SemaDeclCXX.cpp revision 0129b561a1452bf057f6b18b6a1de815d487ab81
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (KnownBaseTypes[NewBaseType]) {
766      // C++ [class.mi]p3:
767      //   A class shall not be specified as a direct base class of a
768      //   derived class more than once.
769      Diag(Bases[idx]->getSourceRange().getBegin(),
770           diag::err_duplicate_base_class)
771        << KnownBaseTypes[NewBaseType]->getType()
772        << Bases[idx]->getSourceRange();
773
774      // Delete the duplicate base class specifier; we're going to
775      // overwrite its pointer later.
776      Context.Deallocate(Bases[idx]);
777
778      Invalid = true;
779    } else {
780      // Okay, add this new base class.
781      KnownBaseTypes[NewBaseType] = Bases[idx];
782      Bases[NumGoodBases++] = Bases[idx];
783    }
784  }
785
786  // Attach the remaining base class specifiers to the derived class.
787  Class->setBases(Bases, NumGoodBases);
788
789  // Delete the remaining (good) base class specifiers, since their
790  // data has been copied into the CXXRecordDecl.
791  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792    Context.Deallocate(Bases[idx]);
793
794  return Invalid;
795}
796
797/// ActOnBaseSpecifiers - Attach the given base specifiers to the
798/// class, after checking whether there are any duplicate base
799/// classes.
800void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                               unsigned NumBases) {
802  if (!ClassDecl || !Bases || !NumBases)
803    return;
804
805  AdjustDeclIfTemplate(ClassDecl);
806  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                       (CXXBaseSpecifier**)(Bases), NumBases);
808}
809
810static CXXRecordDecl *GetClassForType(QualType T) {
811  if (const RecordType *RT = T->getAs<RecordType>())
812    return cast<CXXRecordDecl>(RT->getDecl());
813  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814    return ICT->getDecl();
815  else
816    return 0;
817}
818
819/// \brief Determine whether the type \p Derived is a C++ class that is
820/// derived from the type \p Base.
821bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822  if (!getLangOptions().CPlusPlus)
823    return false;
824
825  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826  if (!DerivedRD)
827    return false;
828
829  CXXRecordDecl *BaseRD = GetClassForType(Base);
830  if (!BaseRD)
831    return false;
832
833  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835}
836
837/// \brief Determine whether the type \p Derived is a C++ class that is
838/// derived from the type \p Base.
839bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844  if (!DerivedRD)
845    return false;
846
847  CXXRecordDecl *BaseRD = GetClassForType(Base);
848  if (!BaseRD)
849    return false;
850
851  return DerivedRD->isDerivedFrom(BaseRD, Paths);
852}
853
854void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                              CXXCastPath &BasePathArray) {
856  assert(BasePathArray.empty() && "Base path array must be empty!");
857  assert(Paths.isRecordingPaths() && "Must record paths!");
858
859  const CXXBasePath &Path = Paths.front();
860
861  // We first go backward and check if we have a virtual base.
862  // FIXME: It would be better if CXXBasePath had the base specifier for
863  // the nearest virtual base.
864  unsigned Start = 0;
865  for (unsigned I = Path.size(); I != 0; --I) {
866    if (Path[I - 1].Base->isVirtual()) {
867      Start = I - 1;
868      break;
869    }
870  }
871
872  // Now add all bases.
873  for (unsigned I = Start, E = Path.size(); I != E; ++I)
874    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875}
876
877/// \brief Determine whether the given base path includes a virtual
878/// base class.
879bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880  for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                BEnd = BasePath.end();
882       B != BEnd; ++B)
883    if ((*B)->isVirtual())
884      return true;
885
886  return false;
887}
888
889/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890/// conversion (where Derived and Base are class types) is
891/// well-formed, meaning that the conversion is unambiguous (and
892/// that all of the base classes are accessible). Returns true
893/// and emits a diagnostic if the code is ill-formed, returns false
894/// otherwise. Loc is the location where this routine should point to
895/// if there is an error, and Range is the source range to highlight
896/// if there is an error.
897bool
898Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                   unsigned InaccessibleBaseID,
900                                   unsigned AmbigiousBaseConvID,
901                                   SourceLocation Loc, SourceRange Range,
902                                   DeclarationName Name,
903                                   CXXCastPath *BasePath) {
904  // First, determine whether the path from Derived to Base is
905  // ambiguous. This is slightly more expensive than checking whether
906  // the Derived to Base conversion exists, because here we need to
907  // explore multiple paths to determine if there is an ambiguity.
908  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                     /*DetectVirtual=*/false);
910  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911  assert(DerivationOkay &&
912         "Can only be used with a derived-to-base conversion");
913  (void)DerivationOkay;
914
915  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916    if (InaccessibleBaseID) {
917      // Check that the base class can be accessed.
918      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                   InaccessibleBaseID)) {
920        case AR_inaccessible:
921          return true;
922        case AR_accessible:
923        case AR_dependent:
924        case AR_delayed:
925          break;
926      }
927    }
928
929    // Build a base path if necessary.
930    if (BasePath)
931      BuildBasePathArray(Paths, *BasePath);
932    return false;
933  }
934
935  // We know that the derived-to-base conversion is ambiguous, and
936  // we're going to produce a diagnostic. Perform the derived-to-base
937  // search just one more time to compute all of the possible paths so
938  // that we can print them out. This is more expensive than any of
939  // the previous derived-to-base checks we've done, but at this point
940  // performance isn't as much of an issue.
941  Paths.clear();
942  Paths.setRecordingPaths(true);
943  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944  assert(StillOkay && "Can only be used with a derived-to-base conversion");
945  (void)StillOkay;
946
947  // Build up a textual representation of the ambiguous paths, e.g.,
948  // D -> B -> A, that will be used to illustrate the ambiguous
949  // conversions in the diagnostic. We only print one of the paths
950  // to each base class subobject.
951  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952
953  Diag(Loc, AmbigiousBaseConvID)
954  << Derived << Base << PathDisplayStr << Range << Name;
955  return true;
956}
957
958bool
959Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                   SourceLocation Loc, SourceRange Range,
961                                   CXXCastPath *BasePath,
962                                   bool IgnoreAccess) {
963  return CheckDerivedToBaseConversion(Derived, Base,
964                                      IgnoreAccess ? 0
965                                       : diag::err_upcast_to_inaccessible_base,
966                                      diag::err_ambiguous_derived_to_base_conv,
967                                      Loc, Range, DeclarationName(),
968                                      BasePath);
969}
970
971
972/// @brief Builds a string representing ambiguous paths from a
973/// specific derived class to different subobjects of the same base
974/// class.
975///
976/// This function builds a string that can be used in error messages
977/// to show the different paths that one can take through the
978/// inheritance hierarchy to go from the derived class to different
979/// subobjects of a base class. The result looks something like this:
980/// @code
981/// struct D -> struct B -> struct A
982/// struct D -> struct C -> struct A
983/// @endcode
984std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985  std::string PathDisplayStr;
986  std::set<unsigned> DisplayedPaths;
987  for (CXXBasePaths::paths_iterator Path = Paths.begin();
988       Path != Paths.end(); ++Path) {
989    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990      // We haven't displayed a path to this particular base
991      // class subobject yet.
992      PathDisplayStr += "\n    ";
993      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994      for (CXXBasePath::const_iterator Element = Path->begin();
995           Element != Path->end(); ++Element)
996        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997    }
998  }
999
1000  return PathDisplayStr;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// C++ class member Handling
1005//===----------------------------------------------------------------------===//
1006
1007/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1008Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                 SourceLocation ASLoc,
1010                                 SourceLocation ColonLoc) {
1011  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                  ASLoc, ColonLoc);
1014  CurContext->addHiddenDecl(ASDecl);
1015  return ASDecl;
1016}
1017
1018/// CheckOverrideControl - Check C++0x override control semantics.
1019void Sema::CheckOverrideControl(const Decl *D) {
1020  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1021  if (!MD || !MD->isVirtual())
1022    return;
1023
1024  if (MD->isDependentContext())
1025    return;
1026
1027  // C++0x [class.virtual]p3:
1028  //   If a virtual function is marked with the virt-specifier override and does
1029  //   not override a member function of a base class,
1030  //   the program is ill-formed.
1031  bool HasOverriddenMethods =
1032    MD->begin_overridden_methods() != MD->end_overridden_methods();
1033  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034    Diag(MD->getLocation(),
1035                 diag::err_function_marked_override_not_overriding)
1036      << MD->getDeclName();
1037    return;
1038  }
1039}
1040
1041/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042/// function overrides a virtual member function marked 'final', according to
1043/// C++0x [class.virtual]p3.
1044bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                  const CXXMethodDecl *Old) {
1046  if (!Old->hasAttr<FinalAttr>())
1047    return false;
1048
1049  Diag(New->getLocation(), diag::err_final_function_overridden)
1050    << New->getDeclName();
1051  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052  return true;
1053}
1054
1055/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059/// present but parsing it has been deferred.
1060Decl *
1061Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                               MultiTemplateParamsArg TemplateParameterLists,
1063                               ExprTy *BW, const VirtSpecifiers &VS,
1064                               ExprTy *InitExpr, bool HasDeferredInit,
1065                               bool IsDefinition) {
1066  const DeclSpec &DS = D.getDeclSpec();
1067  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068  DeclarationName Name = NameInfo.getName();
1069  SourceLocation Loc = NameInfo.getLoc();
1070
1071  // For anonymous bitfields, the location should point to the type.
1072  if (Loc.isInvalid())
1073    Loc = D.getSourceRange().getBegin();
1074
1075  Expr *BitWidth = static_cast<Expr*>(BW);
1076  Expr *Init = static_cast<Expr*>(InitExpr);
1077
1078  assert(isa<CXXRecordDecl>(CurContext));
1079  assert(!DS.isFriendSpecified());
1080  assert(!Init || !HasDeferredInit);
1081
1082  bool isFunc = D.isDeclarationOfFunction();
1083
1084  // C++ 9.2p6: A member shall not be declared to have automatic storage
1085  // duration (auto, register) or with the extern storage-class-specifier.
1086  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1087  // data members and cannot be applied to names declared const or static,
1088  // and cannot be applied to reference members.
1089  switch (DS.getStorageClassSpec()) {
1090    case DeclSpec::SCS_unspecified:
1091    case DeclSpec::SCS_typedef:
1092    case DeclSpec::SCS_static:
1093      // FALL THROUGH.
1094      break;
1095    case DeclSpec::SCS_mutable:
1096      if (isFunc) {
1097        if (DS.getStorageClassSpecLoc().isValid())
1098          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1099        else
1100          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1101
1102        // FIXME: It would be nicer if the keyword was ignored only for this
1103        // declarator. Otherwise we could get follow-up errors.
1104        D.getMutableDeclSpec().ClearStorageClassSpecs();
1105      }
1106      break;
1107    default:
1108      if (DS.getStorageClassSpecLoc().isValid())
1109        Diag(DS.getStorageClassSpecLoc(),
1110             diag::err_storageclass_invalid_for_member);
1111      else
1112        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1113      D.getMutableDeclSpec().ClearStorageClassSpecs();
1114  }
1115
1116  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1117                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1118                      !isFunc);
1119
1120  Decl *Member;
1121  if (isInstField) {
1122    CXXScopeSpec &SS = D.getCXXScopeSpec();
1123
1124    if (SS.isSet() && !SS.isInvalid()) {
1125      // The user provided a superfluous scope specifier inside a class
1126      // definition:
1127      //
1128      // class X {
1129      //   int X::member;
1130      // };
1131      DeclContext *DC = 0;
1132      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1133        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1134        << Name << FixItHint::CreateRemoval(SS.getRange());
1135      else
1136        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1137          << Name << SS.getRange();
1138
1139      SS.clear();
1140    }
1141
1142    // FIXME: Check for template parameters!
1143    // FIXME: Check that the name is an identifier!
1144    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1145                         HasDeferredInit, AS);
1146    assert(Member && "HandleField never returns null");
1147  } else {
1148    assert(!HasDeferredInit);
1149
1150    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1151    if (!Member) {
1152      return 0;
1153    }
1154
1155    // Non-instance-fields can't have a bitfield.
1156    if (BitWidth) {
1157      if (Member->isInvalidDecl()) {
1158        // don't emit another diagnostic.
1159      } else if (isa<VarDecl>(Member)) {
1160        // C++ 9.6p3: A bit-field shall not be a static member.
1161        // "static member 'A' cannot be a bit-field"
1162        Diag(Loc, diag::err_static_not_bitfield)
1163          << Name << BitWidth->getSourceRange();
1164      } else if (isa<TypedefDecl>(Member)) {
1165        // "typedef member 'x' cannot be a bit-field"
1166        Diag(Loc, diag::err_typedef_not_bitfield)
1167          << Name << BitWidth->getSourceRange();
1168      } else {
1169        // A function typedef ("typedef int f(); f a;").
1170        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1171        Diag(Loc, diag::err_not_integral_type_bitfield)
1172          << Name << cast<ValueDecl>(Member)->getType()
1173          << BitWidth->getSourceRange();
1174      }
1175
1176      BitWidth = 0;
1177      Member->setInvalidDecl();
1178    }
1179
1180    Member->setAccess(AS);
1181
1182    // If we have declared a member function template, set the access of the
1183    // templated declaration as well.
1184    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1185      FunTmpl->getTemplatedDecl()->setAccess(AS);
1186  }
1187
1188  if (VS.isOverrideSpecified()) {
1189    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1190    if (!MD || !MD->isVirtual()) {
1191      Diag(Member->getLocStart(),
1192           diag::override_keyword_only_allowed_on_virtual_member_functions)
1193        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1194    } else
1195      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1196  }
1197  if (VS.isFinalSpecified()) {
1198    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1199    if (!MD || !MD->isVirtual()) {
1200      Diag(Member->getLocStart(),
1201           diag::override_keyword_only_allowed_on_virtual_member_functions)
1202      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1203    } else
1204      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1205  }
1206
1207  if (VS.getLastLocation().isValid()) {
1208    // Update the end location of a method that has a virt-specifiers.
1209    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1210      MD->setRangeEnd(VS.getLastLocation());
1211  }
1212
1213  CheckOverrideControl(Member);
1214
1215  assert((Name || isInstField) && "No identifier for non-field ?");
1216
1217  if (Init)
1218    AddInitializerToDecl(Member, Init, false,
1219                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1220  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1221           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1222    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1223    // data member if a brace-or-equal-initializer is provided.
1224    Diag(Loc, diag::err_auto_var_requires_init)
1225      << Name << cast<ValueDecl>(Member)->getType();
1226    Member->setInvalidDecl();
1227  }
1228
1229  FinalizeDeclaration(Member);
1230
1231  if (isInstField)
1232    FieldCollector->Add(cast<FieldDecl>(Member));
1233  return Member;
1234}
1235
1236/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1237/// in-class initializer for a non-static C++ class member, and after
1238/// instantiating an in-class initializer in a class template. Such actions
1239/// are deferred until the class is complete.
1240void
1241Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1242                                       Expr *InitExpr) {
1243  FieldDecl *FD = cast<FieldDecl>(D);
1244
1245  if (!InitExpr) {
1246    FD->setInvalidDecl();
1247    FD->removeInClassInitializer();
1248    return;
1249  }
1250
1251  ExprResult Init = InitExpr;
1252  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1253    // FIXME: if there is no EqualLoc, this is list-initialization.
1254    Init = PerformCopyInitialization(
1255      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1256    if (Init.isInvalid()) {
1257      FD->setInvalidDecl();
1258      return;
1259    }
1260
1261    CheckImplicitConversions(Init.get(), EqualLoc);
1262  }
1263
1264  // C++0x [class.base.init]p7:
1265  //   The initialization of each base and member constitutes a
1266  //   full-expression.
1267  Init = MaybeCreateExprWithCleanups(Init);
1268  if (Init.isInvalid()) {
1269    FD->setInvalidDecl();
1270    return;
1271  }
1272
1273  InitExpr = Init.release();
1274
1275  FD->setInClassInitializer(InitExpr);
1276}
1277
1278/// \brief Find the direct and/or virtual base specifiers that
1279/// correspond to the given base type, for use in base initialization
1280/// within a constructor.
1281static bool FindBaseInitializer(Sema &SemaRef,
1282                                CXXRecordDecl *ClassDecl,
1283                                QualType BaseType,
1284                                const CXXBaseSpecifier *&DirectBaseSpec,
1285                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1286  // First, check for a direct base class.
1287  DirectBaseSpec = 0;
1288  for (CXXRecordDecl::base_class_const_iterator Base
1289         = ClassDecl->bases_begin();
1290       Base != ClassDecl->bases_end(); ++Base) {
1291    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1292      // We found a direct base of this type. That's what we're
1293      // initializing.
1294      DirectBaseSpec = &*Base;
1295      break;
1296    }
1297  }
1298
1299  // Check for a virtual base class.
1300  // FIXME: We might be able to short-circuit this if we know in advance that
1301  // there are no virtual bases.
1302  VirtualBaseSpec = 0;
1303  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1304    // We haven't found a base yet; search the class hierarchy for a
1305    // virtual base class.
1306    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1307                       /*DetectVirtual=*/false);
1308    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1309                              BaseType, Paths)) {
1310      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1311           Path != Paths.end(); ++Path) {
1312        if (Path->back().Base->isVirtual()) {
1313          VirtualBaseSpec = Path->back().Base;
1314          break;
1315        }
1316      }
1317    }
1318  }
1319
1320  return DirectBaseSpec || VirtualBaseSpec;
1321}
1322
1323/// ActOnMemInitializer - Handle a C++ member initializer.
1324MemInitResult
1325Sema::ActOnMemInitializer(Decl *ConstructorD,
1326                          Scope *S,
1327                          CXXScopeSpec &SS,
1328                          IdentifierInfo *MemberOrBase,
1329                          ParsedType TemplateTypeTy,
1330                          SourceLocation IdLoc,
1331                          SourceLocation LParenLoc,
1332                          ExprTy **Args, unsigned NumArgs,
1333                          SourceLocation RParenLoc,
1334                          SourceLocation EllipsisLoc) {
1335  if (!ConstructorD)
1336    return true;
1337
1338  AdjustDeclIfTemplate(ConstructorD);
1339
1340  CXXConstructorDecl *Constructor
1341    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1342  if (!Constructor) {
1343    // The user wrote a constructor initializer on a function that is
1344    // not a C++ constructor. Ignore the error for now, because we may
1345    // have more member initializers coming; we'll diagnose it just
1346    // once in ActOnMemInitializers.
1347    return true;
1348  }
1349
1350  CXXRecordDecl *ClassDecl = Constructor->getParent();
1351
1352  // C++ [class.base.init]p2:
1353  //   Names in a mem-initializer-id are looked up in the scope of the
1354  //   constructor's class and, if not found in that scope, are looked
1355  //   up in the scope containing the constructor's definition.
1356  //   [Note: if the constructor's class contains a member with the
1357  //   same name as a direct or virtual base class of the class, a
1358  //   mem-initializer-id naming the member or base class and composed
1359  //   of a single identifier refers to the class member. A
1360  //   mem-initializer-id for the hidden base class may be specified
1361  //   using a qualified name. ]
1362  if (!SS.getScopeRep() && !TemplateTypeTy) {
1363    // Look for a member, first.
1364    FieldDecl *Member = 0;
1365    DeclContext::lookup_result Result
1366      = ClassDecl->lookup(MemberOrBase);
1367    if (Result.first != Result.second) {
1368      Member = dyn_cast<FieldDecl>(*Result.first);
1369
1370      if (Member) {
1371        if (EllipsisLoc.isValid())
1372          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1373            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1374
1375        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1376                                    LParenLoc, RParenLoc);
1377      }
1378
1379      // Handle anonymous union case.
1380      if (IndirectFieldDecl* IndirectField
1381            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1382        if (EllipsisLoc.isValid())
1383          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1384            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1385
1386         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1387                                       NumArgs, IdLoc,
1388                                       LParenLoc, RParenLoc);
1389      }
1390    }
1391  }
1392  // It didn't name a member, so see if it names a class.
1393  QualType BaseType;
1394  TypeSourceInfo *TInfo = 0;
1395
1396  if (TemplateTypeTy) {
1397    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1398  } else {
1399    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1400    LookupParsedName(R, S, &SS);
1401
1402    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1403    if (!TyD) {
1404      if (R.isAmbiguous()) return true;
1405
1406      // We don't want access-control diagnostics here.
1407      R.suppressDiagnostics();
1408
1409      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1410        bool NotUnknownSpecialization = false;
1411        DeclContext *DC = computeDeclContext(SS, false);
1412        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1413          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1414
1415        if (!NotUnknownSpecialization) {
1416          // When the scope specifier can refer to a member of an unknown
1417          // specialization, we take it as a type name.
1418          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1419                                       SS.getWithLocInContext(Context),
1420                                       *MemberOrBase, IdLoc);
1421          if (BaseType.isNull())
1422            return true;
1423
1424          R.clear();
1425          R.setLookupName(MemberOrBase);
1426        }
1427      }
1428
1429      // If no results were found, try to correct typos.
1430      TypoCorrection Corr;
1431      if (R.empty() && BaseType.isNull() &&
1432          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1433                              ClassDecl, false, CTC_NoKeywords))) {
1434        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1435        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1436        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1437          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1438            // We have found a non-static data member with a similar
1439            // name to what was typed; complain and initialize that
1440            // member.
1441            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1442              << MemberOrBase << true << CorrectedQuotedStr
1443              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1444            Diag(Member->getLocation(), diag::note_previous_decl)
1445              << CorrectedQuotedStr;
1446
1447            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1448                                          LParenLoc, RParenLoc);
1449          }
1450        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1451          const CXXBaseSpecifier *DirectBaseSpec;
1452          const CXXBaseSpecifier *VirtualBaseSpec;
1453          if (FindBaseInitializer(*this, ClassDecl,
1454                                  Context.getTypeDeclType(Type),
1455                                  DirectBaseSpec, VirtualBaseSpec)) {
1456            // We have found a direct or virtual base class with a
1457            // similar name to what was typed; complain and initialize
1458            // that base class.
1459            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1460              << MemberOrBase << false << CorrectedQuotedStr
1461              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1462
1463            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1464                                                             : VirtualBaseSpec;
1465            Diag(BaseSpec->getSourceRange().getBegin(),
1466                 diag::note_base_class_specified_here)
1467              << BaseSpec->getType()
1468              << BaseSpec->getSourceRange();
1469
1470            TyD = Type;
1471          }
1472        }
1473      }
1474
1475      if (!TyD && BaseType.isNull()) {
1476        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1477          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1478        return true;
1479      }
1480    }
1481
1482    if (BaseType.isNull()) {
1483      BaseType = Context.getTypeDeclType(TyD);
1484      if (SS.isSet()) {
1485        NestedNameSpecifier *Qualifier =
1486          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1487
1488        // FIXME: preserve source range information
1489        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1490      }
1491    }
1492  }
1493
1494  if (!TInfo)
1495    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1496
1497  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1498                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1499}
1500
1501/// Checks an initializer expression for use of uninitialized fields, such as
1502/// containing the field that is being initialized. Returns true if there is an
1503/// uninitialized field was used an updates the SourceLocation parameter; false
1504/// otherwise.
1505static bool InitExprContainsUninitializedFields(const Stmt *S,
1506                                                const ValueDecl *LhsField,
1507                                                SourceLocation *L) {
1508  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1509
1510  if (isa<CallExpr>(S)) {
1511    // Do not descend into function calls or constructors, as the use
1512    // of an uninitialized field may be valid. One would have to inspect
1513    // the contents of the function/ctor to determine if it is safe or not.
1514    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1515    // may be safe, depending on what the function/ctor does.
1516    return false;
1517  }
1518  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1519    const NamedDecl *RhsField = ME->getMemberDecl();
1520
1521    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1522      // The member expression points to a static data member.
1523      assert(VD->isStaticDataMember() &&
1524             "Member points to non-static data member!");
1525      (void)VD;
1526      return false;
1527    }
1528
1529    if (isa<EnumConstantDecl>(RhsField)) {
1530      // The member expression points to an enum.
1531      return false;
1532    }
1533
1534    if (RhsField == LhsField) {
1535      // Initializing a field with itself. Throw a warning.
1536      // But wait; there are exceptions!
1537      // Exception #1:  The field may not belong to this record.
1538      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1539      const Expr *base = ME->getBase();
1540      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1541        // Even though the field matches, it does not belong to this record.
1542        return false;
1543      }
1544      // None of the exceptions triggered; return true to indicate an
1545      // uninitialized field was used.
1546      *L = ME->getMemberLoc();
1547      return true;
1548    }
1549  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1550    // sizeof/alignof doesn't reference contents, do not warn.
1551    return false;
1552  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1553    // address-of doesn't reference contents (the pointer may be dereferenced
1554    // in the same expression but it would be rare; and weird).
1555    if (UOE->getOpcode() == UO_AddrOf)
1556      return false;
1557  }
1558  for (Stmt::const_child_range it = S->children(); it; ++it) {
1559    if (!*it) {
1560      // An expression such as 'member(arg ?: "")' may trigger this.
1561      continue;
1562    }
1563    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1564      return true;
1565  }
1566  return false;
1567}
1568
1569MemInitResult
1570Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1571                             unsigned NumArgs, SourceLocation IdLoc,
1572                             SourceLocation LParenLoc,
1573                             SourceLocation RParenLoc) {
1574  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1575  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1576  assert((DirectMember || IndirectMember) &&
1577         "Member must be a FieldDecl or IndirectFieldDecl");
1578
1579  if (Member->isInvalidDecl())
1580    return true;
1581
1582  // Diagnose value-uses of fields to initialize themselves, e.g.
1583  //   foo(foo)
1584  // where foo is not also a parameter to the constructor.
1585  // TODO: implement -Wuninitialized and fold this into that framework.
1586  for (unsigned i = 0; i < NumArgs; ++i) {
1587    SourceLocation L;
1588    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1589      // FIXME: Return true in the case when other fields are used before being
1590      // uninitialized. For example, let this field be the i'th field. When
1591      // initializing the i'th field, throw a warning if any of the >= i'th
1592      // fields are used, as they are not yet initialized.
1593      // Right now we are only handling the case where the i'th field uses
1594      // itself in its initializer.
1595      Diag(L, diag::warn_field_is_uninit);
1596    }
1597  }
1598
1599  bool HasDependentArg = false;
1600  for (unsigned i = 0; i < NumArgs; i++)
1601    HasDependentArg |= Args[i]->isTypeDependent();
1602
1603  Expr *Init;
1604  if (Member->getType()->isDependentType() || HasDependentArg) {
1605    // Can't check initialization for a member of dependent type or when
1606    // any of the arguments are type-dependent expressions.
1607    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1608                                       RParenLoc,
1609                                       Member->getType().getNonReferenceType());
1610
1611    DiscardCleanupsInEvaluationContext();
1612  } else {
1613    // Initialize the member.
1614    InitializedEntity MemberEntity =
1615      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1616                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1617    InitializationKind Kind =
1618      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1619
1620    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1621
1622    ExprResult MemberInit =
1623      InitSeq.Perform(*this, MemberEntity, Kind,
1624                      MultiExprArg(*this, Args, NumArgs), 0);
1625    if (MemberInit.isInvalid())
1626      return true;
1627
1628    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1629
1630    // C++0x [class.base.init]p7:
1631    //   The initialization of each base and member constitutes a
1632    //   full-expression.
1633    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1634    if (MemberInit.isInvalid())
1635      return true;
1636
1637    // If we are in a dependent context, template instantiation will
1638    // perform this type-checking again. Just save the arguments that we
1639    // received in a ParenListExpr.
1640    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1641    // of the information that we have about the member
1642    // initializer. However, deconstructing the ASTs is a dicey process,
1643    // and this approach is far more likely to get the corner cases right.
1644    if (CurContext->isDependentContext())
1645      Init = new (Context) ParenListExpr(
1646          Context, LParenLoc, Args, NumArgs, RParenLoc,
1647          Member->getType().getNonReferenceType());
1648    else
1649      Init = MemberInit.get();
1650  }
1651
1652  if (DirectMember) {
1653    return new (Context) CXXCtorInitializer(Context, DirectMember,
1654                                                    IdLoc, LParenLoc, Init,
1655                                                    RParenLoc);
1656  } else {
1657    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1658                                                    IdLoc, LParenLoc, Init,
1659                                                    RParenLoc);
1660  }
1661}
1662
1663MemInitResult
1664Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1665                                 Expr **Args, unsigned NumArgs,
1666                                 SourceLocation NameLoc,
1667                                 SourceLocation LParenLoc,
1668                                 SourceLocation RParenLoc,
1669                                 CXXRecordDecl *ClassDecl) {
1670  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1671  if (!LangOpts.CPlusPlus0x)
1672    return Diag(Loc, diag::err_delegation_0x_only)
1673      << TInfo->getTypeLoc().getLocalSourceRange();
1674
1675  // Initialize the object.
1676  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1677                                     QualType(ClassDecl->getTypeForDecl(), 0));
1678  InitializationKind Kind =
1679    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1680
1681  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1682
1683  ExprResult DelegationInit =
1684    InitSeq.Perform(*this, DelegationEntity, Kind,
1685                    MultiExprArg(*this, Args, NumArgs), 0);
1686  if (DelegationInit.isInvalid())
1687    return true;
1688
1689  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1690  CXXConstructorDecl *Constructor
1691    = ConExpr->getConstructor();
1692  assert(Constructor && "Delegating constructor with no target?");
1693
1694  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1695
1696  // C++0x [class.base.init]p7:
1697  //   The initialization of each base and member constitutes a
1698  //   full-expression.
1699  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1700  if (DelegationInit.isInvalid())
1701    return true;
1702
1703  assert(!CurContext->isDependentContext());
1704  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1705                                          DelegationInit.takeAs<Expr>(),
1706                                          RParenLoc);
1707}
1708
1709MemInitResult
1710Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1711                           Expr **Args, unsigned NumArgs,
1712                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1713                           CXXRecordDecl *ClassDecl,
1714                           SourceLocation EllipsisLoc) {
1715  bool HasDependentArg = false;
1716  for (unsigned i = 0; i < NumArgs; i++)
1717    HasDependentArg |= Args[i]->isTypeDependent();
1718
1719  SourceLocation BaseLoc
1720    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1721
1722  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1723    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1724             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1725
1726  // C++ [class.base.init]p2:
1727  //   [...] Unless the mem-initializer-id names a nonstatic data
1728  //   member of the constructor's class or a direct or virtual base
1729  //   of that class, the mem-initializer is ill-formed. A
1730  //   mem-initializer-list can initialize a base class using any
1731  //   name that denotes that base class type.
1732  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1733
1734  if (EllipsisLoc.isValid()) {
1735    // This is a pack expansion.
1736    if (!BaseType->containsUnexpandedParameterPack())  {
1737      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1738        << SourceRange(BaseLoc, RParenLoc);
1739
1740      EllipsisLoc = SourceLocation();
1741    }
1742  } else {
1743    // Check for any unexpanded parameter packs.
1744    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1745      return true;
1746
1747    for (unsigned I = 0; I != NumArgs; ++I)
1748      if (DiagnoseUnexpandedParameterPack(Args[I]))
1749        return true;
1750  }
1751
1752  // Check for direct and virtual base classes.
1753  const CXXBaseSpecifier *DirectBaseSpec = 0;
1754  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1755  if (!Dependent) {
1756    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1757                                       BaseType))
1758      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1759                                        LParenLoc, RParenLoc, ClassDecl);
1760
1761    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1762                        VirtualBaseSpec);
1763
1764    // C++ [base.class.init]p2:
1765    // Unless the mem-initializer-id names a nonstatic data member of the
1766    // constructor's class or a direct or virtual base of that class, the
1767    // mem-initializer is ill-formed.
1768    if (!DirectBaseSpec && !VirtualBaseSpec) {
1769      // If the class has any dependent bases, then it's possible that
1770      // one of those types will resolve to the same type as
1771      // BaseType. Therefore, just treat this as a dependent base
1772      // class initialization.  FIXME: Should we try to check the
1773      // initialization anyway? It seems odd.
1774      if (ClassDecl->hasAnyDependentBases())
1775        Dependent = true;
1776      else
1777        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1778          << BaseType << Context.getTypeDeclType(ClassDecl)
1779          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1780    }
1781  }
1782
1783  if (Dependent) {
1784    // Can't check initialization for a base of dependent type or when
1785    // any of the arguments are type-dependent expressions.
1786    ExprResult BaseInit
1787      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1788                                          RParenLoc, BaseType));
1789
1790    DiscardCleanupsInEvaluationContext();
1791
1792    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1793                                                    /*IsVirtual=*/false,
1794                                                    LParenLoc,
1795                                                    BaseInit.takeAs<Expr>(),
1796                                                    RParenLoc,
1797                                                    EllipsisLoc);
1798  }
1799
1800  // C++ [base.class.init]p2:
1801  //   If a mem-initializer-id is ambiguous because it designates both
1802  //   a direct non-virtual base class and an inherited virtual base
1803  //   class, the mem-initializer is ill-formed.
1804  if (DirectBaseSpec && VirtualBaseSpec)
1805    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1806      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1807
1808  CXXBaseSpecifier *BaseSpec
1809    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1810  if (!BaseSpec)
1811    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1812
1813  // Initialize the base.
1814  InitializedEntity BaseEntity =
1815    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1816  InitializationKind Kind =
1817    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1818
1819  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1820
1821  ExprResult BaseInit =
1822    InitSeq.Perform(*this, BaseEntity, Kind,
1823                    MultiExprArg(*this, Args, NumArgs), 0);
1824  if (BaseInit.isInvalid())
1825    return true;
1826
1827  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1828
1829  // C++0x [class.base.init]p7:
1830  //   The initialization of each base and member constitutes a
1831  //   full-expression.
1832  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1833  if (BaseInit.isInvalid())
1834    return true;
1835
1836  // If we are in a dependent context, template instantiation will
1837  // perform this type-checking again. Just save the arguments that we
1838  // received in a ParenListExpr.
1839  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1840  // of the information that we have about the base
1841  // initializer. However, deconstructing the ASTs is a dicey process,
1842  // and this approach is far more likely to get the corner cases right.
1843  if (CurContext->isDependentContext()) {
1844    ExprResult Init
1845      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1846                                          RParenLoc, BaseType));
1847    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1848                                                    BaseSpec->isVirtual(),
1849                                                    LParenLoc,
1850                                                    Init.takeAs<Expr>(),
1851                                                    RParenLoc,
1852                                                    EllipsisLoc);
1853  }
1854
1855  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1856                                                  BaseSpec->isVirtual(),
1857                                                  LParenLoc,
1858                                                  BaseInit.takeAs<Expr>(),
1859                                                  RParenLoc,
1860                                                  EllipsisLoc);
1861}
1862
1863/// ImplicitInitializerKind - How an implicit base or member initializer should
1864/// initialize its base or member.
1865enum ImplicitInitializerKind {
1866  IIK_Default,
1867  IIK_Copy,
1868  IIK_Move
1869};
1870
1871static bool
1872BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1873                             ImplicitInitializerKind ImplicitInitKind,
1874                             CXXBaseSpecifier *BaseSpec,
1875                             bool IsInheritedVirtualBase,
1876                             CXXCtorInitializer *&CXXBaseInit) {
1877  InitializedEntity InitEntity
1878    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1879                                        IsInheritedVirtualBase);
1880
1881  ExprResult BaseInit;
1882
1883  switch (ImplicitInitKind) {
1884  case IIK_Default: {
1885    InitializationKind InitKind
1886      = InitializationKind::CreateDefault(Constructor->getLocation());
1887    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1888    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1889                               MultiExprArg(SemaRef, 0, 0));
1890    break;
1891  }
1892
1893  case IIK_Copy: {
1894    ParmVarDecl *Param = Constructor->getParamDecl(0);
1895    QualType ParamType = Param->getType().getNonReferenceType();
1896
1897    Expr *CopyCtorArg =
1898      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1899                          Constructor->getLocation(), ParamType,
1900                          VK_LValue, 0);
1901
1902    // Cast to the base class to avoid ambiguities.
1903    QualType ArgTy =
1904      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1905                                       ParamType.getQualifiers());
1906
1907    CXXCastPath BasePath;
1908    BasePath.push_back(BaseSpec);
1909    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1910                                            CK_UncheckedDerivedToBase,
1911                                            VK_LValue, &BasePath).take();
1912
1913    InitializationKind InitKind
1914      = InitializationKind::CreateDirect(Constructor->getLocation(),
1915                                         SourceLocation(), SourceLocation());
1916    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1917                                   &CopyCtorArg, 1);
1918    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1919                               MultiExprArg(&CopyCtorArg, 1));
1920    break;
1921  }
1922
1923  case IIK_Move:
1924    assert(false && "Unhandled initializer kind!");
1925  }
1926
1927  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1928  if (BaseInit.isInvalid())
1929    return true;
1930
1931  CXXBaseInit =
1932    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1933               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1934                                                        SourceLocation()),
1935                                             BaseSpec->isVirtual(),
1936                                             SourceLocation(),
1937                                             BaseInit.takeAs<Expr>(),
1938                                             SourceLocation(),
1939                                             SourceLocation());
1940
1941  return false;
1942}
1943
1944static bool
1945BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1946                               ImplicitInitializerKind ImplicitInitKind,
1947                               FieldDecl *Field,
1948                               CXXCtorInitializer *&CXXMemberInit) {
1949  if (Field->isInvalidDecl())
1950    return true;
1951
1952  SourceLocation Loc = Constructor->getLocation();
1953
1954  if (ImplicitInitKind == IIK_Copy) {
1955    ParmVarDecl *Param = Constructor->getParamDecl(0);
1956    QualType ParamType = Param->getType().getNonReferenceType();
1957
1958    // Suppress copying zero-width bitfields.
1959    if (const Expr *Width = Field->getBitWidth())
1960      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
1961        return false;
1962
1963    Expr *MemberExprBase =
1964      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1965                          Loc, ParamType, VK_LValue, 0);
1966
1967    // Build a reference to this field within the parameter.
1968    CXXScopeSpec SS;
1969    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1970                              Sema::LookupMemberName);
1971    MemberLookup.addDecl(Field, AS_public);
1972    MemberLookup.resolveKind();
1973    ExprResult CopyCtorArg
1974      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1975                                         ParamType, Loc,
1976                                         /*IsArrow=*/false,
1977                                         SS,
1978                                         /*FirstQualifierInScope=*/0,
1979                                         MemberLookup,
1980                                         /*TemplateArgs=*/0);
1981    if (CopyCtorArg.isInvalid())
1982      return true;
1983
1984    // When the field we are copying is an array, create index variables for
1985    // each dimension of the array. We use these index variables to subscript
1986    // the source array, and other clients (e.g., CodeGen) will perform the
1987    // necessary iteration with these index variables.
1988    SmallVector<VarDecl *, 4> IndexVariables;
1989    QualType BaseType = Field->getType();
1990    QualType SizeType = SemaRef.Context.getSizeType();
1991    while (const ConstantArrayType *Array
1992                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1993      // Create the iteration variable for this array index.
1994      IdentifierInfo *IterationVarName = 0;
1995      {
1996        llvm::SmallString<8> Str;
1997        llvm::raw_svector_ostream OS(Str);
1998        OS << "__i" << IndexVariables.size();
1999        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2000      }
2001      VarDecl *IterationVar
2002        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2003                          IterationVarName, SizeType,
2004                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2005                          SC_None, SC_None);
2006      IndexVariables.push_back(IterationVar);
2007
2008      // Create a reference to the iteration variable.
2009      ExprResult IterationVarRef
2010        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2011      assert(!IterationVarRef.isInvalid() &&
2012             "Reference to invented variable cannot fail!");
2013
2014      // Subscript the array with this iteration variable.
2015      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2016                                                            Loc,
2017                                                        IterationVarRef.take(),
2018                                                            Loc);
2019      if (CopyCtorArg.isInvalid())
2020        return true;
2021
2022      BaseType = Array->getElementType();
2023    }
2024
2025    // Construct the entity that we will be initializing. For an array, this
2026    // will be first element in the array, which may require several levels
2027    // of array-subscript entities.
2028    SmallVector<InitializedEntity, 4> Entities;
2029    Entities.reserve(1 + IndexVariables.size());
2030    Entities.push_back(InitializedEntity::InitializeMember(Field));
2031    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2032      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2033                                                              0,
2034                                                              Entities.back()));
2035
2036    // Direct-initialize to use the copy constructor.
2037    InitializationKind InitKind =
2038      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2039
2040    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2041    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2042                                   &CopyCtorArgE, 1);
2043
2044    ExprResult MemberInit
2045      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2046                        MultiExprArg(&CopyCtorArgE, 1));
2047    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2048    if (MemberInit.isInvalid())
2049      return true;
2050
2051    CXXMemberInit
2052      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
2053                                           MemberInit.takeAs<Expr>(), Loc,
2054                                           IndexVariables.data(),
2055                                           IndexVariables.size());
2056    return false;
2057  }
2058
2059  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2060
2061  QualType FieldBaseElementType =
2062    SemaRef.Context.getBaseElementType(Field->getType());
2063
2064  if (FieldBaseElementType->isRecordType()) {
2065    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2066    InitializationKind InitKind =
2067      InitializationKind::CreateDefault(Loc);
2068
2069    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2070    ExprResult MemberInit =
2071      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2072
2073    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2074    if (MemberInit.isInvalid())
2075      return true;
2076
2077    CXXMemberInit =
2078      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2079                                                       Field, Loc, Loc,
2080                                                       MemberInit.get(),
2081                                                       Loc);
2082    return false;
2083  }
2084
2085  if (!Field->getParent()->isUnion()) {
2086    if (FieldBaseElementType->isReferenceType()) {
2087      SemaRef.Diag(Constructor->getLocation(),
2088                   diag::err_uninitialized_member_in_ctor)
2089      << (int)Constructor->isImplicit()
2090      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2091      << 0 << Field->getDeclName();
2092      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2093      return true;
2094    }
2095
2096    if (FieldBaseElementType.isConstQualified()) {
2097      SemaRef.Diag(Constructor->getLocation(),
2098                   diag::err_uninitialized_member_in_ctor)
2099      << (int)Constructor->isImplicit()
2100      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2101      << 1 << Field->getDeclName();
2102      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2103      return true;
2104    }
2105  }
2106
2107  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2108      FieldBaseElementType->isObjCRetainableType() &&
2109      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2110      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2111    // Instant objects:
2112    //   Default-initialize Objective-C pointers to NULL.
2113    CXXMemberInit
2114      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2115                                                 Loc, Loc,
2116                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2117                                                 Loc);
2118    return false;
2119  }
2120
2121  // Nothing to initialize.
2122  CXXMemberInit = 0;
2123  return false;
2124}
2125
2126namespace {
2127struct BaseAndFieldInfo {
2128  Sema &S;
2129  CXXConstructorDecl *Ctor;
2130  bool AnyErrorsInInits;
2131  ImplicitInitializerKind IIK;
2132  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2133  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2134
2135  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2136    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2137    // FIXME: Handle implicit move constructors.
2138    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2139      IIK = IIK_Copy;
2140    else
2141      IIK = IIK_Default;
2142  }
2143};
2144}
2145
2146static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2147                                    FieldDecl *Top, FieldDecl *Field) {
2148
2149  // Overwhelmingly common case: we have a direct initializer for this field.
2150  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2151    Info.AllToInit.push_back(Init);
2152    return false;
2153  }
2154
2155  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2156  // has a brace-or-equal-initializer, the entity is initialized as specified
2157  // in [dcl.init].
2158  if (Field->hasInClassInitializer()) {
2159    Info.AllToInit.push_back(
2160      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2161                                               SourceLocation(),
2162                                               SourceLocation(), 0,
2163                                               SourceLocation()));
2164    return false;
2165  }
2166
2167  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2168    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2169    assert(FieldClassType && "anonymous struct/union without record type");
2170    CXXRecordDecl *FieldClassDecl
2171      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2172
2173    // Even though union members never have non-trivial default
2174    // constructions in C++03, we still build member initializers for aggregate
2175    // record types which can be union members, and C++0x allows non-trivial
2176    // default constructors for union members, so we ensure that only one
2177    // member is initialized for these.
2178    if (FieldClassDecl->isUnion()) {
2179      // First check for an explicit initializer for one field.
2180      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2181           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2182        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2183          Info.AllToInit.push_back(Init);
2184
2185          // Once we've initialized a field of an anonymous union, the union
2186          // field in the class is also initialized, so exit immediately.
2187          return false;
2188        } else if ((*FA)->isAnonymousStructOrUnion()) {
2189          if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2190            return true;
2191        }
2192      }
2193
2194      // FIXME: C++0x unrestricted unions might call a default constructor here.
2195      return false;
2196    } else {
2197      // For structs, we simply descend through to initialize all members where
2198      // necessary.
2199      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2200           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2201        if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2202          return true;
2203      }
2204    }
2205  }
2206
2207  // Don't try to build an implicit initializer if there were semantic
2208  // errors in any of the initializers (and therefore we might be
2209  // missing some that the user actually wrote).
2210  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2211    return false;
2212
2213  CXXCtorInitializer *Init = 0;
2214  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2215    return true;
2216
2217  if (Init)
2218    Info.AllToInit.push_back(Init);
2219
2220  return false;
2221}
2222
2223bool
2224Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2225                               CXXCtorInitializer *Initializer) {
2226  assert(Initializer->isDelegatingInitializer());
2227  Constructor->setNumCtorInitializers(1);
2228  CXXCtorInitializer **initializer =
2229    new (Context) CXXCtorInitializer*[1];
2230  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2231  Constructor->setCtorInitializers(initializer);
2232
2233  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2234    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2235    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2236  }
2237
2238  DelegatingCtorDecls.push_back(Constructor);
2239
2240  return false;
2241}
2242
2243bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2244                               CXXCtorInitializer **Initializers,
2245                               unsigned NumInitializers,
2246                               bool AnyErrors) {
2247  if (Constructor->getDeclContext()->isDependentContext()) {
2248    // Just store the initializers as written, they will be checked during
2249    // instantiation.
2250    if (NumInitializers > 0) {
2251      Constructor->setNumCtorInitializers(NumInitializers);
2252      CXXCtorInitializer **baseOrMemberInitializers =
2253        new (Context) CXXCtorInitializer*[NumInitializers];
2254      memcpy(baseOrMemberInitializers, Initializers,
2255             NumInitializers * sizeof(CXXCtorInitializer*));
2256      Constructor->setCtorInitializers(baseOrMemberInitializers);
2257    }
2258
2259    return false;
2260  }
2261
2262  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2263
2264  // We need to build the initializer AST according to order of construction
2265  // and not what user specified in the Initializers list.
2266  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2267  if (!ClassDecl)
2268    return true;
2269
2270  bool HadError = false;
2271
2272  for (unsigned i = 0; i < NumInitializers; i++) {
2273    CXXCtorInitializer *Member = Initializers[i];
2274
2275    if (Member->isBaseInitializer())
2276      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2277    else
2278      Info.AllBaseFields[Member->getAnyMember()] = Member;
2279  }
2280
2281  // Keep track of the direct virtual bases.
2282  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2283  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2284       E = ClassDecl->bases_end(); I != E; ++I) {
2285    if (I->isVirtual())
2286      DirectVBases.insert(I);
2287  }
2288
2289  // Push virtual bases before others.
2290  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2291       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2292
2293    if (CXXCtorInitializer *Value
2294        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2295      Info.AllToInit.push_back(Value);
2296    } else if (!AnyErrors) {
2297      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2298      CXXCtorInitializer *CXXBaseInit;
2299      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2300                                       VBase, IsInheritedVirtualBase,
2301                                       CXXBaseInit)) {
2302        HadError = true;
2303        continue;
2304      }
2305
2306      Info.AllToInit.push_back(CXXBaseInit);
2307    }
2308  }
2309
2310  // Non-virtual bases.
2311  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2312       E = ClassDecl->bases_end(); Base != E; ++Base) {
2313    // Virtuals are in the virtual base list and already constructed.
2314    if (Base->isVirtual())
2315      continue;
2316
2317    if (CXXCtorInitializer *Value
2318          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2319      Info.AllToInit.push_back(Value);
2320    } else if (!AnyErrors) {
2321      CXXCtorInitializer *CXXBaseInit;
2322      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2323                                       Base, /*IsInheritedVirtualBase=*/false,
2324                                       CXXBaseInit)) {
2325        HadError = true;
2326        continue;
2327      }
2328
2329      Info.AllToInit.push_back(CXXBaseInit);
2330    }
2331  }
2332
2333  // Fields.
2334  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2335       E = ClassDecl->field_end(); Field != E; ++Field) {
2336    if ((*Field)->getType()->isIncompleteArrayType()) {
2337      assert(ClassDecl->hasFlexibleArrayMember() &&
2338             "Incomplete array type is not valid");
2339      continue;
2340    }
2341    if (CollectFieldInitializer(*this, Info, *Field, *Field))
2342      HadError = true;
2343  }
2344
2345  NumInitializers = Info.AllToInit.size();
2346  if (NumInitializers > 0) {
2347    Constructor->setNumCtorInitializers(NumInitializers);
2348    CXXCtorInitializer **baseOrMemberInitializers =
2349      new (Context) CXXCtorInitializer*[NumInitializers];
2350    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2351           NumInitializers * sizeof(CXXCtorInitializer*));
2352    Constructor->setCtorInitializers(baseOrMemberInitializers);
2353
2354    // Constructors implicitly reference the base and member
2355    // destructors.
2356    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2357                                           Constructor->getParent());
2358  }
2359
2360  return HadError;
2361}
2362
2363static void *GetKeyForTopLevelField(FieldDecl *Field) {
2364  // For anonymous unions, use the class declaration as the key.
2365  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2366    if (RT->getDecl()->isAnonymousStructOrUnion())
2367      return static_cast<void *>(RT->getDecl());
2368  }
2369  return static_cast<void *>(Field);
2370}
2371
2372static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2373  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2374}
2375
2376static void *GetKeyForMember(ASTContext &Context,
2377                             CXXCtorInitializer *Member) {
2378  if (!Member->isAnyMemberInitializer())
2379    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2380
2381  // For fields injected into the class via declaration of an anonymous union,
2382  // use its anonymous union class declaration as the unique key.
2383  FieldDecl *Field = Member->getAnyMember();
2384
2385  // If the field is a member of an anonymous struct or union, our key
2386  // is the anonymous record decl that's a direct child of the class.
2387  RecordDecl *RD = Field->getParent();
2388  if (RD->isAnonymousStructOrUnion()) {
2389    while (true) {
2390      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2391      if (Parent->isAnonymousStructOrUnion())
2392        RD = Parent;
2393      else
2394        break;
2395    }
2396
2397    return static_cast<void *>(RD);
2398  }
2399
2400  return static_cast<void *>(Field);
2401}
2402
2403static void
2404DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2405                                  const CXXConstructorDecl *Constructor,
2406                                  CXXCtorInitializer **Inits,
2407                                  unsigned NumInits) {
2408  if (Constructor->getDeclContext()->isDependentContext())
2409    return;
2410
2411  // Don't check initializers order unless the warning is enabled at the
2412  // location of at least one initializer.
2413  bool ShouldCheckOrder = false;
2414  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2415    CXXCtorInitializer *Init = Inits[InitIndex];
2416    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2417                                         Init->getSourceLocation())
2418          != Diagnostic::Ignored) {
2419      ShouldCheckOrder = true;
2420      break;
2421    }
2422  }
2423  if (!ShouldCheckOrder)
2424    return;
2425
2426  // Build the list of bases and members in the order that they'll
2427  // actually be initialized.  The explicit initializers should be in
2428  // this same order but may be missing things.
2429  SmallVector<const void*, 32> IdealInitKeys;
2430
2431  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2432
2433  // 1. Virtual bases.
2434  for (CXXRecordDecl::base_class_const_iterator VBase =
2435       ClassDecl->vbases_begin(),
2436       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2437    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2438
2439  // 2. Non-virtual bases.
2440  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2441       E = ClassDecl->bases_end(); Base != E; ++Base) {
2442    if (Base->isVirtual())
2443      continue;
2444    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2445  }
2446
2447  // 3. Direct fields.
2448  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2449       E = ClassDecl->field_end(); Field != E; ++Field)
2450    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2451
2452  unsigned NumIdealInits = IdealInitKeys.size();
2453  unsigned IdealIndex = 0;
2454
2455  CXXCtorInitializer *PrevInit = 0;
2456  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2457    CXXCtorInitializer *Init = Inits[InitIndex];
2458    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2459
2460    // Scan forward to try to find this initializer in the idealized
2461    // initializers list.
2462    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2463      if (InitKey == IdealInitKeys[IdealIndex])
2464        break;
2465
2466    // If we didn't find this initializer, it must be because we
2467    // scanned past it on a previous iteration.  That can only
2468    // happen if we're out of order;  emit a warning.
2469    if (IdealIndex == NumIdealInits && PrevInit) {
2470      Sema::SemaDiagnosticBuilder D =
2471        SemaRef.Diag(PrevInit->getSourceLocation(),
2472                     diag::warn_initializer_out_of_order);
2473
2474      if (PrevInit->isAnyMemberInitializer())
2475        D << 0 << PrevInit->getAnyMember()->getDeclName();
2476      else
2477        D << 1 << PrevInit->getBaseClassInfo()->getType();
2478
2479      if (Init->isAnyMemberInitializer())
2480        D << 0 << Init->getAnyMember()->getDeclName();
2481      else
2482        D << 1 << Init->getBaseClassInfo()->getType();
2483
2484      // Move back to the initializer's location in the ideal list.
2485      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2486        if (InitKey == IdealInitKeys[IdealIndex])
2487          break;
2488
2489      assert(IdealIndex != NumIdealInits &&
2490             "initializer not found in initializer list");
2491    }
2492
2493    PrevInit = Init;
2494  }
2495}
2496
2497namespace {
2498bool CheckRedundantInit(Sema &S,
2499                        CXXCtorInitializer *Init,
2500                        CXXCtorInitializer *&PrevInit) {
2501  if (!PrevInit) {
2502    PrevInit = Init;
2503    return false;
2504  }
2505
2506  if (FieldDecl *Field = Init->getMember())
2507    S.Diag(Init->getSourceLocation(),
2508           diag::err_multiple_mem_initialization)
2509      << Field->getDeclName()
2510      << Init->getSourceRange();
2511  else {
2512    const Type *BaseClass = Init->getBaseClass();
2513    assert(BaseClass && "neither field nor base");
2514    S.Diag(Init->getSourceLocation(),
2515           diag::err_multiple_base_initialization)
2516      << QualType(BaseClass, 0)
2517      << Init->getSourceRange();
2518  }
2519  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2520    << 0 << PrevInit->getSourceRange();
2521
2522  return true;
2523}
2524
2525typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2526typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2527
2528bool CheckRedundantUnionInit(Sema &S,
2529                             CXXCtorInitializer *Init,
2530                             RedundantUnionMap &Unions) {
2531  FieldDecl *Field = Init->getAnyMember();
2532  RecordDecl *Parent = Field->getParent();
2533  if (!Parent->isAnonymousStructOrUnion())
2534    return false;
2535
2536  NamedDecl *Child = Field;
2537  do {
2538    if (Parent->isUnion()) {
2539      UnionEntry &En = Unions[Parent];
2540      if (En.first && En.first != Child) {
2541        S.Diag(Init->getSourceLocation(),
2542               diag::err_multiple_mem_union_initialization)
2543          << Field->getDeclName()
2544          << Init->getSourceRange();
2545        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2546          << 0 << En.second->getSourceRange();
2547        return true;
2548      } else if (!En.first) {
2549        En.first = Child;
2550        En.second = Init;
2551      }
2552    }
2553
2554    Child = Parent;
2555    Parent = cast<RecordDecl>(Parent->getDeclContext());
2556  } while (Parent->isAnonymousStructOrUnion());
2557
2558  return false;
2559}
2560}
2561
2562/// ActOnMemInitializers - Handle the member initializers for a constructor.
2563void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2564                                SourceLocation ColonLoc,
2565                                MemInitTy **meminits, unsigned NumMemInits,
2566                                bool AnyErrors) {
2567  if (!ConstructorDecl)
2568    return;
2569
2570  AdjustDeclIfTemplate(ConstructorDecl);
2571
2572  CXXConstructorDecl *Constructor
2573    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2574
2575  if (!Constructor) {
2576    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2577    return;
2578  }
2579
2580  CXXCtorInitializer **MemInits =
2581    reinterpret_cast<CXXCtorInitializer **>(meminits);
2582
2583  // Mapping for the duplicate initializers check.
2584  // For member initializers, this is keyed with a FieldDecl*.
2585  // For base initializers, this is keyed with a Type*.
2586  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2587
2588  // Mapping for the inconsistent anonymous-union initializers check.
2589  RedundantUnionMap MemberUnions;
2590
2591  bool HadError = false;
2592  for (unsigned i = 0; i < NumMemInits; i++) {
2593    CXXCtorInitializer *Init = MemInits[i];
2594
2595    // Set the source order index.
2596    Init->setSourceOrder(i);
2597
2598    if (Init->isAnyMemberInitializer()) {
2599      FieldDecl *Field = Init->getAnyMember();
2600      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2601          CheckRedundantUnionInit(*this, Init, MemberUnions))
2602        HadError = true;
2603    } else if (Init->isBaseInitializer()) {
2604      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2605      if (CheckRedundantInit(*this, Init, Members[Key]))
2606        HadError = true;
2607    } else {
2608      assert(Init->isDelegatingInitializer());
2609      // This must be the only initializer
2610      if (i != 0 || NumMemInits > 1) {
2611        Diag(MemInits[0]->getSourceLocation(),
2612             diag::err_delegating_initializer_alone)
2613          << MemInits[0]->getSourceRange();
2614        HadError = true;
2615        // We will treat this as being the only initializer.
2616      }
2617      SetDelegatingInitializer(Constructor, MemInits[i]);
2618      // Return immediately as the initializer is set.
2619      return;
2620    }
2621  }
2622
2623  if (HadError)
2624    return;
2625
2626  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2627
2628  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2629}
2630
2631void
2632Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2633                                             CXXRecordDecl *ClassDecl) {
2634  // Ignore dependent contexts.
2635  if (ClassDecl->isDependentContext())
2636    return;
2637
2638  // FIXME: all the access-control diagnostics are positioned on the
2639  // field/base declaration.  That's probably good; that said, the
2640  // user might reasonably want to know why the destructor is being
2641  // emitted, and we currently don't say.
2642
2643  // Non-static data members.
2644  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2645       E = ClassDecl->field_end(); I != E; ++I) {
2646    FieldDecl *Field = *I;
2647    if (Field->isInvalidDecl())
2648      continue;
2649    QualType FieldType = Context.getBaseElementType(Field->getType());
2650
2651    const RecordType* RT = FieldType->getAs<RecordType>();
2652    if (!RT)
2653      continue;
2654
2655    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2656    if (FieldClassDecl->isInvalidDecl())
2657      continue;
2658    if (FieldClassDecl->hasTrivialDestructor())
2659      continue;
2660
2661    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2662    assert(Dtor && "No dtor found for FieldClassDecl!");
2663    CheckDestructorAccess(Field->getLocation(), Dtor,
2664                          PDiag(diag::err_access_dtor_field)
2665                            << Field->getDeclName()
2666                            << FieldType);
2667
2668    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2669  }
2670
2671  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2672
2673  // Bases.
2674  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2675       E = ClassDecl->bases_end(); Base != E; ++Base) {
2676    // Bases are always records in a well-formed non-dependent class.
2677    const RecordType *RT = Base->getType()->getAs<RecordType>();
2678
2679    // Remember direct virtual bases.
2680    if (Base->isVirtual())
2681      DirectVirtualBases.insert(RT);
2682
2683    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2684    // If our base class is invalid, we probably can't get its dtor anyway.
2685    if (BaseClassDecl->isInvalidDecl())
2686      continue;
2687    // Ignore trivial destructors.
2688    if (BaseClassDecl->hasTrivialDestructor())
2689      continue;
2690
2691    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2692    assert(Dtor && "No dtor found for BaseClassDecl!");
2693
2694    // FIXME: caret should be on the start of the class name
2695    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2696                          PDiag(diag::err_access_dtor_base)
2697                            << Base->getType()
2698                            << Base->getSourceRange());
2699
2700    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2701  }
2702
2703  // Virtual bases.
2704  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2705       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2706
2707    // Bases are always records in a well-formed non-dependent class.
2708    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2709
2710    // Ignore direct virtual bases.
2711    if (DirectVirtualBases.count(RT))
2712      continue;
2713
2714    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2715    // If our base class is invalid, we probably can't get its dtor anyway.
2716    if (BaseClassDecl->isInvalidDecl())
2717      continue;
2718    // Ignore trivial destructors.
2719    if (BaseClassDecl->hasTrivialDestructor())
2720      continue;
2721
2722    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2723    assert(Dtor && "No dtor found for BaseClassDecl!");
2724    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2725                          PDiag(diag::err_access_dtor_vbase)
2726                            << VBase->getType());
2727
2728    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2729  }
2730}
2731
2732void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2733  if (!CDtorDecl)
2734    return;
2735
2736  if (CXXConstructorDecl *Constructor
2737      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2738    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2739}
2740
2741bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2742                                  unsigned DiagID, AbstractDiagSelID SelID) {
2743  if (SelID == -1)
2744    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2745  else
2746    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2747}
2748
2749bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2750                                  const PartialDiagnostic &PD) {
2751  if (!getLangOptions().CPlusPlus)
2752    return false;
2753
2754  if (const ArrayType *AT = Context.getAsArrayType(T))
2755    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2756
2757  if (const PointerType *PT = T->getAs<PointerType>()) {
2758    // Find the innermost pointer type.
2759    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2760      PT = T;
2761
2762    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2763      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2764  }
2765
2766  const RecordType *RT = T->getAs<RecordType>();
2767  if (!RT)
2768    return false;
2769
2770  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2771
2772  // We can't answer whether something is abstract until it has a
2773  // definition.  If it's currently being defined, we'll walk back
2774  // over all the declarations when we have a full definition.
2775  const CXXRecordDecl *Def = RD->getDefinition();
2776  if (!Def || Def->isBeingDefined())
2777    return false;
2778
2779  if (!RD->isAbstract())
2780    return false;
2781
2782  Diag(Loc, PD) << RD->getDeclName();
2783  DiagnoseAbstractType(RD);
2784
2785  return true;
2786}
2787
2788void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2789  // Check if we've already emitted the list of pure virtual functions
2790  // for this class.
2791  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2792    return;
2793
2794  CXXFinalOverriderMap FinalOverriders;
2795  RD->getFinalOverriders(FinalOverriders);
2796
2797  // Keep a set of seen pure methods so we won't diagnose the same method
2798  // more than once.
2799  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2800
2801  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2802                                   MEnd = FinalOverriders.end();
2803       M != MEnd;
2804       ++M) {
2805    for (OverridingMethods::iterator SO = M->second.begin(),
2806                                  SOEnd = M->second.end();
2807         SO != SOEnd; ++SO) {
2808      // C++ [class.abstract]p4:
2809      //   A class is abstract if it contains or inherits at least one
2810      //   pure virtual function for which the final overrider is pure
2811      //   virtual.
2812
2813      //
2814      if (SO->second.size() != 1)
2815        continue;
2816
2817      if (!SO->second.front().Method->isPure())
2818        continue;
2819
2820      if (!SeenPureMethods.insert(SO->second.front().Method))
2821        continue;
2822
2823      Diag(SO->second.front().Method->getLocation(),
2824           diag::note_pure_virtual_function)
2825        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2826    }
2827  }
2828
2829  if (!PureVirtualClassDiagSet)
2830    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2831  PureVirtualClassDiagSet->insert(RD);
2832}
2833
2834namespace {
2835struct AbstractUsageInfo {
2836  Sema &S;
2837  CXXRecordDecl *Record;
2838  CanQualType AbstractType;
2839  bool Invalid;
2840
2841  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2842    : S(S), Record(Record),
2843      AbstractType(S.Context.getCanonicalType(
2844                   S.Context.getTypeDeclType(Record))),
2845      Invalid(false) {}
2846
2847  void DiagnoseAbstractType() {
2848    if (Invalid) return;
2849    S.DiagnoseAbstractType(Record);
2850    Invalid = true;
2851  }
2852
2853  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2854};
2855
2856struct CheckAbstractUsage {
2857  AbstractUsageInfo &Info;
2858  const NamedDecl *Ctx;
2859
2860  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2861    : Info(Info), Ctx(Ctx) {}
2862
2863  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2864    switch (TL.getTypeLocClass()) {
2865#define ABSTRACT_TYPELOC(CLASS, PARENT)
2866#define TYPELOC(CLASS, PARENT) \
2867    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2868#include "clang/AST/TypeLocNodes.def"
2869    }
2870  }
2871
2872  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2873    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2874    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2875      if (!TL.getArg(I))
2876        continue;
2877
2878      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2879      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2880    }
2881  }
2882
2883  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2884    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2885  }
2886
2887  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2888    // Visit the type parameters from a permissive context.
2889    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2890      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2891      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2892        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2893          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2894      // TODO: other template argument types?
2895    }
2896  }
2897
2898  // Visit pointee types from a permissive context.
2899#define CheckPolymorphic(Type) \
2900  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2901    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2902  }
2903  CheckPolymorphic(PointerTypeLoc)
2904  CheckPolymorphic(ReferenceTypeLoc)
2905  CheckPolymorphic(MemberPointerTypeLoc)
2906  CheckPolymorphic(BlockPointerTypeLoc)
2907
2908  /// Handle all the types we haven't given a more specific
2909  /// implementation for above.
2910  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2911    // Every other kind of type that we haven't called out already
2912    // that has an inner type is either (1) sugar or (2) contains that
2913    // inner type in some way as a subobject.
2914    if (TypeLoc Next = TL.getNextTypeLoc())
2915      return Visit(Next, Sel);
2916
2917    // If there's no inner type and we're in a permissive context,
2918    // don't diagnose.
2919    if (Sel == Sema::AbstractNone) return;
2920
2921    // Check whether the type matches the abstract type.
2922    QualType T = TL.getType();
2923    if (T->isArrayType()) {
2924      Sel = Sema::AbstractArrayType;
2925      T = Info.S.Context.getBaseElementType(T);
2926    }
2927    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2928    if (CT != Info.AbstractType) return;
2929
2930    // It matched; do some magic.
2931    if (Sel == Sema::AbstractArrayType) {
2932      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2933        << T << TL.getSourceRange();
2934    } else {
2935      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2936        << Sel << T << TL.getSourceRange();
2937    }
2938    Info.DiagnoseAbstractType();
2939  }
2940};
2941
2942void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2943                                  Sema::AbstractDiagSelID Sel) {
2944  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2945}
2946
2947}
2948
2949/// Check for invalid uses of an abstract type in a method declaration.
2950static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2951                                    CXXMethodDecl *MD) {
2952  // No need to do the check on definitions, which require that
2953  // the return/param types be complete.
2954  if (MD->doesThisDeclarationHaveABody())
2955    return;
2956
2957  // For safety's sake, just ignore it if we don't have type source
2958  // information.  This should never happen for non-implicit methods,
2959  // but...
2960  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2961    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2962}
2963
2964/// Check for invalid uses of an abstract type within a class definition.
2965static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2966                                    CXXRecordDecl *RD) {
2967  for (CXXRecordDecl::decl_iterator
2968         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2969    Decl *D = *I;
2970    if (D->isImplicit()) continue;
2971
2972    // Methods and method templates.
2973    if (isa<CXXMethodDecl>(D)) {
2974      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2975    } else if (isa<FunctionTemplateDecl>(D)) {
2976      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2977      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2978
2979    // Fields and static variables.
2980    } else if (isa<FieldDecl>(D)) {
2981      FieldDecl *FD = cast<FieldDecl>(D);
2982      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2983        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2984    } else if (isa<VarDecl>(D)) {
2985      VarDecl *VD = cast<VarDecl>(D);
2986      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2987        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2988
2989    // Nested classes and class templates.
2990    } else if (isa<CXXRecordDecl>(D)) {
2991      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2992    } else if (isa<ClassTemplateDecl>(D)) {
2993      CheckAbstractClassUsage(Info,
2994                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2995    }
2996  }
2997}
2998
2999/// \brief Perform semantic checks on a class definition that has been
3000/// completing, introducing implicitly-declared members, checking for
3001/// abstract types, etc.
3002void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3003  if (!Record)
3004    return;
3005
3006  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3007    AbstractUsageInfo Info(*this, Record);
3008    CheckAbstractClassUsage(Info, Record);
3009  }
3010
3011  // If this is not an aggregate type and has no user-declared constructor,
3012  // complain about any non-static data members of reference or const scalar
3013  // type, since they will never get initializers.
3014  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3015      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3016    bool Complained = false;
3017    for (RecordDecl::field_iterator F = Record->field_begin(),
3018                                 FEnd = Record->field_end();
3019         F != FEnd; ++F) {
3020      if (F->hasInClassInitializer())
3021        continue;
3022
3023      if (F->getType()->isReferenceType() ||
3024          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3025        if (!Complained) {
3026          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3027            << Record->getTagKind() << Record;
3028          Complained = true;
3029        }
3030
3031        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3032          << F->getType()->isReferenceType()
3033          << F->getDeclName();
3034      }
3035    }
3036  }
3037
3038  if (Record->isDynamicClass() && !Record->isDependentType())
3039    DynamicClasses.push_back(Record);
3040
3041  if (Record->getIdentifier()) {
3042    // C++ [class.mem]p13:
3043    //   If T is the name of a class, then each of the following shall have a
3044    //   name different from T:
3045    //     - every member of every anonymous union that is a member of class T.
3046    //
3047    // C++ [class.mem]p14:
3048    //   In addition, if class T has a user-declared constructor (12.1), every
3049    //   non-static data member of class T shall have a name different from T.
3050    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3051         R.first != R.second; ++R.first) {
3052      NamedDecl *D = *R.first;
3053      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3054          isa<IndirectFieldDecl>(D)) {
3055        Diag(D->getLocation(), diag::err_member_name_of_class)
3056          << D->getDeclName();
3057        break;
3058      }
3059    }
3060  }
3061
3062  // Warn if the class has virtual methods but non-virtual public destructor.
3063  if (Record->isPolymorphic() && !Record->isDependentType()) {
3064    CXXDestructorDecl *dtor = Record->getDestructor();
3065    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3066      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3067           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3068  }
3069
3070  // See if a method overloads virtual methods in a base
3071  /// class without overriding any.
3072  if (!Record->isDependentType()) {
3073    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3074                                     MEnd = Record->method_end();
3075         M != MEnd; ++M) {
3076      if (!(*M)->isStatic())
3077        DiagnoseHiddenVirtualMethods(Record, *M);
3078    }
3079  }
3080
3081  // Declare inherited constructors. We do this eagerly here because:
3082  // - The standard requires an eager diagnostic for conflicting inherited
3083  //   constructors from different classes.
3084  // - The lazy declaration of the other implicit constructors is so as to not
3085  //   waste space and performance on classes that are not meant to be
3086  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3087  //   have inherited constructors.
3088  DeclareInheritedConstructors(Record);
3089
3090  if (!Record->isDependentType())
3091    CheckExplicitlyDefaultedMethods(Record);
3092}
3093
3094void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3095  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3096                                      ME = Record->method_end();
3097       MI != ME; ++MI) {
3098    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3099      switch (getSpecialMember(*MI)) {
3100      case CXXDefaultConstructor:
3101        CheckExplicitlyDefaultedDefaultConstructor(
3102                                                  cast<CXXConstructorDecl>(*MI));
3103        break;
3104
3105      case CXXDestructor:
3106        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3107        break;
3108
3109      case CXXCopyConstructor:
3110        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3111        break;
3112
3113      case CXXCopyAssignment:
3114        CheckExplicitlyDefaultedCopyAssignment(*MI);
3115        break;
3116
3117      case CXXMoveConstructor:
3118      case CXXMoveAssignment:
3119        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3120        break;
3121
3122      default:
3123        // FIXME: Do moves once they exist
3124        llvm_unreachable("non-special member explicitly defaulted!");
3125      }
3126    }
3127  }
3128
3129}
3130
3131void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3132  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3133
3134  // Whether this was the first-declared instance of the constructor.
3135  // This affects whether we implicitly add an exception spec (and, eventually,
3136  // constexpr). It is also ill-formed to explicitly default a constructor such
3137  // that it would be deleted. (C++0x [decl.fct.def.default])
3138  bool First = CD == CD->getCanonicalDecl();
3139
3140  bool HadError = false;
3141  if (CD->getNumParams() != 0) {
3142    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3143      << CD->getSourceRange();
3144    HadError = true;
3145  }
3146
3147  ImplicitExceptionSpecification Spec
3148    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3149  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3150  if (EPI.ExceptionSpecType == EST_Delayed) {
3151    // Exception specification depends on some deferred part of the class. We'll
3152    // try again when the class's definition has been fully processed.
3153    return;
3154  }
3155  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3156                          *ExceptionType = Context.getFunctionType(
3157                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3158
3159  if (CtorType->hasExceptionSpec()) {
3160    if (CheckEquivalentExceptionSpec(
3161          PDiag(diag::err_incorrect_defaulted_exception_spec)
3162            << CXXDefaultConstructor,
3163          PDiag(),
3164          ExceptionType, SourceLocation(),
3165          CtorType, CD->getLocation())) {
3166      HadError = true;
3167    }
3168  } else if (First) {
3169    // We set the declaration to have the computed exception spec here.
3170    // We know there are no parameters.
3171    EPI.ExtInfo = CtorType->getExtInfo();
3172    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3173  }
3174
3175  if (HadError) {
3176    CD->setInvalidDecl();
3177    return;
3178  }
3179
3180  if (ShouldDeleteDefaultConstructor(CD)) {
3181    if (First) {
3182      CD->setDeletedAsWritten();
3183    } else {
3184      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3185        << CXXDefaultConstructor;
3186      CD->setInvalidDecl();
3187    }
3188  }
3189}
3190
3191void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3192  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3193
3194  // Whether this was the first-declared instance of the constructor.
3195  bool First = CD == CD->getCanonicalDecl();
3196
3197  bool HadError = false;
3198  if (CD->getNumParams() != 1) {
3199    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3200      << CD->getSourceRange();
3201    HadError = true;
3202  }
3203
3204  ImplicitExceptionSpecification Spec(Context);
3205  bool Const;
3206  llvm::tie(Spec, Const) =
3207    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3208
3209  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3210  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3211                          *ExceptionType = Context.getFunctionType(
3212                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3213
3214  // Check for parameter type matching.
3215  // This is a copy ctor so we know it's a cv-qualified reference to T.
3216  QualType ArgType = CtorType->getArgType(0);
3217  if (ArgType->getPointeeType().isVolatileQualified()) {
3218    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3219    HadError = true;
3220  }
3221  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3222    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3223    HadError = true;
3224  }
3225
3226  if (CtorType->hasExceptionSpec()) {
3227    if (CheckEquivalentExceptionSpec(
3228          PDiag(diag::err_incorrect_defaulted_exception_spec)
3229            << CXXCopyConstructor,
3230          PDiag(),
3231          ExceptionType, SourceLocation(),
3232          CtorType, CD->getLocation())) {
3233      HadError = true;
3234    }
3235  } else if (First) {
3236    // We set the declaration to have the computed exception spec here.
3237    // We duplicate the one parameter type.
3238    EPI.ExtInfo = CtorType->getExtInfo();
3239    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3240  }
3241
3242  if (HadError) {
3243    CD->setInvalidDecl();
3244    return;
3245  }
3246
3247  if (ShouldDeleteCopyConstructor(CD)) {
3248    if (First) {
3249      CD->setDeletedAsWritten();
3250    } else {
3251      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3252        << CXXCopyConstructor;
3253      CD->setInvalidDecl();
3254    }
3255  }
3256}
3257
3258void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3259  assert(MD->isExplicitlyDefaulted());
3260
3261  // Whether this was the first-declared instance of the operator
3262  bool First = MD == MD->getCanonicalDecl();
3263
3264  bool HadError = false;
3265  if (MD->getNumParams() != 1) {
3266    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3267      << MD->getSourceRange();
3268    HadError = true;
3269  }
3270
3271  QualType ReturnType =
3272    MD->getType()->getAs<FunctionType>()->getResultType();
3273  if (!ReturnType->isLValueReferenceType() ||
3274      !Context.hasSameType(
3275        Context.getCanonicalType(ReturnType->getPointeeType()),
3276        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3277    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3278    HadError = true;
3279  }
3280
3281  ImplicitExceptionSpecification Spec(Context);
3282  bool Const;
3283  llvm::tie(Spec, Const) =
3284    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3285
3286  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3287  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3288                          *ExceptionType = Context.getFunctionType(
3289                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3290
3291  QualType ArgType = OperType->getArgType(0);
3292  if (!ArgType->isReferenceType()) {
3293    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3294    HadError = true;
3295  } else {
3296    if (ArgType->getPointeeType().isVolatileQualified()) {
3297      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3298      HadError = true;
3299    }
3300    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3301      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3302      HadError = true;
3303    }
3304  }
3305
3306  if (OperType->getTypeQuals()) {
3307    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3308    HadError = true;
3309  }
3310
3311  if (OperType->hasExceptionSpec()) {
3312    if (CheckEquivalentExceptionSpec(
3313          PDiag(diag::err_incorrect_defaulted_exception_spec)
3314            << CXXCopyAssignment,
3315          PDiag(),
3316          ExceptionType, SourceLocation(),
3317          OperType, MD->getLocation())) {
3318      HadError = true;
3319    }
3320  } else if (First) {
3321    // We set the declaration to have the computed exception spec here.
3322    // We duplicate the one parameter type.
3323    EPI.RefQualifier = OperType->getRefQualifier();
3324    EPI.ExtInfo = OperType->getExtInfo();
3325    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3326  }
3327
3328  if (HadError) {
3329    MD->setInvalidDecl();
3330    return;
3331  }
3332
3333  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3334    if (First) {
3335      MD->setDeletedAsWritten();
3336    } else {
3337      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3338        << CXXCopyAssignment;
3339      MD->setInvalidDecl();
3340    }
3341  }
3342}
3343
3344void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3345  assert(DD->isExplicitlyDefaulted());
3346
3347  // Whether this was the first-declared instance of the destructor.
3348  bool First = DD == DD->getCanonicalDecl();
3349
3350  ImplicitExceptionSpecification Spec
3351    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3352  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3353  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3354                          *ExceptionType = Context.getFunctionType(
3355                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3356
3357  if (DtorType->hasExceptionSpec()) {
3358    if (CheckEquivalentExceptionSpec(
3359          PDiag(diag::err_incorrect_defaulted_exception_spec)
3360            << CXXDestructor,
3361          PDiag(),
3362          ExceptionType, SourceLocation(),
3363          DtorType, DD->getLocation())) {
3364      DD->setInvalidDecl();
3365      return;
3366    }
3367  } else if (First) {
3368    // We set the declaration to have the computed exception spec here.
3369    // There are no parameters.
3370    EPI.ExtInfo = DtorType->getExtInfo();
3371    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3372  }
3373
3374  if (ShouldDeleteDestructor(DD)) {
3375    if (First) {
3376      DD->setDeletedAsWritten();
3377    } else {
3378      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3379        << CXXDestructor;
3380      DD->setInvalidDecl();
3381    }
3382  }
3383}
3384
3385bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3386  CXXRecordDecl *RD = CD->getParent();
3387  assert(!RD->isDependentType() && "do deletion after instantiation");
3388  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3389    return false;
3390
3391  SourceLocation Loc = CD->getLocation();
3392
3393  // Do access control from the constructor
3394  ContextRAII CtorContext(*this, CD);
3395
3396  bool Union = RD->isUnion();
3397  bool AllConst = true;
3398
3399  // We do this because we should never actually use an anonymous
3400  // union's constructor.
3401  if (Union && RD->isAnonymousStructOrUnion())
3402    return false;
3403
3404  // FIXME: We should put some diagnostic logic right into this function.
3405
3406  // C++0x [class.ctor]/5
3407  //    A defaulted default constructor for class X is defined as deleted if:
3408
3409  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3410                                          BE = RD->bases_end();
3411       BI != BE; ++BI) {
3412    // We'll handle this one later
3413    if (BI->isVirtual())
3414      continue;
3415
3416    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3417    assert(BaseDecl && "base isn't a CXXRecordDecl");
3418
3419    // -- any [direct base class] has a type with a destructor that is
3420    //    deleted or inaccessible from the defaulted default constructor
3421    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3422    if (BaseDtor->isDeleted())
3423      return true;
3424    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3425        AR_accessible)
3426      return true;
3427
3428    // -- any [direct base class either] has no default constructor or
3429    //    overload resolution as applied to [its] default constructor
3430    //    results in an ambiguity or in a function that is deleted or
3431    //    inaccessible from the defaulted default constructor
3432    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3433    if (!BaseDefault || BaseDefault->isDeleted())
3434      return true;
3435
3436    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3437                               PDiag()) != AR_accessible)
3438      return true;
3439  }
3440
3441  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3442                                          BE = RD->vbases_end();
3443       BI != BE; ++BI) {
3444    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3445    assert(BaseDecl && "base isn't a CXXRecordDecl");
3446
3447    // -- any [virtual base class] has a type with a destructor that is
3448    //    delete or inaccessible from the defaulted default constructor
3449    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3450    if (BaseDtor->isDeleted())
3451      return true;
3452    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3453        AR_accessible)
3454      return true;
3455
3456    // -- any [virtual base class either] has no default constructor or
3457    //    overload resolution as applied to [its] default constructor
3458    //    results in an ambiguity or in a function that is deleted or
3459    //    inaccessible from the defaulted default constructor
3460    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3461    if (!BaseDefault || BaseDefault->isDeleted())
3462      return true;
3463
3464    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3465                               PDiag()) != AR_accessible)
3466      return true;
3467  }
3468
3469  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3470                                     FE = RD->field_end();
3471       FI != FE; ++FI) {
3472    if (FI->isInvalidDecl())
3473      continue;
3474
3475    QualType FieldType = Context.getBaseElementType(FI->getType());
3476    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3477
3478    // -- any non-static data member with no brace-or-equal-initializer is of
3479    //    reference type
3480    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3481      return true;
3482
3483    // -- X is a union and all its variant members are of const-qualified type
3484    //    (or array thereof)
3485    if (Union && !FieldType.isConstQualified())
3486      AllConst = false;
3487
3488    if (FieldRecord) {
3489      // -- X is a union-like class that has a variant member with a non-trivial
3490      //    default constructor
3491      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3492        return true;
3493
3494      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3495      if (FieldDtor->isDeleted())
3496        return true;
3497      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3498          AR_accessible)
3499        return true;
3500
3501      // -- any non-variant non-static data member of const-qualified type (or
3502      //    array thereof) with no brace-or-equal-initializer does not have a
3503      //    user-provided default constructor
3504      if (FieldType.isConstQualified() &&
3505          !FI->hasInClassInitializer() &&
3506          !FieldRecord->hasUserProvidedDefaultConstructor())
3507        return true;
3508
3509      if (!Union && FieldRecord->isUnion() &&
3510          FieldRecord->isAnonymousStructOrUnion()) {
3511        // We're okay to reuse AllConst here since we only care about the
3512        // value otherwise if we're in a union.
3513        AllConst = true;
3514
3515        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3516                                           UE = FieldRecord->field_end();
3517             UI != UE; ++UI) {
3518          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3519          CXXRecordDecl *UnionFieldRecord =
3520            UnionFieldType->getAsCXXRecordDecl();
3521
3522          if (!UnionFieldType.isConstQualified())
3523            AllConst = false;
3524
3525          if (UnionFieldRecord &&
3526              !UnionFieldRecord->hasTrivialDefaultConstructor())
3527            return true;
3528        }
3529
3530        if (AllConst)
3531          return true;
3532
3533        // Don't try to initialize the anonymous union
3534        // This is technically non-conformant, but sanity demands it.
3535        continue;
3536      }
3537
3538      // -- any non-static data member with no brace-or-equal-initializer has
3539      //    class type M (or array thereof) and either M has no default
3540      //    constructor or overload resolution as applied to M's default
3541      //    constructor results in an ambiguity or in a function that is deleted
3542      //    or inaccessible from the defaulted default constructor.
3543      if (!FI->hasInClassInitializer()) {
3544        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3545        if (!FieldDefault || FieldDefault->isDeleted())
3546          return true;
3547        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3548                                   PDiag()) != AR_accessible)
3549          return true;
3550      }
3551    } else if (!Union && FieldType.isConstQualified() &&
3552               !FI->hasInClassInitializer()) {
3553      // -- any non-variant non-static data member of const-qualified type (or
3554      //    array thereof) with no brace-or-equal-initializer does not have a
3555      //    user-provided default constructor
3556      return true;
3557    }
3558  }
3559
3560  if (Union && AllConst)
3561    return true;
3562
3563  return false;
3564}
3565
3566bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3567  CXXRecordDecl *RD = CD->getParent();
3568  assert(!RD->isDependentType() && "do deletion after instantiation");
3569  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3570    return false;
3571
3572  SourceLocation Loc = CD->getLocation();
3573
3574  // Do access control from the constructor
3575  ContextRAII CtorContext(*this, CD);
3576
3577  bool Union = RD->isUnion();
3578
3579  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3580         "copy assignment arg has no pointee type");
3581  unsigned ArgQuals =
3582    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3583      Qualifiers::Const : 0;
3584
3585  // We do this because we should never actually use an anonymous
3586  // union's constructor.
3587  if (Union && RD->isAnonymousStructOrUnion())
3588    return false;
3589
3590  // FIXME: We should put some diagnostic logic right into this function.
3591
3592  // C++0x [class.copy]/11
3593  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3594
3595  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3596                                          BE = RD->bases_end();
3597       BI != BE; ++BI) {
3598    // We'll handle this one later
3599    if (BI->isVirtual())
3600      continue;
3601
3602    QualType BaseType = BI->getType();
3603    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3604    assert(BaseDecl && "base isn't a CXXRecordDecl");
3605
3606    // -- any [direct base class] of a type with a destructor that is deleted or
3607    //    inaccessible from the defaulted constructor
3608    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3609    if (BaseDtor->isDeleted())
3610      return true;
3611    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3612        AR_accessible)
3613      return true;
3614
3615    // -- a [direct base class] B that cannot be [copied] because overload
3616    //    resolution, as applied to B's [copy] constructor, results in an
3617    //    ambiguity or a function that is deleted or inaccessible from the
3618    //    defaulted constructor
3619    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3620    if (!BaseCtor || BaseCtor->isDeleted())
3621      return true;
3622    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3623        AR_accessible)
3624      return true;
3625  }
3626
3627  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3628                                          BE = RD->vbases_end();
3629       BI != BE; ++BI) {
3630    QualType BaseType = BI->getType();
3631    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3632    assert(BaseDecl && "base isn't a CXXRecordDecl");
3633
3634    // -- any [virtual base class] of a type with a destructor that is deleted or
3635    //    inaccessible from the defaulted constructor
3636    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3637    if (BaseDtor->isDeleted())
3638      return true;
3639    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3640        AR_accessible)
3641      return true;
3642
3643    // -- a [virtual base class] B that cannot be [copied] because overload
3644    //    resolution, as applied to B's [copy] constructor, results in an
3645    //    ambiguity or a function that is deleted or inaccessible from the
3646    //    defaulted constructor
3647    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3648    if (!BaseCtor || BaseCtor->isDeleted())
3649      return true;
3650    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3651        AR_accessible)
3652      return true;
3653  }
3654
3655  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3656                                     FE = RD->field_end();
3657       FI != FE; ++FI) {
3658    QualType FieldType = Context.getBaseElementType(FI->getType());
3659
3660    // -- for a copy constructor, a non-static data member of rvalue reference
3661    //    type
3662    if (FieldType->isRValueReferenceType())
3663      return true;
3664
3665    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3666
3667    if (FieldRecord) {
3668      // This is an anonymous union
3669      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3670        // Anonymous unions inside unions do not variant members create
3671        if (!Union) {
3672          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3673                                             UE = FieldRecord->field_end();
3674               UI != UE; ++UI) {
3675            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3676            CXXRecordDecl *UnionFieldRecord =
3677              UnionFieldType->getAsCXXRecordDecl();
3678
3679            // -- a variant member with a non-trivial [copy] constructor and X
3680            //    is a union-like class
3681            if (UnionFieldRecord &&
3682                !UnionFieldRecord->hasTrivialCopyConstructor())
3683              return true;
3684          }
3685        }
3686
3687        // Don't try to initalize an anonymous union
3688        continue;
3689      } else {
3690         // -- a variant member with a non-trivial [copy] constructor and X is a
3691         //    union-like class
3692        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3693          return true;
3694
3695        // -- any [non-static data member] of a type with a destructor that is
3696        //    deleted or inaccessible from the defaulted constructor
3697        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3698        if (FieldDtor->isDeleted())
3699          return true;
3700        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3701            AR_accessible)
3702          return true;
3703      }
3704
3705    // -- a [non-static data member of class type (or array thereof)] B that
3706    //    cannot be [copied] because overload resolution, as applied to B's
3707    //    [copy] constructor, results in an ambiguity or a function that is
3708    //    deleted or inaccessible from the defaulted constructor
3709      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
3710                                                               ArgQuals);
3711      if (!FieldCtor || FieldCtor->isDeleted())
3712        return true;
3713      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3714                                 PDiag()) != AR_accessible)
3715        return true;
3716    }
3717  }
3718
3719  return false;
3720}
3721
3722bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3723  CXXRecordDecl *RD = MD->getParent();
3724  assert(!RD->isDependentType() && "do deletion after instantiation");
3725  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3726    return false;
3727
3728  SourceLocation Loc = MD->getLocation();
3729
3730  // Do access control from the constructor
3731  ContextRAII MethodContext(*this, MD);
3732
3733  bool Union = RD->isUnion();
3734
3735  unsigned ArgQuals =
3736    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3737      Qualifiers::Const : 0;
3738
3739  // We do this because we should never actually use an anonymous
3740  // union's constructor.
3741  if (Union && RD->isAnonymousStructOrUnion())
3742    return false;
3743
3744  // FIXME: We should put some diagnostic logic right into this function.
3745
3746  // C++0x [class.copy]/11
3747  //    A defaulted [copy] assignment operator for class X is defined as deleted
3748  //    if X has:
3749
3750  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3751                                          BE = RD->bases_end();
3752       BI != BE; ++BI) {
3753    // We'll handle this one later
3754    if (BI->isVirtual())
3755      continue;
3756
3757    QualType BaseType = BI->getType();
3758    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3759    assert(BaseDecl && "base isn't a CXXRecordDecl");
3760
3761    // -- a [direct base class] B that cannot be [copied] because overload
3762    //    resolution, as applied to B's [copy] assignment operator, results in
3763    //    an ambiguity or a function that is deleted or inaccessible from the
3764    //    assignment operator
3765    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3766                                                      0);
3767    if (!CopyOper || CopyOper->isDeleted())
3768      return true;
3769    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3770      return true;
3771  }
3772
3773  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3774                                          BE = RD->vbases_end();
3775       BI != BE; ++BI) {
3776    QualType BaseType = BI->getType();
3777    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3778    assert(BaseDecl && "base isn't a CXXRecordDecl");
3779
3780    // -- a [virtual base class] B that cannot be [copied] because overload
3781    //    resolution, as applied to B's [copy] assignment operator, results in
3782    //    an ambiguity or a function that is deleted or inaccessible from the
3783    //    assignment operator
3784    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3785                                                      0);
3786    if (!CopyOper || CopyOper->isDeleted())
3787      return true;
3788    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3789      return true;
3790  }
3791
3792  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3793                                     FE = RD->field_end();
3794       FI != FE; ++FI) {
3795    QualType FieldType = Context.getBaseElementType(FI->getType());
3796
3797    // -- a non-static data member of reference type
3798    if (FieldType->isReferenceType())
3799      return true;
3800
3801    // -- a non-static data member of const non-class type (or array thereof)
3802    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3803      return true;
3804
3805    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3806
3807    if (FieldRecord) {
3808      // This is an anonymous union
3809      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3810        // Anonymous unions inside unions do not variant members create
3811        if (!Union) {
3812          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3813                                             UE = FieldRecord->field_end();
3814               UI != UE; ++UI) {
3815            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3816            CXXRecordDecl *UnionFieldRecord =
3817              UnionFieldType->getAsCXXRecordDecl();
3818
3819            // -- a variant member with a non-trivial [copy] assignment operator
3820            //    and X is a union-like class
3821            if (UnionFieldRecord &&
3822                !UnionFieldRecord->hasTrivialCopyAssignment())
3823              return true;
3824          }
3825        }
3826
3827        // Don't try to initalize an anonymous union
3828        continue;
3829      // -- a variant member with a non-trivial [copy] assignment operator
3830      //    and X is a union-like class
3831      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3832          return true;
3833      }
3834
3835      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
3836                                                        false, 0);
3837      if (!CopyOper || CopyOper->isDeleted())
3838        return false;
3839      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3840        return false;
3841    }
3842  }
3843
3844  return false;
3845}
3846
3847bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3848  CXXRecordDecl *RD = DD->getParent();
3849  assert(!RD->isDependentType() && "do deletion after instantiation");
3850  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3851    return false;
3852
3853  SourceLocation Loc = DD->getLocation();
3854
3855  // Do access control from the destructor
3856  ContextRAII CtorContext(*this, DD);
3857
3858  bool Union = RD->isUnion();
3859
3860  // We do this because we should never actually use an anonymous
3861  // union's destructor.
3862  if (Union && RD->isAnonymousStructOrUnion())
3863    return false;
3864
3865  // C++0x [class.dtor]p5
3866  //    A defaulted destructor for a class X is defined as deleted if:
3867  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3868                                          BE = RD->bases_end();
3869       BI != BE; ++BI) {
3870    // We'll handle this one later
3871    if (BI->isVirtual())
3872      continue;
3873
3874    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3875    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3876    assert(BaseDtor && "base has no destructor");
3877
3878    // -- any direct or virtual base class has a deleted destructor or
3879    //    a destructor that is inaccessible from the defaulted destructor
3880    if (BaseDtor->isDeleted())
3881      return true;
3882    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3883        AR_accessible)
3884      return true;
3885  }
3886
3887  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3888                                          BE = RD->vbases_end();
3889       BI != BE; ++BI) {
3890    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3891    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3892    assert(BaseDtor && "base has no destructor");
3893
3894    // -- any direct or virtual base class has a deleted destructor or
3895    //    a destructor that is inaccessible from the defaulted destructor
3896    if (BaseDtor->isDeleted())
3897      return true;
3898    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3899        AR_accessible)
3900      return true;
3901  }
3902
3903  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3904                                     FE = RD->field_end();
3905       FI != FE; ++FI) {
3906    QualType FieldType = Context.getBaseElementType(FI->getType());
3907    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3908    if (FieldRecord) {
3909      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3910         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3911                                            UE = FieldRecord->field_end();
3912              UI != UE; ++UI) {
3913           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3914           CXXRecordDecl *UnionFieldRecord =
3915             UnionFieldType->getAsCXXRecordDecl();
3916
3917           // -- X is a union-like class that has a variant member with a non-
3918           //    trivial destructor.
3919           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3920             return true;
3921         }
3922      // Technically we are supposed to do this next check unconditionally.
3923      // But that makes absolutely no sense.
3924      } else {
3925        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3926
3927        // -- any of the non-static data members has class type M (or array
3928        //    thereof) and M has a deleted destructor or a destructor that is
3929        //    inaccessible from the defaulted destructor
3930        if (FieldDtor->isDeleted())
3931          return true;
3932        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3933          AR_accessible)
3934        return true;
3935
3936        // -- X is a union-like class that has a variant member with a non-
3937        //    trivial destructor.
3938        if (Union && !FieldDtor->isTrivial())
3939          return true;
3940      }
3941    }
3942  }
3943
3944  if (DD->isVirtual()) {
3945    FunctionDecl *OperatorDelete = 0;
3946    DeclarationName Name =
3947      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3948    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3949          false))
3950      return true;
3951  }
3952
3953
3954  return false;
3955}
3956
3957/// \brief Data used with FindHiddenVirtualMethod
3958namespace {
3959  struct FindHiddenVirtualMethodData {
3960    Sema *S;
3961    CXXMethodDecl *Method;
3962    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3963    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3964  };
3965}
3966
3967/// \brief Member lookup function that determines whether a given C++
3968/// method overloads virtual methods in a base class without overriding any,
3969/// to be used with CXXRecordDecl::lookupInBases().
3970static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3971                                    CXXBasePath &Path,
3972                                    void *UserData) {
3973  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3974
3975  FindHiddenVirtualMethodData &Data
3976    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3977
3978  DeclarationName Name = Data.Method->getDeclName();
3979  assert(Name.getNameKind() == DeclarationName::Identifier);
3980
3981  bool foundSameNameMethod = false;
3982  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3983  for (Path.Decls = BaseRecord->lookup(Name);
3984       Path.Decls.first != Path.Decls.second;
3985       ++Path.Decls.first) {
3986    NamedDecl *D = *Path.Decls.first;
3987    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3988      MD = MD->getCanonicalDecl();
3989      foundSameNameMethod = true;
3990      // Interested only in hidden virtual methods.
3991      if (!MD->isVirtual())
3992        continue;
3993      // If the method we are checking overrides a method from its base
3994      // don't warn about the other overloaded methods.
3995      if (!Data.S->IsOverload(Data.Method, MD, false))
3996        return true;
3997      // Collect the overload only if its hidden.
3998      if (!Data.OverridenAndUsingBaseMethods.count(MD))
3999        overloadedMethods.push_back(MD);
4000    }
4001  }
4002
4003  if (foundSameNameMethod)
4004    Data.OverloadedMethods.append(overloadedMethods.begin(),
4005                                   overloadedMethods.end());
4006  return foundSameNameMethod;
4007}
4008
4009/// \brief See if a method overloads virtual methods in a base class without
4010/// overriding any.
4011void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4012  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4013                               MD->getLocation()) == Diagnostic::Ignored)
4014    return;
4015  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4016    return;
4017
4018  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4019                     /*bool RecordPaths=*/false,
4020                     /*bool DetectVirtual=*/false);
4021  FindHiddenVirtualMethodData Data;
4022  Data.Method = MD;
4023  Data.S = this;
4024
4025  // Keep the base methods that were overriden or introduced in the subclass
4026  // by 'using' in a set. A base method not in this set is hidden.
4027  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4028       res.first != res.second; ++res.first) {
4029    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4030      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4031                                          E = MD->end_overridden_methods();
4032           I != E; ++I)
4033        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4034    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4035      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4036        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4037  }
4038
4039  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4040      !Data.OverloadedMethods.empty()) {
4041    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4042      << MD << (Data.OverloadedMethods.size() > 1);
4043
4044    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4045      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4046      Diag(overloadedMD->getLocation(),
4047           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4048    }
4049  }
4050}
4051
4052void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4053                                             Decl *TagDecl,
4054                                             SourceLocation LBrac,
4055                                             SourceLocation RBrac,
4056                                             AttributeList *AttrList) {
4057  if (!TagDecl)
4058    return;
4059
4060  AdjustDeclIfTemplate(TagDecl);
4061
4062  ActOnFields(S, RLoc, TagDecl,
4063              // strict aliasing violation!
4064              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4065              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4066
4067  CheckCompletedCXXClass(
4068                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4069}
4070
4071/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4072/// special functions, such as the default constructor, copy
4073/// constructor, or destructor, to the given C++ class (C++
4074/// [special]p1).  This routine can only be executed just before the
4075/// definition of the class is complete.
4076void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4077  if (!ClassDecl->hasUserDeclaredConstructor())
4078    ++ASTContext::NumImplicitDefaultConstructors;
4079
4080  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4081    ++ASTContext::NumImplicitCopyConstructors;
4082
4083  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4084    ++ASTContext::NumImplicitCopyAssignmentOperators;
4085
4086    // If we have a dynamic class, then the copy assignment operator may be
4087    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4088    // it shows up in the right place in the vtable and that we diagnose
4089    // problems with the implicit exception specification.
4090    if (ClassDecl->isDynamicClass())
4091      DeclareImplicitCopyAssignment(ClassDecl);
4092  }
4093
4094  if (!ClassDecl->hasUserDeclaredDestructor()) {
4095    ++ASTContext::NumImplicitDestructors;
4096
4097    // If we have a dynamic class, then the destructor may be virtual, so we
4098    // have to declare the destructor immediately. This ensures that, e.g., it
4099    // shows up in the right place in the vtable and that we diagnose problems
4100    // with the implicit exception specification.
4101    if (ClassDecl->isDynamicClass())
4102      DeclareImplicitDestructor(ClassDecl);
4103  }
4104}
4105
4106void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4107  if (!D)
4108    return;
4109
4110  int NumParamList = D->getNumTemplateParameterLists();
4111  for (int i = 0; i < NumParamList; i++) {
4112    TemplateParameterList* Params = D->getTemplateParameterList(i);
4113    for (TemplateParameterList::iterator Param = Params->begin(),
4114                                      ParamEnd = Params->end();
4115          Param != ParamEnd; ++Param) {
4116      NamedDecl *Named = cast<NamedDecl>(*Param);
4117      if (Named->getDeclName()) {
4118        S->AddDecl(Named);
4119        IdResolver.AddDecl(Named);
4120      }
4121    }
4122  }
4123}
4124
4125void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4126  if (!D)
4127    return;
4128
4129  TemplateParameterList *Params = 0;
4130  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4131    Params = Template->getTemplateParameters();
4132  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4133           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4134    Params = PartialSpec->getTemplateParameters();
4135  else
4136    return;
4137
4138  for (TemplateParameterList::iterator Param = Params->begin(),
4139                                    ParamEnd = Params->end();
4140       Param != ParamEnd; ++Param) {
4141    NamedDecl *Named = cast<NamedDecl>(*Param);
4142    if (Named->getDeclName()) {
4143      S->AddDecl(Named);
4144      IdResolver.AddDecl(Named);
4145    }
4146  }
4147}
4148
4149void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4150  if (!RecordD) return;
4151  AdjustDeclIfTemplate(RecordD);
4152  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4153  PushDeclContext(S, Record);
4154}
4155
4156void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4157  if (!RecordD) return;
4158  PopDeclContext();
4159}
4160
4161/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4162/// parsing a top-level (non-nested) C++ class, and we are now
4163/// parsing those parts of the given Method declaration that could
4164/// not be parsed earlier (C++ [class.mem]p2), such as default
4165/// arguments. This action should enter the scope of the given
4166/// Method declaration as if we had just parsed the qualified method
4167/// name. However, it should not bring the parameters into scope;
4168/// that will be performed by ActOnDelayedCXXMethodParameter.
4169void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4170}
4171
4172/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4173/// C++ method declaration. We're (re-)introducing the given
4174/// function parameter into scope for use in parsing later parts of
4175/// the method declaration. For example, we could see an
4176/// ActOnParamDefaultArgument event for this parameter.
4177void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4178  if (!ParamD)
4179    return;
4180
4181  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4182
4183  // If this parameter has an unparsed default argument, clear it out
4184  // to make way for the parsed default argument.
4185  if (Param->hasUnparsedDefaultArg())
4186    Param->setDefaultArg(0);
4187
4188  S->AddDecl(Param);
4189  if (Param->getDeclName())
4190    IdResolver.AddDecl(Param);
4191}
4192
4193/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4194/// processing the delayed method declaration for Method. The method
4195/// declaration is now considered finished. There may be a separate
4196/// ActOnStartOfFunctionDef action later (not necessarily
4197/// immediately!) for this method, if it was also defined inside the
4198/// class body.
4199void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4200  if (!MethodD)
4201    return;
4202
4203  AdjustDeclIfTemplate(MethodD);
4204
4205  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4206
4207  // Now that we have our default arguments, check the constructor
4208  // again. It could produce additional diagnostics or affect whether
4209  // the class has implicitly-declared destructors, among other
4210  // things.
4211  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4212    CheckConstructor(Constructor);
4213
4214  // Check the default arguments, which we may have added.
4215  if (!Method->isInvalidDecl())
4216    CheckCXXDefaultArguments(Method);
4217}
4218
4219/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4220/// the well-formedness of the constructor declarator @p D with type @p
4221/// R. If there are any errors in the declarator, this routine will
4222/// emit diagnostics and set the invalid bit to true.  In any case, the type
4223/// will be updated to reflect a well-formed type for the constructor and
4224/// returned.
4225QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4226                                          StorageClass &SC) {
4227  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4228
4229  // C++ [class.ctor]p3:
4230  //   A constructor shall not be virtual (10.3) or static (9.4). A
4231  //   constructor can be invoked for a const, volatile or const
4232  //   volatile object. A constructor shall not be declared const,
4233  //   volatile, or const volatile (9.3.2).
4234  if (isVirtual) {
4235    if (!D.isInvalidType())
4236      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4237        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4238        << SourceRange(D.getIdentifierLoc());
4239    D.setInvalidType();
4240  }
4241  if (SC == SC_Static) {
4242    if (!D.isInvalidType())
4243      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4244        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4245        << SourceRange(D.getIdentifierLoc());
4246    D.setInvalidType();
4247    SC = SC_None;
4248  }
4249
4250  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4251  if (FTI.TypeQuals != 0) {
4252    if (FTI.TypeQuals & Qualifiers::Const)
4253      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4254        << "const" << SourceRange(D.getIdentifierLoc());
4255    if (FTI.TypeQuals & Qualifiers::Volatile)
4256      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4257        << "volatile" << SourceRange(D.getIdentifierLoc());
4258    if (FTI.TypeQuals & Qualifiers::Restrict)
4259      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4260        << "restrict" << SourceRange(D.getIdentifierLoc());
4261    D.setInvalidType();
4262  }
4263
4264  // C++0x [class.ctor]p4:
4265  //   A constructor shall not be declared with a ref-qualifier.
4266  if (FTI.hasRefQualifier()) {
4267    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4268      << FTI.RefQualifierIsLValueRef
4269      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4270    D.setInvalidType();
4271  }
4272
4273  // Rebuild the function type "R" without any type qualifiers (in
4274  // case any of the errors above fired) and with "void" as the
4275  // return type, since constructors don't have return types.
4276  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4277  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4278    return R;
4279
4280  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4281  EPI.TypeQuals = 0;
4282  EPI.RefQualifier = RQ_None;
4283
4284  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4285                                 Proto->getNumArgs(), EPI);
4286}
4287
4288/// CheckConstructor - Checks a fully-formed constructor for
4289/// well-formedness, issuing any diagnostics required. Returns true if
4290/// the constructor declarator is invalid.
4291void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4292  CXXRecordDecl *ClassDecl
4293    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4294  if (!ClassDecl)
4295    return Constructor->setInvalidDecl();
4296
4297  // C++ [class.copy]p3:
4298  //   A declaration of a constructor for a class X is ill-formed if
4299  //   its first parameter is of type (optionally cv-qualified) X and
4300  //   either there are no other parameters or else all other
4301  //   parameters have default arguments.
4302  if (!Constructor->isInvalidDecl() &&
4303      ((Constructor->getNumParams() == 1) ||
4304       (Constructor->getNumParams() > 1 &&
4305        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4306      Constructor->getTemplateSpecializationKind()
4307                                              != TSK_ImplicitInstantiation) {
4308    QualType ParamType = Constructor->getParamDecl(0)->getType();
4309    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4310    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4311      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4312      const char *ConstRef
4313        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4314                                                        : " const &";
4315      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4316        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4317
4318      // FIXME: Rather that making the constructor invalid, we should endeavor
4319      // to fix the type.
4320      Constructor->setInvalidDecl();
4321    }
4322  }
4323}
4324
4325/// CheckDestructor - Checks a fully-formed destructor definition for
4326/// well-formedness, issuing any diagnostics required.  Returns true
4327/// on error.
4328bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4329  CXXRecordDecl *RD = Destructor->getParent();
4330
4331  if (Destructor->isVirtual()) {
4332    SourceLocation Loc;
4333
4334    if (!Destructor->isImplicit())
4335      Loc = Destructor->getLocation();
4336    else
4337      Loc = RD->getLocation();
4338
4339    // If we have a virtual destructor, look up the deallocation function
4340    FunctionDecl *OperatorDelete = 0;
4341    DeclarationName Name =
4342    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4343    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4344      return true;
4345
4346    MarkDeclarationReferenced(Loc, OperatorDelete);
4347
4348    Destructor->setOperatorDelete(OperatorDelete);
4349  }
4350
4351  return false;
4352}
4353
4354static inline bool
4355FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4356  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4357          FTI.ArgInfo[0].Param &&
4358          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4359}
4360
4361/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4362/// the well-formednes of the destructor declarator @p D with type @p
4363/// R. If there are any errors in the declarator, this routine will
4364/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4365/// will be updated to reflect a well-formed type for the destructor and
4366/// returned.
4367QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4368                                         StorageClass& SC) {
4369  // C++ [class.dtor]p1:
4370  //   [...] A typedef-name that names a class is a class-name
4371  //   (7.1.3); however, a typedef-name that names a class shall not
4372  //   be used as the identifier in the declarator for a destructor
4373  //   declaration.
4374  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4375  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4376    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4377      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4378  else if (const TemplateSpecializationType *TST =
4379             DeclaratorType->getAs<TemplateSpecializationType>())
4380    if (TST->isTypeAlias())
4381      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4382        << DeclaratorType << 1;
4383
4384  // C++ [class.dtor]p2:
4385  //   A destructor is used to destroy objects of its class type. A
4386  //   destructor takes no parameters, and no return type can be
4387  //   specified for it (not even void). The address of a destructor
4388  //   shall not be taken. A destructor shall not be static. A
4389  //   destructor can be invoked for a const, volatile or const
4390  //   volatile object. A destructor shall not be declared const,
4391  //   volatile or const volatile (9.3.2).
4392  if (SC == SC_Static) {
4393    if (!D.isInvalidType())
4394      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4395        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4396        << SourceRange(D.getIdentifierLoc())
4397        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4398
4399    SC = SC_None;
4400  }
4401  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4402    // Destructors don't have return types, but the parser will
4403    // happily parse something like:
4404    //
4405    //   class X {
4406    //     float ~X();
4407    //   };
4408    //
4409    // The return type will be eliminated later.
4410    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4411      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4412      << SourceRange(D.getIdentifierLoc());
4413  }
4414
4415  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4416  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4417    if (FTI.TypeQuals & Qualifiers::Const)
4418      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4419        << "const" << SourceRange(D.getIdentifierLoc());
4420    if (FTI.TypeQuals & Qualifiers::Volatile)
4421      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4422        << "volatile" << SourceRange(D.getIdentifierLoc());
4423    if (FTI.TypeQuals & Qualifiers::Restrict)
4424      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4425        << "restrict" << SourceRange(D.getIdentifierLoc());
4426    D.setInvalidType();
4427  }
4428
4429  // C++0x [class.dtor]p2:
4430  //   A destructor shall not be declared with a ref-qualifier.
4431  if (FTI.hasRefQualifier()) {
4432    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4433      << FTI.RefQualifierIsLValueRef
4434      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4435    D.setInvalidType();
4436  }
4437
4438  // Make sure we don't have any parameters.
4439  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4440    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4441
4442    // Delete the parameters.
4443    FTI.freeArgs();
4444    D.setInvalidType();
4445  }
4446
4447  // Make sure the destructor isn't variadic.
4448  if (FTI.isVariadic) {
4449    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4450    D.setInvalidType();
4451  }
4452
4453  // Rebuild the function type "R" without any type qualifiers or
4454  // parameters (in case any of the errors above fired) and with
4455  // "void" as the return type, since destructors don't have return
4456  // types.
4457  if (!D.isInvalidType())
4458    return R;
4459
4460  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4461  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4462  EPI.Variadic = false;
4463  EPI.TypeQuals = 0;
4464  EPI.RefQualifier = RQ_None;
4465  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4466}
4467
4468/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4469/// well-formednes of the conversion function declarator @p D with
4470/// type @p R. If there are any errors in the declarator, this routine
4471/// will emit diagnostics and return true. Otherwise, it will return
4472/// false. Either way, the type @p R will be updated to reflect a
4473/// well-formed type for the conversion operator.
4474void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4475                                     StorageClass& SC) {
4476  // C++ [class.conv.fct]p1:
4477  //   Neither parameter types nor return type can be specified. The
4478  //   type of a conversion function (8.3.5) is "function taking no
4479  //   parameter returning conversion-type-id."
4480  if (SC == SC_Static) {
4481    if (!D.isInvalidType())
4482      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4483        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4484        << SourceRange(D.getIdentifierLoc());
4485    D.setInvalidType();
4486    SC = SC_None;
4487  }
4488
4489  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4490
4491  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4492    // Conversion functions don't have return types, but the parser will
4493    // happily parse something like:
4494    //
4495    //   class X {
4496    //     float operator bool();
4497    //   };
4498    //
4499    // The return type will be changed later anyway.
4500    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4501      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4502      << SourceRange(D.getIdentifierLoc());
4503    D.setInvalidType();
4504  }
4505
4506  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4507
4508  // Make sure we don't have any parameters.
4509  if (Proto->getNumArgs() > 0) {
4510    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4511
4512    // Delete the parameters.
4513    D.getFunctionTypeInfo().freeArgs();
4514    D.setInvalidType();
4515  } else if (Proto->isVariadic()) {
4516    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4517    D.setInvalidType();
4518  }
4519
4520  // Diagnose "&operator bool()" and other such nonsense.  This
4521  // is actually a gcc extension which we don't support.
4522  if (Proto->getResultType() != ConvType) {
4523    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4524      << Proto->getResultType();
4525    D.setInvalidType();
4526    ConvType = Proto->getResultType();
4527  }
4528
4529  // C++ [class.conv.fct]p4:
4530  //   The conversion-type-id shall not represent a function type nor
4531  //   an array type.
4532  if (ConvType->isArrayType()) {
4533    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4534    ConvType = Context.getPointerType(ConvType);
4535    D.setInvalidType();
4536  } else if (ConvType->isFunctionType()) {
4537    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4538    ConvType = Context.getPointerType(ConvType);
4539    D.setInvalidType();
4540  }
4541
4542  // Rebuild the function type "R" without any parameters (in case any
4543  // of the errors above fired) and with the conversion type as the
4544  // return type.
4545  if (D.isInvalidType())
4546    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4547
4548  // C++0x explicit conversion operators.
4549  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4550    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4551         diag::warn_explicit_conversion_functions)
4552      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4553}
4554
4555/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4556/// the declaration of the given C++ conversion function. This routine
4557/// is responsible for recording the conversion function in the C++
4558/// class, if possible.
4559Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4560  assert(Conversion && "Expected to receive a conversion function declaration");
4561
4562  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4563
4564  // Make sure we aren't redeclaring the conversion function.
4565  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4566
4567  // C++ [class.conv.fct]p1:
4568  //   [...] A conversion function is never used to convert a
4569  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4570  //   same object type (or a reference to it), to a (possibly
4571  //   cv-qualified) base class of that type (or a reference to it),
4572  //   or to (possibly cv-qualified) void.
4573  // FIXME: Suppress this warning if the conversion function ends up being a
4574  // virtual function that overrides a virtual function in a base class.
4575  QualType ClassType
4576    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4577  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4578    ConvType = ConvTypeRef->getPointeeType();
4579  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4580      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4581    /* Suppress diagnostics for instantiations. */;
4582  else if (ConvType->isRecordType()) {
4583    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4584    if (ConvType == ClassType)
4585      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4586        << ClassType;
4587    else if (IsDerivedFrom(ClassType, ConvType))
4588      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4589        <<  ClassType << ConvType;
4590  } else if (ConvType->isVoidType()) {
4591    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4592      << ClassType << ConvType;
4593  }
4594
4595  if (FunctionTemplateDecl *ConversionTemplate
4596                                = Conversion->getDescribedFunctionTemplate())
4597    return ConversionTemplate;
4598
4599  return Conversion;
4600}
4601
4602//===----------------------------------------------------------------------===//
4603// Namespace Handling
4604//===----------------------------------------------------------------------===//
4605
4606
4607
4608/// ActOnStartNamespaceDef - This is called at the start of a namespace
4609/// definition.
4610Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4611                                   SourceLocation InlineLoc,
4612                                   SourceLocation NamespaceLoc,
4613                                   SourceLocation IdentLoc,
4614                                   IdentifierInfo *II,
4615                                   SourceLocation LBrace,
4616                                   AttributeList *AttrList) {
4617  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4618  // For anonymous namespace, take the location of the left brace.
4619  SourceLocation Loc = II ? IdentLoc : LBrace;
4620  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4621                                                 StartLoc, Loc, II);
4622  Namespc->setInline(InlineLoc.isValid());
4623
4624  Scope *DeclRegionScope = NamespcScope->getParent();
4625
4626  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4627
4628  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4629    PushNamespaceVisibilityAttr(Attr);
4630
4631  if (II) {
4632    // C++ [namespace.def]p2:
4633    //   The identifier in an original-namespace-definition shall not
4634    //   have been previously defined in the declarative region in
4635    //   which the original-namespace-definition appears. The
4636    //   identifier in an original-namespace-definition is the name of
4637    //   the namespace. Subsequently in that declarative region, it is
4638    //   treated as an original-namespace-name.
4639    //
4640    // Since namespace names are unique in their scope, and we don't
4641    // look through using directives, just look for any ordinary names.
4642
4643    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4644      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4645      Decl::IDNS_Namespace;
4646    NamedDecl *PrevDecl = 0;
4647    for (DeclContext::lookup_result R
4648            = CurContext->getRedeclContext()->lookup(II);
4649         R.first != R.second; ++R.first) {
4650      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4651        PrevDecl = *R.first;
4652        break;
4653      }
4654    }
4655
4656    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4657      // This is an extended namespace definition.
4658      if (Namespc->isInline() != OrigNS->isInline()) {
4659        // inline-ness must match
4660        if (OrigNS->isInline()) {
4661          // The user probably just forgot the 'inline', so suggest that it
4662          // be added back.
4663          Diag(Namespc->getLocation(),
4664               diag::warn_inline_namespace_reopened_noninline)
4665            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4666        } else {
4667          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4668            << Namespc->isInline();
4669        }
4670        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4671
4672        // Recover by ignoring the new namespace's inline status.
4673        Namespc->setInline(OrigNS->isInline());
4674      }
4675
4676      // Attach this namespace decl to the chain of extended namespace
4677      // definitions.
4678      OrigNS->setNextNamespace(Namespc);
4679      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4680
4681      // Remove the previous declaration from the scope.
4682      if (DeclRegionScope->isDeclScope(OrigNS)) {
4683        IdResolver.RemoveDecl(OrigNS);
4684        DeclRegionScope->RemoveDecl(OrigNS);
4685      }
4686    } else if (PrevDecl) {
4687      // This is an invalid name redefinition.
4688      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4689       << Namespc->getDeclName();
4690      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4691      Namespc->setInvalidDecl();
4692      // Continue on to push Namespc as current DeclContext and return it.
4693    } else if (II->isStr("std") &&
4694               CurContext->getRedeclContext()->isTranslationUnit()) {
4695      // This is the first "real" definition of the namespace "std", so update
4696      // our cache of the "std" namespace to point at this definition.
4697      if (NamespaceDecl *StdNS = getStdNamespace()) {
4698        // We had already defined a dummy namespace "std". Link this new
4699        // namespace definition to the dummy namespace "std".
4700        StdNS->setNextNamespace(Namespc);
4701        StdNS->setLocation(IdentLoc);
4702        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4703      }
4704
4705      // Make our StdNamespace cache point at the first real definition of the
4706      // "std" namespace.
4707      StdNamespace = Namespc;
4708
4709      // Add this instance of "std" to the set of known namespaces
4710      KnownNamespaces[Namespc] = false;
4711    } else if (!Namespc->isInline()) {
4712      // Since this is an "original" namespace, add it to the known set of
4713      // namespaces if it is not an inline namespace.
4714      KnownNamespaces[Namespc] = false;
4715    }
4716
4717    PushOnScopeChains(Namespc, DeclRegionScope);
4718  } else {
4719    // Anonymous namespaces.
4720    assert(Namespc->isAnonymousNamespace());
4721
4722    // Link the anonymous namespace into its parent.
4723    NamespaceDecl *PrevDecl;
4724    DeclContext *Parent = CurContext->getRedeclContext();
4725    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4726      PrevDecl = TU->getAnonymousNamespace();
4727      TU->setAnonymousNamespace(Namespc);
4728    } else {
4729      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4730      PrevDecl = ND->getAnonymousNamespace();
4731      ND->setAnonymousNamespace(Namespc);
4732    }
4733
4734    // Link the anonymous namespace with its previous declaration.
4735    if (PrevDecl) {
4736      assert(PrevDecl->isAnonymousNamespace());
4737      assert(!PrevDecl->getNextNamespace());
4738      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4739      PrevDecl->setNextNamespace(Namespc);
4740
4741      if (Namespc->isInline() != PrevDecl->isInline()) {
4742        // inline-ness must match
4743        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4744          << Namespc->isInline();
4745        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4746        Namespc->setInvalidDecl();
4747        // Recover by ignoring the new namespace's inline status.
4748        Namespc->setInline(PrevDecl->isInline());
4749      }
4750    }
4751
4752    CurContext->addDecl(Namespc);
4753
4754    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4755    //   behaves as if it were replaced by
4756    //     namespace unique { /* empty body */ }
4757    //     using namespace unique;
4758    //     namespace unique { namespace-body }
4759    //   where all occurrences of 'unique' in a translation unit are
4760    //   replaced by the same identifier and this identifier differs
4761    //   from all other identifiers in the entire program.
4762
4763    // We just create the namespace with an empty name and then add an
4764    // implicit using declaration, just like the standard suggests.
4765    //
4766    // CodeGen enforces the "universally unique" aspect by giving all
4767    // declarations semantically contained within an anonymous
4768    // namespace internal linkage.
4769
4770    if (!PrevDecl) {
4771      UsingDirectiveDecl* UD
4772        = UsingDirectiveDecl::Create(Context, CurContext,
4773                                     /* 'using' */ LBrace,
4774                                     /* 'namespace' */ SourceLocation(),
4775                                     /* qualifier */ NestedNameSpecifierLoc(),
4776                                     /* identifier */ SourceLocation(),
4777                                     Namespc,
4778                                     /* Ancestor */ CurContext);
4779      UD->setImplicit();
4780      CurContext->addDecl(UD);
4781    }
4782  }
4783
4784  // Although we could have an invalid decl (i.e. the namespace name is a
4785  // redefinition), push it as current DeclContext and try to continue parsing.
4786  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4787  // for the namespace has the declarations that showed up in that particular
4788  // namespace definition.
4789  PushDeclContext(NamespcScope, Namespc);
4790  return Namespc;
4791}
4792
4793/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4794/// is a namespace alias, returns the namespace it points to.
4795static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4796  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4797    return AD->getNamespace();
4798  return dyn_cast_or_null<NamespaceDecl>(D);
4799}
4800
4801/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4802/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4803void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4804  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4805  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4806  Namespc->setRBraceLoc(RBrace);
4807  PopDeclContext();
4808  if (Namespc->hasAttr<VisibilityAttr>())
4809    PopPragmaVisibility();
4810}
4811
4812CXXRecordDecl *Sema::getStdBadAlloc() const {
4813  return cast_or_null<CXXRecordDecl>(
4814                                  StdBadAlloc.get(Context.getExternalSource()));
4815}
4816
4817NamespaceDecl *Sema::getStdNamespace() const {
4818  return cast_or_null<NamespaceDecl>(
4819                                 StdNamespace.get(Context.getExternalSource()));
4820}
4821
4822/// \brief Retrieve the special "std" namespace, which may require us to
4823/// implicitly define the namespace.
4824NamespaceDecl *Sema::getOrCreateStdNamespace() {
4825  if (!StdNamespace) {
4826    // The "std" namespace has not yet been defined, so build one implicitly.
4827    StdNamespace = NamespaceDecl::Create(Context,
4828                                         Context.getTranslationUnitDecl(),
4829                                         SourceLocation(), SourceLocation(),
4830                                         &PP.getIdentifierTable().get("std"));
4831    getStdNamespace()->setImplicit(true);
4832  }
4833
4834  return getStdNamespace();
4835}
4836
4837/// \brief Determine whether a using statement is in a context where it will be
4838/// apply in all contexts.
4839static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4840  switch (CurContext->getDeclKind()) {
4841    case Decl::TranslationUnit:
4842      return true;
4843    case Decl::LinkageSpec:
4844      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4845    default:
4846      return false;
4847  }
4848}
4849
4850static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
4851                                       CXXScopeSpec &SS,
4852                                       SourceLocation IdentLoc,
4853                                       IdentifierInfo *Ident) {
4854  R.clear();
4855  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
4856                                               R.getLookupKind(), Sc, &SS, NULL,
4857                                               false, S.CTC_NoKeywords, NULL)) {
4858    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
4859        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
4860      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
4861      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
4862      if (DeclContext *DC = S.computeDeclContext(SS, false))
4863        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
4864          << Ident << DC << CorrectedQuotedStr << SS.getRange()
4865          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4866      else
4867        S.Diag(IdentLoc, diag::err_using_directive_suggest)
4868          << Ident << CorrectedQuotedStr
4869          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4870
4871      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
4872           diag::note_namespace_defined_here) << CorrectedQuotedStr;
4873
4874      Ident = Corrected.getCorrectionAsIdentifierInfo();
4875      R.addDecl(Corrected.getCorrectionDecl());
4876      return true;
4877    }
4878    R.setLookupName(Ident);
4879  }
4880  return false;
4881}
4882
4883Decl *Sema::ActOnUsingDirective(Scope *S,
4884                                          SourceLocation UsingLoc,
4885                                          SourceLocation NamespcLoc,
4886                                          CXXScopeSpec &SS,
4887                                          SourceLocation IdentLoc,
4888                                          IdentifierInfo *NamespcName,
4889                                          AttributeList *AttrList) {
4890  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4891  assert(NamespcName && "Invalid NamespcName.");
4892  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4893
4894  // This can only happen along a recovery path.
4895  while (S->getFlags() & Scope::TemplateParamScope)
4896    S = S->getParent();
4897  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4898
4899  UsingDirectiveDecl *UDir = 0;
4900  NestedNameSpecifier *Qualifier = 0;
4901  if (SS.isSet())
4902    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4903
4904  // Lookup namespace name.
4905  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4906  LookupParsedName(R, S, &SS);
4907  if (R.isAmbiguous())
4908    return 0;
4909
4910  if (R.empty()) {
4911    R.clear();
4912    // Allow "using namespace std;" or "using namespace ::std;" even if
4913    // "std" hasn't been defined yet, for GCC compatibility.
4914    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4915        NamespcName->isStr("std")) {
4916      Diag(IdentLoc, diag::ext_using_undefined_std);
4917      R.addDecl(getOrCreateStdNamespace());
4918      R.resolveKind();
4919    }
4920    // Otherwise, attempt typo correction.
4921    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
4922  }
4923
4924  if (!R.empty()) {
4925    NamedDecl *Named = R.getFoundDecl();
4926    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4927        && "expected namespace decl");
4928    // C++ [namespace.udir]p1:
4929    //   A using-directive specifies that the names in the nominated
4930    //   namespace can be used in the scope in which the
4931    //   using-directive appears after the using-directive. During
4932    //   unqualified name lookup (3.4.1), the names appear as if they
4933    //   were declared in the nearest enclosing namespace which
4934    //   contains both the using-directive and the nominated
4935    //   namespace. [Note: in this context, "contains" means "contains
4936    //   directly or indirectly". ]
4937
4938    // Find enclosing context containing both using-directive and
4939    // nominated namespace.
4940    NamespaceDecl *NS = getNamespaceDecl(Named);
4941    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4942    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4943      CommonAncestor = CommonAncestor->getParent();
4944
4945    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4946                                      SS.getWithLocInContext(Context),
4947                                      IdentLoc, Named, CommonAncestor);
4948
4949    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4950        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
4951      Diag(IdentLoc, diag::warn_using_directive_in_header);
4952    }
4953
4954    PushUsingDirective(S, UDir);
4955  } else {
4956    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4957  }
4958
4959  // FIXME: We ignore attributes for now.
4960  return UDir;
4961}
4962
4963void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4964  // If scope has associated entity, then using directive is at namespace
4965  // or translation unit scope. We add UsingDirectiveDecls, into
4966  // it's lookup structure.
4967  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4968    Ctx->addDecl(UDir);
4969  else
4970    // Otherwise it is block-sope. using-directives will affect lookup
4971    // only to the end of scope.
4972    S->PushUsingDirective(UDir);
4973}
4974
4975
4976Decl *Sema::ActOnUsingDeclaration(Scope *S,
4977                                  AccessSpecifier AS,
4978                                  bool HasUsingKeyword,
4979                                  SourceLocation UsingLoc,
4980                                  CXXScopeSpec &SS,
4981                                  UnqualifiedId &Name,
4982                                  AttributeList *AttrList,
4983                                  bool IsTypeName,
4984                                  SourceLocation TypenameLoc) {
4985  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4986
4987  switch (Name.getKind()) {
4988  case UnqualifiedId::IK_ImplicitSelfParam:
4989  case UnqualifiedId::IK_Identifier:
4990  case UnqualifiedId::IK_OperatorFunctionId:
4991  case UnqualifiedId::IK_LiteralOperatorId:
4992  case UnqualifiedId::IK_ConversionFunctionId:
4993    break;
4994
4995  case UnqualifiedId::IK_ConstructorName:
4996  case UnqualifiedId::IK_ConstructorTemplateId:
4997    // C++0x inherited constructors.
4998    if (getLangOptions().CPlusPlus0x) break;
4999
5000    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5001      << SS.getRange();
5002    return 0;
5003
5004  case UnqualifiedId::IK_DestructorName:
5005    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5006      << SS.getRange();
5007    return 0;
5008
5009  case UnqualifiedId::IK_TemplateId:
5010    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5011      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5012    return 0;
5013  }
5014
5015  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5016  DeclarationName TargetName = TargetNameInfo.getName();
5017  if (!TargetName)
5018    return 0;
5019
5020  // Warn about using declarations.
5021  // TODO: store that the declaration was written without 'using' and
5022  // talk about access decls instead of using decls in the
5023  // diagnostics.
5024  if (!HasUsingKeyword) {
5025    UsingLoc = Name.getSourceRange().getBegin();
5026
5027    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5028      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5029  }
5030
5031  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5032      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5033    return 0;
5034
5035  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5036                                        TargetNameInfo, AttrList,
5037                                        /* IsInstantiation */ false,
5038                                        IsTypeName, TypenameLoc);
5039  if (UD)
5040    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5041
5042  return UD;
5043}
5044
5045/// \brief Determine whether a using declaration considers the given
5046/// declarations as "equivalent", e.g., if they are redeclarations of
5047/// the same entity or are both typedefs of the same type.
5048static bool
5049IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5050                         bool &SuppressRedeclaration) {
5051  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5052    SuppressRedeclaration = false;
5053    return true;
5054  }
5055
5056  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5057    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5058      SuppressRedeclaration = true;
5059      return Context.hasSameType(TD1->getUnderlyingType(),
5060                                 TD2->getUnderlyingType());
5061    }
5062
5063  return false;
5064}
5065
5066
5067/// Determines whether to create a using shadow decl for a particular
5068/// decl, given the set of decls existing prior to this using lookup.
5069bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5070                                const LookupResult &Previous) {
5071  // Diagnose finding a decl which is not from a base class of the
5072  // current class.  We do this now because there are cases where this
5073  // function will silently decide not to build a shadow decl, which
5074  // will pre-empt further diagnostics.
5075  //
5076  // We don't need to do this in C++0x because we do the check once on
5077  // the qualifier.
5078  //
5079  // FIXME: diagnose the following if we care enough:
5080  //   struct A { int foo; };
5081  //   struct B : A { using A::foo; };
5082  //   template <class T> struct C : A {};
5083  //   template <class T> struct D : C<T> { using B::foo; } // <---
5084  // This is invalid (during instantiation) in C++03 because B::foo
5085  // resolves to the using decl in B, which is not a base class of D<T>.
5086  // We can't diagnose it immediately because C<T> is an unknown
5087  // specialization.  The UsingShadowDecl in D<T> then points directly
5088  // to A::foo, which will look well-formed when we instantiate.
5089  // The right solution is to not collapse the shadow-decl chain.
5090  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5091    DeclContext *OrigDC = Orig->getDeclContext();
5092
5093    // Handle enums and anonymous structs.
5094    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5095    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5096    while (OrigRec->isAnonymousStructOrUnion())
5097      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5098
5099    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5100      if (OrigDC == CurContext) {
5101        Diag(Using->getLocation(),
5102             diag::err_using_decl_nested_name_specifier_is_current_class)
5103          << Using->getQualifierLoc().getSourceRange();
5104        Diag(Orig->getLocation(), diag::note_using_decl_target);
5105        return true;
5106      }
5107
5108      Diag(Using->getQualifierLoc().getBeginLoc(),
5109           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5110        << Using->getQualifier()
5111        << cast<CXXRecordDecl>(CurContext)
5112        << Using->getQualifierLoc().getSourceRange();
5113      Diag(Orig->getLocation(), diag::note_using_decl_target);
5114      return true;
5115    }
5116  }
5117
5118  if (Previous.empty()) return false;
5119
5120  NamedDecl *Target = Orig;
5121  if (isa<UsingShadowDecl>(Target))
5122    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5123
5124  // If the target happens to be one of the previous declarations, we
5125  // don't have a conflict.
5126  //
5127  // FIXME: but we might be increasing its access, in which case we
5128  // should redeclare it.
5129  NamedDecl *NonTag = 0, *Tag = 0;
5130  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5131         I != E; ++I) {
5132    NamedDecl *D = (*I)->getUnderlyingDecl();
5133    bool Result;
5134    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5135      return Result;
5136
5137    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5138  }
5139
5140  if (Target->isFunctionOrFunctionTemplate()) {
5141    FunctionDecl *FD;
5142    if (isa<FunctionTemplateDecl>(Target))
5143      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5144    else
5145      FD = cast<FunctionDecl>(Target);
5146
5147    NamedDecl *OldDecl = 0;
5148    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5149    case Ovl_Overload:
5150      return false;
5151
5152    case Ovl_NonFunction:
5153      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5154      break;
5155
5156    // We found a decl with the exact signature.
5157    case Ovl_Match:
5158      // If we're in a record, we want to hide the target, so we
5159      // return true (without a diagnostic) to tell the caller not to
5160      // build a shadow decl.
5161      if (CurContext->isRecord())
5162        return true;
5163
5164      // If we're not in a record, this is an error.
5165      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5166      break;
5167    }
5168
5169    Diag(Target->getLocation(), diag::note_using_decl_target);
5170    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5171    return true;
5172  }
5173
5174  // Target is not a function.
5175
5176  if (isa<TagDecl>(Target)) {
5177    // No conflict between a tag and a non-tag.
5178    if (!Tag) return false;
5179
5180    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5181    Diag(Target->getLocation(), diag::note_using_decl_target);
5182    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5183    return true;
5184  }
5185
5186  // No conflict between a tag and a non-tag.
5187  if (!NonTag) return false;
5188
5189  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5190  Diag(Target->getLocation(), diag::note_using_decl_target);
5191  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5192  return true;
5193}
5194
5195/// Builds a shadow declaration corresponding to a 'using' declaration.
5196UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5197                                            UsingDecl *UD,
5198                                            NamedDecl *Orig) {
5199
5200  // If we resolved to another shadow declaration, just coalesce them.
5201  NamedDecl *Target = Orig;
5202  if (isa<UsingShadowDecl>(Target)) {
5203    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5204    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5205  }
5206
5207  UsingShadowDecl *Shadow
5208    = UsingShadowDecl::Create(Context, CurContext,
5209                              UD->getLocation(), UD, Target);
5210  UD->addShadowDecl(Shadow);
5211
5212  Shadow->setAccess(UD->getAccess());
5213  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5214    Shadow->setInvalidDecl();
5215
5216  if (S)
5217    PushOnScopeChains(Shadow, S);
5218  else
5219    CurContext->addDecl(Shadow);
5220
5221
5222  return Shadow;
5223}
5224
5225/// Hides a using shadow declaration.  This is required by the current
5226/// using-decl implementation when a resolvable using declaration in a
5227/// class is followed by a declaration which would hide or override
5228/// one or more of the using decl's targets; for example:
5229///
5230///   struct Base { void foo(int); };
5231///   struct Derived : Base {
5232///     using Base::foo;
5233///     void foo(int);
5234///   };
5235///
5236/// The governing language is C++03 [namespace.udecl]p12:
5237///
5238///   When a using-declaration brings names from a base class into a
5239///   derived class scope, member functions in the derived class
5240///   override and/or hide member functions with the same name and
5241///   parameter types in a base class (rather than conflicting).
5242///
5243/// There are two ways to implement this:
5244///   (1) optimistically create shadow decls when they're not hidden
5245///       by existing declarations, or
5246///   (2) don't create any shadow decls (or at least don't make them
5247///       visible) until we've fully parsed/instantiated the class.
5248/// The problem with (1) is that we might have to retroactively remove
5249/// a shadow decl, which requires several O(n) operations because the
5250/// decl structures are (very reasonably) not designed for removal.
5251/// (2) avoids this but is very fiddly and phase-dependent.
5252void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5253  if (Shadow->getDeclName().getNameKind() ==
5254        DeclarationName::CXXConversionFunctionName)
5255    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5256
5257  // Remove it from the DeclContext...
5258  Shadow->getDeclContext()->removeDecl(Shadow);
5259
5260  // ...and the scope, if applicable...
5261  if (S) {
5262    S->RemoveDecl(Shadow);
5263    IdResolver.RemoveDecl(Shadow);
5264  }
5265
5266  // ...and the using decl.
5267  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5268
5269  // TODO: complain somehow if Shadow was used.  It shouldn't
5270  // be possible for this to happen, because...?
5271}
5272
5273/// Builds a using declaration.
5274///
5275/// \param IsInstantiation - Whether this call arises from an
5276///   instantiation of an unresolved using declaration.  We treat
5277///   the lookup differently for these declarations.
5278NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5279                                       SourceLocation UsingLoc,
5280                                       CXXScopeSpec &SS,
5281                                       const DeclarationNameInfo &NameInfo,
5282                                       AttributeList *AttrList,
5283                                       bool IsInstantiation,
5284                                       bool IsTypeName,
5285                                       SourceLocation TypenameLoc) {
5286  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5287  SourceLocation IdentLoc = NameInfo.getLoc();
5288  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5289
5290  // FIXME: We ignore attributes for now.
5291
5292  if (SS.isEmpty()) {
5293    Diag(IdentLoc, diag::err_using_requires_qualname);
5294    return 0;
5295  }
5296
5297  // Do the redeclaration lookup in the current scope.
5298  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5299                        ForRedeclaration);
5300  Previous.setHideTags(false);
5301  if (S) {
5302    LookupName(Previous, S);
5303
5304    // It is really dumb that we have to do this.
5305    LookupResult::Filter F = Previous.makeFilter();
5306    while (F.hasNext()) {
5307      NamedDecl *D = F.next();
5308      if (!isDeclInScope(D, CurContext, S))
5309        F.erase();
5310    }
5311    F.done();
5312  } else {
5313    assert(IsInstantiation && "no scope in non-instantiation");
5314    assert(CurContext->isRecord() && "scope not record in instantiation");
5315    LookupQualifiedName(Previous, CurContext);
5316  }
5317
5318  // Check for invalid redeclarations.
5319  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5320    return 0;
5321
5322  // Check for bad qualifiers.
5323  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5324    return 0;
5325
5326  DeclContext *LookupContext = computeDeclContext(SS);
5327  NamedDecl *D;
5328  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5329  if (!LookupContext) {
5330    if (IsTypeName) {
5331      // FIXME: not all declaration name kinds are legal here
5332      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5333                                              UsingLoc, TypenameLoc,
5334                                              QualifierLoc,
5335                                              IdentLoc, NameInfo.getName());
5336    } else {
5337      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5338                                           QualifierLoc, NameInfo);
5339    }
5340  } else {
5341    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5342                          NameInfo, IsTypeName);
5343  }
5344  D->setAccess(AS);
5345  CurContext->addDecl(D);
5346
5347  if (!LookupContext) return D;
5348  UsingDecl *UD = cast<UsingDecl>(D);
5349
5350  if (RequireCompleteDeclContext(SS, LookupContext)) {
5351    UD->setInvalidDecl();
5352    return UD;
5353  }
5354
5355  // Constructor inheriting using decls get special treatment.
5356  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5357    if (CheckInheritedConstructorUsingDecl(UD))
5358      UD->setInvalidDecl();
5359    return UD;
5360  }
5361
5362  // Otherwise, look up the target name.
5363
5364  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5365  R.setUsingDeclaration(true);
5366
5367  // Unlike most lookups, we don't always want to hide tag
5368  // declarations: tag names are visible through the using declaration
5369  // even if hidden by ordinary names, *except* in a dependent context
5370  // where it's important for the sanity of two-phase lookup.
5371  if (!IsInstantiation)
5372    R.setHideTags(false);
5373
5374  LookupQualifiedName(R, LookupContext);
5375
5376  if (R.empty()) {
5377    Diag(IdentLoc, diag::err_no_member)
5378      << NameInfo.getName() << LookupContext << SS.getRange();
5379    UD->setInvalidDecl();
5380    return UD;
5381  }
5382
5383  if (R.isAmbiguous()) {
5384    UD->setInvalidDecl();
5385    return UD;
5386  }
5387
5388  if (IsTypeName) {
5389    // If we asked for a typename and got a non-type decl, error out.
5390    if (!R.getAsSingle<TypeDecl>()) {
5391      Diag(IdentLoc, diag::err_using_typename_non_type);
5392      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5393        Diag((*I)->getUnderlyingDecl()->getLocation(),
5394             diag::note_using_decl_target);
5395      UD->setInvalidDecl();
5396      return UD;
5397    }
5398  } else {
5399    // If we asked for a non-typename and we got a type, error out,
5400    // but only if this is an instantiation of an unresolved using
5401    // decl.  Otherwise just silently find the type name.
5402    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5403      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5404      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5405      UD->setInvalidDecl();
5406      return UD;
5407    }
5408  }
5409
5410  // C++0x N2914 [namespace.udecl]p6:
5411  // A using-declaration shall not name a namespace.
5412  if (R.getAsSingle<NamespaceDecl>()) {
5413    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5414      << SS.getRange();
5415    UD->setInvalidDecl();
5416    return UD;
5417  }
5418
5419  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5420    if (!CheckUsingShadowDecl(UD, *I, Previous))
5421      BuildUsingShadowDecl(S, UD, *I);
5422  }
5423
5424  return UD;
5425}
5426
5427/// Additional checks for a using declaration referring to a constructor name.
5428bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5429  if (UD->isTypeName()) {
5430    // FIXME: Cannot specify typename when specifying constructor
5431    return true;
5432  }
5433
5434  const Type *SourceType = UD->getQualifier()->getAsType();
5435  assert(SourceType &&
5436         "Using decl naming constructor doesn't have type in scope spec.");
5437  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5438
5439  // Check whether the named type is a direct base class.
5440  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5441  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5442  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5443       BaseIt != BaseE; ++BaseIt) {
5444    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5445    if (CanonicalSourceType == BaseType)
5446      break;
5447  }
5448
5449  if (BaseIt == BaseE) {
5450    // Did not find SourceType in the bases.
5451    Diag(UD->getUsingLocation(),
5452         diag::err_using_decl_constructor_not_in_direct_base)
5453      << UD->getNameInfo().getSourceRange()
5454      << QualType(SourceType, 0) << TargetClass;
5455    return true;
5456  }
5457
5458  BaseIt->setInheritConstructors();
5459
5460  return false;
5461}
5462
5463/// Checks that the given using declaration is not an invalid
5464/// redeclaration.  Note that this is checking only for the using decl
5465/// itself, not for any ill-formedness among the UsingShadowDecls.
5466bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5467                                       bool isTypeName,
5468                                       const CXXScopeSpec &SS,
5469                                       SourceLocation NameLoc,
5470                                       const LookupResult &Prev) {
5471  // C++03 [namespace.udecl]p8:
5472  // C++0x [namespace.udecl]p10:
5473  //   A using-declaration is a declaration and can therefore be used
5474  //   repeatedly where (and only where) multiple declarations are
5475  //   allowed.
5476  //
5477  // That's in non-member contexts.
5478  if (!CurContext->getRedeclContext()->isRecord())
5479    return false;
5480
5481  NestedNameSpecifier *Qual
5482    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5483
5484  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5485    NamedDecl *D = *I;
5486
5487    bool DTypename;
5488    NestedNameSpecifier *DQual;
5489    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5490      DTypename = UD->isTypeName();
5491      DQual = UD->getQualifier();
5492    } else if (UnresolvedUsingValueDecl *UD
5493                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5494      DTypename = false;
5495      DQual = UD->getQualifier();
5496    } else if (UnresolvedUsingTypenameDecl *UD
5497                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5498      DTypename = true;
5499      DQual = UD->getQualifier();
5500    } else continue;
5501
5502    // using decls differ if one says 'typename' and the other doesn't.
5503    // FIXME: non-dependent using decls?
5504    if (isTypeName != DTypename) continue;
5505
5506    // using decls differ if they name different scopes (but note that
5507    // template instantiation can cause this check to trigger when it
5508    // didn't before instantiation).
5509    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5510        Context.getCanonicalNestedNameSpecifier(DQual))
5511      continue;
5512
5513    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5514    Diag(D->getLocation(), diag::note_using_decl) << 1;
5515    return true;
5516  }
5517
5518  return false;
5519}
5520
5521
5522/// Checks that the given nested-name qualifier used in a using decl
5523/// in the current context is appropriately related to the current
5524/// scope.  If an error is found, diagnoses it and returns true.
5525bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5526                                   const CXXScopeSpec &SS,
5527                                   SourceLocation NameLoc) {
5528  DeclContext *NamedContext = computeDeclContext(SS);
5529
5530  if (!CurContext->isRecord()) {
5531    // C++03 [namespace.udecl]p3:
5532    // C++0x [namespace.udecl]p8:
5533    //   A using-declaration for a class member shall be a member-declaration.
5534
5535    // If we weren't able to compute a valid scope, it must be a
5536    // dependent class scope.
5537    if (!NamedContext || NamedContext->isRecord()) {
5538      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5539        << SS.getRange();
5540      return true;
5541    }
5542
5543    // Otherwise, everything is known to be fine.
5544    return false;
5545  }
5546
5547  // The current scope is a record.
5548
5549  // If the named context is dependent, we can't decide much.
5550  if (!NamedContext) {
5551    // FIXME: in C++0x, we can diagnose if we can prove that the
5552    // nested-name-specifier does not refer to a base class, which is
5553    // still possible in some cases.
5554
5555    // Otherwise we have to conservatively report that things might be
5556    // okay.
5557    return false;
5558  }
5559
5560  if (!NamedContext->isRecord()) {
5561    // Ideally this would point at the last name in the specifier,
5562    // but we don't have that level of source info.
5563    Diag(SS.getRange().getBegin(),
5564         diag::err_using_decl_nested_name_specifier_is_not_class)
5565      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5566    return true;
5567  }
5568
5569  if (!NamedContext->isDependentContext() &&
5570      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5571    return true;
5572
5573  if (getLangOptions().CPlusPlus0x) {
5574    // C++0x [namespace.udecl]p3:
5575    //   In a using-declaration used as a member-declaration, the
5576    //   nested-name-specifier shall name a base class of the class
5577    //   being defined.
5578
5579    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5580                                 cast<CXXRecordDecl>(NamedContext))) {
5581      if (CurContext == NamedContext) {
5582        Diag(NameLoc,
5583             diag::err_using_decl_nested_name_specifier_is_current_class)
5584          << SS.getRange();
5585        return true;
5586      }
5587
5588      Diag(SS.getRange().getBegin(),
5589           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5590        << (NestedNameSpecifier*) SS.getScopeRep()
5591        << cast<CXXRecordDecl>(CurContext)
5592        << SS.getRange();
5593      return true;
5594    }
5595
5596    return false;
5597  }
5598
5599  // C++03 [namespace.udecl]p4:
5600  //   A using-declaration used as a member-declaration shall refer
5601  //   to a member of a base class of the class being defined [etc.].
5602
5603  // Salient point: SS doesn't have to name a base class as long as
5604  // lookup only finds members from base classes.  Therefore we can
5605  // diagnose here only if we can prove that that can't happen,
5606  // i.e. if the class hierarchies provably don't intersect.
5607
5608  // TODO: it would be nice if "definitely valid" results were cached
5609  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5610  // need to be repeated.
5611
5612  struct UserData {
5613    llvm::DenseSet<const CXXRecordDecl*> Bases;
5614
5615    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5616      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5617      Data->Bases.insert(Base);
5618      return true;
5619    }
5620
5621    bool hasDependentBases(const CXXRecordDecl *Class) {
5622      return !Class->forallBases(collect, this);
5623    }
5624
5625    /// Returns true if the base is dependent or is one of the
5626    /// accumulated base classes.
5627    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5628      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5629      return !Data->Bases.count(Base);
5630    }
5631
5632    bool mightShareBases(const CXXRecordDecl *Class) {
5633      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5634    }
5635  };
5636
5637  UserData Data;
5638
5639  // Returns false if we find a dependent base.
5640  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5641    return false;
5642
5643  // Returns false if the class has a dependent base or if it or one
5644  // of its bases is present in the base set of the current context.
5645  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5646    return false;
5647
5648  Diag(SS.getRange().getBegin(),
5649       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5650    << (NestedNameSpecifier*) SS.getScopeRep()
5651    << cast<CXXRecordDecl>(CurContext)
5652    << SS.getRange();
5653
5654  return true;
5655}
5656
5657Decl *Sema::ActOnAliasDeclaration(Scope *S,
5658                                  AccessSpecifier AS,
5659                                  MultiTemplateParamsArg TemplateParamLists,
5660                                  SourceLocation UsingLoc,
5661                                  UnqualifiedId &Name,
5662                                  TypeResult Type) {
5663  // Skip up to the relevant declaration scope.
5664  while (S->getFlags() & Scope::TemplateParamScope)
5665    S = S->getParent();
5666  assert((S->getFlags() & Scope::DeclScope) &&
5667         "got alias-declaration outside of declaration scope");
5668
5669  if (Type.isInvalid())
5670    return 0;
5671
5672  bool Invalid = false;
5673  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5674  TypeSourceInfo *TInfo = 0;
5675  GetTypeFromParser(Type.get(), &TInfo);
5676
5677  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5678    return 0;
5679
5680  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5681                                      UPPC_DeclarationType)) {
5682    Invalid = true;
5683    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5684                                             TInfo->getTypeLoc().getBeginLoc());
5685  }
5686
5687  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5688  LookupName(Previous, S);
5689
5690  // Warn about shadowing the name of a template parameter.
5691  if (Previous.isSingleResult() &&
5692      Previous.getFoundDecl()->isTemplateParameter()) {
5693    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5694                                        Previous.getFoundDecl()))
5695      Invalid = true;
5696    Previous.clear();
5697  }
5698
5699  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5700         "name in alias declaration must be an identifier");
5701  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5702                                               Name.StartLocation,
5703                                               Name.Identifier, TInfo);
5704
5705  NewTD->setAccess(AS);
5706
5707  if (Invalid)
5708    NewTD->setInvalidDecl();
5709
5710  CheckTypedefForVariablyModifiedType(S, NewTD);
5711  Invalid |= NewTD->isInvalidDecl();
5712
5713  bool Redeclaration = false;
5714
5715  NamedDecl *NewND;
5716  if (TemplateParamLists.size()) {
5717    TypeAliasTemplateDecl *OldDecl = 0;
5718    TemplateParameterList *OldTemplateParams = 0;
5719
5720    if (TemplateParamLists.size() != 1) {
5721      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5722        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5723         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5724    }
5725    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5726
5727    // Only consider previous declarations in the same scope.
5728    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5729                         /*ExplicitInstantiationOrSpecialization*/false);
5730    if (!Previous.empty()) {
5731      Redeclaration = true;
5732
5733      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5734      if (!OldDecl && !Invalid) {
5735        Diag(UsingLoc, diag::err_redefinition_different_kind)
5736          << Name.Identifier;
5737
5738        NamedDecl *OldD = Previous.getRepresentativeDecl();
5739        if (OldD->getLocation().isValid())
5740          Diag(OldD->getLocation(), diag::note_previous_definition);
5741
5742        Invalid = true;
5743      }
5744
5745      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5746        if (TemplateParameterListsAreEqual(TemplateParams,
5747                                           OldDecl->getTemplateParameters(),
5748                                           /*Complain=*/true,
5749                                           TPL_TemplateMatch))
5750          OldTemplateParams = OldDecl->getTemplateParameters();
5751        else
5752          Invalid = true;
5753
5754        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5755        if (!Invalid &&
5756            !Context.hasSameType(OldTD->getUnderlyingType(),
5757                                 NewTD->getUnderlyingType())) {
5758          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5759          // but we can't reasonably accept it.
5760          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5761            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5762          if (OldTD->getLocation().isValid())
5763            Diag(OldTD->getLocation(), diag::note_previous_definition);
5764          Invalid = true;
5765        }
5766      }
5767    }
5768
5769    // Merge any previous default template arguments into our parameters,
5770    // and check the parameter list.
5771    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5772                                   TPC_TypeAliasTemplate))
5773      return 0;
5774
5775    TypeAliasTemplateDecl *NewDecl =
5776      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5777                                    Name.Identifier, TemplateParams,
5778                                    NewTD);
5779
5780    NewDecl->setAccess(AS);
5781
5782    if (Invalid)
5783      NewDecl->setInvalidDecl();
5784    else if (OldDecl)
5785      NewDecl->setPreviousDeclaration(OldDecl);
5786
5787    NewND = NewDecl;
5788  } else {
5789    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5790    NewND = NewTD;
5791  }
5792
5793  if (!Redeclaration)
5794    PushOnScopeChains(NewND, S);
5795
5796  return NewND;
5797}
5798
5799Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5800                                             SourceLocation NamespaceLoc,
5801                                             SourceLocation AliasLoc,
5802                                             IdentifierInfo *Alias,
5803                                             CXXScopeSpec &SS,
5804                                             SourceLocation IdentLoc,
5805                                             IdentifierInfo *Ident) {
5806
5807  // Lookup the namespace name.
5808  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5809  LookupParsedName(R, S, &SS);
5810
5811  // Check if we have a previous declaration with the same name.
5812  NamedDecl *PrevDecl
5813    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5814                       ForRedeclaration);
5815  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5816    PrevDecl = 0;
5817
5818  if (PrevDecl) {
5819    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5820      // We already have an alias with the same name that points to the same
5821      // namespace, so don't create a new one.
5822      // FIXME: At some point, we'll want to create the (redundant)
5823      // declaration to maintain better source information.
5824      if (!R.isAmbiguous() && !R.empty() &&
5825          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5826        return 0;
5827    }
5828
5829    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5830      diag::err_redefinition_different_kind;
5831    Diag(AliasLoc, DiagID) << Alias;
5832    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5833    return 0;
5834  }
5835
5836  if (R.isAmbiguous())
5837    return 0;
5838
5839  if (R.empty()) {
5840    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
5841      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5842      return 0;
5843    }
5844  }
5845
5846  NamespaceAliasDecl *AliasDecl =
5847    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5848                               Alias, SS.getWithLocInContext(Context),
5849                               IdentLoc, R.getFoundDecl());
5850
5851  PushOnScopeChains(AliasDecl, S);
5852  return AliasDecl;
5853}
5854
5855namespace {
5856  /// \brief Scoped object used to handle the state changes required in Sema
5857  /// to implicitly define the body of a C++ member function;
5858  class ImplicitlyDefinedFunctionScope {
5859    Sema &S;
5860    Sema::ContextRAII SavedContext;
5861
5862  public:
5863    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5864      : S(S), SavedContext(S, Method)
5865    {
5866      S.PushFunctionScope();
5867      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5868    }
5869
5870    ~ImplicitlyDefinedFunctionScope() {
5871      S.PopExpressionEvaluationContext();
5872      S.PopFunctionOrBlockScope();
5873    }
5874  };
5875}
5876
5877Sema::ImplicitExceptionSpecification
5878Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5879  // C++ [except.spec]p14:
5880  //   An implicitly declared special member function (Clause 12) shall have an
5881  //   exception-specification. [...]
5882  ImplicitExceptionSpecification ExceptSpec(Context);
5883  if (ClassDecl->isInvalidDecl())
5884    return ExceptSpec;
5885
5886  // Direct base-class constructors.
5887  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5888                                       BEnd = ClassDecl->bases_end();
5889       B != BEnd; ++B) {
5890    if (B->isVirtual()) // Handled below.
5891      continue;
5892
5893    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5894      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5895      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5896      // If this is a deleted function, add it anyway. This might be conformant
5897      // with the standard. This might not. I'm not sure. It might not matter.
5898      if (Constructor)
5899        ExceptSpec.CalledDecl(Constructor);
5900    }
5901  }
5902
5903  // Virtual base-class constructors.
5904  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5905                                       BEnd = ClassDecl->vbases_end();
5906       B != BEnd; ++B) {
5907    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5908      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5909      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5910      // If this is a deleted function, add it anyway. This might be conformant
5911      // with the standard. This might not. I'm not sure. It might not matter.
5912      if (Constructor)
5913        ExceptSpec.CalledDecl(Constructor);
5914    }
5915  }
5916
5917  // Field constructors.
5918  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5919                               FEnd = ClassDecl->field_end();
5920       F != FEnd; ++F) {
5921    if (F->hasInClassInitializer()) {
5922      if (Expr *E = F->getInClassInitializer())
5923        ExceptSpec.CalledExpr(E);
5924      else if (!F->isInvalidDecl())
5925        ExceptSpec.SetDelayed();
5926    } else if (const RecordType *RecordTy
5927              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5928      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5929      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
5930      // If this is a deleted function, add it anyway. This might be conformant
5931      // with the standard. This might not. I'm not sure. It might not matter.
5932      // In particular, the problem is that this function never gets called. It
5933      // might just be ill-formed because this function attempts to refer to
5934      // a deleted function here.
5935      if (Constructor)
5936        ExceptSpec.CalledDecl(Constructor);
5937    }
5938  }
5939
5940  return ExceptSpec;
5941}
5942
5943CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5944                                                     CXXRecordDecl *ClassDecl) {
5945  // C++ [class.ctor]p5:
5946  //   A default constructor for a class X is a constructor of class X
5947  //   that can be called without an argument. If there is no
5948  //   user-declared constructor for class X, a default constructor is
5949  //   implicitly declared. An implicitly-declared default constructor
5950  //   is an inline public member of its class.
5951  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5952         "Should not build implicit default constructor!");
5953
5954  ImplicitExceptionSpecification Spec =
5955    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5956  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5957
5958  // Create the actual constructor declaration.
5959  CanQualType ClassType
5960    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5961  SourceLocation ClassLoc = ClassDecl->getLocation();
5962  DeclarationName Name
5963    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5964  DeclarationNameInfo NameInfo(Name, ClassLoc);
5965  CXXConstructorDecl *DefaultCon
5966    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5967                                 Context.getFunctionType(Context.VoidTy,
5968                                                         0, 0, EPI),
5969                                 /*TInfo=*/0,
5970                                 /*isExplicit=*/false,
5971                                 /*isInline=*/true,
5972                                 /*isImplicitlyDeclared=*/true);
5973  DefaultCon->setAccess(AS_public);
5974  DefaultCon->setDefaulted();
5975  DefaultCon->setImplicit();
5976  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5977
5978  // Note that we have declared this constructor.
5979  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5980
5981  if (Scope *S = getScopeForContext(ClassDecl))
5982    PushOnScopeChains(DefaultCon, S, false);
5983  ClassDecl->addDecl(DefaultCon);
5984
5985  if (ShouldDeleteDefaultConstructor(DefaultCon))
5986    DefaultCon->setDeletedAsWritten();
5987
5988  return DefaultCon;
5989}
5990
5991void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5992                                            CXXConstructorDecl *Constructor) {
5993  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5994          !Constructor->doesThisDeclarationHaveABody() &&
5995          !Constructor->isDeleted()) &&
5996    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
5997
5998  CXXRecordDecl *ClassDecl = Constructor->getParent();
5999  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6000
6001  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6002  DiagnosticErrorTrap Trap(Diags);
6003  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6004      Trap.hasErrorOccurred()) {
6005    Diag(CurrentLocation, diag::note_member_synthesized_at)
6006      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6007    Constructor->setInvalidDecl();
6008    return;
6009  }
6010
6011  SourceLocation Loc = Constructor->getLocation();
6012  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6013
6014  Constructor->setUsed();
6015  MarkVTableUsed(CurrentLocation, ClassDecl);
6016
6017  if (ASTMutationListener *L = getASTMutationListener()) {
6018    L->CompletedImplicitDefinition(Constructor);
6019  }
6020}
6021
6022/// Get any existing defaulted default constructor for the given class. Do not
6023/// implicitly define one if it does not exist.
6024static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6025                                                             CXXRecordDecl *D) {
6026  ASTContext &Context = Self.Context;
6027  QualType ClassType = Context.getTypeDeclType(D);
6028  DeclarationName ConstructorName
6029    = Context.DeclarationNames.getCXXConstructorName(
6030                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6031
6032  DeclContext::lookup_const_iterator Con, ConEnd;
6033  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6034       Con != ConEnd; ++Con) {
6035    // A function template cannot be defaulted.
6036    if (isa<FunctionTemplateDecl>(*Con))
6037      continue;
6038
6039    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6040    if (Constructor->isDefaultConstructor())
6041      return Constructor->isDefaulted() ? Constructor : 0;
6042  }
6043  return 0;
6044}
6045
6046void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6047  if (!D) return;
6048  AdjustDeclIfTemplate(D);
6049
6050  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6051  CXXConstructorDecl *CtorDecl
6052    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6053
6054  if (!CtorDecl) return;
6055
6056  // Compute the exception specification for the default constructor.
6057  const FunctionProtoType *CtorTy =
6058    CtorDecl->getType()->castAs<FunctionProtoType>();
6059  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6060    ImplicitExceptionSpecification Spec =
6061      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6062    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6063    assert(EPI.ExceptionSpecType != EST_Delayed);
6064
6065    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6066  }
6067
6068  // If the default constructor is explicitly defaulted, checking the exception
6069  // specification is deferred until now.
6070  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6071      !ClassDecl->isDependentType())
6072    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6073}
6074
6075void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6076  // We start with an initial pass over the base classes to collect those that
6077  // inherit constructors from. If there are none, we can forgo all further
6078  // processing.
6079  typedef SmallVector<const RecordType *, 4> BasesVector;
6080  BasesVector BasesToInheritFrom;
6081  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6082                                          BaseE = ClassDecl->bases_end();
6083         BaseIt != BaseE; ++BaseIt) {
6084    if (BaseIt->getInheritConstructors()) {
6085      QualType Base = BaseIt->getType();
6086      if (Base->isDependentType()) {
6087        // If we inherit constructors from anything that is dependent, just
6088        // abort processing altogether. We'll get another chance for the
6089        // instantiations.
6090        return;
6091      }
6092      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6093    }
6094  }
6095  if (BasesToInheritFrom.empty())
6096    return;
6097
6098  // Now collect the constructors that we already have in the current class.
6099  // Those take precedence over inherited constructors.
6100  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6101  //   unless there is a user-declared constructor with the same signature in
6102  //   the class where the using-declaration appears.
6103  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6104  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6105                                    CtorE = ClassDecl->ctor_end();
6106       CtorIt != CtorE; ++CtorIt) {
6107    ExistingConstructors.insert(
6108        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6109  }
6110
6111  Scope *S = getScopeForContext(ClassDecl);
6112  DeclarationName CreatedCtorName =
6113      Context.DeclarationNames.getCXXConstructorName(
6114          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6115
6116  // Now comes the true work.
6117  // First, we keep a map from constructor types to the base that introduced
6118  // them. Needed for finding conflicting constructors. We also keep the
6119  // actually inserted declarations in there, for pretty diagnostics.
6120  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6121  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6122  ConstructorToSourceMap InheritedConstructors;
6123  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6124                             BaseE = BasesToInheritFrom.end();
6125       BaseIt != BaseE; ++BaseIt) {
6126    const RecordType *Base = *BaseIt;
6127    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6128    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6129    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6130                                      CtorE = BaseDecl->ctor_end();
6131         CtorIt != CtorE; ++CtorIt) {
6132      // Find the using declaration for inheriting this base's constructors.
6133      DeclarationName Name =
6134          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6135      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6136          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6137      SourceLocation UsingLoc = UD ? UD->getLocation() :
6138                                     ClassDecl->getLocation();
6139
6140      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6141      //   from the class X named in the using-declaration consists of actual
6142      //   constructors and notional constructors that result from the
6143      //   transformation of defaulted parameters as follows:
6144      //   - all non-template default constructors of X, and
6145      //   - for each non-template constructor of X that has at least one
6146      //     parameter with a default argument, the set of constructors that
6147      //     results from omitting any ellipsis parameter specification and
6148      //     successively omitting parameters with a default argument from the
6149      //     end of the parameter-type-list.
6150      CXXConstructorDecl *BaseCtor = *CtorIt;
6151      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6152      const FunctionProtoType *BaseCtorType =
6153          BaseCtor->getType()->getAs<FunctionProtoType>();
6154
6155      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6156                    maxParams = BaseCtor->getNumParams();
6157           params <= maxParams; ++params) {
6158        // Skip default constructors. They're never inherited.
6159        if (params == 0)
6160          continue;
6161        // Skip copy and move constructors for the same reason.
6162        if (CanBeCopyOrMove && params == 1)
6163          continue;
6164
6165        // Build up a function type for this particular constructor.
6166        // FIXME: The working paper does not consider that the exception spec
6167        // for the inheriting constructor might be larger than that of the
6168        // source. This code doesn't yet, either. When it does, this code will
6169        // need to be delayed until after exception specifications and in-class
6170        // member initializers are attached.
6171        const Type *NewCtorType;
6172        if (params == maxParams)
6173          NewCtorType = BaseCtorType;
6174        else {
6175          SmallVector<QualType, 16> Args;
6176          for (unsigned i = 0; i < params; ++i) {
6177            Args.push_back(BaseCtorType->getArgType(i));
6178          }
6179          FunctionProtoType::ExtProtoInfo ExtInfo =
6180              BaseCtorType->getExtProtoInfo();
6181          ExtInfo.Variadic = false;
6182          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6183                                                Args.data(), params, ExtInfo)
6184                       .getTypePtr();
6185        }
6186        const Type *CanonicalNewCtorType =
6187            Context.getCanonicalType(NewCtorType);
6188
6189        // Now that we have the type, first check if the class already has a
6190        // constructor with this signature.
6191        if (ExistingConstructors.count(CanonicalNewCtorType))
6192          continue;
6193
6194        // Then we check if we have already declared an inherited constructor
6195        // with this signature.
6196        std::pair<ConstructorToSourceMap::iterator, bool> result =
6197            InheritedConstructors.insert(std::make_pair(
6198                CanonicalNewCtorType,
6199                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6200        if (!result.second) {
6201          // Already in the map. If it came from a different class, that's an
6202          // error. Not if it's from the same.
6203          CanQualType PreviousBase = result.first->second.first;
6204          if (CanonicalBase != PreviousBase) {
6205            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6206            const CXXConstructorDecl *PrevBaseCtor =
6207                PrevCtor->getInheritedConstructor();
6208            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6209
6210            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6211            Diag(BaseCtor->getLocation(),
6212                 diag::note_using_decl_constructor_conflict_current_ctor);
6213            Diag(PrevBaseCtor->getLocation(),
6214                 diag::note_using_decl_constructor_conflict_previous_ctor);
6215            Diag(PrevCtor->getLocation(),
6216                 diag::note_using_decl_constructor_conflict_previous_using);
6217          }
6218          continue;
6219        }
6220
6221        // OK, we're there, now add the constructor.
6222        // C++0x [class.inhctor]p8: [...] that would be performed by a
6223        //   user-writtern inline constructor [...]
6224        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6225        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6226            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6227            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6228            /*ImplicitlyDeclared=*/true);
6229        NewCtor->setAccess(BaseCtor->getAccess());
6230
6231        // Build up the parameter decls and add them.
6232        SmallVector<ParmVarDecl *, 16> ParamDecls;
6233        for (unsigned i = 0; i < params; ++i) {
6234          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6235                                                   UsingLoc, UsingLoc,
6236                                                   /*IdentifierInfo=*/0,
6237                                                   BaseCtorType->getArgType(i),
6238                                                   /*TInfo=*/0, SC_None,
6239                                                   SC_None, /*DefaultArg=*/0));
6240        }
6241        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6242        NewCtor->setInheritedConstructor(BaseCtor);
6243
6244        PushOnScopeChains(NewCtor, S, false);
6245        ClassDecl->addDecl(NewCtor);
6246        result.first->second.second = NewCtor;
6247      }
6248    }
6249  }
6250}
6251
6252Sema::ImplicitExceptionSpecification
6253Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6254  // C++ [except.spec]p14:
6255  //   An implicitly declared special member function (Clause 12) shall have
6256  //   an exception-specification.
6257  ImplicitExceptionSpecification ExceptSpec(Context);
6258  if (ClassDecl->isInvalidDecl())
6259    return ExceptSpec;
6260
6261  // Direct base-class destructors.
6262  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6263                                       BEnd = ClassDecl->bases_end();
6264       B != BEnd; ++B) {
6265    if (B->isVirtual()) // Handled below.
6266      continue;
6267
6268    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6269      ExceptSpec.CalledDecl(
6270                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6271  }
6272
6273  // Virtual base-class destructors.
6274  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6275                                       BEnd = ClassDecl->vbases_end();
6276       B != BEnd; ++B) {
6277    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6278      ExceptSpec.CalledDecl(
6279                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6280  }
6281
6282  // Field destructors.
6283  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6284                               FEnd = ClassDecl->field_end();
6285       F != FEnd; ++F) {
6286    if (const RecordType *RecordTy
6287        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6288      ExceptSpec.CalledDecl(
6289                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6290  }
6291
6292  return ExceptSpec;
6293}
6294
6295CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6296  // C++ [class.dtor]p2:
6297  //   If a class has no user-declared destructor, a destructor is
6298  //   declared implicitly. An implicitly-declared destructor is an
6299  //   inline public member of its class.
6300
6301  ImplicitExceptionSpecification Spec =
6302      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6303  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6304
6305  // Create the actual destructor declaration.
6306  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6307
6308  CanQualType ClassType
6309    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6310  SourceLocation ClassLoc = ClassDecl->getLocation();
6311  DeclarationName Name
6312    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6313  DeclarationNameInfo NameInfo(Name, ClassLoc);
6314  CXXDestructorDecl *Destructor
6315      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6316                                  /*isInline=*/true,
6317                                  /*isImplicitlyDeclared=*/true);
6318  Destructor->setAccess(AS_public);
6319  Destructor->setDefaulted();
6320  Destructor->setImplicit();
6321  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6322
6323  // Note that we have declared this destructor.
6324  ++ASTContext::NumImplicitDestructorsDeclared;
6325
6326  // Introduce this destructor into its scope.
6327  if (Scope *S = getScopeForContext(ClassDecl))
6328    PushOnScopeChains(Destructor, S, false);
6329  ClassDecl->addDecl(Destructor);
6330
6331  // This could be uniqued if it ever proves significant.
6332  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6333
6334  if (ShouldDeleteDestructor(Destructor))
6335    Destructor->setDeletedAsWritten();
6336
6337  AddOverriddenMethods(ClassDecl, Destructor);
6338
6339  return Destructor;
6340}
6341
6342void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6343                                    CXXDestructorDecl *Destructor) {
6344  assert((Destructor->isDefaulted() &&
6345          !Destructor->doesThisDeclarationHaveABody()) &&
6346         "DefineImplicitDestructor - call it for implicit default dtor");
6347  CXXRecordDecl *ClassDecl = Destructor->getParent();
6348  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6349
6350  if (Destructor->isInvalidDecl())
6351    return;
6352
6353  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6354
6355  DiagnosticErrorTrap Trap(Diags);
6356  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6357                                         Destructor->getParent());
6358
6359  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6360    Diag(CurrentLocation, diag::note_member_synthesized_at)
6361      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6362
6363    Destructor->setInvalidDecl();
6364    return;
6365  }
6366
6367  SourceLocation Loc = Destructor->getLocation();
6368  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6369
6370  Destructor->setUsed();
6371  MarkVTableUsed(CurrentLocation, ClassDecl);
6372
6373  if (ASTMutationListener *L = getASTMutationListener()) {
6374    L->CompletedImplicitDefinition(Destructor);
6375  }
6376}
6377
6378void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6379                                         CXXDestructorDecl *destructor) {
6380  // C++11 [class.dtor]p3:
6381  //   A declaration of a destructor that does not have an exception-
6382  //   specification is implicitly considered to have the same exception-
6383  //   specification as an implicit declaration.
6384  const FunctionProtoType *dtorType = destructor->getType()->
6385                                        getAs<FunctionProtoType>();
6386  if (dtorType->hasExceptionSpec())
6387    return;
6388
6389  ImplicitExceptionSpecification exceptSpec =
6390      ComputeDefaultedDtorExceptionSpec(classDecl);
6391
6392  // Replace the destructor's type.
6393  FunctionProtoType::ExtProtoInfo epi;
6394  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6395  epi.NumExceptions = exceptSpec.size();
6396  epi.Exceptions = exceptSpec.data();
6397  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6398
6399  destructor->setType(ty);
6400
6401  // FIXME: If the destructor has a body that could throw, and the newly created
6402  // spec doesn't allow exceptions, we should emit a warning, because this
6403  // change in behavior can break conforming C++03 programs at runtime.
6404  // However, we don't have a body yet, so it needs to be done somewhere else.
6405}
6406
6407/// \brief Builds a statement that copies the given entity from \p From to
6408/// \c To.
6409///
6410/// This routine is used to copy the members of a class with an
6411/// implicitly-declared copy assignment operator. When the entities being
6412/// copied are arrays, this routine builds for loops to copy them.
6413///
6414/// \param S The Sema object used for type-checking.
6415///
6416/// \param Loc The location where the implicit copy is being generated.
6417///
6418/// \param T The type of the expressions being copied. Both expressions must
6419/// have this type.
6420///
6421/// \param To The expression we are copying to.
6422///
6423/// \param From The expression we are copying from.
6424///
6425/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6426/// Otherwise, it's a non-static member subobject.
6427///
6428/// \param Depth Internal parameter recording the depth of the recursion.
6429///
6430/// \returns A statement or a loop that copies the expressions.
6431static StmtResult
6432BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6433                      Expr *To, Expr *From,
6434                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6435  // C++0x [class.copy]p30:
6436  //   Each subobject is assigned in the manner appropriate to its type:
6437  //
6438  //     - if the subobject is of class type, the copy assignment operator
6439  //       for the class is used (as if by explicit qualification; that is,
6440  //       ignoring any possible virtual overriding functions in more derived
6441  //       classes);
6442  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6443    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6444
6445    // Look for operator=.
6446    DeclarationName Name
6447      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6448    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6449    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6450
6451    // Filter out any result that isn't a copy-assignment operator.
6452    LookupResult::Filter F = OpLookup.makeFilter();
6453    while (F.hasNext()) {
6454      NamedDecl *D = F.next();
6455      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6456        if (Method->isCopyAssignmentOperator())
6457          continue;
6458
6459      F.erase();
6460    }
6461    F.done();
6462
6463    // Suppress the protected check (C++ [class.protected]) for each of the
6464    // assignment operators we found. This strange dance is required when
6465    // we're assigning via a base classes's copy-assignment operator. To
6466    // ensure that we're getting the right base class subobject (without
6467    // ambiguities), we need to cast "this" to that subobject type; to
6468    // ensure that we don't go through the virtual call mechanism, we need
6469    // to qualify the operator= name with the base class (see below). However,
6470    // this means that if the base class has a protected copy assignment
6471    // operator, the protected member access check will fail. So, we
6472    // rewrite "protected" access to "public" access in this case, since we
6473    // know by construction that we're calling from a derived class.
6474    if (CopyingBaseSubobject) {
6475      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6476           L != LEnd; ++L) {
6477        if (L.getAccess() == AS_protected)
6478          L.setAccess(AS_public);
6479      }
6480    }
6481
6482    // Create the nested-name-specifier that will be used to qualify the
6483    // reference to operator=; this is required to suppress the virtual
6484    // call mechanism.
6485    CXXScopeSpec SS;
6486    SS.MakeTrivial(S.Context,
6487                   NestedNameSpecifier::Create(S.Context, 0, false,
6488                                               T.getTypePtr()),
6489                   Loc);
6490
6491    // Create the reference to operator=.
6492    ExprResult OpEqualRef
6493      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6494                                   /*FirstQualifierInScope=*/0, OpLookup,
6495                                   /*TemplateArgs=*/0,
6496                                   /*SuppressQualifierCheck=*/true);
6497    if (OpEqualRef.isInvalid())
6498      return StmtError();
6499
6500    // Build the call to the assignment operator.
6501
6502    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6503                                                  OpEqualRef.takeAs<Expr>(),
6504                                                  Loc, &From, 1, Loc);
6505    if (Call.isInvalid())
6506      return StmtError();
6507
6508    return S.Owned(Call.takeAs<Stmt>());
6509  }
6510
6511  //     - if the subobject is of scalar type, the built-in assignment
6512  //       operator is used.
6513  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6514  if (!ArrayTy) {
6515    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6516    if (Assignment.isInvalid())
6517      return StmtError();
6518
6519    return S.Owned(Assignment.takeAs<Stmt>());
6520  }
6521
6522  //     - if the subobject is an array, each element is assigned, in the
6523  //       manner appropriate to the element type;
6524
6525  // Construct a loop over the array bounds, e.g.,
6526  //
6527  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6528  //
6529  // that will copy each of the array elements.
6530  QualType SizeType = S.Context.getSizeType();
6531
6532  // Create the iteration variable.
6533  IdentifierInfo *IterationVarName = 0;
6534  {
6535    llvm::SmallString<8> Str;
6536    llvm::raw_svector_ostream OS(Str);
6537    OS << "__i" << Depth;
6538    IterationVarName = &S.Context.Idents.get(OS.str());
6539  }
6540  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6541                                          IterationVarName, SizeType,
6542                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6543                                          SC_None, SC_None);
6544
6545  // Initialize the iteration variable to zero.
6546  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6547  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6548
6549  // Create a reference to the iteration variable; we'll use this several
6550  // times throughout.
6551  Expr *IterationVarRef
6552    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6553  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6554
6555  // Create the DeclStmt that holds the iteration variable.
6556  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6557
6558  // Create the comparison against the array bound.
6559  llvm::APInt Upper
6560    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6561  Expr *Comparison
6562    = new (S.Context) BinaryOperator(IterationVarRef,
6563                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6564                                     BO_NE, S.Context.BoolTy,
6565                                     VK_RValue, OK_Ordinary, Loc);
6566
6567  // Create the pre-increment of the iteration variable.
6568  Expr *Increment
6569    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6570                                    VK_LValue, OK_Ordinary, Loc);
6571
6572  // Subscript the "from" and "to" expressions with the iteration variable.
6573  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6574                                                         IterationVarRef, Loc));
6575  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6576                                                       IterationVarRef, Loc));
6577
6578  // Build the copy for an individual element of the array.
6579  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6580                                          To, From, CopyingBaseSubobject,
6581                                          Depth + 1);
6582  if (Copy.isInvalid())
6583    return StmtError();
6584
6585  // Construct the loop that copies all elements of this array.
6586  return S.ActOnForStmt(Loc, Loc, InitStmt,
6587                        S.MakeFullExpr(Comparison),
6588                        0, S.MakeFullExpr(Increment),
6589                        Loc, Copy.take());
6590}
6591
6592std::pair<Sema::ImplicitExceptionSpecification, bool>
6593Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6594                                                   CXXRecordDecl *ClassDecl) {
6595  if (ClassDecl->isInvalidDecl())
6596    return std::make_pair(ImplicitExceptionSpecification(Context), false);
6597
6598  // C++ [class.copy]p10:
6599  //   If the class definition does not explicitly declare a copy
6600  //   assignment operator, one is declared implicitly.
6601  //   The implicitly-defined copy assignment operator for a class X
6602  //   will have the form
6603  //
6604  //       X& X::operator=(const X&)
6605  //
6606  //   if
6607  bool HasConstCopyAssignment = true;
6608
6609  //       -- each direct base class B of X has a copy assignment operator
6610  //          whose parameter is of type const B&, const volatile B& or B,
6611  //          and
6612  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6613                                       BaseEnd = ClassDecl->bases_end();
6614       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6615    // We'll handle this below
6616    if (LangOpts.CPlusPlus0x && Base->isVirtual())
6617      continue;
6618
6619    assert(!Base->getType()->isDependentType() &&
6620           "Cannot generate implicit members for class with dependent bases.");
6621    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6622    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6623                            &HasConstCopyAssignment);
6624  }
6625
6626  // In C++0x, the above citation has "or virtual added"
6627  if (LangOpts.CPlusPlus0x) {
6628    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6629                                         BaseEnd = ClassDecl->vbases_end();
6630         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6631      assert(!Base->getType()->isDependentType() &&
6632             "Cannot generate implicit members for class with dependent bases.");
6633      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6634      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6635                              &HasConstCopyAssignment);
6636    }
6637  }
6638
6639  //       -- for all the nonstatic data members of X that are of a class
6640  //          type M (or array thereof), each such class type has a copy
6641  //          assignment operator whose parameter is of type const M&,
6642  //          const volatile M& or M.
6643  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6644                                  FieldEnd = ClassDecl->field_end();
6645       HasConstCopyAssignment && Field != FieldEnd;
6646       ++Field) {
6647    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6648    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6649      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
6650                              &HasConstCopyAssignment);
6651    }
6652  }
6653
6654  //   Otherwise, the implicitly declared copy assignment operator will
6655  //   have the form
6656  //
6657  //       X& X::operator=(X&)
6658
6659  // C++ [except.spec]p14:
6660  //   An implicitly declared special member function (Clause 12) shall have an
6661  //   exception-specification. [...]
6662
6663  // It is unspecified whether or not an implicit copy assignment operator
6664  // attempts to deduplicate calls to assignment operators of virtual bases are
6665  // made. As such, this exception specification is effectively unspecified.
6666  // Based on a similar decision made for constness in C++0x, we're erring on
6667  // the side of assuming such calls to be made regardless of whether they
6668  // actually happen.
6669  ImplicitExceptionSpecification ExceptSpec(Context);
6670  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
6671  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6672                                       BaseEnd = ClassDecl->bases_end();
6673       Base != BaseEnd; ++Base) {
6674    if (Base->isVirtual())
6675      continue;
6676
6677    CXXRecordDecl *BaseClassDecl
6678      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6679    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6680                                                            ArgQuals, false, 0))
6681      ExceptSpec.CalledDecl(CopyAssign);
6682  }
6683
6684  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6685                                       BaseEnd = ClassDecl->vbases_end();
6686       Base != BaseEnd; ++Base) {
6687    CXXRecordDecl *BaseClassDecl
6688      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6689    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6690                                                            ArgQuals, false, 0))
6691      ExceptSpec.CalledDecl(CopyAssign);
6692  }
6693
6694  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6695                                  FieldEnd = ClassDecl->field_end();
6696       Field != FieldEnd;
6697       ++Field) {
6698    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6699    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6700      if (CXXMethodDecl *CopyAssign =
6701          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
6702        ExceptSpec.CalledDecl(CopyAssign);
6703    }
6704  }
6705
6706  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6707}
6708
6709CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6710  // Note: The following rules are largely analoguous to the copy
6711  // constructor rules. Note that virtual bases are not taken into account
6712  // for determining the argument type of the operator. Note also that
6713  // operators taking an object instead of a reference are allowed.
6714
6715  ImplicitExceptionSpecification Spec(Context);
6716  bool Const;
6717  llvm::tie(Spec, Const) =
6718    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6719
6720  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6721  QualType RetType = Context.getLValueReferenceType(ArgType);
6722  if (Const)
6723    ArgType = ArgType.withConst();
6724  ArgType = Context.getLValueReferenceType(ArgType);
6725
6726  //   An implicitly-declared copy assignment operator is an inline public
6727  //   member of its class.
6728  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6729  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6730  SourceLocation ClassLoc = ClassDecl->getLocation();
6731  DeclarationNameInfo NameInfo(Name, ClassLoc);
6732  CXXMethodDecl *CopyAssignment
6733    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6734                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6735                            /*TInfo=*/0, /*isStatic=*/false,
6736                            /*StorageClassAsWritten=*/SC_None,
6737                            /*isInline=*/true,
6738                            SourceLocation());
6739  CopyAssignment->setAccess(AS_public);
6740  CopyAssignment->setDefaulted();
6741  CopyAssignment->setImplicit();
6742  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6743
6744  // Add the parameter to the operator.
6745  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6746                                               ClassLoc, ClassLoc, /*Id=*/0,
6747                                               ArgType, /*TInfo=*/0,
6748                                               SC_None,
6749                                               SC_None, 0);
6750  CopyAssignment->setParams(&FromParam, 1);
6751
6752  // Note that we have added this copy-assignment operator.
6753  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6754
6755  if (Scope *S = getScopeForContext(ClassDecl))
6756    PushOnScopeChains(CopyAssignment, S, false);
6757  ClassDecl->addDecl(CopyAssignment);
6758
6759  // C++0x [class.copy]p18:
6760  //   ... If the class definition declares a move constructor or move
6761  //   assignment operator, the implicitly declared copy assignment operator is
6762  //   defined as deleted; ...
6763  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
6764      ClassDecl->hasUserDeclaredMoveAssignment() ||
6765      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6766    CopyAssignment->setDeletedAsWritten();
6767
6768  AddOverriddenMethods(ClassDecl, CopyAssignment);
6769  return CopyAssignment;
6770}
6771
6772void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6773                                        CXXMethodDecl *CopyAssignOperator) {
6774  assert((CopyAssignOperator->isDefaulted() &&
6775          CopyAssignOperator->isOverloadedOperator() &&
6776          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6777          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6778         "DefineImplicitCopyAssignment called for wrong function");
6779
6780  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6781
6782  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6783    CopyAssignOperator->setInvalidDecl();
6784    return;
6785  }
6786
6787  CopyAssignOperator->setUsed();
6788
6789  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6790  DiagnosticErrorTrap Trap(Diags);
6791
6792  // C++0x [class.copy]p30:
6793  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6794  //   for a non-union class X performs memberwise copy assignment of its
6795  //   subobjects. The direct base classes of X are assigned first, in the
6796  //   order of their declaration in the base-specifier-list, and then the
6797  //   immediate non-static data members of X are assigned, in the order in
6798  //   which they were declared in the class definition.
6799
6800  // The statements that form the synthesized function body.
6801  ASTOwningVector<Stmt*> Statements(*this);
6802
6803  // The parameter for the "other" object, which we are copying from.
6804  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6805  Qualifiers OtherQuals = Other->getType().getQualifiers();
6806  QualType OtherRefType = Other->getType();
6807  if (const LValueReferenceType *OtherRef
6808                                = OtherRefType->getAs<LValueReferenceType>()) {
6809    OtherRefType = OtherRef->getPointeeType();
6810    OtherQuals = OtherRefType.getQualifiers();
6811  }
6812
6813  // Our location for everything implicitly-generated.
6814  SourceLocation Loc = CopyAssignOperator->getLocation();
6815
6816  // Construct a reference to the "other" object. We'll be using this
6817  // throughout the generated ASTs.
6818  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6819  assert(OtherRef && "Reference to parameter cannot fail!");
6820
6821  // Construct the "this" pointer. We'll be using this throughout the generated
6822  // ASTs.
6823  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6824  assert(This && "Reference to this cannot fail!");
6825
6826  // Assign base classes.
6827  bool Invalid = false;
6828  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6829       E = ClassDecl->bases_end(); Base != E; ++Base) {
6830    // Form the assignment:
6831    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6832    QualType BaseType = Base->getType().getUnqualifiedType();
6833    if (!BaseType->isRecordType()) {
6834      Invalid = true;
6835      continue;
6836    }
6837
6838    CXXCastPath BasePath;
6839    BasePath.push_back(Base);
6840
6841    // Construct the "from" expression, which is an implicit cast to the
6842    // appropriately-qualified base type.
6843    Expr *From = OtherRef;
6844    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6845                             CK_UncheckedDerivedToBase,
6846                             VK_LValue, &BasePath).take();
6847
6848    // Dereference "this".
6849    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6850
6851    // Implicitly cast "this" to the appropriately-qualified base type.
6852    To = ImpCastExprToType(To.take(),
6853                           Context.getCVRQualifiedType(BaseType,
6854                                     CopyAssignOperator->getTypeQualifiers()),
6855                           CK_UncheckedDerivedToBase,
6856                           VK_LValue, &BasePath);
6857
6858    // Build the copy.
6859    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6860                                            To.get(), From,
6861                                            /*CopyingBaseSubobject=*/true);
6862    if (Copy.isInvalid()) {
6863      Diag(CurrentLocation, diag::note_member_synthesized_at)
6864        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6865      CopyAssignOperator->setInvalidDecl();
6866      return;
6867    }
6868
6869    // Success! Record the copy.
6870    Statements.push_back(Copy.takeAs<Expr>());
6871  }
6872
6873  // \brief Reference to the __builtin_memcpy function.
6874  Expr *BuiltinMemCpyRef = 0;
6875  // \brief Reference to the __builtin_objc_memmove_collectable function.
6876  Expr *CollectableMemCpyRef = 0;
6877
6878  // Assign non-static members.
6879  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6880                                  FieldEnd = ClassDecl->field_end();
6881       Field != FieldEnd; ++Field) {
6882    // Check for members of reference type; we can't copy those.
6883    if (Field->getType()->isReferenceType()) {
6884      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6885        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6886      Diag(Field->getLocation(), diag::note_declared_at);
6887      Diag(CurrentLocation, diag::note_member_synthesized_at)
6888        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6889      Invalid = true;
6890      continue;
6891    }
6892
6893    // Check for members of const-qualified, non-class type.
6894    QualType BaseType = Context.getBaseElementType(Field->getType());
6895    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6896      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6897        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6898      Diag(Field->getLocation(), diag::note_declared_at);
6899      Diag(CurrentLocation, diag::note_member_synthesized_at)
6900        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6901      Invalid = true;
6902      continue;
6903    }
6904
6905    // Suppress assigning zero-width bitfields.
6906    if (const Expr *Width = Field->getBitWidth())
6907      if (Width->EvaluateAsInt(Context) == 0)
6908        continue;
6909
6910    QualType FieldType = Field->getType().getNonReferenceType();
6911    if (FieldType->isIncompleteArrayType()) {
6912      assert(ClassDecl->hasFlexibleArrayMember() &&
6913             "Incomplete array type is not valid");
6914      continue;
6915    }
6916
6917    // Build references to the field in the object we're copying from and to.
6918    CXXScopeSpec SS; // Intentionally empty
6919    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6920                              LookupMemberName);
6921    MemberLookup.addDecl(*Field);
6922    MemberLookup.resolveKind();
6923    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6924                                               Loc, /*IsArrow=*/false,
6925                                               SS, 0, MemberLookup, 0);
6926    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6927                                             Loc, /*IsArrow=*/true,
6928                                             SS, 0, MemberLookup, 0);
6929    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6930    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6931
6932    // If the field should be copied with __builtin_memcpy rather than via
6933    // explicit assignments, do so. This optimization only applies for arrays
6934    // of scalars and arrays of class type with trivial copy-assignment
6935    // operators.
6936    if (FieldType->isArrayType() &&
6937        BaseType.hasTrivialCopyAssignment(Context)) {
6938      // Compute the size of the memory buffer to be copied.
6939      QualType SizeType = Context.getSizeType();
6940      llvm::APInt Size(Context.getTypeSize(SizeType),
6941                       Context.getTypeSizeInChars(BaseType).getQuantity());
6942      for (const ConstantArrayType *Array
6943              = Context.getAsConstantArrayType(FieldType);
6944           Array;
6945           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6946        llvm::APInt ArraySize
6947          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6948        Size *= ArraySize;
6949      }
6950
6951      // Take the address of the field references for "from" and "to".
6952      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6953      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6954
6955      bool NeedsCollectableMemCpy =
6956          (BaseType->isRecordType() &&
6957           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6958
6959      if (NeedsCollectableMemCpy) {
6960        if (!CollectableMemCpyRef) {
6961          // Create a reference to the __builtin_objc_memmove_collectable function.
6962          LookupResult R(*this,
6963                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6964                         Loc, LookupOrdinaryName);
6965          LookupName(R, TUScope, true);
6966
6967          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6968          if (!CollectableMemCpy) {
6969            // Something went horribly wrong earlier, and we will have
6970            // complained about it.
6971            Invalid = true;
6972            continue;
6973          }
6974
6975          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6976                                                  CollectableMemCpy->getType(),
6977                                                  VK_LValue, Loc, 0).take();
6978          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6979        }
6980      }
6981      // Create a reference to the __builtin_memcpy builtin function.
6982      else if (!BuiltinMemCpyRef) {
6983        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6984                       LookupOrdinaryName);
6985        LookupName(R, TUScope, true);
6986
6987        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6988        if (!BuiltinMemCpy) {
6989          // Something went horribly wrong earlier, and we will have complained
6990          // about it.
6991          Invalid = true;
6992          continue;
6993        }
6994
6995        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6996                                            BuiltinMemCpy->getType(),
6997                                            VK_LValue, Loc, 0).take();
6998        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6999      }
7000
7001      ASTOwningVector<Expr*> CallArgs(*this);
7002      CallArgs.push_back(To.takeAs<Expr>());
7003      CallArgs.push_back(From.takeAs<Expr>());
7004      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7005      ExprResult Call = ExprError();
7006      if (NeedsCollectableMemCpy)
7007        Call = ActOnCallExpr(/*Scope=*/0,
7008                             CollectableMemCpyRef,
7009                             Loc, move_arg(CallArgs),
7010                             Loc);
7011      else
7012        Call = ActOnCallExpr(/*Scope=*/0,
7013                             BuiltinMemCpyRef,
7014                             Loc, move_arg(CallArgs),
7015                             Loc);
7016
7017      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7018      Statements.push_back(Call.takeAs<Expr>());
7019      continue;
7020    }
7021
7022    // Build the copy of this field.
7023    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7024                                                  To.get(), From.get(),
7025                                              /*CopyingBaseSubobject=*/false);
7026    if (Copy.isInvalid()) {
7027      Diag(CurrentLocation, diag::note_member_synthesized_at)
7028        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7029      CopyAssignOperator->setInvalidDecl();
7030      return;
7031    }
7032
7033    // Success! Record the copy.
7034    Statements.push_back(Copy.takeAs<Stmt>());
7035  }
7036
7037  if (!Invalid) {
7038    // Add a "return *this;"
7039    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7040
7041    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7042    if (Return.isInvalid())
7043      Invalid = true;
7044    else {
7045      Statements.push_back(Return.takeAs<Stmt>());
7046
7047      if (Trap.hasErrorOccurred()) {
7048        Diag(CurrentLocation, diag::note_member_synthesized_at)
7049          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7050        Invalid = true;
7051      }
7052    }
7053  }
7054
7055  if (Invalid) {
7056    CopyAssignOperator->setInvalidDecl();
7057    return;
7058  }
7059
7060  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7061                                            /*isStmtExpr=*/false);
7062  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7063  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7064
7065  if (ASTMutationListener *L = getASTMutationListener()) {
7066    L->CompletedImplicitDefinition(CopyAssignOperator);
7067  }
7068}
7069
7070std::pair<Sema::ImplicitExceptionSpecification, bool>
7071Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7072  if (ClassDecl->isInvalidDecl())
7073    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7074
7075  // C++ [class.copy]p5:
7076  //   The implicitly-declared copy constructor for a class X will
7077  //   have the form
7078  //
7079  //       X::X(const X&)
7080  //
7081  //   if
7082  // FIXME: It ought to be possible to store this on the record.
7083  bool HasConstCopyConstructor = true;
7084
7085  //     -- each direct or virtual base class B of X has a copy
7086  //        constructor whose first parameter is of type const B& or
7087  //        const volatile B&, and
7088  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7089                                       BaseEnd = ClassDecl->bases_end();
7090       HasConstCopyConstructor && Base != BaseEnd;
7091       ++Base) {
7092    // Virtual bases are handled below.
7093    if (Base->isVirtual())
7094      continue;
7095
7096    CXXRecordDecl *BaseClassDecl
7097      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7098    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7099                             &HasConstCopyConstructor);
7100  }
7101
7102  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7103                                       BaseEnd = ClassDecl->vbases_end();
7104       HasConstCopyConstructor && Base != BaseEnd;
7105       ++Base) {
7106    CXXRecordDecl *BaseClassDecl
7107      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7108    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7109                             &HasConstCopyConstructor);
7110  }
7111
7112  //     -- for all the nonstatic data members of X that are of a
7113  //        class type M (or array thereof), each such class type
7114  //        has a copy constructor whose first parameter is of type
7115  //        const M& or const volatile M&.
7116  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7117                                  FieldEnd = ClassDecl->field_end();
7118       HasConstCopyConstructor && Field != FieldEnd;
7119       ++Field) {
7120    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7121    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7122      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
7123                               &HasConstCopyConstructor);
7124    }
7125  }
7126  //   Otherwise, the implicitly declared copy constructor will have
7127  //   the form
7128  //
7129  //       X::X(X&)
7130
7131  // C++ [except.spec]p14:
7132  //   An implicitly declared special member function (Clause 12) shall have an
7133  //   exception-specification. [...]
7134  ImplicitExceptionSpecification ExceptSpec(Context);
7135  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7136  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7137                                       BaseEnd = ClassDecl->bases_end();
7138       Base != BaseEnd;
7139       ++Base) {
7140    // Virtual bases are handled below.
7141    if (Base->isVirtual())
7142      continue;
7143
7144    CXXRecordDecl *BaseClassDecl
7145      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7146    if (CXXConstructorDecl *CopyConstructor =
7147          LookupCopyingConstructor(BaseClassDecl, Quals))
7148      ExceptSpec.CalledDecl(CopyConstructor);
7149  }
7150  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7151                                       BaseEnd = ClassDecl->vbases_end();
7152       Base != BaseEnd;
7153       ++Base) {
7154    CXXRecordDecl *BaseClassDecl
7155      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7156    if (CXXConstructorDecl *CopyConstructor =
7157          LookupCopyingConstructor(BaseClassDecl, Quals))
7158      ExceptSpec.CalledDecl(CopyConstructor);
7159  }
7160  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7161                                  FieldEnd = ClassDecl->field_end();
7162       Field != FieldEnd;
7163       ++Field) {
7164    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7165    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7166      if (CXXConstructorDecl *CopyConstructor =
7167        LookupCopyingConstructor(FieldClassDecl, Quals))
7168      ExceptSpec.CalledDecl(CopyConstructor);
7169    }
7170  }
7171
7172  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7173}
7174
7175CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7176                                                    CXXRecordDecl *ClassDecl) {
7177  // C++ [class.copy]p4:
7178  //   If the class definition does not explicitly declare a copy
7179  //   constructor, one is declared implicitly.
7180
7181  ImplicitExceptionSpecification Spec(Context);
7182  bool Const;
7183  llvm::tie(Spec, Const) =
7184    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7185
7186  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7187  QualType ArgType = ClassType;
7188  if (Const)
7189    ArgType = ArgType.withConst();
7190  ArgType = Context.getLValueReferenceType(ArgType);
7191
7192  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7193
7194  DeclarationName Name
7195    = Context.DeclarationNames.getCXXConstructorName(
7196                                           Context.getCanonicalType(ClassType));
7197  SourceLocation ClassLoc = ClassDecl->getLocation();
7198  DeclarationNameInfo NameInfo(Name, ClassLoc);
7199
7200  //   An implicitly-declared copy constructor is an inline public
7201  //   member of its class.
7202  CXXConstructorDecl *CopyConstructor
7203    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7204                                 Context.getFunctionType(Context.VoidTy,
7205                                                         &ArgType, 1, EPI),
7206                                 /*TInfo=*/0,
7207                                 /*isExplicit=*/false,
7208                                 /*isInline=*/true,
7209                                 /*isImplicitlyDeclared=*/true);
7210  CopyConstructor->setAccess(AS_public);
7211  CopyConstructor->setDefaulted();
7212  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7213
7214  // Note that we have declared this constructor.
7215  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7216
7217  // Add the parameter to the constructor.
7218  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7219                                               ClassLoc, ClassLoc,
7220                                               /*IdentifierInfo=*/0,
7221                                               ArgType, /*TInfo=*/0,
7222                                               SC_None,
7223                                               SC_None, 0);
7224  CopyConstructor->setParams(&FromParam, 1);
7225
7226  if (Scope *S = getScopeForContext(ClassDecl))
7227    PushOnScopeChains(CopyConstructor, S, false);
7228  ClassDecl->addDecl(CopyConstructor);
7229
7230  // C++0x [class.copy]p7:
7231  //   ... If the class definition declares a move constructor or move
7232  //   assignment operator, the implicitly declared constructor is defined as
7233  //   deleted; ...
7234  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7235      ClassDecl->hasUserDeclaredMoveAssignment() ||
7236      ShouldDeleteCopyConstructor(CopyConstructor))
7237    CopyConstructor->setDeletedAsWritten();
7238
7239  return CopyConstructor;
7240}
7241
7242void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7243                                   CXXConstructorDecl *CopyConstructor) {
7244  assert((CopyConstructor->isDefaulted() &&
7245          CopyConstructor->isCopyConstructor() &&
7246          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7247         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7248
7249  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7250  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7251
7252  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7253  DiagnosticErrorTrap Trap(Diags);
7254
7255  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7256      Trap.hasErrorOccurred()) {
7257    Diag(CurrentLocation, diag::note_member_synthesized_at)
7258      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7259    CopyConstructor->setInvalidDecl();
7260  }  else {
7261    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7262                                               CopyConstructor->getLocation(),
7263                                               MultiStmtArg(*this, 0, 0),
7264                                               /*isStmtExpr=*/false)
7265                                                              .takeAs<Stmt>());
7266  }
7267
7268  CopyConstructor->setUsed();
7269
7270  if (ASTMutationListener *L = getASTMutationListener()) {
7271    L->CompletedImplicitDefinition(CopyConstructor);
7272  }
7273}
7274
7275ExprResult
7276Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7277                            CXXConstructorDecl *Constructor,
7278                            MultiExprArg ExprArgs,
7279                            bool RequiresZeroInit,
7280                            unsigned ConstructKind,
7281                            SourceRange ParenRange) {
7282  bool Elidable = false;
7283
7284  // C++0x [class.copy]p34:
7285  //   When certain criteria are met, an implementation is allowed to
7286  //   omit the copy/move construction of a class object, even if the
7287  //   copy/move constructor and/or destructor for the object have
7288  //   side effects. [...]
7289  //     - when a temporary class object that has not been bound to a
7290  //       reference (12.2) would be copied/moved to a class object
7291  //       with the same cv-unqualified type, the copy/move operation
7292  //       can be omitted by constructing the temporary object
7293  //       directly into the target of the omitted copy/move
7294  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7295      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7296    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7297    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7298  }
7299
7300  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7301                               Elidable, move(ExprArgs), RequiresZeroInit,
7302                               ConstructKind, ParenRange);
7303}
7304
7305/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7306/// including handling of its default argument expressions.
7307ExprResult
7308Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7309                            CXXConstructorDecl *Constructor, bool Elidable,
7310                            MultiExprArg ExprArgs,
7311                            bool RequiresZeroInit,
7312                            unsigned ConstructKind,
7313                            SourceRange ParenRange) {
7314  unsigned NumExprs = ExprArgs.size();
7315  Expr **Exprs = (Expr **)ExprArgs.release();
7316
7317  for (specific_attr_iterator<NonNullAttr>
7318           i = Constructor->specific_attr_begin<NonNullAttr>(),
7319           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7320    const NonNullAttr *NonNull = *i;
7321    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7322  }
7323
7324  MarkDeclarationReferenced(ConstructLoc, Constructor);
7325  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7326                                        Constructor, Elidable, Exprs, NumExprs,
7327                                        RequiresZeroInit,
7328              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7329                                        ParenRange));
7330}
7331
7332bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7333                                        CXXConstructorDecl *Constructor,
7334                                        MultiExprArg Exprs) {
7335  // FIXME: Provide the correct paren SourceRange when available.
7336  ExprResult TempResult =
7337    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7338                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7339                          SourceRange());
7340  if (TempResult.isInvalid())
7341    return true;
7342
7343  Expr *Temp = TempResult.takeAs<Expr>();
7344  CheckImplicitConversions(Temp, VD->getLocation());
7345  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7346  Temp = MaybeCreateExprWithCleanups(Temp);
7347  VD->setInit(Temp);
7348
7349  return false;
7350}
7351
7352void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7353  if (VD->isInvalidDecl()) return;
7354
7355  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7356  if (ClassDecl->isInvalidDecl()) return;
7357  if (ClassDecl->hasTrivialDestructor()) return;
7358  if (ClassDecl->isDependentContext()) return;
7359
7360  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7361  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7362  CheckDestructorAccess(VD->getLocation(), Destructor,
7363                        PDiag(diag::err_access_dtor_var)
7364                        << VD->getDeclName()
7365                        << VD->getType());
7366
7367  if (!VD->hasGlobalStorage()) return;
7368
7369  // Emit warning for non-trivial dtor in global scope (a real global,
7370  // class-static, function-static).
7371  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7372
7373  // TODO: this should be re-enabled for static locals by !CXAAtExit
7374  if (!VD->isStaticLocal())
7375    Diag(VD->getLocation(), diag::warn_global_destructor);
7376}
7377
7378/// AddCXXDirectInitializerToDecl - This action is called immediately after
7379/// ActOnDeclarator, when a C++ direct initializer is present.
7380/// e.g: "int x(1);"
7381void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7382                                         SourceLocation LParenLoc,
7383                                         MultiExprArg Exprs,
7384                                         SourceLocation RParenLoc,
7385                                         bool TypeMayContainAuto) {
7386  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7387
7388  // If there is no declaration, there was an error parsing it.  Just ignore
7389  // the initializer.
7390  if (RealDecl == 0)
7391    return;
7392
7393  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7394  if (!VDecl) {
7395    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7396    RealDecl->setInvalidDecl();
7397    return;
7398  }
7399
7400  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7401  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7402    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7403    if (Exprs.size() > 1) {
7404      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7405           diag::err_auto_var_init_multiple_expressions)
7406        << VDecl->getDeclName() << VDecl->getType()
7407        << VDecl->getSourceRange();
7408      RealDecl->setInvalidDecl();
7409      return;
7410    }
7411
7412    Expr *Init = Exprs.get()[0];
7413    TypeSourceInfo *DeducedType = 0;
7414    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7415      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7416        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7417        << Init->getSourceRange();
7418    if (!DeducedType) {
7419      RealDecl->setInvalidDecl();
7420      return;
7421    }
7422    VDecl->setTypeSourceInfo(DeducedType);
7423    VDecl->setType(DeducedType->getType());
7424
7425    // In ARC, infer lifetime.
7426    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7427      VDecl->setInvalidDecl();
7428
7429    // If this is a redeclaration, check that the type we just deduced matches
7430    // the previously declared type.
7431    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7432      MergeVarDeclTypes(VDecl, Old);
7433  }
7434
7435  // We will represent direct-initialization similarly to copy-initialization:
7436  //    int x(1);  -as-> int x = 1;
7437  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7438  //
7439  // Clients that want to distinguish between the two forms, can check for
7440  // direct initializer using VarDecl::hasCXXDirectInitializer().
7441  // A major benefit is that clients that don't particularly care about which
7442  // exactly form was it (like the CodeGen) can handle both cases without
7443  // special case code.
7444
7445  // C++ 8.5p11:
7446  // The form of initialization (using parentheses or '=') is generally
7447  // insignificant, but does matter when the entity being initialized has a
7448  // class type.
7449
7450  if (!VDecl->getType()->isDependentType() &&
7451      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7452                          diag::err_typecheck_decl_incomplete_type)) {
7453    VDecl->setInvalidDecl();
7454    return;
7455  }
7456
7457  // The variable can not have an abstract class type.
7458  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7459                             diag::err_abstract_type_in_decl,
7460                             AbstractVariableType))
7461    VDecl->setInvalidDecl();
7462
7463  const VarDecl *Def;
7464  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7465    Diag(VDecl->getLocation(), diag::err_redefinition)
7466    << VDecl->getDeclName();
7467    Diag(Def->getLocation(), diag::note_previous_definition);
7468    VDecl->setInvalidDecl();
7469    return;
7470  }
7471
7472  // C++ [class.static.data]p4
7473  //   If a static data member is of const integral or const
7474  //   enumeration type, its declaration in the class definition can
7475  //   specify a constant-initializer which shall be an integral
7476  //   constant expression (5.19). In that case, the member can appear
7477  //   in integral constant expressions. The member shall still be
7478  //   defined in a namespace scope if it is used in the program and the
7479  //   namespace scope definition shall not contain an initializer.
7480  //
7481  // We already performed a redefinition check above, but for static
7482  // data members we also need to check whether there was an in-class
7483  // declaration with an initializer.
7484  const VarDecl* PrevInit = 0;
7485  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7486    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7487    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7488    return;
7489  }
7490
7491  bool IsDependent = false;
7492  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7493    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7494      VDecl->setInvalidDecl();
7495      return;
7496    }
7497
7498    if (Exprs.get()[I]->isTypeDependent())
7499      IsDependent = true;
7500  }
7501
7502  // If either the declaration has a dependent type or if any of the
7503  // expressions is type-dependent, we represent the initialization
7504  // via a ParenListExpr for later use during template instantiation.
7505  if (VDecl->getType()->isDependentType() || IsDependent) {
7506    // Let clients know that initialization was done with a direct initializer.
7507    VDecl->setCXXDirectInitializer(true);
7508
7509    // Store the initialization expressions as a ParenListExpr.
7510    unsigned NumExprs = Exprs.size();
7511    VDecl->setInit(new (Context) ParenListExpr(
7512        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
7513        VDecl->getType().getNonReferenceType()));
7514    return;
7515  }
7516
7517  // Capture the variable that is being initialized and the style of
7518  // initialization.
7519  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7520
7521  // FIXME: Poor source location information.
7522  InitializationKind Kind
7523    = InitializationKind::CreateDirect(VDecl->getLocation(),
7524                                       LParenLoc, RParenLoc);
7525
7526  InitializationSequence InitSeq(*this, Entity, Kind,
7527                                 Exprs.get(), Exprs.size());
7528  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7529  if (Result.isInvalid()) {
7530    VDecl->setInvalidDecl();
7531    return;
7532  }
7533
7534  CheckImplicitConversions(Result.get(), LParenLoc);
7535
7536  Result = MaybeCreateExprWithCleanups(Result);
7537  VDecl->setInit(Result.takeAs<Expr>());
7538  VDecl->setCXXDirectInitializer(true);
7539
7540  CheckCompleteVariableDeclaration(VDecl);
7541}
7542
7543/// \brief Given a constructor and the set of arguments provided for the
7544/// constructor, convert the arguments and add any required default arguments
7545/// to form a proper call to this constructor.
7546///
7547/// \returns true if an error occurred, false otherwise.
7548bool
7549Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7550                              MultiExprArg ArgsPtr,
7551                              SourceLocation Loc,
7552                              ASTOwningVector<Expr*> &ConvertedArgs) {
7553  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7554  unsigned NumArgs = ArgsPtr.size();
7555  Expr **Args = (Expr **)ArgsPtr.get();
7556
7557  const FunctionProtoType *Proto
7558    = Constructor->getType()->getAs<FunctionProtoType>();
7559  assert(Proto && "Constructor without a prototype?");
7560  unsigned NumArgsInProto = Proto->getNumArgs();
7561
7562  // If too few arguments are available, we'll fill in the rest with defaults.
7563  if (NumArgs < NumArgsInProto)
7564    ConvertedArgs.reserve(NumArgsInProto);
7565  else
7566    ConvertedArgs.reserve(NumArgs);
7567
7568  VariadicCallType CallType =
7569    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7570  SmallVector<Expr *, 8> AllArgs;
7571  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7572                                        Proto, 0, Args, NumArgs, AllArgs,
7573                                        CallType);
7574  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7575    ConvertedArgs.push_back(AllArgs[i]);
7576  return Invalid;
7577}
7578
7579static inline bool
7580CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7581                                       const FunctionDecl *FnDecl) {
7582  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7583  if (isa<NamespaceDecl>(DC)) {
7584    return SemaRef.Diag(FnDecl->getLocation(),
7585                        diag::err_operator_new_delete_declared_in_namespace)
7586      << FnDecl->getDeclName();
7587  }
7588
7589  if (isa<TranslationUnitDecl>(DC) &&
7590      FnDecl->getStorageClass() == SC_Static) {
7591    return SemaRef.Diag(FnDecl->getLocation(),
7592                        diag::err_operator_new_delete_declared_static)
7593      << FnDecl->getDeclName();
7594  }
7595
7596  return false;
7597}
7598
7599static inline bool
7600CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7601                            CanQualType ExpectedResultType,
7602                            CanQualType ExpectedFirstParamType,
7603                            unsigned DependentParamTypeDiag,
7604                            unsigned InvalidParamTypeDiag) {
7605  QualType ResultType =
7606    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7607
7608  // Check that the result type is not dependent.
7609  if (ResultType->isDependentType())
7610    return SemaRef.Diag(FnDecl->getLocation(),
7611                        diag::err_operator_new_delete_dependent_result_type)
7612    << FnDecl->getDeclName() << ExpectedResultType;
7613
7614  // Check that the result type is what we expect.
7615  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7616    return SemaRef.Diag(FnDecl->getLocation(),
7617                        diag::err_operator_new_delete_invalid_result_type)
7618    << FnDecl->getDeclName() << ExpectedResultType;
7619
7620  // A function template must have at least 2 parameters.
7621  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7622    return SemaRef.Diag(FnDecl->getLocation(),
7623                      diag::err_operator_new_delete_template_too_few_parameters)
7624        << FnDecl->getDeclName();
7625
7626  // The function decl must have at least 1 parameter.
7627  if (FnDecl->getNumParams() == 0)
7628    return SemaRef.Diag(FnDecl->getLocation(),
7629                        diag::err_operator_new_delete_too_few_parameters)
7630      << FnDecl->getDeclName();
7631
7632  // Check the the first parameter type is not dependent.
7633  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7634  if (FirstParamType->isDependentType())
7635    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7636      << FnDecl->getDeclName() << ExpectedFirstParamType;
7637
7638  // Check that the first parameter type is what we expect.
7639  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7640      ExpectedFirstParamType)
7641    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7642    << FnDecl->getDeclName() << ExpectedFirstParamType;
7643
7644  return false;
7645}
7646
7647static bool
7648CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7649  // C++ [basic.stc.dynamic.allocation]p1:
7650  //   A program is ill-formed if an allocation function is declared in a
7651  //   namespace scope other than global scope or declared static in global
7652  //   scope.
7653  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7654    return true;
7655
7656  CanQualType SizeTy =
7657    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7658
7659  // C++ [basic.stc.dynamic.allocation]p1:
7660  //  The return type shall be void*. The first parameter shall have type
7661  //  std::size_t.
7662  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7663                                  SizeTy,
7664                                  diag::err_operator_new_dependent_param_type,
7665                                  diag::err_operator_new_param_type))
7666    return true;
7667
7668  // C++ [basic.stc.dynamic.allocation]p1:
7669  //  The first parameter shall not have an associated default argument.
7670  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7671    return SemaRef.Diag(FnDecl->getLocation(),
7672                        diag::err_operator_new_default_arg)
7673      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7674
7675  return false;
7676}
7677
7678static bool
7679CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7680  // C++ [basic.stc.dynamic.deallocation]p1:
7681  //   A program is ill-formed if deallocation functions are declared in a
7682  //   namespace scope other than global scope or declared static in global
7683  //   scope.
7684  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7685    return true;
7686
7687  // C++ [basic.stc.dynamic.deallocation]p2:
7688  //   Each deallocation function shall return void and its first parameter
7689  //   shall be void*.
7690  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7691                                  SemaRef.Context.VoidPtrTy,
7692                                 diag::err_operator_delete_dependent_param_type,
7693                                 diag::err_operator_delete_param_type))
7694    return true;
7695
7696  return false;
7697}
7698
7699/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7700/// of this overloaded operator is well-formed. If so, returns false;
7701/// otherwise, emits appropriate diagnostics and returns true.
7702bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7703  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7704         "Expected an overloaded operator declaration");
7705
7706  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7707
7708  // C++ [over.oper]p5:
7709  //   The allocation and deallocation functions, operator new,
7710  //   operator new[], operator delete and operator delete[], are
7711  //   described completely in 3.7.3. The attributes and restrictions
7712  //   found in the rest of this subclause do not apply to them unless
7713  //   explicitly stated in 3.7.3.
7714  if (Op == OO_Delete || Op == OO_Array_Delete)
7715    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7716
7717  if (Op == OO_New || Op == OO_Array_New)
7718    return CheckOperatorNewDeclaration(*this, FnDecl);
7719
7720  // C++ [over.oper]p6:
7721  //   An operator function shall either be a non-static member
7722  //   function or be a non-member function and have at least one
7723  //   parameter whose type is a class, a reference to a class, an
7724  //   enumeration, or a reference to an enumeration.
7725  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7726    if (MethodDecl->isStatic())
7727      return Diag(FnDecl->getLocation(),
7728                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7729  } else {
7730    bool ClassOrEnumParam = false;
7731    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7732                                   ParamEnd = FnDecl->param_end();
7733         Param != ParamEnd; ++Param) {
7734      QualType ParamType = (*Param)->getType().getNonReferenceType();
7735      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7736          ParamType->isEnumeralType()) {
7737        ClassOrEnumParam = true;
7738        break;
7739      }
7740    }
7741
7742    if (!ClassOrEnumParam)
7743      return Diag(FnDecl->getLocation(),
7744                  diag::err_operator_overload_needs_class_or_enum)
7745        << FnDecl->getDeclName();
7746  }
7747
7748  // C++ [over.oper]p8:
7749  //   An operator function cannot have default arguments (8.3.6),
7750  //   except where explicitly stated below.
7751  //
7752  // Only the function-call operator allows default arguments
7753  // (C++ [over.call]p1).
7754  if (Op != OO_Call) {
7755    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7756         Param != FnDecl->param_end(); ++Param) {
7757      if ((*Param)->hasDefaultArg())
7758        return Diag((*Param)->getLocation(),
7759                    diag::err_operator_overload_default_arg)
7760          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7761    }
7762  }
7763
7764  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7765    { false, false, false }
7766#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7767    , { Unary, Binary, MemberOnly }
7768#include "clang/Basic/OperatorKinds.def"
7769  };
7770
7771  bool CanBeUnaryOperator = OperatorUses[Op][0];
7772  bool CanBeBinaryOperator = OperatorUses[Op][1];
7773  bool MustBeMemberOperator = OperatorUses[Op][2];
7774
7775  // C++ [over.oper]p8:
7776  //   [...] Operator functions cannot have more or fewer parameters
7777  //   than the number required for the corresponding operator, as
7778  //   described in the rest of this subclause.
7779  unsigned NumParams = FnDecl->getNumParams()
7780                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7781  if (Op != OO_Call &&
7782      ((NumParams == 1 && !CanBeUnaryOperator) ||
7783       (NumParams == 2 && !CanBeBinaryOperator) ||
7784       (NumParams < 1) || (NumParams > 2))) {
7785    // We have the wrong number of parameters.
7786    unsigned ErrorKind;
7787    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7788      ErrorKind = 2;  // 2 -> unary or binary.
7789    } else if (CanBeUnaryOperator) {
7790      ErrorKind = 0;  // 0 -> unary
7791    } else {
7792      assert(CanBeBinaryOperator &&
7793             "All non-call overloaded operators are unary or binary!");
7794      ErrorKind = 1;  // 1 -> binary
7795    }
7796
7797    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7798      << FnDecl->getDeclName() << NumParams << ErrorKind;
7799  }
7800
7801  // Overloaded operators other than operator() cannot be variadic.
7802  if (Op != OO_Call &&
7803      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7804    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7805      << FnDecl->getDeclName();
7806  }
7807
7808  // Some operators must be non-static member functions.
7809  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7810    return Diag(FnDecl->getLocation(),
7811                diag::err_operator_overload_must_be_member)
7812      << FnDecl->getDeclName();
7813  }
7814
7815  // C++ [over.inc]p1:
7816  //   The user-defined function called operator++ implements the
7817  //   prefix and postfix ++ operator. If this function is a member
7818  //   function with no parameters, or a non-member function with one
7819  //   parameter of class or enumeration type, it defines the prefix
7820  //   increment operator ++ for objects of that type. If the function
7821  //   is a member function with one parameter (which shall be of type
7822  //   int) or a non-member function with two parameters (the second
7823  //   of which shall be of type int), it defines the postfix
7824  //   increment operator ++ for objects of that type.
7825  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7826    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7827    bool ParamIsInt = false;
7828    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7829      ParamIsInt = BT->getKind() == BuiltinType::Int;
7830
7831    if (!ParamIsInt)
7832      return Diag(LastParam->getLocation(),
7833                  diag::err_operator_overload_post_incdec_must_be_int)
7834        << LastParam->getType() << (Op == OO_MinusMinus);
7835  }
7836
7837  return false;
7838}
7839
7840/// CheckLiteralOperatorDeclaration - Check whether the declaration
7841/// of this literal operator function is well-formed. If so, returns
7842/// false; otherwise, emits appropriate diagnostics and returns true.
7843bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7844  DeclContext *DC = FnDecl->getDeclContext();
7845  Decl::Kind Kind = DC->getDeclKind();
7846  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7847      Kind != Decl::LinkageSpec) {
7848    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7849      << FnDecl->getDeclName();
7850    return true;
7851  }
7852
7853  bool Valid = false;
7854
7855  // template <char...> type operator "" name() is the only valid template
7856  // signature, and the only valid signature with no parameters.
7857  if (FnDecl->param_size() == 0) {
7858    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7859      // Must have only one template parameter
7860      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7861      if (Params->size() == 1) {
7862        NonTypeTemplateParmDecl *PmDecl =
7863          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7864
7865        // The template parameter must be a char parameter pack.
7866        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7867            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7868          Valid = true;
7869      }
7870    }
7871  } else {
7872    // Check the first parameter
7873    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7874
7875    QualType T = (*Param)->getType();
7876
7877    // unsigned long long int, long double, and any character type are allowed
7878    // as the only parameters.
7879    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7880        Context.hasSameType(T, Context.LongDoubleTy) ||
7881        Context.hasSameType(T, Context.CharTy) ||
7882        Context.hasSameType(T, Context.WCharTy) ||
7883        Context.hasSameType(T, Context.Char16Ty) ||
7884        Context.hasSameType(T, Context.Char32Ty)) {
7885      if (++Param == FnDecl->param_end())
7886        Valid = true;
7887      goto FinishedParams;
7888    }
7889
7890    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7891    const PointerType *PT = T->getAs<PointerType>();
7892    if (!PT)
7893      goto FinishedParams;
7894    T = PT->getPointeeType();
7895    if (!T.isConstQualified())
7896      goto FinishedParams;
7897    T = T.getUnqualifiedType();
7898
7899    // Move on to the second parameter;
7900    ++Param;
7901
7902    // If there is no second parameter, the first must be a const char *
7903    if (Param == FnDecl->param_end()) {
7904      if (Context.hasSameType(T, Context.CharTy))
7905        Valid = true;
7906      goto FinishedParams;
7907    }
7908
7909    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7910    // are allowed as the first parameter to a two-parameter function
7911    if (!(Context.hasSameType(T, Context.CharTy) ||
7912          Context.hasSameType(T, Context.WCharTy) ||
7913          Context.hasSameType(T, Context.Char16Ty) ||
7914          Context.hasSameType(T, Context.Char32Ty)))
7915      goto FinishedParams;
7916
7917    // The second and final parameter must be an std::size_t
7918    T = (*Param)->getType().getUnqualifiedType();
7919    if (Context.hasSameType(T, Context.getSizeType()) &&
7920        ++Param == FnDecl->param_end())
7921      Valid = true;
7922  }
7923
7924  // FIXME: This diagnostic is absolutely terrible.
7925FinishedParams:
7926  if (!Valid) {
7927    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7928      << FnDecl->getDeclName();
7929    return true;
7930  }
7931
7932  return false;
7933}
7934
7935/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7936/// linkage specification, including the language and (if present)
7937/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7938/// the location of the language string literal, which is provided
7939/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7940/// the '{' brace. Otherwise, this linkage specification does not
7941/// have any braces.
7942Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7943                                           SourceLocation LangLoc,
7944                                           StringRef Lang,
7945                                           SourceLocation LBraceLoc) {
7946  LinkageSpecDecl::LanguageIDs Language;
7947  if (Lang == "\"C\"")
7948    Language = LinkageSpecDecl::lang_c;
7949  else if (Lang == "\"C++\"")
7950    Language = LinkageSpecDecl::lang_cxx;
7951  else {
7952    Diag(LangLoc, diag::err_bad_language);
7953    return 0;
7954  }
7955
7956  // FIXME: Add all the various semantics of linkage specifications
7957
7958  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7959                                               ExternLoc, LangLoc, Language);
7960  CurContext->addDecl(D);
7961  PushDeclContext(S, D);
7962  return D;
7963}
7964
7965/// ActOnFinishLinkageSpecification - Complete the definition of
7966/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7967/// valid, it's the position of the closing '}' brace in a linkage
7968/// specification that uses braces.
7969Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7970                                            Decl *LinkageSpec,
7971                                            SourceLocation RBraceLoc) {
7972  if (LinkageSpec) {
7973    if (RBraceLoc.isValid()) {
7974      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7975      LSDecl->setRBraceLoc(RBraceLoc);
7976    }
7977    PopDeclContext();
7978  }
7979  return LinkageSpec;
7980}
7981
7982/// \brief Perform semantic analysis for the variable declaration that
7983/// occurs within a C++ catch clause, returning the newly-created
7984/// variable.
7985VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7986                                         TypeSourceInfo *TInfo,
7987                                         SourceLocation StartLoc,
7988                                         SourceLocation Loc,
7989                                         IdentifierInfo *Name) {
7990  bool Invalid = false;
7991  QualType ExDeclType = TInfo->getType();
7992
7993  // Arrays and functions decay.
7994  if (ExDeclType->isArrayType())
7995    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7996  else if (ExDeclType->isFunctionType())
7997    ExDeclType = Context.getPointerType(ExDeclType);
7998
7999  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
8000  // The exception-declaration shall not denote a pointer or reference to an
8001  // incomplete type, other than [cv] void*.
8002  // N2844 forbids rvalue references.
8003  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8004    Diag(Loc, diag::err_catch_rvalue_ref);
8005    Invalid = true;
8006  }
8007
8008  // GCC allows catching pointers and references to incomplete types
8009  // as an extension; so do we, but we warn by default.
8010
8011  QualType BaseType = ExDeclType;
8012  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8013  unsigned DK = diag::err_catch_incomplete;
8014  bool IncompleteCatchIsInvalid = true;
8015  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8016    BaseType = Ptr->getPointeeType();
8017    Mode = 1;
8018    DK = diag::ext_catch_incomplete_ptr;
8019    IncompleteCatchIsInvalid = false;
8020  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8021    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8022    BaseType = Ref->getPointeeType();
8023    Mode = 2;
8024    DK = diag::ext_catch_incomplete_ref;
8025    IncompleteCatchIsInvalid = false;
8026  }
8027  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8028      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8029      IncompleteCatchIsInvalid)
8030    Invalid = true;
8031
8032  if (!Invalid && !ExDeclType->isDependentType() &&
8033      RequireNonAbstractType(Loc, ExDeclType,
8034                             diag::err_abstract_type_in_decl,
8035                             AbstractVariableType))
8036    Invalid = true;
8037
8038  // Only the non-fragile NeXT runtime currently supports C++ catches
8039  // of ObjC types, and no runtime supports catching ObjC types by value.
8040  if (!Invalid && getLangOptions().ObjC1) {
8041    QualType T = ExDeclType;
8042    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8043      T = RT->getPointeeType();
8044
8045    if (T->isObjCObjectType()) {
8046      Diag(Loc, diag::err_objc_object_catch);
8047      Invalid = true;
8048    } else if (T->isObjCObjectPointerType()) {
8049      if (!getLangOptions().ObjCNonFragileABI)
8050        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
8051    }
8052  }
8053
8054  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8055                                    ExDeclType, TInfo, SC_None, SC_None);
8056  ExDecl->setExceptionVariable(true);
8057
8058  if (!Invalid && !ExDeclType->isDependentType()) {
8059    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8060      // C++ [except.handle]p16:
8061      //   The object declared in an exception-declaration or, if the
8062      //   exception-declaration does not specify a name, a temporary (12.2) is
8063      //   copy-initialized (8.5) from the exception object. [...]
8064      //   The object is destroyed when the handler exits, after the destruction
8065      //   of any automatic objects initialized within the handler.
8066      //
8067      // We just pretend to initialize the object with itself, then make sure
8068      // it can be destroyed later.
8069      QualType initType = ExDeclType;
8070
8071      InitializedEntity entity =
8072        InitializedEntity::InitializeVariable(ExDecl);
8073      InitializationKind initKind =
8074        InitializationKind::CreateCopy(Loc, SourceLocation());
8075
8076      Expr *opaqueValue =
8077        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8078      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8079      ExprResult result = sequence.Perform(*this, entity, initKind,
8080                                           MultiExprArg(&opaqueValue, 1));
8081      if (result.isInvalid())
8082        Invalid = true;
8083      else {
8084        // If the constructor used was non-trivial, set this as the
8085        // "initializer".
8086        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8087        if (!construct->getConstructor()->isTrivial()) {
8088          Expr *init = MaybeCreateExprWithCleanups(construct);
8089          ExDecl->setInit(init);
8090        }
8091
8092        // And make sure it's destructable.
8093        FinalizeVarWithDestructor(ExDecl, recordType);
8094      }
8095    }
8096  }
8097
8098  if (Invalid)
8099    ExDecl->setInvalidDecl();
8100
8101  return ExDecl;
8102}
8103
8104/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8105/// handler.
8106Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8107  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8108  bool Invalid = D.isInvalidType();
8109
8110  // Check for unexpanded parameter packs.
8111  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8112                                               UPPC_ExceptionType)) {
8113    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8114                                             D.getIdentifierLoc());
8115    Invalid = true;
8116  }
8117
8118  IdentifierInfo *II = D.getIdentifier();
8119  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8120                                             LookupOrdinaryName,
8121                                             ForRedeclaration)) {
8122    // The scope should be freshly made just for us. There is just no way
8123    // it contains any previous declaration.
8124    assert(!S->isDeclScope(PrevDecl));
8125    if (PrevDecl->isTemplateParameter()) {
8126      // Maybe we will complain about the shadowed template parameter.
8127      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8128    }
8129  }
8130
8131  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8132    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8133      << D.getCXXScopeSpec().getRange();
8134    Invalid = true;
8135  }
8136
8137  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8138                                              D.getSourceRange().getBegin(),
8139                                              D.getIdentifierLoc(),
8140                                              D.getIdentifier());
8141  if (Invalid)
8142    ExDecl->setInvalidDecl();
8143
8144  // Add the exception declaration into this scope.
8145  if (II)
8146    PushOnScopeChains(ExDecl, S);
8147  else
8148    CurContext->addDecl(ExDecl);
8149
8150  ProcessDeclAttributes(S, ExDecl, D);
8151  return ExDecl;
8152}
8153
8154Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8155                                         Expr *AssertExpr,
8156                                         Expr *AssertMessageExpr_,
8157                                         SourceLocation RParenLoc) {
8158  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8159
8160  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8161    llvm::APSInt Value(32);
8162    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8163      Diag(StaticAssertLoc,
8164           diag::err_static_assert_expression_is_not_constant) <<
8165        AssertExpr->getSourceRange();
8166      return 0;
8167    }
8168
8169    if (Value == 0) {
8170      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8171        << AssertMessage->getString() << AssertExpr->getSourceRange();
8172    }
8173  }
8174
8175  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8176    return 0;
8177
8178  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8179                                        AssertExpr, AssertMessage, RParenLoc);
8180
8181  CurContext->addDecl(Decl);
8182  return Decl;
8183}
8184
8185/// \brief Perform semantic analysis of the given friend type declaration.
8186///
8187/// \returns A friend declaration that.
8188FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8189                                      TypeSourceInfo *TSInfo) {
8190  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8191
8192  QualType T = TSInfo->getType();
8193  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8194
8195  if (!getLangOptions().CPlusPlus0x) {
8196    // C++03 [class.friend]p2:
8197    //   An elaborated-type-specifier shall be used in a friend declaration
8198    //   for a class.*
8199    //
8200    //   * The class-key of the elaborated-type-specifier is required.
8201    if (!ActiveTemplateInstantiations.empty()) {
8202      // Do not complain about the form of friend template types during
8203      // template instantiation; we will already have complained when the
8204      // template was declared.
8205    } else if (!T->isElaboratedTypeSpecifier()) {
8206      // If we evaluated the type to a record type, suggest putting
8207      // a tag in front.
8208      if (const RecordType *RT = T->getAs<RecordType>()) {
8209        RecordDecl *RD = RT->getDecl();
8210
8211        std::string InsertionText = std::string(" ") + RD->getKindName();
8212
8213        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8214          << (unsigned) RD->getTagKind()
8215          << T
8216          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8217                                        InsertionText);
8218      } else {
8219        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8220          << T
8221          << SourceRange(FriendLoc, TypeRange.getEnd());
8222      }
8223    } else if (T->getAs<EnumType>()) {
8224      Diag(FriendLoc, diag::ext_enum_friend)
8225        << T
8226        << SourceRange(FriendLoc, TypeRange.getEnd());
8227    }
8228  }
8229
8230  // C++0x [class.friend]p3:
8231  //   If the type specifier in a friend declaration designates a (possibly
8232  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8233  //   the friend declaration is ignored.
8234
8235  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8236  // in [class.friend]p3 that we do not implement.
8237
8238  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8239}
8240
8241/// Handle a friend tag declaration where the scope specifier was
8242/// templated.
8243Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8244                                    unsigned TagSpec, SourceLocation TagLoc,
8245                                    CXXScopeSpec &SS,
8246                                    IdentifierInfo *Name, SourceLocation NameLoc,
8247                                    AttributeList *Attr,
8248                                    MultiTemplateParamsArg TempParamLists) {
8249  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8250
8251  bool isExplicitSpecialization = false;
8252  bool Invalid = false;
8253
8254  if (TemplateParameterList *TemplateParams
8255        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8256                                                  TempParamLists.get(),
8257                                                  TempParamLists.size(),
8258                                                  /*friend*/ true,
8259                                                  isExplicitSpecialization,
8260                                                  Invalid)) {
8261    if (TemplateParams->size() > 0) {
8262      // This is a declaration of a class template.
8263      if (Invalid)
8264        return 0;
8265
8266      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8267                                SS, Name, NameLoc, Attr,
8268                                TemplateParams, AS_public,
8269                                TempParamLists.size() - 1,
8270                   (TemplateParameterList**) TempParamLists.release()).take();
8271    } else {
8272      // The "template<>" header is extraneous.
8273      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8274        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8275      isExplicitSpecialization = true;
8276    }
8277  }
8278
8279  if (Invalid) return 0;
8280
8281  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8282
8283  bool isAllExplicitSpecializations = true;
8284  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8285    if (TempParamLists.get()[I]->size()) {
8286      isAllExplicitSpecializations = false;
8287      break;
8288    }
8289  }
8290
8291  // FIXME: don't ignore attributes.
8292
8293  // If it's explicit specializations all the way down, just forget
8294  // about the template header and build an appropriate non-templated
8295  // friend.  TODO: for source fidelity, remember the headers.
8296  if (isAllExplicitSpecializations) {
8297    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8298    ElaboratedTypeKeyword Keyword
8299      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8300    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8301                                   *Name, NameLoc);
8302    if (T.isNull())
8303      return 0;
8304
8305    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8306    if (isa<DependentNameType>(T)) {
8307      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8308      TL.setKeywordLoc(TagLoc);
8309      TL.setQualifierLoc(QualifierLoc);
8310      TL.setNameLoc(NameLoc);
8311    } else {
8312      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8313      TL.setKeywordLoc(TagLoc);
8314      TL.setQualifierLoc(QualifierLoc);
8315      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8316    }
8317
8318    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8319                                            TSI, FriendLoc);
8320    Friend->setAccess(AS_public);
8321    CurContext->addDecl(Friend);
8322    return Friend;
8323  }
8324
8325  // Handle the case of a templated-scope friend class.  e.g.
8326  //   template <class T> class A<T>::B;
8327  // FIXME: we don't support these right now.
8328  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8329  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8330  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8331  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8332  TL.setKeywordLoc(TagLoc);
8333  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8334  TL.setNameLoc(NameLoc);
8335
8336  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8337                                          TSI, FriendLoc);
8338  Friend->setAccess(AS_public);
8339  Friend->setUnsupportedFriend(true);
8340  CurContext->addDecl(Friend);
8341  return Friend;
8342}
8343
8344
8345/// Handle a friend type declaration.  This works in tandem with
8346/// ActOnTag.
8347///
8348/// Notes on friend class templates:
8349///
8350/// We generally treat friend class declarations as if they were
8351/// declaring a class.  So, for example, the elaborated type specifier
8352/// in a friend declaration is required to obey the restrictions of a
8353/// class-head (i.e. no typedefs in the scope chain), template
8354/// parameters are required to match up with simple template-ids, &c.
8355/// However, unlike when declaring a template specialization, it's
8356/// okay to refer to a template specialization without an empty
8357/// template parameter declaration, e.g.
8358///   friend class A<T>::B<unsigned>;
8359/// We permit this as a special case; if there are any template
8360/// parameters present at all, require proper matching, i.e.
8361///   template <> template <class T> friend class A<int>::B;
8362Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8363                                MultiTemplateParamsArg TempParams) {
8364  SourceLocation Loc = DS.getSourceRange().getBegin();
8365
8366  assert(DS.isFriendSpecified());
8367  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8368
8369  // Try to convert the decl specifier to a type.  This works for
8370  // friend templates because ActOnTag never produces a ClassTemplateDecl
8371  // for a TUK_Friend.
8372  Declarator TheDeclarator(DS, Declarator::MemberContext);
8373  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8374  QualType T = TSI->getType();
8375  if (TheDeclarator.isInvalidType())
8376    return 0;
8377
8378  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8379    return 0;
8380
8381  // This is definitely an error in C++98.  It's probably meant to
8382  // be forbidden in C++0x, too, but the specification is just
8383  // poorly written.
8384  //
8385  // The problem is with declarations like the following:
8386  //   template <T> friend A<T>::foo;
8387  // where deciding whether a class C is a friend or not now hinges
8388  // on whether there exists an instantiation of A that causes
8389  // 'foo' to equal C.  There are restrictions on class-heads
8390  // (which we declare (by fiat) elaborated friend declarations to
8391  // be) that makes this tractable.
8392  //
8393  // FIXME: handle "template <> friend class A<T>;", which
8394  // is possibly well-formed?  Who even knows?
8395  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8396    Diag(Loc, diag::err_tagless_friend_type_template)
8397      << DS.getSourceRange();
8398    return 0;
8399  }
8400
8401  // C++98 [class.friend]p1: A friend of a class is a function
8402  //   or class that is not a member of the class . . .
8403  // This is fixed in DR77, which just barely didn't make the C++03
8404  // deadline.  It's also a very silly restriction that seriously
8405  // affects inner classes and which nobody else seems to implement;
8406  // thus we never diagnose it, not even in -pedantic.
8407  //
8408  // But note that we could warn about it: it's always useless to
8409  // friend one of your own members (it's not, however, worthless to
8410  // friend a member of an arbitrary specialization of your template).
8411
8412  Decl *D;
8413  if (unsigned NumTempParamLists = TempParams.size())
8414    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8415                                   NumTempParamLists,
8416                                   TempParams.release(),
8417                                   TSI,
8418                                   DS.getFriendSpecLoc());
8419  else
8420    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8421
8422  if (!D)
8423    return 0;
8424
8425  D->setAccess(AS_public);
8426  CurContext->addDecl(D);
8427
8428  return D;
8429}
8430
8431Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8432                                    MultiTemplateParamsArg TemplateParams) {
8433  const DeclSpec &DS = D.getDeclSpec();
8434
8435  assert(DS.isFriendSpecified());
8436  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8437
8438  SourceLocation Loc = D.getIdentifierLoc();
8439  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8440  QualType T = TInfo->getType();
8441
8442  // C++ [class.friend]p1
8443  //   A friend of a class is a function or class....
8444  // Note that this sees through typedefs, which is intended.
8445  // It *doesn't* see through dependent types, which is correct
8446  // according to [temp.arg.type]p3:
8447  //   If a declaration acquires a function type through a
8448  //   type dependent on a template-parameter and this causes
8449  //   a declaration that does not use the syntactic form of a
8450  //   function declarator to have a function type, the program
8451  //   is ill-formed.
8452  if (!T->isFunctionType()) {
8453    Diag(Loc, diag::err_unexpected_friend);
8454
8455    // It might be worthwhile to try to recover by creating an
8456    // appropriate declaration.
8457    return 0;
8458  }
8459
8460  // C++ [namespace.memdef]p3
8461  //  - If a friend declaration in a non-local class first declares a
8462  //    class or function, the friend class or function is a member
8463  //    of the innermost enclosing namespace.
8464  //  - The name of the friend is not found by simple name lookup
8465  //    until a matching declaration is provided in that namespace
8466  //    scope (either before or after the class declaration granting
8467  //    friendship).
8468  //  - If a friend function is called, its name may be found by the
8469  //    name lookup that considers functions from namespaces and
8470  //    classes associated with the types of the function arguments.
8471  //  - When looking for a prior declaration of a class or a function
8472  //    declared as a friend, scopes outside the innermost enclosing
8473  //    namespace scope are not considered.
8474
8475  CXXScopeSpec &SS = D.getCXXScopeSpec();
8476  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8477  DeclarationName Name = NameInfo.getName();
8478  assert(Name);
8479
8480  // Check for unexpanded parameter packs.
8481  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8482      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8483      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8484    return 0;
8485
8486  // The context we found the declaration in, or in which we should
8487  // create the declaration.
8488  DeclContext *DC;
8489  Scope *DCScope = S;
8490  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8491                        ForRedeclaration);
8492
8493  // FIXME: there are different rules in local classes
8494
8495  // There are four cases here.
8496  //   - There's no scope specifier, in which case we just go to the
8497  //     appropriate scope and look for a function or function template
8498  //     there as appropriate.
8499  // Recover from invalid scope qualifiers as if they just weren't there.
8500  if (SS.isInvalid() || !SS.isSet()) {
8501    // C++0x [namespace.memdef]p3:
8502    //   If the name in a friend declaration is neither qualified nor
8503    //   a template-id and the declaration is a function or an
8504    //   elaborated-type-specifier, the lookup to determine whether
8505    //   the entity has been previously declared shall not consider
8506    //   any scopes outside the innermost enclosing namespace.
8507    // C++0x [class.friend]p11:
8508    //   If a friend declaration appears in a local class and the name
8509    //   specified is an unqualified name, a prior declaration is
8510    //   looked up without considering scopes that are outside the
8511    //   innermost enclosing non-class scope. For a friend function
8512    //   declaration, if there is no prior declaration, the program is
8513    //   ill-formed.
8514    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8515    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8516
8517    // Find the appropriate context according to the above.
8518    DC = CurContext;
8519    while (true) {
8520      // Skip class contexts.  If someone can cite chapter and verse
8521      // for this behavior, that would be nice --- it's what GCC and
8522      // EDG do, and it seems like a reasonable intent, but the spec
8523      // really only says that checks for unqualified existing
8524      // declarations should stop at the nearest enclosing namespace,
8525      // not that they should only consider the nearest enclosing
8526      // namespace.
8527      while (DC->isRecord())
8528        DC = DC->getParent();
8529
8530      LookupQualifiedName(Previous, DC);
8531
8532      // TODO: decide what we think about using declarations.
8533      if (isLocal || !Previous.empty())
8534        break;
8535
8536      if (isTemplateId) {
8537        if (isa<TranslationUnitDecl>(DC)) break;
8538      } else {
8539        if (DC->isFileContext()) break;
8540      }
8541      DC = DC->getParent();
8542    }
8543
8544    // C++ [class.friend]p1: A friend of a class is a function or
8545    //   class that is not a member of the class . . .
8546    // C++0x changes this for both friend types and functions.
8547    // Most C++ 98 compilers do seem to give an error here, so
8548    // we do, too.
8549    if (!Previous.empty() && DC->Equals(CurContext)
8550        && !getLangOptions().CPlusPlus0x)
8551      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8552
8553    DCScope = getScopeForDeclContext(S, DC);
8554
8555  //   - There's a non-dependent scope specifier, in which case we
8556  //     compute it and do a previous lookup there for a function
8557  //     or function template.
8558  } else if (!SS.getScopeRep()->isDependent()) {
8559    DC = computeDeclContext(SS);
8560    if (!DC) return 0;
8561
8562    if (RequireCompleteDeclContext(SS, DC)) return 0;
8563
8564    LookupQualifiedName(Previous, DC);
8565
8566    // Ignore things found implicitly in the wrong scope.
8567    // TODO: better diagnostics for this case.  Suggesting the right
8568    // qualified scope would be nice...
8569    LookupResult::Filter F = Previous.makeFilter();
8570    while (F.hasNext()) {
8571      NamedDecl *D = F.next();
8572      if (!DC->InEnclosingNamespaceSetOf(
8573              D->getDeclContext()->getRedeclContext()))
8574        F.erase();
8575    }
8576    F.done();
8577
8578    if (Previous.empty()) {
8579      D.setInvalidType();
8580      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8581      return 0;
8582    }
8583
8584    // C++ [class.friend]p1: A friend of a class is a function or
8585    //   class that is not a member of the class . . .
8586    if (DC->Equals(CurContext))
8587      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8588
8589  //   - There's a scope specifier that does not match any template
8590  //     parameter lists, in which case we use some arbitrary context,
8591  //     create a method or method template, and wait for instantiation.
8592  //   - There's a scope specifier that does match some template
8593  //     parameter lists, which we don't handle right now.
8594  } else {
8595    DC = CurContext;
8596    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8597  }
8598
8599  if (!DC->isRecord()) {
8600    // This implies that it has to be an operator or function.
8601    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8602        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8603        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8604      Diag(Loc, diag::err_introducing_special_friend) <<
8605        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8606         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8607      return 0;
8608    }
8609  }
8610
8611  bool Redeclaration = false;
8612  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8613                                          move(TemplateParams),
8614                                          IsDefinition,
8615                                          Redeclaration);
8616  if (!ND) return 0;
8617
8618  assert(ND->getDeclContext() == DC);
8619  assert(ND->getLexicalDeclContext() == CurContext);
8620
8621  // Add the function declaration to the appropriate lookup tables,
8622  // adjusting the redeclarations list as necessary.  We don't
8623  // want to do this yet if the friending class is dependent.
8624  //
8625  // Also update the scope-based lookup if the target context's
8626  // lookup context is in lexical scope.
8627  if (!CurContext->isDependentContext()) {
8628    DC = DC->getRedeclContext();
8629    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8630    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8631      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8632  }
8633
8634  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8635                                       D.getIdentifierLoc(), ND,
8636                                       DS.getFriendSpecLoc());
8637  FrD->setAccess(AS_public);
8638  CurContext->addDecl(FrD);
8639
8640  if (ND->isInvalidDecl())
8641    FrD->setInvalidDecl();
8642  else {
8643    FunctionDecl *FD;
8644    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8645      FD = FTD->getTemplatedDecl();
8646    else
8647      FD = cast<FunctionDecl>(ND);
8648
8649    // Mark templated-scope function declarations as unsupported.
8650    if (FD->getNumTemplateParameterLists())
8651      FrD->setUnsupportedFriend(true);
8652  }
8653
8654  return ND;
8655}
8656
8657void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8658  AdjustDeclIfTemplate(Dcl);
8659
8660  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8661  if (!Fn) {
8662    Diag(DelLoc, diag::err_deleted_non_function);
8663    return;
8664  }
8665  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8666    Diag(DelLoc, diag::err_deleted_decl_not_first);
8667    Diag(Prev->getLocation(), diag::note_previous_declaration);
8668    // If the declaration wasn't the first, we delete the function anyway for
8669    // recovery.
8670  }
8671  Fn->setDeletedAsWritten();
8672}
8673
8674void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8675  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8676
8677  if (MD) {
8678    if (MD->getParent()->isDependentType()) {
8679      MD->setDefaulted();
8680      MD->setExplicitlyDefaulted();
8681      return;
8682    }
8683
8684    CXXSpecialMember Member = getSpecialMember(MD);
8685    if (Member == CXXInvalid) {
8686      Diag(DefaultLoc, diag::err_default_special_members);
8687      return;
8688    }
8689
8690    MD->setDefaulted();
8691    MD->setExplicitlyDefaulted();
8692
8693    // If this definition appears within the record, do the checking when
8694    // the record is complete.
8695    const FunctionDecl *Primary = MD;
8696    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8697      // Find the uninstantiated declaration that actually had the '= default'
8698      // on it.
8699      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8700
8701    if (Primary == Primary->getCanonicalDecl())
8702      return;
8703
8704    switch (Member) {
8705    case CXXDefaultConstructor: {
8706      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8707      CheckExplicitlyDefaultedDefaultConstructor(CD);
8708      if (!CD->isInvalidDecl())
8709        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8710      break;
8711    }
8712
8713    case CXXCopyConstructor: {
8714      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8715      CheckExplicitlyDefaultedCopyConstructor(CD);
8716      if (!CD->isInvalidDecl())
8717        DefineImplicitCopyConstructor(DefaultLoc, CD);
8718      break;
8719    }
8720
8721    case CXXCopyAssignment: {
8722      CheckExplicitlyDefaultedCopyAssignment(MD);
8723      if (!MD->isInvalidDecl())
8724        DefineImplicitCopyAssignment(DefaultLoc, MD);
8725      break;
8726    }
8727
8728    case CXXDestructor: {
8729      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8730      CheckExplicitlyDefaultedDestructor(DD);
8731      if (!DD->isInvalidDecl())
8732        DefineImplicitDestructor(DefaultLoc, DD);
8733      break;
8734    }
8735
8736    case CXXMoveConstructor:
8737    case CXXMoveAssignment:
8738      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8739      break;
8740
8741    default:
8742      // FIXME: Do the rest once we have move functions
8743      break;
8744    }
8745  } else {
8746    Diag(DefaultLoc, diag::err_default_special_members);
8747  }
8748}
8749
8750static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8751  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8752    Stmt *SubStmt = *CI;
8753    if (!SubStmt)
8754      continue;
8755    if (isa<ReturnStmt>(SubStmt))
8756      Self.Diag(SubStmt->getSourceRange().getBegin(),
8757           diag::err_return_in_constructor_handler);
8758    if (!isa<Expr>(SubStmt))
8759      SearchForReturnInStmt(Self, SubStmt);
8760  }
8761}
8762
8763void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8764  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8765    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8766    SearchForReturnInStmt(*this, Handler);
8767  }
8768}
8769
8770bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8771                                             const CXXMethodDecl *Old) {
8772  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8773  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8774
8775  if (Context.hasSameType(NewTy, OldTy) ||
8776      NewTy->isDependentType() || OldTy->isDependentType())
8777    return false;
8778
8779  // Check if the return types are covariant
8780  QualType NewClassTy, OldClassTy;
8781
8782  /// Both types must be pointers or references to classes.
8783  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8784    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8785      NewClassTy = NewPT->getPointeeType();
8786      OldClassTy = OldPT->getPointeeType();
8787    }
8788  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8789    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8790      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8791        NewClassTy = NewRT->getPointeeType();
8792        OldClassTy = OldRT->getPointeeType();
8793      }
8794    }
8795  }
8796
8797  // The return types aren't either both pointers or references to a class type.
8798  if (NewClassTy.isNull()) {
8799    Diag(New->getLocation(),
8800         diag::err_different_return_type_for_overriding_virtual_function)
8801      << New->getDeclName() << NewTy << OldTy;
8802    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8803
8804    return true;
8805  }
8806
8807  // C++ [class.virtual]p6:
8808  //   If the return type of D::f differs from the return type of B::f, the
8809  //   class type in the return type of D::f shall be complete at the point of
8810  //   declaration of D::f or shall be the class type D.
8811  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8812    if (!RT->isBeingDefined() &&
8813        RequireCompleteType(New->getLocation(), NewClassTy,
8814                            PDiag(diag::err_covariant_return_incomplete)
8815                              << New->getDeclName()))
8816    return true;
8817  }
8818
8819  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8820    // Check if the new class derives from the old class.
8821    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8822      Diag(New->getLocation(),
8823           diag::err_covariant_return_not_derived)
8824      << New->getDeclName() << NewTy << OldTy;
8825      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8826      return true;
8827    }
8828
8829    // Check if we the conversion from derived to base is valid.
8830    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8831                    diag::err_covariant_return_inaccessible_base,
8832                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8833                    // FIXME: Should this point to the return type?
8834                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8835      // FIXME: this note won't trigger for delayed access control
8836      // diagnostics, and it's impossible to get an undelayed error
8837      // here from access control during the original parse because
8838      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8839      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8840      return true;
8841    }
8842  }
8843
8844  // The qualifiers of the return types must be the same.
8845  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8846    Diag(New->getLocation(),
8847         diag::err_covariant_return_type_different_qualifications)
8848    << New->getDeclName() << NewTy << OldTy;
8849    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8850    return true;
8851  };
8852
8853
8854  // The new class type must have the same or less qualifiers as the old type.
8855  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8856    Diag(New->getLocation(),
8857         diag::err_covariant_return_type_class_type_more_qualified)
8858    << New->getDeclName() << NewTy << OldTy;
8859    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8860    return true;
8861  };
8862
8863  return false;
8864}
8865
8866/// \brief Mark the given method pure.
8867///
8868/// \param Method the method to be marked pure.
8869///
8870/// \param InitRange the source range that covers the "0" initializer.
8871bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8872  SourceLocation EndLoc = InitRange.getEnd();
8873  if (EndLoc.isValid())
8874    Method->setRangeEnd(EndLoc);
8875
8876  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8877    Method->setPure();
8878    return false;
8879  }
8880
8881  if (!Method->isInvalidDecl())
8882    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8883      << Method->getDeclName() << InitRange;
8884  return true;
8885}
8886
8887/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8888/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8889/// is a fresh scope pushed for just this purpose.
8890///
8891/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8892/// static data member of class X, names should be looked up in the scope of
8893/// class X.
8894void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8895  // If there is no declaration, there was an error parsing it.
8896  if (D == 0 || D->isInvalidDecl()) return;
8897
8898  // We should only get called for declarations with scope specifiers, like:
8899  //   int foo::bar;
8900  assert(D->isOutOfLine());
8901  EnterDeclaratorContext(S, D->getDeclContext());
8902}
8903
8904/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8905/// initializer for the out-of-line declaration 'D'.
8906void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8907  // If there is no declaration, there was an error parsing it.
8908  if (D == 0 || D->isInvalidDecl()) return;
8909
8910  assert(D->isOutOfLine());
8911  ExitDeclaratorContext(S);
8912}
8913
8914/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8915/// C++ if/switch/while/for statement.
8916/// e.g: "if (int x = f()) {...}"
8917DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8918  // C++ 6.4p2:
8919  // The declarator shall not specify a function or an array.
8920  // The type-specifier-seq shall not contain typedef and shall not declare a
8921  // new class or enumeration.
8922  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8923         "Parser allowed 'typedef' as storage class of condition decl.");
8924
8925  Decl *Dcl = ActOnDeclarator(S, D);
8926  if (!Dcl)
8927    return true;
8928
8929  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
8930    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
8931      << D.getSourceRange();
8932    return true;
8933  }
8934
8935  return Dcl;
8936}
8937
8938void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8939                          bool DefinitionRequired) {
8940  // Ignore any vtable uses in unevaluated operands or for classes that do
8941  // not have a vtable.
8942  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8943      CurContext->isDependentContext() ||
8944      ExprEvalContexts.back().Context == Unevaluated)
8945    return;
8946
8947  // Try to insert this class into the map.
8948  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8949  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8950    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8951  if (!Pos.second) {
8952    // If we already had an entry, check to see if we are promoting this vtable
8953    // to required a definition. If so, we need to reappend to the VTableUses
8954    // list, since we may have already processed the first entry.
8955    if (DefinitionRequired && !Pos.first->second) {
8956      Pos.first->second = true;
8957    } else {
8958      // Otherwise, we can early exit.
8959      return;
8960    }
8961  }
8962
8963  // Local classes need to have their virtual members marked
8964  // immediately. For all other classes, we mark their virtual members
8965  // at the end of the translation unit.
8966  if (Class->isLocalClass())
8967    MarkVirtualMembersReferenced(Loc, Class);
8968  else
8969    VTableUses.push_back(std::make_pair(Class, Loc));
8970}
8971
8972bool Sema::DefineUsedVTables() {
8973  if (VTableUses.empty())
8974    return false;
8975
8976  // Note: The VTableUses vector could grow as a result of marking
8977  // the members of a class as "used", so we check the size each
8978  // time through the loop and prefer indices (with are stable) to
8979  // iterators (which are not).
8980  bool DefinedAnything = false;
8981  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8982    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8983    if (!Class)
8984      continue;
8985
8986    SourceLocation Loc = VTableUses[I].second;
8987
8988    // If this class has a key function, but that key function is
8989    // defined in another translation unit, we don't need to emit the
8990    // vtable even though we're using it.
8991    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8992    if (KeyFunction && !KeyFunction->hasBody()) {
8993      switch (KeyFunction->getTemplateSpecializationKind()) {
8994      case TSK_Undeclared:
8995      case TSK_ExplicitSpecialization:
8996      case TSK_ExplicitInstantiationDeclaration:
8997        // The key function is in another translation unit.
8998        continue;
8999
9000      case TSK_ExplicitInstantiationDefinition:
9001      case TSK_ImplicitInstantiation:
9002        // We will be instantiating the key function.
9003        break;
9004      }
9005    } else if (!KeyFunction) {
9006      // If we have a class with no key function that is the subject
9007      // of an explicit instantiation declaration, suppress the
9008      // vtable; it will live with the explicit instantiation
9009      // definition.
9010      bool IsExplicitInstantiationDeclaration
9011        = Class->getTemplateSpecializationKind()
9012                                      == TSK_ExplicitInstantiationDeclaration;
9013      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9014                                 REnd = Class->redecls_end();
9015           R != REnd; ++R) {
9016        TemplateSpecializationKind TSK
9017          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9018        if (TSK == TSK_ExplicitInstantiationDeclaration)
9019          IsExplicitInstantiationDeclaration = true;
9020        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9021          IsExplicitInstantiationDeclaration = false;
9022          break;
9023        }
9024      }
9025
9026      if (IsExplicitInstantiationDeclaration)
9027        continue;
9028    }
9029
9030    // Mark all of the virtual members of this class as referenced, so
9031    // that we can build a vtable. Then, tell the AST consumer that a
9032    // vtable for this class is required.
9033    DefinedAnything = true;
9034    MarkVirtualMembersReferenced(Loc, Class);
9035    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9036    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9037
9038    // Optionally warn if we're emitting a weak vtable.
9039    if (Class->getLinkage() == ExternalLinkage &&
9040        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9041      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9042        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9043    }
9044  }
9045  VTableUses.clear();
9046
9047  return DefinedAnything;
9048}
9049
9050void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9051                                        const CXXRecordDecl *RD) {
9052  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9053       e = RD->method_end(); i != e; ++i) {
9054    CXXMethodDecl *MD = *i;
9055
9056    // C++ [basic.def.odr]p2:
9057    //   [...] A virtual member function is used if it is not pure. [...]
9058    if (MD->isVirtual() && !MD->isPure())
9059      MarkDeclarationReferenced(Loc, MD);
9060  }
9061
9062  // Only classes that have virtual bases need a VTT.
9063  if (RD->getNumVBases() == 0)
9064    return;
9065
9066  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9067           e = RD->bases_end(); i != e; ++i) {
9068    const CXXRecordDecl *Base =
9069        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9070    if (Base->getNumVBases() == 0)
9071      continue;
9072    MarkVirtualMembersReferenced(Loc, Base);
9073  }
9074}
9075
9076/// SetIvarInitializers - This routine builds initialization ASTs for the
9077/// Objective-C implementation whose ivars need be initialized.
9078void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9079  if (!getLangOptions().CPlusPlus)
9080    return;
9081  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9082    SmallVector<ObjCIvarDecl*, 8> ivars;
9083    CollectIvarsToConstructOrDestruct(OID, ivars);
9084    if (ivars.empty())
9085      return;
9086    SmallVector<CXXCtorInitializer*, 32> AllToInit;
9087    for (unsigned i = 0; i < ivars.size(); i++) {
9088      FieldDecl *Field = ivars[i];
9089      if (Field->isInvalidDecl())
9090        continue;
9091
9092      CXXCtorInitializer *Member;
9093      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9094      InitializationKind InitKind =
9095        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9096
9097      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9098      ExprResult MemberInit =
9099        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9100      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9101      // Note, MemberInit could actually come back empty if no initialization
9102      // is required (e.g., because it would call a trivial default constructor)
9103      if (!MemberInit.get() || MemberInit.isInvalid())
9104        continue;
9105
9106      Member =
9107        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9108                                         SourceLocation(),
9109                                         MemberInit.takeAs<Expr>(),
9110                                         SourceLocation());
9111      AllToInit.push_back(Member);
9112
9113      // Be sure that the destructor is accessible and is marked as referenced.
9114      if (const RecordType *RecordTy
9115                  = Context.getBaseElementType(Field->getType())
9116                                                        ->getAs<RecordType>()) {
9117                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9118        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9119          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9120          CheckDestructorAccess(Field->getLocation(), Destructor,
9121                            PDiag(diag::err_access_dtor_ivar)
9122                              << Context.getBaseElementType(Field->getType()));
9123        }
9124      }
9125    }
9126    ObjCImplementation->setIvarInitializers(Context,
9127                                            AllToInit.data(), AllToInit.size());
9128  }
9129}
9130
9131static
9132void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9133                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9134                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9135                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9136                           Sema &S) {
9137  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9138                                                   CE = Current.end();
9139  if (Ctor->isInvalidDecl())
9140    return;
9141
9142  const FunctionDecl *FNTarget = 0;
9143  CXXConstructorDecl *Target;
9144
9145  // We ignore the result here since if we don't have a body, Target will be
9146  // null below.
9147  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9148  Target
9149= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9150
9151  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9152                     // Avoid dereferencing a null pointer here.
9153                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9154
9155  if (!Current.insert(Canonical))
9156    return;
9157
9158  // We know that beyond here, we aren't chaining into a cycle.
9159  if (!Target || !Target->isDelegatingConstructor() ||
9160      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9161    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9162      Valid.insert(*CI);
9163    Current.clear();
9164  // We've hit a cycle.
9165  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9166             Current.count(TCanonical)) {
9167    // If we haven't diagnosed this cycle yet, do so now.
9168    if (!Invalid.count(TCanonical)) {
9169      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9170             diag::warn_delegating_ctor_cycle)
9171        << Ctor;
9172
9173      // Don't add a note for a function delegating directo to itself.
9174      if (TCanonical != Canonical)
9175        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9176
9177      CXXConstructorDecl *C = Target;
9178      while (C->getCanonicalDecl() != Canonical) {
9179        (void)C->getTargetConstructor()->hasBody(FNTarget);
9180        assert(FNTarget && "Ctor cycle through bodiless function");
9181
9182        C
9183       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9184        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9185      }
9186    }
9187
9188    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9189      Invalid.insert(*CI);
9190    Current.clear();
9191  } else {
9192    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9193  }
9194}
9195
9196
9197void Sema::CheckDelegatingCtorCycles() {
9198  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9199
9200  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9201                                                   CE = Current.end();
9202
9203  for (DelegatingCtorDeclsType::iterator
9204         I = DelegatingCtorDecls.begin(ExternalSource),
9205         E = DelegatingCtorDecls.end();
9206       I != E; ++I) {
9207   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9208  }
9209
9210  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9211    (*CI)->setInvalidDecl();
9212}
9213