SemaDecl.cpp revision f90b6d72a924303412b3099afcae6765034e732d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>() != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if ((isa<FunctionDecl>(D) &&
323              AllowOverloadingOfFunction(D, Context)) ||
324             isa<FunctionTemplateDecl>(D)) {
325    // We are pushing the name of a function or function template,
326    // which might be an overloaded name.
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(D->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  D));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  // Allow multiple definitions for ObjC built-in typedefs.
520  // FIXME: Verify the underlying types are equivalent!
521  if (getLangOptions().ObjC1) {
522    const IdentifierInfo *TypeID = New->getIdentifier();
523    switch (TypeID->getLength()) {
524    default: break;
525    case 2:
526      if (!TypeID->isStr("id"))
527        break;
528      // Install the built-in type for 'id', ignoring the current definition.
529      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
530      return;
531    case 5:
532      if (!TypeID->isStr("Class"))
533        break;
534      // Install the built-in type for 'Class', ignoring the current definition.
535      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
536      return;
537    case 3:
538      if (!TypeID->isStr("SEL"))
539        break;
540      Context.setObjCSelType(Context.getTypeDeclType(New));
541      return;
542    case 8:
543      if (!TypeID->isStr("Protocol"))
544        break;
545      Context.setObjCProtoType(New->getUnderlyingType());
546      return;
547    }
548    // Fall through - the typedef name was not a builtin type.
549  }
550  // Verify the old decl was also a type.
551  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
552  if (!Old) {
553    Diag(New->getLocation(), diag::err_redefinition_different_kind)
554      << New->getDeclName();
555    if (OldD->getLocation().isValid())
556      Diag(OldD->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  // Determine the "old" type we'll use for checking and diagnostics.
561  QualType OldType;
562  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
563    OldType = OldTypedef->getUnderlyingType();
564  else
565    OldType = Context.getTypeDeclType(Old);
566
567  // If the typedef types are not identical, reject them in all languages and
568  // with any extensions enabled.
569
570  if (OldType != New->getUnderlyingType() &&
571      Context.getCanonicalType(OldType) !=
572      Context.getCanonicalType(New->getUnderlyingType())) {
573    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
574      << New->getUnderlyingType() << OldType;
575    if (Old->getLocation().isValid())
576      Diag(Old->getLocation(), diag::note_previous_definition);
577    return New->setInvalidDecl();
578  }
579
580  if (getLangOptions().Microsoft)
581    return;
582
583  // C++ [dcl.typedef]p2:
584  //   In a given non-class scope, a typedef specifier can be used to
585  //   redefine the name of any type declared in that scope to refer
586  //   to the type to which it already refers.
587  if (getLangOptions().CPlusPlus) {
588    if (!isa<CXXRecordDecl>(CurContext))
589      return;
590    Diag(New->getLocation(), diag::err_redefinition)
591      << New->getDeclName();
592    Diag(Old->getLocation(), diag::note_previous_definition);
593    return New->setInvalidDecl();
594  }
595
596  // If we have a redefinition of a typedef in C, emit a warning.  This warning
597  // is normally mapped to an error, but can be controlled with
598  // -Wtypedef-redefinition.  If either the original or the redefinition is
599  // in a system header, don't emit this for compatibility with GCC.
600  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
601      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
602       Context.getSourceManager().isInSystemHeader(New->getLocation())))
603    return;
604
605  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
606    << New->getDeclName();
607  Diag(Old->getLocation(), diag::note_previous_definition);
608  return;
609}
610
611/// DeclhasAttr - returns true if decl Declaration already has the target
612/// attribute.
613static bool
614DeclHasAttr(const Decl *decl, const Attr *target) {
615  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
616    if (attr->getKind() == target->getKind())
617      return true;
618
619  return false;
620}
621
622/// MergeAttributes - append attributes from the Old decl to the New one.
623static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
624  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
625    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
626      Attr *NewAttr = attr->clone(C);
627      NewAttr->setInherited(true);
628      New->addAttr(NewAttr);
629    }
630  }
631}
632
633/// Used in MergeFunctionDecl to keep track of function parameters in
634/// C.
635struct GNUCompatibleParamWarning {
636  ParmVarDecl *OldParm;
637  ParmVarDecl *NewParm;
638  QualType PromotedType;
639};
640
641/// MergeFunctionDecl - We just parsed a function 'New' from
642/// declarator D which has the same name and scope as a previous
643/// declaration 'Old'.  Figure out how to resolve this situation,
644/// merging decls or emitting diagnostics as appropriate.
645///
646/// In C++, New and Old must be declarations that are not
647/// overloaded. Use IsOverload to determine whether New and Old are
648/// overloaded, and to select the Old declaration that New should be
649/// merged with.
650///
651/// Returns true if there was an error, false otherwise.
652bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
653  assert(!isa<OverloadedFunctionDecl>(OldD) &&
654         "Cannot merge with an overloaded function declaration");
655
656  // Verify the old decl was also a function.
657  FunctionDecl *Old = 0;
658  if (FunctionTemplateDecl *OldFunctionTemplate
659        = dyn_cast<FunctionTemplateDecl>(OldD))
660    Old = OldFunctionTemplate->getTemplatedDecl();
661  else
662    Old = dyn_cast<FunctionDecl>(OldD);
663  if (!Old) {
664    Diag(New->getLocation(), diag::err_redefinition_different_kind)
665      << New->getDeclName();
666    Diag(OldD->getLocation(), diag::note_previous_definition);
667    return true;
668  }
669
670  // Determine whether the previous declaration was a definition,
671  // implicit declaration, or a declaration.
672  diag::kind PrevDiag;
673  if (Old->isThisDeclarationADefinition())
674    PrevDiag = diag::note_previous_definition;
675  else if (Old->isImplicit())
676    PrevDiag = diag::note_previous_implicit_declaration;
677  else
678    PrevDiag = diag::note_previous_declaration;
679
680  QualType OldQType = Context.getCanonicalType(Old->getType());
681  QualType NewQType = Context.getCanonicalType(New->getType());
682
683  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
684      New->getStorageClass() == FunctionDecl::Static &&
685      Old->getStorageClass() != FunctionDecl::Static) {
686    Diag(New->getLocation(), diag::err_static_non_static)
687      << New;
688    Diag(Old->getLocation(), PrevDiag);
689    return true;
690  }
691
692  if (getLangOptions().CPlusPlus) {
693    // (C++98 13.1p2):
694    //   Certain function declarations cannot be overloaded:
695    //     -- Function declarations that differ only in the return type
696    //        cannot be overloaded.
697    QualType OldReturnType
698      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
699    QualType NewReturnType
700      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
701    if (OldReturnType != NewReturnType) {
702      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
703      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
704      return true;
705    }
706
707    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
708    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
709    if (OldMethod && NewMethod &&
710        OldMethod->getLexicalDeclContext() ==
711          NewMethod->getLexicalDeclContext()) {
712      //    -- Member function declarations with the same name and the
713      //       same parameter types cannot be overloaded if any of them
714      //       is a static member function declaration.
715      if (OldMethod->isStatic() || NewMethod->isStatic()) {
716        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
717        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
718        return true;
719      }
720
721      // C++ [class.mem]p1:
722      //   [...] A member shall not be declared twice in the
723      //   member-specification, except that a nested class or member
724      //   class template can be declared and then later defined.
725      unsigned NewDiag;
726      if (isa<CXXConstructorDecl>(OldMethod))
727        NewDiag = diag::err_constructor_redeclared;
728      else if (isa<CXXDestructorDecl>(NewMethod))
729        NewDiag = diag::err_destructor_redeclared;
730      else if (isa<CXXConversionDecl>(NewMethod))
731        NewDiag = diag::err_conv_function_redeclared;
732      else
733        NewDiag = diag::err_member_redeclared;
734
735      Diag(New->getLocation(), NewDiag);
736      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
737    }
738
739    // (C++98 8.3.5p3):
740    //   All declarations for a function shall agree exactly in both the
741    //   return type and the parameter-type-list.
742    if (OldQType == NewQType)
743      return MergeCompatibleFunctionDecls(New, Old);
744
745    // Fall through for conflicting redeclarations and redefinitions.
746  }
747
748  // C: Function types need to be compatible, not identical. This handles
749  // duplicate function decls like "void f(int); void f(enum X);" properly.
750  if (!getLangOptions().CPlusPlus &&
751      Context.typesAreCompatible(OldQType, NewQType)) {
752    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
753    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
754    const FunctionProtoType *OldProto = 0;
755    if (isa<FunctionNoProtoType>(NewFuncType) &&
756        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
757      // The old declaration provided a function prototype, but the
758      // new declaration does not. Merge in the prototype.
759      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
760      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
761                                                 OldProto->arg_type_end());
762      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
763                                         ParamTypes.data(), ParamTypes.size(),
764                                         OldProto->isVariadic(),
765                                         OldProto->getTypeQuals());
766      New->setType(NewQType);
767      New->setHasInheritedPrototype();
768
769      // Synthesize a parameter for each argument type.
770      llvm::SmallVector<ParmVarDecl*, 16> Params;
771      for (FunctionProtoType::arg_type_iterator
772             ParamType = OldProto->arg_type_begin(),
773             ParamEnd = OldProto->arg_type_end();
774           ParamType != ParamEnd; ++ParamType) {
775        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
776                                                 SourceLocation(), 0,
777                                                 *ParamType, VarDecl::None,
778                                                 0);
779        Param->setImplicit();
780        Params.push_back(Param);
781      }
782
783      New->setParams(Context, Params.data(), Params.size());
784    }
785
786    return MergeCompatibleFunctionDecls(New, Old);
787  }
788
789  // GNU C permits a K&R definition to follow a prototype declaration
790  // if the declared types of the parameters in the K&R definition
791  // match the types in the prototype declaration, even when the
792  // promoted types of the parameters from the K&R definition differ
793  // from the types in the prototype. GCC then keeps the types from
794  // the prototype.
795  //
796  // If a variadic prototype is followed by a non-variadic K&R definition,
797  // the K&R definition becomes variadic.  This is sort of an edge case, but
798  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
799  // C99 6.9.1p8.
800  if (!getLangOptions().CPlusPlus &&
801      Old->hasPrototype() && !New->hasPrototype() &&
802      New->getType()->getAsFunctionProtoType() &&
803      Old->getNumParams() == New->getNumParams()) {
804    llvm::SmallVector<QualType, 16> ArgTypes;
805    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
806    const FunctionProtoType *OldProto
807      = Old->getType()->getAsFunctionProtoType();
808    const FunctionProtoType *NewProto
809      = New->getType()->getAsFunctionProtoType();
810
811    // Determine whether this is the GNU C extension.
812    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
813                                               NewProto->getResultType());
814    bool LooseCompatible = !MergedReturn.isNull();
815    for (unsigned Idx = 0, End = Old->getNumParams();
816         LooseCompatible && Idx != End; ++Idx) {
817      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
818      ParmVarDecl *NewParm = New->getParamDecl(Idx);
819      if (Context.typesAreCompatible(OldParm->getType(),
820                                     NewProto->getArgType(Idx))) {
821        ArgTypes.push_back(NewParm->getType());
822      } else if (Context.typesAreCompatible(OldParm->getType(),
823                                            NewParm->getType())) {
824        GNUCompatibleParamWarning Warn
825          = { OldParm, NewParm, NewProto->getArgType(Idx) };
826        Warnings.push_back(Warn);
827        ArgTypes.push_back(NewParm->getType());
828      } else
829        LooseCompatible = false;
830    }
831
832    if (LooseCompatible) {
833      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
834        Diag(Warnings[Warn].NewParm->getLocation(),
835             diag::ext_param_promoted_not_compatible_with_prototype)
836          << Warnings[Warn].PromotedType
837          << Warnings[Warn].OldParm->getType();
838        Diag(Warnings[Warn].OldParm->getLocation(),
839             diag::note_previous_declaration);
840      }
841
842      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
843                                           ArgTypes.size(),
844                                           OldProto->isVariadic(), 0));
845      return MergeCompatibleFunctionDecls(New, Old);
846    }
847
848    // Fall through to diagnose conflicting types.
849  }
850
851  // A function that has already been declared has been redeclared or defined
852  // with a different type- show appropriate diagnostic
853  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
854    // The user has declared a builtin function with an incompatible
855    // signature.
856    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
857      // The function the user is redeclaring is a library-defined
858      // function like 'malloc' or 'printf'. Warn about the
859      // redeclaration, then pretend that we don't know about this
860      // library built-in.
861      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
862      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
863        << Old << Old->getType();
864      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
865      Old->setInvalidDecl();
866      return false;
867    }
868
869    PrevDiag = diag::note_previous_builtin_declaration;
870  }
871
872  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
873  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
874  return true;
875}
876
877/// \brief Completes the merge of two function declarations that are
878/// known to be compatible.
879///
880/// This routine handles the merging of attributes and other
881/// properties of function declarations form the old declaration to
882/// the new declaration, once we know that New is in fact a
883/// redeclaration of Old.
884///
885/// \returns false
886bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
887  // Merge the attributes
888  MergeAttributes(New, Old, Context);
889
890  // Merge the storage class.
891  if (Old->getStorageClass() != FunctionDecl::Extern)
892    New->setStorageClass(Old->getStorageClass());
893
894  // Merge "inline"
895  if (Old->isInline())
896    New->setInline(true);
897
898  // If this function declaration by itself qualifies as a C99 inline
899  // definition (C99 6.7.4p6), but the previous definition did not,
900  // then the function is not a C99 inline definition.
901  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
902    New->setC99InlineDefinition(false);
903  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
904    // Mark all preceding definitions as not being C99 inline definitions.
905    for (const FunctionDecl *Prev = Old; Prev;
906         Prev = Prev->getPreviousDeclaration())
907      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
908  }
909
910  // Merge "pure" flag.
911  if (Old->isPure())
912    New->setPure();
913
914  // Merge the "deleted" flag.
915  if (Old->isDeleted())
916    New->setDeleted();
917
918  if (getLangOptions().CPlusPlus)
919    return MergeCXXFunctionDecl(New, Old);
920
921  return false;
922}
923
924/// MergeVarDecl - We just parsed a variable 'New' which has the same name
925/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
926/// situation, merging decls or emitting diagnostics as appropriate.
927///
928/// Tentative definition rules (C99 6.9.2p2) are checked by
929/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
930/// definitions here, since the initializer hasn't been attached.
931///
932void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
933  // If either decl is invalid, make sure the new one is marked invalid and
934  // don't do any other checking.
935  if (New->isInvalidDecl() || OldD->isInvalidDecl())
936    return New->setInvalidDecl();
937
938  // Verify the old decl was also a variable.
939  VarDecl *Old = dyn_cast<VarDecl>(OldD);
940  if (!Old) {
941    Diag(New->getLocation(), diag::err_redefinition_different_kind)
942      << New->getDeclName();
943    Diag(OldD->getLocation(), diag::note_previous_definition);
944    return New->setInvalidDecl();
945  }
946
947  MergeAttributes(New, Old, Context);
948
949  // Merge the types
950  QualType MergedT;
951  if (getLangOptions().CPlusPlus) {
952    if (Context.hasSameType(New->getType(), Old->getType()))
953      MergedT = New->getType();
954  } else {
955    MergedT = Context.mergeTypes(New->getType(), Old->getType());
956  }
957  if (MergedT.isNull()) {
958    Diag(New->getLocation(), diag::err_redefinition_different_type)
959      << New->getDeclName();
960    Diag(Old->getLocation(), diag::note_previous_definition);
961    return New->setInvalidDecl();
962  }
963  New->setType(MergedT);
964
965  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
966  if (New->getStorageClass() == VarDecl::Static &&
967      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
968    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
969    Diag(Old->getLocation(), diag::note_previous_definition);
970    return New->setInvalidDecl();
971  }
972  // C99 6.2.2p4:
973  //   For an identifier declared with the storage-class specifier
974  //   extern in a scope in which a prior declaration of that
975  //   identifier is visible,23) if the prior declaration specifies
976  //   internal or external linkage, the linkage of the identifier at
977  //   the later declaration is the same as the linkage specified at
978  //   the prior declaration. If no prior declaration is visible, or
979  //   if the prior declaration specifies no linkage, then the
980  //   identifier has external linkage.
981  if (New->hasExternalStorage() && Old->hasLinkage())
982    /* Okay */;
983  else if (New->getStorageClass() != VarDecl::Static &&
984           Old->getStorageClass() == VarDecl::Static) {
985    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989
990  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
991
992  // FIXME: The test for external storage here seems wrong? We still
993  // need to check for mismatches.
994  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
995      // Don't complain about out-of-line definitions of static members.
996      !(Old->getLexicalDeclContext()->isRecord() &&
997        !New->getLexicalDeclContext()->isRecord())) {
998    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
999    Diag(Old->getLocation(), diag::note_previous_definition);
1000    return New->setInvalidDecl();
1001  }
1002
1003  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1004    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1005    Diag(Old->getLocation(), diag::note_previous_definition);
1006  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1007    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009  }
1010
1011  // Keep a chain of previous declarations.
1012  New->setPreviousDeclaration(Old);
1013}
1014
1015/// CheckParmsForFunctionDef - Check that the parameters of the given
1016/// function are appropriate for the definition of a function. This
1017/// takes care of any checks that cannot be performed on the
1018/// declaration itself, e.g., that the types of each of the function
1019/// parameters are complete.
1020bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1021  bool HasInvalidParm = false;
1022  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1023    ParmVarDecl *Param = FD->getParamDecl(p);
1024
1025    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1026    // function declarator that is part of a function definition of
1027    // that function shall not have incomplete type.
1028    //
1029    // This is also C++ [dcl.fct]p6.
1030    if (!Param->isInvalidDecl() &&
1031        RequireCompleteType(Param->getLocation(), Param->getType(),
1032                               diag::err_typecheck_decl_incomplete_type)) {
1033      Param->setInvalidDecl();
1034      HasInvalidParm = true;
1035    }
1036
1037    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1038    // declaration of each parameter shall include an identifier.
1039    if (Param->getIdentifier() == 0 &&
1040        !Param->isImplicit() &&
1041        !getLangOptions().CPlusPlus)
1042      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1043  }
1044
1045  return HasInvalidParm;
1046}
1047
1048/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1049/// no declarator (e.g. "struct foo;") is parsed.
1050Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1051  // FIXME: Error on auto/register at file scope
1052  // FIXME: Error on inline/virtual/explicit
1053  // FIXME: Error on invalid restrict
1054  // FIXME: Warn on useless __thread
1055  // FIXME: Warn on useless const/volatile
1056  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1057  // FIXME: Warn on useless attributes
1058  TagDecl *Tag = 0;
1059  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1060      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1061      DS.getTypeSpecType() == DeclSpec::TST_union ||
1062      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1063    if (!DS.getTypeRep()) // We probably had an error
1064      return DeclPtrTy();
1065
1066    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1067  }
1068
1069  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1070    if (!Record->getDeclName() && Record->isDefinition() &&
1071        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1072      if (getLangOptions().CPlusPlus ||
1073          Record->getDeclContext()->isRecord())
1074        return BuildAnonymousStructOrUnion(S, DS, Record);
1075
1076      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1077        << DS.getSourceRange();
1078    }
1079
1080    // Microsoft allows unnamed struct/union fields. Don't complain
1081    // about them.
1082    // FIXME: Should we support Microsoft's extensions in this area?
1083    if (Record->getDeclName() && getLangOptions().Microsoft)
1084      return DeclPtrTy::make(Tag);
1085  }
1086
1087  if (!DS.isMissingDeclaratorOk() &&
1088      DS.getTypeSpecType() != DeclSpec::TST_error) {
1089    // Warn about typedefs of enums without names, since this is an
1090    // extension in both Microsoft an GNU.
1091    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1092        Tag && isa<EnumDecl>(Tag)) {
1093      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1094        << DS.getSourceRange();
1095      return DeclPtrTy::make(Tag);
1096    }
1097
1098    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1099      << DS.getSourceRange();
1100    return DeclPtrTy();
1101  }
1102
1103  return DeclPtrTy::make(Tag);
1104}
1105
1106/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1107/// anonymous struct or union AnonRecord into the owning context Owner
1108/// and scope S. This routine will be invoked just after we realize
1109/// that an unnamed union or struct is actually an anonymous union or
1110/// struct, e.g.,
1111///
1112/// @code
1113/// union {
1114///   int i;
1115///   float f;
1116/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1117///    // f into the surrounding scope.x
1118/// @endcode
1119///
1120/// This routine is recursive, injecting the names of nested anonymous
1121/// structs/unions into the owning context and scope as well.
1122bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1123                                               RecordDecl *AnonRecord) {
1124  bool Invalid = false;
1125  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1126                               FEnd = AnonRecord->field_end();
1127       F != FEnd; ++F) {
1128    if ((*F)->getDeclName()) {
1129      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1130                                                LookupOrdinaryName, true);
1131      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1132        // C++ [class.union]p2:
1133        //   The names of the members of an anonymous union shall be
1134        //   distinct from the names of any other entity in the
1135        //   scope in which the anonymous union is declared.
1136        unsigned diagKind
1137          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1138                                 : diag::err_anonymous_struct_member_redecl;
1139        Diag((*F)->getLocation(), diagKind)
1140          << (*F)->getDeclName();
1141        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1142        Invalid = true;
1143      } else {
1144        // C++ [class.union]p2:
1145        //   For the purpose of name lookup, after the anonymous union
1146        //   definition, the members of the anonymous union are
1147        //   considered to have been defined in the scope in which the
1148        //   anonymous union is declared.
1149        Owner->makeDeclVisibleInContext(*F);
1150        S->AddDecl(DeclPtrTy::make(*F));
1151        IdResolver.AddDecl(*F);
1152      }
1153    } else if (const RecordType *InnerRecordType
1154                 = (*F)->getType()->getAsRecordType()) {
1155      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1156      if (InnerRecord->isAnonymousStructOrUnion())
1157        Invalid = Invalid ||
1158          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1159    }
1160  }
1161
1162  return Invalid;
1163}
1164
1165/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1166/// anonymous structure or union. Anonymous unions are a C++ feature
1167/// (C++ [class.union]) and a GNU C extension; anonymous structures
1168/// are a GNU C and GNU C++ extension.
1169Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1170                                                  RecordDecl *Record) {
1171  DeclContext *Owner = Record->getDeclContext();
1172
1173  // Diagnose whether this anonymous struct/union is an extension.
1174  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1175    Diag(Record->getLocation(), diag::ext_anonymous_union);
1176  else if (!Record->isUnion())
1177    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1178
1179  // C and C++ require different kinds of checks for anonymous
1180  // structs/unions.
1181  bool Invalid = false;
1182  if (getLangOptions().CPlusPlus) {
1183    const char* PrevSpec = 0;
1184    // C++ [class.union]p3:
1185    //   Anonymous unions declared in a named namespace or in the
1186    //   global namespace shall be declared static.
1187    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1188        (isa<TranslationUnitDecl>(Owner) ||
1189         (isa<NamespaceDecl>(Owner) &&
1190          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1191      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1192      Invalid = true;
1193
1194      // Recover by adding 'static'.
1195      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1196    }
1197    // C++ [class.union]p3:
1198    //   A storage class is not allowed in a declaration of an
1199    //   anonymous union in a class scope.
1200    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1201             isa<RecordDecl>(Owner)) {
1202      Diag(DS.getStorageClassSpecLoc(),
1203           diag::err_anonymous_union_with_storage_spec);
1204      Invalid = true;
1205
1206      // Recover by removing the storage specifier.
1207      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1208                             PrevSpec);
1209    }
1210
1211    // C++ [class.union]p2:
1212    //   The member-specification of an anonymous union shall only
1213    //   define non-static data members. [Note: nested types and
1214    //   functions cannot be declared within an anonymous union. ]
1215    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1216                                 MemEnd = Record->decls_end();
1217         Mem != MemEnd; ++Mem) {
1218      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1219        // C++ [class.union]p3:
1220        //   An anonymous union shall not have private or protected
1221        //   members (clause 11).
1222        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1223          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1224            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1225          Invalid = true;
1226        }
1227      } else if ((*Mem)->isImplicit()) {
1228        // Any implicit members are fine.
1229      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1230        // This is a type that showed up in an
1231        // elaborated-type-specifier inside the anonymous struct or
1232        // union, but which actually declares a type outside of the
1233        // anonymous struct or union. It's okay.
1234      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1235        if (!MemRecord->isAnonymousStructOrUnion() &&
1236            MemRecord->getDeclName()) {
1237          // This is a nested type declaration.
1238          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1239            << (int)Record->isUnion();
1240          Invalid = true;
1241        }
1242      } else {
1243        // We have something that isn't a non-static data
1244        // member. Complain about it.
1245        unsigned DK = diag::err_anonymous_record_bad_member;
1246        if (isa<TypeDecl>(*Mem))
1247          DK = diag::err_anonymous_record_with_type;
1248        else if (isa<FunctionDecl>(*Mem))
1249          DK = diag::err_anonymous_record_with_function;
1250        else if (isa<VarDecl>(*Mem))
1251          DK = diag::err_anonymous_record_with_static;
1252        Diag((*Mem)->getLocation(), DK)
1253            << (int)Record->isUnion();
1254          Invalid = true;
1255      }
1256    }
1257  }
1258
1259  if (!Record->isUnion() && !Owner->isRecord()) {
1260    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1261      << (int)getLangOptions().CPlusPlus;
1262    Invalid = true;
1263  }
1264
1265  // Create a declaration for this anonymous struct/union.
1266  NamedDecl *Anon = 0;
1267  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1268    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1269                             /*IdentifierInfo=*/0,
1270                             Context.getTypeDeclType(Record),
1271                             /*BitWidth=*/0, /*Mutable=*/false,
1272                             DS.getSourceRange().getBegin());
1273    Anon->setAccess(AS_public);
1274    if (getLangOptions().CPlusPlus)
1275      FieldCollector->Add(cast<FieldDecl>(Anon));
1276  } else {
1277    VarDecl::StorageClass SC;
1278    switch (DS.getStorageClassSpec()) {
1279    default: assert(0 && "Unknown storage class!");
1280    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1281    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1282    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1283    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1284    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1285    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1286    case DeclSpec::SCS_mutable:
1287      // mutable can only appear on non-static class members, so it's always
1288      // an error here
1289      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1290      Invalid = true;
1291      SC = VarDecl::None;
1292      break;
1293    }
1294
1295    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1296                           /*IdentifierInfo=*/0,
1297                           Context.getTypeDeclType(Record),
1298                           SC, DS.getSourceRange().getBegin());
1299  }
1300  Anon->setImplicit();
1301
1302  // Add the anonymous struct/union object to the current
1303  // context. We'll be referencing this object when we refer to one of
1304  // its members.
1305  Owner->addDecl(Anon);
1306
1307  // Inject the members of the anonymous struct/union into the owning
1308  // context and into the identifier resolver chain for name lookup
1309  // purposes.
1310  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1311    Invalid = true;
1312
1313  // Mark this as an anonymous struct/union type. Note that we do not
1314  // do this until after we have already checked and injected the
1315  // members of this anonymous struct/union type, because otherwise
1316  // the members could be injected twice: once by DeclContext when it
1317  // builds its lookup table, and once by
1318  // InjectAnonymousStructOrUnionMembers.
1319  Record->setAnonymousStructOrUnion(true);
1320
1321  if (Invalid)
1322    Anon->setInvalidDecl();
1323
1324  return DeclPtrTy::make(Anon);
1325}
1326
1327
1328/// GetNameForDeclarator - Determine the full declaration name for the
1329/// given Declarator.
1330DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1331  switch (D.getKind()) {
1332  case Declarator::DK_Abstract:
1333    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1334    return DeclarationName();
1335
1336  case Declarator::DK_Normal:
1337    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1338    return DeclarationName(D.getIdentifier());
1339
1340  case Declarator::DK_Constructor: {
1341    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1342    Ty = Context.getCanonicalType(Ty);
1343    return Context.DeclarationNames.getCXXConstructorName(Ty);
1344  }
1345
1346  case Declarator::DK_Destructor: {
1347    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1348    Ty = Context.getCanonicalType(Ty);
1349    return Context.DeclarationNames.getCXXDestructorName(Ty);
1350  }
1351
1352  case Declarator::DK_Conversion: {
1353    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1354    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1355    Ty = Context.getCanonicalType(Ty);
1356    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1357  }
1358
1359  case Declarator::DK_Operator:
1360    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1361    return Context.DeclarationNames.getCXXOperatorName(
1362                                                D.getOverloadedOperator());
1363  }
1364
1365  assert(false && "Unknown name kind");
1366  return DeclarationName();
1367}
1368
1369/// isNearlyMatchingFunction - Determine whether the C++ functions
1370/// Declaration and Definition are "nearly" matching. This heuristic
1371/// is used to improve diagnostics in the case where an out-of-line
1372/// function definition doesn't match any declaration within
1373/// the class or namespace.
1374static bool isNearlyMatchingFunction(ASTContext &Context,
1375                                     FunctionDecl *Declaration,
1376                                     FunctionDecl *Definition) {
1377  if (Declaration->param_size() != Definition->param_size())
1378    return false;
1379  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1380    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1381    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1382
1383    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1384    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1385    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1386      return false;
1387  }
1388
1389  return true;
1390}
1391
1392Sema::DeclPtrTy
1393Sema::HandleDeclarator(Scope *S, Declarator &D,
1394                       MultiTemplateParamsArg TemplateParamLists,
1395                       bool IsFunctionDefinition) {
1396  DeclarationName Name = GetNameForDeclarator(D);
1397
1398  // All of these full declarators require an identifier.  If it doesn't have
1399  // one, the ParsedFreeStandingDeclSpec action should be used.
1400  if (!Name) {
1401    if (!D.isInvalidType())  // Reject this if we think it is valid.
1402      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1403           diag::err_declarator_need_ident)
1404        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1405    return DeclPtrTy();
1406  }
1407
1408  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1409  // we find one that is.
1410  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1411         (S->getFlags() & Scope::TemplateParamScope) != 0)
1412    S = S->getParent();
1413
1414  DeclContext *DC;
1415  NamedDecl *PrevDecl;
1416  NamedDecl *New;
1417
1418  QualType R = GetTypeForDeclarator(D, S);
1419
1420  // See if this is a redefinition of a variable in the same scope.
1421  if (D.getCXXScopeSpec().isInvalid()) {
1422    DC = CurContext;
1423    PrevDecl = 0;
1424    D.setInvalidType();
1425  } else if (!D.getCXXScopeSpec().isSet()) {
1426    LookupNameKind NameKind = LookupOrdinaryName;
1427
1428    // If the declaration we're planning to build will be a function
1429    // or object with linkage, then look for another declaration with
1430    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1431    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1432      /* Do nothing*/;
1433    else if (R->isFunctionType()) {
1434      if (CurContext->isFunctionOrMethod() ||
1435          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1436        NameKind = LookupRedeclarationWithLinkage;
1437    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1438      NameKind = LookupRedeclarationWithLinkage;
1439    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1440             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1441      NameKind = LookupRedeclarationWithLinkage;
1442
1443    DC = CurContext;
1444    PrevDecl = LookupName(S, Name, NameKind, true,
1445                          NameKind == LookupRedeclarationWithLinkage,
1446                          D.getIdentifierLoc());
1447  } else { // Something like "int foo::x;"
1448    DC = computeDeclContext(D.getCXXScopeSpec());
1449    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1450    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1451
1452    // C++ 7.3.1.2p2:
1453    // Members (including explicit specializations of templates) of a named
1454    // namespace can also be defined outside that namespace by explicit
1455    // qualification of the name being defined, provided that the entity being
1456    // defined was already declared in the namespace and the definition appears
1457    // after the point of declaration in a namespace that encloses the
1458    // declarations namespace.
1459    //
1460    // Note that we only check the context at this point. We don't yet
1461    // have enough information to make sure that PrevDecl is actually
1462    // the declaration we want to match. For example, given:
1463    //
1464    //   class X {
1465    //     void f();
1466    //     void f(float);
1467    //   };
1468    //
1469    //   void X::f(int) { } // ill-formed
1470    //
1471    // In this case, PrevDecl will point to the overload set
1472    // containing the two f's declared in X, but neither of them
1473    // matches.
1474
1475    // First check whether we named the global scope.
1476    if (isa<TranslationUnitDecl>(DC)) {
1477      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1478        << Name << D.getCXXScopeSpec().getRange();
1479    } else if (!CurContext->Encloses(DC)) {
1480      // The qualifying scope doesn't enclose the original declaration.
1481      // Emit diagnostic based on current scope.
1482      SourceLocation L = D.getIdentifierLoc();
1483      SourceRange R = D.getCXXScopeSpec().getRange();
1484      if (isa<FunctionDecl>(CurContext))
1485        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1486      else
1487        Diag(L, diag::err_invalid_declarator_scope)
1488          << Name << cast<NamedDecl>(DC) << R;
1489      D.setInvalidType();
1490    }
1491  }
1492
1493  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1494    // Maybe we will complain about the shadowed template parameter.
1495    if (!D.isInvalidType())
1496      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1497        D.setInvalidType();
1498
1499    // Just pretend that we didn't see the previous declaration.
1500    PrevDecl = 0;
1501  }
1502
1503  // In C++, the previous declaration we find might be a tag type
1504  // (class or enum). In this case, the new declaration will hide the
1505  // tag type. Note that this does does not apply if we're declaring a
1506  // typedef (C++ [dcl.typedef]p4).
1507  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1508      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1509    PrevDecl = 0;
1510
1511  bool Redeclaration = false;
1512  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1513    if (TemplateParamLists.size()) {
1514      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1515      return DeclPtrTy();
1516    }
1517
1518    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1519  } else if (R->isFunctionType()) {
1520    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1521                                  move(TemplateParamLists),
1522                                  IsFunctionDefinition, Redeclaration);
1523  } else {
1524    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1525  }
1526
1527  if (New == 0)
1528    return DeclPtrTy();
1529
1530  // If this has an identifier and is not an invalid redeclaration,
1531  // add it to the scope stack.
1532  if (Name && !(Redeclaration && New->isInvalidDecl()))
1533    PushOnScopeChains(New, S);
1534
1535  return DeclPtrTy::make(New);
1536}
1537
1538/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1539/// types into constant array types in certain situations which would otherwise
1540/// be errors (for GCC compatibility).
1541static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1542                                                    ASTContext &Context,
1543                                                    bool &SizeIsNegative) {
1544  // This method tries to turn a variable array into a constant
1545  // array even when the size isn't an ICE.  This is necessary
1546  // for compatibility with code that depends on gcc's buggy
1547  // constant expression folding, like struct {char x[(int)(char*)2];}
1548  SizeIsNegative = false;
1549
1550  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1551    QualType Pointee = PTy->getPointeeType();
1552    QualType FixedType =
1553        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1554    if (FixedType.isNull()) return FixedType;
1555    FixedType = Context.getPointerType(FixedType);
1556    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1557    return FixedType;
1558  }
1559
1560  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1561  if (!VLATy)
1562    return QualType();
1563  // FIXME: We should probably handle this case
1564  if (VLATy->getElementType()->isVariablyModifiedType())
1565    return QualType();
1566
1567  Expr::EvalResult EvalResult;
1568  if (!VLATy->getSizeExpr() ||
1569      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1570      !EvalResult.Val.isInt())
1571    return QualType();
1572
1573  llvm::APSInt &Res = EvalResult.Val.getInt();
1574  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1575    Expr* ArySizeExpr = VLATy->getSizeExpr();
1576    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1577    // so as to transfer ownership to the ConstantArrayWithExpr.
1578    // Alternatively, we could "clone" it (how?).
1579    // Since we don't know how to do things above, we just use the
1580    // very same Expr*.
1581    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1582                                                Res, ArySizeExpr,
1583                                                ArrayType::Normal, 0,
1584                                                VLATy->getBracketsRange());
1585  }
1586
1587  SizeIsNegative = true;
1588  return QualType();
1589}
1590
1591/// \brief Register the given locally-scoped external C declaration so
1592/// that it can be found later for redeclarations
1593void
1594Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1595                                       Scope *S) {
1596  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1597         "Decl is not a locally-scoped decl!");
1598  // Note that we have a locally-scoped external with this name.
1599  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1600
1601  if (!PrevDecl)
1602    return;
1603
1604  // If there was a previous declaration of this variable, it may be
1605  // in our identifier chain. Update the identifier chain with the new
1606  // declaration.
1607  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1608    // The previous declaration was found on the identifer resolver
1609    // chain, so remove it from its scope.
1610    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1611      S = S->getParent();
1612
1613    if (S)
1614      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1615  }
1616}
1617
1618/// \brief Diagnose function specifiers on a declaration of an identifier that
1619/// does not identify a function.
1620void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1621  // FIXME: We should probably indicate the identifier in question to avoid
1622  // confusion for constructs like "inline int a(), b;"
1623  if (D.getDeclSpec().isInlineSpecified())
1624    Diag(D.getDeclSpec().getInlineSpecLoc(),
1625         diag::err_inline_non_function);
1626
1627  if (D.getDeclSpec().isVirtualSpecified())
1628    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1629         diag::err_virtual_non_function);
1630
1631  if (D.getDeclSpec().isExplicitSpecified())
1632    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1633         diag::err_explicit_non_function);
1634}
1635
1636NamedDecl*
1637Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1638                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1639  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1640  if (D.getCXXScopeSpec().isSet()) {
1641    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1642      << D.getCXXScopeSpec().getRange();
1643    D.setInvalidType();
1644    // Pretend we didn't see the scope specifier.
1645    DC = 0;
1646  }
1647
1648  if (getLangOptions().CPlusPlus) {
1649    // Check that there are no default arguments (C++ only).
1650    CheckExtraCXXDefaultArguments(D);
1651  }
1652
1653  DiagnoseFunctionSpecifiers(D);
1654
1655  if (D.getDeclSpec().isThreadSpecified())
1656    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1657
1658  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1659  if (!NewTD) return 0;
1660
1661  if (D.isInvalidType())
1662    NewTD->setInvalidDecl();
1663
1664  // Handle attributes prior to checking for duplicates in MergeVarDecl
1665  ProcessDeclAttributes(S, NewTD, D);
1666  // Merge the decl with the existing one if appropriate. If the decl is
1667  // in an outer scope, it isn't the same thing.
1668  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1669    Redeclaration = true;
1670    MergeTypeDefDecl(NewTD, PrevDecl);
1671  }
1672
1673  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1674  // then it shall have block scope.
1675  QualType T = NewTD->getUnderlyingType();
1676  if (T->isVariablyModifiedType()) {
1677    CurFunctionNeedsScopeChecking = true;
1678
1679    if (S->getFnParent() == 0) {
1680      bool SizeIsNegative;
1681      QualType FixedTy =
1682          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1683      if (!FixedTy.isNull()) {
1684        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1685        NewTD->setUnderlyingType(FixedTy);
1686      } else {
1687        if (SizeIsNegative)
1688          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1689        else if (T->isVariableArrayType())
1690          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1691        else
1692          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1693        NewTD->setInvalidDecl();
1694      }
1695    }
1696  }
1697
1698  // If this is the C FILE type, notify the AST context.
1699  if (IdentifierInfo *II = NewTD->getIdentifier())
1700    if (!NewTD->isInvalidDecl() &&
1701        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1702        II->isStr("FILE"))
1703      Context.setFILEDecl(NewTD);
1704
1705  return NewTD;
1706}
1707
1708/// \brief Determines whether the given declaration is an out-of-scope
1709/// previous declaration.
1710///
1711/// This routine should be invoked when name lookup has found a
1712/// previous declaration (PrevDecl) that is not in the scope where a
1713/// new declaration by the same name is being introduced. If the new
1714/// declaration occurs in a local scope, previous declarations with
1715/// linkage may still be considered previous declarations (C99
1716/// 6.2.2p4-5, C++ [basic.link]p6).
1717///
1718/// \param PrevDecl the previous declaration found by name
1719/// lookup
1720///
1721/// \param DC the context in which the new declaration is being
1722/// declared.
1723///
1724/// \returns true if PrevDecl is an out-of-scope previous declaration
1725/// for a new delcaration with the same name.
1726static bool
1727isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1728                                ASTContext &Context) {
1729  if (!PrevDecl)
1730    return 0;
1731
1732  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1733  // case we need to check each of the overloaded functions.
1734  if (!PrevDecl->hasLinkage())
1735    return false;
1736
1737  if (Context.getLangOptions().CPlusPlus) {
1738    // C++ [basic.link]p6:
1739    //   If there is a visible declaration of an entity with linkage
1740    //   having the same name and type, ignoring entities declared
1741    //   outside the innermost enclosing namespace scope, the block
1742    //   scope declaration declares that same entity and receives the
1743    //   linkage of the previous declaration.
1744    DeclContext *OuterContext = DC->getLookupContext();
1745    if (!OuterContext->isFunctionOrMethod())
1746      // This rule only applies to block-scope declarations.
1747      return false;
1748    else {
1749      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1750      if (PrevOuterContext->isRecord())
1751        // We found a member function: ignore it.
1752        return false;
1753      else {
1754        // Find the innermost enclosing namespace for the new and
1755        // previous declarations.
1756        while (!OuterContext->isFileContext())
1757          OuterContext = OuterContext->getParent();
1758        while (!PrevOuterContext->isFileContext())
1759          PrevOuterContext = PrevOuterContext->getParent();
1760
1761        // The previous declaration is in a different namespace, so it
1762        // isn't the same function.
1763        if (OuterContext->getPrimaryContext() !=
1764            PrevOuterContext->getPrimaryContext())
1765          return false;
1766      }
1767    }
1768  }
1769
1770  return true;
1771}
1772
1773NamedDecl*
1774Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1775                              QualType R,NamedDecl* PrevDecl,
1776                              bool &Redeclaration) {
1777  DeclarationName Name = GetNameForDeclarator(D);
1778
1779  // Check that there are no default arguments (C++ only).
1780  if (getLangOptions().CPlusPlus)
1781    CheckExtraCXXDefaultArguments(D);
1782
1783  VarDecl *NewVD;
1784  VarDecl::StorageClass SC;
1785  switch (D.getDeclSpec().getStorageClassSpec()) {
1786  default: assert(0 && "Unknown storage class!");
1787  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1788  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1789  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1790  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1791  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1792  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1793  case DeclSpec::SCS_mutable:
1794    // mutable can only appear on non-static class members, so it's always
1795    // an error here
1796    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1797    D.setInvalidType();
1798    SC = VarDecl::None;
1799    break;
1800  }
1801
1802  IdentifierInfo *II = Name.getAsIdentifierInfo();
1803  if (!II) {
1804    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1805      << Name.getAsString();
1806    return 0;
1807  }
1808
1809  DiagnoseFunctionSpecifiers(D);
1810
1811  if (!DC->isRecord() && S->getFnParent() == 0) {
1812    // C99 6.9p2: The storage-class specifiers auto and register shall not
1813    // appear in the declaration specifiers in an external declaration.
1814    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1815
1816      // If this is a register variable with an asm label specified, then this
1817      // is a GNU extension.
1818      if (SC == VarDecl::Register && D.getAsmLabel())
1819        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1820      else
1821        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1822      D.setInvalidType();
1823    }
1824  }
1825  if (DC->isRecord() && !CurContext->isRecord()) {
1826    // This is an out-of-line definition of a static data member.
1827    if (SC == VarDecl::Static) {
1828      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1829           diag::err_static_out_of_line)
1830        << CodeModificationHint::CreateRemoval(
1831                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1832    } else if (SC == VarDecl::None)
1833      SC = VarDecl::Static;
1834  }
1835  if (SC == VarDecl::Static) {
1836    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1837      if (RD->isLocalClass())
1838        Diag(D.getIdentifierLoc(),
1839             diag::err_static_data_member_not_allowed_in_local_class)
1840          << Name << RD->getDeclName();
1841    }
1842  }
1843
1844
1845  // The variable can not
1846  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1847                          II, R, SC,
1848                          // FIXME: Move to DeclGroup...
1849                          D.getDeclSpec().getSourceRange().getBegin());
1850
1851  if (D.isInvalidType())
1852    NewVD->setInvalidDecl();
1853
1854  if (D.getDeclSpec().isThreadSpecified()) {
1855    if (NewVD->hasLocalStorage())
1856      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1857    else if (!Context.Target.isTLSSupported())
1858      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1859    else
1860      NewVD->setThreadSpecified(true);
1861  }
1862
1863  // Set the lexical context. If the declarator has a C++ scope specifier, the
1864  // lexical context will be different from the semantic context.
1865  NewVD->setLexicalDeclContext(CurContext);
1866
1867  // Handle attributes prior to checking for duplicates in MergeVarDecl
1868  ProcessDeclAttributes(S, NewVD, D);
1869
1870  // Handle GNU asm-label extension (encoded as an attribute).
1871  if (Expr *E = (Expr*) D.getAsmLabel()) {
1872    // The parser guarantees this is a string.
1873    StringLiteral *SE = cast<StringLiteral>(E);
1874    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1875                                                        SE->getByteLength())));
1876  }
1877
1878  // If name lookup finds a previous declaration that is not in the
1879  // same scope as the new declaration, this may still be an
1880  // acceptable redeclaration.
1881  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1882      !(NewVD->hasLinkage() &&
1883        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1884    PrevDecl = 0;
1885
1886  // Merge the decl with the existing one if appropriate.
1887  if (PrevDecl) {
1888    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1889      // The user tried to define a non-static data member
1890      // out-of-line (C++ [dcl.meaning]p1).
1891      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1892        << D.getCXXScopeSpec().getRange();
1893      PrevDecl = 0;
1894      NewVD->setInvalidDecl();
1895    }
1896  } else if (D.getCXXScopeSpec().isSet()) {
1897    // No previous declaration in the qualifying scope.
1898    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1899      << Name << D.getCXXScopeSpec().getRange();
1900    NewVD->setInvalidDecl();
1901  }
1902
1903  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1904
1905  // If this is a locally-scoped extern C variable, update the map of
1906  // such variables.
1907  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1908      !NewVD->isInvalidDecl())
1909    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1910
1911  return NewVD;
1912}
1913
1914/// \brief Perform semantic checking on a newly-created variable
1915/// declaration.
1916///
1917/// This routine performs all of the type-checking required for a
1918/// variable declaration once it has been built. It is used both to
1919/// check variables after they have been parsed and their declarators
1920/// have been translated into a declaration, and to check variables
1921/// that have been instantiated from a template.
1922///
1923/// Sets NewVD->isInvalidDecl() if an error was encountered.
1924void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1925                                    bool &Redeclaration) {
1926  // If the decl is already known invalid, don't check it.
1927  if (NewVD->isInvalidDecl())
1928    return;
1929
1930  QualType T = NewVD->getType();
1931
1932  if (T->isObjCInterfaceType()) {
1933    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1934    return NewVD->setInvalidDecl();
1935  }
1936
1937  // The variable can not have an abstract class type.
1938  if (RequireNonAbstractType(NewVD->getLocation(), T,
1939                             diag::err_abstract_type_in_decl,
1940                             AbstractVariableType))
1941    return NewVD->setInvalidDecl();
1942
1943  // Emit an error if an address space was applied to decl with local storage.
1944  // This includes arrays of objects with address space qualifiers, but not
1945  // automatic variables that point to other address spaces.
1946  // ISO/IEC TR 18037 S5.1.2
1947  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1948    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1949    return NewVD->setInvalidDecl();
1950  }
1951
1952  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1953      && !NewVD->hasAttr<BlocksAttr>())
1954    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1955
1956  bool isVM = T->isVariablyModifiedType();
1957  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
1958      NewVD->hasAttr<BlocksAttr>())
1959    CurFunctionNeedsScopeChecking = true;
1960
1961  if ((isVM && NewVD->hasLinkage()) ||
1962      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1963    bool SizeIsNegative;
1964    QualType FixedTy =
1965        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1966
1967    if (FixedTy.isNull() && T->isVariableArrayType()) {
1968      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1969      // FIXME: This won't give the correct result for
1970      // int a[10][n];
1971      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1972
1973      if (NewVD->isFileVarDecl())
1974        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1975        << SizeRange;
1976      else if (NewVD->getStorageClass() == VarDecl::Static)
1977        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1978        << SizeRange;
1979      else
1980        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1981        << SizeRange;
1982      return NewVD->setInvalidDecl();
1983    }
1984
1985    if (FixedTy.isNull()) {
1986      if (NewVD->isFileVarDecl())
1987        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1988      else
1989        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1990      return NewVD->setInvalidDecl();
1991    }
1992
1993    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1994    NewVD->setType(FixedTy);
1995  }
1996
1997  if (!PrevDecl && NewVD->isExternC(Context)) {
1998    // Since we did not find anything by this name and we're declaring
1999    // an extern "C" variable, look for a non-visible extern "C"
2000    // declaration with the same name.
2001    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2002      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2003    if (Pos != LocallyScopedExternalDecls.end())
2004      PrevDecl = Pos->second;
2005  }
2006
2007  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2008    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2009      << T;
2010    return NewVD->setInvalidDecl();
2011  }
2012
2013  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2014    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2015    return NewVD->setInvalidDecl();
2016  }
2017
2018  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2019    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2020    return NewVD->setInvalidDecl();
2021  }
2022
2023  if (PrevDecl) {
2024    Redeclaration = true;
2025    MergeVarDecl(NewVD, PrevDecl);
2026  }
2027}
2028
2029NamedDecl*
2030Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2031                              QualType R, NamedDecl* PrevDecl,
2032                              MultiTemplateParamsArg TemplateParamLists,
2033                              bool IsFunctionDefinition, bool &Redeclaration) {
2034  assert(R.getTypePtr()->isFunctionType());
2035
2036  DeclarationName Name = GetNameForDeclarator(D);
2037  FunctionDecl::StorageClass SC = FunctionDecl::None;
2038  switch (D.getDeclSpec().getStorageClassSpec()) {
2039  default: assert(0 && "Unknown storage class!");
2040  case DeclSpec::SCS_auto:
2041  case DeclSpec::SCS_register:
2042  case DeclSpec::SCS_mutable:
2043    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2044         diag::err_typecheck_sclass_func);
2045    D.setInvalidType();
2046    break;
2047  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2048  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2049  case DeclSpec::SCS_static: {
2050    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2051      // C99 6.7.1p5:
2052      //   The declaration of an identifier for a function that has
2053      //   block scope shall have no explicit storage-class specifier
2054      //   other than extern
2055      // See also (C++ [dcl.stc]p4).
2056      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2057           diag::err_static_block_func);
2058      SC = FunctionDecl::None;
2059    } else
2060      SC = FunctionDecl::Static;
2061    break;
2062  }
2063  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2064  }
2065
2066  if (D.getDeclSpec().isThreadSpecified())
2067    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2068
2069  bool isInline = D.getDeclSpec().isInlineSpecified();
2070  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2071  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2072
2073  // Check that the return type is not an abstract class type.
2074  // For record types, this is done by the AbstractClassUsageDiagnoser once
2075  // the class has been completely parsed.
2076  if (!DC->isRecord() &&
2077      RequireNonAbstractType(D.getIdentifierLoc(),
2078                             R->getAsFunctionType()->getResultType(),
2079                             diag::err_abstract_type_in_decl,
2080                             AbstractReturnType))
2081    D.setInvalidType();
2082
2083  // Do not allow returning a objc interface by-value.
2084  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2085    Diag(D.getIdentifierLoc(),
2086         diag::err_object_cannot_be_passed_returned_by_value) << 0
2087      << R->getAsFunctionType()->getResultType();
2088    D.setInvalidType();
2089  }
2090
2091  // Check that we can declare a template here.
2092  if (TemplateParamLists.size() &&
2093      CheckTemplateDeclScope(S, TemplateParamLists))
2094    return 0;
2095
2096  bool isVirtualOkay = false;
2097  FunctionDecl *NewFD;
2098  if (D.getKind() == Declarator::DK_Constructor) {
2099    // This is a C++ constructor declaration.
2100    assert(DC->isRecord() &&
2101           "Constructors can only be declared in a member context");
2102
2103    R = CheckConstructorDeclarator(D, R, SC);
2104
2105    // Create the new declaration
2106    NewFD = CXXConstructorDecl::Create(Context,
2107                                       cast<CXXRecordDecl>(DC),
2108                                       D.getIdentifierLoc(), Name, R,
2109                                       isExplicit, isInline,
2110                                       /*isImplicitlyDeclared=*/false);
2111  } else if (D.getKind() == Declarator::DK_Destructor) {
2112    // This is a C++ destructor declaration.
2113    if (DC->isRecord()) {
2114      R = CheckDestructorDeclarator(D, SC);
2115
2116      NewFD = CXXDestructorDecl::Create(Context,
2117                                        cast<CXXRecordDecl>(DC),
2118                                        D.getIdentifierLoc(), Name, R,
2119                                        isInline,
2120                                        /*isImplicitlyDeclared=*/false);
2121
2122      isVirtualOkay = true;
2123    } else {
2124      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2125
2126      // Create a FunctionDecl to satisfy the function definition parsing
2127      // code path.
2128      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2129                                   Name, R, SC, isInline,
2130                                   /*hasPrototype=*/true,
2131                                   // FIXME: Move to DeclGroup...
2132                                   D.getDeclSpec().getSourceRange().getBegin());
2133      D.setInvalidType();
2134    }
2135  } else if (D.getKind() == Declarator::DK_Conversion) {
2136    if (!DC->isRecord()) {
2137      Diag(D.getIdentifierLoc(),
2138           diag::err_conv_function_not_member);
2139      return 0;
2140    }
2141
2142    CheckConversionDeclarator(D, R, SC);
2143    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2144                                      D.getIdentifierLoc(), Name, R,
2145                                      isInline, isExplicit);
2146
2147    isVirtualOkay = true;
2148  } else if (DC->isRecord()) {
2149    // If the of the function is the same as the name of the record, then this
2150    // must be an invalid constructor that has a return type.
2151    // (The parser checks for a return type and makes the declarator a
2152    // constructor if it has no return type).
2153    // must have an invalid constructor that has a return type
2154    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2155      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2156        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2157        << SourceRange(D.getIdentifierLoc());
2158      return 0;
2159    }
2160
2161    // This is a C++ method declaration.
2162    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2163                                  D.getIdentifierLoc(), Name, R,
2164                                  (SC == FunctionDecl::Static), isInline);
2165
2166    isVirtualOkay = (SC != FunctionDecl::Static);
2167  } else {
2168    // Determine whether the function was written with a
2169    // prototype. This true when:
2170    //   - we're in C++ (where every function has a prototype),
2171    //   - there is a prototype in the declarator, or
2172    //   - the type R of the function is some kind of typedef or other reference
2173    //     to a type name (which eventually refers to a function type).
2174    bool HasPrototype =
2175       getLangOptions().CPlusPlus ||
2176       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2177       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2178
2179    NewFD = FunctionDecl::Create(Context, DC,
2180                                 D.getIdentifierLoc(),
2181                                 Name, R, SC, isInline, HasPrototype,
2182                                 // FIXME: Move to DeclGroup...
2183                                 D.getDeclSpec().getSourceRange().getBegin());
2184  }
2185
2186  if (D.isInvalidType())
2187    NewFD->setInvalidDecl();
2188
2189  // Set the lexical context. If the declarator has a C++
2190  // scope specifier, the lexical context will be different
2191  // from the semantic context.
2192  NewFD->setLexicalDeclContext(CurContext);
2193
2194  // If there is a template parameter list, then we are dealing with a
2195  // template declaration or specialization.
2196  FunctionTemplateDecl *FunctionTemplate = 0;
2197  if (TemplateParamLists.size()) {
2198    // FIXME: member templates!
2199    TemplateParameterList *TemplateParams
2200      = static_cast<TemplateParameterList *>(*TemplateParamLists.release());
2201
2202    if (TemplateParams->size() > 0) {
2203      // This is a function template
2204      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2205                                                      NewFD->getLocation(),
2206                                                      Name, TemplateParams,
2207                                                      NewFD);
2208      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2209    } else {
2210      // FIXME: Handle function template specializations
2211    }
2212  }
2213
2214  // C++ [dcl.fct.spec]p5:
2215  //   The virtual specifier shall only be used in declarations of
2216  //   nonstatic class member functions that appear within a
2217  //   member-specification of a class declaration; see 10.3.
2218  //
2219  if (isVirtual && !NewFD->isInvalidDecl()) {
2220    if (!isVirtualOkay) {
2221       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2222           diag::err_virtual_non_function);
2223    } else if (!CurContext->isRecord()) {
2224      // 'virtual' was specified outside of the class.
2225      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2226        << CodeModificationHint::CreateRemoval(
2227                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2228    } else {
2229      // Okay: Add virtual to the method.
2230      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2231      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2232      CurClass->setAggregate(false);
2233      CurClass->setPOD(false);
2234      CurClass->setPolymorphic(true);
2235      CurClass->setHasTrivialConstructor(false);
2236    }
2237  }
2238
2239  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2240    // Look for virtual methods in base classes that this method might override.
2241
2242    BasePaths Paths;
2243    if (LookupInBases(cast<CXXRecordDecl>(DC),
2244                      MemberLookupCriteria(NewMD), Paths)) {
2245      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2246           E = Paths.found_decls_end(); I != E; ++I) {
2247        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2248          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2249              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2250            NewMD->addOverriddenMethod(OldMD);
2251        }
2252      }
2253    }
2254  }
2255
2256  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2257      !CurContext->isRecord()) {
2258    // C++ [class.static]p1:
2259    //   A data or function member of a class may be declared static
2260    //   in a class definition, in which case it is a static member of
2261    //   the class.
2262
2263    // Complain about the 'static' specifier if it's on an out-of-line
2264    // member function definition.
2265    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2266         diag::err_static_out_of_line)
2267      << CodeModificationHint::CreateRemoval(
2268                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2269  }
2270
2271  // Handle GNU asm-label extension (encoded as an attribute).
2272  if (Expr *E = (Expr*) D.getAsmLabel()) {
2273    // The parser guarantees this is a string.
2274    StringLiteral *SE = cast<StringLiteral>(E);
2275    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2276                                                        SE->getByteLength())));
2277  }
2278
2279  // Copy the parameter declarations from the declarator D to the function
2280  // declaration NewFD, if they are available.  First scavenge them into Params.
2281  llvm::SmallVector<ParmVarDecl*, 16> Params;
2282  if (D.getNumTypeObjects() > 0) {
2283    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2284
2285    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2286    // function that takes no arguments, not a function that takes a
2287    // single void argument.
2288    // We let through "const void" here because Sema::GetTypeForDeclarator
2289    // already checks for that case.
2290    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2291        FTI.ArgInfo[0].Param &&
2292        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2293      // Empty arg list, don't push any params.
2294      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2295
2296      // In C++, the empty parameter-type-list must be spelled "void"; a
2297      // typedef of void is not permitted.
2298      if (getLangOptions().CPlusPlus &&
2299          Param->getType().getUnqualifiedType() != Context.VoidTy)
2300        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2301      // FIXME: Leaks decl?
2302    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2303      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2304        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2305        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2306        Param->setDeclContext(NewFD);
2307        Params.push_back(Param);
2308      }
2309    }
2310
2311  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2312    // When we're declaring a function with a typedef, typeof, etc as in the
2313    // following example, we'll need to synthesize (unnamed)
2314    // parameters for use in the declaration.
2315    //
2316    // @code
2317    // typedef void fn(int);
2318    // fn f;
2319    // @endcode
2320
2321    // Synthesize a parameter for each argument type.
2322    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2323         AE = FT->arg_type_end(); AI != AE; ++AI) {
2324      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2325                                               SourceLocation(), 0,
2326                                               *AI, VarDecl::None, 0);
2327      Param->setImplicit();
2328      Params.push_back(Param);
2329    }
2330  } else {
2331    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2332           "Should not need args for typedef of non-prototype fn");
2333  }
2334  // Finally, we know we have the right number of parameters, install them.
2335  NewFD->setParams(Context, Params.data(), Params.size());
2336
2337  // If name lookup finds a previous declaration that is not in the
2338  // same scope as the new declaration, this may still be an
2339  // acceptable redeclaration.
2340  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2341      !(NewFD->hasLinkage() &&
2342        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2343    PrevDecl = 0;
2344
2345  // Perform semantic checking on the function declaration.
2346  bool OverloadableAttrRequired = false; // FIXME: HACK!
2347  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2348                           /*FIXME:*/OverloadableAttrRequired);
2349
2350  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2351    // An out-of-line member function declaration must also be a
2352    // definition (C++ [dcl.meaning]p1).
2353    if (!IsFunctionDefinition) {
2354      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2355        << D.getCXXScopeSpec().getRange();
2356      NewFD->setInvalidDecl();
2357    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2358      // The user tried to provide an out-of-line definition for a
2359      // function that is a member of a class or namespace, but there
2360      // was no such member function declared (C++ [class.mfct]p2,
2361      // C++ [namespace.memdef]p2). For example:
2362      //
2363      // class X {
2364      //   void f() const;
2365      // };
2366      //
2367      // void X::f() { } // ill-formed
2368      //
2369      // Complain about this problem, and attempt to suggest close
2370      // matches (e.g., those that differ only in cv-qualifiers and
2371      // whether the parameter types are references).
2372      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2373        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2374      NewFD->setInvalidDecl();
2375
2376      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2377                                              true);
2378      assert(!Prev.isAmbiguous() &&
2379             "Cannot have an ambiguity in previous-declaration lookup");
2380      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2381           Func != FuncEnd; ++Func) {
2382        if (isa<FunctionDecl>(*Func) &&
2383            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2384          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2385      }
2386
2387      PrevDecl = 0;
2388    }
2389  }
2390
2391  // Handle attributes. We need to have merged decls when handling attributes
2392  // (for example to check for conflicts, etc).
2393  // FIXME: This needs to happen before we merge declarations. Then,
2394  // let attribute merging cope with attribute conflicts.
2395  ProcessDeclAttributes(S, NewFD, D);
2396  AddKnownFunctionAttributes(NewFD);
2397
2398  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2399    // If a function name is overloadable in C, then every function
2400    // with that name must be marked "overloadable".
2401    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2402      << Redeclaration << NewFD;
2403    if (PrevDecl)
2404      Diag(PrevDecl->getLocation(),
2405           diag::note_attribute_overloadable_prev_overload);
2406    NewFD->addAttr(::new (Context) OverloadableAttr());
2407  }
2408
2409  // If this is a locally-scoped extern C function, update the
2410  // map of such names.
2411  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2412      && !NewFD->isInvalidDecl())
2413    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2414
2415  // Set this FunctionDecl's range up to the right paren.
2416  NewFD->setLocEnd(D.getSourceRange().getEnd());
2417
2418  if (FunctionTemplate && NewFD->isInvalidDecl())
2419    FunctionTemplate->setInvalidDecl();
2420
2421  if (FunctionTemplate)
2422    return FunctionTemplate;
2423
2424  return NewFD;
2425}
2426
2427/// \brief Perform semantic checking of a new function declaration.
2428///
2429/// Performs semantic analysis of the new function declaration
2430/// NewFD. This routine performs all semantic checking that does not
2431/// require the actual declarator involved in the declaration, and is
2432/// used both for the declaration of functions as they are parsed
2433/// (called via ActOnDeclarator) and for the declaration of functions
2434/// that have been instantiated via C++ template instantiation (called
2435/// via InstantiateDecl).
2436///
2437/// This sets NewFD->isInvalidDecl() to true if there was an error.
2438void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2439                                    bool &Redeclaration,
2440                                    bool &OverloadableAttrRequired) {
2441  // If NewFD is already known erroneous, don't do any of this checking.
2442  if (NewFD->isInvalidDecl())
2443    return;
2444
2445  if (NewFD->getResultType()->isVariablyModifiedType()) {
2446    // Functions returning a variably modified type violate C99 6.7.5.2p2
2447    // because all functions have linkage.
2448    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2449    return NewFD->setInvalidDecl();
2450  }
2451
2452  // Semantic checking for this function declaration (in isolation).
2453  if (getLangOptions().CPlusPlus) {
2454    // C++-specific checks.
2455    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2456      CheckConstructor(Constructor);
2457    } else if (isa<CXXDestructorDecl>(NewFD)) {
2458      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2459      Record->setUserDeclaredDestructor(true);
2460      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2461      // user-defined destructor.
2462      Record->setPOD(false);
2463
2464      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2465      // declared destructor.
2466      Record->setHasTrivialDestructor(false);
2467    } else if (CXXConversionDecl *Conversion
2468               = dyn_cast<CXXConversionDecl>(NewFD))
2469      ActOnConversionDeclarator(Conversion);
2470
2471    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2472    if (NewFD->isOverloadedOperator() &&
2473        CheckOverloadedOperatorDeclaration(NewFD))
2474      return NewFD->setInvalidDecl();
2475  }
2476
2477  // C99 6.7.4p6:
2478  //   [... ] For a function with external linkage, the following
2479  //   restrictions apply: [...] If all of the file scope declarations
2480  //   for a function in a translation unit include the inline
2481  //   function specifier without extern, then the definition in that
2482  //   translation unit is an inline definition. An inline definition
2483  //   does not provide an external definition for the function, and
2484  //   does not forbid an external definition in another translation
2485  //   unit.
2486  //
2487  // Here we determine whether this function, in isolation, would be a
2488  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2489  // previous declarations.
2490  if (NewFD->isInline() && getLangOptions().C99 &&
2491      NewFD->getStorageClass() == FunctionDecl::None &&
2492      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2493    NewFD->setC99InlineDefinition(true);
2494
2495  // Check for a previous declaration of this name.
2496  if (!PrevDecl && NewFD->isExternC(Context)) {
2497    // Since we did not find anything by this name and we're declaring
2498    // an extern "C" function, look for a non-visible extern "C"
2499    // declaration with the same name.
2500    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2501      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2502    if (Pos != LocallyScopedExternalDecls.end())
2503      PrevDecl = Pos->second;
2504  }
2505
2506  // Merge or overload the declaration with an existing declaration of
2507  // the same name, if appropriate.
2508  if (PrevDecl) {
2509    // Determine whether NewFD is an overload of PrevDecl or
2510    // a declaration that requires merging. If it's an overload,
2511    // there's no more work to do here; we'll just add the new
2512    // function to the scope.
2513    OverloadedFunctionDecl::function_iterator MatchedDecl;
2514
2515    if (!getLangOptions().CPlusPlus &&
2516        AllowOverloadingOfFunction(PrevDecl, Context)) {
2517      OverloadableAttrRequired = true;
2518
2519      // Functions marked "overloadable" must have a prototype (that
2520      // we can't get through declaration merging).
2521      if (!NewFD->getType()->getAsFunctionProtoType()) {
2522        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2523          << NewFD;
2524        Redeclaration = true;
2525
2526        // Turn this into a variadic function with no parameters.
2527        QualType R = Context.getFunctionType(
2528                       NewFD->getType()->getAsFunctionType()->getResultType(),
2529                       0, 0, true, 0);
2530        NewFD->setType(R);
2531        return NewFD->setInvalidDecl();
2532      }
2533    }
2534
2535    if (PrevDecl &&
2536        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2537         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2538        !isa<UsingDecl>(PrevDecl)) {
2539      Redeclaration = true;
2540      Decl *OldDecl = PrevDecl;
2541
2542      // If PrevDecl was an overloaded function, extract the
2543      // FunctionDecl that matched.
2544      if (isa<OverloadedFunctionDecl>(PrevDecl))
2545        OldDecl = *MatchedDecl;
2546
2547      // NewFD and OldDecl represent declarations that need to be
2548      // merged.
2549      if (MergeFunctionDecl(NewFD, OldDecl))
2550        return NewFD->setInvalidDecl();
2551
2552      if (FunctionTemplateDecl *OldTemplateDecl
2553            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2554        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2555      else {
2556        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2557          NewFD->setAccess(OldDecl->getAccess());
2558        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2559      }
2560    }
2561  }
2562
2563  // In C++, check default arguments now that we have merged decls. Unless
2564  // the lexical context is the class, because in this case this is done
2565  // during delayed parsing anyway.
2566  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2567    CheckCXXDefaultArguments(NewFD);
2568}
2569
2570bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2571  // FIXME: Need strict checking.  In C89, we need to check for
2572  // any assignment, increment, decrement, function-calls, or
2573  // commas outside of a sizeof.  In C99, it's the same list,
2574  // except that the aforementioned are allowed in unevaluated
2575  // expressions.  Everything else falls under the
2576  // "may accept other forms of constant expressions" exception.
2577  // (We never end up here for C++, so the constant expression
2578  // rules there don't matter.)
2579  if (Init->isConstantInitializer(Context))
2580    return false;
2581  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2582    << Init->getSourceRange();
2583  return true;
2584}
2585
2586void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2587  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2588}
2589
2590/// AddInitializerToDecl - Adds the initializer Init to the
2591/// declaration dcl. If DirectInit is true, this is C++ direct
2592/// initialization rather than copy initialization.
2593void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2594  Decl *RealDecl = dcl.getAs<Decl>();
2595  // If there is no declaration, there was an error parsing it.  Just ignore
2596  // the initializer.
2597  if (RealDecl == 0)
2598    return;
2599
2600  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2601    // With declarators parsed the way they are, the parser cannot
2602    // distinguish between a normal initializer and a pure-specifier.
2603    // Thus this grotesque test.
2604    IntegerLiteral *IL;
2605    Expr *Init = static_cast<Expr *>(init.get());
2606    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2607        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2608      if (Method->isVirtualAsWritten()) {
2609        Method->setPure();
2610
2611        // A class is abstract if at least one function is pure virtual.
2612        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2613      } else if (!Method->isInvalidDecl()) {
2614        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2615          << Method->getDeclName() << Init->getSourceRange();
2616        Method->setInvalidDecl();
2617      }
2618    } else {
2619      Diag(Method->getLocation(), diag::err_member_function_initialization)
2620        << Method->getDeclName() << Init->getSourceRange();
2621      Method->setInvalidDecl();
2622    }
2623    return;
2624  }
2625
2626  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2627  if (!VDecl) {
2628    if (getLangOptions().CPlusPlus &&
2629        RealDecl->getLexicalDeclContext()->isRecord() &&
2630        isa<NamedDecl>(RealDecl))
2631      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2632        << cast<NamedDecl>(RealDecl)->getDeclName();
2633    else
2634      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2635    RealDecl->setInvalidDecl();
2636    return;
2637  }
2638
2639  if (!VDecl->getType()->isArrayType() &&
2640      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2641                          diag::err_typecheck_decl_incomplete_type)) {
2642    RealDecl->setInvalidDecl();
2643    return;
2644  }
2645
2646  const VarDecl *Def = 0;
2647  if (VDecl->getDefinition(Def)) {
2648    Diag(VDecl->getLocation(), diag::err_redefinition)
2649      << VDecl->getDeclName();
2650    Diag(Def->getLocation(), diag::note_previous_definition);
2651    VDecl->setInvalidDecl();
2652    return;
2653  }
2654
2655  // Take ownership of the expression, now that we're sure we have somewhere
2656  // to put it.
2657  Expr *Init = init.takeAs<Expr>();
2658  assert(Init && "missing initializer");
2659
2660  // Get the decls type and save a reference for later, since
2661  // CheckInitializerTypes may change it.
2662  QualType DclT = VDecl->getType(), SavT = DclT;
2663  if (VDecl->isBlockVarDecl()) {
2664    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2665      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2666      VDecl->setInvalidDecl();
2667    } else if (!VDecl->isInvalidDecl()) {
2668      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2669                                VDecl->getDeclName(), DirectInit))
2670        VDecl->setInvalidDecl();
2671
2672      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2673      // Don't check invalid declarations to avoid emitting useless diagnostics.
2674      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2675        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2676          CheckForConstantInitializer(Init, DclT);
2677      }
2678    }
2679  } else if (VDecl->isStaticDataMember() &&
2680             VDecl->getLexicalDeclContext()->isRecord()) {
2681    // This is an in-class initialization for a static data member, e.g.,
2682    //
2683    // struct S {
2684    //   static const int value = 17;
2685    // };
2686
2687    // Attach the initializer
2688    VDecl->setInit(Context, Init);
2689
2690    // C++ [class.mem]p4:
2691    //   A member-declarator can contain a constant-initializer only
2692    //   if it declares a static member (9.4) of const integral or
2693    //   const enumeration type, see 9.4.2.
2694    QualType T = VDecl->getType();
2695    if (!T->isDependentType() &&
2696        (!Context.getCanonicalType(T).isConstQualified() ||
2697         !T->isIntegralType())) {
2698      Diag(VDecl->getLocation(), diag::err_member_initialization)
2699        << VDecl->getDeclName() << Init->getSourceRange();
2700      VDecl->setInvalidDecl();
2701    } else {
2702      // C++ [class.static.data]p4:
2703      //   If a static data member is of const integral or const
2704      //   enumeration type, its declaration in the class definition
2705      //   can specify a constant-initializer which shall be an
2706      //   integral constant expression (5.19).
2707      if (!Init->isTypeDependent() &&
2708          !Init->getType()->isIntegralType()) {
2709        // We have a non-dependent, non-integral or enumeration type.
2710        Diag(Init->getSourceRange().getBegin(),
2711             diag::err_in_class_initializer_non_integral_type)
2712          << Init->getType() << Init->getSourceRange();
2713        VDecl->setInvalidDecl();
2714      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2715        // Check whether the expression is a constant expression.
2716        llvm::APSInt Value;
2717        SourceLocation Loc;
2718        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2719          Diag(Loc, diag::err_in_class_initializer_non_constant)
2720            << Init->getSourceRange();
2721          VDecl->setInvalidDecl();
2722        } else if (!VDecl->getType()->isDependentType())
2723          ImpCastExprToType(Init, VDecl->getType());
2724      }
2725    }
2726  } else if (VDecl->isFileVarDecl()) {
2727    if (VDecl->getStorageClass() == VarDecl::Extern)
2728      Diag(VDecl->getLocation(), diag::warn_extern_init);
2729    if (!VDecl->isInvalidDecl())
2730      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2731                                VDecl->getDeclName(), DirectInit))
2732        VDecl->setInvalidDecl();
2733
2734    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2735    // Don't check invalid declarations to avoid emitting useless diagnostics.
2736    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2737      // C99 6.7.8p4. All file scoped initializers need to be constant.
2738      CheckForConstantInitializer(Init, DclT);
2739    }
2740  }
2741  // If the type changed, it means we had an incomplete type that was
2742  // completed by the initializer. For example:
2743  //   int ary[] = { 1, 3, 5 };
2744  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2745  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2746    VDecl->setType(DclT);
2747    Init->setType(DclT);
2748  }
2749
2750  // Attach the initializer to the decl.
2751  VDecl->setInit(Context, Init);
2752
2753  // If the previous declaration of VDecl was a tentative definition,
2754  // remove it from the set of tentative definitions.
2755  if (VDecl->getPreviousDeclaration() &&
2756      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2757    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2758      = TentativeDefinitions.find(VDecl->getDeclName());
2759    assert(Pos != TentativeDefinitions.end() &&
2760           "Unrecorded tentative definition?");
2761    TentativeDefinitions.erase(Pos);
2762  }
2763
2764  return;
2765}
2766
2767void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
2768                                  bool TypeContainsUndeducedAuto) {
2769  Decl *RealDecl = dcl.getAs<Decl>();
2770
2771  // If there is no declaration, there was an error parsing it. Just ignore it.
2772  if (RealDecl == 0)
2773    return;
2774
2775  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2776    QualType Type = Var->getType();
2777
2778    // Record tentative definitions.
2779    if (Var->isTentativeDefinition(Context))
2780      TentativeDefinitions[Var->getDeclName()] = Var;
2781
2782    // C++ [dcl.init.ref]p3:
2783    //   The initializer can be omitted for a reference only in a
2784    //   parameter declaration (8.3.5), in the declaration of a
2785    //   function return type, in the declaration of a class member
2786    //   within its class declaration (9.2), and where the extern
2787    //   specifier is explicitly used.
2788    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2789      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2790        << Var->getDeclName()
2791        << SourceRange(Var->getLocation(), Var->getLocation());
2792      Var->setInvalidDecl();
2793      return;
2794    }
2795
2796    // C++0x [dcl.spec.auto]p3
2797    if (TypeContainsUndeducedAuto) {
2798      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
2799        << Var->getDeclName() << Type;
2800      Var->setInvalidDecl();
2801      return;
2802    }
2803
2804    // C++ [dcl.init]p9:
2805    //
2806    //   If no initializer is specified for an object, and the object
2807    //   is of (possibly cv-qualified) non-POD class type (or array
2808    //   thereof), the object shall be default-initialized; if the
2809    //   object is of const-qualified type, the underlying class type
2810    //   shall have a user-declared default constructor.
2811    if (getLangOptions().CPlusPlus) {
2812      QualType InitType = Type;
2813      if (const ArrayType *Array = Context.getAsArrayType(Type))
2814        InitType = Array->getElementType();
2815      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2816          InitType->isRecordType() && !InitType->isDependentType()) {
2817        CXXRecordDecl *RD =
2818          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2819        CXXConstructorDecl *Constructor = 0;
2820        if (!RequireCompleteType(Var->getLocation(), InitType,
2821                                    diag::err_invalid_incomplete_type_use))
2822          Constructor
2823            = PerformInitializationByConstructor(InitType, 0, 0,
2824                                                 Var->getLocation(),
2825                                               SourceRange(Var->getLocation(),
2826                                                           Var->getLocation()),
2827                                                 Var->getDeclName(),
2828                                                 IK_Default);
2829        if (!Constructor)
2830          Var->setInvalidDecl();
2831        else {
2832          if (!RD->hasTrivialConstructor())
2833            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2834          // FIXME. Must do all that is needed to destroy the object
2835          // on scope exit. For now, just mark the destructor as used.
2836          MarkDestructorReferenced(Var->getLocation(), InitType);
2837        }
2838      }
2839    }
2840
2841#if 0
2842    // FIXME: Temporarily disabled because we are not properly parsing
2843    // linkage specifications on declarations, e.g.,
2844    //
2845    //   extern "C" const CGPoint CGPointerZero;
2846    //
2847    // C++ [dcl.init]p9:
2848    //
2849    //     If no initializer is specified for an object, and the
2850    //     object is of (possibly cv-qualified) non-POD class type (or
2851    //     array thereof), the object shall be default-initialized; if
2852    //     the object is of const-qualified type, the underlying class
2853    //     type shall have a user-declared default
2854    //     constructor. Otherwise, if no initializer is specified for
2855    //     an object, the object and its subobjects, if any, have an
2856    //     indeterminate initial value; if the object or any of its
2857    //     subobjects are of const-qualified type, the program is
2858    //     ill-formed.
2859    //
2860    // This isn't technically an error in C, so we don't diagnose it.
2861    //
2862    // FIXME: Actually perform the POD/user-defined default
2863    // constructor check.
2864    if (getLangOptions().CPlusPlus &&
2865        Context.getCanonicalType(Type).isConstQualified() &&
2866        !Var->hasExternalStorage())
2867      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2868        << Var->getName()
2869        << SourceRange(Var->getLocation(), Var->getLocation());
2870#endif
2871  }
2872}
2873
2874Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2875                                                   DeclPtrTy *Group,
2876                                                   unsigned NumDecls) {
2877  llvm::SmallVector<Decl*, 8> Decls;
2878
2879  if (DS.isTypeSpecOwned())
2880    Decls.push_back((Decl*)DS.getTypeRep());
2881
2882  for (unsigned i = 0; i != NumDecls; ++i)
2883    if (Decl *D = Group[i].getAs<Decl>())
2884      Decls.push_back(D);
2885
2886  // Perform semantic analysis that depends on having fully processed both
2887  // the declarator and initializer.
2888  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2889    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2890    if (!IDecl)
2891      continue;
2892    QualType T = IDecl->getType();
2893
2894    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2895    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2896    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2897      if (!IDecl->isInvalidDecl() &&
2898          RequireCompleteType(IDecl->getLocation(), T,
2899                              diag::err_typecheck_decl_incomplete_type))
2900        IDecl->setInvalidDecl();
2901    }
2902    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2903    // object that has file scope without an initializer, and without a
2904    // storage-class specifier or with the storage-class specifier "static",
2905    // constitutes a tentative definition. Note: A tentative definition with
2906    // external linkage is valid (C99 6.2.2p5).
2907    if (IDecl->isTentativeDefinition(Context)) {
2908      QualType CheckType = T;
2909      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2910
2911      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2912      if (ArrayT) {
2913        CheckType = ArrayT->getElementType();
2914        DiagID = diag::err_illegal_decl_array_incomplete_type;
2915      }
2916
2917      if (IDecl->isInvalidDecl()) {
2918        // Do nothing with invalid declarations
2919      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2920                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2921        // C99 6.9.2p3: If the declaration of an identifier for an object is
2922        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2923        // declared type shall not be an incomplete type.
2924        IDecl->setInvalidDecl();
2925      }
2926    }
2927  }
2928  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2929                                                   Decls.data(), Decls.size()));
2930}
2931
2932
2933/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2934/// to introduce parameters into function prototype scope.
2935Sema::DeclPtrTy
2936Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2937  const DeclSpec &DS = D.getDeclSpec();
2938
2939  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2940  VarDecl::StorageClass StorageClass = VarDecl::None;
2941  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2942    StorageClass = VarDecl::Register;
2943  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2944    Diag(DS.getStorageClassSpecLoc(),
2945         diag::err_invalid_storage_class_in_func_decl);
2946    D.getMutableDeclSpec().ClearStorageClassSpecs();
2947  }
2948
2949  if (D.getDeclSpec().isThreadSpecified())
2950    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2951
2952  DiagnoseFunctionSpecifiers(D);
2953
2954  // Check that there are no default arguments inside the type of this
2955  // parameter (C++ only).
2956  if (getLangOptions().CPlusPlus)
2957    CheckExtraCXXDefaultArguments(D);
2958
2959  TagDecl *OwnedDecl = 0;
2960  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2961
2962  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2963    // C++ [dcl.fct]p6:
2964    //   Types shall not be defined in return or parameter types.
2965    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2966      << Context.getTypeDeclType(OwnedDecl);
2967  }
2968
2969  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2970  // Can this happen for params?  We already checked that they don't conflict
2971  // among each other.  Here they can only shadow globals, which is ok.
2972  IdentifierInfo *II = D.getIdentifier();
2973  if (II) {
2974    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2975      if (PrevDecl->isTemplateParameter()) {
2976        // Maybe we will complain about the shadowed template parameter.
2977        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2978        // Just pretend that we didn't see the previous declaration.
2979        PrevDecl = 0;
2980      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2981        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2982
2983        // Recover by removing the name
2984        II = 0;
2985        D.SetIdentifier(0, D.getIdentifierLoc());
2986      }
2987    }
2988  }
2989
2990  // Parameters can not be abstract class types.
2991  // For record types, this is done by the AbstractClassUsageDiagnoser once
2992  // the class has been completely parsed.
2993  if (!CurContext->isRecord() &&
2994      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2995                             diag::err_abstract_type_in_decl,
2996                             AbstractParamType))
2997    D.setInvalidType(true);
2998
2999  QualType T = adjustParameterType(parmDeclType);
3000
3001  ParmVarDecl *New;
3002  if (T == parmDeclType) // parameter type did not need adjustment
3003    New = ParmVarDecl::Create(Context, CurContext,
3004                              D.getIdentifierLoc(), II,
3005                              parmDeclType, StorageClass,
3006                              0);
3007  else // keep track of both the adjusted and unadjusted types
3008    New = OriginalParmVarDecl::Create(Context, CurContext,
3009                                      D.getIdentifierLoc(), II, T,
3010                                      parmDeclType, StorageClass, 0);
3011
3012  if (D.isInvalidType())
3013    New->setInvalidDecl();
3014
3015  // Parameter declarators cannot be interface types. All ObjC objects are
3016  // passed by reference.
3017  if (T->isObjCInterfaceType()) {
3018    Diag(D.getIdentifierLoc(),
3019         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3020    New->setInvalidDecl();
3021  }
3022
3023  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3024  if (D.getCXXScopeSpec().isSet()) {
3025    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3026      << D.getCXXScopeSpec().getRange();
3027    New->setInvalidDecl();
3028  }
3029
3030  // Add the parameter declaration into this scope.
3031  S->AddDecl(DeclPtrTy::make(New));
3032  if (II)
3033    IdResolver.AddDecl(New);
3034
3035  ProcessDeclAttributes(S, New, D);
3036
3037  if (New->hasAttr<BlocksAttr>()) {
3038    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3039  }
3040  return DeclPtrTy::make(New);
3041}
3042
3043void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3044                                           SourceLocation LocAfterDecls) {
3045  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3046         "Not a function declarator!");
3047  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3048
3049  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3050  // for a K&R function.
3051  if (!FTI.hasPrototype) {
3052    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3053      --i;
3054      if (FTI.ArgInfo[i].Param == 0) {
3055        std::string Code = "  int ";
3056        Code += FTI.ArgInfo[i].Ident->getName();
3057        Code += ";\n";
3058        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3059          << FTI.ArgInfo[i].Ident
3060          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3061
3062        // Implicitly declare the argument as type 'int' for lack of a better
3063        // type.
3064        DeclSpec DS;
3065        const char* PrevSpec; // unused
3066        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3067                           PrevSpec);
3068        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3069        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3070        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3071      }
3072    }
3073  }
3074}
3075
3076Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3077                                              Declarator &D) {
3078  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3079  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3080         "Not a function declarator!");
3081  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3082
3083  if (FTI.hasPrototype) {
3084    // FIXME: Diagnose arguments without names in C.
3085  }
3086
3087  Scope *ParentScope = FnBodyScope->getParent();
3088
3089  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3090                                  MultiTemplateParamsArg(*this),
3091                                  /*IsFunctionDefinition=*/true);
3092  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3093}
3094
3095Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3096  if (!D)
3097    return D;
3098  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3099
3100  CurFunctionNeedsScopeChecking = false;
3101
3102  // See if this is a redefinition.
3103  const FunctionDecl *Definition;
3104  if (FD->getBody(Definition)) {
3105    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3106    Diag(Definition->getLocation(), diag::note_previous_definition);
3107  }
3108
3109  // Builtin functions cannot be defined.
3110  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3111    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3112      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3113      FD->setInvalidDecl();
3114    }
3115  }
3116
3117  // The return type of a function definition must be complete
3118  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3119  QualType ResultType = FD->getResultType();
3120  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3121      !FD->isInvalidDecl() &&
3122      RequireCompleteType(FD->getLocation(), ResultType,
3123                          diag::err_func_def_incomplete_result))
3124    FD->setInvalidDecl();
3125
3126  // GNU warning -Wmissing-prototypes:
3127  //   Warn if a global function is defined without a previous
3128  //   prototype declaration. This warning is issued even if the
3129  //   definition itself provides a prototype. The aim is to detect
3130  //   global functions that fail to be declared in header files.
3131  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3132      !FD->isMain()) {
3133    bool MissingPrototype = true;
3134    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3135         Prev; Prev = Prev->getPreviousDeclaration()) {
3136      // Ignore any declarations that occur in function or method
3137      // scope, because they aren't visible from the header.
3138      if (Prev->getDeclContext()->isFunctionOrMethod())
3139        continue;
3140
3141      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3142      break;
3143    }
3144
3145    if (MissingPrototype)
3146      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3147  }
3148
3149  if (FnBodyScope)
3150    PushDeclContext(FnBodyScope, FD);
3151
3152  // Check the validity of our function parameters
3153  CheckParmsForFunctionDef(FD);
3154
3155  // Introduce our parameters into the function scope
3156  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3157    ParmVarDecl *Param = FD->getParamDecl(p);
3158    Param->setOwningFunction(FD);
3159
3160    // If this has an identifier, add it to the scope stack.
3161    if (Param->getIdentifier() && FnBodyScope)
3162      PushOnScopeChains(Param, FnBodyScope);
3163  }
3164
3165  // Checking attributes of current function definition
3166  // dllimport attribute.
3167  if (FD->getAttr<DLLImportAttr>() &&
3168      (!FD->getAttr<DLLExportAttr>())) {
3169    // dllimport attribute cannot be applied to definition.
3170    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3171      Diag(FD->getLocation(),
3172           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3173        << "dllimport";
3174      FD->setInvalidDecl();
3175      return DeclPtrTy::make(FD);
3176    } else {
3177      // If a symbol previously declared dllimport is later defined, the
3178      // attribute is ignored in subsequent references, and a warning is
3179      // emitted.
3180      Diag(FD->getLocation(),
3181           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3182        << FD->getNameAsCString() << "dllimport";
3183    }
3184  }
3185  return DeclPtrTy::make(FD);
3186}
3187
3188Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3189  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3190}
3191
3192Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3193                                              bool IsInstantiation) {
3194  Decl *dcl = D.getAs<Decl>();
3195  Stmt *Body = BodyArg.takeAs<Stmt>();
3196  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3197    FD->setBody(Body);
3198
3199    if (!FD->isInvalidDecl())
3200      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3201
3202    // C++ [basic.def.odr]p2:
3203    //   [...] A virtual member function is used if it is not pure. [...]
3204    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3205      if (Method->isVirtual() && !Method->isPure())
3206        MarkDeclarationReferenced(Method->getLocation(), Method);
3207
3208    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3209  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3210    assert(MD == getCurMethodDecl() && "Method parsing confused");
3211    MD->setBody(Body);
3212    MD->setEndLoc(Body->getLocEnd());
3213
3214    if (!MD->isInvalidDecl())
3215      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3216  } else {
3217    Body->Destroy(Context);
3218    return DeclPtrTy();
3219  }
3220  if (!IsInstantiation)
3221    PopDeclContext();
3222
3223  // Verify and clean out per-function state.
3224
3225  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3226
3227  // Check goto/label use.
3228  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3229       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3230    LabelStmt *L = I->second;
3231
3232    // Verify that we have no forward references left.  If so, there was a goto
3233    // or address of a label taken, but no definition of it.  Label fwd
3234    // definitions are indicated with a null substmt.
3235    if (L->getSubStmt() != 0)
3236      continue;
3237
3238    // Emit error.
3239    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3240
3241    // At this point, we have gotos that use the bogus label.  Stitch it into
3242    // the function body so that they aren't leaked and that the AST is well
3243    // formed.
3244    if (Body == 0) {
3245      // The whole function wasn't parsed correctly, just delete this.
3246      L->Destroy(Context);
3247      continue;
3248    }
3249
3250    // Otherwise, the body is valid: we want to stitch the label decl into the
3251    // function somewhere so that it is properly owned and so that the goto
3252    // has a valid target.  Do this by creating a new compound stmt with the
3253    // label in it.
3254
3255    // Give the label a sub-statement.
3256    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3257
3258    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3259                               cast<CXXTryStmt>(Body)->getTryBlock() :
3260                               cast<CompoundStmt>(Body);
3261    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3262    Elements.push_back(L);
3263    Compound->setStmts(Context, &Elements[0], Elements.size());
3264  }
3265  FunctionLabelMap.clear();
3266
3267  if (!Body) return D;
3268
3269  // Verify that that gotos and switch cases don't jump into scopes illegally.
3270  if (CurFunctionNeedsScopeChecking)
3271    DiagnoseInvalidJumps(Body);
3272
3273  // C++ constructors that have function-try-blocks can't have return statements
3274  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3275  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3276    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3277
3278  return D;
3279}
3280
3281/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3282/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3283NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3284                                          IdentifierInfo &II, Scope *S) {
3285  // Before we produce a declaration for an implicitly defined
3286  // function, see whether there was a locally-scoped declaration of
3287  // this name as a function or variable. If so, use that
3288  // (non-visible) declaration, and complain about it.
3289  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3290    = LocallyScopedExternalDecls.find(&II);
3291  if (Pos != LocallyScopedExternalDecls.end()) {
3292    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3293    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3294    return Pos->second;
3295  }
3296
3297  // Extension in C99.  Legal in C90, but warn about it.
3298  if (getLangOptions().C99)
3299    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3300  else
3301    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3302
3303  // FIXME: handle stuff like:
3304  // void foo() { extern float X(); }
3305  // void bar() { X(); }  <-- implicit decl for X in another scope.
3306
3307  // Set a Declarator for the implicit definition: int foo();
3308  const char *Dummy;
3309  DeclSpec DS;
3310  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3311  Error = Error; // Silence warning.
3312  assert(!Error && "Error setting up implicit decl!");
3313  Declarator D(DS, Declarator::BlockContext);
3314  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3315                                             0, 0, false, SourceLocation(),
3316                                             false, 0,0,0, Loc, D),
3317                SourceLocation());
3318  D.SetIdentifier(&II, Loc);
3319
3320  // Insert this function into translation-unit scope.
3321
3322  DeclContext *PrevDC = CurContext;
3323  CurContext = Context.getTranslationUnitDecl();
3324
3325  FunctionDecl *FD =
3326 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3327  FD->setImplicit();
3328
3329  CurContext = PrevDC;
3330
3331  AddKnownFunctionAttributes(FD);
3332
3333  return FD;
3334}
3335
3336/// \brief Adds any function attributes that we know a priori based on
3337/// the declaration of this function.
3338///
3339/// These attributes can apply both to implicitly-declared builtins
3340/// (like __builtin___printf_chk) or to library-declared functions
3341/// like NSLog or printf.
3342void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3343  if (FD->isInvalidDecl())
3344    return;
3345
3346  // If this is a built-in function, map its builtin attributes to
3347  // actual attributes.
3348  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3349    // Handle printf-formatting attributes.
3350    unsigned FormatIdx;
3351    bool HasVAListArg;
3352    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3353      if (!FD->getAttr<FormatAttr>())
3354        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3355                                             HasVAListArg ? 0 : FormatIdx + 2));
3356    }
3357
3358    // Mark const if we don't care about errno and that is the only
3359    // thing preventing the function from being const. This allows
3360    // IRgen to use LLVM intrinsics for such functions.
3361    if (!getLangOptions().MathErrno &&
3362        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3363      if (!FD->getAttr<ConstAttr>())
3364        FD->addAttr(::new (Context) ConstAttr());
3365    }
3366  }
3367
3368  IdentifierInfo *Name = FD->getIdentifier();
3369  if (!Name)
3370    return;
3371  if ((!getLangOptions().CPlusPlus &&
3372       FD->getDeclContext()->isTranslationUnit()) ||
3373      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3374       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3375       LinkageSpecDecl::lang_c)) {
3376    // Okay: this could be a libc/libm/Objective-C function we know
3377    // about.
3378  } else
3379    return;
3380
3381  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3382    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3383      // FIXME: We known better than our headers.
3384      const_cast<FormatAttr *>(Format)->setType("printf");
3385    } else
3386      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3387                                             Name->isStr("NSLogv") ? 0 : 2));
3388  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3389    if (!FD->getAttr<FormatAttr>())
3390      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3391                                             Name->isStr("vasprintf") ? 0 : 3));
3392  }
3393}
3394
3395TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3396  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3397  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3398
3399  // Scope manipulation handled by caller.
3400  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3401                                           D.getIdentifierLoc(),
3402                                           D.getIdentifier(),
3403                                           T);
3404
3405  if (TagType *TT = dyn_cast<TagType>(T)) {
3406    TagDecl *TD = TT->getDecl();
3407
3408    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3409    // keep track of the TypedefDecl.
3410    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3411      TD->setTypedefForAnonDecl(NewTD);
3412  }
3413
3414  if (D.isInvalidType())
3415    NewTD->setInvalidDecl();
3416  return NewTD;
3417}
3418
3419
3420/// \brief Determine whether a tag with a given kind is acceptable
3421/// as a redeclaration of the given tag declaration.
3422///
3423/// \returns true if the new tag kind is acceptable, false otherwise.
3424bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3425                                        TagDecl::TagKind NewTag,
3426                                        SourceLocation NewTagLoc,
3427                                        const IdentifierInfo &Name) {
3428  // C++ [dcl.type.elab]p3:
3429  //   The class-key or enum keyword present in the
3430  //   elaborated-type-specifier shall agree in kind with the
3431  //   declaration to which the name in theelaborated-type-specifier
3432  //   refers. This rule also applies to the form of
3433  //   elaborated-type-specifier that declares a class-name or
3434  //   friend class since it can be construed as referring to the
3435  //   definition of the class. Thus, in any
3436  //   elaborated-type-specifier, the enum keyword shall be used to
3437  //   refer to an enumeration (7.2), the union class-keyshall be
3438  //   used to refer to a union (clause 9), and either the class or
3439  //   struct class-key shall be used to refer to a class (clause 9)
3440  //   declared using the class or struct class-key.
3441  TagDecl::TagKind OldTag = Previous->getTagKind();
3442  if (OldTag == NewTag)
3443    return true;
3444
3445  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3446      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3447    // Warn about the struct/class tag mismatch.
3448    bool isTemplate = false;
3449    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3450      isTemplate = Record->getDescribedClassTemplate();
3451
3452    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3453      << (NewTag == TagDecl::TK_class)
3454      << isTemplate << &Name
3455      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3456                              OldTag == TagDecl::TK_class? "class" : "struct");
3457    Diag(Previous->getLocation(), diag::note_previous_use);
3458    return true;
3459  }
3460  return false;
3461}
3462
3463/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3464/// former case, Name will be non-null.  In the later case, Name will be null.
3465/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3466/// reference/declaration/definition of a tag.
3467Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3468                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3469                               IdentifierInfo *Name, SourceLocation NameLoc,
3470                               AttributeList *Attr, AccessSpecifier AS,
3471                               bool &OwnedDecl) {
3472  // If this is not a definition, it must have a name.
3473  assert((Name != 0 || TK == TK_Definition) &&
3474         "Nameless record must be a definition!");
3475
3476  OwnedDecl = false;
3477  TagDecl::TagKind Kind;
3478  switch (TagSpec) {
3479  default: assert(0 && "Unknown tag type!");
3480  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3481  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3482  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3483  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3484  }
3485
3486  DeclContext *SearchDC = CurContext;
3487  DeclContext *DC = CurContext;
3488  NamedDecl *PrevDecl = 0;
3489
3490  bool Invalid = false;
3491
3492  if (Name && SS.isNotEmpty()) {
3493    // We have a nested-name tag ('struct foo::bar').
3494
3495    // Check for invalid 'foo::'.
3496    if (SS.isInvalid()) {
3497      Name = 0;
3498      goto CreateNewDecl;
3499    }
3500
3501    if (RequireCompleteDeclContext(SS))
3502      return DeclPtrTy::make((Decl *)0);
3503
3504    DC = computeDeclContext(SS);
3505    SearchDC = DC;
3506    // Look-up name inside 'foo::'.
3507    PrevDecl
3508      = dyn_cast_or_null<TagDecl>(
3509               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3510
3511    // A tag 'foo::bar' must already exist.
3512    if (PrevDecl == 0) {
3513      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3514      Name = 0;
3515      Invalid = true;
3516      goto CreateNewDecl;
3517    }
3518  } else if (Name) {
3519    // If this is a named struct, check to see if there was a previous forward
3520    // declaration or definition.
3521    // FIXME: We're looking into outer scopes here, even when we
3522    // shouldn't be. Doing so can result in ambiguities that we
3523    // shouldn't be diagnosing.
3524    LookupResult R = LookupName(S, Name, LookupTagName,
3525                                /*RedeclarationOnly=*/(TK != TK_Reference));
3526    if (R.isAmbiguous()) {
3527      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3528      // FIXME: This is not best way to recover from case like:
3529      //
3530      // struct S s;
3531      //
3532      // causes needless "incomplete type" error later.
3533      Name = 0;
3534      PrevDecl = 0;
3535      Invalid = true;
3536    }
3537    else
3538      PrevDecl = R;
3539
3540    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3541      // FIXME: This makes sure that we ignore the contexts associated
3542      // with C structs, unions, and enums when looking for a matching
3543      // tag declaration or definition. See the similar lookup tweak
3544      // in Sema::LookupName; is there a better way to deal with this?
3545      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3546        SearchDC = SearchDC->getParent();
3547    }
3548  }
3549
3550  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3551    // Maybe we will complain about the shadowed template parameter.
3552    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3553    // Just pretend that we didn't see the previous declaration.
3554    PrevDecl = 0;
3555  }
3556
3557  if (PrevDecl) {
3558    // Check whether the previous declaration is usable.
3559    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3560
3561    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3562      // If this is a use of a previous tag, or if the tag is already declared
3563      // in the same scope (so that the definition/declaration completes or
3564      // rementions the tag), reuse the decl.
3565      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3566        // Make sure that this wasn't declared as an enum and now used as a
3567        // struct or something similar.
3568        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3569          bool SafeToContinue
3570            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3571               Kind != TagDecl::TK_enum);
3572          if (SafeToContinue)
3573            Diag(KWLoc, diag::err_use_with_wrong_tag)
3574              << Name
3575              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3576                                                  PrevTagDecl->getKindName());
3577          else
3578            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3579          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3580
3581          if (SafeToContinue)
3582            Kind = PrevTagDecl->getTagKind();
3583          else {
3584            // Recover by making this an anonymous redefinition.
3585            Name = 0;
3586            PrevDecl = 0;
3587            Invalid = true;
3588          }
3589        }
3590
3591        if (!Invalid) {
3592          // If this is a use, just return the declaration we found.
3593
3594          // FIXME: In the future, return a variant or some other clue
3595          // for the consumer of this Decl to know it doesn't own it.
3596          // For our current ASTs this shouldn't be a problem, but will
3597          // need to be changed with DeclGroups.
3598          if (TK == TK_Reference)
3599            return DeclPtrTy::make(PrevDecl);
3600
3601          // Diagnose attempts to redefine a tag.
3602          if (TK == TK_Definition) {
3603            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3604              Diag(NameLoc, diag::err_redefinition) << Name;
3605              Diag(Def->getLocation(), diag::note_previous_definition);
3606              // If this is a redefinition, recover by making this
3607              // struct be anonymous, which will make any later
3608              // references get the previous definition.
3609              Name = 0;
3610              PrevDecl = 0;
3611              Invalid = true;
3612            } else {
3613              // If the type is currently being defined, complain
3614              // about a nested redefinition.
3615              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3616              if (Tag->isBeingDefined()) {
3617                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3618                Diag(PrevTagDecl->getLocation(),
3619                     diag::note_previous_definition);
3620                Name = 0;
3621                PrevDecl = 0;
3622                Invalid = true;
3623              }
3624            }
3625
3626            // Okay, this is definition of a previously declared or referenced
3627            // tag PrevDecl. We're going to create a new Decl for it.
3628          }
3629        }
3630        // If we get here we have (another) forward declaration or we
3631        // have a definition.  Just create a new decl.
3632      } else {
3633        // If we get here, this is a definition of a new tag type in a nested
3634        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3635        // new decl/type.  We set PrevDecl to NULL so that the entities
3636        // have distinct types.
3637        PrevDecl = 0;
3638      }
3639      // If we get here, we're going to create a new Decl. If PrevDecl
3640      // is non-NULL, it's a definition of the tag declared by
3641      // PrevDecl. If it's NULL, we have a new definition.
3642    } else {
3643      // PrevDecl is a namespace, template, or anything else
3644      // that lives in the IDNS_Tag identifier namespace.
3645      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3646        // The tag name clashes with a namespace name, issue an error and
3647        // recover by making this tag be anonymous.
3648        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3649        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3650        Name = 0;
3651        PrevDecl = 0;
3652        Invalid = true;
3653      } else {
3654        // The existing declaration isn't relevant to us; we're in a
3655        // new scope, so clear out the previous declaration.
3656        PrevDecl = 0;
3657      }
3658    }
3659  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3660             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3661    // C++ [basic.scope.pdecl]p5:
3662    //   -- for an elaborated-type-specifier of the form
3663    //
3664    //          class-key identifier
3665    //
3666    //      if the elaborated-type-specifier is used in the
3667    //      decl-specifier-seq or parameter-declaration-clause of a
3668    //      function defined in namespace scope, the identifier is
3669    //      declared as a class-name in the namespace that contains
3670    //      the declaration; otherwise, except as a friend
3671    //      declaration, the identifier is declared in the smallest
3672    //      non-class, non-function-prototype scope that contains the
3673    //      declaration.
3674    //
3675    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3676    // C structs and unions.
3677    //
3678    // GNU C also supports this behavior as part of its incomplete
3679    // enum types extension, while GNU C++ does not.
3680    //
3681    // Find the context where we'll be declaring the tag.
3682    // FIXME: We would like to maintain the current DeclContext as the
3683    // lexical context,
3684    while (SearchDC->isRecord())
3685      SearchDC = SearchDC->getParent();
3686
3687    // Find the scope where we'll be declaring the tag.
3688    while (S->isClassScope() ||
3689           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3690           ((S->getFlags() & Scope::DeclScope) == 0) ||
3691           (S->getEntity() &&
3692            ((DeclContext *)S->getEntity())->isTransparentContext()))
3693      S = S->getParent();
3694  }
3695
3696CreateNewDecl:
3697
3698  // If there is an identifier, use the location of the identifier as the
3699  // location of the decl, otherwise use the location of the struct/union
3700  // keyword.
3701  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3702
3703  // Otherwise, create a new declaration. If there is a previous
3704  // declaration of the same entity, the two will be linked via
3705  // PrevDecl.
3706  TagDecl *New;
3707
3708  if (Kind == TagDecl::TK_enum) {
3709    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3710    // enum X { A, B, C } D;    D should chain to X.
3711    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3712                           cast_or_null<EnumDecl>(PrevDecl));
3713    // If this is an undefined enum, warn.
3714    if (TK != TK_Definition && !Invalid)  {
3715      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3716                                              : diag::ext_forward_ref_enum;
3717      Diag(Loc, DK);
3718    }
3719  } else {
3720    // struct/union/class
3721
3722    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3723    // struct X { int A; } D;    D should chain to X.
3724    if (getLangOptions().CPlusPlus)
3725      // FIXME: Look for a way to use RecordDecl for simple structs.
3726      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3727                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3728    else
3729      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3730                               cast_or_null<RecordDecl>(PrevDecl));
3731  }
3732
3733  if (Kind != TagDecl::TK_enum) {
3734    // Handle #pragma pack: if the #pragma pack stack has non-default
3735    // alignment, make up a packed attribute for this decl. These
3736    // attributes are checked when the ASTContext lays out the
3737    // structure.
3738    //
3739    // It is important for implementing the correct semantics that this
3740    // happen here (in act on tag decl). The #pragma pack stack is
3741    // maintained as a result of parser callbacks which can occur at
3742    // many points during the parsing of a struct declaration (because
3743    // the #pragma tokens are effectively skipped over during the
3744    // parsing of the struct).
3745    if (unsigned Alignment = getPragmaPackAlignment())
3746      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3747  }
3748
3749  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3750    // C++ [dcl.typedef]p3:
3751    //   [...] Similarly, in a given scope, a class or enumeration
3752    //   shall not be declared with the same name as a typedef-name
3753    //   that is declared in that scope and refers to a type other
3754    //   than the class or enumeration itself.
3755    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3756    TypedefDecl *PrevTypedef = 0;
3757    if (Lookup.getKind() == LookupResult::Found)
3758      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3759
3760    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3761        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3762          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3763      Diag(Loc, diag::err_tag_definition_of_typedef)
3764        << Context.getTypeDeclType(New)
3765        << PrevTypedef->getUnderlyingType();
3766      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3767      Invalid = true;
3768    }
3769  }
3770
3771  if (Invalid)
3772    New->setInvalidDecl();
3773
3774  if (Attr)
3775    ProcessDeclAttributeList(S, New, Attr);
3776
3777  // If we're declaring or defining a tag in function prototype scope
3778  // in C, note that this type can only be used within the function.
3779  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3780    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3781
3782  // Set the lexical context. If the tag has a C++ scope specifier, the
3783  // lexical context will be different from the semantic context.
3784  New->setLexicalDeclContext(CurContext);
3785
3786  // Set the access specifier.
3787  if (!Invalid)
3788    SetMemberAccessSpecifier(New, PrevDecl, AS);
3789
3790  if (TK == TK_Definition)
3791    New->startDefinition();
3792
3793  // If this has an identifier, add it to the scope stack.
3794  if (Name) {
3795    S = getNonFieldDeclScope(S);
3796    PushOnScopeChains(New, S);
3797  } else {
3798    CurContext->addDecl(New);
3799  }
3800
3801  // If this is the C FILE type, notify the AST context.
3802  if (IdentifierInfo *II = New->getIdentifier())
3803    if (!New->isInvalidDecl() &&
3804        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
3805        II->isStr("FILE"))
3806      Context.setFILEDecl(New);
3807
3808  OwnedDecl = true;
3809  return DeclPtrTy::make(New);
3810}
3811
3812void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3813  AdjustDeclIfTemplate(TagD);
3814  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3815
3816  // Enter the tag context.
3817  PushDeclContext(S, Tag);
3818
3819  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3820    FieldCollector->StartClass();
3821
3822    if (Record->getIdentifier()) {
3823      // C++ [class]p2:
3824      //   [...] The class-name is also inserted into the scope of the
3825      //   class itself; this is known as the injected-class-name. For
3826      //   purposes of access checking, the injected-class-name is treated
3827      //   as if it were a public member name.
3828      CXXRecordDecl *InjectedClassName
3829        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3830                                CurContext, Record->getLocation(),
3831                                Record->getIdentifier(), Record);
3832      InjectedClassName->setImplicit();
3833      InjectedClassName->setAccess(AS_public);
3834      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3835        InjectedClassName->setDescribedClassTemplate(Template);
3836      PushOnScopeChains(InjectedClassName, S);
3837      assert(InjectedClassName->isInjectedClassName() &&
3838             "Broken injected-class-name");
3839    }
3840  }
3841}
3842
3843void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
3844                                    SourceLocation RBraceLoc) {
3845  AdjustDeclIfTemplate(TagD);
3846  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3847  Tag->setRBraceLoc(RBraceLoc);
3848
3849  if (isa<CXXRecordDecl>(Tag))
3850    FieldCollector->FinishClass();
3851
3852  // Exit this scope of this tag's definition.
3853  PopDeclContext();
3854
3855  // Notify the consumer that we've defined a tag.
3856  Consumer.HandleTagDeclDefinition(Tag);
3857}
3858
3859// Note that FieldName may be null for anonymous bitfields.
3860bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3861                          QualType FieldTy, const Expr *BitWidth) {
3862
3863  // C99 6.7.2.1p4 - verify the field type.
3864  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3865  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3866    // Handle incomplete types with specific error.
3867    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3868      return true;
3869    if (FieldName)
3870      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3871        << FieldName << FieldTy << BitWidth->getSourceRange();
3872    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3873      << FieldTy << BitWidth->getSourceRange();
3874  }
3875
3876  // If the bit-width is type- or value-dependent, don't try to check
3877  // it now.
3878  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3879    return false;
3880
3881  llvm::APSInt Value;
3882  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3883    return true;
3884
3885  // Zero-width bitfield is ok for anonymous field.
3886  if (Value == 0 && FieldName)
3887    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3888
3889  if (Value.isSigned() && Value.isNegative()) {
3890    if (FieldName)
3891      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3892               << FieldName << Value.toString(10);
3893    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3894      << Value.toString(10);
3895  }
3896
3897  if (!FieldTy->isDependentType()) {
3898    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3899    if (Value.getZExtValue() > TypeSize) {
3900      if (FieldName)
3901        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3902          << FieldName << (unsigned)TypeSize;
3903      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3904        << (unsigned)TypeSize;
3905    }
3906  }
3907
3908  return false;
3909}
3910
3911/// ActOnField - Each field of a struct/union/class is passed into this in order
3912/// to create a FieldDecl object for it.
3913Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3914                                 SourceLocation DeclStart,
3915                                 Declarator &D, ExprTy *BitfieldWidth) {
3916  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3917                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3918                               AS_public);
3919  return DeclPtrTy::make(Res);
3920}
3921
3922/// HandleField - Analyze a field of a C struct or a C++ data member.
3923///
3924FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3925                             SourceLocation DeclStart,
3926                             Declarator &D, Expr *BitWidth,
3927                             AccessSpecifier AS) {
3928  IdentifierInfo *II = D.getIdentifier();
3929  SourceLocation Loc = DeclStart;
3930  if (II) Loc = D.getIdentifierLoc();
3931
3932  QualType T = GetTypeForDeclarator(D, S);
3933  if (getLangOptions().CPlusPlus)
3934    CheckExtraCXXDefaultArguments(D);
3935
3936  DiagnoseFunctionSpecifiers(D);
3937
3938  if (D.getDeclSpec().isThreadSpecified())
3939    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3940
3941  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3942
3943  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3944    // Maybe we will complain about the shadowed template parameter.
3945    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3946    // Just pretend that we didn't see the previous declaration.
3947    PrevDecl = 0;
3948  }
3949
3950  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3951    PrevDecl = 0;
3952
3953  bool Mutable
3954    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
3955  SourceLocation TSSL = D.getSourceRange().getBegin();
3956  FieldDecl *NewFD
3957    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
3958                     AS, PrevDecl, &D);
3959  if (NewFD->isInvalidDecl() && PrevDecl) {
3960    // Don't introduce NewFD into scope; there's already something
3961    // with the same name in the same scope.
3962  } else if (II) {
3963    PushOnScopeChains(NewFD, S);
3964  } else
3965    Record->addDecl(NewFD);
3966
3967  return NewFD;
3968}
3969
3970/// \brief Build a new FieldDecl and check its well-formedness.
3971///
3972/// This routine builds a new FieldDecl given the fields name, type,
3973/// record, etc. \p PrevDecl should refer to any previous declaration
3974/// with the same name and in the same scope as the field to be
3975/// created.
3976///
3977/// \returns a new FieldDecl.
3978///
3979/// \todo The Declarator argument is a hack. It will be removed once
3980FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3981                                RecordDecl *Record, SourceLocation Loc,
3982                                bool Mutable, Expr *BitWidth,
3983                                SourceLocation TSSL,
3984                                AccessSpecifier AS, NamedDecl *PrevDecl,
3985                                Declarator *D) {
3986  IdentifierInfo *II = Name.getAsIdentifierInfo();
3987  bool InvalidDecl = false;
3988  if (D) InvalidDecl = D->isInvalidType();
3989
3990  // If we receive a broken type, recover by assuming 'int' and
3991  // marking this declaration as invalid.
3992  if (T.isNull()) {
3993    InvalidDecl = true;
3994    T = Context.IntTy;
3995  }
3996
3997  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3998  // than a variably modified type.
3999  if (T->isVariablyModifiedType()) {
4000    bool SizeIsNegative;
4001    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4002                                                           SizeIsNegative);
4003    if (!FixedTy.isNull()) {
4004      Diag(Loc, diag::warn_illegal_constant_array_size);
4005      T = FixedTy;
4006    } else {
4007      if (SizeIsNegative)
4008        Diag(Loc, diag::err_typecheck_negative_array_size);
4009      else
4010        Diag(Loc, diag::err_typecheck_field_variable_size);
4011      T = Context.IntTy;
4012      InvalidDecl = true;
4013    }
4014  }
4015
4016  // Fields can not have abstract class types
4017  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4018                             AbstractFieldType))
4019    InvalidDecl = true;
4020
4021  // If this is declared as a bit-field, check the bit-field.
4022  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4023    InvalidDecl = true;
4024    DeleteExpr(BitWidth);
4025    BitWidth = 0;
4026  }
4027
4028  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4029                                       Mutable, TSSL);
4030  if (InvalidDecl)
4031    NewFD->setInvalidDecl();
4032
4033  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4034    Diag(Loc, diag::err_duplicate_member) << II;
4035    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4036    NewFD->setInvalidDecl();
4037  }
4038
4039  if (getLangOptions().CPlusPlus && !T->isPODType())
4040    cast<CXXRecordDecl>(Record)->setPOD(false);
4041
4042  // FIXME: We need to pass in the attributes given an AST
4043  // representation, not a parser representation.
4044  if (D)
4045    // FIXME: What to pass instead of TUScope?
4046    ProcessDeclAttributes(TUScope, NewFD, *D);
4047
4048  if (T.isObjCGCWeak())
4049    Diag(Loc, diag::warn_attribute_weak_on_field);
4050
4051  NewFD->setAccess(AS);
4052
4053  // C++ [dcl.init.aggr]p1:
4054  //   An aggregate is an array or a class (clause 9) with [...] no
4055  //   private or protected non-static data members (clause 11).
4056  // A POD must be an aggregate.
4057  if (getLangOptions().CPlusPlus &&
4058      (AS == AS_private || AS == AS_protected)) {
4059    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4060    CXXRecord->setAggregate(false);
4061    CXXRecord->setPOD(false);
4062  }
4063
4064  return NewFD;
4065}
4066
4067/// TranslateIvarVisibility - Translate visibility from a token ID to an
4068///  AST enum value.
4069static ObjCIvarDecl::AccessControl
4070TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4071  switch (ivarVisibility) {
4072  default: assert(0 && "Unknown visitibility kind");
4073  case tok::objc_private: return ObjCIvarDecl::Private;
4074  case tok::objc_public: return ObjCIvarDecl::Public;
4075  case tok::objc_protected: return ObjCIvarDecl::Protected;
4076  case tok::objc_package: return ObjCIvarDecl::Package;
4077  }
4078}
4079
4080/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4081/// in order to create an IvarDecl object for it.
4082Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4083                                SourceLocation DeclStart,
4084                                DeclPtrTy IntfDecl,
4085                                Declarator &D, ExprTy *BitfieldWidth,
4086                                tok::ObjCKeywordKind Visibility) {
4087
4088  IdentifierInfo *II = D.getIdentifier();
4089  Expr *BitWidth = (Expr*)BitfieldWidth;
4090  SourceLocation Loc = DeclStart;
4091  if (II) Loc = D.getIdentifierLoc();
4092
4093  // FIXME: Unnamed fields can be handled in various different ways, for
4094  // example, unnamed unions inject all members into the struct namespace!
4095
4096  QualType T = GetTypeForDeclarator(D, S);
4097
4098  if (BitWidth) {
4099    // 6.7.2.1p3, 6.7.2.1p4
4100    if (VerifyBitField(Loc, II, T, BitWidth)) {
4101      D.setInvalidType();
4102      DeleteExpr(BitWidth);
4103      BitWidth = 0;
4104    }
4105  } else {
4106    // Not a bitfield.
4107
4108    // validate II.
4109
4110  }
4111
4112  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4113  // than a variably modified type.
4114  if (T->isVariablyModifiedType()) {
4115    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4116    D.setInvalidType();
4117  }
4118
4119  // Get the visibility (access control) for this ivar.
4120  ObjCIvarDecl::AccessControl ac =
4121    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4122                                        : ObjCIvarDecl::None;
4123  // Must set ivar's DeclContext to its enclosing interface.
4124  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4125  DeclContext *EnclosingContext;
4126  if (ObjCImplementationDecl *IMPDecl =
4127      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4128    // Case of ivar declared in an implementation. Context is that of its class.
4129    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4130    assert(IDecl && "No class- ActOnIvar");
4131    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4132  }
4133  else
4134    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4135  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4136
4137  // Construct the decl.
4138  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4139                                             EnclosingContext, Loc, II, T,ac,
4140                                             (Expr *)BitfieldWidth);
4141
4142  if (II) {
4143    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4144    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4145        && !isa<TagDecl>(PrevDecl)) {
4146      Diag(Loc, diag::err_duplicate_member) << II;
4147      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4148      NewID->setInvalidDecl();
4149    }
4150  }
4151
4152  // Process attributes attached to the ivar.
4153  ProcessDeclAttributes(S, NewID, D);
4154
4155  if (D.isInvalidType())
4156    NewID->setInvalidDecl();
4157
4158  if (II) {
4159    // FIXME: When interfaces are DeclContexts, we'll need to add
4160    // these to the interface.
4161    S->AddDecl(DeclPtrTy::make(NewID));
4162    IdResolver.AddDecl(NewID);
4163  }
4164
4165  return DeclPtrTy::make(NewID);
4166}
4167
4168void Sema::ActOnFields(Scope* S,
4169                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4170                       DeclPtrTy *Fields, unsigned NumFields,
4171                       SourceLocation LBrac, SourceLocation RBrac,
4172                       AttributeList *Attr) {
4173  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4174  assert(EnclosingDecl && "missing record or interface decl");
4175
4176  // If the decl this is being inserted into is invalid, then it may be a
4177  // redeclaration or some other bogus case.  Don't try to add fields to it.
4178  if (EnclosingDecl->isInvalidDecl()) {
4179    // FIXME: Deallocate fields?
4180    return;
4181  }
4182
4183
4184  // Verify that all the fields are okay.
4185  unsigned NumNamedMembers = 0;
4186  llvm::SmallVector<FieldDecl*, 32> RecFields;
4187
4188  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4189  for (unsigned i = 0; i != NumFields; ++i) {
4190    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4191
4192    // Get the type for the field.
4193    Type *FDTy = FD->getType().getTypePtr();
4194
4195    if (!FD->isAnonymousStructOrUnion()) {
4196      // Remember all fields written by the user.
4197      RecFields.push_back(FD);
4198    }
4199
4200    // If the field is already invalid for some reason, don't emit more
4201    // diagnostics about it.
4202    if (FD->isInvalidDecl())
4203      continue;
4204
4205    // C99 6.7.2.1p2:
4206    //   A structure or union shall not contain a member with
4207    //   incomplete or function type (hence, a structure shall not
4208    //   contain an instance of itself, but may contain a pointer to
4209    //   an instance of itself), except that the last member of a
4210    //   structure with more than one named member may have incomplete
4211    //   array type; such a structure (and any union containing,
4212    //   possibly recursively, a member that is such a structure)
4213    //   shall not be a member of a structure or an element of an
4214    //   array.
4215    if (FDTy->isFunctionType()) {
4216      // Field declared as a function.
4217      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4218        << FD->getDeclName();
4219      FD->setInvalidDecl();
4220      EnclosingDecl->setInvalidDecl();
4221      continue;
4222    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4223               Record && Record->isStruct()) {
4224      // Flexible array member.
4225      if (NumNamedMembers < 1) {
4226        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4227          << FD->getDeclName();
4228        FD->setInvalidDecl();
4229        EnclosingDecl->setInvalidDecl();
4230        continue;
4231      }
4232      // Okay, we have a legal flexible array member at the end of the struct.
4233      if (Record)
4234        Record->setHasFlexibleArrayMember(true);
4235    } else if (!FDTy->isDependentType() &&
4236               RequireCompleteType(FD->getLocation(), FD->getType(),
4237                                   diag::err_field_incomplete)) {
4238      // Incomplete type
4239      FD->setInvalidDecl();
4240      EnclosingDecl->setInvalidDecl();
4241      continue;
4242    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4243      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4244        // If this is a member of a union, then entire union becomes "flexible".
4245        if (Record && Record->isUnion()) {
4246          Record->setHasFlexibleArrayMember(true);
4247        } else {
4248          // If this is a struct/class and this is not the last element, reject
4249          // it.  Note that GCC supports variable sized arrays in the middle of
4250          // structures.
4251          if (i != NumFields-1)
4252            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4253              << FD->getDeclName() << FD->getType();
4254          else {
4255            // We support flexible arrays at the end of structs in
4256            // other structs as an extension.
4257            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4258              << FD->getDeclName();
4259            if (Record)
4260              Record->setHasFlexibleArrayMember(true);
4261          }
4262        }
4263      }
4264      if (Record && FDTTy->getDecl()->hasObjectMember())
4265        Record->setHasObjectMember(true);
4266    } else if (FDTy->isObjCInterfaceType()) {
4267      /// A field cannot be an Objective-c object
4268      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4269      FD->setInvalidDecl();
4270      EnclosingDecl->setInvalidDecl();
4271      continue;
4272    }
4273    else if (getLangOptions().ObjC1 &&
4274             getLangOptions().getGCMode() != LangOptions::NonGC &&
4275             Record &&
4276             (FD->getType()->isObjCObjectPointerType() ||
4277              FD->getType().isObjCGCStrong()))
4278      Record->setHasObjectMember(true);
4279    // Keep track of the number of named members.
4280    if (FD->getIdentifier())
4281      ++NumNamedMembers;
4282  }
4283
4284  // Okay, we successfully defined 'Record'.
4285  if (Record) {
4286    Record->completeDefinition(Context);
4287  } else {
4288    ObjCIvarDecl **ClsFields =
4289      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4290    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4291      ID->setIVarList(ClsFields, RecFields.size(), Context);
4292      ID->setLocEnd(RBrac);
4293      // Add ivar's to class's DeclContext.
4294      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4295        ClsFields[i]->setLexicalDeclContext(ID);
4296        ID->addDecl(ClsFields[i]);
4297      }
4298      // Must enforce the rule that ivars in the base classes may not be
4299      // duplicates.
4300      if (ID->getSuperClass()) {
4301        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4302             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4303          ObjCIvarDecl* Ivar = (*IVI);
4304
4305          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4306            ObjCIvarDecl* prevIvar =
4307              ID->getSuperClass()->lookupInstanceVariable(II);
4308            if (prevIvar) {
4309              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4310              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4311            }
4312          }
4313        }
4314      }
4315    } else if (ObjCImplementationDecl *IMPDecl =
4316                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4317      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4318      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4319        // Ivar declared in @implementation never belongs to the implementation.
4320        // Only it is in implementation's lexical context.
4321        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4322      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4323    }
4324  }
4325
4326  if (Attr)
4327    ProcessDeclAttributeList(S, Record, Attr);
4328}
4329
4330EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4331                                          EnumConstantDecl *LastEnumConst,
4332                                          SourceLocation IdLoc,
4333                                          IdentifierInfo *Id,
4334                                          ExprArg val) {
4335  Expr *Val = (Expr *)val.get();
4336
4337  llvm::APSInt EnumVal(32);
4338  QualType EltTy;
4339  if (Val && !Val->isTypeDependent()) {
4340    // Make sure to promote the operand type to int.
4341    UsualUnaryConversions(Val);
4342    if (Val != val.get()) {
4343      val.release();
4344      val = Val;
4345    }
4346
4347    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4348    SourceLocation ExpLoc;
4349    if (!Val->isValueDependent() &&
4350        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4351      Val = 0;
4352    } else {
4353      EltTy = Val->getType();
4354    }
4355  }
4356
4357  if (!Val) {
4358    if (LastEnumConst) {
4359      // Assign the last value + 1.
4360      EnumVal = LastEnumConst->getInitVal();
4361      ++EnumVal;
4362
4363      // Check for overflow on increment.
4364      if (EnumVal < LastEnumConst->getInitVal())
4365        Diag(IdLoc, diag::warn_enum_value_overflow);
4366
4367      EltTy = LastEnumConst->getType();
4368    } else {
4369      // First value, set to zero.
4370      EltTy = Context.IntTy;
4371      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4372    }
4373  }
4374
4375  val.release();
4376  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4377                                  Val, EnumVal);
4378}
4379
4380
4381Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4382                                        DeclPtrTy lastEnumConst,
4383                                        SourceLocation IdLoc,
4384                                        IdentifierInfo *Id,
4385                                        SourceLocation EqualLoc, ExprTy *val) {
4386  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4387  EnumConstantDecl *LastEnumConst =
4388    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4389  Expr *Val = static_cast<Expr*>(val);
4390
4391  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4392  // we find one that is.
4393  S = getNonFieldDeclScope(S);
4394
4395  // Verify that there isn't already something declared with this name in this
4396  // scope.
4397  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4398  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4399    // Maybe we will complain about the shadowed template parameter.
4400    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4401    // Just pretend that we didn't see the previous declaration.
4402    PrevDecl = 0;
4403  }
4404
4405  if (PrevDecl) {
4406    // When in C++, we may get a TagDecl with the same name; in this case the
4407    // enum constant will 'hide' the tag.
4408    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4409           "Received TagDecl when not in C++!");
4410    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4411      if (isa<EnumConstantDecl>(PrevDecl))
4412        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4413      else
4414        Diag(IdLoc, diag::err_redefinition) << Id;
4415      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4416      if (Val) Val->Destroy(Context);
4417      return DeclPtrTy();
4418    }
4419  }
4420
4421  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4422                                            IdLoc, Id, Owned(Val));
4423
4424  // Register this decl in the current scope stack.
4425  if (New)
4426    PushOnScopeChains(New, S);
4427
4428  return DeclPtrTy::make(New);
4429}
4430
4431void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4432                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4433                         DeclPtrTy *Elements, unsigned NumElements) {
4434  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4435  QualType EnumType = Context.getTypeDeclType(Enum);
4436
4437  // TODO: If the result value doesn't fit in an int, it must be a long or long
4438  // long value.  ISO C does not support this, but GCC does as an extension,
4439  // emit a warning.
4440  unsigned IntWidth = Context.Target.getIntWidth();
4441
4442  // Verify that all the values are okay, compute the size of the values, and
4443  // reverse the list.
4444  unsigned NumNegativeBits = 0;
4445  unsigned NumPositiveBits = 0;
4446
4447  // Keep track of whether all elements have type int.
4448  bool AllElementsInt = true;
4449
4450  for (unsigned i = 0; i != NumElements; ++i) {
4451    EnumConstantDecl *ECD =
4452      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4453    if (!ECD) continue;  // Already issued a diagnostic.
4454
4455    // If the enum value doesn't fit in an int, emit an extension warning.
4456    const llvm::APSInt &InitVal = ECD->getInitVal();
4457    assert(InitVal.getBitWidth() >= IntWidth &&
4458           "Should have promoted value to int");
4459    if (InitVal.getBitWidth() > IntWidth) {
4460      llvm::APSInt V(InitVal);
4461      V.trunc(IntWidth);
4462      V.extend(InitVal.getBitWidth());
4463      if (V != InitVal)
4464        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4465          << InitVal.toString(10);
4466    }
4467
4468    // Keep track of the size of positive and negative values.
4469    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4470      NumPositiveBits = std::max(NumPositiveBits,
4471                                 (unsigned)InitVal.getActiveBits());
4472    else
4473      NumNegativeBits = std::max(NumNegativeBits,
4474                                 (unsigned)InitVal.getMinSignedBits());
4475
4476    // Keep track of whether every enum element has type int (very commmon).
4477    if (AllElementsInt)
4478      AllElementsInt = ECD->getType() == Context.IntTy;
4479  }
4480
4481  // Figure out the type that should be used for this enum.
4482  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4483  QualType BestType;
4484  unsigned BestWidth;
4485
4486  if (NumNegativeBits) {
4487    // If there is a negative value, figure out the smallest integer type (of
4488    // int/long/longlong) that fits.
4489    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4490      BestType = Context.IntTy;
4491      BestWidth = IntWidth;
4492    } else {
4493      BestWidth = Context.Target.getLongWidth();
4494
4495      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4496        BestType = Context.LongTy;
4497      else {
4498        BestWidth = Context.Target.getLongLongWidth();
4499
4500        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4501          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4502        BestType = Context.LongLongTy;
4503      }
4504    }
4505  } else {
4506    // If there is no negative value, figure out which of uint, ulong, ulonglong
4507    // fits.
4508    if (NumPositiveBits <= IntWidth) {
4509      BestType = Context.UnsignedIntTy;
4510      BestWidth = IntWidth;
4511    } else if (NumPositiveBits <=
4512               (BestWidth = Context.Target.getLongWidth())) {
4513      BestType = Context.UnsignedLongTy;
4514    } else {
4515      BestWidth = Context.Target.getLongLongWidth();
4516      assert(NumPositiveBits <= BestWidth &&
4517             "How could an initializer get larger than ULL?");
4518      BestType = Context.UnsignedLongLongTy;
4519    }
4520  }
4521
4522  // Loop over all of the enumerator constants, changing their types to match
4523  // the type of the enum if needed.
4524  for (unsigned i = 0; i != NumElements; ++i) {
4525    EnumConstantDecl *ECD =
4526      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4527    if (!ECD) continue;  // Already issued a diagnostic.
4528
4529    // Standard C says the enumerators have int type, but we allow, as an
4530    // extension, the enumerators to be larger than int size.  If each
4531    // enumerator value fits in an int, type it as an int, otherwise type it the
4532    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4533    // that X has type 'int', not 'unsigned'.
4534    if (ECD->getType() == Context.IntTy) {
4535      // Make sure the init value is signed.
4536      llvm::APSInt IV = ECD->getInitVal();
4537      IV.setIsSigned(true);
4538      ECD->setInitVal(IV);
4539
4540      if (getLangOptions().CPlusPlus)
4541        // C++ [dcl.enum]p4: Following the closing brace of an
4542        // enum-specifier, each enumerator has the type of its
4543        // enumeration.
4544        ECD->setType(EnumType);
4545      continue;  // Already int type.
4546    }
4547
4548    // Determine whether the value fits into an int.
4549    llvm::APSInt InitVal = ECD->getInitVal();
4550    bool FitsInInt;
4551    if (InitVal.isUnsigned() || !InitVal.isNegative())
4552      FitsInInt = InitVal.getActiveBits() < IntWidth;
4553    else
4554      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4555
4556    // If it fits into an integer type, force it.  Otherwise force it to match
4557    // the enum decl type.
4558    QualType NewTy;
4559    unsigned NewWidth;
4560    bool NewSign;
4561    if (FitsInInt) {
4562      NewTy = Context.IntTy;
4563      NewWidth = IntWidth;
4564      NewSign = true;
4565    } else if (ECD->getType() == BestType) {
4566      // Already the right type!
4567      if (getLangOptions().CPlusPlus)
4568        // C++ [dcl.enum]p4: Following the closing brace of an
4569        // enum-specifier, each enumerator has the type of its
4570        // enumeration.
4571        ECD->setType(EnumType);
4572      continue;
4573    } else {
4574      NewTy = BestType;
4575      NewWidth = BestWidth;
4576      NewSign = BestType->isSignedIntegerType();
4577    }
4578
4579    // Adjust the APSInt value.
4580    InitVal.extOrTrunc(NewWidth);
4581    InitVal.setIsSigned(NewSign);
4582    ECD->setInitVal(InitVal);
4583
4584    // Adjust the Expr initializer and type.
4585    if (ECD->getInitExpr())
4586      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4587                                                      /*isLvalue=*/false));
4588    if (getLangOptions().CPlusPlus)
4589      // C++ [dcl.enum]p4: Following the closing brace of an
4590      // enum-specifier, each enumerator has the type of its
4591      // enumeration.
4592      ECD->setType(EnumType);
4593    else
4594      ECD->setType(NewTy);
4595  }
4596
4597  Enum->completeDefinition(Context, BestType);
4598}
4599
4600Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4601                                            ExprArg expr) {
4602  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4603
4604  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4605                                                   Loc, AsmString);
4606  CurContext->addDecl(New);
4607  return DeclPtrTy::make(New);
4608}
4609
4610void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4611                             SourceLocation PragmaLoc,
4612                             SourceLocation NameLoc) {
4613  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4614
4615  // FIXME: This implementation is an ugly hack!
4616  if (PrevDecl) {
4617    PrevDecl->addAttr(::new (Context) WeakAttr());
4618    return;
4619  }
4620  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4621  return;
4622}
4623
4624void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4625                                IdentifierInfo* AliasName,
4626                                SourceLocation PragmaLoc,
4627                                SourceLocation NameLoc,
4628                                SourceLocation AliasNameLoc) {
4629  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4630
4631  // FIXME: This implementation is an ugly hack!
4632  if (PrevDecl) {
4633    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
4634    PrevDecl->addAttr(::new (Context) WeakAttr());
4635    return;
4636  }
4637  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4638  return;
4639}
4640