will be invoked just after we realize
1419/// that an unnamed union or struct is actually an anonymous union or
1420/// struct, e.g.,
1421///
1422/// @code
1423/// union {
1424///   int i;
1425///   float f;
1426/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1427///    // f into the surrounding scope.x
1428/// @endcode
1429///
1430/// This routine is recursive, injecting the names of nested anonymous
1431/// structs/unions into the owning context and scope as well.
1432bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1433                                               RecordDecl *AnonRecord) {
1434  unsigned diagKind
1435    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1436                            : diag::err_anonymous_struct_member_redecl;
1437
1438  bool Invalid = false;
1439  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1440                               FEnd = AnonRecord->field_end();
1441       F != FEnd; ++F) {
1442    if ((*F)->getDeclName()) {
1443      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1444                                       (*F)->getLocation(), diagKind)) {
1445        // C++ [class.union]p2:
1446        //   The names of the members of an anonymous union shall be
1447        //   distinct from the names of any other entity in the
1448        //   scope in which the anonymous union is declared.
1449        Invalid = true;
1450      } else {
1451        // C++ [class.union]p2:
1452        //   For the purpose of name lookup, after the anonymous union
1453        //   definition, the members of the anonymous union are
1454        //   considered to have been defined in the scope in which the
1455        //   anonymous union is declared.
1456        Owner->makeDeclVisibleInContext(*F);
1457        S->AddDecl(DeclPtrTy::make(*F));
1458        IdResolver.AddDecl(*F);
1459      }
1460    } else if (const RecordType *InnerRecordType
1461                 = (*F)->getType()->getAs<RecordType>()) {
1462      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1463      if (InnerRecord->isAnonymousStructOrUnion())
1464        Invalid = Invalid ||
1465          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1466    }
1467  }
1468
1469  return Invalid;
1470}
1471
1472/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1473/// anonymous structure or union. Anonymous unions are a C++ feature
1474/// (C++ [class.union]) and a GNU C extension; anonymous structures
1475/// are a GNU C and GNU C++ extension.
1476Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1477                                                  RecordDecl *Record) {
1478  DeclContext *Owner = Record->getDeclContext();
1479
1480  // Diagnose whether this anonymous struct/union is an extension.
1481  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1482    Diag(Record->getLocation(), diag::ext_anonymous_union);
1483  else if (!Record->isUnion())
1484    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1485
1486  // C and C++ require different kinds of checks for anonymous
1487  // structs/unions.
1488  bool Invalid = false;
1489  if (getLangOptions().CPlusPlus) {
1490    const char* PrevSpec = 0;
1491    unsigned DiagID;
1492    // C++ [class.union]p3:
1493    //   Anonymous unions declared in a named namespace or in the
1494    //   global namespace shall be declared static.
1495    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1496        (isa<TranslationUnitDecl>(Owner) ||
1497         (isa<NamespaceDecl>(Owner) &&
1498          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1499      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1500      Invalid = true;
1501
1502      // Recover by adding 'static'.
1503      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1504                             PrevSpec, DiagID);
1505    }
1506    // C++ [class.union]p3:
1507    //   A storage class is not allowed in a declaration of an
1508    //   anonymous union in a class scope.
1509    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1510             isa<RecordDecl>(Owner)) {
1511      Diag(DS.getStorageClassSpecLoc(),
1512           diag::err_anonymous_union_with_storage_spec);
1513      Invalid = true;
1514
1515      // Recover by removing the storage specifier.
1516      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1517                             PrevSpec, DiagID);
1518    }
1519
1520    // C++ [class.union]p2:
1521    //   The member-specification of an anonymous union shall only
1522    //   define non-static data members. [Note: nested types and
1523    //   functions cannot be declared within an anonymous union. ]
1524    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1525                                 MemEnd = Record->decls_end();
1526         Mem != MemEnd; ++Mem) {
1527      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1528        // C++ [class.union]p3:
1529        //   An anonymous union shall not have private or protected
1530        //   members (clause 11).
1531        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1532          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1533            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1534          Invalid = true;
1535        }
1536      } else if ((*Mem)->isImplicit()) {
1537        // Any implicit members are fine.
1538      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1539        // This is a type that showed up in an
1540        // elaborated-type-specifier inside the anonymous struct or
1541        // union, but which actually declares a type outside of the
1542        // anonymous struct or union. It's okay.
1543      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1544        if (!MemRecord->isAnonymousStructOrUnion() &&
1545            MemRecord->getDeclName()) {
1546          // This is a nested type declaration.
1547          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1548            << (int)Record->isUnion();
1549          Invalid = true;
1550        }
1551      } else {
1552        // We have something that isn't a non-static data
1553        // member. Complain about it.
1554        unsigned DK = diag::err_anonymous_record_bad_member;
1555        if (isa<TypeDecl>(*Mem))
1556          DK = diag::err_anonymous_record_with_type;
1557        else if (isa<FunctionDecl>(*Mem))
1558          DK = diag::err_anonymous_record_with_function;
1559        else if (isa<VarDecl>(*Mem))
1560          DK = diag::err_anonymous_record_with_static;
1561        Diag((*Mem)->getLocation(), DK)
1562            << (int)Record->isUnion();
1563          Invalid = true;
1564      }
1565    }
1566  }
1567
1568  if (!Record->isUnion() && !Owner->isRecord()) {
1569    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1570      << (int)getLangOptions().CPlusPlus;
1571    Invalid = true;
1572  }
1573
1574  // Mock up a declarator.
1575  Declarator Dc(DS, Declarator::TypeNameContext);
1576  TypeSourceInfo *TInfo = 0;
1577  GetTypeForDeclarator(Dc, S, &TInfo);
1578  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1579
1580  // Create a declaration for this anonymous struct/union.
1581  NamedDecl *Anon = 0;
1582  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1583    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1584                             /*IdentifierInfo=*/0,
1585                             Context.getTypeDeclType(Record),
1586                             TInfo,
1587                             /*BitWidth=*/0, /*Mutable=*/false);
1588    Anon->setAccess(AS_public);
1589    if (getLangOptions().CPlusPlus)
1590      FieldCollector->Add(cast<FieldDecl>(Anon));
1591  } else {
1592    VarDecl::StorageClass SC;
1593    switch (DS.getStorageClassSpec()) {
1594    default: assert(0 && "Unknown storage class!");
1595    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1596    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1597    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1598    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1599    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1600    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1601    case DeclSpec::SCS_mutable:
1602      // mutable can only appear on non-static class members, so it's always
1603      // an error here
1604      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1605      Invalid = true;
1606      SC = VarDecl::None;
1607      break;
1608    }
1609
1610    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1611                           /*IdentifierInfo=*/0,
1612                           Context.getTypeDeclType(Record),
1613                           TInfo,
1614                           SC);
1615  }
1616  Anon->setImplicit();
1617
1618  // Add the anonymous struct/union object to the current
1619  // context. We'll be referencing this object when we refer to one of
1620  // its members.
1621  Owner->addDecl(Anon);
1622
1623  // Inject the members of the anonymous struct/union into the owning
1624  // context and into the identifier resolver chain for name lookup
1625  // purposes.
1626  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1627    Invalid = true;
1628
1629  // Mark this as an anonymous struct/union type. Note that we do not
1630  // do this until after we have already checked and injected the
1631  // members of this anonymous struct/union type, because otherwise
1632  // the members could be injected twice: once by DeclContext when it
1633  // builds its lookup table, and once by
1634  // InjectAnonymousStructOrUnionMembers.
1635  Record->setAnonymousStructOrUnion(true);
1636
1637  if (Invalid)
1638    Anon->setInvalidDecl();
1639
1640  return DeclPtrTy::make(Anon);
1641}
1642
1643
1644/// GetNameForDeclarator - Determine the full declaration name for the
1645/// given Declarator.
1646DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1647  return GetNameFromUnqualifiedId(D.getName());
1648}
1649
1650/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1651DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1652  switch (Name.getKind()) {
1653    case UnqualifiedId::IK_Identifier:
1654      return DeclarationName(Name.Identifier);
1655
1656    case UnqualifiedId::IK_OperatorFunctionId:
1657      return Context.DeclarationNames.getCXXOperatorName(
1658                                              Name.OperatorFunctionId.Operator);
1659
1660    case UnqualifiedId::IK_LiteralOperatorId:
1661      return Context.DeclarationNames.getCXXLiteralOperatorName(
1662                                                               Name.Identifier);
1663
1664    case UnqualifiedId::IK_ConversionFunctionId: {
1665      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1666      if (Ty.isNull())
1667        return DeclarationName();
1668
1669      return Context.DeclarationNames.getCXXConversionFunctionName(
1670                                                  Context.getCanonicalType(Ty));
1671    }
1672
1673    case UnqualifiedId::IK_ConstructorName: {
1674      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1675      if (Ty.isNull())
1676        return DeclarationName();
1677
1678      return Context.DeclarationNames.getCXXConstructorName(
1679                                                  Context.getCanonicalType(Ty));
1680    }
1681
1682    case UnqualifiedId::IK_ConstructorTemplateId: {
1683      // In well-formed code, we can only have a constructor
1684      // template-id that refers to the current context, so go there
1685      // to find the actual type being constructed.
1686      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1687      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1688        return DeclarationName();
1689
1690      // Determine the type of the class being constructed.
1691      QualType CurClassType;
1692      if (ClassTemplateDecl *ClassTemplate
1693            = CurClass->getDescribedClassTemplate())
1694        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1695      else
1696        CurClassType = Context.getTypeDeclType(CurClass);
1697
1698      // FIXME: Check two things: that the template-id names the same type as
1699      // CurClassType, and that the template-id does not occur when the name
1700      // was qualified.
1701
1702      return Context.DeclarationNames.getCXXConstructorName(
1703                                       Context.getCanonicalType(CurClassType));
1704    }
1705
1706    case UnqualifiedId::IK_DestructorName: {
1707      QualType Ty = GetTypeFromParser(Name.DestructorName);
1708      if (Ty.isNull())
1709        return DeclarationName();
1710
1711      return Context.DeclarationNames.getCXXDestructorName(
1712                                                           Context.getCanonicalType(Ty));
1713    }
1714
1715    case UnqualifiedId::IK_TemplateId: {
1716      TemplateName TName
1717        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1718      return Context.getNameForTemplate(TName);
1719    }
1720  }
1721
1722  assert(false && "Unknown name kind");
1723  return DeclarationName();
1724}
1725
1726/// isNearlyMatchingFunction - Determine whether the C++ functions
1727/// Declaration and Definition are "nearly" matching. This heuristic
1728/// is used to improve diagnostics in the case where an out-of-line
1729/// function definition doesn't match any declaration within
1730/// the class or namespace.
1731static bool isNearlyMatchingFunction(ASTContext &Context,
1732                                     FunctionDecl *Declaration,
1733                                     FunctionDecl *Definition) {
1734  if (Declaration->param_size() != Definition->param_size())
1735    return false;
1736  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1737    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1738    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1739
1740    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1741                                        DefParamTy.getNonReferenceType()))
1742      return false;
1743  }
1744
1745  return true;
1746}
1747
1748Sema::DeclPtrTy
1749Sema::HandleDeclarator(Scope *S, Declarator &D,
1750                       MultiTemplateParamsArg TemplateParamLists,
1751                       bool IsFunctionDefinition) {
1752  DeclarationName Name = GetNameForDeclarator(D);
1753
1754  // All of these full declarators require an identifier.  If it doesn't have
1755  // one, the ParsedFreeStandingDeclSpec action should be used.
1756  if (!Name) {
1757    if (!D.isInvalidType())  // Reject this if we think it is valid.
1758      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1759           diag::err_declarator_need_ident)
1760        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1761    return DeclPtrTy();
1762  }
1763
1764  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1765  // we find one that is.
1766  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1767         (S->getFlags() & Scope::TemplateParamScope) != 0)
1768    S = S->getParent();
1769
1770  // If this is an out-of-line definition of a member of a class template
1771  // or class template partial specialization, we may need to rebuild the
1772  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1773  // for more information.
1774  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1775  // handle expressions properly.
1776  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1777  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1778      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1779      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1780       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1781       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1782       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1783    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1784      // FIXME: Preserve type source info.
1785      QualType T = GetTypeFromParser(DS.getTypeRep());
1786
1787      DeclContext *SavedContext = CurContext;
1788      CurContext = DC;
1789      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1790      CurContext = SavedContext;
1791
1792      if (T.isNull())
1793        return DeclPtrTy();
1794      DS.UpdateTypeRep(T.getAsOpaquePtr());
1795    }
1796  }
1797
1798  DeclContext *DC;
1799  NamedDecl *New;
1800
1801  TypeSourceInfo *TInfo = 0;
1802  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1803
1804  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1805                        ForRedeclaration);
1806
1807  // See if this is a redefinition of a variable in the same scope.
1808  if (D.getCXXScopeSpec().isInvalid()) {
1809    DC = CurContext;
1810    D.setInvalidType();
1811  } else if (!D.getCXXScopeSpec().isSet()) {
1812    bool IsLinkageLookup = false;
1813
1814    // If the declaration we're planning to build will be a function
1815    // or object with linkage, then look for another declaration with
1816    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1817    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1818      /* Do nothing*/;
1819    else if (R->isFunctionType()) {
1820      if (CurContext->isFunctionOrMethod() ||
1821          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1822        IsLinkageLookup = true;
1823    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1824      IsLinkageLookup = true;
1825    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1826             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1827      IsLinkageLookup = true;
1828
1829    if (IsLinkageLookup)
1830      Previous.clear(LookupRedeclarationWithLinkage);
1831
1832    DC = CurContext;
1833    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1834  } else { // Something like "int foo::x;"
1835    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1836
1837    if (!DC) {
1838      // If we could not compute the declaration context, it's because the
1839      // declaration context is dependent but does not refer to a class,
1840      // class template, or class template partial specialization. Complain
1841      // and return early, to avoid the coming semantic disaster.
1842      Diag(D.getIdentifierLoc(),
1843           diag::err_template_qualified_declarator_no_match)
1844        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1845        << D.getCXXScopeSpec().getRange();
1846      return DeclPtrTy();
1847    }
1848
1849    if (!DC->isDependentContext() &&
1850        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1851      return DeclPtrTy();
1852
1853    LookupQualifiedName(Previous, DC);
1854
1855    // Don't consider using declarations as previous declarations for
1856    // out-of-line members.
1857    RemoveUsingDecls(Previous);
1858
1859    // C++ 7.3.1.2p2:
1860    // Members (including explicit specializations of templates) of a named
1861    // namespace can also be defined outside that namespace by explicit
1862    // qualification of the name being defined, provided that the entity being
1863    // defined was already declared in the namespace and the definition appears
1864    // after the point of declaration in a namespace that encloses the
1865    // declarations namespace.
1866    //
1867    // Note that we only check the context at this point. We don't yet
1868    // have enough information to make sure that PrevDecl is actually
1869    // the declaration we want to match. For example, given:
1870    //
1871    //   class X {
1872    //     void f();
1873    //     void f(float);
1874    //   };
1875    //
1876    //   void X::f(int) { } // ill-formed
1877    //
1878    // In this case, PrevDecl will point to the overload set
1879    // containing the two f's declared in X, but neither of them
1880    // matches.
1881
1882    // First check whether we named the global scope.
1883    if (isa<TranslationUnitDecl>(DC)) {
1884      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1885        << Name << D.getCXXScopeSpec().getRange();
1886    } else {
1887      DeclContext *Cur = CurContext;
1888      while (isa<LinkageSpecDecl>(Cur))
1889        Cur = Cur->getParent();
1890      if (!Cur->Encloses(DC)) {
1891        // The qualifying scope doesn't enclose the original declaration.
1892        // Emit diagnostic based on current scope.
1893        SourceLocation L = D.getIdentifierLoc();
1894        SourceRange R = D.getCXXScopeSpec().getRange();
1895        if (isa<FunctionDecl>(Cur))
1896          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1897        else
1898          Diag(L, diag::err_invalid_declarator_scope)
1899            << Name << cast<NamedDecl>(DC) << R;
1900        D.setInvalidType();
1901      }
1902    }
1903  }
1904
1905  if (Previous.isSingleResult() &&
1906      Previous.getFoundDecl()->isTemplateParameter()) {
1907    // Maybe we will complain about the shadowed template parameter.
1908    if (!D.isInvalidType())
1909      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1910                                          Previous.getFoundDecl()))
1911        D.setInvalidType();
1912
1913    // Just pretend that we didn't see the previous declaration.
1914    Previous.clear();
1915  }
1916
1917  // In C++, the previous declaration we find might be a tag type
1918  // (class or enum). In this case, the new declaration will hide the
1919  // tag type. Note that this does does not apply if we're declaring a
1920  // typedef (C++ [dcl.typedef]p4).
1921  if (Previous.isSingleTagDecl() &&
1922      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1923    Previous.clear();
1924
1925  bool Redeclaration = false;
1926  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1927    if (TemplateParamLists.size()) {
1928      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1929      return DeclPtrTy();
1930    }
1931
1932    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
1933  } else if (R->isFunctionType()) {
1934    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
1935                                  move(TemplateParamLists),
1936                                  IsFunctionDefinition, Redeclaration);
1937  } else {
1938    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
1939                                  move(TemplateParamLists),
1940                                  Redeclaration);
1941  }
1942
1943  if (New == 0)
1944    return DeclPtrTy();
1945
1946  // If this has an identifier and is not an invalid redeclaration or
1947  // function template specialization, add it to the scope stack.
1948  if (Name && !(Redeclaration && New->isInvalidDecl()))
1949    PushOnScopeChains(New, S);
1950
1951  return DeclPtrTy::make(New);
1952}
1953
1954/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1955/// types into constant array types in certain situations which would otherwise
1956/// be errors (for GCC compatibility).
1957static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1958                                                    ASTContext &Context,
1959                                                    bool &SizeIsNegative) {
1960  // This method tries to turn a variable array into a constant
1961  // array even when the size isn't an ICE.  This is necessary
1962  // for compatibility with code that depends on gcc's buggy
1963  // constant expression folding, like struct {char x[(int)(char*)2];}
1964  SizeIsNegative = false;
1965
1966  QualifierCollector Qs;
1967  const Type *Ty = Qs.strip(T);
1968
1969  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1970    QualType Pointee = PTy->getPointeeType();
1971    QualType FixedType =
1972        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1973    if (FixedType.isNull()) return FixedType;
1974    FixedType = Context.getPointerType(FixedType);
1975    return Qs.apply(FixedType);
1976  }
1977
1978  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1979  if (!VLATy)
1980    return QualType();
1981  // FIXME: We should probably handle this case
1982  if (VLATy->getElementType()->isVariablyModifiedType())
1983    return QualType();
1984
1985  Expr::EvalResult EvalResult;
1986  if (!VLATy->getSizeExpr() ||
1987      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1988      !EvalResult.Val.isInt())
1989    return QualType();
1990
1991  llvm::APSInt &Res = EvalResult.Val.getInt();
1992  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1993    // TODO: preserve the size expression in declarator info
1994    return Context.getConstantArrayType(VLATy->getElementType(),
1995                                        Res, ArrayType::Normal, 0);
1996  }
1997
1998  SizeIsNegative = true;
1999  return QualType();
2000}
2001
2002/// \brief Register the given locally-scoped external C declaration so
2003/// that it can be found later for redeclarations
2004void
2005Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2006                                       const LookupResult &Previous,
2007                                       Scope *S) {
2008  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2009         "Decl is not a locally-scoped decl!");
2010  // Note that we have a locally-scoped external with this name.
2011  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2012
2013  if (!Previous.isSingleResult())
2014    return;
2015
2016  NamedDecl *PrevDecl = Previous.getFoundDecl();
2017
2018  // If there was a previous declaration of this variable, it may be
2019  // in our identifier chain. Update the identifier chain with the new
2020  // declaration.
2021  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2022    // The previous declaration was found on the identifer resolver
2023    // chain, so remove it from its scope.
2024    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2025      S = S->getParent();
2026
2027    if (S)
2028      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2029  }
2030}
2031
2032/// \brief Diagnose function specifiers on a declaration of an identifier that
2033/// does not identify a function.
2034void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2035  // FIXME: We should probably indicate the identifier in question to avoid
2036  // confusion for constructs like "inline int a(), b;"
2037  if (D.getDeclSpec().isInlineSpecified())
2038    Diag(D.getDeclSpec().getInlineSpecLoc(),
2039         diag::err_inline_non_function);
2040
2041  if (D.getDeclSpec().isVirtualSpecified())
2042    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2043         diag::err_virtual_non_function);
2044
2045  if (D.getDeclSpec().isExplicitSpecified())
2046    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2047         diag::err_explicit_non_function);
2048}
2049
2050NamedDecl*
2051Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2052                             QualType R,  TypeSourceInfo *TInfo,
2053                             LookupResult &Previous, bool &Redeclaration) {
2054  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2055  if (D.getCXXScopeSpec().isSet()) {
2056    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2057      << D.getCXXScopeSpec().getRange();
2058    D.setInvalidType();
2059    // Pretend we didn't see the scope specifier.
2060    DC = 0;
2061  }
2062
2063  if (getLangOptions().CPlusPlus) {
2064    // Check that there are no default arguments (C++ only).
2065    CheckExtraCXXDefaultArguments(D);
2066  }
2067
2068  DiagnoseFunctionSpecifiers(D);
2069
2070  if (D.getDeclSpec().isThreadSpecified())
2071    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2072
2073  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2074  if (!NewTD) return 0;
2075
2076  // Handle attributes prior to checking for duplicates in MergeVarDecl
2077  ProcessDeclAttributes(S, NewTD, D);
2078
2079  // Merge the decl with the existing one if appropriate. If the decl is
2080  // in an outer scope, it isn't the same thing.
2081  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2082  if (!Previous.empty()) {
2083    Redeclaration = true;
2084    MergeTypeDefDecl(NewTD, Previous);
2085  }
2086
2087  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2088  // then it shall have block scope.
2089  QualType T = NewTD->getUnderlyingType();
2090  if (T->isVariablyModifiedType()) {
2091    CurFunctionNeedsScopeChecking = true;
2092
2093    if (S->getFnParent() == 0) {
2094      bool SizeIsNegative;
2095      QualType FixedTy =
2096          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2097      if (!FixedTy.isNull()) {
2098        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2099        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2100      } else {
2101        if (SizeIsNegative)
2102          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2103        else if (T->isVariableArrayType())
2104          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2105        else
2106          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2107        NewTD->setInvalidDecl();
2108      }
2109    }
2110  }
2111
2112  // If this is the C FILE type, notify the AST context.
2113  if (IdentifierInfo *II = NewTD->getIdentifier())
2114    if (!NewTD->isInvalidDecl() &&
2115        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2116      if (II->isStr("FILE"))
2117        Context.setFILEDecl(NewTD);
2118      else if (II->isStr("jmp_buf"))
2119        Context.setjmp_bufDecl(NewTD);
2120      else if (II->isStr("sigjmp_buf"))
2121        Context.setsigjmp_bufDecl(NewTD);
2122    }
2123
2124  return NewTD;
2125}
2126
2127/// \brief Determines whether the given declaration is an out-of-scope
2128/// previous declaration.
2129///
2130/// This routine should be invoked when name lookup has found a
2131/// previous declaration (PrevDecl) that is not in the scope where a
2132/// new declaration by the same name is being introduced. If the new
2133/// declaration occurs in a local scope, previous declarations with
2134/// linkage may still be considered previous declarations (C99
2135/// 6.2.2p4-5, C++ [basic.link]p6).
2136///
2137/// \param PrevDecl the previous declaration found by name
2138/// lookup
2139///
2140/// \param DC the context in which the new declaration is being
2141/// declared.
2142///
2143/// \returns true if PrevDecl is an out-of-scope previous declaration
2144/// for a new delcaration with the same name.
2145static bool
2146isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2147                                ASTContext &Context) {
2148  if (!PrevDecl)
2149    return 0;
2150
2151  if (!PrevDecl->hasLinkage())
2152    return false;
2153
2154  if (Context.getLangOptions().CPlusPlus) {
2155    // C++ [basic.link]p6:
2156    //   If there is a visible declaration of an entity with linkage
2157    //   having the same name and type, ignoring entities declared
2158    //   outside the innermost enclosing namespace scope, the block
2159    //   scope declaration declares that same entity and receives the
2160    //   linkage of the previous declaration.
2161    DeclContext *OuterContext = DC->getLookupContext();
2162    if (!OuterContext->isFunctionOrMethod())
2163      // This rule only applies to block-scope declarations.
2164      return false;
2165    else {
2166      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2167      if (PrevOuterContext->isRecord())
2168        // We found a member function: ignore it.
2169        return false;
2170      else {
2171        // Find the innermost enclosing namespace for the new and
2172        // previous declarations.
2173        while (!OuterContext->isFileContext())
2174          OuterContext = OuterContext->getParent();
2175        while (!PrevOuterContext->isFileContext())
2176          PrevOuterContext = PrevOuterContext->getParent();
2177
2178        // The previous declaration is in a different namespace, so it
2179        // isn't the same function.
2180        if (OuterContext->getPrimaryContext() !=
2181            PrevOuterContext->getPrimaryContext())
2182          return false;
2183      }
2184    }
2185  }
2186
2187  return true;
2188}
2189
2190NamedDecl*
2191Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2192                              QualType R, TypeSourceInfo *TInfo,
2193                              LookupResult &Previous,
2194                              MultiTemplateParamsArg TemplateParamLists,
2195                              bool &Redeclaration) {
2196  DeclarationName Name = GetNameForDeclarator(D);
2197
2198  // Check that there are no default arguments (C++ only).
2199  if (getLangOptions().CPlusPlus)
2200    CheckExtraCXXDefaultArguments(D);
2201
2202  VarDecl *NewVD;
2203  VarDecl::StorageClass SC;
2204  switch (D.getDeclSpec().getStorageClassSpec()) {
2205  default: assert(0 && "Unknown storage class!");
2206  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2207  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2208  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2209  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2210  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2211  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2212  case DeclSpec::SCS_mutable:
2213    // mutable can only appear on non-static class members, so it's always
2214    // an error here
2215    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2216    D.setInvalidType();
2217    SC = VarDecl::None;
2218    break;
2219  }
2220
2221  IdentifierInfo *II = Name.getAsIdentifierInfo();
2222  if (!II) {
2223    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2224      << Name.getAsString();
2225    return 0;
2226  }
2227
2228  DiagnoseFunctionSpecifiers(D);
2229
2230  if (!DC->isRecord() && S->getFnParent() == 0) {
2231    // C99 6.9p2: The storage-class specifiers auto and register shall not
2232    // appear in the declaration specifiers in an external declaration.
2233    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2234
2235      // If this is a register variable with an asm label specified, then this
2236      // is a GNU extension.
2237      if (SC == VarDecl::Register && D.getAsmLabel())
2238        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2239      else
2240        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2241      D.setInvalidType();
2242    }
2243  }
2244  if (DC->isRecord() && !CurContext->isRecord()) {
2245    // This is an out-of-line definition of a static data member.
2246    if (SC == VarDecl::Static) {
2247      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2248           diag::err_static_out_of_line)
2249        << CodeModificationHint::CreateRemoval(
2250                                      D.getDeclSpec().getStorageClassSpecLoc());
2251    } else if (SC == VarDecl::None)
2252      SC = VarDecl::Static;
2253  }
2254  if (SC == VarDecl::Static) {
2255    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2256      if (RD->isLocalClass())
2257        Diag(D.getIdentifierLoc(),
2258             diag::err_static_data_member_not_allowed_in_local_class)
2259          << Name << RD->getDeclName();
2260    }
2261  }
2262
2263  // Match up the template parameter lists with the scope specifier, then
2264  // determine whether we have a template or a template specialization.
2265  bool isExplicitSpecialization = false;
2266  if (TemplateParameterList *TemplateParams
2267        = MatchTemplateParametersToScopeSpecifier(
2268                                  D.getDeclSpec().getSourceRange().getBegin(),
2269                                                  D.getCXXScopeSpec(),
2270                        (TemplateParameterList**)TemplateParamLists.get(),
2271                                                   TemplateParamLists.size(),
2272                                                  isExplicitSpecialization)) {
2273    if (TemplateParams->size() > 0) {
2274      // There is no such thing as a variable template.
2275      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2276        << II
2277        << SourceRange(TemplateParams->getTemplateLoc(),
2278                       TemplateParams->getRAngleLoc());
2279      return 0;
2280    } else {
2281      // There is an extraneous 'template<>' for this variable. Complain
2282      // about it, but allow the declaration of the variable.
2283      Diag(TemplateParams->getTemplateLoc(),
2284           diag::err_template_variable_noparams)
2285        << II
2286        << SourceRange(TemplateParams->getTemplateLoc(),
2287                       TemplateParams->getRAngleLoc());
2288
2289      isExplicitSpecialization = true;
2290    }
2291  }
2292
2293  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2294                          II, R, TInfo, SC);
2295
2296  if (D.isInvalidType())
2297    NewVD->setInvalidDecl();
2298
2299  if (D.getDeclSpec().isThreadSpecified()) {
2300    if (NewVD->hasLocalStorage())
2301      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2302    else if (!Context.Target.isTLSSupported())
2303      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2304    else
2305      NewVD->setThreadSpecified(true);
2306  }
2307
2308  // Set the lexical context. If the declarator has a C++ scope specifier, the
2309  // lexical context will be different from the semantic context.
2310  NewVD->setLexicalDeclContext(CurContext);
2311
2312  // Handle attributes prior to checking for duplicates in MergeVarDecl
2313  ProcessDeclAttributes(S, NewVD, D);
2314
2315  // Handle GNU asm-label extension (encoded as an attribute).
2316  if (Expr *E = (Expr*) D.getAsmLabel()) {
2317    // The parser guarantees this is a string.
2318    StringLiteral *SE = cast<StringLiteral>(E);
2319    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2320  }
2321
2322  // Don't consider existing declarations that are in a different
2323  // scope and are out-of-semantic-context declarations (if the new
2324  // declaration has linkage).
2325  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2326
2327  // Merge the decl with the existing one if appropriate.
2328  if (!Previous.empty()) {
2329    if (Previous.isSingleResult() &&
2330        isa<FieldDecl>(Previous.getFoundDecl()) &&
2331        D.getCXXScopeSpec().isSet()) {
2332      // The user tried to define a non-static data member
2333      // out-of-line (C++ [dcl.meaning]p1).
2334      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2335        << D.getCXXScopeSpec().getRange();
2336      Previous.clear();
2337      NewVD->setInvalidDecl();
2338    }
2339  } else if (D.getCXXScopeSpec().isSet()) {
2340    // No previous declaration in the qualifying scope.
2341    Diag(D.getIdentifierLoc(), diag::err_no_member)
2342      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2343      << D.getCXXScopeSpec().getRange();
2344    NewVD->setInvalidDecl();
2345  }
2346
2347  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2348
2349  // This is an explicit specialization of a static data member. Check it.
2350  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2351      CheckMemberSpecialization(NewVD, Previous))
2352    NewVD->setInvalidDecl();
2353
2354  // attributes declared post-definition are currently ignored
2355  if (Previous.isSingleResult()) {
2356    const VarDecl *Def = 0;
2357    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2358    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2359      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2360      Diag(Def->getLocation(), diag::note_previous_definition);
2361    }
2362  }
2363
2364  // If this is a locally-scoped extern C variable, update the map of
2365  // such variables.
2366  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2367      !NewVD->isInvalidDecl())
2368    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2369
2370  return NewVD;
2371}
2372
2373/// \brief Perform semantic checking on a newly-created variable
2374/// declaration.
2375///
2376/// This routine performs all of the type-checking required for a
2377/// variable declaration once it has been built. It is used both to
2378/// check variables after they have been parsed and their declarators
2379/// have been translated into a declaration, and to check variables
2380/// that have been instantiated from a template.
2381///
2382/// Sets NewVD->isInvalidDecl() if an error was encountered.
2383void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2384                                    LookupResult &Previous,
2385                                    bool &Redeclaration) {
2386  // If the decl is already known invalid, don't check it.
2387  if (NewVD->isInvalidDecl())
2388    return;
2389
2390  QualType T = NewVD->getType();
2391
2392  if (T->isObjCInterfaceType()) {
2393    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2394    return NewVD->setInvalidDecl();
2395  }
2396
2397  // Emit an error if an address space was applied to decl with local storage.
2398  // This includes arrays of objects with address space qualifiers, but not
2399  // automatic variables that point to other address spaces.
2400  // ISO/IEC TR 18037 S5.1.2
2401  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2402    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2403    return NewVD->setInvalidDecl();
2404  }
2405
2406  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2407      && !NewVD->hasAttr<BlocksAttr>())
2408    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2409
2410  bool isVM = T->isVariablyModifiedType();
2411  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2412      NewVD->hasAttr<BlocksAttr>())
2413    CurFunctionNeedsScopeChecking = true;
2414
2415  if ((isVM && NewVD->hasLinkage()) ||
2416      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2417    bool SizeIsNegative;
2418    QualType FixedTy =
2419        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2420
2421    if (FixedTy.isNull() && T->isVariableArrayType()) {
2422      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2423      // FIXME: This won't give the correct result for
2424      // int a[10][n];
2425      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2426
2427      if (NewVD->isFileVarDecl())
2428        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2429        << SizeRange;
2430      else if (NewVD->getStorageClass() == VarDecl::Static)
2431        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2432        << SizeRange;
2433      else
2434        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2435        << SizeRange;
2436      return NewVD->setInvalidDecl();
2437    }
2438
2439    if (FixedTy.isNull()) {
2440      if (NewVD->isFileVarDecl())
2441        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2442      else
2443        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2444      return NewVD->setInvalidDecl();
2445    }
2446
2447    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2448    NewVD->setType(FixedTy);
2449  }
2450
2451  if (Previous.empty() && NewVD->isExternC()) {
2452    // Since we did not find anything by this name and we're declaring
2453    // an extern "C" variable, look for a non-visible extern "C"
2454    // declaration with the same name.
2455    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2456      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2457    if (Pos != LocallyScopedExternalDecls.end())
2458      Previous.addDecl(Pos->second);
2459  }
2460
2461  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2462    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2463      << T;
2464    return NewVD->setInvalidDecl();
2465  }
2466
2467  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2468    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2469    return NewVD->setInvalidDecl();
2470  }
2471
2472  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2473    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2474    return NewVD->setInvalidDecl();
2475  }
2476
2477  if (!Previous.empty()) {
2478    Redeclaration = true;
2479    MergeVarDecl(NewVD, Previous);
2480  }
2481}
2482
2483/// \brief Data used with FindOverriddenMethod
2484struct FindOverriddenMethodData {
2485  Sema *S;
2486  CXXMethodDecl *Method;
2487};
2488
2489/// \brief Member lookup function that determines whether a given C++
2490/// method overrides a method in a base class, to be used with
2491/// CXXRecordDecl::lookupInBases().
2492static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2493                                 CXXBasePath &Path,
2494                                 void *UserData) {
2495  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2496
2497  FindOverriddenMethodData *Data
2498    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2499
2500  DeclarationName Name = Data->Method->getDeclName();
2501
2502  // FIXME: Do we care about other names here too?
2503  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2504    // We really want to find the base class constructor here.
2505    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2506    CanQualType CT = Data->S->Context.getCanonicalType(T);
2507
2508    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2509  }
2510
2511  for (Path.Decls = BaseRecord->lookup(Name);
2512       Path.Decls.first != Path.Decls.second;
2513       ++Path.Decls.first) {
2514    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2515      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2516        return true;
2517    }
2518  }
2519
2520  return false;
2521}
2522
2523/// AddOverriddenMethods - See if a method overrides any in the base classes,
2524/// and if so, check that it's a valid override and remember it.
2525void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2526  // Look for virtual methods in base classes that this method might override.
2527  CXXBasePaths Paths;
2528  FindOverriddenMethodData Data;
2529  Data.Method = MD;
2530  Data.S = this;
2531  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2532    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2533         E = Paths.found_decls_end(); I != E; ++I) {
2534      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2535        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2536            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2537            !CheckOverridingFunctionAttributes(MD, OldMD))
2538          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2539      }
2540    }
2541  }
2542}
2543
2544NamedDecl*
2545Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2546                              QualType R, TypeSourceInfo *TInfo,
2547                              LookupResult &Previous,
2548                              MultiTemplateParamsArg TemplateParamLists,
2549                              bool IsFunctionDefinition, bool &Redeclaration) {
2550  assert(R.getTypePtr()->isFunctionType());
2551
2552  DeclarationName Name = GetNameForDeclarator(D);
2553  FunctionDecl::StorageClass SC = FunctionDecl::None;
2554  switch (D.getDeclSpec().getStorageClassSpec()) {
2555  default: assert(0 && "Unknown storage class!");
2556  case DeclSpec::SCS_auto:
2557  case DeclSpec::SCS_register:
2558  case DeclSpec::SCS_mutable:
2559    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2560         diag::err_typecheck_sclass_func);
2561    D.setInvalidType();
2562    break;
2563  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2564  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2565  case DeclSpec::SCS_static: {
2566    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2567      // C99 6.7.1p5:
2568      //   The declaration of an identifier for a function that has
2569      //   block scope shall have no explicit storage-class specifier
2570      //   other than extern
2571      // See also (C++ [dcl.stc]p4).
2572      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2573           diag::err_static_block_func);
2574      SC = FunctionDecl::None;
2575    } else
2576      SC = FunctionDecl::Static;
2577    break;
2578  }
2579  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2580  }
2581
2582  if (D.getDeclSpec().isThreadSpecified())
2583    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2584
2585  bool isFriend = D.getDeclSpec().isFriendSpecified();
2586  bool isInline = D.getDeclSpec().isInlineSpecified();
2587  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2588  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2589
2590  // Check that the return type is not an abstract class type.
2591  // For record types, this is done by the AbstractClassUsageDiagnoser once
2592  // the class has been completely parsed.
2593  if (!DC->isRecord() &&
2594      RequireNonAbstractType(D.getIdentifierLoc(),
2595                             R->getAs<FunctionType>()->getResultType(),
2596                             diag::err_abstract_type_in_decl,
2597                             AbstractReturnType))
2598    D.setInvalidType();
2599
2600  // Do not allow returning a objc interface by-value.
2601  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2602    Diag(D.getIdentifierLoc(),
2603         diag::err_object_cannot_be_passed_returned_by_value) << 0
2604      << R->getAs<FunctionType>()->getResultType();
2605    D.setInvalidType();
2606  }
2607
2608  bool isVirtualOkay = false;
2609  FunctionDecl *NewFD;
2610
2611  if (isFriend) {
2612    // C++ [class.friend]p5
2613    //   A function can be defined in a friend declaration of a
2614    //   class . . . . Such a function is implicitly inline.
2615    isInline |= IsFunctionDefinition;
2616  }
2617
2618  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2619    // This is a C++ constructor declaration.
2620    assert(DC->isRecord() &&
2621           "Constructors can only be declared in a member context");
2622
2623    R = CheckConstructorDeclarator(D, R, SC);
2624
2625    // Create the new declaration
2626    NewFD = CXXConstructorDecl::Create(Context,
2627                                       cast<CXXRecordDecl>(DC),
2628                                       D.getIdentifierLoc(), Name, R, TInfo,
2629                                       isExplicit, isInline,
2630                                       /*isImplicitlyDeclared=*/false);
2631  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2632    // This is a C++ destructor declaration.
2633    if (DC->isRecord()) {
2634      R = CheckDestructorDeclarator(D, SC);
2635
2636      NewFD = CXXDestructorDecl::Create(Context,
2637                                        cast<CXXRecordDecl>(DC),
2638                                        D.getIdentifierLoc(), Name, R,
2639                                        isInline,
2640                                        /*isImplicitlyDeclared=*/false);
2641
2642      isVirtualOkay = true;
2643    } else {
2644      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2645
2646      // Create a FunctionDecl to satisfy the function definition parsing
2647      // code path.
2648      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2649                                   Name, R, TInfo, SC, isInline,
2650                                   /*hasPrototype=*/true);
2651      D.setInvalidType();
2652    }
2653  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2654    if (!DC->isRecord()) {
2655      Diag(D.getIdentifierLoc(),
2656           diag::err_conv_function_not_member);
2657      return 0;
2658    }
2659
2660    CheckConversionDeclarator(D, R, SC);
2661    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2662                                      D.getIdentifierLoc(), Name, R, TInfo,
2663                                      isInline, isExplicit);
2664
2665    isVirtualOkay = true;
2666  } else if (DC->isRecord()) {
2667    // If the of the function is the same as the name of the record, then this
2668    // must be an invalid constructor that has a return type.
2669    // (The parser checks for a return type and makes the declarator a
2670    // constructor if it has no return type).
2671    // must have an invalid constructor that has a return type
2672    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2673      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2674        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2675        << SourceRange(D.getIdentifierLoc());
2676      return 0;
2677    }
2678
2679    bool isStatic = SC == FunctionDecl::Static;
2680
2681    // [class.free]p1:
2682    // Any allocation function for a class T is a static member
2683    // (even if not explicitly declared static).
2684    if (Name.getCXXOverloadedOperator() == OO_New ||
2685        Name.getCXXOverloadedOperator() == OO_Array_New)
2686      isStatic = true;
2687
2688    // [class.free]p6 Any deallocation function for a class X is a static member
2689    // (even if not explicitly declared static).
2690    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2691        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2692      isStatic = true;
2693
2694    // This is a C++ method declaration.
2695    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2696                                  D.getIdentifierLoc(), Name, R, TInfo,
2697                                  isStatic, isInline);
2698
2699    isVirtualOkay = !isStatic;
2700  } else {
2701    // Determine whether the function was written with a
2702    // prototype. This true when:
2703    //   - we're in C++ (where every function has a prototype),
2704    //   - there is a prototype in the declarator, or
2705    //   - the type R of the function is some kind of typedef or other reference
2706    //     to a type name (which eventually refers to a function type).
2707    bool HasPrototype =
2708       getLangOptions().CPlusPlus ||
2709       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2710       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2711
2712    NewFD = FunctionDecl::Create(Context, DC,
2713                                 D.getIdentifierLoc(),
2714                                 Name, R, TInfo, SC, isInline, HasPrototype);
2715  }
2716
2717  if (D.isInvalidType())
2718    NewFD->setInvalidDecl();
2719
2720  // Set the lexical context. If the declarator has a C++
2721  // scope specifier, or is the object of a friend declaration, the
2722  // lexical context will be different from the semantic context.
2723  NewFD->setLexicalDeclContext(CurContext);
2724
2725  // Match up the template parameter lists with the scope specifier, then
2726  // determine whether we have a template or a template specialization.
2727  FunctionTemplateDecl *FunctionTemplate = 0;
2728  bool isExplicitSpecialization = false;
2729  bool isFunctionTemplateSpecialization = false;
2730  if (TemplateParameterList *TemplateParams
2731        = MatchTemplateParametersToScopeSpecifier(
2732                                  D.getDeclSpec().getSourceRange().getBegin(),
2733                                  D.getCXXScopeSpec(),
2734                           (TemplateParameterList**)TemplateParamLists.get(),
2735                                                  TemplateParamLists.size(),
2736                                                  isExplicitSpecialization)) {
2737    if (TemplateParams->size() > 0) {
2738      // This is a function template
2739
2740      // Check that we can declare a template here.
2741      if (CheckTemplateDeclScope(S, TemplateParams))
2742        return 0;
2743
2744      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2745                                                      NewFD->getLocation(),
2746                                                      Name, TemplateParams,
2747                                                      NewFD);
2748      FunctionTemplate->setLexicalDeclContext(CurContext);
2749      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2750    } else {
2751      // This is a function template specialization.
2752      isFunctionTemplateSpecialization = true;
2753    }
2754
2755    // FIXME: Free this memory properly.
2756    TemplateParamLists.release();
2757  }
2758
2759  // C++ [dcl.fct.spec]p5:
2760  //   The virtual specifier shall only be used in declarations of
2761  //   nonstatic class member functions that appear within a
2762  //   member-specification of a class declaration; see 10.3.
2763  //
2764  if (isVirtual && !NewFD->isInvalidDecl()) {
2765    if (!isVirtualOkay) {
2766       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2767           diag::err_virtual_non_function);
2768    } else if (!CurContext->isRecord()) {
2769      // 'virtual' was specified outside of the class.
2770      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2771        << CodeModificationHint::CreateRemoval(
2772                                           D.getDeclSpec().getVirtualSpecLoc());
2773    } else {
2774      // Okay: Add virtual to the method.
2775      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2776      CurClass->setMethodAsVirtual(NewFD);
2777    }
2778  }
2779
2780  // Filter out previous declarations that don't match the scope.
2781  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2782
2783  if (isFriend) {
2784    // DC is the namespace in which the function is being declared.
2785    assert((DC->isFileContext() || !Previous.empty()) &&
2786           "previously-undeclared friend function being created "
2787           "in a non-namespace context");
2788
2789    if (FunctionTemplate) {
2790      FunctionTemplate->setObjectOfFriendDecl(
2791                                   /* PreviouslyDeclared= */ !Previous.empty());
2792      FunctionTemplate->setAccess(AS_public);
2793    }
2794    else
2795      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2796
2797    NewFD->setAccess(AS_public);
2798  }
2799
2800  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2801      !CurContext->isRecord()) {
2802    // C++ [class.static]p1:
2803    //   A data or function member of a class may be declared static
2804    //   in a class definition, in which case it is a static member of
2805    //   the class.
2806
2807    // Complain about the 'static' specifier if it's on an out-of-line
2808    // member function definition.
2809    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2810         diag::err_static_out_of_line)
2811      << CodeModificationHint::CreateRemoval(
2812                                      D.getDeclSpec().getStorageClassSpecLoc());
2813  }
2814
2815  // Handle GNU asm-label extension (encoded as an attribute).
2816  if (Expr *E = (Expr*) D.getAsmLabel()) {
2817    // The parser guarantees this is a string.
2818    StringLiteral *SE = cast<StringLiteral>(E);
2819    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2820  }
2821
2822  // Copy the parameter declarations from the declarator D to the function
2823  // declaration NewFD, if they are available.  First scavenge them into Params.
2824  llvm::SmallVector<ParmVarDecl*, 16> Params;
2825  if (D.getNumTypeObjects() > 0) {
2826    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2827
2828    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2829    // function that takes no arguments, not a function that takes a
2830    // single void argument.
2831    // We let through "const void" here because Sema::GetTypeForDeclarator
2832    // already checks for that case.
2833    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2834        FTI.ArgInfo[0].Param &&
2835        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2836      // Empty arg list, don't push any params.
2837      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2838
2839      // In C++, the empty parameter-type-list must be spelled "void"; a
2840      // typedef of void is not permitted.
2841      if (getLangOptions().CPlusPlus &&
2842          Param->getType().getUnqualifiedType() != Context.VoidTy)
2843        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2844      // FIXME: Leaks decl?
2845    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2846      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2847        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2848        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2849        Param->setDeclContext(NewFD);
2850        Params.push_back(Param);
2851      }
2852    }
2853
2854  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2855    // When we're declaring a function with a typedef, typeof, etc as in the
2856    // following example, we'll need to synthesize (unnamed)
2857    // parameters for use in the declaration.
2858    //
2859    // @code
2860    // typedef void fn(int);
2861    // fn f;
2862    // @endcode
2863
2864    // Synthesize a parameter for each argument type.
2865    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2866         AE = FT->arg_type_end(); AI != AE; ++AI) {
2867      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2868                                               SourceLocation(), 0,
2869                                               *AI, /*TInfo=*/0,
2870                                               VarDecl::None, 0);
2871      Param->setImplicit();
2872      Params.push_back(Param);
2873    }
2874  } else {
2875    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2876           "Should not need args for typedef of non-prototype fn");
2877  }
2878  // Finally, we know we have the right number of parameters, install them.
2879  NewFD->setParams(Context, Params.data(), Params.size());
2880
2881  // If the declarator is a template-id, translate the parser's template
2882  // argument list into our AST format.
2883  bool HasExplicitTemplateArgs = false;
2884  TemplateArgumentListInfo TemplateArgs;
2885  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2886    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2887    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2888    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2889    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2890                                       TemplateId->getTemplateArgs(),
2891                                       TemplateId->NumArgs);
2892    translateTemplateArguments(TemplateArgsPtr,
2893                               TemplateArgs);
2894    TemplateArgsPtr.release();
2895
2896    HasExplicitTemplateArgs = true;
2897
2898    if (FunctionTemplate) {
2899      // FIXME: Diagnose function template with explicit template
2900      // arguments.
2901      HasExplicitTemplateArgs = false;
2902    } else if (!isFunctionTemplateSpecialization &&
2903               !D.getDeclSpec().isFriendSpecified()) {
2904      // We have encountered something that the user meant to be a
2905      // specialization (because it has explicitly-specified template
2906      // arguments) but that was not introduced with a "template<>" (or had
2907      // too few of them).
2908      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2909        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2910        << CodeModificationHint::CreateInsertion(
2911                                   D.getDeclSpec().getSourceRange().getBegin(),
2912                                                 "template<> ");
2913      isFunctionTemplateSpecialization = true;
2914    }
2915  }
2916
2917  if (isFunctionTemplateSpecialization) {
2918      if (CheckFunctionTemplateSpecialization(NewFD,
2919                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
2920                                              Previous))
2921        NewFD->setInvalidDecl();
2922  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2923             CheckMemberSpecialization(NewFD, Previous))
2924    NewFD->setInvalidDecl();
2925
2926  // Perform semantic checking on the function declaration.
2927  bool OverloadableAttrRequired = false; // FIXME: HACK!
2928  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
2929                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2930
2931  assert((NewFD->isInvalidDecl() || !Redeclaration ||
2932          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
2933         "previous declaration set still overloaded");
2934
2935  // If we have a function template, check the template parameter
2936  // list. This will check and merge default template arguments.
2937  if (FunctionTemplate) {
2938    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
2939    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
2940                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
2941             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
2942                                                : TPC_FunctionTemplate);
2943  }
2944
2945  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2946    // Fake up an access specifier if it's supposed to be a class member.
2947    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
2948      NewFD->setAccess(AS_public);
2949
2950    // An out-of-line member function declaration must also be a
2951    // definition (C++ [dcl.meaning]p1).
2952    // Note that this is not the case for explicit specializations of
2953    // function templates or member functions of class templates, per
2954    // C++ [temp.expl.spec]p2.
2955    if (!IsFunctionDefinition && !isFriend &&
2956        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2957      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2958        << D.getCXXScopeSpec().getRange();
2959      NewFD->setInvalidDecl();
2960    } else if (!Redeclaration &&
2961               !(isFriend && CurContext->isDependentContext())) {
2962      // The user tried to provide an out-of-line definition for a
2963      // function that is a member of a class or namespace, but there
2964      // was no such member function declared (C++ [class.mfct]p2,
2965      // C++ [namespace.memdef]p2). For example:
2966      //
2967      // class X {
2968      //   void f() const;
2969      // };
2970      //
2971      // void X::f() { } // ill-formed
2972      //
2973      // Complain about this problem, and attempt to suggest close
2974      // matches (e.g., those that differ only in cv-qualifiers and
2975      // whether the parameter types are references).
2976      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2977        << Name << DC << D.getCXXScopeSpec().getRange();
2978      NewFD->setInvalidDecl();
2979
2980      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2981                        ForRedeclaration);
2982      LookupQualifiedName(Prev, DC);
2983      assert(!Prev.isAmbiguous() &&
2984             "Cannot have an ambiguity in previous-declaration lookup");
2985      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2986           Func != FuncEnd; ++Func) {
2987        if (isa<FunctionDecl>(*Func) &&
2988            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2989          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2990      }
2991    }
2992  }
2993
2994  // Handle attributes. We need to have merged decls when handling attributes
2995  // (for example to check for conflicts, etc).
2996  // FIXME: This needs to happen before we merge declarations. Then,
2997  // let attribute merging cope with attribute conflicts.
2998  ProcessDeclAttributes(S, NewFD, D);
2999
3000  // attributes declared post-definition are currently ignored
3001  if (Redeclaration && Previous.isSingleResult()) {
3002    const FunctionDecl *Def;
3003    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3004    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3005      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3006      Diag(Def->getLocation(), diag::note_previous_definition);
3007    }
3008  }
3009
3010  AddKnownFunctionAttributes(NewFD);
3011
3012  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3013    // If a function name is overloadable in C, then every function
3014    // with that name must be marked "overloadable".
3015    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3016      << Redeclaration << NewFD;
3017    if (!Previous.empty())
3018      Diag(Previous.getRepresentativeDecl()->getLocation(),
3019           diag::note_attribute_overloadable_prev_overload);
3020    NewFD->addAttr(::new (Context) OverloadableAttr());
3021  }
3022
3023  // If this is a locally-scoped extern C function, update the
3024  // map of such names.
3025  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3026      && !NewFD->isInvalidDecl())
3027    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3028
3029  // Set this FunctionDecl's range up to the right paren.
3030  NewFD->setLocEnd(D.getSourceRange().getEnd());
3031
3032  if (FunctionTemplate && NewFD->isInvalidDecl())
3033    FunctionTemplate->setInvalidDecl();
3034
3035  if (FunctionTemplate)
3036    return FunctionTemplate;
3037
3038  return NewFD;
3039}
3040
3041/// \brief Perform semantic checking of a new function declaration.
3042///
3043/// Performs semantic analysis of the new function declaration
3044/// NewFD. This routine performs all semantic checking that does not
3045/// require the actual declarator involved in the declaration, and is
3046/// used both for the declaration of functions as they are parsed
3047/// (called via ActOnDeclarator) and for the declaration of functions
3048/// that have been instantiated via C++ template instantiation (called
3049/// via InstantiateDecl).
3050///
3051/// \param IsExplicitSpecialiation whether this new function declaration is
3052/// an explicit specialization of the previous declaration.
3053///
3054/// This sets NewFD->isInvalidDecl() to true if there was an error.
3055void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3056                                    LookupResult &Previous,
3057                                    bool IsExplicitSpecialization,
3058                                    bool &Redeclaration,
3059                                    bool &OverloadableAttrRequired) {
3060  // If NewFD is already known erroneous, don't do any of this checking.
3061  if (NewFD->isInvalidDecl())
3062    return;
3063
3064  if (NewFD->getResultType()->isVariablyModifiedType()) {
3065    // Functions returning a variably modified type violate C99 6.7.5.2p2
3066    // because all functions have linkage.
3067    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3068    return NewFD->setInvalidDecl();
3069  }
3070
3071  if (NewFD->isMain())
3072    CheckMain(NewFD);
3073
3074  // Check for a previous declaration of this name.
3075  if (Previous.empty() && NewFD->isExternC()) {
3076    // Since we did not find anything by this name and we're declaring
3077    // an extern "C" function, look for a non-visible extern "C"
3078    // declaration with the same name.
3079    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3080      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3081    if (Pos != LocallyScopedExternalDecls.end())
3082      Previous.addDecl(Pos->second);
3083  }
3084
3085  // Merge or overload the declaration with an existing declaration of
3086  // the same name, if appropriate.
3087  if (!Previous.empty()) {
3088    // Determine whether NewFD is an overload of PrevDecl or
3089    // a declaration that requires merging. If it's an overload,
3090    // there's no more work to do here; we'll just add the new
3091    // function to the scope.
3092
3093    NamedDecl *OldDecl = 0;
3094    if (!AllowOverloadingOfFunction(Previous, Context)) {
3095      Redeclaration = true;
3096      OldDecl = Previous.getFoundDecl();
3097    } else {
3098      if (!getLangOptions().CPlusPlus) {
3099        OverloadableAttrRequired = true;
3100
3101        // Functions marked "overloadable" must have a prototype (that
3102        // we can't get through declaration merging).
3103        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3104          Diag(NewFD->getLocation(),
3105               diag::err_attribute_overloadable_no_prototype)
3106            << NewFD;
3107          Redeclaration = true;
3108
3109          // Turn this into a variadic function with no parameters.
3110          QualType R = Context.getFunctionType(
3111                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3112                     0, 0, true, 0);
3113          NewFD->setType(R);
3114          return NewFD->setInvalidDecl();
3115        }
3116      }
3117
3118      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3119      case Ovl_Match:
3120        Redeclaration = true;
3121        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3122          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3123          Redeclaration = false;
3124        }
3125        break;
3126
3127      case Ovl_NonFunction:
3128        Redeclaration = true;
3129        break;
3130
3131      case Ovl_Overload:
3132        Redeclaration = false;
3133        break;
3134      }
3135    }
3136
3137    if (Redeclaration) {
3138      // NewFD and OldDecl represent declarations that need to be
3139      // merged.
3140      if (MergeFunctionDecl(NewFD, OldDecl))
3141        return NewFD->setInvalidDecl();
3142
3143      Previous.clear();
3144      Previous.addDecl(OldDecl);
3145
3146      if (FunctionTemplateDecl *OldTemplateDecl
3147                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3148        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3149        FunctionTemplateDecl *NewTemplateDecl
3150          = NewFD->getDescribedFunctionTemplate();
3151        assert(NewTemplateDecl && "Template/non-template mismatch");
3152        if (CXXMethodDecl *Method
3153              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3154          Method->setAccess(OldTemplateDecl->getAccess());
3155          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3156        }
3157
3158        // If this is an explicit specialization of a member that is a function
3159        // template, mark it as a member specialization.
3160        if (IsExplicitSpecialization &&
3161            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3162          NewTemplateDecl->setMemberSpecialization();
3163          assert(OldTemplateDecl->isMemberSpecialization());
3164        }
3165      } else {
3166        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3167          NewFD->setAccess(OldDecl->getAccess());
3168        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3169      }
3170    }
3171  }
3172
3173  // Semantic checking for this function declaration (in isolation).
3174  if (getLangOptions().CPlusPlus) {
3175    // C++-specific checks.
3176    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3177      CheckConstructor(Constructor);
3178    } else if (CXXDestructorDecl *Destructor =
3179                dyn_cast<CXXDestructorDecl>(NewFD)) {
3180      CXXRecordDecl *Record = Destructor->getParent();
3181      QualType ClassType = Context.getTypeDeclType(Record);
3182
3183      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3184      // type is dependent? Both gcc and edg can handle that.
3185      if (!ClassType->isDependentType()) {
3186        DeclarationName Name
3187          = Context.DeclarationNames.getCXXDestructorName(
3188                                        Context.getCanonicalType(ClassType));
3189        if (NewFD->getDeclName() != Name) {
3190          Diag(NewFD->getLocation(), diag::err_destructor_name);
3191          return NewFD->setInvalidDecl();
3192        }
3193      }
3194
3195      Record->setUserDeclaredDestructor(true);
3196      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3197      // user-defined destructor.
3198      Record->setPOD(false);
3199
3200      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3201      // declared destructor.
3202      // FIXME: C++0x: don't do this for "= default" destructors
3203      Record->setHasTrivialDestructor(false);
3204    } else if (CXXConversionDecl *Conversion
3205               = dyn_cast<CXXConversionDecl>(NewFD)) {
3206      ActOnConversionDeclarator(Conversion);
3207    }
3208
3209    // Find any virtual functions that this function overrides.
3210    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3211      if (!Method->isFunctionTemplateSpecialization() &&
3212          !Method->getDescribedFunctionTemplate())
3213        AddOverriddenMethods(Method->getParent(), Method);
3214    }
3215
3216    // Additional checks for the destructor; make sure we do this after we
3217    // figure out whether the destructor is virtual.
3218    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3219      if (!Destructor->getParent()->isDependentType())
3220        CheckDestructor(Destructor);
3221
3222    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3223    if (NewFD->isOverloadedOperator() &&
3224        CheckOverloadedOperatorDeclaration(NewFD))
3225      return NewFD->setInvalidDecl();
3226
3227    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3228    if (NewFD->getLiteralIdentifier() &&
3229        CheckLiteralOperatorDeclaration(NewFD))
3230      return NewFD->setInvalidDecl();
3231
3232    // In C++, check default arguments now that we have merged decls. Unless
3233    // the lexical context is the class, because in this case this is done
3234    // during delayed parsing anyway.
3235    if (!CurContext->isRecord())
3236      CheckCXXDefaultArguments(NewFD);
3237  }
3238}
3239
3240void Sema::CheckMain(FunctionDecl* FD) {
3241  // C++ [basic.start.main]p3:  A program that declares main to be inline
3242  //   or static is ill-formed.
3243  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3244  //   shall not appear in a declaration of main.
3245  // static main is not an error under C99, but we should warn about it.
3246  bool isInline = FD->isInlineSpecified();
3247  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3248  if (isInline || isStatic) {
3249    unsigned diagID = diag::warn_unusual_main_decl;
3250    if (isInline || getLangOptions().CPlusPlus)
3251      diagID = diag::err_unusual_main_decl;
3252
3253    int which = isStatic + (isInline << 1) - 1;
3254    Diag(FD->getLocation(), diagID) << which;
3255  }
3256
3257  QualType T = FD->getType();
3258  assert(T->isFunctionType() && "function decl is not of function type");
3259  const FunctionType* FT = T->getAs<FunctionType>();
3260
3261  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3262    // TODO: add a replacement fixit to turn the return type into 'int'.
3263    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3264    FD->setInvalidDecl(true);
3265  }
3266
3267  // Treat protoless main() as nullary.
3268  if (isa<FunctionNoProtoType>(FT)) return;
3269
3270  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3271  unsigned nparams = FTP->getNumArgs();
3272  assert(FD->getNumParams() == nparams);
3273
3274  bool HasExtraParameters = (nparams > 3);
3275
3276  // Darwin passes an undocumented fourth argument of type char**.  If
3277  // other platforms start sprouting these, the logic below will start
3278  // getting shifty.
3279  if (nparams == 4 &&
3280      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3281    HasExtraParameters = false;
3282
3283  if (HasExtraParameters) {
3284    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3285    FD->setInvalidDecl(true);
3286    nparams = 3;
3287  }
3288
3289  // FIXME: a lot of the following diagnostics would be improved
3290  // if we had some location information about types.
3291
3292  QualType CharPP =
3293    Context.getPointerType(Context.getPointerType(Context.CharTy));
3294  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3295
3296  for (unsigned i = 0; i < nparams; ++i) {
3297    QualType AT = FTP->getArgType(i);
3298
3299    bool mismatch = true;
3300
3301    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3302      mismatch = false;
3303    else if (Expected[i] == CharPP) {
3304      // As an extension, the following forms are okay:
3305      //   char const **
3306      //   char const * const *
3307      //   char * const *
3308
3309      QualifierCollector qs;
3310      const PointerType* PT;
3311      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3312          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3313          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3314        qs.removeConst();
3315        mismatch = !qs.empty();
3316      }
3317    }
3318
3319    if (mismatch) {
3320      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3321      // TODO: suggest replacing given type with expected type
3322      FD->setInvalidDecl(true);
3323    }
3324  }
3325
3326  if (nparams == 1 && !FD->isInvalidDecl()) {
3327    Diag(FD->getLocation(), diag::warn_main_one_arg);
3328  }
3329}
3330
3331bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3332  // FIXME: Need strict checking.  In C89, we need to check for
3333  // any assignment, increment, decrement, function-calls, or
3334  // commas outside of a sizeof.  In C99, it's the same list,
3335  // except that the aforementioned are allowed in unevaluated
3336  // expressions.  Everything else falls under the
3337  // "may accept other forms of constant expressions" exception.
3338  // (We never end up here for C++, so the constant expression
3339  // rules there don't matter.)
3340  if (Init->isConstantInitializer(Context))
3341    return false;
3342  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3343    << Init->getSourceRange();
3344  return true;
3345}
3346
3347void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3348  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3349}
3350
3351/// AddInitializerToDecl - Adds the initializer Init to the
3352/// declaration dcl. If DirectInit is true, this is C++ direct
3353/// initialization rather than copy initialization.
3354void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3355  Decl *RealDecl = dcl.getAs<Decl>();
3356  // If there is no declaration, there was an error parsing it.  Just ignore
3357  // the initializer.
3358  if (RealDecl == 0)
3359    return;
3360
3361  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3362    // With declarators parsed the way they are, the parser cannot
3363    // distinguish between a normal initializer and a pure-specifier.
3364    // Thus this grotesque test.
3365    IntegerLiteral *IL;
3366    Expr *Init = static_cast<Expr *>(init.get());
3367    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3368        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3369      CheckPureMethod(Method, Init->getSourceRange());
3370    else {
3371      Diag(Method->getLocation(), diag::err_member_function_initialization)
3372        << Method->getDeclName() << Init->getSourceRange();
3373      Method->setInvalidDecl();
3374    }
3375    return;
3376  }
3377
3378  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3379  if (!VDecl) {
3380    if (getLangOptions().CPlusPlus &&
3381        RealDecl->getLexicalDeclContext()->isRecord() &&
3382        isa<NamedDecl>(RealDecl))
3383      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3384        << cast<NamedDecl>(RealDecl)->getDeclName();
3385    else
3386      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3387    RealDecl->setInvalidDecl();
3388    return;
3389  }
3390
3391  // A definition must end up with a complete type, which means it must be
3392  // complete with the restriction that an array type might be completed by the
3393  // initializer; note that later code assumes this restriction.
3394  QualType BaseDeclType = VDecl->getType();
3395  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3396    BaseDeclType = Array->getElementType();
3397  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3398                          diag::err_typecheck_decl_incomplete_type)) {
3399    RealDecl->setInvalidDecl();
3400    return;
3401  }
3402
3403  // The variable can not have an abstract class type.
3404  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3405                             diag::err_abstract_type_in_decl,
3406                             AbstractVariableType))
3407    VDecl->setInvalidDecl();
3408
3409  const VarDecl *Def = 0;
3410  if (VDecl->getDefinition(Def)) {
3411    Diag(VDecl->getLocation(), diag::err_redefinition)
3412      << VDecl->getDeclName();
3413    Diag(Def->getLocation(), diag::note_previous_definition);
3414    VDecl->setInvalidDecl();
3415    return;
3416  }
3417
3418  // Take ownership of the expression, now that we're sure we have somewhere
3419  // to put it.
3420  Expr *Init = init.takeAs<Expr>();
3421  assert(Init && "missing initializer");
3422
3423  // Capture the variable that is being initialized and the style of
3424  // initialization.
3425  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3426
3427  // FIXME: Poor source location information.
3428  InitializationKind Kind
3429    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3430                                                   Init->getLocStart(),
3431                                                   Init->getLocEnd())
3432                : InitializationKind::CreateCopy(VDecl->getLocation(),
3433                                                 Init->getLocStart());
3434
3435  // Get the decls type and save a reference for later, since
3436  // CheckInitializerTypes may change it.
3437  QualType DclT = VDecl->getType(), SavT = DclT;
3438  if (VDecl->isBlockVarDecl()) {
3439    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3440      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3441      VDecl->setInvalidDecl();
3442    } else if (!VDecl->isInvalidDecl()) {
3443      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3444      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3445                                          MultiExprArg(*this, (void**)&Init, 1),
3446                                                &DclT);
3447      if (Result.isInvalid()) {
3448        VDecl->setInvalidDecl();
3449        return;
3450      }
3451
3452      Init = Result.takeAs<Expr>();
3453
3454      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3455      // Don't check invalid declarations to avoid emitting useless diagnostics.
3456      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3457        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3458          CheckForConstantInitializer(Init, DclT);
3459      }
3460    }
3461  } else if (VDecl->isStaticDataMember() &&
3462             VDecl->getLexicalDeclContext()->isRecord()) {
3463    // This is an in-class initialization for a static data member, e.g.,
3464    //
3465    // struct S {
3466    //   static const int value = 17;
3467    // };
3468
3469    // Attach the initializer
3470    VDecl->setInit(Context, Init);
3471
3472    // C++ [class.mem]p4:
3473    //   A member-declarator can contain a constant-initializer only
3474    //   if it declares a static member (9.4) of const integral or
3475    //   const enumeration type, see 9.4.2.
3476    QualType T = VDecl->getType();
3477    if (!T->isDependentType() &&
3478        (!Context.getCanonicalType(T).isConstQualified() ||
3479         !T->isIntegralType())) {
3480      Diag(VDecl->getLocation(), diag::err_member_initialization)
3481        << VDecl->getDeclName() << Init->getSourceRange();
3482      VDecl->setInvalidDecl();
3483    } else {
3484      // C++ [class.static.data]p4:
3485      //   If a static data member is of const integral or const
3486      //   enumeration type, its declaration in the class definition
3487      //   can specify a constant-initializer which shall be an
3488      //   integral constant expression (5.19).
3489      if (!Init->isTypeDependent() &&
3490          !Init->getType()->isIntegralType()) {
3491        // We have a non-dependent, non-integral or enumeration type.
3492        Diag(Init->getSourceRange().getBegin(),
3493             diag::err_in_class_initializer_non_integral_type)
3494          << Init->getType() << Init->getSourceRange();
3495        VDecl->setInvalidDecl();
3496      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3497        // Check whether the expression is a constant expression.
3498        llvm::APSInt Value;
3499        SourceLocation Loc;
3500        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3501          Diag(Loc, diag::err_in_class_initializer_non_constant)
3502            << Init->getSourceRange();
3503          VDecl->setInvalidDecl();
3504        } else if (!VDecl->getType()->isDependentType())
3505          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3506      }
3507    }
3508  } else if (VDecl->isFileVarDecl()) {
3509    if (VDecl->getStorageClass() == VarDecl::Extern)
3510      Diag(VDecl->getLocation(), diag::warn_extern_init);
3511    if (!VDecl->isInvalidDecl()) {
3512      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3513      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3514                                          MultiExprArg(*this, (void**)&Init, 1),
3515                                                &DclT);
3516      if (Result.isInvalid()) {
3517        VDecl->setInvalidDecl();
3518        return;
3519      }
3520
3521      Init = Result.takeAs<Expr>();
3522    }
3523
3524    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3525    // Don't check invalid declarations to avoid emitting useless diagnostics.
3526    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3527      // C99 6.7.8p4. All file scoped initializers need to be constant.
3528      CheckForConstantInitializer(Init, DclT);
3529    }
3530  }
3531  // If the type changed, it means we had an incomplete type that was
3532  // completed by the initializer. For example:
3533  //   int ary[] = { 1, 3, 5 };
3534  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3535  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3536    VDecl->setType(DclT);
3537    Init->setType(DclT);
3538  }
3539
3540  Init = MaybeCreateCXXExprWithTemporaries(Init);
3541  // Attach the initializer to the decl.
3542  VDecl->setInit(Context, Init);
3543
3544  // If the previous declaration of VDecl was a tentative definition,
3545  // remove it from the set of tentative definitions.
3546  if (VDecl->getPreviousDeclaration() &&
3547      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3548    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3549    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3550  }
3551
3552  if (getLangOptions().CPlusPlus) {
3553    // Make sure we mark the destructor as used if necessary.
3554    QualType InitType = VDecl->getType();
3555    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3556      InitType = Context.getBaseElementType(Array);
3557    if (InitType->isRecordType())
3558      FinalizeVarWithDestructor(VDecl, InitType);
3559  }
3560
3561  return;
3562}
3563
3564void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3565                                  bool TypeContainsUndeducedAuto) {
3566  Decl *RealDecl = dcl.getAs<Decl>();
3567
3568  // If there is no declaration, there was an error parsing it. Just ignore it.
3569  if (RealDecl == 0)
3570    return;
3571
3572  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3573    QualType Type = Var->getType();
3574
3575    // Record tentative definitions.
3576    if (Var->isTentativeDefinition(Context)) {
3577      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3578        InsertPair =
3579           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3580
3581      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3582      // want the second one in the map.
3583      InsertPair.first->second = Var;
3584
3585      // However, for the list, we don't care about the order, just make sure
3586      // that there are no dupes for a given declaration name.
3587      if (InsertPair.second)
3588        TentativeDefinitionList.push_back(Var->getDeclName());
3589    }
3590
3591    // C++ [dcl.init.ref]p3:
3592    //   The initializer can be omitted for a reference only in a
3593    //   parameter declaration (8.3.5), in the declaration of a
3594    //   function return type, in the declaration of a class member
3595    //   within its class declaration (9.2), and where the extern
3596    //   specifier is explicitly used.
3597    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3598      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3599        << Var->getDeclName()
3600        << SourceRange(Var->getLocation(), Var->getLocation());
3601      Var->setInvalidDecl();
3602      return;
3603    }
3604
3605    // C++0x [dcl.spec.auto]p3
3606    if (TypeContainsUndeducedAuto) {
3607      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3608        << Var->getDeclName() << Type;
3609      Var->setInvalidDecl();
3610      return;
3611    }
3612
3613    // An array without size is an incomplete type, and there are no special
3614    // rules in C++ to make such a definition acceptable.
3615    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3616        !Var->hasExternalStorage()) {
3617      Diag(Var->getLocation(),
3618           diag::err_typecheck_incomplete_array_needs_initializer);
3619      Var->setInvalidDecl();
3620      return;
3621    }
3622
3623    // C++ [temp.expl.spec]p15:
3624    //   An explicit specialization of a static data member of a template is a
3625    //   definition if the declaration includes an initializer; otherwise, it
3626    //   is a declaration.
3627    if (Var->isStaticDataMember() &&
3628        Var->getInstantiatedFromStaticDataMember() &&
3629        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3630      return;
3631
3632    // C++ [dcl.init]p9:
3633    //   If no initializer is specified for an object, and the object
3634    //   is of (possibly cv-qualified) non-POD class type (or array
3635    //   thereof), the object shall be default-initialized; if the
3636    //   object is of const-qualified type, the underlying class type
3637    //   shall have a user-declared default constructor.
3638    //
3639    // FIXME: Diagnose the "user-declared default constructor" bit.
3640    if (getLangOptions().CPlusPlus) {
3641      QualType InitType = Type;
3642      if (const ArrayType *Array = Context.getAsArrayType(Type))
3643        InitType = Context.getBaseElementType(Array);
3644      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3645          InitType->isRecordType() && !InitType->isDependentType()) {
3646        if (!RequireCompleteType(Var->getLocation(), InitType,
3647                                 diag::err_invalid_incomplete_type_use)) {
3648          InitializedEntity Entity
3649            = InitializedEntity::InitializeVariable(Var);
3650          InitializationKind Kind
3651            = InitializationKind::CreateDefault(Var->getLocation());
3652
3653          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3654          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3655                                                  MultiExprArg(*this, 0, 0));
3656          if (Init.isInvalid())
3657            Var->setInvalidDecl();
3658          else {
3659            Var->setInit(Context,
3660                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3661            FinalizeVarWithDestructor(Var, InitType);
3662          }
3663        } else {
3664          Var->setInvalidDecl();
3665        }
3666      }
3667
3668      // The variable can not have an abstract class type.
3669      if (RequireNonAbstractType(Var->getLocation(), Type,
3670                                 diag::err_abstract_type_in_decl,
3671                                 AbstractVariableType))
3672        Var->setInvalidDecl();
3673    }
3674
3675#if 0
3676    // FIXME: Temporarily disabled because we are not properly parsing
3677    // linkage specifications on declarations, e.g.,
3678    //
3679    //   extern "C" const CGPoint CGPointerZero;
3680    //
3681    // C++ [dcl.init]p9:
3682    //
3683    //     If no initializer is specified for an object, and the
3684    //     object is of (possibly cv-qualified) non-POD class type (or
3685    //     array thereof), the object shall be default-initialized; if
3686    //     the object is of const-qualified type, the underlying class
3687    //     type shall have a user-declared default
3688    //     constructor. Otherwise, if no initializer is specified for
3689    //     an object, the object and its subobjects, if any, have an
3690    //     indeterminate initial value; if the object or any of its
3691    //     subobjects are of const-qualified type, the program is
3692    //     ill-formed.
3693    //
3694    // This isn't technically an error in C, so we don't diagnose it.
3695    //
3696    // FIXME: Actually perform the POD/user-defined default
3697    // constructor check.
3698    if (getLangOptions().CPlusPlus &&
3699        Context.getCanonicalType(Type).isConstQualified() &&
3700        !Var->hasExternalStorage())
3701      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3702        << Var->getName()
3703        << SourceRange(Var->getLocation(), Var->getLocation());
3704#endif
3705  }
3706}
3707
3708Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3709                                                   DeclPtrTy *Group,
3710                                                   unsigned NumDecls) {
3711  llvm::SmallVector<Decl*, 8> Decls;
3712
3713  if (DS.isTypeSpecOwned())
3714    Decls.push_back((Decl*)DS.getTypeRep());
3715
3716  for (unsigned i = 0; i != NumDecls; ++i)
3717    if (Decl *D = Group[i].getAs<Decl>())
3718      Decls.push_back(D);
3719
3720  // Perform semantic analysis that depends on having fully processed both
3721  // the declarator and initializer.
3722  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3723    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3724    if (!IDecl)
3725      continue;
3726    QualType T = IDecl->getType();
3727
3728    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3729    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3730    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3731      if (T->isDependentType()) {
3732        // If T is dependent, we should not require a complete type.
3733        // (RequireCompleteType shouldn't be called with dependent types.)
3734        // But we still can at least check if we've got an array of unspecified
3735        // size without an initializer.
3736        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3737            !IDecl->getInit()) {
3738          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3739            << T;
3740          IDecl->setInvalidDecl();
3741        }
3742      } else if (!IDecl->isInvalidDecl()) {
3743        // If T is an incomplete array type with an initializer list that is
3744        // dependent on something, its size has not been fixed. We could attempt
3745        // to fix the size for such arrays, but we would still have to check
3746        // here for initializers containing a C++0x vararg expansion, e.g.
3747        // template <typename... Args> void f(Args... args) {
3748        //   int vals[] = { args };
3749        // }
3750        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3751        Expr *Init = IDecl->getInit();
3752        if (IAT && Init &&
3753            (Init->isTypeDependent() || Init->isValueDependent())) {
3754          // Check that the member type of the array is complete, at least.
3755          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3756                                  diag::err_typecheck_decl_incomplete_type))
3757            IDecl->setInvalidDecl();
3758        } else if (RequireCompleteType(IDecl->getLocation(), T,
3759                                      diag::err_typecheck_decl_incomplete_type))
3760          IDecl->setInvalidDecl();
3761      }
3762    }
3763    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3764    // object that has file scope without an initializer, and without a
3765    // storage-class specifier or with the storage-class specifier "static",
3766    // constitutes a tentative definition. Note: A tentative definition with
3767    // external linkage is valid (C99 6.2.2p5).
3768    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3769      if (const IncompleteArrayType *ArrayT
3770          = Context.getAsIncompleteArrayType(T)) {
3771        if (RequireCompleteType(IDecl->getLocation(),
3772                                ArrayT->getElementType(),
3773                                diag::err_illegal_decl_array_incomplete_type))
3774          IDecl->setInvalidDecl();
3775      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3776        // C99 6.9.2p3: If the declaration of an identifier for an object is
3777        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3778        // declared type shall not be an incomplete type.
3779        // NOTE: code such as the following
3780        //     static struct s;
3781        //     struct s { int a; };
3782        // is accepted by gcc. Hence here we issue a warning instead of
3783        // an error and we do not invalidate the static declaration.
3784        // NOTE: to avoid multiple warnings, only check the first declaration.
3785        if (IDecl->getPreviousDeclaration() == 0)
3786          RequireCompleteType(IDecl->getLocation(), T,
3787                              diag::ext_typecheck_decl_incomplete_type);
3788      }
3789    }
3790  }
3791  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3792                                                   Decls.data(), Decls.size()));
3793}
3794
3795
3796/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3797/// to introduce parameters into function prototype scope.
3798Sema::DeclPtrTy
3799Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3800  const DeclSpec &DS = D.getDeclSpec();
3801
3802  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3803  VarDecl::StorageClass StorageClass = VarDecl::None;
3804  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3805    StorageClass = VarDecl::Register;
3806  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3807    Diag(DS.getStorageClassSpecLoc(),
3808         diag::err_invalid_storage_class_in_func_decl);
3809    D.getMutableDeclSpec().ClearStorageClassSpecs();
3810  }
3811
3812  if (D.getDeclSpec().isThreadSpecified())
3813    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3814
3815  DiagnoseFunctionSpecifiers(D);
3816
3817  // Check that there are no default arguments inside the type of this
3818  // parameter (C++ only).
3819  if (getLangOptions().CPlusPlus)
3820    CheckExtraCXXDefaultArguments(D);
3821
3822  TypeSourceInfo *TInfo = 0;
3823  TagDecl *OwnedDecl = 0;
3824  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3825
3826  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3827    // C++ [dcl.fct]p6:
3828    //   Types shall not be defined in return or parameter types.
3829    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3830      << Context.getTypeDeclType(OwnedDecl);
3831  }
3832
3833  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3834  // Can this happen for params?  We already checked that they don't conflict
3835  // among each other.  Here they can only shadow globals, which is ok.
3836  IdentifierInfo *II = D.getIdentifier();
3837  if (II) {
3838    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3839      if (PrevDecl->isTemplateParameter()) {
3840        // Maybe we will complain about the shadowed template parameter.
3841        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3842        // Just pretend that we didn't see the previous declaration.
3843        PrevDecl = 0;
3844      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3845        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3846
3847        // Recover by removing the name
3848        II = 0;
3849        D.SetIdentifier(0, D.getIdentifierLoc());
3850      }
3851    }
3852  }
3853
3854  // Parameters can not be abstract class types.
3855  // For record types, this is done by the AbstractClassUsageDiagnoser once
3856  // the class has been completely parsed.
3857  if (!CurContext->isRecord() &&
3858      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3859                             diag::err_abstract_type_in_decl,
3860                             AbstractParamType))
3861    D.setInvalidType(true);
3862
3863  QualType T = adjustParameterType(parmDeclType);
3864
3865  ParmVarDecl *New
3866    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3867                          T, TInfo, StorageClass, 0);
3868
3869  if (D.isInvalidType())
3870    New->setInvalidDecl();
3871
3872  // Parameter declarators cannot be interface types. All ObjC objects are
3873  // passed by reference.
3874  if (T->isObjCInterfaceType()) {
3875    Diag(D.getIdentifierLoc(),
3876         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3877    New->setInvalidDecl();
3878  }
3879
3880  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3881  if (D.getCXXScopeSpec().isSet()) {
3882    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3883      << D.getCXXScopeSpec().getRange();
3884    New->setInvalidDecl();
3885  }
3886
3887  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3888  // duration shall not be qualified by an address-space qualifier."
3889  // Since all parameters have automatic store duration, they can not have
3890  // an address space.
3891  if (T.getAddressSpace() != 0) {
3892    Diag(D.getIdentifierLoc(),
3893         diag::err_arg_with_address_space);
3894    New->setInvalidDecl();
3895  }
3896
3897
3898  // Add the parameter declaration into this scope.
3899  S->AddDecl(DeclPtrTy::make(New));
3900  if (II)
3901    IdResolver.AddDecl(New);
3902
3903  ProcessDeclAttributes(S, New, D);
3904
3905  if (New->hasAttr<BlocksAttr>()) {
3906    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3907  }
3908  return DeclPtrTy::make(New);
3909}
3910
3911void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3912                                           SourceLocation LocAfterDecls) {
3913  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3914         "Not a function declarator!");
3915  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3916
3917  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3918  // for a K&R function.
3919  if (!FTI.hasPrototype) {
3920    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3921      --i;
3922      if (FTI.ArgInfo[i].Param == 0) {
3923        llvm::SmallString<256> Code;
3924        llvm::raw_svector_ostream(Code) << "  int "
3925                                        << FTI.ArgInfo[i].Ident->getName()
3926                                        << ";\n";
3927        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3928          << FTI.ArgInfo[i].Ident
3929          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3930
3931        // Implicitly declare the argument as type 'int' for lack of a better
3932        // type.
3933        DeclSpec DS;
3934        const char* PrevSpec; // unused
3935        unsigned DiagID; // unused
3936        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3937                           PrevSpec, DiagID);
3938        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3939        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3940        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3941      }
3942    }
3943  }
3944}
3945
3946Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3947                                              Declarator &D) {
3948  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3949  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3950         "Not a function declarator!");
3951  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3952
3953  if (FTI.hasPrototype) {
3954    // FIXME: Diagnose arguments without names in C.
3955  }
3956
3957  Scope *ParentScope = FnBodyScope->getParent();
3958
3959  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3960                                  MultiTemplateParamsArg(*this),
3961                                  /*IsFunctionDefinition=*/true);
3962  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3963}
3964
3965static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
3966  // Don't warn about invalid declarations.
3967  if (FD->isInvalidDecl())
3968    return false;
3969
3970  // Or declarations that aren't global.
3971  if (!FD->isGlobal())
3972    return false;
3973
3974  // Don't warn about C++ member functions.
3975  if (isa<CXXMethodDecl>(FD))
3976    return false;
3977
3978  // Don't warn about 'main'.
3979  if (FD->isMain())
3980    return false;
3981
3982  // Don't warn about inline functions.
3983  if (FD->isInlineSpecified())
3984    return false;
3985
3986  // Don't warn about function templates.
3987  if (FD->getDescribedFunctionTemplate())
3988    return false;
3989
3990  // Don't warn about function template specializations.
3991  if (FD->isFunctionTemplateSpecialization())
3992    return false;
3993
3994  bool MissingPrototype = true;
3995  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3996       Prev; Prev = Prev->getPreviousDeclaration()) {
3997    // Ignore any declarations that occur in function or method
3998    // scope, because they aren't visible from the header.
3999    if (Prev->getDeclContext()->isFunctionOrMethod())
4000      continue;
4001
4002    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4003    break;
4004  }
4005
4006  return MissingPrototype;
4007}
4008
4009Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4010  // Clear the last template instantiation error context.
4011  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4012
4013  if (!D)
4014    return D;
4015  FunctionDecl *FD = 0;
4016
4017  if (FunctionTemplateDecl *FunTmpl
4018        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4019    FD = FunTmpl->getTemplatedDecl();
4020  else
4021    FD = cast<FunctionDecl>(D.getAs<Decl>());
4022
4023  CurFunctionNeedsScopeChecking = false;
4024
4025  // See if this is a redefinition.
4026  const FunctionDecl *Definition;
4027  if (FD->getBody(Definition)) {
4028    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4029    Diag(Definition->getLocation(), diag::note_previous_definition);
4030  }
4031
4032  // Builtin functions cannot be defined.
4033  if (unsigned BuiltinID = FD->getBuiltinID()) {
4034    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4035      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4036      FD->setInvalidDecl();
4037    }
4038  }
4039
4040  // The return type of a function definition must be complete
4041  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4042  QualType ResultType = FD->getResultType();
4043  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4044      !FD->isInvalidDecl() &&
4045      RequireCompleteType(FD->getLocation(), ResultType,
4046                          diag::err_func_def_incomplete_result))
4047    FD->setInvalidDecl();
4048
4049  // GNU warning -Wmissing-prototypes:
4050  //   Warn if a global function is defined without a previous
4051  //   prototype declaration. This warning is issued even if the
4052  //   definition itself provides a prototype. The aim is to detect
4053  //   global functions that fail to be declared in header files.
4054  if (ShouldWarnAboutMissingPrototype(FD))
4055    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4056
4057  if (FnBodyScope)
4058    PushDeclContext(FnBodyScope, FD);
4059
4060  // Check the validity of our function parameters
4061  CheckParmsForFunctionDef(FD);
4062
4063  // Introduce our parameters into the function scope
4064  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4065    ParmVarDecl *Param = FD->getParamDecl(p);
4066    Param->setOwningFunction(FD);
4067
4068    // If this has an identifier, add it to the scope stack.
4069    if (Param->getIdentifier() && FnBodyScope)
4070      PushOnScopeChains(Param, FnBodyScope);
4071  }
4072
4073  // Checking attributes of current function definition
4074  // dllimport attribute.
4075  if (FD->getAttr<DLLImportAttr>() &&
4076      (!FD->getAttr<DLLExportAttr>())) {
4077    // dllimport attribute cannot be applied to definition.
4078    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4079      Diag(FD->getLocation(),
4080           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4081        << "dllimport";
4082      FD->setInvalidDecl();
4083      return DeclPtrTy::make(FD);
4084    } else {
4085      // If a symbol previously declared dllimport is later defined, the
4086      // attribute is ignored in subsequent references, and a warning is
4087      // emitted.
4088      Diag(FD->getLocation(),
4089           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4090        << FD->getNameAsCString() << "dllimport";
4091    }
4092  }
4093  return DeclPtrTy::make(FD);
4094}
4095
4096Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4097  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4098}
4099
4100Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4101                                              bool IsInstantiation) {
4102  Decl *dcl = D.getAs<Decl>();
4103  Stmt *Body = BodyArg.takeAs<Stmt>();
4104
4105  AnalysisContext AC(dcl);
4106  FunctionDecl *FD = 0;
4107  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4108  if (FunTmpl)
4109    FD = FunTmpl->getTemplatedDecl();
4110  else
4111    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4112
4113  if (FD) {
4114    FD->setBody(Body);
4115    if (FD->isMain())
4116      // C and C++ allow for main to automagically return 0.
4117      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4118      FD->setHasImplicitReturnZero(true);
4119    else
4120      CheckFallThroughForFunctionDef(FD, Body, AC);
4121
4122    if (!FD->isInvalidDecl())
4123      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4124
4125    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4126      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4127
4128    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4129  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4130    assert(MD == getCurMethodDecl() && "Method parsing confused");
4131    MD->setBody(Body);
4132    CheckFallThroughForFunctionDef(MD, Body, AC);
4133    MD->setEndLoc(Body->getLocEnd());
4134
4135    if (!MD->isInvalidDecl())
4136      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4137  } else {
4138    Body->Destroy(Context);
4139    return DeclPtrTy();
4140  }
4141  if (!IsInstantiation)
4142    PopDeclContext();
4143
4144  // Verify and clean out per-function state.
4145
4146  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4147
4148  // Check goto/label use.
4149  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4150       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4151    LabelStmt *L = I->second;
4152
4153    // Verify that we have no forward references left.  If so, there was a goto
4154    // or address of a label taken, but no definition of it.  Label fwd
4155    // definitions are indicated with a null substmt.
4156    if (L->getSubStmt() != 0)
4157      continue;
4158
4159    // Emit error.
4160    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4161
4162    // At this point, we have gotos that use the bogus label.  Stitch it into
4163    // the function body so that they aren't leaked and that the AST is well
4164    // formed.
4165    if (Body == 0) {
4166      // The whole function wasn't parsed correctly, just delete this.
4167      L->Destroy(Context);
4168      continue;
4169    }
4170
4171    // Otherwise, the body is valid: we want to stitch the label decl into the
4172    // function somewhere so that it is properly owned and so that the goto
4173    // has a valid target.  Do this by creating a new compound stmt with the
4174    // label in it.
4175
4176    // Give the label a sub-statement.
4177    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4178
4179    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4180                               cast<CXXTryStmt>(Body)->getTryBlock() :
4181                               cast<CompoundStmt>(Body);
4182    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4183    Elements.push_back(L);
4184    Compound->setStmts(Context, &Elements[0], Elements.size());
4185  }
4186  FunctionLabelMap.clear();
4187
4188  if (!Body) return D;
4189
4190  CheckUnreachable(AC);
4191
4192  // Verify that that gotos and switch cases don't jump into scopes illegally.
4193  if (CurFunctionNeedsScopeChecking)
4194    DiagnoseInvalidJumps(Body);
4195
4196  // C++ constructors that have function-try-blocks can't have return
4197  // statements in the handlers of that block. (C++ [except.handle]p14)
4198  // Verify this.
4199  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4200    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4201
4202  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4203    MarkBaseAndMemberDestructorsReferenced(Destructor);
4204
4205  // If any errors have occurred, clear out any temporaries that may have
4206  // been leftover. This ensures that these temporaries won't be picked up for
4207  // deletion in some later function.
4208  if (PP.getDiagnostics().hasErrorOccurred())
4209    ExprTemporaries.clear();
4210
4211  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4212  return D;
4213}
4214
4215/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4216/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4217NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4218                                          IdentifierInfo &II, Scope *S) {
4219  // Before we produce a declaration for an implicitly defined
4220  // function, see whether there was a locally-scoped declaration of
4221  // this name as a function or variable. If so, use that
4222  // (non-visible) declaration, and complain about it.
4223  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4224    = LocallyScopedExternalDecls.find(&II);
4225  if (Pos != LocallyScopedExternalDecls.end()) {
4226    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4227    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4228    return Pos->second;
4229  }
4230
4231  // Extension in C99.  Legal in C90, but warn about it.
4232  if (II.getName().startswith("__builtin_"))
4233    Diag(Loc, diag::warn_builtin_unknown) << &II;
4234  else if (getLangOptions().C99)
4235    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4236  else
4237    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4238
4239  // Set a Declarator for the implicit definition: int foo();
4240  const char *Dummy;
4241  DeclSpec DS;
4242  unsigned DiagID;
4243  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4244  Error = Error; // Silence warning.
4245  assert(!Error && "Error setting up implicit decl!");
4246  Declarator D(DS, Declarator::BlockContext);
4247  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4248                                             0, 0, false, SourceLocation(),
4249                                             false, 0,0,0, Loc, Loc, D),
4250                SourceLocation());
4251  D.SetIdentifier(&II, Loc);
4252
4253  // Insert this function into translation-unit scope.
4254
4255  DeclContext *PrevDC = CurContext;
4256  CurContext = Context.getTranslationUnitDecl();
4257
4258  FunctionDecl *FD =
4259 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4260  FD->setImplicit();
4261
4262  CurContext = PrevDC;
4263
4264  AddKnownFunctionAttributes(FD);
4265
4266  return FD;
4267}
4268
4269/// \brief Adds any function attributes that we know a priori based on
4270/// the declaration of this function.
4271///
4272/// These attributes can apply both to implicitly-declared builtins
4273/// (like __builtin___printf_chk) or to library-declared functions
4274/// like NSLog or printf.
4275void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4276  if (FD->isInvalidDecl())
4277    return;
4278
4279  // If this is a built-in function, map its builtin attributes to
4280  // actual attributes.
4281  if (unsigned BuiltinID = FD->getBuiltinID()) {
4282    // Handle printf-formatting attributes.
4283    unsigned FormatIdx;
4284    bool HasVAListArg;
4285    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4286      if (!FD->getAttr<FormatAttr>())
4287        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4288                                             HasVAListArg ? 0 : FormatIdx + 2));
4289    }
4290
4291    // Mark const if we don't care about errno and that is the only
4292    // thing preventing the function from being const. This allows
4293    // IRgen to use LLVM intrinsics for such functions.
4294    if (!getLangOptions().MathErrno &&
4295        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4296      if (!FD->getAttr<ConstAttr>())
4297        FD->addAttr(::new (Context) ConstAttr());
4298    }
4299
4300    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4301      FD->addAttr(::new (Context) NoReturnAttr());
4302    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4303      FD->addAttr(::new (Context) NoThrowAttr());
4304    if (Context.BuiltinInfo.isConst(BuiltinID))
4305      FD->addAttr(::new (Context) ConstAttr());
4306  }
4307
4308  IdentifierInfo *Name = FD->getIdentifier();
4309  if (!Name)
4310    return;
4311  if ((!getLangOptions().CPlusPlus &&
4312       FD->getDeclContext()->isTranslationUnit()) ||
4313      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4314       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4315       LinkageSpecDecl::lang_c)) {
4316    // Okay: this could be a libc/libm/Objective-C function we know
4317    // about.
4318  } else
4319    return;
4320
4321  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4322    // FIXME: NSLog and NSLogv should be target specific
4323    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4324      // FIXME: We known better than our headers.
4325      const_cast<FormatAttr *>(Format)->setType("printf");
4326    } else
4327      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4328                                             Name->isStr("NSLogv") ? 0 : 2));
4329  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4330    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4331    // target-specific builtins, perhaps?
4332    if (!FD->getAttr<FormatAttr>())
4333      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4334                                             Name->isStr("vasprintf") ? 0 : 3));
4335  }
4336}
4337
4338TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4339                                    TypeSourceInfo *TInfo) {
4340  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4341  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4342
4343  if (!TInfo) {
4344    assert(D.isInvalidType() && "no declarator info for valid type");
4345    TInfo = Context.getTrivialTypeSourceInfo(T);
4346  }
4347
4348  // Scope manipulation handled by caller.
4349  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4350                                           D.getIdentifierLoc(),
4351                                           D.getIdentifier(),
4352                                           TInfo);
4353
4354  if (const TagType *TT = T->getAs<TagType>()) {
4355    TagDecl *TD = TT->getDecl();
4356
4357    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4358    // keep track of the TypedefDecl.
4359    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4360      TD->setTypedefForAnonDecl(NewTD);
4361  }
4362
4363  if (D.isInvalidType())
4364    NewTD->setInvalidDecl();
4365  return NewTD;
4366}
4367
4368
4369/// \brief Determine whether a tag with a given kind is acceptable
4370/// as a redeclaration of the given tag declaration.
4371///
4372/// \returns true if the new tag kind is acceptable, false otherwise.
4373bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4374                                        TagDecl::TagKind NewTag,
4375                                        SourceLocation NewTagLoc,
4376                                        const IdentifierInfo &Name) {
4377  // C++ [dcl.type.elab]p3:
4378  //   The class-key or enum keyword present in the
4379  //   elaborated-type-specifier shall agree in kind with the
4380  //   declaration to which the name in theelaborated-type-specifier
4381  //   refers. This rule also applies to the form of
4382  //   elaborated-type-specifier that declares a class-name or
4383  //   friend class since it can be construed as referring to the
4384  //   definition of the class. Thus, in any
4385  //   elaborated-type-specifier, the enum keyword shall be used to
4386  //   refer to an enumeration (7.2), the union class-keyshall be
4387  //   used to refer to a union (clause 9), and either the class or
4388  //   struct class-key shall be used to refer to a class (clause 9)
4389  //   declared using the class or struct class-key.
4390  TagDecl::TagKind OldTag = Previous->getTagKind();
4391  if (OldTag == NewTag)
4392    return true;
4393
4394  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4395      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4396    // Warn about the struct/class tag mismatch.
4397    bool isTemplate = false;
4398    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4399      isTemplate = Record->getDescribedClassTemplate();
4400
4401    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4402      << (NewTag == TagDecl::TK_class)
4403      << isTemplate << &Name
4404      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4405                              OldTag == TagDecl::TK_class? "class" : "struct");
4406    Diag(Previous->getLocation(), diag::note_previous_use);
4407    return true;
4408  }
4409  return false;
4410}
4411
4412/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4413/// former case, Name will be non-null.  In the later case, Name will be null.
4414/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4415/// reference/declaration/definition of a tag.
4416Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4417                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4418                               IdentifierInfo *Name, SourceLocation NameLoc,
4419                               AttributeList *Attr, AccessSpecifier AS,
4420                               MultiTemplateParamsArg TemplateParameterLists,
4421                               bool &OwnedDecl, bool &IsDependent) {
4422  // If this is not a definition, it must have a name.
4423  assert((Name != 0 || TUK == TUK_Definition) &&
4424         "Nameless record must be a definition!");
4425
4426  OwnedDecl = false;
4427  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4428
4429  // FIXME: Check explicit specializations more carefully.
4430  bool isExplicitSpecialization = false;
4431  if (TUK != TUK_Reference) {
4432    if (TemplateParameterList *TemplateParams
4433          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4434                        (TemplateParameterList**)TemplateParameterLists.get(),
4435                                              TemplateParameterLists.size(),
4436                                                    isExplicitSpecialization)) {
4437      if (TemplateParams->size() > 0) {
4438        // This is a declaration or definition of a class template (which may
4439        // be a member of another template).
4440        OwnedDecl = false;
4441        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4442                                               SS, Name, NameLoc, Attr,
4443                                               TemplateParams,
4444                                               AS);
4445        TemplateParameterLists.release();
4446        return Result.get();
4447      } else {
4448        // The "template<>" header is extraneous.
4449        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4450          << ElaboratedType::getNameForTagKind(Kind) << Name;
4451        isExplicitSpecialization = true;
4452      }
4453    }
4454
4455    TemplateParameterLists.release();
4456  }
4457
4458  DeclContext *SearchDC = CurContext;
4459  DeclContext *DC = CurContext;
4460  bool isStdBadAlloc = false;
4461  bool Invalid = false;
4462
4463  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4464                                                   : NotForRedeclaration);
4465
4466  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4467
4468  if (Name && SS.isNotEmpty()) {
4469    // We have a nested-name tag ('struct foo::bar').
4470
4471    // Check for invalid 'foo::'.
4472    if (SS.isInvalid()) {
4473      Name = 0;
4474      goto CreateNewDecl;
4475    }
4476
4477    // If this is a friend or a reference to a class in a dependent
4478    // context, don't try to make a decl for it.
4479    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4480      DC = computeDeclContext(SS, false);
4481      if (!DC) {
4482        IsDependent = true;
4483        return DeclPtrTy();
4484      }
4485    }
4486
4487    if (RequireCompleteDeclContext(SS))
4488      return DeclPtrTy::make((Decl *)0);
4489
4490    DC = computeDeclContext(SS, true);
4491    SearchDC = DC;
4492    // Look-up name inside 'foo::'.
4493    LookupQualifiedName(Previous, DC);
4494
4495    if (Previous.isAmbiguous())
4496      return DeclPtrTy();
4497
4498    if (Previous.empty()) {
4499      // Name lookup did not find anything. However, if the
4500      // nested-name-specifier refers to the current instantiation,
4501      // and that current instantiation has any dependent base
4502      // classes, we might find something at instantiation time: treat
4503      // this as a dependent elaborated-type-specifier.
4504      if (Previous.wasNotFoundInCurrentInstantiation()) {
4505        IsDependent = true;
4506        return DeclPtrTy();
4507      }
4508
4509      // A tag 'foo::bar' must already exist.
4510      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4511      Name = 0;
4512      Invalid = true;
4513      goto CreateNewDecl;
4514    }
4515  } else if (Name) {
4516    // If this is a named struct, check to see if there was a previous forward
4517    // declaration or definition.
4518    // FIXME: We're looking into outer scopes here, even when we
4519    // shouldn't be. Doing so can result in ambiguities that we
4520    // shouldn't be diagnosing.
4521    LookupName(Previous, S);
4522
4523    // Note:  there used to be some attempt at recovery here.
4524    if (Previous.isAmbiguous())
4525      return DeclPtrTy();
4526
4527    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4528      // FIXME: This makes sure that we ignore the contexts associated
4529      // with C structs, unions, and enums when looking for a matching
4530      // tag declaration or definition. See the similar lookup tweak
4531      // in Sema::LookupName; is there a better way to deal with this?
4532      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4533        SearchDC = SearchDC->getParent();
4534    }
4535  }
4536
4537  if (Previous.isSingleResult() &&
4538      Previous.getFoundDecl()->isTemplateParameter()) {
4539    // Maybe we will complain about the shadowed template parameter.
4540    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4541    // Just pretend that we didn't see the previous declaration.
4542    Previous.clear();
4543  }
4544
4545  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4546      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4547    // This is a declaration of or a reference to "std::bad_alloc".
4548    isStdBadAlloc = true;
4549
4550    if (Previous.empty() && StdBadAlloc) {
4551      // std::bad_alloc has been implicitly declared (but made invisible to
4552      // name lookup). Fill in this implicit declaration as the previous
4553      // declaration, so that the declarations get chained appropriately.
4554      Previous.addDecl(StdBadAlloc);
4555    }
4556  }
4557
4558  if (!Previous.empty()) {
4559    assert(Previous.isSingleResult());
4560    NamedDecl *PrevDecl = Previous.getFoundDecl();
4561    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4562      // If this is a use of a previous tag, or if the tag is already declared
4563      // in the same scope (so that the definition/declaration completes or
4564      // rementions the tag), reuse the decl.
4565      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4566          isDeclInScope(PrevDecl, SearchDC, S)) {
4567        // Make sure that this wasn't declared as an enum and now used as a
4568        // struct or something similar.
4569        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4570          bool SafeToContinue
4571            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4572               Kind != TagDecl::TK_enum);
4573          if (SafeToContinue)
4574            Diag(KWLoc, diag::err_use_with_wrong_tag)
4575              << Name
4576              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4577                                                  PrevTagDecl->getKindName());
4578          else
4579            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4580          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4581
4582          if (SafeToContinue)
4583            Kind = PrevTagDecl->getTagKind();
4584          else {
4585            // Recover by making this an anonymous redefinition.
4586            Name = 0;
4587            Previous.clear();
4588            Invalid = true;
4589          }
4590        }
4591
4592        if (!Invalid) {
4593          // If this is a use, just return the declaration we found.
4594
4595          // FIXME: In the future, return a variant or some other clue
4596          // for the consumer of this Decl to know it doesn't own it.
4597          // For our current ASTs this shouldn't be a problem, but will
4598          // need to be changed with DeclGroups.
4599          if (TUK == TUK_Reference || TUK == TUK_Friend)
4600            return DeclPtrTy::make(PrevTagDecl);
4601
4602          // Diagnose attempts to redefine a tag.
4603          if (TUK == TUK_Definition) {
4604            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4605              // If we're defining a specialization and the previous definition
4606              // is from an implicit instantiation, don't emit an error
4607              // here; we'll catch this in the general case below.
4608              if (!isExplicitSpecialization ||
4609                  !isa<CXXRecordDecl>(Def) ||
4610                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4611                                               == TSK_ExplicitSpecialization) {
4612                Diag(NameLoc, diag::err_redefinition) << Name;
4613                Diag(Def->getLocation(), diag::note_previous_definition);
4614                // If this is a redefinition, recover by making this
4615                // struct be anonymous, which will make any later
4616                // references get the previous definition.
4617                Name = 0;
4618                Previous.clear();
4619                Invalid = true;
4620              }
4621            } else {
4622              // If the type is currently being defined, complain
4623              // about a nested redefinition.
4624              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4625              if (Tag->isBeingDefined()) {
4626                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4627                Diag(PrevTagDecl->getLocation(),
4628                     diag::note_previous_definition);
4629                Name = 0;
4630                Previous.clear();
4631                Invalid = true;
4632              }
4633            }
4634
4635            // Okay, this is definition of a previously declared or referenced
4636            // tag PrevDecl. We're going to create a new Decl for it.
4637          }
4638        }
4639        // If we get here we have (another) forward declaration or we
4640        // have a definition.  Just create a new decl.
4641
4642      } else {
4643        // If we get here, this is a definition of a new tag type in a nested
4644        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4645        // new decl/type.  We set PrevDecl to NULL so that the entities
4646        // have distinct types.
4647        Previous.clear();
4648      }
4649      // If we get here, we're going to create a new Decl. If PrevDecl
4650      // is non-NULL, it's a definition of the tag declared by
4651      // PrevDecl. If it's NULL, we have a new definition.
4652    } else {
4653      // PrevDecl is a namespace, template, or anything else
4654      // that lives in the IDNS_Tag identifier namespace.
4655      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4656        // The tag name clashes with a namespace name, issue an error and
4657        // recover by making this tag be anonymous.
4658        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4659        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4660        Name = 0;
4661        Previous.clear();
4662        Invalid = true;
4663      } else {
4664        // The existing declaration isn't relevant to us; we're in a
4665        // new scope, so clear out the previous declaration.
4666        Previous.clear();
4667      }
4668    }
4669  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4670    // C++ [basic.scope.pdecl]p5:
4671    //   -- for an elaborated-type-specifier of the form
4672    //
4673    //          class-key identifier
4674    //
4675    //      if the elaborated-type-specifier is used in the
4676    //      decl-specifier-seq or parameter-declaration-clause of a
4677    //      function defined in namespace scope, the identifier is
4678    //      declared as a class-name in the namespace that contains
4679    //      the declaration; otherwise, except as a friend
4680    //      declaration, the identifier is declared in the smallest
4681    //      non-class, non-function-prototype scope that contains the
4682    //      declaration.
4683    //
4684    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4685    // C structs and unions.
4686    //
4687    // It is an error in C++ to declare (rather than define) an enum
4688    // type, including via an elaborated type specifier.  We'll
4689    // diagnose that later; for now, declare the enum in the same
4690    // scope as we would have picked for any other tag type.
4691    //
4692    // GNU C also supports this behavior as part of its incomplete
4693    // enum types extension, while GNU C++ does not.
4694    //
4695    // Find the context where we'll be declaring the tag.
4696    // FIXME: We would like to maintain the current DeclContext as the
4697    // lexical context,
4698    while (SearchDC->isRecord())
4699      SearchDC = SearchDC->getParent();
4700
4701    // Find the scope where we'll be declaring the tag.
4702    while (S->isClassScope() ||
4703           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4704           ((S->getFlags() & Scope::DeclScope) == 0) ||
4705           (S->getEntity() &&
4706            ((DeclContext *)S->getEntity())->isTransparentContext()))
4707      S = S->getParent();
4708
4709  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4710    // C++ [namespace.memdef]p3:
4711    //   If a friend declaration in a non-local class first declares a
4712    //   class or function, the friend class or function is a member of
4713    //   the innermost enclosing namespace.
4714    while (!SearchDC->isFileContext())
4715      SearchDC = SearchDC->getParent();
4716
4717    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4718    while (S->getEntity() != SearchDC)
4719      S = S->getParent();
4720  }
4721
4722CreateNewDecl:
4723
4724  TagDecl *PrevDecl = 0;
4725  if (Previous.isSingleResult())
4726    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4727
4728  // If there is an identifier, use the location of the identifier as the
4729  // location of the decl, otherwise use the location of the struct/union
4730  // keyword.
4731  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4732
4733  // Otherwise, create a new declaration. If there is a previous
4734  // declaration of the same entity, the two will be linked via
4735  // PrevDecl.
4736  TagDecl *New;
4737
4738  if (Kind == TagDecl::TK_enum) {
4739    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4740    // enum X { A, B, C } D;    D should chain to X.
4741    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4742                           cast_or_null<EnumDecl>(PrevDecl));
4743    // If this is an undefined enum, warn.
4744    if (TUK != TUK_Definition && !Invalid)  {
4745      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4746                                              : diag::ext_forward_ref_enum;
4747      Diag(Loc, DK);
4748    }
4749  } else {
4750    // struct/union/class
4751
4752    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4753    // struct X { int A; } D;    D should chain to X.
4754    if (getLangOptions().CPlusPlus) {
4755      // FIXME: Look for a way to use RecordDecl for simple structs.
4756      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4757                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4758
4759      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4760        StdBadAlloc = cast<CXXRecordDecl>(New);
4761    } else
4762      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4763                               cast_or_null<RecordDecl>(PrevDecl));
4764  }
4765
4766  if (Kind != TagDecl::TK_enum) {
4767    // Handle #pragma pack: if the #pragma pack stack has non-default
4768    // alignment, make up a packed attribute for this decl. These
4769    // attributes are checked when the ASTContext lays out the
4770    // structure.
4771    //
4772    // It is important for implementing the correct semantics that this
4773    // happen here (in act on tag decl). The #pragma pack stack is
4774    // maintained as a result of parser callbacks which can occur at
4775    // many points during the parsing of a struct declaration (because
4776    // the #pragma tokens are effectively skipped over during the
4777    // parsing of the struct).
4778    if (unsigned Alignment = getPragmaPackAlignment())
4779      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4780  }
4781
4782  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4783    // C++ [dcl.typedef]p3:
4784    //   [...] Similarly, in a given scope, a class or enumeration
4785    //   shall not be declared with the same name as a typedef-name
4786    //   that is declared in that scope and refers to a type other
4787    //   than the class or enumeration itself.
4788    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4789                        ForRedeclaration);
4790    LookupName(Lookup, S);
4791    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4792    NamedDecl *PrevTypedefNamed = PrevTypedef;
4793    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4794        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4795          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4796      Diag(Loc, diag::err_tag_definition_of_typedef)
4797        << Context.getTypeDeclType(New)
4798        << PrevTypedef->getUnderlyingType();
4799      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4800      Invalid = true;
4801    }
4802  }
4803
4804  // If this is a specialization of a member class (of a class template),
4805  // check the specialization.
4806  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4807    Invalid = true;
4808
4809  if (Invalid)
4810    New->setInvalidDecl();
4811
4812  if (Attr)
4813    ProcessDeclAttributeList(S, New, Attr);
4814
4815  // If we're declaring or defining a tag in function prototype scope
4816  // in C, note that this type can only be used within the function.
4817  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4818    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4819
4820  // Set the lexical context. If the tag has a C++ scope specifier, the
4821  // lexical context will be different from the semantic context.
4822  New->setLexicalDeclContext(CurContext);
4823
4824  // Mark this as a friend decl if applicable.
4825  if (TUK == TUK_Friend)
4826    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4827
4828  // Set the access specifier.
4829  if (!Invalid && TUK != TUK_Friend)
4830    SetMemberAccessSpecifier(New, PrevDecl, AS);
4831
4832  if (TUK == TUK_Definition)
4833    New->startDefinition();
4834
4835  // If this has an identifier, add it to the scope stack.
4836  if (TUK == TUK_Friend) {
4837    // We might be replacing an existing declaration in the lookup tables;
4838    // if so, borrow its access specifier.
4839    if (PrevDecl)
4840      New->setAccess(PrevDecl->getAccess());
4841
4842    // Friend tag decls are visible in fairly strange ways.
4843    if (!CurContext->isDependentContext()) {
4844      DeclContext *DC = New->getDeclContext()->getLookupContext();
4845      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4846      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4847        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4848    }
4849  } else if (Name) {
4850    S = getNonFieldDeclScope(S);
4851    PushOnScopeChains(New, S);
4852  } else {
4853    CurContext->addDecl(New);
4854  }
4855
4856  // If this is the C FILE type, notify the AST context.
4857  if (IdentifierInfo *II = New->getIdentifier())
4858    if (!New->isInvalidDecl() &&
4859        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4860        II->isStr("FILE"))
4861      Context.setFILEDecl(New);
4862
4863  OwnedDecl = true;
4864  return DeclPtrTy::make(New);
4865}
4866
4867void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4868  AdjustDeclIfTemplate(TagD);
4869  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4870
4871  // Enter the tag context.
4872  PushDeclContext(S, Tag);
4873}
4874
4875void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4876                                           SourceLocation LBraceLoc) {
4877  AdjustDeclIfTemplate(TagD);
4878  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4879
4880  FieldCollector->StartClass();
4881
4882  if (!Record->getIdentifier())
4883    return;
4884
4885  // C++ [class]p2:
4886  //   [...] The class-name is also inserted into the scope of the
4887  //   class itself; this is known as the injected-class-name. For
4888  //   purposes of access checking, the injected-class-name is treated
4889  //   as if it were a public member name.
4890  CXXRecordDecl *InjectedClassName
4891    = CXXRecordDecl::Create(Context, Record->getTagKind(),
4892                            CurContext, Record->getLocation(),
4893                            Record->getIdentifier(),
4894                            Record->getTagKeywordLoc(),
4895                            Record);
4896  InjectedClassName->setImplicit();
4897  InjectedClassName->setAccess(AS_public);
4898  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4899      InjectedClassName->setDescribedClassTemplate(Template);
4900  PushOnScopeChains(InjectedClassName, S);
4901  assert(InjectedClassName->isInjectedClassName() &&
4902         "Broken injected-class-name");
4903}
4904
4905// Traverses the class and any nested classes, making a note of any
4906// dynamic classes that have no key function so that we can mark all of
4907// their virtual member functions as "used" at the end of the translation
4908// unit. This ensures that all functions needed by the vtable will get
4909// instantiated/synthesized.
4910static void
4911RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
4912                                      SourceLocation Loc) {
4913  // We don't look at dependent or undefined classes.
4914  if (Record->isDependentContext() || !Record->isDefinition())
4915    return;
4916
4917  if (Record->isDynamicClass() && !S.Context.getKeyFunction(Record))
4918    S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record, Loc));
4919
4920  for (DeclContext::decl_iterator D = Record->decls_begin(),
4921                               DEnd = Record->decls_end();
4922       D != DEnd; ++D) {
4923    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
4924      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
4925  }
4926}
4927
4928void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4929                                    SourceLocation RBraceLoc) {
4930  AdjustDeclIfTemplate(TagD);
4931  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4932  Tag->setRBraceLoc(RBraceLoc);
4933
4934  if (isa<CXXRecordDecl>(Tag))
4935    FieldCollector->FinishClass();
4936
4937  // Exit this scope of this tag's definition.
4938  PopDeclContext();
4939
4940  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
4941    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
4942                                          RBraceLoc);
4943
4944  // Notify the consumer that we've defined a tag.
4945  Consumer.HandleTagDeclDefinition(Tag);
4946}
4947
4948// Note that FieldName may be null for anonymous bitfields.
4949bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4950                          QualType FieldTy, const Expr *BitWidth,
4951                          bool *ZeroWidth) {
4952  // Default to true; that shouldn't confuse checks for emptiness
4953  if (ZeroWidth)
4954    *ZeroWidth = true;
4955
4956  // C99 6.7.2.1p4 - verify the field type.
4957  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4958  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4959    // Handle incomplete types with specific error.
4960    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4961      return true;
4962    if (FieldName)
4963      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4964        << FieldName << FieldTy << BitWidth->getSourceRange();
4965    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4966      << FieldTy << BitWidth->getSourceRange();
4967  }
4968
4969  // If the bit-width is type- or value-dependent, don't try to check
4970  // it now.
4971  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4972    return false;
4973
4974  llvm::APSInt Value;
4975  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4976    return true;
4977
4978  if (Value != 0 && ZeroWidth)
4979    *ZeroWidth = false;
4980
4981  // Zero-width bitfield is ok for anonymous field.
4982  if (Value == 0 && FieldName)
4983    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4984
4985  if (Value.isSigned() && Value.isNegative()) {
4986    if (FieldName)
4987      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4988               << FieldName << Value.toString(10);
4989    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4990      << Value.toString(10);
4991  }
4992
4993  if (!FieldTy->isDependentType()) {
4994    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4995    if (Value.getZExtValue() > TypeSize) {
4996      if (FieldName)
4997        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4998          << FieldName << (unsigned)TypeSize;
4999      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5000        << (unsigned)TypeSize;
5001    }
5002  }
5003
5004  return false;
5005}
5006
5007/// ActOnField - Each field of a struct/union/class is passed into this in order
5008/// to create a FieldDecl object for it.
5009Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5010                                 SourceLocation DeclStart,
5011                                 Declarator &D, ExprTy *BitfieldWidth) {
5012  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5013                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5014                               AS_public);
5015  return DeclPtrTy::make(Res);
5016}
5017
5018/// HandleField - Analyze a field of a C struct or a C++ data member.
5019///
5020FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5021                             SourceLocation DeclStart,
5022                             Declarator &D, Expr *BitWidth,
5023                             AccessSpecifier AS) {
5024  IdentifierInfo *II = D.getIdentifier();
5025  SourceLocation Loc = DeclStart;
5026  if (II) Loc = D.getIdentifierLoc();
5027
5028  TypeSourceInfo *TInfo = 0;
5029  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5030  if (getLangOptions().CPlusPlus)
5031    CheckExtraCXXDefaultArguments(D);
5032
5033  DiagnoseFunctionSpecifiers(D);
5034
5035  if (D.getDeclSpec().isThreadSpecified())
5036    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5037
5038  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5039                                         ForRedeclaration);
5040
5041  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5042    // Maybe we will complain about the shadowed template parameter.
5043    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5044    // Just pretend that we didn't see the previous declaration.
5045    PrevDecl = 0;
5046  }
5047
5048  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5049    PrevDecl = 0;
5050
5051  bool Mutable
5052    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5053  SourceLocation TSSL = D.getSourceRange().getBegin();
5054  FieldDecl *NewFD
5055    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5056                     AS, PrevDecl, &D);
5057  if (NewFD->isInvalidDecl() && PrevDecl) {
5058    // Don't introduce NewFD into scope; there's already something
5059    // with the same name in the same scope.
5060  } else if (II) {
5061    PushOnScopeChains(NewFD, S);
5062  } else
5063    Record->addDecl(NewFD);
5064
5065  return NewFD;
5066}
5067
5068/// \brief Build a new FieldDecl and check its well-formedness.
5069///
5070/// This routine builds a new FieldDecl given the fields name, type,
5071/// record, etc. \p PrevDecl should refer to any previous declaration
5072/// with the same name and in the same scope as the field to be
5073/// created.
5074///
5075/// \returns a new FieldDecl.
5076///
5077/// \todo The Declarator argument is a hack. It will be removed once
5078FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5079                                TypeSourceInfo *TInfo,
5080                                RecordDecl *Record, SourceLocation Loc,
5081                                bool Mutable, Expr *BitWidth,
5082                                SourceLocation TSSL,
5083                                AccessSpecifier AS, NamedDecl *PrevDecl,
5084                                Declarator *D) {
5085  IdentifierInfo *II = Name.getAsIdentifierInfo();
5086  bool InvalidDecl = false;
5087  if (D) InvalidDecl = D->isInvalidType();
5088
5089  // If we receive a broken type, recover by assuming 'int' and
5090  // marking this declaration as invalid.
5091  if (T.isNull()) {
5092    InvalidDecl = true;
5093    T = Context.IntTy;
5094  }
5095
5096  QualType EltTy = Context.getBaseElementType(T);
5097  if (!EltTy->isDependentType() &&
5098      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5099    InvalidDecl = true;
5100
5101  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5102  // than a variably modified type.
5103  if (!InvalidDecl && T->isVariablyModifiedType()) {
5104    bool SizeIsNegative;
5105    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5106                                                           SizeIsNegative);
5107    if (!FixedTy.isNull()) {
5108      Diag(Loc, diag::warn_illegal_constant_array_size);
5109      T = FixedTy;
5110    } else {
5111      if (SizeIsNegative)
5112        Diag(Loc, diag::err_typecheck_negative_array_size);
5113      else
5114        Diag(Loc, diag::err_typecheck_field_variable_size);
5115      InvalidDecl = true;
5116    }
5117  }
5118
5119  // Fields can not have abstract class types
5120  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5121                                             diag::err_abstract_type_in_decl,
5122                                             AbstractFieldType))
5123    InvalidDecl = true;
5124
5125  bool ZeroWidth = false;
5126  // If this is declared as a bit-field, check the bit-field.
5127  if (!InvalidDecl && BitWidth &&
5128      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5129    InvalidDecl = true;
5130    DeleteExpr(BitWidth);
5131    BitWidth = 0;
5132    ZeroWidth = false;
5133  }
5134
5135  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5136                                       BitWidth, Mutable);
5137  if (InvalidDecl)
5138    NewFD->setInvalidDecl();
5139
5140  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5141    Diag(Loc, diag::err_duplicate_member) << II;
5142    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5143    NewFD->setInvalidDecl();
5144  }
5145
5146  if (getLangOptions().CPlusPlus) {
5147    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5148
5149    if (!T->isPODType())
5150      CXXRecord->setPOD(false);
5151    if (!ZeroWidth)
5152      CXXRecord->setEmpty(false);
5153
5154    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5155      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5156
5157      if (!RDecl->hasTrivialConstructor())
5158        CXXRecord->setHasTrivialConstructor(false);
5159      if (!RDecl->hasTrivialCopyConstructor())
5160        CXXRecord->setHasTrivialCopyConstructor(false);
5161      if (!RDecl->hasTrivialCopyAssignment())
5162        CXXRecord->setHasTrivialCopyAssignment(false);
5163      if (!RDecl->hasTrivialDestructor())
5164        CXXRecord->setHasTrivialDestructor(false);
5165
5166      // C++ 9.5p1: An object of a class with a non-trivial
5167      // constructor, a non-trivial copy constructor, a non-trivial
5168      // destructor, or a non-trivial copy assignment operator
5169      // cannot be a member of a union, nor can an array of such
5170      // objects.
5171      // TODO: C++0x alters this restriction significantly.
5172      if (Record->isUnion()) {
5173        // We check for copy constructors before constructors
5174        // because otherwise we'll never get complaints about
5175        // copy constructors.
5176
5177        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5178
5179        CXXSpecialMember member;
5180        if (!RDecl->hasTrivialCopyConstructor())
5181          member = CXXCopyConstructor;
5182        else if (!RDecl->hasTrivialConstructor())
5183          member = CXXDefaultConstructor;
5184        else if (!RDecl->hasTrivialCopyAssignment())
5185          member = CXXCopyAssignment;
5186        else if (!RDecl->hasTrivialDestructor())
5187          member = CXXDestructor;
5188        else
5189          member = invalid;
5190
5191        if (member != invalid) {
5192          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5193          DiagnoseNontrivial(RT, member);
5194          NewFD->setInvalidDecl();
5195        }
5196      }
5197    }
5198  }
5199
5200  // FIXME: We need to pass in the attributes given an AST
5201  // representation, not a parser representation.
5202  if (D)
5203    // FIXME: What to pass instead of TUScope?
5204    ProcessDeclAttributes(TUScope, NewFD, *D);
5205
5206  if (T.isObjCGCWeak())
5207    Diag(Loc, diag::warn_attribute_weak_on_field);
5208
5209  NewFD->setAccess(AS);
5210
5211  // C++ [dcl.init.aggr]p1:
5212  //   An aggregate is an array or a class (clause 9) with [...] no
5213  //   private or protected non-static data members (clause 11).
5214  // A POD must be an aggregate.
5215  if (getLangOptions().CPlusPlus &&
5216      (AS == AS_private || AS == AS_protected)) {
5217    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5218    CXXRecord->setAggregate(false);
5219    CXXRecord->setPOD(false);
5220  }
5221
5222  return NewFD;
5223}
5224
5225/// DiagnoseNontrivial - Given that a class has a non-trivial
5226/// special member, figure out why.
5227void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5228  QualType QT(T, 0U);
5229  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5230
5231  // Check whether the member was user-declared.
5232  switch (member) {
5233  case CXXDefaultConstructor:
5234    if (RD->hasUserDeclaredConstructor()) {
5235      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5236      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5237        const FunctionDecl *body = 0;
5238        ci->getBody(body);
5239        if (!body ||
5240            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5241          SourceLocation CtorLoc = ci->getLocation();
5242          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5243          return;
5244        }
5245      }
5246
5247      assert(0 && "found no user-declared constructors");
5248      return;
5249    }
5250    break;
5251
5252  case CXXCopyConstructor:
5253    if (RD->hasUserDeclaredCopyConstructor()) {
5254      SourceLocation CtorLoc =
5255        RD->getCopyConstructor(Context, 0)->getLocation();
5256      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5257      return;
5258    }
5259    break;
5260
5261  case CXXCopyAssignment:
5262    if (RD->hasUserDeclaredCopyAssignment()) {
5263      // FIXME: this should use the location of the copy
5264      // assignment, not the type.
5265      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5266      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5267      return;
5268    }
5269    break;
5270
5271  case CXXDestructor:
5272    if (RD->hasUserDeclaredDestructor()) {
5273      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5274      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5275      return;
5276    }
5277    break;
5278  }
5279
5280  typedef CXXRecordDecl::base_class_iterator base_iter;
5281
5282  // Virtual bases and members inhibit trivial copying/construction,
5283  // but not trivial destruction.
5284  if (member != CXXDestructor) {
5285    // Check for virtual bases.  vbases includes indirect virtual bases,
5286    // so we just iterate through the direct bases.
5287    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5288      if (bi->isVirtual()) {
5289        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5290        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5291        return;
5292      }
5293
5294    // Check for virtual methods.
5295    typedef CXXRecordDecl::method_iterator meth_iter;
5296    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5297         ++mi) {
5298      if (mi->isVirtual()) {
5299        SourceLocation MLoc = mi->getSourceRange().getBegin();
5300        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5301        return;
5302      }
5303    }
5304  }
5305
5306  bool (CXXRecordDecl::*hasTrivial)() const;
5307  switch (member) {
5308  case CXXDefaultConstructor:
5309    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5310  case CXXCopyConstructor:
5311    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5312  case CXXCopyAssignment:
5313    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5314  case CXXDestructor:
5315    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5316  default:
5317    assert(0 && "unexpected special member"); return;
5318  }
5319
5320  // Check for nontrivial bases (and recurse).
5321  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5322    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5323    assert(BaseRT && "Don't know how to handle dependent bases");
5324    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5325    if (!(BaseRecTy->*hasTrivial)()) {
5326      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5327      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5328      DiagnoseNontrivial(BaseRT, member);
5329      return;
5330    }
5331  }
5332
5333  // Check for nontrivial members (and recurse).
5334  typedef RecordDecl::field_iterator field_iter;
5335  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5336       ++fi) {
5337    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5338    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5339      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5340
5341      if (!(EltRD->*hasTrivial)()) {
5342        SourceLocation FLoc = (*fi)->getLocation();
5343        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5344        DiagnoseNontrivial(EltRT, member);
5345        return;
5346      }
5347    }
5348  }
5349
5350  assert(0 && "found no explanation for non-trivial member");
5351}
5352
5353/// TranslateIvarVisibility - Translate visibility from a token ID to an
5354///  AST enum value.
5355static ObjCIvarDecl::AccessControl
5356TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5357  switch (ivarVisibility) {
5358  default: assert(0 && "Unknown visitibility kind");
5359  case tok::objc_private: return ObjCIvarDecl::Private;
5360  case tok::objc_public: return ObjCIvarDecl::Public;
5361  case tok::objc_protected: return ObjCIvarDecl::Protected;
5362  case tok::objc_package: return ObjCIvarDecl::Package;
5363  }
5364}
5365
5366/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5367/// in order to create an IvarDecl object for it.
5368Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5369                                SourceLocation DeclStart,
5370                                DeclPtrTy IntfDecl,
5371                                Declarator &D, ExprTy *BitfieldWidth,
5372                                tok::ObjCKeywordKind Visibility) {
5373
5374  IdentifierInfo *II = D.getIdentifier();
5375  Expr *BitWidth = (Expr*)BitfieldWidth;
5376  SourceLocation Loc = DeclStart;
5377  if (II) Loc = D.getIdentifierLoc();
5378
5379  // FIXME: Unnamed fields can be handled in various different ways, for
5380  // example, unnamed unions inject all members into the struct namespace!
5381
5382  TypeSourceInfo *TInfo = 0;
5383  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5384
5385  if (BitWidth) {
5386    // 6.7.2.1p3, 6.7.2.1p4
5387    if (VerifyBitField(Loc, II, T, BitWidth)) {
5388      D.setInvalidType();
5389      DeleteExpr(BitWidth);
5390      BitWidth = 0;
5391    }
5392  } else {
5393    // Not a bitfield.
5394
5395    // validate II.
5396
5397  }
5398
5399  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5400  // than a variably modified type.
5401  if (T->isVariablyModifiedType()) {
5402    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5403    D.setInvalidType();
5404  }
5405
5406  // Get the visibility (access control) for this ivar.
5407  ObjCIvarDecl::AccessControl ac =
5408    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5409                                        : ObjCIvarDecl::None;
5410  // Must set ivar's DeclContext to its enclosing interface.
5411  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5412  DeclContext *EnclosingContext;
5413  if (ObjCImplementationDecl *IMPDecl =
5414      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5415    // Case of ivar declared in an implementation. Context is that of its class.
5416    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5417    assert(IDecl && "No class- ActOnIvar");
5418    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5419  } else
5420    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5421  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5422
5423  // Construct the decl.
5424  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5425                                             EnclosingContext, Loc, II, T,
5426                                             TInfo, ac, (Expr *)BitfieldWidth);
5427
5428  if (II) {
5429    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5430                                           ForRedeclaration);
5431    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5432        && !isa<TagDecl>(PrevDecl)) {
5433      Diag(Loc, diag::err_duplicate_member) << II;
5434      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5435      NewID->setInvalidDecl();
5436    }
5437  }
5438
5439  // Process attributes attached to the ivar.
5440  ProcessDeclAttributes(S, NewID, D);
5441
5442  if (D.isInvalidType())
5443    NewID->setInvalidDecl();
5444
5445  if (II) {
5446    // FIXME: When interfaces are DeclContexts, we'll need to add
5447    // these to the interface.
5448    S->AddDecl(DeclPtrTy::make(NewID));
5449    IdResolver.AddDecl(NewID);
5450  }
5451
5452  return DeclPtrTy::make(NewID);
5453}
5454
5455void Sema::ActOnFields(Scope* S,
5456                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5457                       DeclPtrTy *Fields, unsigned NumFields,
5458                       SourceLocation LBrac, SourceLocation RBrac,
5459                       AttributeList *Attr) {
5460  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5461  assert(EnclosingDecl && "missing record or interface decl");
5462
5463  // If the decl this is being inserted into is invalid, then it may be a
5464  // redeclaration or some other bogus case.  Don't try to add fields to it.
5465  if (EnclosingDecl->isInvalidDecl()) {
5466    // FIXME: Deallocate fields?
5467    return;
5468  }
5469
5470
5471  // Verify that all the fields are okay.
5472  unsigned NumNamedMembers = 0;
5473  llvm::SmallVector<FieldDecl*, 32> RecFields;
5474
5475  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5476  for (unsigned i = 0; i != NumFields; ++i) {
5477    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5478
5479    // Get the type for the field.
5480    Type *FDTy = FD->getType().getTypePtr();
5481
5482    if (!FD->isAnonymousStructOrUnion()) {
5483      // Remember all fields written by the user.
5484      RecFields.push_back(FD);
5485    }
5486
5487    // If the field is already invalid for some reason, don't emit more
5488    // diagnostics about it.
5489    if (FD->isInvalidDecl()) {
5490      EnclosingDecl->setInvalidDecl();
5491      continue;
5492    }
5493
5494    // C99 6.7.2.1p2:
5495    //   A structure or union shall not contain a member with
5496    //   incomplete or function type (hence, a structure shall not
5497    //   contain an instance of itself, but may contain a pointer to
5498    //   an instance of itself), except that the last member of a
5499    //   structure with more than one named member may have incomplete
5500    //   array type; such a structure (and any union containing,
5501    //   possibly recursively, a member that is such a structure)
5502    //   shall not be a member of a structure or an element of an
5503    //   array.
5504    if (FDTy->isFunctionType()) {
5505      // Field declared as a function.
5506      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5507        << FD->getDeclName();
5508      FD->setInvalidDecl();
5509      EnclosingDecl->setInvalidDecl();
5510      continue;
5511    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5512               Record && Record->isStruct()) {
5513      // Flexible array member.
5514      if (NumNamedMembers < 1) {
5515        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5516          << FD->getDeclName();
5517        FD->setInvalidDecl();
5518        EnclosingDecl->setInvalidDecl();
5519        continue;
5520      }
5521      // Okay, we have a legal flexible array member at the end of the struct.
5522      if (Record)
5523        Record->setHasFlexibleArrayMember(true);
5524    } else if (!FDTy->isDependentType() &&
5525               RequireCompleteType(FD->getLocation(), FD->getType(),
5526                                   diag::err_field_incomplete)) {
5527      // Incomplete type
5528      FD->setInvalidDecl();
5529      EnclosingDecl->setInvalidDecl();
5530      continue;
5531    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5532      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5533        // If this is a member of a union, then entire union becomes "flexible".
5534        if (Record && Record->isUnion()) {
5535          Record->setHasFlexibleArrayMember(true);
5536        } else {
5537          // If this is a struct/class and this is not the last element, reject
5538          // it.  Note that GCC supports variable sized arrays in the middle of
5539          // structures.
5540          if (i != NumFields-1)
5541            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5542              << FD->getDeclName() << FD->getType();
5543          else {
5544            // We support flexible arrays at the end of structs in
5545            // other structs as an extension.
5546            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5547              << FD->getDeclName();
5548            if (Record)
5549              Record->setHasFlexibleArrayMember(true);
5550          }
5551        }
5552      }
5553      if (Record && FDTTy->getDecl()->hasObjectMember())
5554        Record->setHasObjectMember(true);
5555    } else if (FDTy->isObjCInterfaceType()) {
5556      /// A field cannot be an Objective-c object
5557      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5558      FD->setInvalidDecl();
5559      EnclosingDecl->setInvalidDecl();
5560      continue;
5561    } else if (getLangOptions().ObjC1 &&
5562               getLangOptions().getGCMode() != LangOptions::NonGC &&
5563               Record &&
5564               (FD->getType()->isObjCObjectPointerType() ||
5565                FD->getType().isObjCGCStrong()))
5566      Record->setHasObjectMember(true);
5567    // Keep track of the number of named members.
5568    if (FD->getIdentifier())
5569      ++NumNamedMembers;
5570  }
5571
5572  // Okay, we successfully defined 'Record'.
5573  if (Record) {
5574    Record->completeDefinition(Context);
5575  } else {
5576    ObjCIvarDecl **ClsFields =
5577      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5578    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5579      ID->setIVarList(ClsFields, RecFields.size(), Context);
5580      ID->setLocEnd(RBrac);
5581      // Add ivar's to class's DeclContext.
5582      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5583        ClsFields[i]->setLexicalDeclContext(ID);
5584        ID->addDecl(ClsFields[i]);
5585      }
5586      // Must enforce the rule that ivars in the base classes may not be
5587      // duplicates.
5588      if (ID->getSuperClass()) {
5589        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5590             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5591          ObjCIvarDecl* Ivar = (*IVI);
5592
5593          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5594            ObjCIvarDecl* prevIvar =
5595              ID->getSuperClass()->lookupInstanceVariable(II);
5596            if (prevIvar) {
5597              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5598              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5599            }
5600          }
5601        }
5602      }
5603    } else if (ObjCImplementationDecl *IMPDecl =
5604                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5605      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5606      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5607        // Ivar declared in @implementation never belongs to the implementation.
5608        // Only it is in implementation's lexical context.
5609        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5610      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5611    }
5612  }
5613
5614  if (Attr)
5615    ProcessDeclAttributeList(S, Record, Attr);
5616}
5617
5618EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5619                                          EnumConstantDecl *LastEnumConst,
5620                                          SourceLocation IdLoc,
5621                                          IdentifierInfo *Id,
5622                                          ExprArg val) {
5623  Expr *Val = (Expr *)val.get();
5624
5625  llvm::APSInt EnumVal(32);
5626  QualType EltTy;
5627  if (Val) {
5628    if (Enum->isDependentType())
5629      EltTy = Context.DependentTy;
5630    else {
5631      // Make sure to promote the operand type to int.
5632      UsualUnaryConversions(Val);
5633      if (Val != val.get()) {
5634        val.release();
5635        val = Val;
5636      }
5637
5638      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5639      SourceLocation ExpLoc;
5640      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5641        Val = 0;
5642      } else {
5643        EltTy = Val->getType();
5644      }
5645    }
5646  }
5647
5648  if (!Val) {
5649    if (Enum->isDependentType())
5650      EltTy = Context.DependentTy;
5651    else if (LastEnumConst) {
5652      // Assign the last value + 1.
5653      EnumVal = LastEnumConst->getInitVal();
5654      ++EnumVal;
5655
5656      // Check for overflow on increment.
5657      if (EnumVal < LastEnumConst->getInitVal())
5658        Diag(IdLoc, diag::warn_enum_value_overflow);
5659
5660      EltTy = LastEnumConst->getType();
5661    } else {
5662      // First value, set to zero.
5663      EltTy = Context.IntTy;
5664      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5665      EnumVal.setIsSigned(true);
5666    }
5667  }
5668
5669  assert(!EltTy.isNull() && "Enum constant with NULL type");
5670
5671  val.release();
5672  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5673                                  Val, EnumVal);
5674}
5675
5676
5677Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5678                                        DeclPtrTy lastEnumConst,
5679                                        SourceLocation IdLoc,
5680                                        IdentifierInfo *Id,
5681                                        SourceLocation EqualLoc, ExprTy *val) {
5682  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5683  EnumConstantDecl *LastEnumConst =
5684    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5685  Expr *Val = static_cast<Expr*>(val);
5686
5687  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5688  // we find one that is.
5689  S = getNonFieldDeclScope(S);
5690
5691  // Verify that there isn't already something declared with this name in this
5692  // scope.
5693  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
5694                                         ForRedeclaration);
5695  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5696    // Maybe we will complain about the shadowed template parameter.
5697    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5698    // Just pretend that we didn't see the previous declaration.
5699    PrevDecl = 0;
5700  }
5701
5702  if (PrevDecl) {
5703    // When in C++, we may get a TagDecl with the same name; in this case the
5704    // enum constant will 'hide' the tag.
5705    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5706           "Received TagDecl when not in C++!");
5707    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5708      if (isa<EnumConstantDecl>(PrevDecl))
5709        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5710      else
5711        Diag(IdLoc, diag::err_redefinition) << Id;
5712      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5713      if (Val) Val->Destroy(Context);
5714      return DeclPtrTy();
5715    }
5716  }
5717
5718  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5719                                            IdLoc, Id, Owned(Val));
5720
5721  // Register this decl in the current scope stack.
5722  if (New)
5723    PushOnScopeChains(New, S);
5724
5725  return DeclPtrTy::make(New);
5726}
5727
5728void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5729                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5730                         DeclPtrTy *Elements, unsigned NumElements,
5731                         Scope *S, AttributeList *Attr) {
5732  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5733  QualType EnumType = Context.getTypeDeclType(Enum);
5734
5735  if (Attr)
5736    ProcessDeclAttributeList(S, Enum, Attr);
5737
5738  if (Enum->isDependentType()) {
5739    for (unsigned i = 0; i != NumElements; ++i) {
5740      EnumConstantDecl *ECD =
5741        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5742      if (!ECD) continue;
5743
5744      ECD->setType(EnumType);
5745    }
5746
5747    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5748    return;
5749  }
5750
5751  // TODO: If the result value doesn't fit in an int, it must be a long or long
5752  // long value.  ISO C does not support this, but GCC does as an extension,
5753  // emit a warning.
5754  unsigned IntWidth = Context.Target.getIntWidth();
5755  unsigned CharWidth = Context.Target.getCharWidth();
5756  unsigned ShortWidth = Context.Target.getShortWidth();
5757
5758  // Verify that all the values are okay, compute the size of the values, and
5759  // reverse the list.
5760  unsigned NumNegativeBits = 0;
5761  unsigned NumPositiveBits = 0;
5762
5763  // Keep track of whether all elements have type int.
5764  bool AllElementsInt = true;
5765
5766  for (unsigned i = 0; i != NumElements; ++i) {
5767    EnumConstantDecl *ECD =
5768      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5769    if (!ECD) continue;  // Already issued a diagnostic.
5770
5771    // If the enum value doesn't fit in an int, emit an extension warning.
5772    const llvm::APSInt &InitVal = ECD->getInitVal();
5773    assert(InitVal.getBitWidth() >= IntWidth &&
5774           "Should have promoted value to int");
5775    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5776      llvm::APSInt V(InitVal);
5777      V.trunc(IntWidth);
5778      V.extend(InitVal.getBitWidth());
5779      if (V != InitVal)
5780        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5781          << InitVal.toString(10);
5782    }
5783
5784    // Keep track of the size of positive and negative values.
5785    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5786      NumPositiveBits = std::max(NumPositiveBits,
5787                                 (unsigned)InitVal.getActiveBits());
5788    else
5789      NumNegativeBits = std::max(NumNegativeBits,
5790                                 (unsigned)InitVal.getMinSignedBits());
5791
5792    // Keep track of whether every enum element has type int (very commmon).
5793    if (AllElementsInt)
5794      AllElementsInt = ECD->getType() == Context.IntTy;
5795  }
5796
5797  // Figure out the type that should be used for this enum.
5798  // FIXME: Support -fshort-enums.
5799  QualType BestType;
5800  unsigned BestWidth;
5801
5802  // C++0x N3000 [conv.prom]p3:
5803  //   An rvalue of an unscoped enumeration type whose underlying
5804  //   type is not fixed can be converted to an rvalue of the first
5805  //   of the following types that can represent all the values of
5806  //   the enumeration: int, unsigned int, long int, unsigned long
5807  //   int, long long int, or unsigned long long int.
5808  // C99 6.4.4.3p2:
5809  //   An identifier declared as an enumeration constant has type int.
5810  // The C99 rule is modified by a gcc extension
5811  QualType BestPromotionType;
5812
5813  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5814
5815  if (NumNegativeBits) {
5816    // If there is a negative value, figure out the smallest integer type (of
5817    // int/long/longlong) that fits.
5818    // If it's packed, check also if it fits a char or a short.
5819    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5820      BestType = Context.SignedCharTy;
5821      BestWidth = CharWidth;
5822    } else if (Packed && NumNegativeBits <= ShortWidth &&
5823               NumPositiveBits < ShortWidth) {
5824      BestType = Context.ShortTy;
5825      BestWidth = ShortWidth;
5826    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5827      BestType = Context.IntTy;
5828      BestWidth = IntWidth;
5829    } else {
5830      BestWidth = Context.Target.getLongWidth();
5831
5832      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5833        BestType = Context.LongTy;
5834      } else {
5835        BestWidth = Context.Target.getLongLongWidth();
5836
5837        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5838          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5839        BestType = Context.LongLongTy;
5840      }
5841    }
5842    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5843  } else {
5844    // If there is no negative value, figure out which of uint, ulong, ulonglong
5845    // fits.
5846    // If it's packed, check also if it fits a char or a short.
5847    if (Packed && NumPositiveBits <= CharWidth) {
5848      BestType = Context.UnsignedCharTy;
5849      BestPromotionType = Context.IntTy;
5850      BestWidth = CharWidth;
5851    } else if (Packed && NumPositiveBits <= ShortWidth) {
5852      BestType = Context.UnsignedShortTy;
5853      BestPromotionType = Context.IntTy;
5854      BestWidth = ShortWidth;
5855    } else if (NumPositiveBits <= IntWidth) {
5856      BestType = Context.UnsignedIntTy;
5857      BestWidth = IntWidth;
5858      BestPromotionType = (NumPositiveBits == BestWidth
5859                           ? Context.UnsignedIntTy : Context.IntTy);
5860    } else if (NumPositiveBits <=
5861               (BestWidth = Context.Target.getLongWidth())) {
5862      BestType = Context.UnsignedLongTy;
5863      BestPromotionType = (NumPositiveBits == BestWidth
5864                           ? Context.UnsignedLongTy : Context.LongTy);
5865    } else {
5866      BestWidth = Context.Target.getLongLongWidth();
5867      assert(NumPositiveBits <= BestWidth &&
5868             "How could an initializer get larger than ULL?");
5869      BestType = Context.UnsignedLongLongTy;
5870      BestPromotionType = (NumPositiveBits == BestWidth
5871                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5872    }
5873  }
5874
5875  // If we're in C and the promotion type is larger than an int, just
5876  // use the underlying type, which is generally the unsigned integer
5877  // type of the same rank as the promotion type.  This is how the gcc
5878  // extension works.
5879  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5880    BestPromotionType = BestType;
5881
5882  // Loop over all of the enumerator constants, changing their types to match
5883  // the type of the enum if needed.
5884  for (unsigned i = 0; i != NumElements; ++i) {
5885    EnumConstantDecl *ECD =
5886      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5887    if (!ECD) continue;  // Already issued a diagnostic.
5888
5889    // Standard C says the enumerators have int type, but we allow, as an
5890    // extension, the enumerators to be larger than int size.  If each
5891    // enumerator value fits in an int, type it as an int, otherwise type it the
5892    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5893    // that X has type 'int', not 'unsigned'.
5894    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5895      continue;
5896
5897    // Determine whether the value fits into an int.
5898    llvm::APSInt InitVal = ECD->getInitVal();
5899    bool FitsInInt;
5900    if (InitVal.isUnsigned() || !InitVal.isNegative())
5901      FitsInInt = InitVal.getActiveBits() < IntWidth;
5902    else
5903      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5904
5905    // If it fits into an integer type, force it.  Otherwise force it to match
5906    // the enum decl type.
5907    QualType NewTy;
5908    unsigned NewWidth;
5909    bool NewSign;
5910    if (FitsInInt && !getLangOptions().CPlusPlus) {
5911      NewTy = Context.IntTy;
5912      NewWidth = IntWidth;
5913      NewSign = true;
5914    } else if (ECD->getType() == BestType) {
5915      // Already the right type!
5916      if (getLangOptions().CPlusPlus)
5917        // C++ [dcl.enum]p4: Following the closing brace of an
5918        // enum-specifier, each enumerator has the type of its
5919        // enumeration.
5920        ECD->setType(EnumType);
5921      continue;
5922    } else {
5923      NewTy = BestType;
5924      NewWidth = BestWidth;
5925      NewSign = BestType->isSignedIntegerType();
5926    }
5927
5928    // Adjust the APSInt value.
5929    InitVal.extOrTrunc(NewWidth);
5930    InitVal.setIsSigned(NewSign);
5931    ECD->setInitVal(InitVal);
5932
5933    // Adjust the Expr initializer and type.
5934    if (ECD->getInitExpr())
5935      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5936                                                      CastExpr::CK_IntegralCast,
5937                                                      ECD->getInitExpr(),
5938                                                      /*isLvalue=*/false));
5939    if (getLangOptions().CPlusPlus)
5940      // C++ [dcl.enum]p4: Following the closing brace of an
5941      // enum-specifier, each enumerator has the type of its
5942      // enumeration.
5943      ECD->setType(EnumType);
5944    else
5945      ECD->setType(NewTy);
5946  }
5947
5948  Enum->completeDefinition(Context, BestType, BestPromotionType);
5949}
5950
5951Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5952                                            ExprArg expr) {
5953  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5954
5955  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5956                                                   Loc, AsmString);
5957  CurContext->addDecl(New);
5958  return DeclPtrTy::make(New);
5959}
5960
5961void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5962                             SourceLocation PragmaLoc,
5963                             SourceLocation NameLoc) {
5964  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5965
5966  if (PrevDecl) {
5967    PrevDecl->addAttr(::new (Context) WeakAttr());
5968  } else {
5969    (void)WeakUndeclaredIdentifiers.insert(
5970      std::pair<IdentifierInfo*,WeakInfo>
5971        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5972  }
5973}
5974
5975void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5976                                IdentifierInfo* AliasName,
5977                                SourceLocation PragmaLoc,
5978                                SourceLocation NameLoc,
5979                                SourceLocation AliasNameLoc) {
5980  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5981  WeakInfo W = WeakInfo(Name, NameLoc);
5982
5983  if (PrevDecl) {
5984    if (!PrevDecl->hasAttr<AliasAttr>())
5985      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5986        DeclApplyPragmaWeak(TUScope, ND, W);
5987  } else {
5988    (void)WeakUndeclaredIdentifiers.insert(
5989      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5990  }
5991}
5992