SemaDecl.cpp revision fc0b423215072e968754c113f1bb34ba4e08c6a4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  if (isa<ObjCMethodDecl>(DC))
347    return Context.getTranslationUnitDecl();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(DeclPtrTy::make(*I));
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(DeclPtrTy::make(D));
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479static bool isOutOfScopePreviousDeclaration(NamedDecl *,
480                                            DeclContext*,
481                                            ASTContext&);
482
483/// Filters out lookup results that don't fall within the given scope
484/// as determined by isDeclInScope.
485static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
486                                 DeclContext *Ctx, Scope *S,
487                                 bool ConsiderLinkage) {
488  LookupResult::Filter F = R.makeFilter();
489  while (F.hasNext()) {
490    NamedDecl *D = F.next();
491
492    if (SemaRef.isDeclInScope(D, Ctx, S))
493      continue;
494
495    if (ConsiderLinkage &&
496        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
497      continue;
498
499    F.erase();
500  }
501
502  F.done();
503}
504
505static bool isUsingDecl(NamedDecl *D) {
506  return isa<UsingShadowDecl>(D) ||
507         isa<UnresolvedUsingTypenameDecl>(D) ||
508         isa<UnresolvedUsingValueDecl>(D);
509}
510
511/// Removes using shadow declarations from the lookup results.
512static void RemoveUsingDecls(LookupResult &R) {
513  LookupResult::Filter F = R.makeFilter();
514  while (F.hasNext())
515    if (isUsingDecl(F.next()))
516      F.erase();
517
518  F.done();
519}
520
521static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
522  if (D->isInvalidDecl())
523    return false;
524
525  if (D->isUsed() || D->hasAttr<UnusedAttr>())
526    return false;
527
528  // White-list anything that isn't a local variable.
529  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
530      !D->getDeclContext()->isFunctionOrMethod())
531    return false;
532
533  // Types of valid local variables should be complete, so this should succeed.
534  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
535
536    // White-list anything with an __attribute__((unused)) type.
537    QualType Ty = VD->getType();
538
539    // Only look at the outermost level of typedef.
540    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
541      if (TT->getDecl()->hasAttr<UnusedAttr>())
542        return false;
543    }
544
545    // If we failed to complete the type for some reason, or if the type is
546    // dependent, don't diagnose the variable.
547    if (Ty->isIncompleteType() || Ty->isDependentType())
548      return false;
549
550    if (const TagType *TT = Ty->getAs<TagType>()) {
551      const TagDecl *Tag = TT->getDecl();
552      if (Tag->hasAttr<UnusedAttr>())
553        return false;
554
555      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
556        // FIXME: Checking for the presence of a user-declared constructor
557        // isn't completely accurate; we'd prefer to check that the initializer
558        // has no side effects.
559        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
560          return false;
561      }
562    }
563
564    // TODO: __attribute__((unused)) templates?
565  }
566
567  return true;
568}
569
570void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
571  if (!ShouldDiagnoseUnusedDecl(D))
572    return;
573
574  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
575    Diag(D->getLocation(), diag::warn_unused_exception_param)
576    << D->getDeclName();
577  else
578    Diag(D->getLocation(), diag::warn_unused_variable)
579    << D->getDeclName();
580}
581
582void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
583  if (S->decl_empty()) return;
584  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
585         "Scope shouldn't contain decls!");
586
587  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
588       I != E; ++I) {
589    Decl *TmpD = (*I).getAs<Decl>();
590    assert(TmpD && "This decl didn't get pushed??");
591
592    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
593    NamedDecl *D = cast<NamedDecl>(TmpD);
594
595    if (!D->getDeclName()) continue;
596
597    // Diagnose unused variables in this scope.
598    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
599      DiagnoseUnusedDecl(D);
600
601    // Remove this name from our lexical scope.
602    IdResolver.RemoveDecl(D);
603  }
604}
605
606/// \brief Look for an Objective-C class in the translation unit.
607///
608/// \param Id The name of the Objective-C class we're looking for. If
609/// typo-correction fixes this name, the Id will be updated
610/// to the fixed name.
611///
612/// \param IdLoc The location of the name in the translation unit.
613///
614/// \param TypoCorrection If true, this routine will attempt typo correction
615/// if there is no class with the given name.
616///
617/// \returns The declaration of the named Objective-C class, or NULL if the
618/// class could not be found.
619ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
620                                              SourceLocation IdLoc,
621                                              bool TypoCorrection) {
622  // The third "scope" argument is 0 since we aren't enabling lazy built-in
623  // creation from this context.
624  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
625
626  if (!IDecl && TypoCorrection) {
627    // Perform typo correction at the given location, but only if we
628    // find an Objective-C class name.
629    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
630    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
631        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
632      Diag(IdLoc, diag::err_undef_interface_suggest)
633        << Id << IDecl->getDeclName()
634        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
635      Diag(IDecl->getLocation(), diag::note_previous_decl)
636        << IDecl->getDeclName();
637
638      Id = IDecl->getIdentifier();
639    }
640  }
641
642  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
643}
644
645/// getNonFieldDeclScope - Retrieves the innermost scope, starting
646/// from S, where a non-field would be declared. This routine copes
647/// with the difference between C and C++ scoping rules in structs and
648/// unions. For example, the following code is well-formed in C but
649/// ill-formed in C++:
650/// @code
651/// struct S6 {
652///   enum { BAR } e;
653/// };
654///
655/// void test_S6() {
656///   struct S6 a;
657///   a.e = BAR;
658/// }
659/// @endcode
660/// For the declaration of BAR, this routine will return a different
661/// scope. The scope S will be the scope of the unnamed enumeration
662/// within S6. In C++, this routine will return the scope associated
663/// with S6, because the enumeration's scope is a transparent
664/// context but structures can contain non-field names. In C, this
665/// routine will return the translation unit scope, since the
666/// enumeration's scope is a transparent context and structures cannot
667/// contain non-field names.
668Scope *Sema::getNonFieldDeclScope(Scope *S) {
669  while (((S->getFlags() & Scope::DeclScope) == 0) ||
670         (S->getEntity() &&
671          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
672         (S->isClassScope() && !getLangOptions().CPlusPlus))
673    S = S->getParent();
674  return S;
675}
676
677void Sema::InitBuiltinVaListType() {
678  if (!Context.getBuiltinVaListType().isNull())
679    return;
680
681  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
682  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
683                                       LookupOrdinaryName, ForRedeclaration);
684  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
685  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
686}
687
688/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
689/// file scope.  lazily create a decl for it. ForRedeclaration is true
690/// if we're creating this built-in in anticipation of redeclaring the
691/// built-in.
692NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
693                                     Scope *S, bool ForRedeclaration,
694                                     SourceLocation Loc) {
695  Builtin::ID BID = (Builtin::ID)bid;
696
697  if (Context.BuiltinInfo.hasVAListUse(BID))
698    InitBuiltinVaListType();
699
700  ASTContext::GetBuiltinTypeError Error;
701  QualType R = Context.GetBuiltinType(BID, Error);
702  switch (Error) {
703  case ASTContext::GE_None:
704    // Okay
705    break;
706
707  case ASTContext::GE_Missing_stdio:
708    if (ForRedeclaration)
709      Diag(Loc, diag::err_implicit_decl_requires_stdio)
710        << Context.BuiltinInfo.GetName(BID);
711    return 0;
712
713  case ASTContext::GE_Missing_setjmp:
714    if (ForRedeclaration)
715      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
716        << Context.BuiltinInfo.GetName(BID);
717    return 0;
718  }
719
720  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
721    Diag(Loc, diag::ext_implicit_lib_function_decl)
722      << Context.BuiltinInfo.GetName(BID)
723      << R;
724    if (Context.BuiltinInfo.getHeaderName(BID) &&
725        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
726          != Diagnostic::Ignored)
727      Diag(Loc, diag::note_please_include_header)
728        << Context.BuiltinInfo.getHeaderName(BID)
729        << Context.BuiltinInfo.GetName(BID);
730  }
731
732  FunctionDecl *New = FunctionDecl::Create(Context,
733                                           Context.getTranslationUnitDecl(),
734                                           Loc, II, R, /*TInfo=*/0,
735                                           FunctionDecl::Extern,
736                                           FunctionDecl::None, false,
737                                           /*hasPrototype=*/true);
738  New->setImplicit();
739
740  // Create Decl objects for each parameter, adding them to the
741  // FunctionDecl.
742  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
743    llvm::SmallVector<ParmVarDecl*, 16> Params;
744    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
745      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
746                                           FT->getArgType(i), /*TInfo=*/0,
747                                           VarDecl::None, VarDecl::None, 0));
748    New->setParams(Params.data(), Params.size());
749  }
750
751  AddKnownFunctionAttributes(New);
752
753  // TUScope is the translation-unit scope to insert this function into.
754  // FIXME: This is hideous. We need to teach PushOnScopeChains to
755  // relate Scopes to DeclContexts, and probably eliminate CurContext
756  // entirely, but we're not there yet.
757  DeclContext *SavedContext = CurContext;
758  CurContext = Context.getTranslationUnitDecl();
759  PushOnScopeChains(New, TUScope);
760  CurContext = SavedContext;
761  return New;
762}
763
764/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
765/// same name and scope as a previous declaration 'Old'.  Figure out
766/// how to resolve this situation, merging decls or emitting
767/// diagnostics as appropriate. If there was an error, set New to be invalid.
768///
769void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
770  // If the new decl is known invalid already, don't bother doing any
771  // merging checks.
772  if (New->isInvalidDecl()) return;
773
774  // Allow multiple definitions for ObjC built-in typedefs.
775  // FIXME: Verify the underlying types are equivalent!
776  if (getLangOptions().ObjC1) {
777    const IdentifierInfo *TypeID = New->getIdentifier();
778    switch (TypeID->getLength()) {
779    default: break;
780    case 2:
781      if (!TypeID->isStr("id"))
782        break;
783      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
784      // Install the built-in type for 'id', ignoring the current definition.
785      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
786      return;
787    case 5:
788      if (!TypeID->isStr("Class"))
789        break;
790      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
791      // Install the built-in type for 'Class', ignoring the current definition.
792      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
793      return;
794    case 3:
795      if (!TypeID->isStr("SEL"))
796        break;
797      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
798      // Install the built-in type for 'SEL', ignoring the current definition.
799      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
800      return;
801    case 8:
802      if (!TypeID->isStr("Protocol"))
803        break;
804      Context.setObjCProtoType(New->getUnderlyingType());
805      return;
806    }
807    // Fall through - the typedef name was not a builtin type.
808  }
809
810  // Verify the old decl was also a type.
811  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
812  if (!Old) {
813    Diag(New->getLocation(), diag::err_redefinition_different_kind)
814      << New->getDeclName();
815
816    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
817    if (OldD->getLocation().isValid())
818      Diag(OldD->getLocation(), diag::note_previous_definition);
819
820    return New->setInvalidDecl();
821  }
822
823  // If the old declaration is invalid, just give up here.
824  if (Old->isInvalidDecl())
825    return New->setInvalidDecl();
826
827  // Determine the "old" type we'll use for checking and diagnostics.
828  QualType OldType;
829  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
830    OldType = OldTypedef->getUnderlyingType();
831  else
832    OldType = Context.getTypeDeclType(Old);
833
834  // If the typedef types are not identical, reject them in all languages and
835  // with any extensions enabled.
836
837  if (OldType != New->getUnderlyingType() &&
838      Context.getCanonicalType(OldType) !=
839      Context.getCanonicalType(New->getUnderlyingType())) {
840    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
841      << New->getUnderlyingType() << OldType;
842    if (Old->getLocation().isValid())
843      Diag(Old->getLocation(), diag::note_previous_definition);
844    return New->setInvalidDecl();
845  }
846
847  // The types match.  Link up the redeclaration chain if the old
848  // declaration was a typedef.
849  // FIXME: this is a potential source of wierdness if the type
850  // spellings don't match exactly.
851  if (isa<TypedefDecl>(Old))
852    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
853
854  if (getLangOptions().Microsoft)
855    return;
856
857  if (getLangOptions().CPlusPlus) {
858    // C++ [dcl.typedef]p2:
859    //   In a given non-class scope, a typedef specifier can be used to
860    //   redefine the name of any type declared in that scope to refer
861    //   to the type to which it already refers.
862    if (!isa<CXXRecordDecl>(CurContext))
863      return;
864
865    // C++0x [dcl.typedef]p4:
866    //   In a given class scope, a typedef specifier can be used to redefine
867    //   any class-name declared in that scope that is not also a typedef-name
868    //   to refer to the type to which it already refers.
869    //
870    // This wording came in via DR424, which was a correction to the
871    // wording in DR56, which accidentally banned code like:
872    //
873    //   struct S {
874    //     typedef struct A { } A;
875    //   };
876    //
877    // in the C++03 standard. We implement the C++0x semantics, which
878    // allow the above but disallow
879    //
880    //   struct S {
881    //     typedef int I;
882    //     typedef int I;
883    //   };
884    //
885    // since that was the intent of DR56.
886    if (!isa<TypedefDecl >(Old))
887      return;
888
889    Diag(New->getLocation(), diag::err_redefinition)
890      << New->getDeclName();
891    Diag(Old->getLocation(), diag::note_previous_definition);
892    return New->setInvalidDecl();
893  }
894
895  // If we have a redefinition of a typedef in C, emit a warning.  This warning
896  // is normally mapped to an error, but can be controlled with
897  // -Wtypedef-redefinition.  If either the original or the redefinition is
898  // in a system header, don't emit this for compatibility with GCC.
899  if (getDiagnostics().getSuppressSystemWarnings() &&
900      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
901       Context.getSourceManager().isInSystemHeader(New->getLocation())))
902    return;
903
904  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
905    << New->getDeclName();
906  Diag(Old->getLocation(), diag::note_previous_definition);
907  return;
908}
909
910/// DeclhasAttr - returns true if decl Declaration already has the target
911/// attribute.
912static bool
913DeclHasAttr(const Decl *decl, const Attr *target) {
914  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
915    if (attr->getKind() == target->getKind())
916      return true;
917
918  return false;
919}
920
921/// MergeAttributes - append attributes from the Old decl to the New one.
922static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
923  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
924    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
925      Attr *NewAttr = attr->clone(C);
926      NewAttr->setInherited(true);
927      New->addAttr(NewAttr);
928    }
929  }
930}
931
932namespace {
933
934/// Used in MergeFunctionDecl to keep track of function parameters in
935/// C.
936struct GNUCompatibleParamWarning {
937  ParmVarDecl *OldParm;
938  ParmVarDecl *NewParm;
939  QualType PromotedType;
940};
941
942}
943
944/// getSpecialMember - get the special member enum for a method.
945Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
946  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
947    if (Ctor->isCopyConstructor())
948      return Sema::CXXCopyConstructor;
949
950    return Sema::CXXConstructor;
951  }
952
953  if (isa<CXXDestructorDecl>(MD))
954    return Sema::CXXDestructor;
955
956  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
957  return Sema::CXXCopyAssignment;
958}
959
960/// canRedefineFunction - checks if a function can be redefined. Currently,
961/// only extern inline functions can be redefined, and even then only in
962/// GNU89 mode.
963static bool canRedefineFunction(const FunctionDecl *FD,
964                                const LangOptions& LangOpts) {
965  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
966          FD->isInlineSpecified() &&
967          FD->getStorageClass() == FunctionDecl::Extern);
968}
969
970/// MergeFunctionDecl - We just parsed a function 'New' from
971/// declarator D which has the same name and scope as a previous
972/// declaration 'Old'.  Figure out how to resolve this situation,
973/// merging decls or emitting diagnostics as appropriate.
974///
975/// In C++, New and Old must be declarations that are not
976/// overloaded. Use IsOverload to determine whether New and Old are
977/// overloaded, and to select the Old declaration that New should be
978/// merged with.
979///
980/// Returns true if there was an error, false otherwise.
981bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
982  // Verify the old decl was also a function.
983  FunctionDecl *Old = 0;
984  if (FunctionTemplateDecl *OldFunctionTemplate
985        = dyn_cast<FunctionTemplateDecl>(OldD))
986    Old = OldFunctionTemplate->getTemplatedDecl();
987  else
988    Old = dyn_cast<FunctionDecl>(OldD);
989  if (!Old) {
990    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
991      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
992      Diag(Shadow->getTargetDecl()->getLocation(),
993           diag::note_using_decl_target);
994      Diag(Shadow->getUsingDecl()->getLocation(),
995           diag::note_using_decl) << 0;
996      return true;
997    }
998
999    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1000      << New->getDeclName();
1001    Diag(OldD->getLocation(), diag::note_previous_definition);
1002    return true;
1003  }
1004
1005  // Determine whether the previous declaration was a definition,
1006  // implicit declaration, or a declaration.
1007  diag::kind PrevDiag;
1008  if (Old->isThisDeclarationADefinition())
1009    PrevDiag = diag::note_previous_definition;
1010  else if (Old->isImplicit())
1011    PrevDiag = diag::note_previous_implicit_declaration;
1012  else
1013    PrevDiag = diag::note_previous_declaration;
1014
1015  QualType OldQType = Context.getCanonicalType(Old->getType());
1016  QualType NewQType = Context.getCanonicalType(New->getType());
1017
1018  // Don't complain about this if we're in GNU89 mode and the old function
1019  // is an extern inline function.
1020  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1021      New->getStorageClass() == FunctionDecl::Static &&
1022      Old->getStorageClass() != FunctionDecl::Static &&
1023      !canRedefineFunction(Old, getLangOptions())) {
1024    Diag(New->getLocation(), diag::err_static_non_static)
1025      << New;
1026    Diag(Old->getLocation(), PrevDiag);
1027    return true;
1028  }
1029
1030  // If a function is first declared with a calling convention, but is
1031  // later declared or defined without one, the second decl assumes the
1032  // calling convention of the first.
1033  //
1034  // For the new decl, we have to look at the NON-canonical type to tell the
1035  // difference between a function that really doesn't have a calling
1036  // convention and one that is declared cdecl. That's because in
1037  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1038  // because it is the default calling convention.
1039  //
1040  // Note also that we DO NOT return at this point, because we still have
1041  // other tests to run.
1042  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1043  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1044  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1045  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1046  if (OldTypeInfo.getCC() != CC_Default &&
1047      NewTypeInfo.getCC() == CC_Default) {
1048    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1049    New->setType(NewQType);
1050    NewQType = Context.getCanonicalType(NewQType);
1051  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1052                                     NewTypeInfo.getCC())) {
1053    // Calling conventions really aren't compatible, so complain.
1054    Diag(New->getLocation(), diag::err_cconv_change)
1055      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1056      << (OldTypeInfo.getCC() == CC_Default)
1057      << (OldTypeInfo.getCC() == CC_Default ? "" :
1058          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1059    Diag(Old->getLocation(), diag::note_previous_declaration);
1060    return true;
1061  }
1062
1063  // FIXME: diagnose the other way around?
1064  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1065    NewQType = Context.getNoReturnType(NewQType);
1066    New->setType(NewQType);
1067    assert(NewQType.isCanonical());
1068  }
1069
1070  // Merge regparm attribute.
1071  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1072    if (NewType->getRegParmType()) {
1073      Diag(New->getLocation(), diag::err_regparm_mismatch)
1074        << NewType->getRegParmType()
1075        << OldType->getRegParmType();
1076      Diag(Old->getLocation(), diag::note_previous_declaration);
1077      return true;
1078    }
1079
1080    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1081    New->setType(NewQType);
1082    assert(NewQType.isCanonical());
1083  }
1084
1085  if (getLangOptions().CPlusPlus) {
1086    // (C++98 13.1p2):
1087    //   Certain function declarations cannot be overloaded:
1088    //     -- Function declarations that differ only in the return type
1089    //        cannot be overloaded.
1090    QualType OldReturnType
1091      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1092    QualType NewReturnType
1093      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1094    QualType ResQT;
1095    if (OldReturnType != NewReturnType) {
1096      if (NewReturnType->isObjCObjectPointerType()
1097          && OldReturnType->isObjCObjectPointerType())
1098        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1099      if (ResQT.isNull()) {
1100        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1101        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1102        return true;
1103      }
1104      else
1105        NewQType = ResQT;
1106    }
1107
1108    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1109    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1110    if (OldMethod && NewMethod) {
1111      // Preserve triviality.
1112      NewMethod->setTrivial(OldMethod->isTrivial());
1113
1114      bool isFriend = NewMethod->getFriendObjectKind();
1115
1116      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1117        //    -- Member function declarations with the same name and the
1118        //       same parameter types cannot be overloaded if any of them
1119        //       is a static member function declaration.
1120        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1121          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1122          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1123          return true;
1124        }
1125
1126        // C++ [class.mem]p1:
1127        //   [...] A member shall not be declared twice in the
1128        //   member-specification, except that a nested class or member
1129        //   class template can be declared and then later defined.
1130        unsigned NewDiag;
1131        if (isa<CXXConstructorDecl>(OldMethod))
1132          NewDiag = diag::err_constructor_redeclared;
1133        else if (isa<CXXDestructorDecl>(NewMethod))
1134          NewDiag = diag::err_destructor_redeclared;
1135        else if (isa<CXXConversionDecl>(NewMethod))
1136          NewDiag = diag::err_conv_function_redeclared;
1137        else
1138          NewDiag = diag::err_member_redeclared;
1139
1140        Diag(New->getLocation(), NewDiag);
1141        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1142
1143      // Complain if this is an explicit declaration of a special
1144      // member that was initially declared implicitly.
1145      //
1146      // As an exception, it's okay to befriend such methods in order
1147      // to permit the implicit constructor/destructor/operator calls.
1148      } else if (OldMethod->isImplicit()) {
1149        if (isFriend) {
1150          NewMethod->setImplicit();
1151        } else {
1152          Diag(NewMethod->getLocation(),
1153               diag::err_definition_of_implicitly_declared_member)
1154            << New << getSpecialMember(OldMethod);
1155          return true;
1156        }
1157      }
1158    }
1159
1160    // (C++98 8.3.5p3):
1161    //   All declarations for a function shall agree exactly in both the
1162    //   return type and the parameter-type-list.
1163    // attributes should be ignored when comparing.
1164    if (Context.getNoReturnType(OldQType, false) ==
1165        Context.getNoReturnType(NewQType, false))
1166      return MergeCompatibleFunctionDecls(New, Old);
1167
1168    // Fall through for conflicting redeclarations and redefinitions.
1169  }
1170
1171  // C: Function types need to be compatible, not identical. This handles
1172  // duplicate function decls like "void f(int); void f(enum X);" properly.
1173  if (!getLangOptions().CPlusPlus &&
1174      Context.typesAreCompatible(OldQType, NewQType)) {
1175    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1176    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1177    const FunctionProtoType *OldProto = 0;
1178    if (isa<FunctionNoProtoType>(NewFuncType) &&
1179        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1180      // The old declaration provided a function prototype, but the
1181      // new declaration does not. Merge in the prototype.
1182      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1183      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1184                                                 OldProto->arg_type_end());
1185      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1186                                         ParamTypes.data(), ParamTypes.size(),
1187                                         OldProto->isVariadic(),
1188                                         OldProto->getTypeQuals(),
1189                                         false, false, 0, 0,
1190                                         OldProto->getExtInfo());
1191      New->setType(NewQType);
1192      New->setHasInheritedPrototype();
1193
1194      // Synthesize a parameter for each argument type.
1195      llvm::SmallVector<ParmVarDecl*, 16> Params;
1196      for (FunctionProtoType::arg_type_iterator
1197             ParamType = OldProto->arg_type_begin(),
1198             ParamEnd = OldProto->arg_type_end();
1199           ParamType != ParamEnd; ++ParamType) {
1200        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1201                                                 SourceLocation(), 0,
1202                                                 *ParamType, /*TInfo=*/0,
1203                                                 VarDecl::None, VarDecl::None,
1204                                                 0);
1205        Param->setImplicit();
1206        Params.push_back(Param);
1207      }
1208
1209      New->setParams(Params.data(), Params.size());
1210    }
1211
1212    return MergeCompatibleFunctionDecls(New, Old);
1213  }
1214
1215  // GNU C permits a K&R definition to follow a prototype declaration
1216  // if the declared types of the parameters in the K&R definition
1217  // match the types in the prototype declaration, even when the
1218  // promoted types of the parameters from the K&R definition differ
1219  // from the types in the prototype. GCC then keeps the types from
1220  // the prototype.
1221  //
1222  // If a variadic prototype is followed by a non-variadic K&R definition,
1223  // the K&R definition becomes variadic.  This is sort of an edge case, but
1224  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1225  // C99 6.9.1p8.
1226  if (!getLangOptions().CPlusPlus &&
1227      Old->hasPrototype() && !New->hasPrototype() &&
1228      New->getType()->getAs<FunctionProtoType>() &&
1229      Old->getNumParams() == New->getNumParams()) {
1230    llvm::SmallVector<QualType, 16> ArgTypes;
1231    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1232    const FunctionProtoType *OldProto
1233      = Old->getType()->getAs<FunctionProtoType>();
1234    const FunctionProtoType *NewProto
1235      = New->getType()->getAs<FunctionProtoType>();
1236
1237    // Determine whether this is the GNU C extension.
1238    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1239                                               NewProto->getResultType());
1240    bool LooseCompatible = !MergedReturn.isNull();
1241    for (unsigned Idx = 0, End = Old->getNumParams();
1242         LooseCompatible && Idx != End; ++Idx) {
1243      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1244      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1245      if (Context.typesAreCompatible(OldParm->getType(),
1246                                     NewProto->getArgType(Idx))) {
1247        ArgTypes.push_back(NewParm->getType());
1248      } else if (Context.typesAreCompatible(OldParm->getType(),
1249                                            NewParm->getType(),
1250                                            /*CompareUnqualified=*/true)) {
1251        GNUCompatibleParamWarning Warn
1252          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1253        Warnings.push_back(Warn);
1254        ArgTypes.push_back(NewParm->getType());
1255      } else
1256        LooseCompatible = false;
1257    }
1258
1259    if (LooseCompatible) {
1260      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1261        Diag(Warnings[Warn].NewParm->getLocation(),
1262             diag::ext_param_promoted_not_compatible_with_prototype)
1263          << Warnings[Warn].PromotedType
1264          << Warnings[Warn].OldParm->getType();
1265        if (Warnings[Warn].OldParm->getLocation().isValid())
1266          Diag(Warnings[Warn].OldParm->getLocation(),
1267               diag::note_previous_declaration);
1268      }
1269
1270      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1271                                           ArgTypes.size(),
1272                                           OldProto->isVariadic(), 0,
1273                                           false, false, 0, 0,
1274                                           OldProto->getExtInfo()));
1275      return MergeCompatibleFunctionDecls(New, Old);
1276    }
1277
1278    // Fall through to diagnose conflicting types.
1279  }
1280
1281  // A function that has already been declared has been redeclared or defined
1282  // with a different type- show appropriate diagnostic
1283  if (unsigned BuiltinID = Old->getBuiltinID()) {
1284    // The user has declared a builtin function with an incompatible
1285    // signature.
1286    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1287      // The function the user is redeclaring is a library-defined
1288      // function like 'malloc' or 'printf'. Warn about the
1289      // redeclaration, then pretend that we don't know about this
1290      // library built-in.
1291      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1292      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1293        << Old << Old->getType();
1294      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1295      Old->setInvalidDecl();
1296      return false;
1297    }
1298
1299    PrevDiag = diag::note_previous_builtin_declaration;
1300  }
1301
1302  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1303  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1304  return true;
1305}
1306
1307/// \brief Completes the merge of two function declarations that are
1308/// known to be compatible.
1309///
1310/// This routine handles the merging of attributes and other
1311/// properties of function declarations form the old declaration to
1312/// the new declaration, once we know that New is in fact a
1313/// redeclaration of Old.
1314///
1315/// \returns false
1316bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1317  // Merge the attributes
1318  MergeAttributes(New, Old, Context);
1319
1320  // Merge the storage class.
1321  if (Old->getStorageClass() != FunctionDecl::Extern &&
1322      Old->getStorageClass() != FunctionDecl::None)
1323    New->setStorageClass(Old->getStorageClass());
1324
1325  // Merge "pure" flag.
1326  if (Old->isPure())
1327    New->setPure();
1328
1329  // Merge the "deleted" flag.
1330  if (Old->isDeleted())
1331    New->setDeleted();
1332
1333  if (getLangOptions().CPlusPlus)
1334    return MergeCXXFunctionDecl(New, Old);
1335
1336  return false;
1337}
1338
1339/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1340/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1341/// situation, merging decls or emitting diagnostics as appropriate.
1342///
1343/// Tentative definition rules (C99 6.9.2p2) are checked by
1344/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1345/// definitions here, since the initializer hasn't been attached.
1346///
1347void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1348  // If the new decl is already invalid, don't do any other checking.
1349  if (New->isInvalidDecl())
1350    return;
1351
1352  // Verify the old decl was also a variable.
1353  VarDecl *Old = 0;
1354  if (!Previous.isSingleResult() ||
1355      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1356    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1357      << New->getDeclName();
1358    Diag(Previous.getRepresentativeDecl()->getLocation(),
1359         diag::note_previous_definition);
1360    return New->setInvalidDecl();
1361  }
1362
1363  MergeAttributes(New, Old, Context);
1364
1365  // Merge the types
1366  QualType MergedT;
1367  if (getLangOptions().CPlusPlus) {
1368    if (Context.hasSameType(New->getType(), Old->getType()))
1369      MergedT = New->getType();
1370    // C++ [basic.link]p10:
1371    //   [...] the types specified by all declarations referring to a given
1372    //   object or function shall be identical, except that declarations for an
1373    //   array object can specify array types that differ by the presence or
1374    //   absence of a major array bound (8.3.4).
1375    else if (Old->getType()->isIncompleteArrayType() &&
1376             New->getType()->isArrayType()) {
1377      CanQual<ArrayType> OldArray
1378        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1379      CanQual<ArrayType> NewArray
1380        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1381      if (OldArray->getElementType() == NewArray->getElementType())
1382        MergedT = New->getType();
1383    } else if (Old->getType()->isArrayType() &&
1384             New->getType()->isIncompleteArrayType()) {
1385      CanQual<ArrayType> OldArray
1386        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1387      CanQual<ArrayType> NewArray
1388        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1389      if (OldArray->getElementType() == NewArray->getElementType())
1390        MergedT = Old->getType();
1391    } else if (New->getType()->isObjCObjectPointerType()
1392               && Old->getType()->isObjCObjectPointerType()) {
1393        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1394    }
1395  } else {
1396    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1397  }
1398  if (MergedT.isNull()) {
1399    Diag(New->getLocation(), diag::err_redefinition_different_type)
1400      << New->getDeclName();
1401    Diag(Old->getLocation(), diag::note_previous_definition);
1402    return New->setInvalidDecl();
1403  }
1404  New->setType(MergedT);
1405
1406  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1407  if (New->getStorageClass() == VarDecl::Static &&
1408      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1409    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1410    Diag(Old->getLocation(), diag::note_previous_definition);
1411    return New->setInvalidDecl();
1412  }
1413  // C99 6.2.2p4:
1414  //   For an identifier declared with the storage-class specifier
1415  //   extern in a scope in which a prior declaration of that
1416  //   identifier is visible,23) if the prior declaration specifies
1417  //   internal or external linkage, the linkage of the identifier at
1418  //   the later declaration is the same as the linkage specified at
1419  //   the prior declaration. If no prior declaration is visible, or
1420  //   if the prior declaration specifies no linkage, then the
1421  //   identifier has external linkage.
1422  if (New->hasExternalStorage() && Old->hasLinkage())
1423    /* Okay */;
1424  else if (New->getStorageClass() != VarDecl::Static &&
1425           Old->getStorageClass() == VarDecl::Static) {
1426    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1427    Diag(Old->getLocation(), diag::note_previous_definition);
1428    return New->setInvalidDecl();
1429  }
1430
1431  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1432
1433  // FIXME: The test for external storage here seems wrong? We still
1434  // need to check for mismatches.
1435  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1436      // Don't complain about out-of-line definitions of static members.
1437      !(Old->getLexicalDeclContext()->isRecord() &&
1438        !New->getLexicalDeclContext()->isRecord())) {
1439    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441    return New->setInvalidDecl();
1442  }
1443
1444  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1445    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1446    Diag(Old->getLocation(), diag::note_previous_definition);
1447  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1448    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1449    Diag(Old->getLocation(), diag::note_previous_definition);
1450  }
1451
1452  // C++ doesn't have tentative definitions, so go right ahead and check here.
1453  const VarDecl *Def;
1454  if (getLangOptions().CPlusPlus &&
1455      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1456      (Def = Old->getDefinition())) {
1457    Diag(New->getLocation(), diag::err_redefinition)
1458      << New->getDeclName();
1459    Diag(Def->getLocation(), diag::note_previous_definition);
1460    New->setInvalidDecl();
1461    return;
1462  }
1463  // c99 6.2.2 P4.
1464  // For an identifier declared with the storage-class specifier extern in a
1465  // scope in which a prior declaration of that identifier is visible, if
1466  // the prior declaration specifies internal or external linkage, the linkage
1467  // of the identifier at the later declaration is the same as the linkage
1468  // specified at the prior declaration.
1469  // FIXME. revisit this code.
1470  if (New->hasExternalStorage() &&
1471      Old->getLinkage() == InternalLinkage &&
1472      New->getDeclContext() == Old->getDeclContext())
1473    New->setStorageClass(Old->getStorageClass());
1474
1475  // Keep a chain of previous declarations.
1476  New->setPreviousDeclaration(Old);
1477
1478  // Inherit access appropriately.
1479  New->setAccess(Old->getAccess());
1480}
1481
1482/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1483/// no declarator (e.g. "struct foo;") is parsed.
1484Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1485                                                 DeclSpec &DS) {
1486  // FIXME: Error on auto/register at file scope
1487  // FIXME: Error on inline/virtual/explicit
1488  // FIXME: Warn on useless __thread
1489  // FIXME: Warn on useless const/volatile
1490  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1491  // FIXME: Warn on useless attributes
1492  Decl *TagD = 0;
1493  TagDecl *Tag = 0;
1494  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1495      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1496      DS.getTypeSpecType() == DeclSpec::TST_union ||
1497      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1498    TagD = static_cast<Decl *>(DS.getTypeRep());
1499
1500    if (!TagD) // We probably had an error
1501      return DeclPtrTy();
1502
1503    // Note that the above type specs guarantee that the
1504    // type rep is a Decl, whereas in many of the others
1505    // it's a Type.
1506    Tag = dyn_cast<TagDecl>(TagD);
1507  }
1508
1509  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1510    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1511    // or incomplete types shall not be restrict-qualified."
1512    if (TypeQuals & DeclSpec::TQ_restrict)
1513      Diag(DS.getRestrictSpecLoc(),
1514           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1515           << DS.getSourceRange();
1516  }
1517
1518  if (DS.isFriendSpecified()) {
1519    // If we're dealing with a class template decl, assume that the
1520    // template routines are handling it.
1521    if (TagD && isa<ClassTemplateDecl>(TagD))
1522      return DeclPtrTy();
1523    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1524  }
1525
1526  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1527    // If there are attributes in the DeclSpec, apply them to the record.
1528    if (const AttributeList *AL = DS.getAttributes())
1529      ProcessDeclAttributeList(S, Record, AL);
1530
1531    if (!Record->getDeclName() && Record->isDefinition() &&
1532        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1533      if (getLangOptions().CPlusPlus ||
1534          Record->getDeclContext()->isRecord())
1535        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1536
1537      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1538        << DS.getSourceRange();
1539    }
1540
1541    // Microsoft allows unnamed struct/union fields. Don't complain
1542    // about them.
1543    // FIXME: Should we support Microsoft's extensions in this area?
1544    if (Record->getDeclName() && getLangOptions().Microsoft)
1545      return DeclPtrTy::make(Tag);
1546  }
1547
1548  if (getLangOptions().CPlusPlus &&
1549      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1550    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1551      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1552          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1553        Diag(Enum->getLocation(), diag::ext_no_declarators)
1554          << DS.getSourceRange();
1555
1556  if (!DS.isMissingDeclaratorOk() &&
1557      DS.getTypeSpecType() != DeclSpec::TST_error) {
1558    // Warn about typedefs of enums without names, since this is an
1559    // extension in both Microsoft and GNU.
1560    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1561        Tag && isa<EnumDecl>(Tag)) {
1562      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1563        << DS.getSourceRange();
1564      return DeclPtrTy::make(Tag);
1565    }
1566
1567    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1568      << DS.getSourceRange();
1569  }
1570
1571  return DeclPtrTy::make(TagD);
1572}
1573
1574/// We are trying to inject an anonymous member into the given scope;
1575/// check if there's an existing declaration that can't be overloaded.
1576///
1577/// \return true if this is a forbidden redeclaration
1578static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1579                                         Scope *S,
1580                                         DeclContext *Owner,
1581                                         DeclarationName Name,
1582                                         SourceLocation NameLoc,
1583                                         unsigned diagnostic) {
1584  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1585                 Sema::ForRedeclaration);
1586  if (!SemaRef.LookupName(R, S)) return false;
1587
1588  if (R.getAsSingle<TagDecl>())
1589    return false;
1590
1591  // Pick a representative declaration.
1592  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1593  if (PrevDecl && Owner->isRecord()) {
1594    RecordDecl *Record = cast<RecordDecl>(Owner);
1595    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1596      return false;
1597  }
1598
1599  SemaRef.Diag(NameLoc, diagnostic) << Name;
1600  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1601
1602  return true;
1603}
1604
1605/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1606/// anonymous struct or union AnonRecord into the owning context Owner
1607/// and scope S. This routine will be invoked just after we realize
1608/// that an unnamed union or struct is actually an anonymous union or
1609/// struct, e.g.,
1610///
1611/// @code
1612/// union {
1613///   int i;
1614///   float f;
1615/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1616///    // f into the surrounding scope.x
1617/// @endcode
1618///
1619/// This routine is recursive, injecting the names of nested anonymous
1620/// structs/unions into the owning context and scope as well.
1621static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1622                                                DeclContext *Owner,
1623                                                RecordDecl *AnonRecord,
1624                                                AccessSpecifier AS) {
1625  unsigned diagKind
1626    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1627                            : diag::err_anonymous_struct_member_redecl;
1628
1629  bool Invalid = false;
1630  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1631                               FEnd = AnonRecord->field_end();
1632       F != FEnd; ++F) {
1633    if ((*F)->getDeclName()) {
1634      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1635                                       (*F)->getLocation(), diagKind)) {
1636        // C++ [class.union]p2:
1637        //   The names of the members of an anonymous union shall be
1638        //   distinct from the names of any other entity in the
1639        //   scope in which the anonymous union is declared.
1640        Invalid = true;
1641      } else {
1642        // C++ [class.union]p2:
1643        //   For the purpose of name lookup, after the anonymous union
1644        //   definition, the members of the anonymous union are
1645        //   considered to have been defined in the scope in which the
1646        //   anonymous union is declared.
1647        Owner->makeDeclVisibleInContext(*F);
1648        S->AddDecl(Sema::DeclPtrTy::make(*F));
1649        SemaRef.IdResolver.AddDecl(*F);
1650
1651        // That includes picking up the appropriate access specifier.
1652        if (AS != AS_none) (*F)->setAccess(AS);
1653      }
1654    } else if (const RecordType *InnerRecordType
1655                 = (*F)->getType()->getAs<RecordType>()) {
1656      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1657      if (InnerRecord->isAnonymousStructOrUnion())
1658        Invalid = Invalid ||
1659          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1660                                              InnerRecord, AS);
1661    }
1662  }
1663
1664  return Invalid;
1665}
1666
1667/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1668/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1669/// illegal input values are mapped to VarDecl::None.
1670static VarDecl::StorageClass
1671StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1672  switch (StorageClassSpec) {
1673  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1674  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1675  case DeclSpec::SCS_static:         return VarDecl::Static;
1676  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1677  case DeclSpec::SCS_register:       return VarDecl::Register;
1678  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1679    // Illegal SCSs map to None: error reporting is up to the caller.
1680  case DeclSpec::SCS_mutable:        // Fall through.
1681  case DeclSpec::SCS_typedef:        return VarDecl::None;
1682  }
1683  llvm_unreachable("unknown storage class specifier");
1684}
1685
1686/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1687/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1688/// illegal input values are mapped to FunctionDecl::None.
1689static FunctionDecl::StorageClass
1690StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1691  switch (StorageClassSpec) {
1692  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1693  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1694  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1695  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1696    // Illegal SCSs map to None: error reporting is up to the caller.
1697  case DeclSpec::SCS_auto:           // Fall through.
1698  case DeclSpec::SCS_mutable:        // Fall through.
1699  case DeclSpec::SCS_register:       // Fall through.
1700  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1701  }
1702  llvm_unreachable("unknown storage class specifier");
1703}
1704
1705/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1706/// anonymous structure or union. Anonymous unions are a C++ feature
1707/// (C++ [class.union]) and a GNU C extension; anonymous structures
1708/// are a GNU C and GNU C++ extension.
1709Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1710                                                  AccessSpecifier AS,
1711                                                  RecordDecl *Record) {
1712  DeclContext *Owner = Record->getDeclContext();
1713
1714  // Diagnose whether this anonymous struct/union is an extension.
1715  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1716    Diag(Record->getLocation(), diag::ext_anonymous_union);
1717  else if (!Record->isUnion())
1718    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1719
1720  // C and C++ require different kinds of checks for anonymous
1721  // structs/unions.
1722  bool Invalid = false;
1723  if (getLangOptions().CPlusPlus) {
1724    const char* PrevSpec = 0;
1725    unsigned DiagID;
1726    // C++ [class.union]p3:
1727    //   Anonymous unions declared in a named namespace or in the
1728    //   global namespace shall be declared static.
1729    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1730        (isa<TranslationUnitDecl>(Owner) ||
1731         (isa<NamespaceDecl>(Owner) &&
1732          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1733      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1734      Invalid = true;
1735
1736      // Recover by adding 'static'.
1737      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1738                             PrevSpec, DiagID);
1739    }
1740    // C++ [class.union]p3:
1741    //   A storage class is not allowed in a declaration of an
1742    //   anonymous union in a class scope.
1743    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1744             isa<RecordDecl>(Owner)) {
1745      Diag(DS.getStorageClassSpecLoc(),
1746           diag::err_anonymous_union_with_storage_spec);
1747      Invalid = true;
1748
1749      // Recover by removing the storage specifier.
1750      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1751                             PrevSpec, DiagID);
1752    }
1753
1754    // C++ [class.union]p2:
1755    //   The member-specification of an anonymous union shall only
1756    //   define non-static data members. [Note: nested types and
1757    //   functions cannot be declared within an anonymous union. ]
1758    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1759                                 MemEnd = Record->decls_end();
1760         Mem != MemEnd; ++Mem) {
1761      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1762        // C++ [class.union]p3:
1763        //   An anonymous union shall not have private or protected
1764        //   members (clause 11).
1765        assert(FD->getAccess() != AS_none);
1766        if (FD->getAccess() != AS_public) {
1767          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1768            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1769          Invalid = true;
1770        }
1771      } else if ((*Mem)->isImplicit()) {
1772        // Any implicit members are fine.
1773      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1774        // This is a type that showed up in an
1775        // elaborated-type-specifier inside the anonymous struct or
1776        // union, but which actually declares a type outside of the
1777        // anonymous struct or union. It's okay.
1778      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1779        if (!MemRecord->isAnonymousStructOrUnion() &&
1780            MemRecord->getDeclName()) {
1781          // This is a nested type declaration.
1782          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1783            << (int)Record->isUnion();
1784          Invalid = true;
1785        }
1786      } else if (isa<AccessSpecDecl>(*Mem)) {
1787        // Any access specifier is fine.
1788      } else {
1789        // We have something that isn't a non-static data
1790        // member. Complain about it.
1791        unsigned DK = diag::err_anonymous_record_bad_member;
1792        if (isa<TypeDecl>(*Mem))
1793          DK = diag::err_anonymous_record_with_type;
1794        else if (isa<FunctionDecl>(*Mem))
1795          DK = diag::err_anonymous_record_with_function;
1796        else if (isa<VarDecl>(*Mem))
1797          DK = diag::err_anonymous_record_with_static;
1798        Diag((*Mem)->getLocation(), DK)
1799            << (int)Record->isUnion();
1800          Invalid = true;
1801      }
1802    }
1803  }
1804
1805  if (!Record->isUnion() && !Owner->isRecord()) {
1806    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1807      << (int)getLangOptions().CPlusPlus;
1808    Invalid = true;
1809  }
1810
1811  // Mock up a declarator.
1812  Declarator Dc(DS, Declarator::TypeNameContext);
1813  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1814  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1815
1816  // Create a declaration for this anonymous struct/union.
1817  NamedDecl *Anon = 0;
1818  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1819    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1820                             /*IdentifierInfo=*/0,
1821                             Context.getTypeDeclType(Record),
1822                             TInfo,
1823                             /*BitWidth=*/0, /*Mutable=*/false);
1824    Anon->setAccess(AS);
1825    if (getLangOptions().CPlusPlus) {
1826      FieldCollector->Add(cast<FieldDecl>(Anon));
1827      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1828        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1829    }
1830  } else {
1831    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1832    assert(SCSpec != DeclSpec::SCS_typedef &&
1833           "Parser allowed 'typedef' as storage class VarDecl.");
1834    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1835    if (SCSpec == DeclSpec::SCS_mutable) {
1836      // mutable can only appear on non-static class members, so it's always
1837      // an error here
1838      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1839      Invalid = true;
1840      SC = VarDecl::None;
1841    }
1842    SCSpec = DS.getStorageClassSpecAsWritten();
1843    VarDecl::StorageClass SCAsWritten
1844      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1845
1846    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1847                           /*IdentifierInfo=*/0,
1848                           Context.getTypeDeclType(Record),
1849                           TInfo, SC, SCAsWritten);
1850  }
1851  Anon->setImplicit();
1852
1853  // Add the anonymous struct/union object to the current
1854  // context. We'll be referencing this object when we refer to one of
1855  // its members.
1856  Owner->addDecl(Anon);
1857
1858  // Inject the members of the anonymous struct/union into the owning
1859  // context and into the identifier resolver chain for name lookup
1860  // purposes.
1861  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1862    Invalid = true;
1863
1864  // Mark this as an anonymous struct/union type. Note that we do not
1865  // do this until after we have already checked and injected the
1866  // members of this anonymous struct/union type, because otherwise
1867  // the members could be injected twice: once by DeclContext when it
1868  // builds its lookup table, and once by
1869  // InjectAnonymousStructOrUnionMembers.
1870  Record->setAnonymousStructOrUnion(true);
1871
1872  if (Invalid)
1873    Anon->setInvalidDecl();
1874
1875  return DeclPtrTy::make(Anon);
1876}
1877
1878
1879/// GetNameForDeclarator - Determine the full declaration name for the
1880/// given Declarator.
1881DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1882  return GetNameFromUnqualifiedId(D.getName());
1883}
1884
1885/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1886DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1887  switch (Name.getKind()) {
1888    case UnqualifiedId::IK_Identifier:
1889      return DeclarationName(Name.Identifier);
1890
1891    case UnqualifiedId::IK_OperatorFunctionId:
1892      return Context.DeclarationNames.getCXXOperatorName(
1893                                              Name.OperatorFunctionId.Operator);
1894
1895    case UnqualifiedId::IK_LiteralOperatorId:
1896      return Context.DeclarationNames.getCXXLiteralOperatorName(
1897                                                               Name.Identifier);
1898
1899    case UnqualifiedId::IK_ConversionFunctionId: {
1900      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1901      if (Ty.isNull())
1902        return DeclarationName();
1903
1904      return Context.DeclarationNames.getCXXConversionFunctionName(
1905                                                  Context.getCanonicalType(Ty));
1906    }
1907
1908    case UnqualifiedId::IK_ConstructorName: {
1909      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1910      if (Ty.isNull())
1911        return DeclarationName();
1912
1913      return Context.DeclarationNames.getCXXConstructorName(
1914                                                  Context.getCanonicalType(Ty));
1915    }
1916
1917    case UnqualifiedId::IK_ConstructorTemplateId: {
1918      // In well-formed code, we can only have a constructor
1919      // template-id that refers to the current context, so go there
1920      // to find the actual type being constructed.
1921      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1922      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1923        return DeclarationName();
1924
1925      // Determine the type of the class being constructed.
1926      QualType CurClassType = Context.getTypeDeclType(CurClass);
1927
1928      // FIXME: Check two things: that the template-id names the same type as
1929      // CurClassType, and that the template-id does not occur when the name
1930      // was qualified.
1931
1932      return Context.DeclarationNames.getCXXConstructorName(
1933                                       Context.getCanonicalType(CurClassType));
1934    }
1935
1936    case UnqualifiedId::IK_DestructorName: {
1937      QualType Ty = GetTypeFromParser(Name.DestructorName);
1938      if (Ty.isNull())
1939        return DeclarationName();
1940
1941      return Context.DeclarationNames.getCXXDestructorName(
1942                                                           Context.getCanonicalType(Ty));
1943    }
1944
1945    case UnqualifiedId::IK_TemplateId: {
1946      TemplateName TName
1947        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1948      return Context.getNameForTemplate(TName);
1949    }
1950  }
1951
1952  assert(false && "Unknown name kind");
1953  return DeclarationName();
1954}
1955
1956/// isNearlyMatchingFunction - Determine whether the C++ functions
1957/// Declaration and Definition are "nearly" matching. This heuristic
1958/// is used to improve diagnostics in the case where an out-of-line
1959/// function definition doesn't match any declaration within
1960/// the class or namespace.
1961static bool isNearlyMatchingFunction(ASTContext &Context,
1962                                     FunctionDecl *Declaration,
1963                                     FunctionDecl *Definition) {
1964  if (Declaration->param_size() != Definition->param_size())
1965    return false;
1966  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1967    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1968    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1969
1970    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1971                                        DefParamTy.getNonReferenceType()))
1972      return false;
1973  }
1974
1975  return true;
1976}
1977
1978/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1979/// declarator needs to be rebuilt in the current instantiation.
1980/// Any bits of declarator which appear before the name are valid for
1981/// consideration here.  That's specifically the type in the decl spec
1982/// and the base type in any member-pointer chunks.
1983static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1984                                                    DeclarationName Name) {
1985  // The types we specifically need to rebuild are:
1986  //   - typenames, typeofs, and decltypes
1987  //   - types which will become injected class names
1988  // Of course, we also need to rebuild any type referencing such a
1989  // type.  It's safest to just say "dependent", but we call out a
1990  // few cases here.
1991
1992  DeclSpec &DS = D.getMutableDeclSpec();
1993  switch (DS.getTypeSpecType()) {
1994  case DeclSpec::TST_typename:
1995  case DeclSpec::TST_typeofType:
1996  case DeclSpec::TST_typeofExpr:
1997  case DeclSpec::TST_decltype: {
1998    // Grab the type from the parser.
1999    TypeSourceInfo *TSI = 0;
2000    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2001    if (T.isNull() || !T->isDependentType()) break;
2002
2003    // Make sure there's a type source info.  This isn't really much
2004    // of a waste; most dependent types should have type source info
2005    // attached already.
2006    if (!TSI)
2007      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2008
2009    // Rebuild the type in the current instantiation.
2010    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2011    if (!TSI) return true;
2012
2013    // Store the new type back in the decl spec.
2014    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2015    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2016    break;
2017  }
2018
2019  default:
2020    // Nothing to do for these decl specs.
2021    break;
2022  }
2023
2024  // It doesn't matter what order we do this in.
2025  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2026    DeclaratorChunk &Chunk = D.getTypeObject(I);
2027
2028    // The only type information in the declarator which can come
2029    // before the declaration name is the base type of a member
2030    // pointer.
2031    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2032      continue;
2033
2034    // Rebuild the scope specifier in-place.
2035    CXXScopeSpec &SS = Chunk.Mem.Scope();
2036    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2037      return true;
2038  }
2039
2040  return false;
2041}
2042
2043Sema::DeclPtrTy
2044Sema::HandleDeclarator(Scope *S, Declarator &D,
2045                       MultiTemplateParamsArg TemplateParamLists,
2046                       bool IsFunctionDefinition) {
2047  DeclarationName Name = GetNameForDeclarator(D);
2048
2049  // All of these full declarators require an identifier.  If it doesn't have
2050  // one, the ParsedFreeStandingDeclSpec action should be used.
2051  if (!Name) {
2052    if (!D.isInvalidType())  // Reject this if we think it is valid.
2053      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2054           diag::err_declarator_need_ident)
2055        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2056    return DeclPtrTy();
2057  }
2058
2059  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2060  // we find one that is.
2061  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2062         (S->getFlags() & Scope::TemplateParamScope) != 0)
2063    S = S->getParent();
2064
2065  DeclContext *DC = CurContext;
2066  if (D.getCXXScopeSpec().isInvalid())
2067    D.setInvalidType();
2068  else if (D.getCXXScopeSpec().isSet()) {
2069    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2070    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2071    if (!DC) {
2072      // If we could not compute the declaration context, it's because the
2073      // declaration context is dependent but does not refer to a class,
2074      // class template, or class template partial specialization. Complain
2075      // and return early, to avoid the coming semantic disaster.
2076      Diag(D.getIdentifierLoc(),
2077           diag::err_template_qualified_declarator_no_match)
2078        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2079        << D.getCXXScopeSpec().getRange();
2080      return DeclPtrTy();
2081    }
2082
2083    bool IsDependentContext = DC->isDependentContext();
2084
2085    if (!IsDependentContext &&
2086        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2087      return DeclPtrTy();
2088
2089    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2090      Diag(D.getIdentifierLoc(),
2091           diag::err_member_def_undefined_record)
2092        << Name << DC << D.getCXXScopeSpec().getRange();
2093      D.setInvalidType();
2094    }
2095
2096    // Check whether we need to rebuild the type of the given
2097    // declaration in the current instantiation.
2098    if (EnteringContext && IsDependentContext &&
2099        TemplateParamLists.size() != 0) {
2100      ContextRAII SavedContext(*this, DC);
2101      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2102        D.setInvalidType();
2103    }
2104  }
2105
2106  NamedDecl *New;
2107
2108  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2109  QualType R = TInfo->getType();
2110
2111  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2112                        ForRedeclaration);
2113
2114  // See if this is a redefinition of a variable in the same scope.
2115  if (!D.getCXXScopeSpec().isSet()) {
2116    bool IsLinkageLookup = false;
2117
2118    // If the declaration we're planning to build will be a function
2119    // or object with linkage, then look for another declaration with
2120    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2121    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2122      /* Do nothing*/;
2123    else if (R->isFunctionType()) {
2124      if (CurContext->isFunctionOrMethod() ||
2125          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2126        IsLinkageLookup = true;
2127    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2128      IsLinkageLookup = true;
2129    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2130             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2131      IsLinkageLookup = true;
2132
2133    if (IsLinkageLookup)
2134      Previous.clear(LookupRedeclarationWithLinkage);
2135
2136    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2137  } else { // Something like "int foo::x;"
2138    LookupQualifiedName(Previous, DC);
2139
2140    // Don't consider using declarations as previous declarations for
2141    // out-of-line members.
2142    RemoveUsingDecls(Previous);
2143
2144    // C++ 7.3.1.2p2:
2145    // Members (including explicit specializations of templates) of a named
2146    // namespace can also be defined outside that namespace by explicit
2147    // qualification of the name being defined, provided that the entity being
2148    // defined was already declared in the namespace and the definition appears
2149    // after the point of declaration in a namespace that encloses the
2150    // declarations namespace.
2151    //
2152    // Note that we only check the context at this point. We don't yet
2153    // have enough information to make sure that PrevDecl is actually
2154    // the declaration we want to match. For example, given:
2155    //
2156    //   class X {
2157    //     void f();
2158    //     void f(float);
2159    //   };
2160    //
2161    //   void X::f(int) { } // ill-formed
2162    //
2163    // In this case, PrevDecl will point to the overload set
2164    // containing the two f's declared in X, but neither of them
2165    // matches.
2166
2167    // First check whether we named the global scope.
2168    if (isa<TranslationUnitDecl>(DC)) {
2169      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2170        << Name << D.getCXXScopeSpec().getRange();
2171    } else {
2172      DeclContext *Cur = CurContext;
2173      while (isa<LinkageSpecDecl>(Cur))
2174        Cur = Cur->getParent();
2175      if (!Cur->Encloses(DC)) {
2176        // The qualifying scope doesn't enclose the original declaration.
2177        // Emit diagnostic based on current scope.
2178        SourceLocation L = D.getIdentifierLoc();
2179        SourceRange R = D.getCXXScopeSpec().getRange();
2180        if (isa<FunctionDecl>(Cur))
2181          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2182        else
2183          Diag(L, diag::err_invalid_declarator_scope)
2184            << Name << cast<NamedDecl>(DC) << R;
2185        D.setInvalidType();
2186      }
2187    }
2188  }
2189
2190  if (Previous.isSingleResult() &&
2191      Previous.getFoundDecl()->isTemplateParameter()) {
2192    // Maybe we will complain about the shadowed template parameter.
2193    if (!D.isInvalidType())
2194      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2195                                          Previous.getFoundDecl()))
2196        D.setInvalidType();
2197
2198    // Just pretend that we didn't see the previous declaration.
2199    Previous.clear();
2200  }
2201
2202  // In C++, the previous declaration we find might be a tag type
2203  // (class or enum). In this case, the new declaration will hide the
2204  // tag type. Note that this does does not apply if we're declaring a
2205  // typedef (C++ [dcl.typedef]p4).
2206  if (Previous.isSingleTagDecl() &&
2207      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2208    Previous.clear();
2209
2210  bool Redeclaration = false;
2211  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2212    if (TemplateParamLists.size()) {
2213      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2214      return DeclPtrTy();
2215    }
2216
2217    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2218  } else if (R->isFunctionType()) {
2219    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2220                                  move(TemplateParamLists),
2221                                  IsFunctionDefinition, Redeclaration);
2222  } else {
2223    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2224                                  move(TemplateParamLists),
2225                                  Redeclaration);
2226  }
2227
2228  if (New == 0)
2229    return DeclPtrTy();
2230
2231  // If this has an identifier and is not an invalid redeclaration or
2232  // function template specialization, add it to the scope stack.
2233  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2234    PushOnScopeChains(New, S);
2235
2236  return DeclPtrTy::make(New);
2237}
2238
2239/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2240/// types into constant array types in certain situations which would otherwise
2241/// be errors (for GCC compatibility).
2242static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2243                                                    ASTContext &Context,
2244                                                    bool &SizeIsNegative) {
2245  // This method tries to turn a variable array into a constant
2246  // array even when the size isn't an ICE.  This is necessary
2247  // for compatibility with code that depends on gcc's buggy
2248  // constant expression folding, like struct {char x[(int)(char*)2];}
2249  SizeIsNegative = false;
2250
2251  QualifierCollector Qs;
2252  const Type *Ty = Qs.strip(T);
2253
2254  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2255    QualType Pointee = PTy->getPointeeType();
2256    QualType FixedType =
2257        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2258    if (FixedType.isNull()) return FixedType;
2259    FixedType = Context.getPointerType(FixedType);
2260    return Qs.apply(FixedType);
2261  }
2262
2263  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2264  if (!VLATy)
2265    return QualType();
2266  // FIXME: We should probably handle this case
2267  if (VLATy->getElementType()->isVariablyModifiedType())
2268    return QualType();
2269
2270  Expr::EvalResult EvalResult;
2271  if (!VLATy->getSizeExpr() ||
2272      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2273      !EvalResult.Val.isInt())
2274    return QualType();
2275
2276  llvm::APSInt &Res = EvalResult.Val.getInt();
2277  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2278    // TODO: preserve the size expression in declarator info
2279    return Context.getConstantArrayType(VLATy->getElementType(),
2280                                        Res, ArrayType::Normal, 0);
2281  }
2282
2283  SizeIsNegative = true;
2284  return QualType();
2285}
2286
2287/// \brief Register the given locally-scoped external C declaration so
2288/// that it can be found later for redeclarations
2289void
2290Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2291                                       const LookupResult &Previous,
2292                                       Scope *S) {
2293  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2294         "Decl is not a locally-scoped decl!");
2295  // Note that we have a locally-scoped external with this name.
2296  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2297
2298  if (!Previous.isSingleResult())
2299    return;
2300
2301  NamedDecl *PrevDecl = Previous.getFoundDecl();
2302
2303  // If there was a previous declaration of this variable, it may be
2304  // in our identifier chain. Update the identifier chain with the new
2305  // declaration.
2306  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2307    // The previous declaration was found on the identifer resolver
2308    // chain, so remove it from its scope.
2309    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2310      S = S->getParent();
2311
2312    if (S)
2313      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2314  }
2315}
2316
2317/// \brief Diagnose function specifiers on a declaration of an identifier that
2318/// does not identify a function.
2319void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2320  // FIXME: We should probably indicate the identifier in question to avoid
2321  // confusion for constructs like "inline int a(), b;"
2322  if (D.getDeclSpec().isInlineSpecified())
2323    Diag(D.getDeclSpec().getInlineSpecLoc(),
2324         diag::err_inline_non_function);
2325
2326  if (D.getDeclSpec().isVirtualSpecified())
2327    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2328         diag::err_virtual_non_function);
2329
2330  if (D.getDeclSpec().isExplicitSpecified())
2331    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2332         diag::err_explicit_non_function);
2333}
2334
2335NamedDecl*
2336Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2337                             QualType R,  TypeSourceInfo *TInfo,
2338                             LookupResult &Previous, bool &Redeclaration) {
2339  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2340  if (D.getCXXScopeSpec().isSet()) {
2341    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2342      << D.getCXXScopeSpec().getRange();
2343    D.setInvalidType();
2344    // Pretend we didn't see the scope specifier.
2345    DC = CurContext;
2346    Previous.clear();
2347  }
2348
2349  if (getLangOptions().CPlusPlus) {
2350    // Check that there are no default arguments (C++ only).
2351    CheckExtraCXXDefaultArguments(D);
2352  }
2353
2354  DiagnoseFunctionSpecifiers(D);
2355
2356  if (D.getDeclSpec().isThreadSpecified())
2357    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2358
2359  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2360    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2361      << D.getName().getSourceRange();
2362    return 0;
2363  }
2364
2365  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2366  if (!NewTD) return 0;
2367
2368  // Handle attributes prior to checking for duplicates in MergeVarDecl
2369  ProcessDeclAttributes(S, NewTD, D);
2370
2371  // Merge the decl with the existing one if appropriate. If the decl is
2372  // in an outer scope, it isn't the same thing.
2373  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2374  if (!Previous.empty()) {
2375    Redeclaration = true;
2376    MergeTypeDefDecl(NewTD, Previous);
2377  }
2378
2379  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2380  // then it shall have block scope.
2381  QualType T = NewTD->getUnderlyingType();
2382  if (T->isVariablyModifiedType()) {
2383    FunctionNeedsScopeChecking() = true;
2384
2385    if (S->getFnParent() == 0) {
2386      bool SizeIsNegative;
2387      QualType FixedTy =
2388          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2389      if (!FixedTy.isNull()) {
2390        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2391        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2392      } else {
2393        if (SizeIsNegative)
2394          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2395        else if (T->isVariableArrayType())
2396          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2397        else
2398          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2399        NewTD->setInvalidDecl();
2400      }
2401    }
2402  }
2403
2404  // If this is the C FILE type, notify the AST context.
2405  if (IdentifierInfo *II = NewTD->getIdentifier())
2406    if (!NewTD->isInvalidDecl() &&
2407        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2408      if (II->isStr("FILE"))
2409        Context.setFILEDecl(NewTD);
2410      else if (II->isStr("jmp_buf"))
2411        Context.setjmp_bufDecl(NewTD);
2412      else if (II->isStr("sigjmp_buf"))
2413        Context.setsigjmp_bufDecl(NewTD);
2414    }
2415
2416  return NewTD;
2417}
2418
2419/// \brief Determines whether the given declaration is an out-of-scope
2420/// previous declaration.
2421///
2422/// This routine should be invoked when name lookup has found a
2423/// previous declaration (PrevDecl) that is not in the scope where a
2424/// new declaration by the same name is being introduced. If the new
2425/// declaration occurs in a local scope, previous declarations with
2426/// linkage may still be considered previous declarations (C99
2427/// 6.2.2p4-5, C++ [basic.link]p6).
2428///
2429/// \param PrevDecl the previous declaration found by name
2430/// lookup
2431///
2432/// \param DC the context in which the new declaration is being
2433/// declared.
2434///
2435/// \returns true if PrevDecl is an out-of-scope previous declaration
2436/// for a new delcaration with the same name.
2437static bool
2438isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2439                                ASTContext &Context) {
2440  if (!PrevDecl)
2441    return 0;
2442
2443  if (!PrevDecl->hasLinkage())
2444    return false;
2445
2446  if (Context.getLangOptions().CPlusPlus) {
2447    // C++ [basic.link]p6:
2448    //   If there is a visible declaration of an entity with linkage
2449    //   having the same name and type, ignoring entities declared
2450    //   outside the innermost enclosing namespace scope, the block
2451    //   scope declaration declares that same entity and receives the
2452    //   linkage of the previous declaration.
2453    DeclContext *OuterContext = DC->getLookupContext();
2454    if (!OuterContext->isFunctionOrMethod())
2455      // This rule only applies to block-scope declarations.
2456      return false;
2457    else {
2458      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2459      if (PrevOuterContext->isRecord())
2460        // We found a member function: ignore it.
2461        return false;
2462      else {
2463        // Find the innermost enclosing namespace for the new and
2464        // previous declarations.
2465        while (!OuterContext->isFileContext())
2466          OuterContext = OuterContext->getParent();
2467        while (!PrevOuterContext->isFileContext())
2468          PrevOuterContext = PrevOuterContext->getParent();
2469
2470        // The previous declaration is in a different namespace, so it
2471        // isn't the same function.
2472        if (OuterContext->getPrimaryContext() !=
2473            PrevOuterContext->getPrimaryContext())
2474          return false;
2475      }
2476    }
2477  }
2478
2479  return true;
2480}
2481
2482static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2483  CXXScopeSpec &SS = D.getCXXScopeSpec();
2484  if (!SS.isSet()) return;
2485  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2486                       SS.getRange());
2487}
2488
2489NamedDecl*
2490Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2491                              QualType R, TypeSourceInfo *TInfo,
2492                              LookupResult &Previous,
2493                              MultiTemplateParamsArg TemplateParamLists,
2494                              bool &Redeclaration) {
2495  DeclarationName Name = GetNameForDeclarator(D);
2496
2497  // Check that there are no default arguments (C++ only).
2498  if (getLangOptions().CPlusPlus)
2499    CheckExtraCXXDefaultArguments(D);
2500
2501  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2502  assert(SCSpec != DeclSpec::SCS_typedef &&
2503         "Parser allowed 'typedef' as storage class VarDecl.");
2504  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2505  if (SCSpec == DeclSpec::SCS_mutable) {
2506    // mutable can only appear on non-static class members, so it's always
2507    // an error here
2508    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2509    D.setInvalidType();
2510    SC = VarDecl::None;
2511  }
2512  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2513  VarDecl::StorageClass SCAsWritten
2514    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2515
2516  IdentifierInfo *II = Name.getAsIdentifierInfo();
2517  if (!II) {
2518    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2519      << Name.getAsString();
2520    return 0;
2521  }
2522
2523  DiagnoseFunctionSpecifiers(D);
2524
2525  if (!DC->isRecord() && S->getFnParent() == 0) {
2526    // C99 6.9p2: The storage-class specifiers auto and register shall not
2527    // appear in the declaration specifiers in an external declaration.
2528    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2529
2530      // If this is a register variable with an asm label specified, then this
2531      // is a GNU extension.
2532      if (SC == VarDecl::Register && D.getAsmLabel())
2533        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2534      else
2535        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2536      D.setInvalidType();
2537    }
2538  }
2539  if (DC->isRecord() && !CurContext->isRecord()) {
2540    // This is an out-of-line definition of a static data member.
2541    if (SC == VarDecl::Static) {
2542      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2543           diag::err_static_out_of_line)
2544        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2545    } else if (SC == VarDecl::None)
2546      SC = VarDecl::Static;
2547  }
2548  if (SC == VarDecl::Static) {
2549    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2550      if (RD->isLocalClass())
2551        Diag(D.getIdentifierLoc(),
2552             diag::err_static_data_member_not_allowed_in_local_class)
2553          << Name << RD->getDeclName();
2554    }
2555  }
2556
2557  // Match up the template parameter lists with the scope specifier, then
2558  // determine whether we have a template or a template specialization.
2559  bool isExplicitSpecialization = false;
2560  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2561  bool Invalid = false;
2562  if (TemplateParameterList *TemplateParams
2563        = MatchTemplateParametersToScopeSpecifier(
2564                                  D.getDeclSpec().getSourceRange().getBegin(),
2565                                                  D.getCXXScopeSpec(),
2566                        (TemplateParameterList**)TemplateParamLists.get(),
2567                                                   TemplateParamLists.size(),
2568                                                  /*never a friend*/ false,
2569                                                  isExplicitSpecialization,
2570                                                  Invalid)) {
2571    // All but one template parameter lists have been matching.
2572    --NumMatchedTemplateParamLists;
2573
2574    if (TemplateParams->size() > 0) {
2575      // There is no such thing as a variable template.
2576      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2577        << II
2578        << SourceRange(TemplateParams->getTemplateLoc(),
2579                       TemplateParams->getRAngleLoc());
2580      return 0;
2581    } else {
2582      // There is an extraneous 'template<>' for this variable. Complain
2583      // about it, but allow the declaration of the variable.
2584      Diag(TemplateParams->getTemplateLoc(),
2585           diag::err_template_variable_noparams)
2586        << II
2587        << SourceRange(TemplateParams->getTemplateLoc(),
2588                       TemplateParams->getRAngleLoc());
2589
2590      isExplicitSpecialization = true;
2591    }
2592  }
2593
2594  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2595                                   II, R, TInfo, SC, SCAsWritten);
2596
2597  if (D.isInvalidType() || Invalid)
2598    NewVD->setInvalidDecl();
2599
2600  SetNestedNameSpecifier(NewVD, D);
2601
2602  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2603    NewVD->setTemplateParameterListsInfo(Context,
2604                                         NumMatchedTemplateParamLists,
2605                        (TemplateParameterList**)TemplateParamLists.release());
2606  }
2607
2608  if (D.getDeclSpec().isThreadSpecified()) {
2609    if (NewVD->hasLocalStorage())
2610      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2611    else if (!Context.Target.isTLSSupported())
2612      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2613    else
2614      NewVD->setThreadSpecified(true);
2615  }
2616
2617  // Set the lexical context. If the declarator has a C++ scope specifier, the
2618  // lexical context will be different from the semantic context.
2619  NewVD->setLexicalDeclContext(CurContext);
2620
2621  // Handle attributes prior to checking for duplicates in MergeVarDecl
2622  ProcessDeclAttributes(S, NewVD, D);
2623
2624  // Handle GNU asm-label extension (encoded as an attribute).
2625  if (Expr *E = (Expr*) D.getAsmLabel()) {
2626    // The parser guarantees this is a string.
2627    StringLiteral *SE = cast<StringLiteral>(E);
2628    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2629  }
2630
2631  // Diagnose shadowed variables before filtering for scope.
2632  if (!D.getCXXScopeSpec().isSet())
2633    CheckShadow(S, NewVD, Previous);
2634
2635  // Don't consider existing declarations that are in a different
2636  // scope and are out-of-semantic-context declarations (if the new
2637  // declaration has linkage).
2638  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2639
2640  // Merge the decl with the existing one if appropriate.
2641  if (!Previous.empty()) {
2642    if (Previous.isSingleResult() &&
2643        isa<FieldDecl>(Previous.getFoundDecl()) &&
2644        D.getCXXScopeSpec().isSet()) {
2645      // The user tried to define a non-static data member
2646      // out-of-line (C++ [dcl.meaning]p1).
2647      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2648        << D.getCXXScopeSpec().getRange();
2649      Previous.clear();
2650      NewVD->setInvalidDecl();
2651    }
2652  } else if (D.getCXXScopeSpec().isSet()) {
2653    // No previous declaration in the qualifying scope.
2654    Diag(D.getIdentifierLoc(), diag::err_no_member)
2655      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2656      << D.getCXXScopeSpec().getRange();
2657    NewVD->setInvalidDecl();
2658  }
2659
2660  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2661
2662  // This is an explicit specialization of a static data member. Check it.
2663  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2664      CheckMemberSpecialization(NewVD, Previous))
2665    NewVD->setInvalidDecl();
2666
2667  // attributes declared post-definition are currently ignored
2668  if (Previous.isSingleResult()) {
2669    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2670    if (Def && (Def = Def->getDefinition()) &&
2671        Def != NewVD && D.hasAttributes()) {
2672      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2673      Diag(Def->getLocation(), diag::note_previous_definition);
2674    }
2675  }
2676
2677  // If this is a locally-scoped extern C variable, update the map of
2678  // such variables.
2679  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2680      !NewVD->isInvalidDecl())
2681    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2682
2683  return NewVD;
2684}
2685
2686/// \brief Diagnose variable or built-in function shadowing.  Implements
2687/// -Wshadow.
2688///
2689/// This method is called whenever a VarDecl is added to a "useful"
2690/// scope.
2691///
2692/// \param S the scope in which the shadowing name is being declared
2693/// \param R the lookup of the name
2694///
2695void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2696  // Return if warning is ignored.
2697  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2698    return;
2699
2700  // Don't diagnose declarations at file scope.  The scope might not
2701  // have a DeclContext if (e.g.) we're parsing a function prototype.
2702  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2703  if (NewDC && NewDC->isFileContext())
2704    return;
2705
2706  // Only diagnose if we're shadowing an unambiguous field or variable.
2707  if (R.getResultKind() != LookupResult::Found)
2708    return;
2709
2710  NamedDecl* ShadowedDecl = R.getFoundDecl();
2711  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2712    return;
2713
2714  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2715
2716  // Only warn about certain kinds of shadowing for class members.
2717  if (NewDC && NewDC->isRecord()) {
2718    // In particular, don't warn about shadowing non-class members.
2719    if (!OldDC->isRecord())
2720      return;
2721
2722    // TODO: should we warn about static data members shadowing
2723    // static data members from base classes?
2724
2725    // TODO: don't diagnose for inaccessible shadowed members.
2726    // This is hard to do perfectly because we might friend the
2727    // shadowing context, but that's just a false negative.
2728  }
2729
2730  // Determine what kind of declaration we're shadowing.
2731  unsigned Kind;
2732  if (isa<RecordDecl>(OldDC)) {
2733    if (isa<FieldDecl>(ShadowedDecl))
2734      Kind = 3; // field
2735    else
2736      Kind = 2; // static data member
2737  } else if (OldDC->isFileContext())
2738    Kind = 1; // global
2739  else
2740    Kind = 0; // local
2741
2742  DeclarationName Name = R.getLookupName();
2743
2744  // Emit warning and note.
2745  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2746  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2747}
2748
2749/// \brief Check -Wshadow without the advantage of a previous lookup.
2750void Sema::CheckShadow(Scope *S, VarDecl *D) {
2751  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2752                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2753  LookupName(R, S);
2754  CheckShadow(S, D, R);
2755}
2756
2757/// \brief Perform semantic checking on a newly-created variable
2758/// declaration.
2759///
2760/// This routine performs all of the type-checking required for a
2761/// variable declaration once it has been built. It is used both to
2762/// check variables after they have been parsed and their declarators
2763/// have been translated into a declaration, and to check variables
2764/// that have been instantiated from a template.
2765///
2766/// Sets NewVD->isInvalidDecl() if an error was encountered.
2767void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2768                                    LookupResult &Previous,
2769                                    bool &Redeclaration) {
2770  // If the decl is already known invalid, don't check it.
2771  if (NewVD->isInvalidDecl())
2772    return;
2773
2774  QualType T = NewVD->getType();
2775
2776  if (T->isObjCObjectType()) {
2777    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2778    return NewVD->setInvalidDecl();
2779  }
2780
2781  // Emit an error if an address space was applied to decl with local storage.
2782  // This includes arrays of objects with address space qualifiers, but not
2783  // automatic variables that point to other address spaces.
2784  // ISO/IEC TR 18037 S5.1.2
2785  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2786    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2787    return NewVD->setInvalidDecl();
2788  }
2789
2790  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2791      && !NewVD->hasAttr<BlocksAttr>())
2792    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2793
2794  bool isVM = T->isVariablyModifiedType();
2795  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2796      NewVD->hasAttr<BlocksAttr>() ||
2797      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2798      // However, this turns on the scope checker for everything with a variable
2799      // which may impact compile time.  See if we can find a better solution
2800      // to this, perhaps only checking functions that contain gotos in C++?
2801      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2802    FunctionNeedsScopeChecking() = true;
2803
2804  if ((isVM && NewVD->hasLinkage()) ||
2805      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2806    bool SizeIsNegative;
2807    QualType FixedTy =
2808        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2809
2810    if (FixedTy.isNull() && T->isVariableArrayType()) {
2811      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2812      // FIXME: This won't give the correct result for
2813      // int a[10][n];
2814      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2815
2816      if (NewVD->isFileVarDecl())
2817        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2818        << SizeRange;
2819      else if (NewVD->getStorageClass() == VarDecl::Static)
2820        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2821        << SizeRange;
2822      else
2823        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2824        << SizeRange;
2825      return NewVD->setInvalidDecl();
2826    }
2827
2828    if (FixedTy.isNull()) {
2829      if (NewVD->isFileVarDecl())
2830        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2831      else
2832        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2833      return NewVD->setInvalidDecl();
2834    }
2835
2836    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2837    NewVD->setType(FixedTy);
2838  }
2839
2840  if (Previous.empty() && NewVD->isExternC()) {
2841    // Since we did not find anything by this name and we're declaring
2842    // an extern "C" variable, look for a non-visible extern "C"
2843    // declaration with the same name.
2844    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2845      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2846    if (Pos != LocallyScopedExternalDecls.end())
2847      Previous.addDecl(Pos->second);
2848  }
2849
2850  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2851    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2852      << T;
2853    return NewVD->setInvalidDecl();
2854  }
2855
2856  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2857    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2858    return NewVD->setInvalidDecl();
2859  }
2860
2861  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2862    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2863    return NewVD->setInvalidDecl();
2864  }
2865
2866  // Function pointers and references cannot have qualified function type, only
2867  // function pointer-to-members can do that.
2868  QualType Pointee;
2869  unsigned PtrOrRef = 0;
2870  if (const PointerType *Ptr = T->getAs<PointerType>())
2871    Pointee = Ptr->getPointeeType();
2872  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
2873    Pointee = Ref->getPointeeType();
2874    PtrOrRef = 1;
2875  }
2876  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
2877      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
2878    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
2879        << PtrOrRef;
2880    return NewVD->setInvalidDecl();
2881  }
2882
2883  if (!Previous.empty()) {
2884    Redeclaration = true;
2885    MergeVarDecl(NewVD, Previous);
2886  }
2887}
2888
2889/// \brief Data used with FindOverriddenMethod
2890struct FindOverriddenMethodData {
2891  Sema *S;
2892  CXXMethodDecl *Method;
2893};
2894
2895/// \brief Member lookup function that determines whether a given C++
2896/// method overrides a method in a base class, to be used with
2897/// CXXRecordDecl::lookupInBases().
2898static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2899                                 CXXBasePath &Path,
2900                                 void *UserData) {
2901  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2902
2903  FindOverriddenMethodData *Data
2904    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2905
2906  DeclarationName Name = Data->Method->getDeclName();
2907
2908  // FIXME: Do we care about other names here too?
2909  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2910    // We really want to find the base class destructor here.
2911    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2912    CanQualType CT = Data->S->Context.getCanonicalType(T);
2913
2914    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2915  }
2916
2917  for (Path.Decls = BaseRecord->lookup(Name);
2918       Path.Decls.first != Path.Decls.second;
2919       ++Path.Decls.first) {
2920    NamedDecl *D = *Path.Decls.first;
2921    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2922      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2923        return true;
2924    }
2925  }
2926
2927  return false;
2928}
2929
2930/// AddOverriddenMethods - See if a method overrides any in the base classes,
2931/// and if so, check that it's a valid override and remember it.
2932void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2933  // Look for virtual methods in base classes that this method might override.
2934  CXXBasePaths Paths;
2935  FindOverriddenMethodData Data;
2936  Data.Method = MD;
2937  Data.S = this;
2938  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2939    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2940         E = Paths.found_decls_end(); I != E; ++I) {
2941      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2942        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2943            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2944            !CheckOverridingFunctionAttributes(MD, OldMD))
2945          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2946      }
2947    }
2948  }
2949}
2950
2951NamedDecl*
2952Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2953                              QualType R, TypeSourceInfo *TInfo,
2954                              LookupResult &Previous,
2955                              MultiTemplateParamsArg TemplateParamLists,
2956                              bool IsFunctionDefinition, bool &Redeclaration) {
2957  assert(R.getTypePtr()->isFunctionType());
2958
2959  DeclarationName Name = GetNameForDeclarator(D);
2960  FunctionDecl::StorageClass SC = FunctionDecl::None;
2961  switch (D.getDeclSpec().getStorageClassSpec()) {
2962  default: assert(0 && "Unknown storage class!");
2963  case DeclSpec::SCS_auto:
2964  case DeclSpec::SCS_register:
2965  case DeclSpec::SCS_mutable:
2966    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2967         diag::err_typecheck_sclass_func);
2968    D.setInvalidType();
2969    break;
2970  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2971  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2972  case DeclSpec::SCS_static: {
2973    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2974      // C99 6.7.1p5:
2975      //   The declaration of an identifier for a function that has
2976      //   block scope shall have no explicit storage-class specifier
2977      //   other than extern
2978      // See also (C++ [dcl.stc]p4).
2979      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2980           diag::err_static_block_func);
2981      SC = FunctionDecl::None;
2982    } else
2983      SC = FunctionDecl::Static;
2984    break;
2985  }
2986  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2987  }
2988
2989  if (D.getDeclSpec().isThreadSpecified())
2990    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2991
2992  bool isFriend = D.getDeclSpec().isFriendSpecified();
2993  bool isInline = D.getDeclSpec().isInlineSpecified();
2994  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2995  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2996
2997  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2998  FunctionDecl::StorageClass SCAsWritten
2999    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3000
3001  // Check that the return type is not an abstract class type.
3002  // For record types, this is done by the AbstractClassUsageDiagnoser once
3003  // the class has been completely parsed.
3004  if (!DC->isRecord() &&
3005      RequireNonAbstractType(D.getIdentifierLoc(),
3006                             R->getAs<FunctionType>()->getResultType(),
3007                             diag::err_abstract_type_in_decl,
3008                             AbstractReturnType))
3009    D.setInvalidType();
3010
3011  // Do not allow returning a objc interface by-value.
3012  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3013    Diag(D.getIdentifierLoc(),
3014         diag::err_object_cannot_be_passed_returned_by_value) << 0
3015      << R->getAs<FunctionType>()->getResultType();
3016    D.setInvalidType();
3017  }
3018
3019  bool isVirtualOkay = false;
3020  FunctionDecl *NewFD;
3021
3022  if (isFriend) {
3023    // C++ [class.friend]p5
3024    //   A function can be defined in a friend declaration of a
3025    //   class . . . . Such a function is implicitly inline.
3026    isInline |= IsFunctionDefinition;
3027  }
3028
3029  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3030    // This is a C++ constructor declaration.
3031    assert(DC->isRecord() &&
3032           "Constructors can only be declared in a member context");
3033
3034    R = CheckConstructorDeclarator(D, R, SC);
3035
3036    // Create the new declaration
3037    NewFD = CXXConstructorDecl::Create(Context,
3038                                       cast<CXXRecordDecl>(DC),
3039                                       D.getIdentifierLoc(), Name, R, TInfo,
3040                                       isExplicit, isInline,
3041                                       /*isImplicitlyDeclared=*/false);
3042  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3043    // This is a C++ destructor declaration.
3044    if (DC->isRecord()) {
3045      R = CheckDestructorDeclarator(D, R, SC);
3046
3047      NewFD = CXXDestructorDecl::Create(Context,
3048                                        cast<CXXRecordDecl>(DC),
3049                                        D.getIdentifierLoc(), Name, R,
3050                                        isInline,
3051                                        /*isImplicitlyDeclared=*/false);
3052      NewFD->setTypeSourceInfo(TInfo);
3053
3054      isVirtualOkay = true;
3055    } else {
3056      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3057
3058      // Create a FunctionDecl to satisfy the function definition parsing
3059      // code path.
3060      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3061                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3062                                   /*hasPrototype=*/true);
3063      D.setInvalidType();
3064    }
3065  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3066    if (!DC->isRecord()) {
3067      Diag(D.getIdentifierLoc(),
3068           diag::err_conv_function_not_member);
3069      return 0;
3070    }
3071
3072    CheckConversionDeclarator(D, R, SC);
3073    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3074                                      D.getIdentifierLoc(), Name, R, TInfo,
3075                                      isInline, isExplicit);
3076
3077    isVirtualOkay = true;
3078  } else if (DC->isRecord()) {
3079    // If the of the function is the same as the name of the record, then this
3080    // must be an invalid constructor that has a return type.
3081    // (The parser checks for a return type and makes the declarator a
3082    // constructor if it has no return type).
3083    // must have an invalid constructor that has a return type
3084    if (Name.getAsIdentifierInfo() &&
3085        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3086      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3087        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3088        << SourceRange(D.getIdentifierLoc());
3089      return 0;
3090    }
3091
3092    bool isStatic = SC == FunctionDecl::Static;
3093
3094    // [class.free]p1:
3095    // Any allocation function for a class T is a static member
3096    // (even if not explicitly declared static).
3097    if (Name.getCXXOverloadedOperator() == OO_New ||
3098        Name.getCXXOverloadedOperator() == OO_Array_New)
3099      isStatic = true;
3100
3101    // [class.free]p6 Any deallocation function for a class X is a static member
3102    // (even if not explicitly declared static).
3103    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3104        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3105      isStatic = true;
3106
3107    // This is a C++ method declaration.
3108    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3109                                  D.getIdentifierLoc(), Name, R, TInfo,
3110                                  isStatic, SCAsWritten, isInline);
3111
3112    isVirtualOkay = !isStatic;
3113  } else {
3114    // Determine whether the function was written with a
3115    // prototype. This true when:
3116    //   - we're in C++ (where every function has a prototype),
3117    //   - there is a prototype in the declarator, or
3118    //   - the type R of the function is some kind of typedef or other reference
3119    //     to a type name (which eventually refers to a function type).
3120    bool HasPrototype =
3121       getLangOptions().CPlusPlus ||
3122       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3123       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3124
3125    NewFD = FunctionDecl::Create(Context, DC,
3126                                 D.getIdentifierLoc(),
3127                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3128                                 HasPrototype);
3129  }
3130
3131  if (D.isInvalidType())
3132    NewFD->setInvalidDecl();
3133
3134  SetNestedNameSpecifier(NewFD, D);
3135
3136  // Set the lexical context. If the declarator has a C++
3137  // scope specifier, or is the object of a friend declaration, the
3138  // lexical context will be different from the semantic context.
3139  NewFD->setLexicalDeclContext(CurContext);
3140
3141  // Match up the template parameter lists with the scope specifier, then
3142  // determine whether we have a template or a template specialization.
3143  FunctionTemplateDecl *FunctionTemplate = 0;
3144  bool isExplicitSpecialization = false;
3145  bool isFunctionTemplateSpecialization = false;
3146  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3147  bool Invalid = false;
3148  if (TemplateParameterList *TemplateParams
3149        = MatchTemplateParametersToScopeSpecifier(
3150                                  D.getDeclSpec().getSourceRange().getBegin(),
3151                                  D.getCXXScopeSpec(),
3152                           (TemplateParameterList**)TemplateParamLists.get(),
3153                                                  TemplateParamLists.size(),
3154                                                  isFriend,
3155                                                  isExplicitSpecialization,
3156                                                  Invalid)) {
3157    // All but one template parameter lists have been matching.
3158    --NumMatchedTemplateParamLists;
3159
3160    if (TemplateParams->size() > 0) {
3161      // This is a function template
3162
3163      // Check that we can declare a template here.
3164      if (CheckTemplateDeclScope(S, TemplateParams))
3165        return 0;
3166
3167      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3168                                                      NewFD->getLocation(),
3169                                                      Name, TemplateParams,
3170                                                      NewFD);
3171      FunctionTemplate->setLexicalDeclContext(CurContext);
3172      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3173    } else {
3174      // This is a function template specialization.
3175      isFunctionTemplateSpecialization = true;
3176
3177      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3178      if (isFriend && isFunctionTemplateSpecialization) {
3179        // We want to remove the "template<>", found here.
3180        SourceRange RemoveRange = TemplateParams->getSourceRange();
3181
3182        // If we remove the template<> and the name is not a
3183        // template-id, we're actually silently creating a problem:
3184        // the friend declaration will refer to an untemplated decl,
3185        // and clearly the user wants a template specialization.  So
3186        // we need to insert '<>' after the name.
3187        SourceLocation InsertLoc;
3188        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3189          InsertLoc = D.getName().getSourceRange().getEnd();
3190          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3191        }
3192
3193        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3194          << Name << RemoveRange
3195          << FixItHint::CreateRemoval(RemoveRange)
3196          << FixItHint::CreateInsertion(InsertLoc, "<>");
3197      }
3198    }
3199  }
3200
3201  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3202    NewFD->setTemplateParameterListsInfo(Context,
3203                                         NumMatchedTemplateParamLists,
3204                        (TemplateParameterList**)TemplateParamLists.release());
3205  }
3206
3207  if (Invalid) {
3208    NewFD->setInvalidDecl();
3209    if (FunctionTemplate)
3210      FunctionTemplate->setInvalidDecl();
3211  }
3212
3213  // C++ [dcl.fct.spec]p5:
3214  //   The virtual specifier shall only be used in declarations of
3215  //   nonstatic class member functions that appear within a
3216  //   member-specification of a class declaration; see 10.3.
3217  //
3218  if (isVirtual && !NewFD->isInvalidDecl()) {
3219    if (!isVirtualOkay) {
3220       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3221           diag::err_virtual_non_function);
3222    } else if (!CurContext->isRecord()) {
3223      // 'virtual' was specified outside of the class.
3224      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3225        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3226    } else {
3227      // Okay: Add virtual to the method.
3228      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3229      CurClass->setMethodAsVirtual(NewFD);
3230    }
3231  }
3232
3233  // C++ [dcl.fct.spec]p6:
3234  //  The explicit specifier shall be used only in the declaration of a
3235  //  constructor or conversion function within its class definition; see 12.3.1
3236  //  and 12.3.2.
3237  if (isExplicit && !NewFD->isInvalidDecl()) {
3238    if (!CurContext->isRecord()) {
3239      // 'explicit' was specified outside of the class.
3240      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3241           diag::err_explicit_out_of_class)
3242        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3243    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3244               !isa<CXXConversionDecl>(NewFD)) {
3245      // 'explicit' was specified on a function that wasn't a constructor
3246      // or conversion function.
3247      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3248           diag::err_explicit_non_ctor_or_conv_function)
3249        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3250    }
3251  }
3252
3253  // Filter out previous declarations that don't match the scope.
3254  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3255
3256  if (isFriend) {
3257    // DC is the namespace in which the function is being declared.
3258    assert((DC->isFileContext() || !Previous.empty()) &&
3259           "previously-undeclared friend function being created "
3260           "in a non-namespace context");
3261
3262    // For now, claim that the objects have no previous declaration.
3263    if (FunctionTemplate) {
3264      FunctionTemplate->setObjectOfFriendDecl(false);
3265      FunctionTemplate->setAccess(AS_public);
3266    }
3267    NewFD->setObjectOfFriendDecl(false);
3268    NewFD->setAccess(AS_public);
3269  }
3270
3271  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3272      !CurContext->isRecord()) {
3273    // C++ [class.static]p1:
3274    //   A data or function member of a class may be declared static
3275    //   in a class definition, in which case it is a static member of
3276    //   the class.
3277
3278    // Complain about the 'static' specifier if it's on an out-of-line
3279    // member function definition.
3280    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3281         diag::err_static_out_of_line)
3282      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3283  }
3284
3285  // Handle GNU asm-label extension (encoded as an attribute).
3286  if (Expr *E = (Expr*) D.getAsmLabel()) {
3287    // The parser guarantees this is a string.
3288    StringLiteral *SE = cast<StringLiteral>(E);
3289    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3290  }
3291
3292  // Copy the parameter declarations from the declarator D to the function
3293  // declaration NewFD, if they are available.  First scavenge them into Params.
3294  llvm::SmallVector<ParmVarDecl*, 16> Params;
3295  if (D.getNumTypeObjects() > 0) {
3296    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3297
3298    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3299    // function that takes no arguments, not a function that takes a
3300    // single void argument.
3301    // We let through "const void" here because Sema::GetTypeForDeclarator
3302    // already checks for that case.
3303    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3304        FTI.ArgInfo[0].Param &&
3305        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3306      // Empty arg list, don't push any params.
3307      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3308
3309      // In C++, the empty parameter-type-list must be spelled "void"; a
3310      // typedef of void is not permitted.
3311      if (getLangOptions().CPlusPlus &&
3312          Param->getType().getUnqualifiedType() != Context.VoidTy)
3313        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3314      // FIXME: Leaks decl?
3315    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3316      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3317        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3318        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3319        Param->setDeclContext(NewFD);
3320        Params.push_back(Param);
3321
3322        if (Param->isInvalidDecl())
3323          NewFD->setInvalidDecl();
3324      }
3325    }
3326
3327  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3328    // When we're declaring a function with a typedef, typeof, etc as in the
3329    // following example, we'll need to synthesize (unnamed)
3330    // parameters for use in the declaration.
3331    //
3332    // @code
3333    // typedef void fn(int);
3334    // fn f;
3335    // @endcode
3336
3337    // Synthesize a parameter for each argument type.
3338    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3339         AE = FT->arg_type_end(); AI != AE; ++AI) {
3340      ParmVarDecl *Param =
3341        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3342      Params.push_back(Param);
3343    }
3344  } else {
3345    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3346           "Should not need args for typedef of non-prototype fn");
3347  }
3348  // Finally, we know we have the right number of parameters, install them.
3349  NewFD->setParams(Params.data(), Params.size());
3350
3351  // If the declarator is a template-id, translate the parser's template
3352  // argument list into our AST format.
3353  bool HasExplicitTemplateArgs = false;
3354  TemplateArgumentListInfo TemplateArgs;
3355  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3356    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3357    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3358    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3359    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3360                                       TemplateId->getTemplateArgs(),
3361                                       TemplateId->NumArgs);
3362    translateTemplateArguments(TemplateArgsPtr,
3363                               TemplateArgs);
3364    TemplateArgsPtr.release();
3365
3366    HasExplicitTemplateArgs = true;
3367
3368    if (FunctionTemplate) {
3369      // FIXME: Diagnose function template with explicit template
3370      // arguments.
3371      HasExplicitTemplateArgs = false;
3372    } else if (!isFunctionTemplateSpecialization &&
3373               !D.getDeclSpec().isFriendSpecified()) {
3374      // We have encountered something that the user meant to be a
3375      // specialization (because it has explicitly-specified template
3376      // arguments) but that was not introduced with a "template<>" (or had
3377      // too few of them).
3378      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3379        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3380        << FixItHint::CreateInsertion(
3381                                   D.getDeclSpec().getSourceRange().getBegin(),
3382                                                 "template<> ");
3383      isFunctionTemplateSpecialization = true;
3384    } else {
3385      // "friend void foo<>(int);" is an implicit specialization decl.
3386      isFunctionTemplateSpecialization = true;
3387    }
3388  } else if (isFriend && isFunctionTemplateSpecialization) {
3389    // This combination is only possible in a recovery case;  the user
3390    // wrote something like:
3391    //   template <> friend void foo(int);
3392    // which we're recovering from as if the user had written:
3393    //   friend void foo<>(int);
3394    // Go ahead and fake up a template id.
3395    HasExplicitTemplateArgs = true;
3396    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3397    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3398  }
3399
3400  // If it's a friend (and only if it's a friend), it's possible
3401  // that either the specialized function type or the specialized
3402  // template is dependent, and therefore matching will fail.  In
3403  // this case, don't check the specialization yet.
3404  if (isFunctionTemplateSpecialization && isFriend &&
3405      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3406    assert(HasExplicitTemplateArgs &&
3407           "friend function specialization without template args");
3408    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3409                                                     Previous))
3410      NewFD->setInvalidDecl();
3411  } else if (isFunctionTemplateSpecialization) {
3412    if (CheckFunctionTemplateSpecialization(NewFD,
3413                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3414                                            Previous))
3415      NewFD->setInvalidDecl();
3416  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3417    if (CheckMemberSpecialization(NewFD, Previous))
3418      NewFD->setInvalidDecl();
3419  }
3420
3421  // Perform semantic checking on the function declaration.
3422  bool OverloadableAttrRequired = false; // FIXME: HACK!
3423  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3424                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3425
3426  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3427          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3428         "previous declaration set still overloaded");
3429
3430  NamedDecl *PrincipalDecl = (FunctionTemplate
3431                              ? cast<NamedDecl>(FunctionTemplate)
3432                              : NewFD);
3433
3434  if (isFriend && Redeclaration) {
3435    AccessSpecifier Access = AS_public;
3436    if (!NewFD->isInvalidDecl())
3437      Access = NewFD->getPreviousDeclaration()->getAccess();
3438
3439    NewFD->setAccess(Access);
3440    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3441
3442    PrincipalDecl->setObjectOfFriendDecl(true);
3443  }
3444
3445  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3446      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3447    PrincipalDecl->setNonMemberOperator();
3448
3449  // If we have a function template, check the template parameter
3450  // list. This will check and merge default template arguments.
3451  if (FunctionTemplate) {
3452    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3453    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3454                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3455             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3456                                                : TPC_FunctionTemplate);
3457  }
3458
3459  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3460    // Fake up an access specifier if it's supposed to be a class member.
3461    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3462      NewFD->setAccess(AS_public);
3463
3464    // An out-of-line member function declaration must also be a
3465    // definition (C++ [dcl.meaning]p1).
3466    // Note that this is not the case for explicit specializations of
3467    // function templates or member functions of class templates, per
3468    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3469    // for compatibility with old SWIG code which likes to generate them.
3470    if (!IsFunctionDefinition && !isFriend &&
3471        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3472      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3473        << D.getCXXScopeSpec().getRange();
3474    }
3475    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3476      // The user tried to provide an out-of-line definition for a
3477      // function that is a member of a class or namespace, but there
3478      // was no such member function declared (C++ [class.mfct]p2,
3479      // C++ [namespace.memdef]p2). For example:
3480      //
3481      // class X {
3482      //   void f() const;
3483      // };
3484      //
3485      // void X::f() { } // ill-formed
3486      //
3487      // Complain about this problem, and attempt to suggest close
3488      // matches (e.g., those that differ only in cv-qualifiers and
3489      // whether the parameter types are references).
3490      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3491        << Name << DC << D.getCXXScopeSpec().getRange();
3492      NewFD->setInvalidDecl();
3493
3494      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3495                        ForRedeclaration);
3496      LookupQualifiedName(Prev, DC);
3497      assert(!Prev.isAmbiguous() &&
3498             "Cannot have an ambiguity in previous-declaration lookup");
3499      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3500           Func != FuncEnd; ++Func) {
3501        if (isa<FunctionDecl>(*Func) &&
3502            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3503          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3504      }
3505    }
3506  }
3507
3508  // Handle attributes. We need to have merged decls when handling attributes
3509  // (for example to check for conflicts, etc).
3510  // FIXME: This needs to happen before we merge declarations. Then,
3511  // let attribute merging cope with attribute conflicts.
3512  ProcessDeclAttributes(S, NewFD, D);
3513
3514  // attributes declared post-definition are currently ignored
3515  if (Redeclaration && Previous.isSingleResult()) {
3516    const FunctionDecl *Def;
3517    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3518    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3519      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3520      Diag(Def->getLocation(), diag::note_previous_definition);
3521    }
3522  }
3523
3524  AddKnownFunctionAttributes(NewFD);
3525
3526  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3527    // If a function name is overloadable in C, then every function
3528    // with that name must be marked "overloadable".
3529    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3530      << Redeclaration << NewFD;
3531    if (!Previous.empty())
3532      Diag(Previous.getRepresentativeDecl()->getLocation(),
3533           diag::note_attribute_overloadable_prev_overload);
3534    NewFD->addAttr(::new (Context) OverloadableAttr());
3535  }
3536
3537  // If this is a locally-scoped extern C function, update the
3538  // map of such names.
3539  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3540      && !NewFD->isInvalidDecl())
3541    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3542
3543  // Set this FunctionDecl's range up to the right paren.
3544  NewFD->setLocEnd(D.getSourceRange().getEnd());
3545
3546  if (FunctionTemplate && NewFD->isInvalidDecl())
3547    FunctionTemplate->setInvalidDecl();
3548
3549  if (FunctionTemplate)
3550    return FunctionTemplate;
3551
3552
3553  // Keep track of static, non-inlined function definitions that
3554  // have not been used. We will warn later.
3555  // FIXME: Also include static functions declared but not defined.
3556  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3557      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3558      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3559      && !NewFD->hasAttr<ConstructorAttr>()
3560      && !NewFD->hasAttr<DestructorAttr>())
3561    UnusedStaticFuncs.push_back(NewFD);
3562
3563  return NewFD;
3564}
3565
3566/// \brief Perform semantic checking of a new function declaration.
3567///
3568/// Performs semantic analysis of the new function declaration
3569/// NewFD. This routine performs all semantic checking that does not
3570/// require the actual declarator involved in the declaration, and is
3571/// used both for the declaration of functions as they are parsed
3572/// (called via ActOnDeclarator) and for the declaration of functions
3573/// that have been instantiated via C++ template instantiation (called
3574/// via InstantiateDecl).
3575///
3576/// \param IsExplicitSpecialiation whether this new function declaration is
3577/// an explicit specialization of the previous declaration.
3578///
3579/// This sets NewFD->isInvalidDecl() to true if there was an error.
3580void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3581                                    LookupResult &Previous,
3582                                    bool IsExplicitSpecialization,
3583                                    bool &Redeclaration,
3584                                    bool &OverloadableAttrRequired) {
3585  // If NewFD is already known erroneous, don't do any of this checking.
3586  if (NewFD->isInvalidDecl())
3587    return;
3588
3589  if (NewFD->getResultType()->isVariablyModifiedType()) {
3590    // Functions returning a variably modified type violate C99 6.7.5.2p2
3591    // because all functions have linkage.
3592    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3593    return NewFD->setInvalidDecl();
3594  }
3595
3596  if (NewFD->isMain())
3597    CheckMain(NewFD);
3598
3599  // Check for a previous declaration of this name.
3600  if (Previous.empty() && NewFD->isExternC()) {
3601    // Since we did not find anything by this name and we're declaring
3602    // an extern "C" function, look for a non-visible extern "C"
3603    // declaration with the same name.
3604    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3605      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3606    if (Pos != LocallyScopedExternalDecls.end())
3607      Previous.addDecl(Pos->second);
3608  }
3609
3610  // Merge or overload the declaration with an existing declaration of
3611  // the same name, if appropriate.
3612  if (!Previous.empty()) {
3613    // Determine whether NewFD is an overload of PrevDecl or
3614    // a declaration that requires merging. If it's an overload,
3615    // there's no more work to do here; we'll just add the new
3616    // function to the scope.
3617
3618    NamedDecl *OldDecl = 0;
3619    if (!AllowOverloadingOfFunction(Previous, Context)) {
3620      Redeclaration = true;
3621      OldDecl = Previous.getFoundDecl();
3622    } else {
3623      if (!getLangOptions().CPlusPlus) {
3624        OverloadableAttrRequired = true;
3625
3626        // Functions marked "overloadable" must have a prototype (that
3627        // we can't get through declaration merging).
3628        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3629          Diag(NewFD->getLocation(),
3630               diag::err_attribute_overloadable_no_prototype)
3631            << NewFD;
3632          Redeclaration = true;
3633
3634          // Turn this into a variadic function with no parameters.
3635          QualType R = Context.getFunctionType(
3636                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3637                     0, 0, true, 0, false, false, 0, 0,
3638                     FunctionType::ExtInfo());
3639          NewFD->setType(R);
3640          return NewFD->setInvalidDecl();
3641        }
3642      }
3643
3644      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3645                            /*NewIsUsingDecl*/ false)) {
3646      case Ovl_Match:
3647        Redeclaration = true;
3648        break;
3649
3650      case Ovl_NonFunction:
3651        Redeclaration = true;
3652        break;
3653
3654      case Ovl_Overload:
3655        Redeclaration = false;
3656        break;
3657      }
3658    }
3659
3660    if (Redeclaration) {
3661      // NewFD and OldDecl represent declarations that need to be
3662      // merged.
3663      if (MergeFunctionDecl(NewFD, OldDecl))
3664        return NewFD->setInvalidDecl();
3665
3666      Previous.clear();
3667      Previous.addDecl(OldDecl);
3668
3669      if (FunctionTemplateDecl *OldTemplateDecl
3670                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3671        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3672        FunctionTemplateDecl *NewTemplateDecl
3673          = NewFD->getDescribedFunctionTemplate();
3674        assert(NewTemplateDecl && "Template/non-template mismatch");
3675        if (CXXMethodDecl *Method
3676              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3677          Method->setAccess(OldTemplateDecl->getAccess());
3678          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3679        }
3680
3681        // If this is an explicit specialization of a member that is a function
3682        // template, mark it as a member specialization.
3683        if (IsExplicitSpecialization &&
3684            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3685          NewTemplateDecl->setMemberSpecialization();
3686          assert(OldTemplateDecl->isMemberSpecialization());
3687        }
3688      } else {
3689        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3690          NewFD->setAccess(OldDecl->getAccess());
3691        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3692      }
3693    }
3694  }
3695
3696  // Semantic checking for this function declaration (in isolation).
3697  if (getLangOptions().CPlusPlus) {
3698    // C++-specific checks.
3699    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3700      CheckConstructor(Constructor);
3701    } else if (CXXDestructorDecl *Destructor =
3702                dyn_cast<CXXDestructorDecl>(NewFD)) {
3703      CXXRecordDecl *Record = Destructor->getParent();
3704      QualType ClassType = Context.getTypeDeclType(Record);
3705
3706      // FIXME: Shouldn't we be able to perform this check even when the class
3707      // type is dependent? Both gcc and edg can handle that.
3708      if (!ClassType->isDependentType()) {
3709        DeclarationName Name
3710          = Context.DeclarationNames.getCXXDestructorName(
3711                                        Context.getCanonicalType(ClassType));
3712        if (NewFD->getDeclName() != Name) {
3713          Diag(NewFD->getLocation(), diag::err_destructor_name);
3714          return NewFD->setInvalidDecl();
3715        }
3716      }
3717
3718      Record->setUserDeclaredDestructor(true);
3719      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3720      // user-defined destructor.
3721      Record->setPOD(false);
3722
3723      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3724      // declared destructor.
3725      // FIXME: C++0x: don't do this for "= default" destructors
3726      Record->setHasTrivialDestructor(false);
3727    } else if (CXXConversionDecl *Conversion
3728               = dyn_cast<CXXConversionDecl>(NewFD)) {
3729      ActOnConversionDeclarator(Conversion);
3730    }
3731
3732    // Find any virtual functions that this function overrides.
3733    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3734      if (!Method->isFunctionTemplateSpecialization() &&
3735          !Method->getDescribedFunctionTemplate())
3736        AddOverriddenMethods(Method->getParent(), Method);
3737    }
3738
3739    // Additional checks for the destructor; make sure we do this after we
3740    // figure out whether the destructor is virtual.
3741    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3742      if (!Destructor->getParent()->isDependentType())
3743        CheckDestructor(Destructor);
3744
3745    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3746    if (NewFD->isOverloadedOperator() &&
3747        CheckOverloadedOperatorDeclaration(NewFD))
3748      return NewFD->setInvalidDecl();
3749
3750    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3751    if (NewFD->getLiteralIdentifier() &&
3752        CheckLiteralOperatorDeclaration(NewFD))
3753      return NewFD->setInvalidDecl();
3754
3755    // In C++, check default arguments now that we have merged decls. Unless
3756    // the lexical context is the class, because in this case this is done
3757    // during delayed parsing anyway.
3758    if (!CurContext->isRecord())
3759      CheckCXXDefaultArguments(NewFD);
3760  }
3761}
3762
3763void Sema::CheckMain(FunctionDecl* FD) {
3764  // C++ [basic.start.main]p3:  A program that declares main to be inline
3765  //   or static is ill-formed.
3766  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3767  //   shall not appear in a declaration of main.
3768  // static main is not an error under C99, but we should warn about it.
3769  bool isInline = FD->isInlineSpecified();
3770  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3771  if (isInline || isStatic) {
3772    unsigned diagID = diag::warn_unusual_main_decl;
3773    if (isInline || getLangOptions().CPlusPlus)
3774      diagID = diag::err_unusual_main_decl;
3775
3776    int which = isStatic + (isInline << 1) - 1;
3777    Diag(FD->getLocation(), diagID) << which;
3778  }
3779
3780  QualType T = FD->getType();
3781  assert(T->isFunctionType() && "function decl is not of function type");
3782  const FunctionType* FT = T->getAs<FunctionType>();
3783
3784  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3785    // TODO: add a replacement fixit to turn the return type into 'int'.
3786    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3787    FD->setInvalidDecl(true);
3788  }
3789
3790  // Treat protoless main() as nullary.
3791  if (isa<FunctionNoProtoType>(FT)) return;
3792
3793  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3794  unsigned nparams = FTP->getNumArgs();
3795  assert(FD->getNumParams() == nparams);
3796
3797  bool HasExtraParameters = (nparams > 3);
3798
3799  // Darwin passes an undocumented fourth argument of type char**.  If
3800  // other platforms start sprouting these, the logic below will start
3801  // getting shifty.
3802  if (nparams == 4 &&
3803      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3804    HasExtraParameters = false;
3805
3806  if (HasExtraParameters) {
3807    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3808    FD->setInvalidDecl(true);
3809    nparams = 3;
3810  }
3811
3812  // FIXME: a lot of the following diagnostics would be improved
3813  // if we had some location information about types.
3814
3815  QualType CharPP =
3816    Context.getPointerType(Context.getPointerType(Context.CharTy));
3817  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3818
3819  for (unsigned i = 0; i < nparams; ++i) {
3820    QualType AT = FTP->getArgType(i);
3821
3822    bool mismatch = true;
3823
3824    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3825      mismatch = false;
3826    else if (Expected[i] == CharPP) {
3827      // As an extension, the following forms are okay:
3828      //   char const **
3829      //   char const * const *
3830      //   char * const *
3831
3832      QualifierCollector qs;
3833      const PointerType* PT;
3834      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3835          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3836          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3837        qs.removeConst();
3838        mismatch = !qs.empty();
3839      }
3840    }
3841
3842    if (mismatch) {
3843      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3844      // TODO: suggest replacing given type with expected type
3845      FD->setInvalidDecl(true);
3846    }
3847  }
3848
3849  if (nparams == 1 && !FD->isInvalidDecl()) {
3850    Diag(FD->getLocation(), diag::warn_main_one_arg);
3851  }
3852}
3853
3854bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3855  // FIXME: Need strict checking.  In C89, we need to check for
3856  // any assignment, increment, decrement, function-calls, or
3857  // commas outside of a sizeof.  In C99, it's the same list,
3858  // except that the aforementioned are allowed in unevaluated
3859  // expressions.  Everything else falls under the
3860  // "may accept other forms of constant expressions" exception.
3861  // (We never end up here for C++, so the constant expression
3862  // rules there don't matter.)
3863  if (Init->isConstantInitializer(Context))
3864    return false;
3865  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3866    << Init->getSourceRange();
3867  return true;
3868}
3869
3870void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3871  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3872}
3873
3874/// AddInitializerToDecl - Adds the initializer Init to the
3875/// declaration dcl. If DirectInit is true, this is C++ direct
3876/// initialization rather than copy initialization.
3877void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3878  Decl *RealDecl = dcl.getAs<Decl>();
3879  // If there is no declaration, there was an error parsing it.  Just ignore
3880  // the initializer.
3881  if (RealDecl == 0)
3882    return;
3883
3884  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3885    // With declarators parsed the way they are, the parser cannot
3886    // distinguish between a normal initializer and a pure-specifier.
3887    // Thus this grotesque test.
3888    IntegerLiteral *IL;
3889    Expr *Init = static_cast<Expr *>(init.get());
3890    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3891        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3892      CheckPureMethod(Method, Init->getSourceRange());
3893    else {
3894      Diag(Method->getLocation(), diag::err_member_function_initialization)
3895        << Method->getDeclName() << Init->getSourceRange();
3896      Method->setInvalidDecl();
3897    }
3898    return;
3899  }
3900
3901  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3902  if (!VDecl) {
3903    if (getLangOptions().CPlusPlus &&
3904        RealDecl->getLexicalDeclContext()->isRecord() &&
3905        isa<NamedDecl>(RealDecl))
3906      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3907        << cast<NamedDecl>(RealDecl)->getDeclName();
3908    else
3909      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3910    RealDecl->setInvalidDecl();
3911    return;
3912  }
3913
3914  // A definition must end up with a complete type, which means it must be
3915  // complete with the restriction that an array type might be completed by the
3916  // initializer; note that later code assumes this restriction.
3917  QualType BaseDeclType = VDecl->getType();
3918  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3919    BaseDeclType = Array->getElementType();
3920  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3921                          diag::err_typecheck_decl_incomplete_type)) {
3922    RealDecl->setInvalidDecl();
3923    return;
3924  }
3925
3926  // The variable can not have an abstract class type.
3927  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3928                             diag::err_abstract_type_in_decl,
3929                             AbstractVariableType))
3930    VDecl->setInvalidDecl();
3931
3932  const VarDecl *Def;
3933  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3934    Diag(VDecl->getLocation(), diag::err_redefinition)
3935      << VDecl->getDeclName();
3936    Diag(Def->getLocation(), diag::note_previous_definition);
3937    VDecl->setInvalidDecl();
3938    return;
3939  }
3940
3941  // Take ownership of the expression, now that we're sure we have somewhere
3942  // to put it.
3943  Expr *Init = init.takeAs<Expr>();
3944  assert(Init && "missing initializer");
3945
3946  // Capture the variable that is being initialized and the style of
3947  // initialization.
3948  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3949
3950  // FIXME: Poor source location information.
3951  InitializationKind Kind
3952    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3953                                                   Init->getLocStart(),
3954                                                   Init->getLocEnd())
3955                : InitializationKind::CreateCopy(VDecl->getLocation(),
3956                                                 Init->getLocStart());
3957
3958  // Get the decls type and save a reference for later, since
3959  // CheckInitializerTypes may change it.
3960  QualType DclT = VDecl->getType(), SavT = DclT;
3961  if (VDecl->isBlockVarDecl()) {
3962    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3963      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3964      VDecl->setInvalidDecl();
3965    } else if (!VDecl->isInvalidDecl()) {
3966      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3967      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3968                                          MultiExprArg(*this, (void**)&Init, 1),
3969                                                &DclT);
3970      if (Result.isInvalid()) {
3971        VDecl->setInvalidDecl();
3972        return;
3973      }
3974
3975      Init = Result.takeAs<Expr>();
3976
3977      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3978      // Don't check invalid declarations to avoid emitting useless diagnostics.
3979      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3980        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3981          CheckForConstantInitializer(Init, DclT);
3982      }
3983    }
3984  } else if (VDecl->isStaticDataMember() &&
3985             VDecl->getLexicalDeclContext()->isRecord()) {
3986    // This is an in-class initialization for a static data member, e.g.,
3987    //
3988    // struct S {
3989    //   static const int value = 17;
3990    // };
3991
3992    // Attach the initializer
3993    VDecl->setInit(Init);
3994
3995    // C++ [class.mem]p4:
3996    //   A member-declarator can contain a constant-initializer only
3997    //   if it declares a static member (9.4) of const integral or
3998    //   const enumeration type, see 9.4.2.
3999    QualType T = VDecl->getType();
4000    if (!T->isDependentType() &&
4001        (!Context.getCanonicalType(T).isConstQualified() ||
4002         !T->isIntegralOrEnumerationType())) {
4003      Diag(VDecl->getLocation(), diag::err_member_initialization)
4004        << VDecl->getDeclName() << Init->getSourceRange();
4005      VDecl->setInvalidDecl();
4006    } else {
4007      // C++ [class.static.data]p4:
4008      //   If a static data member is of const integral or const
4009      //   enumeration type, its declaration in the class definition
4010      //   can specify a constant-initializer which shall be an
4011      //   integral constant expression (5.19).
4012      if (!Init->isTypeDependent() &&
4013          !Init->getType()->isIntegralOrEnumerationType()) {
4014        // We have a non-dependent, non-integral or enumeration type.
4015        Diag(Init->getSourceRange().getBegin(),
4016             diag::err_in_class_initializer_non_integral_type)
4017          << Init->getType() << Init->getSourceRange();
4018        VDecl->setInvalidDecl();
4019      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4020        // Check whether the expression is a constant expression.
4021        llvm::APSInt Value;
4022        SourceLocation Loc;
4023        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4024          Diag(Loc, diag::err_in_class_initializer_non_constant)
4025            << Init->getSourceRange();
4026          VDecl->setInvalidDecl();
4027        } else if (!VDecl->getType()->isDependentType())
4028          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4029      }
4030    }
4031  } else if (VDecl->isFileVarDecl()) {
4032    if (VDecl->getStorageClass() == VarDecl::Extern &&
4033        (!getLangOptions().CPlusPlus ||
4034         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4035      Diag(VDecl->getLocation(), diag::warn_extern_init);
4036    if (!VDecl->isInvalidDecl()) {
4037      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4038      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4039                                          MultiExprArg(*this, (void**)&Init, 1),
4040                                                &DclT);
4041      if (Result.isInvalid()) {
4042        VDecl->setInvalidDecl();
4043        return;
4044      }
4045
4046      Init = Result.takeAs<Expr>();
4047    }
4048
4049    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4050    // Don't check invalid declarations to avoid emitting useless diagnostics.
4051    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4052      // C99 6.7.8p4. All file scoped initializers need to be constant.
4053      CheckForConstantInitializer(Init, DclT);
4054    }
4055  }
4056  // If the type changed, it means we had an incomplete type that was
4057  // completed by the initializer. For example:
4058  //   int ary[] = { 1, 3, 5 };
4059  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4060  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4061    VDecl->setType(DclT);
4062    Init->setType(DclT);
4063  }
4064
4065  Init = MaybeCreateCXXExprWithTemporaries(Init);
4066  // Attach the initializer to the decl.
4067  VDecl->setInit(Init);
4068
4069  if (getLangOptions().CPlusPlus) {
4070    // Make sure we mark the destructor as used if necessary.
4071    QualType InitType = VDecl->getType();
4072    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4073      InitType = Context.getBaseElementType(Array);
4074    if (const RecordType *Record = InitType->getAs<RecordType>())
4075      FinalizeVarWithDestructor(VDecl, Record);
4076  }
4077
4078  return;
4079}
4080
4081/// ActOnInitializerError - Given that there was an error parsing an
4082/// initializer for the given declaration, try to return to some form
4083/// of sanity.
4084void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4085  // Our main concern here is re-establishing invariants like "a
4086  // variable's type is either dependent or complete".
4087  Decl *D = dcl.getAs<Decl>();
4088  if (!D || D->isInvalidDecl()) return;
4089
4090  VarDecl *VD = dyn_cast<VarDecl>(D);
4091  if (!VD) return;
4092
4093  QualType Ty = VD->getType();
4094  if (Ty->isDependentType()) return;
4095
4096  // Require a complete type.
4097  if (RequireCompleteType(VD->getLocation(),
4098                          Context.getBaseElementType(Ty),
4099                          diag::err_typecheck_decl_incomplete_type)) {
4100    VD->setInvalidDecl();
4101    return;
4102  }
4103
4104  // Require an abstract type.
4105  if (RequireNonAbstractType(VD->getLocation(), Ty,
4106                             diag::err_abstract_type_in_decl,
4107                             AbstractVariableType)) {
4108    VD->setInvalidDecl();
4109    return;
4110  }
4111
4112  // Don't bother complaining about constructors or destructors,
4113  // though.
4114}
4115
4116void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4117                                  bool TypeContainsUndeducedAuto) {
4118  Decl *RealDecl = dcl.getAs<Decl>();
4119
4120  // If there is no declaration, there was an error parsing it. Just ignore it.
4121  if (RealDecl == 0)
4122    return;
4123
4124  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4125    QualType Type = Var->getType();
4126
4127    // C++0x [dcl.spec.auto]p3
4128    if (TypeContainsUndeducedAuto) {
4129      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4130        << Var->getDeclName() << Type;
4131      Var->setInvalidDecl();
4132      return;
4133    }
4134
4135    switch (Var->isThisDeclarationADefinition()) {
4136    case VarDecl::Definition:
4137      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4138        break;
4139
4140      // We have an out-of-line definition of a static data member
4141      // that has an in-class initializer, so we type-check this like
4142      // a declaration.
4143      //
4144      // Fall through
4145
4146    case VarDecl::DeclarationOnly:
4147      // It's only a declaration.
4148
4149      // Block scope. C99 6.7p7: If an identifier for an object is
4150      // declared with no linkage (C99 6.2.2p6), the type for the
4151      // object shall be complete.
4152      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4153          !Var->getLinkage() && !Var->isInvalidDecl() &&
4154          RequireCompleteType(Var->getLocation(), Type,
4155                              diag::err_typecheck_decl_incomplete_type))
4156        Var->setInvalidDecl();
4157
4158      // Make sure that the type is not abstract.
4159      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4160          RequireNonAbstractType(Var->getLocation(), Type,
4161                                 diag::err_abstract_type_in_decl,
4162                                 AbstractVariableType))
4163        Var->setInvalidDecl();
4164      return;
4165
4166    case VarDecl::TentativeDefinition:
4167      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4168      // object that has file scope without an initializer, and without a
4169      // storage-class specifier or with the storage-class specifier "static",
4170      // constitutes a tentative definition. Note: A tentative definition with
4171      // external linkage is valid (C99 6.2.2p5).
4172      if (!Var->isInvalidDecl()) {
4173        if (const IncompleteArrayType *ArrayT
4174                                    = Context.getAsIncompleteArrayType(Type)) {
4175          if (RequireCompleteType(Var->getLocation(),
4176                                  ArrayT->getElementType(),
4177                                  diag::err_illegal_decl_array_incomplete_type))
4178            Var->setInvalidDecl();
4179        } else if (Var->getStorageClass() == VarDecl::Static) {
4180          // C99 6.9.2p3: If the declaration of an identifier for an object is
4181          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4182          // declared type shall not be an incomplete type.
4183          // NOTE: code such as the following
4184          //     static struct s;
4185          //     struct s { int a; };
4186          // is accepted by gcc. Hence here we issue a warning instead of
4187          // an error and we do not invalidate the static declaration.
4188          // NOTE: to avoid multiple warnings, only check the first declaration.
4189          if (Var->getPreviousDeclaration() == 0)
4190            RequireCompleteType(Var->getLocation(), Type,
4191                                diag::ext_typecheck_decl_incomplete_type);
4192        }
4193      }
4194
4195      // Record the tentative definition; we're done.
4196      if (!Var->isInvalidDecl())
4197        TentativeDefinitions.push_back(Var);
4198      return;
4199    }
4200
4201    // Provide a specific diagnostic for uninitialized variable
4202    // definitions with incomplete array type.
4203    if (Type->isIncompleteArrayType()) {
4204      Diag(Var->getLocation(),
4205           diag::err_typecheck_incomplete_array_needs_initializer);
4206      Var->setInvalidDecl();
4207      return;
4208    }
4209
4210   // Provide a specific diagnostic for uninitialized variable
4211   // definitions with reference type.
4212   if (Type->isReferenceType()) {
4213     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4214       << Var->getDeclName()
4215       << SourceRange(Var->getLocation(), Var->getLocation());
4216     Var->setInvalidDecl();
4217     return;
4218   }
4219
4220    // Do not attempt to type-check the default initializer for a
4221    // variable with dependent type.
4222    if (Type->isDependentType())
4223      return;
4224
4225    if (Var->isInvalidDecl())
4226      return;
4227
4228    if (RequireCompleteType(Var->getLocation(),
4229                            Context.getBaseElementType(Type),
4230                            diag::err_typecheck_decl_incomplete_type)) {
4231      Var->setInvalidDecl();
4232      return;
4233    }
4234
4235    // The variable can not have an abstract class type.
4236    if (RequireNonAbstractType(Var->getLocation(), Type,
4237                               diag::err_abstract_type_in_decl,
4238                               AbstractVariableType)) {
4239      Var->setInvalidDecl();
4240      return;
4241    }
4242
4243    const RecordType *Record
4244      = Context.getBaseElementType(Type)->getAs<RecordType>();
4245    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4246        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4247      // C++03 [dcl.init]p9:
4248      //   If no initializer is specified for an object, and the
4249      //   object is of (possibly cv-qualified) non-POD class type (or
4250      //   array thereof), the object shall be default-initialized; if
4251      //   the object is of const-qualified type, the underlying class
4252      //   type shall have a user-declared default
4253      //   constructor. Otherwise, if no initializer is specified for
4254      //   a non- static object, the object and its subobjects, if
4255      //   any, have an indeterminate initial value); if the object
4256      //   or any of its subobjects are of const-qualified type, the
4257      //   program is ill-formed.
4258      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4259    } else {
4260      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4261      InitializationKind Kind
4262        = InitializationKind::CreateDefault(Var->getLocation());
4263
4264      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4265      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4266                                              MultiExprArg(*this, 0, 0));
4267      if (Init.isInvalid())
4268        Var->setInvalidDecl();
4269      else if (Init.get())
4270        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4271    }
4272
4273    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4274      FinalizeVarWithDestructor(Var, Record);
4275  }
4276}
4277
4278Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4279                                                   DeclPtrTy *Group,
4280                                                   unsigned NumDecls) {
4281  llvm::SmallVector<Decl*, 8> Decls;
4282
4283  if (DS.isTypeSpecOwned())
4284    Decls.push_back((Decl*)DS.getTypeRep());
4285
4286  for (unsigned i = 0; i != NumDecls; ++i)
4287    if (Decl *D = Group[i].getAs<Decl>())
4288      Decls.push_back(D);
4289
4290  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4291                                                   Decls.data(), Decls.size()));
4292}
4293
4294
4295/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4296/// to introduce parameters into function prototype scope.
4297Sema::DeclPtrTy
4298Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4299  const DeclSpec &DS = D.getDeclSpec();
4300
4301  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4302  VarDecl::StorageClass StorageClass = VarDecl::None;
4303  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4304  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4305    StorageClass = VarDecl::Register;
4306    StorageClassAsWritten = VarDecl::Register;
4307  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4308    Diag(DS.getStorageClassSpecLoc(),
4309         diag::err_invalid_storage_class_in_func_decl);
4310    D.getMutableDeclSpec().ClearStorageClassSpecs();
4311  }
4312
4313  if (D.getDeclSpec().isThreadSpecified())
4314    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4315
4316  DiagnoseFunctionSpecifiers(D);
4317
4318  // Check that there are no default arguments inside the type of this
4319  // parameter (C++ only).
4320  if (getLangOptions().CPlusPlus)
4321    CheckExtraCXXDefaultArguments(D);
4322
4323  TagDecl *OwnedDecl = 0;
4324  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4325  QualType parmDeclType = TInfo->getType();
4326
4327  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4328    // C++ [dcl.fct]p6:
4329    //   Types shall not be defined in return or parameter types.
4330    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4331      << Context.getTypeDeclType(OwnedDecl);
4332  }
4333
4334  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4335  IdentifierInfo *II = D.getIdentifier();
4336  if (II) {
4337    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4338                   ForRedeclaration);
4339    LookupName(R, S);
4340    if (R.isSingleResult()) {
4341      NamedDecl *PrevDecl = R.getFoundDecl();
4342      if (PrevDecl->isTemplateParameter()) {
4343        // Maybe we will complain about the shadowed template parameter.
4344        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4345        // Just pretend that we didn't see the previous declaration.
4346        PrevDecl = 0;
4347      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4348        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4349        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4350
4351        // Recover by removing the name
4352        II = 0;
4353        D.SetIdentifier(0, D.getIdentifierLoc());
4354        D.setInvalidType(true);
4355      }
4356    }
4357  }
4358
4359  // Temporarily put parameter variables in the translation unit, not
4360  // the enclosing context.  This prevents them from accidentally
4361  // looking like class members in C++.
4362  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4363                                    TInfo, parmDeclType, II,
4364                                    D.getIdentifierLoc(),
4365                                    StorageClass, StorageClassAsWritten);
4366
4367  if (D.isInvalidType())
4368    New->setInvalidDecl();
4369
4370  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4371  if (D.getCXXScopeSpec().isSet()) {
4372    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4373      << D.getCXXScopeSpec().getRange();
4374    New->setInvalidDecl();
4375  }
4376
4377  // Add the parameter declaration into this scope.
4378  S->AddDecl(DeclPtrTy::make(New));
4379  if (II)
4380    IdResolver.AddDecl(New);
4381
4382  ProcessDeclAttributes(S, New, D);
4383
4384  if (New->hasAttr<BlocksAttr>()) {
4385    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4386  }
4387  return DeclPtrTy::make(New);
4388}
4389
4390/// \brief Synthesizes a variable for a parameter arising from a
4391/// typedef.
4392ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4393                                              SourceLocation Loc,
4394                                              QualType T) {
4395  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4396                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4397                                           VarDecl::None, VarDecl::None, 0);
4398  Param->setImplicit();
4399  return Param;
4400}
4401
4402ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4403                                  TypeSourceInfo *TSInfo, QualType T,
4404                                  IdentifierInfo *Name,
4405                                  SourceLocation NameLoc,
4406                                  VarDecl::StorageClass StorageClass,
4407                                  VarDecl::StorageClass StorageClassAsWritten) {
4408  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4409                                         adjustParameterType(T), TSInfo,
4410                                         StorageClass, StorageClassAsWritten,
4411                                         0);
4412
4413  // Parameters can not be abstract class types.
4414  // For record types, this is done by the AbstractClassUsageDiagnoser once
4415  // the class has been completely parsed.
4416  if (!CurContext->isRecord() &&
4417      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4418                             AbstractParamType))
4419    New->setInvalidDecl();
4420
4421  // Parameter declarators cannot be interface types. All ObjC objects are
4422  // passed by reference.
4423  if (T->isObjCObjectType()) {
4424    Diag(NameLoc,
4425         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4426    New->setInvalidDecl();
4427  }
4428
4429  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4430  // duration shall not be qualified by an address-space qualifier."
4431  // Since all parameters have automatic store duration, they can not have
4432  // an address space.
4433  if (T.getAddressSpace() != 0) {
4434    Diag(NameLoc, diag::err_arg_with_address_space);
4435    New->setInvalidDecl();
4436  }
4437
4438  return New;
4439}
4440
4441void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4442                                           SourceLocation LocAfterDecls) {
4443  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4444         "Not a function declarator!");
4445  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4446
4447  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4448  // for a K&R function.
4449  if (!FTI.hasPrototype) {
4450    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4451      --i;
4452      if (FTI.ArgInfo[i].Param == 0) {
4453        llvm::SmallString<256> Code;
4454        llvm::raw_svector_ostream(Code) << "  int "
4455                                        << FTI.ArgInfo[i].Ident->getName()
4456                                        << ";\n";
4457        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4458          << FTI.ArgInfo[i].Ident
4459          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4460
4461        // Implicitly declare the argument as type 'int' for lack of a better
4462        // type.
4463        DeclSpec DS;
4464        const char* PrevSpec; // unused
4465        unsigned DiagID; // unused
4466        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4467                           PrevSpec, DiagID);
4468        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4469        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4470        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4471      }
4472    }
4473  }
4474}
4475
4476Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4477                                              Declarator &D) {
4478  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4479  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4480         "Not a function declarator!");
4481  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4482
4483  if (FTI.hasPrototype) {
4484    // FIXME: Diagnose arguments without names in C.
4485  }
4486
4487  Scope *ParentScope = FnBodyScope->getParent();
4488
4489  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4490                                  MultiTemplateParamsArg(*this),
4491                                  /*IsFunctionDefinition=*/true);
4492  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4493}
4494
4495static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4496  // Don't warn about invalid declarations.
4497  if (FD->isInvalidDecl())
4498    return false;
4499
4500  // Or declarations that aren't global.
4501  if (!FD->isGlobal())
4502    return false;
4503
4504  // Don't warn about C++ member functions.
4505  if (isa<CXXMethodDecl>(FD))
4506    return false;
4507
4508  // Don't warn about 'main'.
4509  if (FD->isMain())
4510    return false;
4511
4512  // Don't warn about inline functions.
4513  if (FD->isInlineSpecified())
4514    return false;
4515
4516  // Don't warn about function templates.
4517  if (FD->getDescribedFunctionTemplate())
4518    return false;
4519
4520  // Don't warn about function template specializations.
4521  if (FD->isFunctionTemplateSpecialization())
4522    return false;
4523
4524  bool MissingPrototype = true;
4525  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4526       Prev; Prev = Prev->getPreviousDeclaration()) {
4527    // Ignore any declarations that occur in function or method
4528    // scope, because they aren't visible from the header.
4529    if (Prev->getDeclContext()->isFunctionOrMethod())
4530      continue;
4531
4532    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4533    break;
4534  }
4535
4536  return MissingPrototype;
4537}
4538
4539Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4540  // Clear the last template instantiation error context.
4541  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4542
4543  if (!D)
4544    return D;
4545  FunctionDecl *FD = 0;
4546
4547  if (FunctionTemplateDecl *FunTmpl
4548        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4549    FD = FunTmpl->getTemplatedDecl();
4550  else
4551    FD = cast<FunctionDecl>(D.getAs<Decl>());
4552
4553  // Enter a new function scope
4554  PushFunctionScope();
4555
4556  // See if this is a redefinition.
4557  // But don't complain if we're in GNU89 mode and the previous definition
4558  // was an extern inline function.
4559  const FunctionDecl *Definition;
4560  if (FD->hasBody(Definition) &&
4561      !canRedefineFunction(Definition, getLangOptions())) {
4562    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4563    Diag(Definition->getLocation(), diag::note_previous_definition);
4564  }
4565
4566  // Builtin functions cannot be defined.
4567  if (unsigned BuiltinID = FD->getBuiltinID()) {
4568    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4569      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4570      FD->setInvalidDecl();
4571    }
4572  }
4573
4574  // The return type of a function definition must be complete
4575  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4576  QualType ResultType = FD->getResultType();
4577  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4578      !FD->isInvalidDecl() &&
4579      RequireCompleteType(FD->getLocation(), ResultType,
4580                          diag::err_func_def_incomplete_result))
4581    FD->setInvalidDecl();
4582
4583  // GNU warning -Wmissing-prototypes:
4584  //   Warn if a global function is defined without a previous
4585  //   prototype declaration. This warning is issued even if the
4586  //   definition itself provides a prototype. The aim is to detect
4587  //   global functions that fail to be declared in header files.
4588  if (ShouldWarnAboutMissingPrototype(FD))
4589    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4590
4591  if (FnBodyScope)
4592    PushDeclContext(FnBodyScope, FD);
4593
4594  // Check the validity of our function parameters
4595  CheckParmsForFunctionDef(FD);
4596
4597  bool ShouldCheckShadow =
4598    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4599
4600  // Introduce our parameters into the function scope
4601  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4602    ParmVarDecl *Param = FD->getParamDecl(p);
4603    Param->setOwningFunction(FD);
4604
4605    // If this has an identifier, add it to the scope stack.
4606    if (Param->getIdentifier() && FnBodyScope) {
4607      if (ShouldCheckShadow)
4608        CheckShadow(FnBodyScope, Param);
4609
4610      PushOnScopeChains(Param, FnBodyScope);
4611    }
4612  }
4613
4614  // Checking attributes of current function definition
4615  // dllimport attribute.
4616  if (FD->getAttr<DLLImportAttr>() &&
4617      (!FD->getAttr<DLLExportAttr>())) {
4618    // dllimport attribute cannot be applied to definition.
4619    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4620      Diag(FD->getLocation(),
4621           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4622        << "dllimport";
4623      FD->setInvalidDecl();
4624      return DeclPtrTy::make(FD);
4625    }
4626
4627    // Visual C++ appears to not think this is an issue, so only issue
4628    // a warning when Microsoft extensions are disabled.
4629    if (!LangOpts.Microsoft) {
4630      // If a symbol previously declared dllimport is later defined, the
4631      // attribute is ignored in subsequent references, and a warning is
4632      // emitted.
4633      Diag(FD->getLocation(),
4634           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4635        << FD->getNameAsCString() << "dllimport";
4636    }
4637  }
4638  return DeclPtrTy::make(FD);
4639}
4640
4641/// \brief Given the set of return statements within a function body,
4642/// compute the variables that are subject to the named return value
4643/// optimization.
4644///
4645/// Each of the variables that is subject to the named return value
4646/// optimization will be marked as NRVO variables in the AST, and any
4647/// return statement that has a marked NRVO variable as its NRVO candidate can
4648/// use the named return value optimization.
4649///
4650/// This function applies a very simplistic algorithm for NRVO: if every return
4651/// statement in the function has the same NRVO candidate, that candidate is
4652/// the NRVO variable.
4653///
4654/// FIXME: Employ a smarter algorithm that accounts for multiple return
4655/// statements and the lifetimes of the NRVO candidates. We should be able to
4656/// find a maximal set of NRVO variables.
4657static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4658  const VarDecl *NRVOCandidate = 0;
4659  for (unsigned I = 0; I != NumReturns; ++I) {
4660    if (!Returns[I]->getNRVOCandidate())
4661      return;
4662
4663    if (!NRVOCandidate)
4664      NRVOCandidate = Returns[I]->getNRVOCandidate();
4665    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4666      return;
4667  }
4668
4669  if (NRVOCandidate)
4670    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4671}
4672
4673Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4674  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4675}
4676
4677Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4678                                              bool IsInstantiation) {
4679  Decl *dcl = D.getAs<Decl>();
4680  Stmt *Body = BodyArg.takeAs<Stmt>();
4681
4682  FunctionDecl *FD = 0;
4683  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4684  if (FunTmpl)
4685    FD = FunTmpl->getTemplatedDecl();
4686  else
4687    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4688
4689  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4690
4691  if (FD) {
4692    FD->setBody(Body);
4693    if (FD->isMain()) {
4694      // C and C++ allow for main to automagically return 0.
4695      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4696      FD->setHasImplicitReturnZero(true);
4697      WP.disableCheckFallThrough();
4698    }
4699
4700    if (!FD->isInvalidDecl()) {
4701      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4702
4703      // If this is a constructor, we need a vtable.
4704      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4705        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4706
4707      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4708                  FunctionScopes.back()->Returns.size());
4709    }
4710
4711    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4712  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4713    assert(MD == getCurMethodDecl() && "Method parsing confused");
4714    MD->setBody(Body);
4715    MD->setEndLoc(Body->getLocEnd());
4716    if (!MD->isInvalidDecl())
4717      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4718  } else {
4719    return DeclPtrTy();
4720  }
4721
4722  // Verify and clean out per-function state.
4723
4724  // Check goto/label use.
4725  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4726       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4727    LabelStmt *L = I->second;
4728
4729    // Verify that we have no forward references left.  If so, there was a goto
4730    // or address of a label taken, but no definition of it.  Label fwd
4731    // definitions are indicated with a null substmt.
4732    if (L->getSubStmt() != 0)
4733      continue;
4734
4735    // Emit error.
4736    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4737
4738    // At this point, we have gotos that use the bogus label.  Stitch it into
4739    // the function body so that they aren't leaked and that the AST is well
4740    // formed.
4741    if (Body == 0) {
4742      // The whole function wasn't parsed correctly.
4743      continue;
4744    }
4745
4746    // Otherwise, the body is valid: we want to stitch the label decl into the
4747    // function somewhere so that it is properly owned and so that the goto
4748    // has a valid target.  Do this by creating a new compound stmt with the
4749    // label in it.
4750
4751    // Give the label a sub-statement.
4752    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4753
4754    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4755                               cast<CXXTryStmt>(Body)->getTryBlock() :
4756                               cast<CompoundStmt>(Body);
4757    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4758                                          Compound->body_end());
4759    Elements.push_back(L);
4760    Compound->setStmts(Context, Elements.data(), Elements.size());
4761  }
4762
4763  if (Body) {
4764    // C++ constructors that have function-try-blocks can't have return
4765    // statements in the handlers of that block. (C++ [except.handle]p14)
4766    // Verify this.
4767    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4768      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4769
4770    // Verify that that gotos and switch cases don't jump into scopes illegally.
4771    // Verify that that gotos and switch cases don't jump into scopes illegally.
4772    if (FunctionNeedsScopeChecking() &&
4773        !dcl->isInvalidDecl() &&
4774        !hasAnyErrorsInThisFunction())
4775      DiagnoseInvalidJumps(Body);
4776
4777    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4778      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4779                                             Destructor->getParent());
4780
4781    // If any errors have occurred, clear out any temporaries that may have
4782    // been leftover. This ensures that these temporaries won't be picked up for
4783    // deletion in some later function.
4784    if (PP.getDiagnostics().hasErrorOccurred())
4785      ExprTemporaries.clear();
4786    else if (!isa<FunctionTemplateDecl>(dcl)) {
4787      // Since the body is valid, issue any analysis-based warnings that are
4788      // enabled.
4789      QualType ResultType;
4790      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4791        ResultType = FD->getResultType();
4792      }
4793      else {
4794        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4795        ResultType = MD->getResultType();
4796      }
4797      AnalysisWarnings.IssueWarnings(WP, dcl);
4798    }
4799
4800    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4801  }
4802
4803  if (!IsInstantiation)
4804    PopDeclContext();
4805
4806  PopFunctionOrBlockScope();
4807
4808  // If any errors have occurred, clear out any temporaries that may have
4809  // been leftover. This ensures that these temporaries won't be picked up for
4810  // deletion in some later function.
4811  if (getDiagnostics().hasErrorOccurred())
4812    ExprTemporaries.clear();
4813
4814  return D;
4815}
4816
4817/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4818/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4819NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4820                                          IdentifierInfo &II, Scope *S) {
4821  // Before we produce a declaration for an implicitly defined
4822  // function, see whether there was a locally-scoped declaration of
4823  // this name as a function or variable. If so, use that
4824  // (non-visible) declaration, and complain about it.
4825  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4826    = LocallyScopedExternalDecls.find(&II);
4827  if (Pos != LocallyScopedExternalDecls.end()) {
4828    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4829    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4830    return Pos->second;
4831  }
4832
4833  // Extension in C99.  Legal in C90, but warn about it.
4834  if (II.getName().startswith("__builtin_"))
4835    Diag(Loc, diag::warn_builtin_unknown) << &II;
4836  else if (getLangOptions().C99)
4837    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4838  else
4839    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4840
4841  // Set a Declarator for the implicit definition: int foo();
4842  const char *Dummy;
4843  DeclSpec DS;
4844  unsigned DiagID;
4845  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4846  Error = Error; // Silence warning.
4847  assert(!Error && "Error setting up implicit decl!");
4848  Declarator D(DS, Declarator::BlockContext);
4849  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4850                                             0, 0, false, SourceLocation(),
4851                                             false, 0,0,0, Loc, Loc, D),
4852                SourceLocation());
4853  D.SetIdentifier(&II, Loc);
4854
4855  // Insert this function into translation-unit scope.
4856
4857  DeclContext *PrevDC = CurContext;
4858  CurContext = Context.getTranslationUnitDecl();
4859
4860  FunctionDecl *FD =
4861 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4862  FD->setImplicit();
4863
4864  CurContext = PrevDC;
4865
4866  AddKnownFunctionAttributes(FD);
4867
4868  return FD;
4869}
4870
4871/// \brief Adds any function attributes that we know a priori based on
4872/// the declaration of this function.
4873///
4874/// These attributes can apply both to implicitly-declared builtins
4875/// (like __builtin___printf_chk) or to library-declared functions
4876/// like NSLog or printf.
4877void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4878  if (FD->isInvalidDecl())
4879    return;
4880
4881  // If this is a built-in function, map its builtin attributes to
4882  // actual attributes.
4883  if (unsigned BuiltinID = FD->getBuiltinID()) {
4884    // Handle printf-formatting attributes.
4885    unsigned FormatIdx;
4886    bool HasVAListArg;
4887    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4888      if (!FD->getAttr<FormatAttr>())
4889        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4890                                               HasVAListArg ? 0 : FormatIdx+2));
4891    }
4892    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
4893                                             HasVAListArg)) {
4894     if (!FD->getAttr<FormatAttr>())
4895       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
4896                                              HasVAListArg ? 0 : FormatIdx+2));
4897    }
4898
4899    // Mark const if we don't care about errno and that is the only
4900    // thing preventing the function from being const. This allows
4901    // IRgen to use LLVM intrinsics for such functions.
4902    if (!getLangOptions().MathErrno &&
4903        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4904      if (!FD->getAttr<ConstAttr>())
4905        FD->addAttr(::new (Context) ConstAttr());
4906    }
4907
4908    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4909      FD->setType(Context.getNoReturnType(FD->getType()));
4910    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4911      FD->addAttr(::new (Context) NoThrowAttr());
4912    if (Context.BuiltinInfo.isConst(BuiltinID))
4913      FD->addAttr(::new (Context) ConstAttr());
4914  }
4915
4916  IdentifierInfo *Name = FD->getIdentifier();
4917  if (!Name)
4918    return;
4919  if ((!getLangOptions().CPlusPlus &&
4920       FD->getDeclContext()->isTranslationUnit()) ||
4921      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4922       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4923       LinkageSpecDecl::lang_c)) {
4924    // Okay: this could be a libc/libm/Objective-C function we know
4925    // about.
4926  } else
4927    return;
4928
4929  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4930    // FIXME: NSLog and NSLogv should be target specific
4931    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4932      // FIXME: We known better than our headers.
4933      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4934    } else
4935      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4936                                             Name->isStr("NSLogv") ? 0 : 2));
4937  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4938    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4939    // target-specific builtins, perhaps?
4940    if (!FD->getAttr<FormatAttr>())
4941      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4942                                             Name->isStr("vasprintf") ? 0 : 3));
4943  }
4944}
4945
4946TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4947                                    TypeSourceInfo *TInfo) {
4948  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4949  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4950
4951  if (!TInfo) {
4952    assert(D.isInvalidType() && "no declarator info for valid type");
4953    TInfo = Context.getTrivialTypeSourceInfo(T);
4954  }
4955
4956  // Scope manipulation handled by caller.
4957  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4958                                           D.getIdentifierLoc(),
4959                                           D.getIdentifier(),
4960                                           TInfo);
4961
4962  if (const TagType *TT = T->getAs<TagType>()) {
4963    TagDecl *TD = TT->getDecl();
4964
4965    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4966    // keep track of the TypedefDecl.
4967    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4968      TD->setTypedefForAnonDecl(NewTD);
4969  }
4970
4971  if (D.isInvalidType())
4972    NewTD->setInvalidDecl();
4973  return NewTD;
4974}
4975
4976
4977/// \brief Determine whether a tag with a given kind is acceptable
4978/// as a redeclaration of the given tag declaration.
4979///
4980/// \returns true if the new tag kind is acceptable, false otherwise.
4981bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4982                                        TagTypeKind NewTag,
4983                                        SourceLocation NewTagLoc,
4984                                        const IdentifierInfo &Name) {
4985  // C++ [dcl.type.elab]p3:
4986  //   The class-key or enum keyword present in the
4987  //   elaborated-type-specifier shall agree in kind with the
4988  //   declaration to which the name in the elaborated-type-specifier
4989  //   refers. This rule also applies to the form of
4990  //   elaborated-type-specifier that declares a class-name or
4991  //   friend class since it can be construed as referring to the
4992  //   definition of the class. Thus, in any
4993  //   elaborated-type-specifier, the enum keyword shall be used to
4994  //   refer to an enumeration (7.2), the union class-key shall be
4995  //   used to refer to a union (clause 9), and either the class or
4996  //   struct class-key shall be used to refer to a class (clause 9)
4997  //   declared using the class or struct class-key.
4998  TagTypeKind OldTag = Previous->getTagKind();
4999  if (OldTag == NewTag)
5000    return true;
5001
5002  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5003      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5004    // Warn about the struct/class tag mismatch.
5005    bool isTemplate = false;
5006    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5007      isTemplate = Record->getDescribedClassTemplate();
5008
5009    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5010      << (NewTag == TTK_Class)
5011      << isTemplate << &Name
5012      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5013                              OldTag == TTK_Class? "class" : "struct");
5014    Diag(Previous->getLocation(), diag::note_previous_use);
5015    return true;
5016  }
5017  return false;
5018}
5019
5020/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5021/// former case, Name will be non-null.  In the later case, Name will be null.
5022/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5023/// reference/declaration/definition of a tag.
5024Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5025                               SourceLocation KWLoc, CXXScopeSpec &SS,
5026                               IdentifierInfo *Name, SourceLocation NameLoc,
5027                               AttributeList *Attr, AccessSpecifier AS,
5028                               MultiTemplateParamsArg TemplateParameterLists,
5029                               bool &OwnedDecl, bool &IsDependent) {
5030  // If this is not a definition, it must have a name.
5031  assert((Name != 0 || TUK == TUK_Definition) &&
5032         "Nameless record must be a definition!");
5033
5034  OwnedDecl = false;
5035  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5036
5037  // FIXME: Check explicit specializations more carefully.
5038  bool isExplicitSpecialization = false;
5039  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5040  bool Invalid = false;
5041  if (TUK != TUK_Reference) {
5042    if (TemplateParameterList *TemplateParams
5043          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5044                        (TemplateParameterList**)TemplateParameterLists.get(),
5045                                              TemplateParameterLists.size(),
5046                                                    TUK == TUK_Friend,
5047                                                    isExplicitSpecialization,
5048                                                    Invalid)) {
5049      // All but one template parameter lists have been matching.
5050      --NumMatchedTemplateParamLists;
5051
5052      if (TemplateParams->size() > 0) {
5053        // This is a declaration or definition of a class template (which may
5054        // be a member of another template).
5055        if (Invalid)
5056          return DeclPtrTy();
5057
5058        OwnedDecl = false;
5059        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5060                                               SS, Name, NameLoc, Attr,
5061                                               TemplateParams,
5062                                               AS);
5063        TemplateParameterLists.release();
5064        return Result.get();
5065      } else {
5066        // The "template<>" header is extraneous.
5067        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5068          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5069        isExplicitSpecialization = true;
5070      }
5071    }
5072  }
5073
5074  DeclContext *SearchDC = CurContext;
5075  DeclContext *DC = CurContext;
5076  bool isStdBadAlloc = false;
5077
5078  RedeclarationKind Redecl = ForRedeclaration;
5079  if (TUK == TUK_Friend || TUK == TUK_Reference)
5080    Redecl = NotForRedeclaration;
5081
5082  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5083
5084  if (Name && SS.isNotEmpty()) {
5085    // We have a nested-name tag ('struct foo::bar').
5086
5087    // Check for invalid 'foo::'.
5088    if (SS.isInvalid()) {
5089      Name = 0;
5090      goto CreateNewDecl;
5091    }
5092
5093    // If this is a friend or a reference to a class in a dependent
5094    // context, don't try to make a decl for it.
5095    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5096      DC = computeDeclContext(SS, false);
5097      if (!DC) {
5098        IsDependent = true;
5099        return DeclPtrTy();
5100      }
5101    } else {
5102      DC = computeDeclContext(SS, true);
5103      if (!DC) {
5104        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5105          << SS.getRange();
5106        return DeclPtrTy();
5107      }
5108    }
5109
5110    if (RequireCompleteDeclContext(SS, DC))
5111      return DeclPtrTy::make((Decl *)0);
5112
5113    SearchDC = DC;
5114    // Look-up name inside 'foo::'.
5115    LookupQualifiedName(Previous, DC);
5116
5117    if (Previous.isAmbiguous())
5118      return DeclPtrTy();
5119
5120    if (Previous.empty()) {
5121      // Name lookup did not find anything. However, if the
5122      // nested-name-specifier refers to the current instantiation,
5123      // and that current instantiation has any dependent base
5124      // classes, we might find something at instantiation time: treat
5125      // this as a dependent elaborated-type-specifier.
5126      if (Previous.wasNotFoundInCurrentInstantiation()) {
5127        IsDependent = true;
5128        return DeclPtrTy();
5129      }
5130
5131      // A tag 'foo::bar' must already exist.
5132      Diag(NameLoc, diag::err_not_tag_in_scope)
5133        << Kind << Name << DC << SS.getRange();
5134      Name = 0;
5135      Invalid = true;
5136      goto CreateNewDecl;
5137    }
5138  } else if (Name) {
5139    // If this is a named struct, check to see if there was a previous forward
5140    // declaration or definition.
5141    // FIXME: We're looking into outer scopes here, even when we
5142    // shouldn't be. Doing so can result in ambiguities that we
5143    // shouldn't be diagnosing.
5144    LookupName(Previous, S);
5145
5146    // Note:  there used to be some attempt at recovery here.
5147    if (Previous.isAmbiguous())
5148      return DeclPtrTy();
5149
5150    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5151      // FIXME: This makes sure that we ignore the contexts associated
5152      // with C structs, unions, and enums when looking for a matching
5153      // tag declaration or definition. See the similar lookup tweak
5154      // in Sema::LookupName; is there a better way to deal with this?
5155      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5156        SearchDC = SearchDC->getParent();
5157    }
5158  }
5159
5160  if (Previous.isSingleResult() &&
5161      Previous.getFoundDecl()->isTemplateParameter()) {
5162    // Maybe we will complain about the shadowed template parameter.
5163    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5164    // Just pretend that we didn't see the previous declaration.
5165    Previous.clear();
5166  }
5167
5168  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5169      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5170    // This is a declaration of or a reference to "std::bad_alloc".
5171    isStdBadAlloc = true;
5172
5173    if (Previous.empty() && StdBadAlloc) {
5174      // std::bad_alloc has been implicitly declared (but made invisible to
5175      // name lookup). Fill in this implicit declaration as the previous
5176      // declaration, so that the declarations get chained appropriately.
5177      Previous.addDecl(StdBadAlloc);
5178    }
5179  }
5180
5181  // If we didn't find a previous declaration, and this is a reference
5182  // (or friend reference), move to the correct scope.  In C++, we
5183  // also need to do a redeclaration lookup there, just in case
5184  // there's a shadow friend decl.
5185  if (Name && Previous.empty() &&
5186      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5187    if (Invalid) goto CreateNewDecl;
5188    assert(SS.isEmpty());
5189
5190    if (TUK == TUK_Reference) {
5191      // C++ [basic.scope.pdecl]p5:
5192      //   -- for an elaborated-type-specifier of the form
5193      //
5194      //          class-key identifier
5195      //
5196      //      if the elaborated-type-specifier is used in the
5197      //      decl-specifier-seq or parameter-declaration-clause of a
5198      //      function defined in namespace scope, the identifier is
5199      //      declared as a class-name in the namespace that contains
5200      //      the declaration; otherwise, except as a friend
5201      //      declaration, the identifier is declared in the smallest
5202      //      non-class, non-function-prototype scope that contains the
5203      //      declaration.
5204      //
5205      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5206      // C structs and unions.
5207      //
5208      // It is an error in C++ to declare (rather than define) an enum
5209      // type, including via an elaborated type specifier.  We'll
5210      // diagnose that later; for now, declare the enum in the same
5211      // scope as we would have picked for any other tag type.
5212      //
5213      // GNU C also supports this behavior as part of its incomplete
5214      // enum types extension, while GNU C++ does not.
5215      //
5216      // Find the context where we'll be declaring the tag.
5217      // FIXME: We would like to maintain the current DeclContext as the
5218      // lexical context,
5219      while (SearchDC->isRecord())
5220        SearchDC = SearchDC->getParent();
5221
5222      // Find the scope where we'll be declaring the tag.
5223      while (S->isClassScope() ||
5224             (getLangOptions().CPlusPlus &&
5225              S->isFunctionPrototypeScope()) ||
5226             ((S->getFlags() & Scope::DeclScope) == 0) ||
5227             (S->getEntity() &&
5228              ((DeclContext *)S->getEntity())->isTransparentContext()))
5229        S = S->getParent();
5230    } else {
5231      assert(TUK == TUK_Friend);
5232      // C++ [namespace.memdef]p3:
5233      //   If a friend declaration in a non-local class first declares a
5234      //   class or function, the friend class or function is a member of
5235      //   the innermost enclosing namespace.
5236      SearchDC = SearchDC->getEnclosingNamespaceContext();
5237    }
5238
5239    // In C++, we need to do a redeclaration lookup to properly
5240    // diagnose some problems.
5241    if (getLangOptions().CPlusPlus) {
5242      Previous.setRedeclarationKind(ForRedeclaration);
5243      LookupQualifiedName(Previous, SearchDC);
5244    }
5245  }
5246
5247  if (!Previous.empty()) {
5248    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5249
5250    // It's okay to have a tag decl in the same scope as a typedef
5251    // which hides a tag decl in the same scope.  Finding this
5252    // insanity with a redeclaration lookup can only actually happen
5253    // in C++.
5254    //
5255    // This is also okay for elaborated-type-specifiers, which is
5256    // technically forbidden by the current standard but which is
5257    // okay according to the likely resolution of an open issue;
5258    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5259    if (getLangOptions().CPlusPlus) {
5260      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5261        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5262          TagDecl *Tag = TT->getDecl();
5263          if (Tag->getDeclName() == Name &&
5264              Tag->getDeclContext()->getLookupContext()
5265                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5266            PrevDecl = Tag;
5267            Previous.clear();
5268            Previous.addDecl(Tag);
5269          }
5270        }
5271      }
5272    }
5273
5274    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5275      // If this is a use of a previous tag, or if the tag is already declared
5276      // in the same scope (so that the definition/declaration completes or
5277      // rementions the tag), reuse the decl.
5278      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5279          isDeclInScope(PrevDecl, SearchDC, S)) {
5280        // Make sure that this wasn't declared as an enum and now used as a
5281        // struct or something similar.
5282        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5283          bool SafeToContinue
5284            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5285               Kind != TTK_Enum);
5286          if (SafeToContinue)
5287            Diag(KWLoc, diag::err_use_with_wrong_tag)
5288              << Name
5289              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5290                                              PrevTagDecl->getKindName());
5291          else
5292            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5293          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5294
5295          if (SafeToContinue)
5296            Kind = PrevTagDecl->getTagKind();
5297          else {
5298            // Recover by making this an anonymous redefinition.
5299            Name = 0;
5300            Previous.clear();
5301            Invalid = true;
5302          }
5303        }
5304
5305        if (!Invalid) {
5306          // If this is a use, just return the declaration we found.
5307
5308          // FIXME: In the future, return a variant or some other clue
5309          // for the consumer of this Decl to know it doesn't own it.
5310          // For our current ASTs this shouldn't be a problem, but will
5311          // need to be changed with DeclGroups.
5312          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5313              TUK == TUK_Friend)
5314            return DeclPtrTy::make(PrevTagDecl);
5315
5316          // Diagnose attempts to redefine a tag.
5317          if (TUK == TUK_Definition) {
5318            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5319              // If we're defining a specialization and the previous definition
5320              // is from an implicit instantiation, don't emit an error
5321              // here; we'll catch this in the general case below.
5322              if (!isExplicitSpecialization ||
5323                  !isa<CXXRecordDecl>(Def) ||
5324                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5325                                               == TSK_ExplicitSpecialization) {
5326                Diag(NameLoc, diag::err_redefinition) << Name;
5327                Diag(Def->getLocation(), diag::note_previous_definition);
5328                // If this is a redefinition, recover by making this
5329                // struct be anonymous, which will make any later
5330                // references get the previous definition.
5331                Name = 0;
5332                Previous.clear();
5333                Invalid = true;
5334              }
5335            } else {
5336              // If the type is currently being defined, complain
5337              // about a nested redefinition.
5338              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5339              if (Tag->isBeingDefined()) {
5340                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5341                Diag(PrevTagDecl->getLocation(),
5342                     diag::note_previous_definition);
5343                Name = 0;
5344                Previous.clear();
5345                Invalid = true;
5346              }
5347            }
5348
5349            // Okay, this is definition of a previously declared or referenced
5350            // tag PrevDecl. We're going to create a new Decl for it.
5351          }
5352        }
5353        // If we get here we have (another) forward declaration or we
5354        // have a definition.  Just create a new decl.
5355
5356      } else {
5357        // If we get here, this is a definition of a new tag type in a nested
5358        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5359        // new decl/type.  We set PrevDecl to NULL so that the entities
5360        // have distinct types.
5361        Previous.clear();
5362      }
5363      // If we get here, we're going to create a new Decl. If PrevDecl
5364      // is non-NULL, it's a definition of the tag declared by
5365      // PrevDecl. If it's NULL, we have a new definition.
5366
5367
5368    // Otherwise, PrevDecl is not a tag, but was found with tag
5369    // lookup.  This is only actually possible in C++, where a few
5370    // things like templates still live in the tag namespace.
5371    } else {
5372      assert(getLangOptions().CPlusPlus);
5373
5374      // Use a better diagnostic if an elaborated-type-specifier
5375      // found the wrong kind of type on the first
5376      // (non-redeclaration) lookup.
5377      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5378          !Previous.isForRedeclaration()) {
5379        unsigned Kind = 0;
5380        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5381        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5382        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5383        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5384        Invalid = true;
5385
5386      // Otherwise, only diagnose if the declaration is in scope.
5387      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5388        // do nothing
5389
5390      // Diagnose implicit declarations introduced by elaborated types.
5391      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5392        unsigned Kind = 0;
5393        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5394        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5395        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5396        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5397        Invalid = true;
5398
5399      // Otherwise it's a declaration.  Call out a particularly common
5400      // case here.
5401      } else if (isa<TypedefDecl>(PrevDecl)) {
5402        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5403          << Name
5404          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5405        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5406        Invalid = true;
5407
5408      // Otherwise, diagnose.
5409      } else {
5410        // The tag name clashes with something else in the target scope,
5411        // issue an error and recover by making this tag be anonymous.
5412        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5413        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5414        Name = 0;
5415        Invalid = true;
5416      }
5417
5418      // The existing declaration isn't relevant to us; we're in a
5419      // new scope, so clear out the previous declaration.
5420      Previous.clear();
5421    }
5422  }
5423
5424CreateNewDecl:
5425
5426  TagDecl *PrevDecl = 0;
5427  if (Previous.isSingleResult())
5428    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5429
5430  // If there is an identifier, use the location of the identifier as the
5431  // location of the decl, otherwise use the location of the struct/union
5432  // keyword.
5433  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5434
5435  // Otherwise, create a new declaration. If there is a previous
5436  // declaration of the same entity, the two will be linked via
5437  // PrevDecl.
5438  TagDecl *New;
5439
5440  if (Kind == TTK_Enum) {
5441    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5442    // enum X { A, B, C } D;    D should chain to X.
5443    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5444                           cast_or_null<EnumDecl>(PrevDecl));
5445    // If this is an undefined enum, warn.
5446    if (TUK != TUK_Definition && !Invalid) {
5447      TagDecl *Def;
5448      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5449        Diag(Loc, diag::ext_forward_ref_enum_def)
5450          << New;
5451        Diag(Def->getLocation(), diag::note_previous_definition);
5452      } else {
5453        Diag(Loc,
5454             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5455                                       : diag::ext_forward_ref_enum);
5456      }
5457    }
5458  } else {
5459    // struct/union/class
5460
5461    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5462    // struct X { int A; } D;    D should chain to X.
5463    if (getLangOptions().CPlusPlus) {
5464      // FIXME: Look for a way to use RecordDecl for simple structs.
5465      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5466                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5467
5468      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5469        StdBadAlloc = cast<CXXRecordDecl>(New);
5470    } else
5471      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5472                               cast_or_null<RecordDecl>(PrevDecl));
5473  }
5474
5475  // Maybe add qualifier info.
5476  if (SS.isNotEmpty()) {
5477    if (SS.isSet()) {
5478      NestedNameSpecifier *NNS
5479        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5480      New->setQualifierInfo(NNS, SS.getRange());
5481      if (NumMatchedTemplateParamLists > 0) {
5482        New->setTemplateParameterListsInfo(Context,
5483                                           NumMatchedTemplateParamLists,
5484                    (TemplateParameterList**) TemplateParameterLists.release());
5485      }
5486    }
5487    else
5488      Invalid = true;
5489  }
5490
5491  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5492    // Add alignment attributes if necessary; these attributes are checked when
5493    // the ASTContext lays out the structure.
5494    //
5495    // It is important for implementing the correct semantics that this
5496    // happen here (in act on tag decl). The #pragma pack stack is
5497    // maintained as a result of parser callbacks which can occur at
5498    // many points during the parsing of a struct declaration (because
5499    // the #pragma tokens are effectively skipped over during the
5500    // parsing of the struct).
5501    AddAlignmentAttributesForRecord(RD);
5502  }
5503
5504  // If this is a specialization of a member class (of a class template),
5505  // check the specialization.
5506  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5507    Invalid = true;
5508
5509  if (Invalid)
5510    New->setInvalidDecl();
5511
5512  if (Attr)
5513    ProcessDeclAttributeList(S, New, Attr);
5514
5515  // If we're declaring or defining a tag in function prototype scope
5516  // in C, note that this type can only be used within the function.
5517  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5518    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5519
5520  // Set the lexical context. If the tag has a C++ scope specifier, the
5521  // lexical context will be different from the semantic context.
5522  New->setLexicalDeclContext(CurContext);
5523
5524  // Mark this as a friend decl if applicable.
5525  if (TUK == TUK_Friend)
5526    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5527
5528  // Set the access specifier.
5529  if (!Invalid && SearchDC->isRecord())
5530    SetMemberAccessSpecifier(New, PrevDecl, AS);
5531
5532  if (TUK == TUK_Definition)
5533    New->startDefinition();
5534
5535  // If this has an identifier, add it to the scope stack.
5536  if (TUK == TUK_Friend) {
5537    // We might be replacing an existing declaration in the lookup tables;
5538    // if so, borrow its access specifier.
5539    if (PrevDecl)
5540      New->setAccess(PrevDecl->getAccess());
5541
5542    DeclContext *DC = New->getDeclContext()->getLookupContext();
5543    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5544    if (Name) // can be null along some error paths
5545      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5546        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5547  } else if (Name) {
5548    S = getNonFieldDeclScope(S);
5549    PushOnScopeChains(New, S);
5550  } else {
5551    CurContext->addDecl(New);
5552  }
5553
5554  // If this is the C FILE type, notify the AST context.
5555  if (IdentifierInfo *II = New->getIdentifier())
5556    if (!New->isInvalidDecl() &&
5557        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5558        II->isStr("FILE"))
5559      Context.setFILEDecl(New);
5560
5561  OwnedDecl = true;
5562  return DeclPtrTy::make(New);
5563}
5564
5565void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5566  AdjustDeclIfTemplate(TagD);
5567  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5568
5569  // Enter the tag context.
5570  PushDeclContext(S, Tag);
5571}
5572
5573void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5574                                           SourceLocation LBraceLoc) {
5575  AdjustDeclIfTemplate(TagD);
5576  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5577
5578  FieldCollector->StartClass();
5579
5580  if (!Record->getIdentifier())
5581    return;
5582
5583  // C++ [class]p2:
5584  //   [...] The class-name is also inserted into the scope of the
5585  //   class itself; this is known as the injected-class-name. For
5586  //   purposes of access checking, the injected-class-name is treated
5587  //   as if it were a public member name.
5588  CXXRecordDecl *InjectedClassName
5589    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5590                            CurContext, Record->getLocation(),
5591                            Record->getIdentifier(),
5592                            Record->getTagKeywordLoc(),
5593                            Record);
5594  InjectedClassName->setImplicit();
5595  InjectedClassName->setAccess(AS_public);
5596  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5597      InjectedClassName->setDescribedClassTemplate(Template);
5598  PushOnScopeChains(InjectedClassName, S);
5599  assert(InjectedClassName->isInjectedClassName() &&
5600         "Broken injected-class-name");
5601}
5602
5603void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5604                                    SourceLocation RBraceLoc) {
5605  AdjustDeclIfTemplate(TagD);
5606  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5607  Tag->setRBraceLoc(RBraceLoc);
5608
5609  if (isa<CXXRecordDecl>(Tag))
5610    FieldCollector->FinishClass();
5611
5612  // Exit this scope of this tag's definition.
5613  PopDeclContext();
5614
5615  // Notify the consumer that we've defined a tag.
5616  Consumer.HandleTagDeclDefinition(Tag);
5617}
5618
5619void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5620  AdjustDeclIfTemplate(TagD);
5621  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5622  Tag->setInvalidDecl();
5623
5624  // We're undoing ActOnTagStartDefinition here, not
5625  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5626  // the FieldCollector.
5627
5628  PopDeclContext();
5629}
5630
5631// Note that FieldName may be null for anonymous bitfields.
5632bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5633                          QualType FieldTy, const Expr *BitWidth,
5634                          bool *ZeroWidth) {
5635  // Default to true; that shouldn't confuse checks for emptiness
5636  if (ZeroWidth)
5637    *ZeroWidth = true;
5638
5639  // C99 6.7.2.1p4 - verify the field type.
5640  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5641  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5642    // Handle incomplete types with specific error.
5643    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5644      return true;
5645    if (FieldName)
5646      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5647        << FieldName << FieldTy << BitWidth->getSourceRange();
5648    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5649      << FieldTy << BitWidth->getSourceRange();
5650  }
5651
5652  // If the bit-width is type- or value-dependent, don't try to check
5653  // it now.
5654  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5655    return false;
5656
5657  llvm::APSInt Value;
5658  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5659    return true;
5660
5661  if (Value != 0 && ZeroWidth)
5662    *ZeroWidth = false;
5663
5664  // Zero-width bitfield is ok for anonymous field.
5665  if (Value == 0 && FieldName)
5666    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5667
5668  if (Value.isSigned() && Value.isNegative()) {
5669    if (FieldName)
5670      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5671               << FieldName << Value.toString(10);
5672    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5673      << Value.toString(10);
5674  }
5675
5676  if (!FieldTy->isDependentType()) {
5677    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5678    if (Value.getZExtValue() > TypeSize) {
5679      if (!getLangOptions().CPlusPlus) {
5680        if (FieldName)
5681          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5682            << FieldName << (unsigned)Value.getZExtValue()
5683            << (unsigned)TypeSize;
5684
5685        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5686          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5687      }
5688
5689      if (FieldName)
5690        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5691          << FieldName << (unsigned)Value.getZExtValue()
5692          << (unsigned)TypeSize;
5693      else
5694        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5695          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5696    }
5697  }
5698
5699  return false;
5700}
5701
5702/// ActOnField - Each field of a struct/union/class is passed into this in order
5703/// to create a FieldDecl object for it.
5704Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5705                                 SourceLocation DeclStart,
5706                                 Declarator &D, ExprTy *BitfieldWidth) {
5707  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5708                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5709                               AS_public);
5710  return DeclPtrTy::make(Res);
5711}
5712
5713/// HandleField - Analyze a field of a C struct or a C++ data member.
5714///
5715FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5716                             SourceLocation DeclStart,
5717                             Declarator &D, Expr *BitWidth,
5718                             AccessSpecifier AS) {
5719  IdentifierInfo *II = D.getIdentifier();
5720  SourceLocation Loc = DeclStart;
5721  if (II) Loc = D.getIdentifierLoc();
5722
5723  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5724  QualType T = TInfo->getType();
5725  if (getLangOptions().CPlusPlus)
5726    CheckExtraCXXDefaultArguments(D);
5727
5728  DiagnoseFunctionSpecifiers(D);
5729
5730  if (D.getDeclSpec().isThreadSpecified())
5731    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5732
5733  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5734                                         ForRedeclaration);
5735
5736  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5737    // Maybe we will complain about the shadowed template parameter.
5738    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5739    // Just pretend that we didn't see the previous declaration.
5740    PrevDecl = 0;
5741  }
5742
5743  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5744    PrevDecl = 0;
5745
5746  bool Mutable
5747    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5748  SourceLocation TSSL = D.getSourceRange().getBegin();
5749  FieldDecl *NewFD
5750    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5751                     AS, PrevDecl, &D);
5752
5753  if (NewFD->isInvalidDecl())
5754    Record->setInvalidDecl();
5755
5756  if (NewFD->isInvalidDecl() && PrevDecl) {
5757    // Don't introduce NewFD into scope; there's already something
5758    // with the same name in the same scope.
5759  } else if (II) {
5760    PushOnScopeChains(NewFD, S);
5761  } else
5762    Record->addDecl(NewFD);
5763
5764  return NewFD;
5765}
5766
5767/// \brief Build a new FieldDecl and check its well-formedness.
5768///
5769/// This routine builds a new FieldDecl given the fields name, type,
5770/// record, etc. \p PrevDecl should refer to any previous declaration
5771/// with the same name and in the same scope as the field to be
5772/// created.
5773///
5774/// \returns a new FieldDecl.
5775///
5776/// \todo The Declarator argument is a hack. It will be removed once
5777FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5778                                TypeSourceInfo *TInfo,
5779                                RecordDecl *Record, SourceLocation Loc,
5780                                bool Mutable, Expr *BitWidth,
5781                                SourceLocation TSSL,
5782                                AccessSpecifier AS, NamedDecl *PrevDecl,
5783                                Declarator *D) {
5784  IdentifierInfo *II = Name.getAsIdentifierInfo();
5785  bool InvalidDecl = false;
5786  if (D) InvalidDecl = D->isInvalidType();
5787
5788  // If we receive a broken type, recover by assuming 'int' and
5789  // marking this declaration as invalid.
5790  if (T.isNull()) {
5791    InvalidDecl = true;
5792    T = Context.IntTy;
5793  }
5794
5795  QualType EltTy = Context.getBaseElementType(T);
5796  if (!EltTy->isDependentType() &&
5797      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5798    InvalidDecl = true;
5799
5800  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5801  // than a variably modified type.
5802  if (!InvalidDecl && T->isVariablyModifiedType()) {
5803    bool SizeIsNegative;
5804    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5805                                                           SizeIsNegative);
5806    if (!FixedTy.isNull()) {
5807      Diag(Loc, diag::warn_illegal_constant_array_size);
5808      T = FixedTy;
5809    } else {
5810      if (SizeIsNegative)
5811        Diag(Loc, diag::err_typecheck_negative_array_size);
5812      else
5813        Diag(Loc, diag::err_typecheck_field_variable_size);
5814      InvalidDecl = true;
5815    }
5816  }
5817
5818  // Fields can not have abstract class types
5819  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5820                                             diag::err_abstract_type_in_decl,
5821                                             AbstractFieldType))
5822    InvalidDecl = true;
5823
5824  bool ZeroWidth = false;
5825  // If this is declared as a bit-field, check the bit-field.
5826  if (!InvalidDecl && BitWidth &&
5827      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5828    InvalidDecl = true;
5829    DeleteExpr(BitWidth);
5830    BitWidth = 0;
5831    ZeroWidth = false;
5832  }
5833
5834  // Check that 'mutable' is consistent with the type of the declaration.
5835  if (!InvalidDecl && Mutable) {
5836    unsigned DiagID = 0;
5837    if (T->isReferenceType())
5838      DiagID = diag::err_mutable_reference;
5839    else if (T.isConstQualified())
5840      DiagID = diag::err_mutable_const;
5841
5842    if (DiagID) {
5843      SourceLocation ErrLoc = Loc;
5844      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5845        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5846      Diag(ErrLoc, DiagID);
5847      Mutable = false;
5848      InvalidDecl = true;
5849    }
5850  }
5851
5852  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5853                                       BitWidth, Mutable);
5854  if (InvalidDecl)
5855    NewFD->setInvalidDecl();
5856
5857  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5858    Diag(Loc, diag::err_duplicate_member) << II;
5859    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5860    NewFD->setInvalidDecl();
5861  }
5862
5863  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5864    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5865
5866    if (!T->isPODType())
5867      CXXRecord->setPOD(false);
5868    if (!ZeroWidth)
5869      CXXRecord->setEmpty(false);
5870
5871    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5872      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5873      if (RDecl->getDefinition()) {
5874        if (!RDecl->hasTrivialConstructor())
5875          CXXRecord->setHasTrivialConstructor(false);
5876        if (!RDecl->hasTrivialCopyConstructor())
5877          CXXRecord->setHasTrivialCopyConstructor(false);
5878        if (!RDecl->hasTrivialCopyAssignment())
5879          CXXRecord->setHasTrivialCopyAssignment(false);
5880        if (!RDecl->hasTrivialDestructor())
5881          CXXRecord->setHasTrivialDestructor(false);
5882
5883        // C++ 9.5p1: An object of a class with a non-trivial
5884        // constructor, a non-trivial copy constructor, a non-trivial
5885        // destructor, or a non-trivial copy assignment operator
5886        // cannot be a member of a union, nor can an array of such
5887        // objects.
5888        // TODO: C++0x alters this restriction significantly.
5889        if (Record->isUnion()) {
5890          // We check for copy constructors before constructors
5891          // because otherwise we'll never get complaints about
5892          // copy constructors.
5893
5894          CXXSpecialMember member = CXXInvalid;
5895          if (!RDecl->hasTrivialCopyConstructor())
5896            member = CXXCopyConstructor;
5897          else if (!RDecl->hasTrivialConstructor())
5898            member = CXXConstructor;
5899          else if (!RDecl->hasTrivialCopyAssignment())
5900            member = CXXCopyAssignment;
5901          else if (!RDecl->hasTrivialDestructor())
5902            member = CXXDestructor;
5903
5904          if (member != CXXInvalid) {
5905            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5906            DiagnoseNontrivial(RT, member);
5907            NewFD->setInvalidDecl();
5908          }
5909        }
5910      }
5911    }
5912  }
5913
5914  // FIXME: We need to pass in the attributes given an AST
5915  // representation, not a parser representation.
5916  if (D)
5917    // FIXME: What to pass instead of TUScope?
5918    ProcessDeclAttributes(TUScope, NewFD, *D);
5919
5920  if (T.isObjCGCWeak())
5921    Diag(Loc, diag::warn_attribute_weak_on_field);
5922
5923  NewFD->setAccess(AS);
5924
5925  // C++ [dcl.init.aggr]p1:
5926  //   An aggregate is an array or a class (clause 9) with [...] no
5927  //   private or protected non-static data members (clause 11).
5928  // A POD must be an aggregate.
5929  if (getLangOptions().CPlusPlus &&
5930      (AS == AS_private || AS == AS_protected)) {
5931    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5932    CXXRecord->setAggregate(false);
5933    CXXRecord->setPOD(false);
5934  }
5935
5936  return NewFD;
5937}
5938
5939/// DiagnoseNontrivial - Given that a class has a non-trivial
5940/// special member, figure out why.
5941void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5942  QualType QT(T, 0U);
5943  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5944
5945  // Check whether the member was user-declared.
5946  switch (member) {
5947  case CXXInvalid:
5948    break;
5949
5950  case CXXConstructor:
5951    if (RD->hasUserDeclaredConstructor()) {
5952      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5953      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5954        const FunctionDecl *body = 0;
5955        ci->hasBody(body);
5956        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5957          SourceLocation CtorLoc = ci->getLocation();
5958          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5959          return;
5960        }
5961      }
5962
5963      assert(0 && "found no user-declared constructors");
5964      return;
5965    }
5966    break;
5967
5968  case CXXCopyConstructor:
5969    if (RD->hasUserDeclaredCopyConstructor()) {
5970      SourceLocation CtorLoc =
5971        RD->getCopyConstructor(Context, 0)->getLocation();
5972      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5973      return;
5974    }
5975    break;
5976
5977  case CXXCopyAssignment:
5978    if (RD->hasUserDeclaredCopyAssignment()) {
5979      // FIXME: this should use the location of the copy
5980      // assignment, not the type.
5981      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5982      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5983      return;
5984    }
5985    break;
5986
5987  case CXXDestructor:
5988    if (RD->hasUserDeclaredDestructor()) {
5989      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
5990      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5991      return;
5992    }
5993    break;
5994  }
5995
5996  typedef CXXRecordDecl::base_class_iterator base_iter;
5997
5998  // Virtual bases and members inhibit trivial copying/construction,
5999  // but not trivial destruction.
6000  if (member != CXXDestructor) {
6001    // Check for virtual bases.  vbases includes indirect virtual bases,
6002    // so we just iterate through the direct bases.
6003    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6004      if (bi->isVirtual()) {
6005        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6006        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6007        return;
6008      }
6009
6010    // Check for virtual methods.
6011    typedef CXXRecordDecl::method_iterator meth_iter;
6012    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6013         ++mi) {
6014      if (mi->isVirtual()) {
6015        SourceLocation MLoc = mi->getSourceRange().getBegin();
6016        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6017        return;
6018      }
6019    }
6020  }
6021
6022  bool (CXXRecordDecl::*hasTrivial)() const;
6023  switch (member) {
6024  case CXXConstructor:
6025    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6026  case CXXCopyConstructor:
6027    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6028  case CXXCopyAssignment:
6029    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6030  case CXXDestructor:
6031    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6032  default:
6033    assert(0 && "unexpected special member"); return;
6034  }
6035
6036  // Check for nontrivial bases (and recurse).
6037  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6038    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6039    assert(BaseRT && "Don't know how to handle dependent bases");
6040    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6041    if (!(BaseRecTy->*hasTrivial)()) {
6042      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6043      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6044      DiagnoseNontrivial(BaseRT, member);
6045      return;
6046    }
6047  }
6048
6049  // Check for nontrivial members (and recurse).
6050  typedef RecordDecl::field_iterator field_iter;
6051  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6052       ++fi) {
6053    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6054    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6055      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6056
6057      if (!(EltRD->*hasTrivial)()) {
6058        SourceLocation FLoc = (*fi)->getLocation();
6059        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6060        DiagnoseNontrivial(EltRT, member);
6061        return;
6062      }
6063    }
6064  }
6065
6066  assert(0 && "found no explanation for non-trivial member");
6067}
6068
6069/// TranslateIvarVisibility - Translate visibility from a token ID to an
6070///  AST enum value.
6071static ObjCIvarDecl::AccessControl
6072TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6073  switch (ivarVisibility) {
6074  default: assert(0 && "Unknown visitibility kind");
6075  case tok::objc_private: return ObjCIvarDecl::Private;
6076  case tok::objc_public: return ObjCIvarDecl::Public;
6077  case tok::objc_protected: return ObjCIvarDecl::Protected;
6078  case tok::objc_package: return ObjCIvarDecl::Package;
6079  }
6080}
6081
6082/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6083/// in order to create an IvarDecl object for it.
6084Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6085                                SourceLocation DeclStart,
6086                                DeclPtrTy IntfDecl,
6087                                Declarator &D, ExprTy *BitfieldWidth,
6088                                tok::ObjCKeywordKind Visibility) {
6089
6090  IdentifierInfo *II = D.getIdentifier();
6091  Expr *BitWidth = (Expr*)BitfieldWidth;
6092  SourceLocation Loc = DeclStart;
6093  if (II) Loc = D.getIdentifierLoc();
6094
6095  // FIXME: Unnamed fields can be handled in various different ways, for
6096  // example, unnamed unions inject all members into the struct namespace!
6097
6098  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6099  QualType T = TInfo->getType();
6100
6101  if (BitWidth) {
6102    // 6.7.2.1p3, 6.7.2.1p4
6103    if (VerifyBitField(Loc, II, T, BitWidth)) {
6104      D.setInvalidType();
6105      DeleteExpr(BitWidth);
6106      BitWidth = 0;
6107    }
6108  } else {
6109    // Not a bitfield.
6110
6111    // validate II.
6112
6113  }
6114  if (T->isReferenceType()) {
6115    Diag(Loc, diag::err_ivar_reference_type);
6116    D.setInvalidType();
6117  }
6118  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6119  // than a variably modified type.
6120  else if (T->isVariablyModifiedType()) {
6121    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6122    D.setInvalidType();
6123  }
6124
6125  // Get the visibility (access control) for this ivar.
6126  ObjCIvarDecl::AccessControl ac =
6127    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6128                                        : ObjCIvarDecl::None;
6129  // Must set ivar's DeclContext to its enclosing interface.
6130  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6131  ObjCContainerDecl *EnclosingContext;
6132  if (ObjCImplementationDecl *IMPDecl =
6133      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6134    // Case of ivar declared in an implementation. Context is that of its class.
6135    EnclosingContext = IMPDecl->getClassInterface();
6136    assert(EnclosingContext && "Implementation has no class interface!");
6137  } else {
6138    if (ObjCCategoryDecl *CDecl =
6139        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6140      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6141        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6142        return DeclPtrTy();
6143      }
6144    }
6145    EnclosingContext = EnclosingDecl;
6146  }
6147
6148  // Construct the decl.
6149  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6150                                             EnclosingContext, Loc, II, T,
6151                                             TInfo, ac, (Expr *)BitfieldWidth);
6152
6153  if (II) {
6154    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6155                                           ForRedeclaration);
6156    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6157        && !isa<TagDecl>(PrevDecl)) {
6158      Diag(Loc, diag::err_duplicate_member) << II;
6159      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6160      NewID->setInvalidDecl();
6161    }
6162  }
6163
6164  // Process attributes attached to the ivar.
6165  ProcessDeclAttributes(S, NewID, D);
6166
6167  if (D.isInvalidType())
6168    NewID->setInvalidDecl();
6169
6170  if (II) {
6171    // FIXME: When interfaces are DeclContexts, we'll need to add
6172    // these to the interface.
6173    S->AddDecl(DeclPtrTy::make(NewID));
6174    IdResolver.AddDecl(NewID);
6175  }
6176
6177  return DeclPtrTy::make(NewID);
6178}
6179
6180void Sema::ActOnFields(Scope* S,
6181                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6182                       DeclPtrTy *Fields, unsigned NumFields,
6183                       SourceLocation LBrac, SourceLocation RBrac,
6184                       AttributeList *Attr) {
6185  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6186  assert(EnclosingDecl && "missing record or interface decl");
6187
6188  // If the decl this is being inserted into is invalid, then it may be a
6189  // redeclaration or some other bogus case.  Don't try to add fields to it.
6190  if (EnclosingDecl->isInvalidDecl()) {
6191    // FIXME: Deallocate fields?
6192    return;
6193  }
6194
6195
6196  // Verify that all the fields are okay.
6197  unsigned NumNamedMembers = 0;
6198  llvm::SmallVector<FieldDecl*, 32> RecFields;
6199
6200  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6201  for (unsigned i = 0; i != NumFields; ++i) {
6202    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6203
6204    // Get the type for the field.
6205    Type *FDTy = FD->getType().getTypePtr();
6206
6207    if (!FD->isAnonymousStructOrUnion()) {
6208      // Remember all fields written by the user.
6209      RecFields.push_back(FD);
6210    }
6211
6212    // If the field is already invalid for some reason, don't emit more
6213    // diagnostics about it.
6214    if (FD->isInvalidDecl()) {
6215      EnclosingDecl->setInvalidDecl();
6216      continue;
6217    }
6218
6219    // C99 6.7.2.1p2:
6220    //   A structure or union shall not contain a member with
6221    //   incomplete or function type (hence, a structure shall not
6222    //   contain an instance of itself, but may contain a pointer to
6223    //   an instance of itself), except that the last member of a
6224    //   structure with more than one named member may have incomplete
6225    //   array type; such a structure (and any union containing,
6226    //   possibly recursively, a member that is such a structure)
6227    //   shall not be a member of a structure or an element of an
6228    //   array.
6229    if (FDTy->isFunctionType()) {
6230      // Field declared as a function.
6231      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6232        << FD->getDeclName();
6233      FD->setInvalidDecl();
6234      EnclosingDecl->setInvalidDecl();
6235      continue;
6236    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6237               Record && Record->isStruct()) {
6238      // Flexible array member.
6239      if (NumNamedMembers < 1) {
6240        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6241          << FD->getDeclName();
6242        FD->setInvalidDecl();
6243        EnclosingDecl->setInvalidDecl();
6244        continue;
6245      }
6246      if (!FD->getType()->isDependentType() &&
6247          !Context.getBaseElementType(FD->getType())->isPODType()) {
6248        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6249          << FD->getDeclName() << FD->getType();
6250        FD->setInvalidDecl();
6251        EnclosingDecl->setInvalidDecl();
6252        continue;
6253      }
6254
6255      // Okay, we have a legal flexible array member at the end of the struct.
6256      if (Record)
6257        Record->setHasFlexibleArrayMember(true);
6258    } else if (!FDTy->isDependentType() &&
6259               RequireCompleteType(FD->getLocation(), FD->getType(),
6260                                   diag::err_field_incomplete)) {
6261      // Incomplete type
6262      FD->setInvalidDecl();
6263      EnclosingDecl->setInvalidDecl();
6264      continue;
6265    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6266      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6267        // If this is a member of a union, then entire union becomes "flexible".
6268        if (Record && Record->isUnion()) {
6269          Record->setHasFlexibleArrayMember(true);
6270        } else {
6271          // If this is a struct/class and this is not the last element, reject
6272          // it.  Note that GCC supports variable sized arrays in the middle of
6273          // structures.
6274          if (i != NumFields-1)
6275            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6276              << FD->getDeclName() << FD->getType();
6277          else {
6278            // We support flexible arrays at the end of structs in
6279            // other structs as an extension.
6280            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6281              << FD->getDeclName();
6282            if (Record)
6283              Record->setHasFlexibleArrayMember(true);
6284          }
6285        }
6286      }
6287      if (Record && FDTTy->getDecl()->hasObjectMember())
6288        Record->setHasObjectMember(true);
6289    } else if (FDTy->isObjCObjectType()) {
6290      /// A field cannot be an Objective-c object
6291      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6292      FD->setInvalidDecl();
6293      EnclosingDecl->setInvalidDecl();
6294      continue;
6295    } else if (getLangOptions().ObjC1 &&
6296               getLangOptions().getGCMode() != LangOptions::NonGC &&
6297               Record &&
6298               (FD->getType()->isObjCObjectPointerType() ||
6299                FD->getType().isObjCGCStrong()))
6300      Record->setHasObjectMember(true);
6301    else if (Context.getAsArrayType(FD->getType())) {
6302      QualType BaseType = Context.getBaseElementType(FD->getType());
6303      if (Record && BaseType->isRecordType() &&
6304          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6305        Record->setHasObjectMember(true);
6306    }
6307    // Keep track of the number of named members.
6308    if (FD->getIdentifier())
6309      ++NumNamedMembers;
6310  }
6311
6312  // Okay, we successfully defined 'Record'.
6313  if (Record) {
6314    Record->completeDefinition();
6315  } else {
6316    ObjCIvarDecl **ClsFields =
6317      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6318    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6319      ID->setLocEnd(RBrac);
6320      // Add ivar's to class's DeclContext.
6321      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6322        ClsFields[i]->setLexicalDeclContext(ID);
6323        ID->addDecl(ClsFields[i]);
6324      }
6325      // Must enforce the rule that ivars in the base classes may not be
6326      // duplicates.
6327      if (ID->getSuperClass())
6328        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6329    } else if (ObjCImplementationDecl *IMPDecl =
6330                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6331      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6332      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6333        // Ivar declared in @implementation never belongs to the implementation.
6334        // Only it is in implementation's lexical context.
6335        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6336      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6337    } else if (ObjCCategoryDecl *CDecl =
6338                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6339      // case of ivars in class extension; all other cases have been
6340      // reported as errors elsewhere.
6341      // FIXME. Class extension does not have a LocEnd field.
6342      // CDecl->setLocEnd(RBrac);
6343      // Add ivar's to class extension's DeclContext.
6344      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6345        ClsFields[i]->setLexicalDeclContext(CDecl);
6346        CDecl->addDecl(ClsFields[i]);
6347      }
6348    }
6349  }
6350
6351  if (Attr)
6352    ProcessDeclAttributeList(S, Record, Attr);
6353}
6354
6355/// \brief Determine whether the given integral value is representable within
6356/// the given type T.
6357static bool isRepresentableIntegerValue(ASTContext &Context,
6358                                        llvm::APSInt &Value,
6359                                        QualType T) {
6360  assert(T->isIntegralType(Context) && "Integral type required!");
6361  unsigned BitWidth = Context.getIntWidth(T);
6362
6363  if (Value.isUnsigned() || Value.isNonNegative())
6364    return Value.getActiveBits() < BitWidth;
6365
6366  return Value.getMinSignedBits() <= BitWidth;
6367}
6368
6369// \brief Given an integral type, return the next larger integral type
6370// (or a NULL type of no such type exists).
6371static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6372  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6373  // enum checking below.
6374  assert(T->isIntegralType(Context) && "Integral type required!");
6375  const unsigned NumTypes = 4;
6376  QualType SignedIntegralTypes[NumTypes] = {
6377    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6378  };
6379  QualType UnsignedIntegralTypes[NumTypes] = {
6380    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6381    Context.UnsignedLongLongTy
6382  };
6383
6384  unsigned BitWidth = Context.getTypeSize(T);
6385  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6386                                            : UnsignedIntegralTypes;
6387  for (unsigned I = 0; I != NumTypes; ++I)
6388    if (Context.getTypeSize(Types[I]) > BitWidth)
6389      return Types[I];
6390
6391  return QualType();
6392}
6393
6394EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6395                                          EnumConstantDecl *LastEnumConst,
6396                                          SourceLocation IdLoc,
6397                                          IdentifierInfo *Id,
6398                                          ExprArg val) {
6399  Expr *Val = (Expr *)val.get();
6400
6401  unsigned IntWidth = Context.Target.getIntWidth();
6402  llvm::APSInt EnumVal(IntWidth);
6403  QualType EltTy;
6404  if (Val) {
6405    if (Enum->isDependentType() || Val->isTypeDependent())
6406      EltTy = Context.DependentTy;
6407    else {
6408      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6409      SourceLocation ExpLoc;
6410      if (!Val->isValueDependent() &&
6411          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6412        Val = 0;
6413      } else {
6414        if (!getLangOptions().CPlusPlus) {
6415          // C99 6.7.2.2p2:
6416          //   The expression that defines the value of an enumeration constant
6417          //   shall be an integer constant expression that has a value
6418          //   representable as an int.
6419
6420          // Complain if the value is not representable in an int.
6421          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6422            Diag(IdLoc, diag::ext_enum_value_not_int)
6423              << EnumVal.toString(10) << Val->getSourceRange()
6424              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6425          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6426            // Force the type of the expression to 'int'.
6427            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6428
6429            if (Val != val.get()) {
6430              val.release();
6431              val = Val;
6432            }
6433          }
6434        }
6435
6436        // C++0x [dcl.enum]p5:
6437        //   If the underlying type is not fixed, the type of each enumerator
6438        //   is the type of its initializing value:
6439        //     - If an initializer is specified for an enumerator, the
6440        //       initializing value has the same type as the expression.
6441        EltTy = Val->getType();
6442      }
6443    }
6444  }
6445
6446  if (!Val) {
6447    if (Enum->isDependentType())
6448      EltTy = Context.DependentTy;
6449    else if (!LastEnumConst) {
6450      // C++0x [dcl.enum]p5:
6451      //   If the underlying type is not fixed, the type of each enumerator
6452      //   is the type of its initializing value:
6453      //     - If no initializer is specified for the first enumerator, the
6454      //       initializing value has an unspecified integral type.
6455      //
6456      // GCC uses 'int' for its unspecified integral type, as does
6457      // C99 6.7.2.2p3.
6458      EltTy = Context.IntTy;
6459    } else {
6460      // Assign the last value + 1.
6461      EnumVal = LastEnumConst->getInitVal();
6462      ++EnumVal;
6463      EltTy = LastEnumConst->getType();
6464
6465      // Check for overflow on increment.
6466      if (EnumVal < LastEnumConst->getInitVal()) {
6467        // C++0x [dcl.enum]p5:
6468        //   If the underlying type is not fixed, the type of each enumerator
6469        //   is the type of its initializing value:
6470        //
6471        //     - Otherwise the type of the initializing value is the same as
6472        //       the type of the initializing value of the preceding enumerator
6473        //       unless the incremented value is not representable in that type,
6474        //       in which case the type is an unspecified integral type
6475        //       sufficient to contain the incremented value. If no such type
6476        //       exists, the program is ill-formed.
6477        QualType T = getNextLargerIntegralType(Context, EltTy);
6478        if (T.isNull()) {
6479          // There is no integral type larger enough to represent this
6480          // value. Complain, then allow the value to wrap around.
6481          EnumVal = LastEnumConst->getInitVal();
6482          EnumVal.zext(EnumVal.getBitWidth() * 2);
6483          Diag(IdLoc, diag::warn_enumerator_too_large)
6484            << EnumVal.toString(10);
6485        } else {
6486          EltTy = T;
6487        }
6488
6489        // Retrieve the last enumerator's value, extent that type to the
6490        // type that is supposed to be large enough to represent the incremented
6491        // value, then increment.
6492        EnumVal = LastEnumConst->getInitVal();
6493        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6494        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6495        ++EnumVal;
6496
6497        // If we're not in C++, diagnose the overflow of enumerator values,
6498        // which in C99 means that the enumerator value is not representable in
6499        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6500        // permits enumerator values that are representable in some larger
6501        // integral type.
6502        if (!getLangOptions().CPlusPlus && !T.isNull())
6503          Diag(IdLoc, diag::warn_enum_value_overflow);
6504      } else if (!getLangOptions().CPlusPlus &&
6505                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6506        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6507        Diag(IdLoc, diag::ext_enum_value_not_int)
6508          << EnumVal.toString(10) << 1;
6509      }
6510    }
6511  }
6512
6513  if (!EltTy->isDependentType()) {
6514    // Make the enumerator value match the signedness and size of the
6515    // enumerator's type.
6516    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6517    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6518  }
6519
6520  val.release();
6521  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6522                                  Val, EnumVal);
6523}
6524
6525
6526Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6527                                        DeclPtrTy lastEnumConst,
6528                                        SourceLocation IdLoc,
6529                                        IdentifierInfo *Id,
6530                                        SourceLocation EqualLoc, ExprTy *val) {
6531  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6532  EnumConstantDecl *LastEnumConst =
6533    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6534  Expr *Val = static_cast<Expr*>(val);
6535
6536  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6537  // we find one that is.
6538  S = getNonFieldDeclScope(S);
6539
6540  // Verify that there isn't already something declared with this name in this
6541  // scope.
6542  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6543                                         ForRedeclaration);
6544  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6545    // Maybe we will complain about the shadowed template parameter.
6546    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6547    // Just pretend that we didn't see the previous declaration.
6548    PrevDecl = 0;
6549  }
6550
6551  if (PrevDecl) {
6552    // When in C++, we may get a TagDecl with the same name; in this case the
6553    // enum constant will 'hide' the tag.
6554    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6555           "Received TagDecl when not in C++!");
6556    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6557      if (isa<EnumConstantDecl>(PrevDecl))
6558        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6559      else
6560        Diag(IdLoc, diag::err_redefinition) << Id;
6561      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6562      return DeclPtrTy();
6563    }
6564  }
6565
6566  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6567                                            IdLoc, Id, Owned(Val));
6568
6569  // Register this decl in the current scope stack.
6570  if (New) {
6571    New->setAccess(TheEnumDecl->getAccess());
6572    PushOnScopeChains(New, S);
6573  }
6574
6575  return DeclPtrTy::make(New);
6576}
6577
6578void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6579                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6580                         DeclPtrTy *Elements, unsigned NumElements,
6581                         Scope *S, AttributeList *Attr) {
6582  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6583  QualType EnumType = Context.getTypeDeclType(Enum);
6584
6585  if (Attr)
6586    ProcessDeclAttributeList(S, Enum, Attr);
6587
6588  if (Enum->isDependentType()) {
6589    for (unsigned i = 0; i != NumElements; ++i) {
6590      EnumConstantDecl *ECD =
6591        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6592      if (!ECD) continue;
6593
6594      ECD->setType(EnumType);
6595    }
6596
6597    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6598    return;
6599  }
6600
6601  // TODO: If the result value doesn't fit in an int, it must be a long or long
6602  // long value.  ISO C does not support this, but GCC does as an extension,
6603  // emit a warning.
6604  unsigned IntWidth = Context.Target.getIntWidth();
6605  unsigned CharWidth = Context.Target.getCharWidth();
6606  unsigned ShortWidth = Context.Target.getShortWidth();
6607
6608  // Verify that all the values are okay, compute the size of the values, and
6609  // reverse the list.
6610  unsigned NumNegativeBits = 0;
6611  unsigned NumPositiveBits = 0;
6612
6613  // Keep track of whether all elements have type int.
6614  bool AllElementsInt = true;
6615
6616  for (unsigned i = 0; i != NumElements; ++i) {
6617    EnumConstantDecl *ECD =
6618      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6619    if (!ECD) continue;  // Already issued a diagnostic.
6620
6621    const llvm::APSInt &InitVal = ECD->getInitVal();
6622
6623    // Keep track of the size of positive and negative values.
6624    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6625      NumPositiveBits = std::max(NumPositiveBits,
6626                                 (unsigned)InitVal.getActiveBits());
6627    else
6628      NumNegativeBits = std::max(NumNegativeBits,
6629                                 (unsigned)InitVal.getMinSignedBits());
6630
6631    // Keep track of whether every enum element has type int (very commmon).
6632    if (AllElementsInt)
6633      AllElementsInt = ECD->getType() == Context.IntTy;
6634  }
6635
6636  // Figure out the type that should be used for this enum.
6637  // FIXME: Support -fshort-enums.
6638  QualType BestType;
6639  unsigned BestWidth;
6640
6641  // C++0x N3000 [conv.prom]p3:
6642  //   An rvalue of an unscoped enumeration type whose underlying
6643  //   type is not fixed can be converted to an rvalue of the first
6644  //   of the following types that can represent all the values of
6645  //   the enumeration: int, unsigned int, long int, unsigned long
6646  //   int, long long int, or unsigned long long int.
6647  // C99 6.4.4.3p2:
6648  //   An identifier declared as an enumeration constant has type int.
6649  // The C99 rule is modified by a gcc extension
6650  QualType BestPromotionType;
6651
6652  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6653
6654  if (NumNegativeBits) {
6655    // If there is a negative value, figure out the smallest integer type (of
6656    // int/long/longlong) that fits.
6657    // If it's packed, check also if it fits a char or a short.
6658    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6659      BestType = Context.SignedCharTy;
6660      BestWidth = CharWidth;
6661    } else if (Packed && NumNegativeBits <= ShortWidth &&
6662               NumPositiveBits < ShortWidth) {
6663      BestType = Context.ShortTy;
6664      BestWidth = ShortWidth;
6665    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6666      BestType = Context.IntTy;
6667      BestWidth = IntWidth;
6668    } else {
6669      BestWidth = Context.Target.getLongWidth();
6670
6671      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6672        BestType = Context.LongTy;
6673      } else {
6674        BestWidth = Context.Target.getLongLongWidth();
6675
6676        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6677          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6678        BestType = Context.LongLongTy;
6679      }
6680    }
6681    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6682  } else {
6683    // If there is no negative value, figure out the smallest type that fits
6684    // all of the enumerator values.
6685    // If it's packed, check also if it fits a char or a short.
6686    if (Packed && NumPositiveBits <= CharWidth) {
6687      BestType = Context.UnsignedCharTy;
6688      BestPromotionType = Context.IntTy;
6689      BestWidth = CharWidth;
6690    } else if (Packed && NumPositiveBits <= ShortWidth) {
6691      BestType = Context.UnsignedShortTy;
6692      BestPromotionType = Context.IntTy;
6693      BestWidth = ShortWidth;
6694    } else if (NumPositiveBits <= IntWidth) {
6695      BestType = Context.UnsignedIntTy;
6696      BestWidth = IntWidth;
6697      BestPromotionType
6698        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6699                           ? Context.UnsignedIntTy : Context.IntTy;
6700    } else if (NumPositiveBits <=
6701               (BestWidth = Context.Target.getLongWidth())) {
6702      BestType = Context.UnsignedLongTy;
6703      BestPromotionType
6704        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6705                           ? Context.UnsignedLongTy : Context.LongTy;
6706    } else {
6707      BestWidth = Context.Target.getLongLongWidth();
6708      assert(NumPositiveBits <= BestWidth &&
6709             "How could an initializer get larger than ULL?");
6710      BestType = Context.UnsignedLongLongTy;
6711      BestPromotionType
6712        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6713                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6714    }
6715  }
6716
6717  // Loop over all of the enumerator constants, changing their types to match
6718  // the type of the enum if needed.
6719  for (unsigned i = 0; i != NumElements; ++i) {
6720    EnumConstantDecl *ECD =
6721      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6722    if (!ECD) continue;  // Already issued a diagnostic.
6723
6724    // Standard C says the enumerators have int type, but we allow, as an
6725    // extension, the enumerators to be larger than int size.  If each
6726    // enumerator value fits in an int, type it as an int, otherwise type it the
6727    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6728    // that X has type 'int', not 'unsigned'.
6729
6730    // Determine whether the value fits into an int.
6731    llvm::APSInt InitVal = ECD->getInitVal();
6732
6733    // If it fits into an integer type, force it.  Otherwise force it to match
6734    // the enum decl type.
6735    QualType NewTy;
6736    unsigned NewWidth;
6737    bool NewSign;
6738    if (!getLangOptions().CPlusPlus &&
6739        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6740      NewTy = Context.IntTy;
6741      NewWidth = IntWidth;
6742      NewSign = true;
6743    } else if (ECD->getType() == BestType) {
6744      // Already the right type!
6745      if (getLangOptions().CPlusPlus)
6746        // C++ [dcl.enum]p4: Following the closing brace of an
6747        // enum-specifier, each enumerator has the type of its
6748        // enumeration.
6749        ECD->setType(EnumType);
6750      continue;
6751    } else {
6752      NewTy = BestType;
6753      NewWidth = BestWidth;
6754      NewSign = BestType->isSignedIntegerType();
6755    }
6756
6757    // Adjust the APSInt value.
6758    InitVal.extOrTrunc(NewWidth);
6759    InitVal.setIsSigned(NewSign);
6760    ECD->setInitVal(InitVal);
6761
6762    // Adjust the Expr initializer and type.
6763    if (ECD->getInitExpr())
6764      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6765                                                      CastExpr::CK_IntegralCast,
6766                                                      ECD->getInitExpr(),
6767                                                      CXXBaseSpecifierArray(),
6768                                                     ImplicitCastExpr::RValue));
6769    if (getLangOptions().CPlusPlus)
6770      // C++ [dcl.enum]p4: Following the closing brace of an
6771      // enum-specifier, each enumerator has the type of its
6772      // enumeration.
6773      ECD->setType(EnumType);
6774    else
6775      ECD->setType(NewTy);
6776  }
6777
6778  Enum->completeDefinition(BestType, BestPromotionType,
6779                           NumPositiveBits, NumNegativeBits);
6780}
6781
6782Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6783                                            ExprArg expr) {
6784  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6785
6786  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6787                                                   Loc, AsmString);
6788  CurContext->addDecl(New);
6789  return DeclPtrTy::make(New);
6790}
6791
6792void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6793                             SourceLocation PragmaLoc,
6794                             SourceLocation NameLoc) {
6795  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6796
6797  if (PrevDecl) {
6798    PrevDecl->addAttr(::new (Context) WeakAttr());
6799  } else {
6800    (void)WeakUndeclaredIdentifiers.insert(
6801      std::pair<IdentifierInfo*,WeakInfo>
6802        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6803  }
6804}
6805
6806void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6807                                IdentifierInfo* AliasName,
6808                                SourceLocation PragmaLoc,
6809                                SourceLocation NameLoc,
6810                                SourceLocation AliasNameLoc) {
6811  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6812                                    LookupOrdinaryName);
6813  WeakInfo W = WeakInfo(Name, NameLoc);
6814
6815  if (PrevDecl) {
6816    if (!PrevDecl->hasAttr<AliasAttr>())
6817      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6818        DeclApplyPragmaWeak(TUScope, ND, W);
6819  } else {
6820    (void)WeakUndeclaredIdentifiers.insert(
6821      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6822  }
6823}
6824