SemaDeclCXX.cpp revision 02bcd4cd1a19121da12884aa4943226f72a81e6c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param,
78                     Param->getName(), DefaultArg->getSourceRange());
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local,
86                       VDecl->getName(), DefaultArg->getSourceRange());
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this,
99                   ThisE->getSourceRange());
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument,
116         DefaultArg->getSourceRange());
117    return;
118  }
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  Expr *DefaultArgPtr = DefaultArg.get();
127  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
128                                                     "in default argument");
129  if (DefaultArgPtr != DefaultArg.get()) {
130    DefaultArg.take();
131    DefaultArg.reset(DefaultArgPtr);
132  }
133  if (DefaultInitFailed) {
134    return;
135  }
136
137  // Check that the default argument is well-formed
138  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
139  if (DefaultArgChecker.Visit(DefaultArg.get()))
140    return;
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(DefaultArg.take());
144}
145
146/// CheckExtraCXXDefaultArguments - Check for any extra default
147/// arguments in the declarator, which is not a function declaration
148/// or definition and therefore is not permitted to have default
149/// arguments. This routine should be invoked for every declarator
150/// that is not a function declaration or definition.
151void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
152  // C++ [dcl.fct.default]p3
153  //   A default argument expression shall be specified only in the
154  //   parameter-declaration-clause of a function declaration or in a
155  //   template-parameter (14.1). It shall not be specified for a
156  //   parameter pack. If it is specified in a
157  //   parameter-declaration-clause, it shall not occur within a
158  //   declarator or abstract-declarator of a parameter-declaration.
159  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
160    DeclaratorChunk &chunk = D.getTypeObject(i);
161    if (chunk.Kind == DeclaratorChunk::Function) {
162      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
163        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
164        if (Param->getDefaultArg()) {
165          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc,
166               Param->getDefaultArg()->getSourceRange());
167          Param->setDefaultArg(0);
168        }
169      }
170    }
171  }
172}
173
174// MergeCXXFunctionDecl - Merge two declarations of the same C++
175// function, once we already know that they have the same
176// type. Subroutine of MergeFunctionDecl.
177FunctionDecl *
178Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
179  // C++ [dcl.fct.default]p4:
180  //
181  //   For non-template functions, default arguments can be added in
182  //   later declarations of a function in the same
183  //   scope. Declarations in different scopes have completely
184  //   distinct sets of default arguments. That is, declarations in
185  //   inner scopes do not acquire default arguments from
186  //   declarations in outer scopes, and vice versa. In a given
187  //   function declaration, all parameters subsequent to a
188  //   parameter with a default argument shall have default
189  //   arguments supplied in this or previous declarations. A
190  //   default argument shall not be redefined by a later
191  //   declaration (not even to the same value).
192  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
193    ParmVarDecl *OldParam = Old->getParamDecl(p);
194    ParmVarDecl *NewParam = New->getParamDecl(p);
195
196    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
197      Diag(NewParam->getLocation(),
198           diag::err_param_default_argument_redefinition,
199           NewParam->getDefaultArg()->getSourceRange());
200      Diag(OldParam->getLocation(), diag::err_previous_definition);
201    } else if (OldParam->getDefaultArg()) {
202      // Merge the old default argument into the new parameter
203      NewParam->setDefaultArg(OldParam->getDefaultArg());
204    }
205  }
206
207  return New;
208}
209
210/// CheckCXXDefaultArguments - Verify that the default arguments for a
211/// function declaration are well-formed according to C++
212/// [dcl.fct.default].
213void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
214  unsigned NumParams = FD->getNumParams();
215  unsigned p;
216
217  // Find first parameter with a default argument
218  for (p = 0; p < NumParams; ++p) {
219    ParmVarDecl *Param = FD->getParamDecl(p);
220    if (Param->getDefaultArg())
221      break;
222  }
223
224  // C++ [dcl.fct.default]p4:
225  //   In a given function declaration, all parameters
226  //   subsequent to a parameter with a default argument shall
227  //   have default arguments supplied in this or previous
228  //   declarations. A default argument shall not be redefined
229  //   by a later declaration (not even to the same value).
230  unsigned LastMissingDefaultArg = 0;
231  for(; p < NumParams; ++p) {
232    ParmVarDecl *Param = FD->getParamDecl(p);
233    if (!Param->getDefaultArg()) {
234      if (Param->getIdentifier())
235        Diag(Param->getLocation(),
236             diag::err_param_default_argument_missing_name,
237             Param->getIdentifier()->getName());
238      else
239        Diag(Param->getLocation(),
240             diag::err_param_default_argument_missing);
241
242      LastMissingDefaultArg = p;
243    }
244  }
245
246  if (LastMissingDefaultArg > 0) {
247    // Some default arguments were missing. Clear out all of the
248    // default arguments up to (and including) the last missing
249    // default argument, so that we leave the function parameters
250    // in a semantically valid state.
251    for (p = 0; p <= LastMissingDefaultArg; ++p) {
252      ParmVarDecl *Param = FD->getParamDecl(p);
253      if (Param->getDefaultArg()) {
254        delete Param->getDefaultArg();
255        Param->setDefaultArg(0);
256      }
257    }
258  }
259}
260
261/// isCurrentClassName - Determine whether the identifier II is the
262/// name of the class type currently being defined. In the case of
263/// nested classes, this will only return true if II is the name of
264/// the innermost class.
265bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
266                              const CXXScopeSpec *SS) {
267  CXXRecordDecl *CurDecl;
268  if (SS) {
269    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
270    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
271  } else
272    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
273
274  if (CurDecl)
275    return &II == CurDecl->getIdentifier();
276  else
277    return false;
278}
279
280/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
281/// one entry in the base class list of a class specifier, for
282/// example:
283///    class foo : public bar, virtual private baz {
284/// 'public bar' and 'virtual private baz' are each base-specifiers.
285Sema::BaseResult
286Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
287                         bool Virtual, AccessSpecifier Access,
288                         TypeTy *basetype, SourceLocation BaseLoc) {
289  RecordDecl *Decl = (RecordDecl*)classdecl;
290  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
291
292  // Base specifiers must be record types.
293  if (!BaseType->isRecordType()) {
294    Diag(BaseLoc, diag::err_base_must_be_class, SpecifierRange);
295    return true;
296  }
297
298  // C++ [class.union]p1:
299  //   A union shall not be used as a base class.
300  if (BaseType->isUnionType()) {
301    Diag(BaseLoc, diag::err_union_as_base_class, SpecifierRange);
302    return true;
303  }
304
305  // C++ [class.union]p1:
306  //   A union shall not have base classes.
307  if (Decl->isUnion()) {
308    Diag(Decl->getLocation(), diag::err_base_clause_on_union,
309         SpecifierRange);
310    return true;
311  }
312
313  // C++ [class.derived]p2:
314  //   The class-name in a base-specifier shall not be an incompletely
315  //   defined class.
316  if (BaseType->isIncompleteType()) {
317    Diag(BaseLoc, diag::err_incomplete_base_class, SpecifierRange);
318    return true;
319  }
320
321  // If the base class is polymorphic, the new one is, too.
322  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
323  assert(BaseDecl && "Record type has no declaration");
324  BaseDecl = BaseDecl->getDefinition(Context);
325  assert(BaseDecl && "Base type is not incomplete, but has no definition");
326  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic()) {
327    cast<CXXRecordDecl>(Decl)->setPolymorphic(true);
328  }
329
330  // Create the base specifier.
331  return new CXXBaseSpecifier(SpecifierRange, Virtual,
332                              BaseType->isClassType(), Access, BaseType);
333}
334
335/// ActOnBaseSpecifiers - Attach the given base specifiers to the
336/// class, after checking whether there are any duplicate base
337/// classes.
338void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
339                               unsigned NumBases) {
340  if (NumBases == 0)
341    return;
342
343  // Used to keep track of which base types we have already seen, so
344  // that we can properly diagnose redundant direct base types. Note
345  // that the key is always the unqualified canonical type of the base
346  // class.
347  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
348
349  // Copy non-redundant base specifiers into permanent storage.
350  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
351  unsigned NumGoodBases = 0;
352  for (unsigned idx = 0; idx < NumBases; ++idx) {
353    QualType NewBaseType
354      = Context.getCanonicalType(BaseSpecs[idx]->getType());
355    NewBaseType = NewBaseType.getUnqualifiedType();
356
357    if (KnownBaseTypes[NewBaseType]) {
358      // C++ [class.mi]p3:
359      //   A class shall not be specified as a direct base class of a
360      //   derived class more than once.
361      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
362           diag::err_duplicate_base_class,
363           KnownBaseTypes[NewBaseType]->getType().getAsString(),
364           BaseSpecs[idx]->getSourceRange());
365
366      // Delete the duplicate base class specifier; we're going to
367      // overwrite its pointer later.
368      delete BaseSpecs[idx];
369    } else {
370      // Okay, add this new base class.
371      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
372      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
373    }
374  }
375
376  // Attach the remaining base class specifiers to the derived class.
377  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
378  Decl->setBases(BaseSpecs, NumGoodBases);
379
380  // Delete the remaining (good) base class specifiers, since their
381  // data has been copied into the CXXRecordDecl.
382  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
383    delete BaseSpecs[idx];
384}
385
386//===----------------------------------------------------------------------===//
387// C++ class member Handling
388//===----------------------------------------------------------------------===//
389
390/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
391/// definition, when on C++.
392void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
393  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
394  PushDeclContext(Dcl);
395  FieldCollector->StartClass();
396
397  if (Dcl->getIdentifier()) {
398    // C++ [class]p2:
399    //   [...] The class-name is also inserted into the scope of the
400    //   class itself; this is known as the injected-class-name. For
401    //   purposes of access checking, the injected-class-name is treated
402    //   as if it were a public member name.
403    // FIXME: this should probably have its own kind of type node.
404    TypedefDecl *InjectedClassName
405      = TypedefDecl::Create(Context, Dcl, LBrace, Dcl->getIdentifier(),
406                            Context.getTypeDeclType(Dcl), /*PrevDecl=*/0);
407    PushOnScopeChains(InjectedClassName, S);
408  }
409}
410
411/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
412/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
413/// bitfield width if there is one and 'InitExpr' specifies the initializer if
414/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
415/// declarators on it.
416///
417/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
418/// an instance field is declared, a new CXXFieldDecl is created but the method
419/// does *not* return it; it returns LastInGroup instead. The other C++ members
420/// (which are all ScopedDecls) are returned after appending them to
421/// LastInGroup.
422Sema::DeclTy *
423Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
424                               ExprTy *BW, ExprTy *InitExpr,
425                               DeclTy *LastInGroup) {
426  const DeclSpec &DS = D.getDeclSpec();
427  IdentifierInfo *II = D.getIdentifier();
428  Expr *BitWidth = static_cast<Expr*>(BW);
429  Expr *Init = static_cast<Expr*>(InitExpr);
430  SourceLocation Loc = D.getIdentifierLoc();
431
432  // C++ 9.2p6: A member shall not be declared to have automatic storage
433  // duration (auto, register) or with the extern storage-class-specifier.
434  switch (DS.getStorageClassSpec()) {
435    case DeclSpec::SCS_unspecified:
436    case DeclSpec::SCS_typedef:
437    case DeclSpec::SCS_static:
438      // FALL THROUGH.
439      break;
440    default:
441      if (DS.getStorageClassSpecLoc().isValid())
442        Diag(DS.getStorageClassSpecLoc(),
443             diag::err_storageclass_invalid_for_member);
444      else
445        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
446      D.getMutableDeclSpec().ClearStorageClassSpecs();
447  }
448
449  bool isFunc = D.isFunctionDeclarator();
450  if (!isFunc &&
451      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
452      D.getNumTypeObjects() == 0) {
453    // Check also for this case:
454    //
455    // typedef int f();
456    // f a;
457    //
458    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
459    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
460  }
461
462  bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified &&
463                      !isFunc);
464
465  Decl *Member;
466  bool InvalidDecl = false;
467
468  if (isInstField)
469    Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
470  else
471    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
472
473  if (!Member) return LastInGroup;
474
475  assert((II || isInstField) && "No identifier for non-field ?");
476
477  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
478  // specific methods. Use a wrapper class that can be used with all C++ class
479  // member decls.
480  CXXClassMemberWrapper(Member).setAccess(AS);
481
482  // C++ [dcl.init.aggr]p1:
483  //   An aggregate is an array or a class (clause 9) with [...] no
484  //   private or protected non-static data members (clause 11).
485  if (isInstField && (AS == AS_private || AS == AS_protected))
486    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
487
488  if (DS.isVirtualSpecified()) {
489    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
490      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
491      InvalidDecl = true;
492    } else {
493      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
494      CurClass->setAggregate(false);
495      CurClass->setPolymorphic(true);
496    }
497  }
498
499  if (BitWidth) {
500    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
501    // constant-expression be a value equal to zero.
502    // FIXME: Check this.
503
504    if (D.isFunctionDeclarator()) {
505      // FIXME: Emit diagnostic about only constructors taking base initializers
506      // or something similar, when constructor support is in place.
507      Diag(Loc, diag::err_not_bitfield_type,
508           II->getName(), BitWidth->getSourceRange());
509      InvalidDecl = true;
510
511    } else if (isInstField) {
512      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
513      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
514        Diag(Loc, diag::err_not_integral_type_bitfield,
515             II->getName(), BitWidth->getSourceRange());
516        InvalidDecl = true;
517      }
518
519    } else if (isa<FunctionDecl>(Member)) {
520      // A function typedef ("typedef int f(); f a;").
521      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
522      Diag(Loc, diag::err_not_integral_type_bitfield,
523           II->getName(), BitWidth->getSourceRange());
524      InvalidDecl = true;
525
526    } else if (isa<TypedefDecl>(Member)) {
527      // "cannot declare 'A' to be a bit-field type"
528      Diag(Loc, diag::err_not_bitfield_type, II->getName(),
529           BitWidth->getSourceRange());
530      InvalidDecl = true;
531
532    } else {
533      assert(isa<CXXClassVarDecl>(Member) &&
534             "Didn't we cover all member kinds?");
535      // C++ 9.6p3: A bit-field shall not be a static member.
536      // "static member 'A' cannot be a bit-field"
537      Diag(Loc, diag::err_static_not_bitfield, II->getName(),
538           BitWidth->getSourceRange());
539      InvalidDecl = true;
540    }
541  }
542
543  if (Init) {
544    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
545    // if it declares a static member of const integral or const enumeration
546    // type.
547    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
548      // ...static member of...
549      CVD->setInit(Init);
550      // ...const integral or const enumeration type.
551      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
552          CVD->getType()->isIntegralType()) {
553        // constant-initializer
554        if (CheckForConstantInitializer(Init, CVD->getType()))
555          InvalidDecl = true;
556
557      } else {
558        // not const integral.
559        Diag(Loc, diag::err_member_initialization,
560             II->getName(), Init->getSourceRange());
561        InvalidDecl = true;
562      }
563
564    } else {
565      // not static member.
566      Diag(Loc, diag::err_member_initialization,
567           II->getName(), Init->getSourceRange());
568      InvalidDecl = true;
569    }
570  }
571
572  if (InvalidDecl)
573    Member->setInvalidDecl();
574
575  if (isInstField) {
576    FieldCollector->Add(cast<CXXFieldDecl>(Member));
577    return LastInGroup;
578  }
579  return Member;
580}
581
582/// ActOnMemInitializer - Handle a C++ member initializer.
583Sema::MemInitResult
584Sema::ActOnMemInitializer(DeclTy *ConstructorD,
585                          Scope *S,
586                          IdentifierInfo *MemberOrBase,
587                          SourceLocation IdLoc,
588                          SourceLocation LParenLoc,
589                          ExprTy **Args, unsigned NumArgs,
590                          SourceLocation *CommaLocs,
591                          SourceLocation RParenLoc) {
592  CXXConstructorDecl *Constructor
593    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
594  if (!Constructor) {
595    // The user wrote a constructor initializer on a function that is
596    // not a C++ constructor. Ignore the error for now, because we may
597    // have more member initializers coming; we'll diagnose it just
598    // once in ActOnMemInitializers.
599    return true;
600  }
601
602  CXXRecordDecl *ClassDecl = Constructor->getParent();
603
604  // C++ [class.base.init]p2:
605  //   Names in a mem-initializer-id are looked up in the scope of the
606  //   constructor’s class and, if not found in that scope, are looked
607  //   up in the scope containing the constructor’s
608  //   definition. [Note: if the constructor’s class contains a member
609  //   with the same name as a direct or virtual base class of the
610  //   class, a mem-initializer-id naming the member or base class and
611  //   composed of a single identifier refers to the class member. A
612  //   mem-initializer-id for the hidden base class may be specified
613  //   using a qualified name. ]
614  // Look for a member, first.
615  CXXFieldDecl *Member = ClassDecl->getMember(MemberOrBase);
616
617  // FIXME: Handle members of an anonymous union.
618
619  if (Member) {
620    // FIXME: Perform direct initialization of the member.
621    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
622  }
623
624  // It didn't name a member, so see if it names a class.
625  TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/);
626  if (!BaseTy)
627    return Diag(IdLoc, diag::err_mem_init_not_member_or_class,
628                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
629
630  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
631  if (!BaseType->isRecordType())
632    return Diag(IdLoc, diag::err_base_init_does_not_name_class,
633                BaseType.getAsString(), SourceRange(IdLoc, RParenLoc));
634
635  // C++ [class.base.init]p2:
636  //   [...] Unless the mem-initializer-id names a nonstatic data
637  //   member of the constructor’s class or a direct or virtual base
638  //   of that class, the mem-initializer is ill-formed. A
639  //   mem-initializer-list can initialize a base class using any
640  //   name that denotes that base class type.
641
642  // First, check for a direct base class.
643  const CXXBaseSpecifier *DirectBaseSpec = 0;
644  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
645       Base != ClassDecl->bases_end(); ++Base) {
646    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
647        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
648      // We found a direct base of this type. That's what we're
649      // initializing.
650      DirectBaseSpec = &*Base;
651      break;
652    }
653  }
654
655  // Check for a virtual base class.
656  // FIXME: We might be able to short-circuit this if we know in
657  // advance that there are no virtual bases.
658  const CXXBaseSpecifier *VirtualBaseSpec = 0;
659  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
660    // We haven't found a base yet; search the class hierarchy for a
661    // virtual base class.
662    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
663                    /*DetectVirtual=*/false);
664    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
665      for (BasePaths::paths_iterator Path = Paths.begin();
666           Path != Paths.end(); ++Path) {
667        if (Path->back().Base->isVirtual()) {
668          VirtualBaseSpec = Path->back().Base;
669          break;
670        }
671      }
672    }
673  }
674
675  // C++ [base.class.init]p2:
676  //   If a mem-initializer-id is ambiguous because it designates both
677  //   a direct non-virtual base class and an inherited virtual base
678  //   class, the mem-initializer is ill-formed.
679  if (DirectBaseSpec && VirtualBaseSpec)
680    return Diag(IdLoc, diag::err_base_init_direct_and_virtual,
681                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
682
683  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
684}
685
686
687void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
688                                             DeclTy *TagDecl,
689                                             SourceLocation LBrac,
690                                             SourceLocation RBrac) {
691  ActOnFields(S, RLoc, TagDecl,
692              (DeclTy**)FieldCollector->getCurFields(),
693              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
694}
695
696/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
697/// special functions, such as the default constructor, copy
698/// constructor, or destructor, to the given C++ class (C++
699/// [special]p1).  This routine can only be executed just before the
700/// definition of the class is complete.
701void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
702  if (!ClassDecl->hasUserDeclaredConstructor()) {
703    // C++ [class.ctor]p5:
704    //   A default constructor for a class X is a constructor of class X
705    //   that can be called without an argument. If there is no
706    //   user-declared constructor for class X, a default constructor is
707    //   implicitly declared. An implicitly-declared default constructor
708    //   is an inline public member of its class.
709    CXXConstructorDecl *DefaultCon =
710      CXXConstructorDecl::Create(Context, ClassDecl,
711                                 ClassDecl->getLocation(),
712                                 ClassDecl->getIdentifier(),
713                                 Context.getFunctionType(Context.VoidTy,
714                                                         0, 0, false, 0),
715                                 /*isExplicit=*/false,
716                                 /*isInline=*/true,
717                                 /*isImplicitlyDeclared=*/true);
718    DefaultCon->setAccess(AS_public);
719    ClassDecl->addConstructor(Context, DefaultCon);
720  }
721
722  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
723    // C++ [class.copy]p4:
724    //   If the class definition does not explicitly declare a copy
725    //   constructor, one is declared implicitly.
726
727    // C++ [class.copy]p5:
728    //   The implicitly-declared copy constructor for a class X will
729    //   have the form
730    //
731    //       X::X(const X&)
732    //
733    //   if
734    bool HasConstCopyConstructor = true;
735
736    //     -- each direct or virtual base class B of X has a copy
737    //        constructor whose first parameter is of type const B& or
738    //        const volatile B&, and
739    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
740         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
741      const CXXRecordDecl *BaseClassDecl
742        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
743      HasConstCopyConstructor
744        = BaseClassDecl->hasConstCopyConstructor(Context);
745    }
746
747    //     -- for all the nonstatic data members of X that are of a
748    //        class type M (or array thereof), each such class type
749    //        has a copy constructor whose first parameter is of type
750    //        const M& or const volatile M&.
751    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
752         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
753      QualType FieldType = (*Field)->getType();
754      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
755        FieldType = Array->getElementType();
756      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
757        const CXXRecordDecl *FieldClassDecl
758          = cast<CXXRecordDecl>(FieldClassType->getDecl());
759        HasConstCopyConstructor
760          = FieldClassDecl->hasConstCopyConstructor(Context);
761      }
762    }
763
764    //  Otherwise, the implicitly declared copy constructor will have
765    //  the form
766    //
767    //       X::X(X&)
768    QualType ArgType = Context.getTypeDeclType(ClassDecl);
769    if (HasConstCopyConstructor)
770      ArgType = ArgType.withConst();
771    ArgType = Context.getReferenceType(ArgType);
772
773    //  An implicitly-declared copy constructor is an inline public
774    //  member of its class.
775    CXXConstructorDecl *CopyConstructor
776      = CXXConstructorDecl::Create(Context, ClassDecl,
777                                   ClassDecl->getLocation(),
778                                   ClassDecl->getIdentifier(),
779                                   Context.getFunctionType(Context.VoidTy,
780                                                           &ArgType, 1,
781                                                           false, 0),
782                                   /*isExplicit=*/false,
783                                   /*isInline=*/true,
784                                   /*isImplicitlyDeclared=*/true);
785    CopyConstructor->setAccess(AS_public);
786
787    // Add the parameter to the constructor.
788    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
789                                                 ClassDecl->getLocation(),
790                                                 /*IdentifierInfo=*/0,
791                                                 ArgType, VarDecl::None, 0, 0);
792    CopyConstructor->setParams(&FromParam, 1);
793
794    ClassDecl->addConstructor(Context, CopyConstructor);
795  }
796
797  if (!ClassDecl->getDestructor()) {
798    // C++ [class.dtor]p2:
799    //   If a class has no user-declared destructor, a destructor is
800    //   declared implicitly. An implicitly-declared destructor is an
801    //   inline public member of its class.
802    std::string DestructorName = "~";
803    DestructorName += ClassDecl->getName();
804    CXXDestructorDecl *Destructor
805      = CXXDestructorDecl::Create(Context, ClassDecl,
806                                  ClassDecl->getLocation(),
807                                  &PP.getIdentifierTable().get(DestructorName),
808                                  Context.getFunctionType(Context.VoidTy,
809                                                          0, 0, false, 0),
810                                  /*isInline=*/true,
811                                  /*isImplicitlyDeclared=*/true);
812    Destructor->setAccess(AS_public);
813    ClassDecl->setDestructor(Destructor);
814  }
815
816  // FIXME: Implicit copy assignment operator
817}
818
819void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
820  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
821  FieldCollector->FinishClass();
822  AddImplicitlyDeclaredMembersToClass(Rec);
823  PopDeclContext();
824
825  // Everything, including inline method definitions, have been parsed.
826  // Let the consumer know of the new TagDecl definition.
827  Consumer.HandleTagDeclDefinition(Rec);
828}
829
830/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
831/// the well-formednes of the constructor declarator @p D with type @p
832/// R. If there are any errors in the declarator, this routine will
833/// emit diagnostics and return true. Otherwise, it will return
834/// false. Either way, the type @p R will be updated to reflect a
835/// well-formed type for the constructor.
836bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
837                                      FunctionDecl::StorageClass& SC) {
838  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
839  bool isInvalid = false;
840
841  // C++ [class.ctor]p3:
842  //   A constructor shall not be virtual (10.3) or static (9.4). A
843  //   constructor can be invoked for a const, volatile or const
844  //   volatile object. A constructor shall not be declared const,
845  //   volatile, or const volatile (9.3.2).
846  if (isVirtual) {
847    Diag(D.getIdentifierLoc(),
848         diag::err_constructor_cannot_be,
849         "virtual",
850         SourceRange(D.getDeclSpec().getVirtualSpecLoc()),
851         SourceRange(D.getIdentifierLoc()));
852    isInvalid = true;
853  }
854  if (SC == FunctionDecl::Static) {
855    Diag(D.getIdentifierLoc(),
856         diag::err_constructor_cannot_be,
857         "static",
858         SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
859         SourceRange(D.getIdentifierLoc()));
860    isInvalid = true;
861    SC = FunctionDecl::None;
862  }
863  if (D.getDeclSpec().hasTypeSpecifier()) {
864    // Constructors don't have return types, but the parser will
865    // happily parse something like:
866    //
867    //   class X {
868    //     float X(float);
869    //   };
870    //
871    // The return type will be eliminated later.
872    Diag(D.getIdentifierLoc(),
873         diag::err_constructor_return_type,
874         SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
875         SourceRange(D.getIdentifierLoc()));
876  }
877  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
878    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
879    if (FTI.TypeQuals & QualType::Const)
880      Diag(D.getIdentifierLoc(),
881           diag::err_invalid_qualified_constructor,
882           "const",
883           SourceRange(D.getIdentifierLoc()));
884    if (FTI.TypeQuals & QualType::Volatile)
885      Diag(D.getIdentifierLoc(),
886           diag::err_invalid_qualified_constructor,
887           "volatile",
888           SourceRange(D.getIdentifierLoc()));
889    if (FTI.TypeQuals & QualType::Restrict)
890      Diag(D.getIdentifierLoc(),
891           diag::err_invalid_qualified_constructor,
892           "restrict",
893           SourceRange(D.getIdentifierLoc()));
894  }
895
896  // Rebuild the function type "R" without any type qualifiers (in
897  // case any of the errors above fired) and with "void" as the
898  // return type, since constructors don't have return types. We
899  // *always* have to do this, because GetTypeForDeclarator will
900  // put in a result type of "int" when none was specified.
901  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
902  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
903                              Proto->getNumArgs(),
904                              Proto->isVariadic(),
905                              0);
906
907  return isInvalid;
908}
909
910/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
911/// the well-formednes of the destructor declarator @p D with type @p
912/// R. If there are any errors in the declarator, this routine will
913/// emit diagnostics and return true. Otherwise, it will return
914/// false. Either way, the type @p R will be updated to reflect a
915/// well-formed type for the destructor.
916bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
917                                     FunctionDecl::StorageClass& SC) {
918  bool isInvalid = false;
919
920  // C++ [class.dtor]p1:
921  //   [...] A typedef-name that names a class is a class-name
922  //   (7.1.3); however, a typedef-name that names a class shall not
923  //   be used as the identifier in the declarator for a destructor
924  //   declaration.
925  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
926  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
927    if (TypedefD->getIdentifier() !=
928          cast<CXXRecordDecl>(CurContext)->getIdentifier()) {
929      // FIXME: This would be easier if we could just look at whether
930      // we found the injected-class-name.
931      Diag(D.getIdentifierLoc(),
932           diag::err_destructor_typedef_name,
933           TypedefD->getName());
934      isInvalid = true;
935    }
936  }
937
938  // C++ [class.dtor]p2:
939  //   A destructor is used to destroy objects of its class type. A
940  //   destructor takes no parameters, and no return type can be
941  //   specified for it (not even void). The address of a destructor
942  //   shall not be taken. A destructor shall not be static. A
943  //   destructor can be invoked for a const, volatile or const
944  //   volatile object. A destructor shall not be declared const,
945  //   volatile or const volatile (9.3.2).
946  if (SC == FunctionDecl::Static) {
947    Diag(D.getIdentifierLoc(),
948         diag::err_destructor_cannot_be,
949         "static",
950         SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
951         SourceRange(D.getIdentifierLoc()));
952    isInvalid = true;
953    SC = FunctionDecl::None;
954  }
955  if (D.getDeclSpec().hasTypeSpecifier()) {
956    // Destructors don't have return types, but the parser will
957    // happily parse something like:
958    //
959    //   class X {
960    //     float ~X();
961    //   };
962    //
963    // The return type will be eliminated later.
964    Diag(D.getIdentifierLoc(),
965         diag::err_destructor_return_type,
966         SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
967         SourceRange(D.getIdentifierLoc()));
968  }
969  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
970    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
971    if (FTI.TypeQuals & QualType::Const)
972      Diag(D.getIdentifierLoc(),
973           diag::err_invalid_qualified_destructor,
974           "const",
975           SourceRange(D.getIdentifierLoc()));
976    if (FTI.TypeQuals & QualType::Volatile)
977      Diag(D.getIdentifierLoc(),
978           diag::err_invalid_qualified_destructor,
979           "volatile",
980           SourceRange(D.getIdentifierLoc()));
981    if (FTI.TypeQuals & QualType::Restrict)
982      Diag(D.getIdentifierLoc(),
983           diag::err_invalid_qualified_destructor,
984           "restrict",
985           SourceRange(D.getIdentifierLoc()));
986  }
987
988  // Make sure we don't have any parameters.
989  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
990    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
991
992    // Delete the parameters.
993    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
994    if (FTI.NumArgs) {
995      delete [] FTI.ArgInfo;
996      FTI.NumArgs = 0;
997      FTI.ArgInfo = 0;
998    }
999  }
1000
1001  // Make sure the destructor isn't variadic.
1002  if (R->getAsFunctionTypeProto()->isVariadic())
1003    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1004
1005  // Rebuild the function type "R" without any type qualifiers or
1006  // parameters (in case any of the errors above fired) and with
1007  // "void" as the return type, since destructors don't have return
1008  // types. We *always* have to do this, because GetTypeForDeclarator
1009  // will put in a result type of "int" when none was specified.
1010  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1011
1012  return isInvalid;
1013}
1014
1015/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1016/// well-formednes of the conversion function declarator @p D with
1017/// type @p R. If there are any errors in the declarator, this routine
1018/// will emit diagnostics and return true. Otherwise, it will return
1019/// false. Either way, the type @p R will be updated to reflect a
1020/// well-formed type for the conversion operator.
1021bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1022                                     FunctionDecl::StorageClass& SC) {
1023  bool isInvalid = false;
1024
1025  // C++ [class.conv.fct]p1:
1026  //   Neither parameter types nor return type can be specified. The
1027  //   type of a conversion function (8.3.5) is “function taking no
1028  //   parameter returning conversion-type-id.”
1029  if (SC == FunctionDecl::Static) {
1030    Diag(D.getIdentifierLoc(),
1031         diag::err_conv_function_not_member,
1032         "static",
1033         SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
1034         SourceRange(D.getIdentifierLoc()));
1035    isInvalid = true;
1036    SC = FunctionDecl::None;
1037  }
1038  if (D.getDeclSpec().hasTypeSpecifier()) {
1039    // Conversion functions don't have return types, but the parser will
1040    // happily parse something like:
1041    //
1042    //   class X {
1043    //     float operator bool();
1044    //   };
1045    //
1046    // The return type will be changed later anyway.
1047    Diag(D.getIdentifierLoc(),
1048         diag::err_conv_function_return_type,
1049         SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
1050         SourceRange(D.getIdentifierLoc()));
1051  }
1052
1053  // Make sure we don't have any parameters.
1054  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1055    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1056
1057    // Delete the parameters.
1058    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1059    if (FTI.NumArgs) {
1060      delete [] FTI.ArgInfo;
1061      FTI.NumArgs = 0;
1062      FTI.ArgInfo = 0;
1063    }
1064  }
1065
1066  // Make sure the conversion function isn't variadic.
1067  if (R->getAsFunctionTypeProto()->isVariadic())
1068    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1069
1070  // C++ [class.conv.fct]p4:
1071  //   The conversion-type-id shall not represent a function type nor
1072  //   an array type.
1073  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1074  if (ConvType->isArrayType()) {
1075    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1076    ConvType = Context.getPointerType(ConvType);
1077  } else if (ConvType->isFunctionType()) {
1078    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1079    ConvType = Context.getPointerType(ConvType);
1080  }
1081
1082  // Rebuild the function type "R" without any parameters (in case any
1083  // of the errors above fired) and with the conversion type as the
1084  // return type.
1085  R = Context.getFunctionType(ConvType, 0, 0, false,
1086                              R->getAsFunctionTypeProto()->getTypeQuals());
1087
1088  return isInvalid;
1089}
1090
1091/// ActOnConstructorDeclarator - Called by ActOnDeclarator to complete
1092/// the declaration of the given C++ constructor ConDecl that was
1093/// built from declarator D. This routine is responsible for checking
1094/// that the newly-created constructor declaration is well-formed and
1095/// for recording it in the C++ class. Example:
1096///
1097/// @code
1098/// class X {
1099///   X(); // X::X() will be the ConDecl.
1100/// };
1101/// @endcode
1102Sema::DeclTy *Sema::ActOnConstructorDeclarator(CXXConstructorDecl *ConDecl) {
1103  assert(ConDecl && "Expected to receive a constructor declaration");
1104
1105  // Check default arguments on the constructor
1106  CheckCXXDefaultArguments(ConDecl);
1107
1108  CXXRecordDecl *ClassDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1109  if (!ClassDecl) {
1110    ConDecl->setInvalidDecl();
1111    return ConDecl;
1112  }
1113
1114  // Make sure this constructor is an overload of the existing
1115  // constructors.
1116  OverloadedFunctionDecl::function_iterator MatchedDecl;
1117  if (!IsOverload(ConDecl, ClassDecl->getConstructors(), MatchedDecl)) {
1118    Diag(ConDecl->getLocation(),
1119         diag::err_constructor_redeclared,
1120         SourceRange(ConDecl->getLocation()));
1121    Diag((*MatchedDecl)->getLocation(),
1122         diag::err_previous_declaration,
1123         SourceRange((*MatchedDecl)->getLocation()));
1124    ConDecl->setInvalidDecl();
1125    return ConDecl;
1126  }
1127
1128
1129  // C++ [class.copy]p3:
1130  //   A declaration of a constructor for a class X is ill-formed if
1131  //   its first parameter is of type (optionally cv-qualified) X and
1132  //   either there are no other parameters or else all other
1133  //   parameters have default arguments.
1134  if ((ConDecl->getNumParams() == 1) ||
1135      (ConDecl->getNumParams() > 1 &&
1136       ConDecl->getParamDecl(1)->getDefaultArg() != 0)) {
1137    QualType ParamType = ConDecl->getParamDecl(0)->getType();
1138    QualType ClassTy = Context.getTagDeclType(
1139                         const_cast<CXXRecordDecl*>(ConDecl->getParent()));
1140    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1141      Diag(ConDecl->getLocation(),
1142           diag::err_constructor_byvalue_arg,
1143           SourceRange(ConDecl->getParamDecl(0)->getLocation()));
1144      ConDecl->setInvalidDecl();
1145      return ConDecl;
1146    }
1147  }
1148
1149  // Add this constructor to the set of constructors of the current
1150  // class.
1151  ClassDecl->addConstructor(Context, ConDecl);
1152  return (DeclTy *)ConDecl;
1153}
1154
1155/// ActOnDestructorDeclarator - Called by ActOnDeclarator to complete
1156/// the declaration of the given C++ @p Destructor. This routine is
1157/// responsible for recording the destructor in the C++ class, if
1158/// possible.
1159Sema::DeclTy *Sema::ActOnDestructorDeclarator(CXXDestructorDecl *Destructor) {
1160  assert(Destructor && "Expected to receive a destructor declaration");
1161
1162  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1163
1164  // Make sure we aren't redeclaring the destructor.
1165  if (CXXDestructorDecl *PrevDestructor = ClassDecl->getDestructor()) {
1166    Diag(Destructor->getLocation(), diag::err_destructor_redeclared);
1167    Diag(PrevDestructor->getLocation(),
1168         PrevDestructor->isThisDeclarationADefinition()?
1169             diag::err_previous_definition
1170           : diag::err_previous_declaration);
1171    Destructor->setInvalidDecl();
1172    return Destructor;
1173  }
1174
1175  ClassDecl->setDestructor(Destructor);
1176  return (DeclTy *)Destructor;
1177}
1178
1179/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1180/// the declaration of the given C++ conversion function. This routine
1181/// is responsible for recording the conversion function in the C++
1182/// class, if possible.
1183Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1184  assert(Conversion && "Expected to receive a conversion function declaration");
1185
1186  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1187
1188  // Make sure we aren't redeclaring the conversion function.
1189  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1190  OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1191  for (OverloadedFunctionDecl::function_iterator Func
1192         = Conversions->function_begin();
1193       Func != Conversions->function_end(); ++Func) {
1194    CXXConversionDecl *OtherConv = cast<CXXConversionDecl>(*Func);
1195    if (ConvType == Context.getCanonicalType(OtherConv->getConversionType())) {
1196      Diag(Conversion->getLocation(), diag::err_conv_function_redeclared);
1197      Diag(OtherConv->getLocation(),
1198           OtherConv->isThisDeclarationADefinition()?
1199              diag::err_previous_definition
1200            : diag::err_previous_declaration);
1201      Conversion->setInvalidDecl();
1202      return (DeclTy *)Conversion;
1203    }
1204  }
1205
1206  // C++ [class.conv.fct]p1:
1207  //   [...] A conversion function is never used to convert a
1208  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1209  //   same object type (or a reference to it), to a (possibly
1210  //   cv-qualified) base class of that type (or a reference to it),
1211  //   or to (possibly cv-qualified) void.
1212  // FIXME: Suppress this warning if the conversion function ends up
1213  // being a virtual function that overrides a virtual function in a
1214  // base class.
1215  QualType ClassType
1216    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1217  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1218    ConvType = ConvTypeRef->getPointeeType();
1219  if (ConvType->isRecordType()) {
1220    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1221    if (ConvType == ClassType)
1222      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used,
1223           ClassType.getAsString());
1224    else if (IsDerivedFrom(ClassType, ConvType))
1225      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used,
1226           ClassType.getAsString(),
1227           ConvType.getAsString());
1228  } else if (ConvType->isVoidType()) {
1229    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used,
1230         ClassType.getAsString(), ConvType.getAsString());
1231  }
1232
1233  ClassDecl->addConversionFunction(Context, Conversion);
1234
1235  return (DeclTy *)Conversion;
1236}
1237
1238//===----------------------------------------------------------------------===//
1239// Namespace Handling
1240//===----------------------------------------------------------------------===//
1241
1242/// ActOnStartNamespaceDef - This is called at the start of a namespace
1243/// definition.
1244Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1245                                           SourceLocation IdentLoc,
1246                                           IdentifierInfo *II,
1247                                           SourceLocation LBrace) {
1248  NamespaceDecl *Namespc =
1249      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1250  Namespc->setLBracLoc(LBrace);
1251
1252  Scope *DeclRegionScope = NamespcScope->getParent();
1253
1254  if (II) {
1255    // C++ [namespace.def]p2:
1256    // The identifier in an original-namespace-definition shall not have been
1257    // previously defined in the declarative region in which the
1258    // original-namespace-definition appears. The identifier in an
1259    // original-namespace-definition is the name of the namespace. Subsequently
1260    // in that declarative region, it is treated as an original-namespace-name.
1261
1262    Decl *PrevDecl =
1263        LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, 0,
1264                   /*enableLazyBuiltinCreation=*/false);
1265
1266    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
1267      if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
1268        // This is an extended namespace definition.
1269        // Attach this namespace decl to the chain of extended namespace
1270        // definitions.
1271        NamespaceDecl *NextNS = OrigNS;
1272        while (NextNS->getNextNamespace())
1273          NextNS = NextNS->getNextNamespace();
1274
1275        NextNS->setNextNamespace(Namespc);
1276        Namespc->setOriginalNamespace(OrigNS);
1277
1278        // We won't add this decl to the current scope. We want the namespace
1279        // name to return the original namespace decl during a name lookup.
1280      } else {
1281        // This is an invalid name redefinition.
1282        Diag(Namespc->getLocation(), diag::err_redefinition_different_kind,
1283          Namespc->getName());
1284        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1285        Namespc->setInvalidDecl();
1286        // Continue on to push Namespc as current DeclContext and return it.
1287      }
1288    } else {
1289      // This namespace name is declared for the first time.
1290      PushOnScopeChains(Namespc, DeclRegionScope);
1291    }
1292  }
1293  else {
1294    // FIXME: Handle anonymous namespaces
1295  }
1296
1297  // Although we could have an invalid decl (i.e. the namespace name is a
1298  // redefinition), push it as current DeclContext and try to continue parsing.
1299  PushDeclContext(Namespc->getOriginalNamespace());
1300  return Namespc;
1301}
1302
1303/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1304/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1305void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1306  Decl *Dcl = static_cast<Decl *>(D);
1307  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1308  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1309  Namespc->setRBracLoc(RBrace);
1310  PopDeclContext();
1311}
1312
1313
1314/// AddCXXDirectInitializerToDecl - This action is called immediately after
1315/// ActOnDeclarator, when a C++ direct initializer is present.
1316/// e.g: "int x(1);"
1317void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1318                                         ExprTy **ExprTys, unsigned NumExprs,
1319                                         SourceLocation *CommaLocs,
1320                                         SourceLocation RParenLoc) {
1321  assert(NumExprs != 0 && ExprTys && "missing expressions");
1322  Decl *RealDecl = static_cast<Decl *>(Dcl);
1323
1324  // If there is no declaration, there was an error parsing it.  Just ignore
1325  // the initializer.
1326  if (RealDecl == 0) {
1327    for (unsigned i = 0; i != NumExprs; ++i)
1328      delete static_cast<Expr *>(ExprTys[i]);
1329    return;
1330  }
1331
1332  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1333  if (!VDecl) {
1334    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1335    RealDecl->setInvalidDecl();
1336    return;
1337  }
1338
1339  // We will treat direct-initialization as a copy-initialization:
1340  //    int x(1);  -as-> int x = 1;
1341  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1342  //
1343  // Clients that want to distinguish between the two forms, can check for
1344  // direct initializer using VarDecl::hasCXXDirectInitializer().
1345  // A major benefit is that clients that don't particularly care about which
1346  // exactly form was it (like the CodeGen) can handle both cases without
1347  // special case code.
1348
1349  // C++ 8.5p11:
1350  // The form of initialization (using parentheses or '=') is generally
1351  // insignificant, but does matter when the entity being initialized has a
1352  // class type.
1353  QualType DeclInitType = VDecl->getType();
1354  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1355    DeclInitType = Array->getElementType();
1356
1357  if (VDecl->getType()->isRecordType()) {
1358    CXXConstructorDecl *Constructor
1359      = PerformInitializationByConstructor(DeclInitType,
1360                                           (Expr **)ExprTys, NumExprs,
1361                                           VDecl->getLocation(),
1362                                           SourceRange(VDecl->getLocation(),
1363                                                       RParenLoc),
1364                                           VDecl->getName(),
1365                                           IK_Direct);
1366    if (!Constructor) {
1367      RealDecl->setInvalidDecl();
1368    }
1369
1370    // Let clients know that initialization was done with a direct
1371    // initializer.
1372    VDecl->setCXXDirectInitializer(true);
1373
1374    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1375    // the initializer.
1376    return;
1377  }
1378
1379  if (NumExprs > 1) {
1380    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg,
1381         SourceRange(VDecl->getLocation(), RParenLoc));
1382    RealDecl->setInvalidDecl();
1383    return;
1384  }
1385
1386  // Let clients know that initialization was done with a direct initializer.
1387  VDecl->setCXXDirectInitializer(true);
1388
1389  assert(NumExprs == 1 && "Expected 1 expression");
1390  // Set the init expression, handles conversions.
1391  AddInitializerToDecl(Dcl, ExprTys[0]);
1392}
1393
1394/// PerformInitializationByConstructor - Perform initialization by
1395/// constructor (C++ [dcl.init]p14), which may occur as part of
1396/// direct-initialization or copy-initialization. We are initializing
1397/// an object of type @p ClassType with the given arguments @p
1398/// Args. @p Loc is the location in the source code where the
1399/// initializer occurs (e.g., a declaration, member initializer,
1400/// functional cast, etc.) while @p Range covers the whole
1401/// initialization. @p InitEntity is the entity being initialized,
1402/// which may by the name of a declaration or a type. @p Kind is the
1403/// kind of initialization we're performing, which affects whether
1404/// explicit constructors will be considered. When successful, returns
1405/// the constructor that will be used to perform the initialization;
1406/// when the initialization fails, emits a diagnostic and returns
1407/// null.
1408CXXConstructorDecl *
1409Sema::PerformInitializationByConstructor(QualType ClassType,
1410                                         Expr **Args, unsigned NumArgs,
1411                                         SourceLocation Loc, SourceRange Range,
1412                                         std::string InitEntity,
1413                                         InitializationKind Kind) {
1414  const RecordType *ClassRec = ClassType->getAsRecordType();
1415  assert(ClassRec && "Can only initialize a class type here");
1416
1417  // C++ [dcl.init]p14:
1418  //
1419  //   If the initialization is direct-initialization, or if it is
1420  //   copy-initialization where the cv-unqualified version of the
1421  //   source type is the same class as, or a derived class of, the
1422  //   class of the destination, constructors are considered. The
1423  //   applicable constructors are enumerated (13.3.1.3), and the
1424  //   best one is chosen through overload resolution (13.3). The
1425  //   constructor so selected is called to initialize the object,
1426  //   with the initializer expression(s) as its argument(s). If no
1427  //   constructor applies, or the overload resolution is ambiguous,
1428  //   the initialization is ill-formed.
1429  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1430  OverloadCandidateSet CandidateSet;
1431
1432  // Add constructors to the overload set.
1433  OverloadedFunctionDecl *Constructors
1434    = const_cast<OverloadedFunctionDecl *>(ClassDecl->getConstructors());
1435  for (OverloadedFunctionDecl::function_iterator Con
1436         = Constructors->function_begin();
1437       Con != Constructors->function_end(); ++Con) {
1438    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1439    if ((Kind == IK_Direct) ||
1440        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1441        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1442      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1443  }
1444
1445  OverloadCandidateSet::iterator Best;
1446  switch (BestViableFunction(CandidateSet, Best)) {
1447  case OR_Success:
1448    // We found a constructor. Return it.
1449    return cast<CXXConstructorDecl>(Best->Function);
1450
1451  case OR_No_Viable_Function:
1452    if (CandidateSet.empty())
1453      Diag(Loc, diag::err_ovl_no_viable_function_in_init,
1454           InitEntity, Range);
1455    else {
1456      Diag(Loc, diag::err_ovl_no_viable_function_in_init_with_cands,
1457           InitEntity, Range);
1458      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1459    }
1460    return 0;
1461
1462  case OR_Ambiguous:
1463    Diag(Loc, diag::err_ovl_ambiguous_init,
1464         InitEntity, Range);
1465    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1466    return 0;
1467  }
1468
1469  return 0;
1470}
1471
1472/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1473/// determine whether they are reference-related,
1474/// reference-compatible, reference-compatible with added
1475/// qualification, or incompatible, for use in C++ initialization by
1476/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1477/// type, and the first type (T1) is the pointee type of the reference
1478/// type being initialized.
1479Sema::ReferenceCompareResult
1480Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1481                                   bool& DerivedToBase) {
1482  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1483  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1484
1485  T1 = Context.getCanonicalType(T1);
1486  T2 = Context.getCanonicalType(T2);
1487  QualType UnqualT1 = T1.getUnqualifiedType();
1488  QualType UnqualT2 = T2.getUnqualifiedType();
1489
1490  // C++ [dcl.init.ref]p4:
1491  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1492  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1493  //   T1 is a base class of T2.
1494  if (UnqualT1 == UnqualT2)
1495    DerivedToBase = false;
1496  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1497    DerivedToBase = true;
1498  else
1499    return Ref_Incompatible;
1500
1501  // At this point, we know that T1 and T2 are reference-related (at
1502  // least).
1503
1504  // C++ [dcl.init.ref]p4:
1505  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1506  //   reference-related to T2 and cv1 is the same cv-qualification
1507  //   as, or greater cv-qualification than, cv2. For purposes of
1508  //   overload resolution, cases for which cv1 is greater
1509  //   cv-qualification than cv2 are identified as
1510  //   reference-compatible with added qualification (see 13.3.3.2).
1511  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1512    return Ref_Compatible;
1513  else if (T1.isMoreQualifiedThan(T2))
1514    return Ref_Compatible_With_Added_Qualification;
1515  else
1516    return Ref_Related;
1517}
1518
1519/// CheckReferenceInit - Check the initialization of a reference
1520/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1521/// the initializer (either a simple initializer or an initializer
1522/// list), and DeclType is the type of the declaration. When ICS is
1523/// non-null, this routine will compute the implicit conversion
1524/// sequence according to C++ [over.ics.ref] and will not produce any
1525/// diagnostics; when ICS is null, it will emit diagnostics when any
1526/// errors are found. Either way, a return value of true indicates
1527/// that there was a failure, a return value of false indicates that
1528/// the reference initialization succeeded.
1529///
1530/// When @p SuppressUserConversions, user-defined conversions are
1531/// suppressed.
1532bool
1533Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1534                         ImplicitConversionSequence *ICS,
1535                         bool SuppressUserConversions) {
1536  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1537
1538  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1539  QualType T2 = Init->getType();
1540
1541  // Compute some basic properties of the types and the initializer.
1542  bool DerivedToBase = false;
1543  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1544  ReferenceCompareResult RefRelationship
1545    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1546
1547  // Most paths end in a failed conversion.
1548  if (ICS)
1549    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1550
1551  // C++ [dcl.init.ref]p5:
1552  //   A reference to type “cv1 T1” is initialized by an expression
1553  //   of type “cv2 T2” as follows:
1554
1555  //     -- If the initializer expression
1556
1557  bool BindsDirectly = false;
1558  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1559  //          reference-compatible with “cv2 T2,” or
1560  //
1561  // Note that the bit-field check is skipped if we are just computing
1562  // the implicit conversion sequence (C++ [over.best.ics]p2).
1563  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1564      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1565    BindsDirectly = true;
1566
1567    if (ICS) {
1568      // C++ [over.ics.ref]p1:
1569      //   When a parameter of reference type binds directly (8.5.3)
1570      //   to an argument expression, the implicit conversion sequence
1571      //   is the identity conversion, unless the argument expression
1572      //   has a type that is a derived class of the parameter type,
1573      //   in which case the implicit conversion sequence is a
1574      //   derived-to-base Conversion (13.3.3.1).
1575      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1576      ICS->Standard.First = ICK_Identity;
1577      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1578      ICS->Standard.Third = ICK_Identity;
1579      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1580      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1581      ICS->Standard.ReferenceBinding = true;
1582      ICS->Standard.DirectBinding = true;
1583
1584      // Nothing more to do: the inaccessibility/ambiguity check for
1585      // derived-to-base conversions is suppressed when we're
1586      // computing the implicit conversion sequence (C++
1587      // [over.best.ics]p2).
1588      return false;
1589    } else {
1590      // Perform the conversion.
1591      // FIXME: Binding to a subobject of the lvalue is going to require
1592      // more AST annotation than this.
1593      ImpCastExprToType(Init, T1);
1594    }
1595  }
1596
1597  //       -- has a class type (i.e., T2 is a class type) and can be
1598  //          implicitly converted to an lvalue of type “cv3 T3,”
1599  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1600  //          92) (this conversion is selected by enumerating the
1601  //          applicable conversion functions (13.3.1.6) and choosing
1602  //          the best one through overload resolution (13.3)),
1603  // FIXME: Implement this second bullet, once we have conversion
1604  //        functions. Also remember C++ [over.ics.ref]p1, second part.
1605
1606  if (BindsDirectly) {
1607    // C++ [dcl.init.ref]p4:
1608    //   [...] In all cases where the reference-related or
1609    //   reference-compatible relationship of two types is used to
1610    //   establish the validity of a reference binding, and T1 is a
1611    //   base class of T2, a program that necessitates such a binding
1612    //   is ill-formed if T1 is an inaccessible (clause 11) or
1613    //   ambiguous (10.2) base class of T2.
1614    //
1615    // Note that we only check this condition when we're allowed to
1616    // complain about errors, because we should not be checking for
1617    // ambiguity (or inaccessibility) unless the reference binding
1618    // actually happens.
1619    if (DerivedToBase)
1620      return CheckDerivedToBaseConversion(T2, T1,
1621                                          Init->getSourceRange().getBegin(),
1622                                          Init->getSourceRange());
1623    else
1624      return false;
1625  }
1626
1627  //     -- Otherwise, the reference shall be to a non-volatile const
1628  //        type (i.e., cv1 shall be const).
1629  if (T1.getCVRQualifiers() != QualType::Const) {
1630    if (!ICS)
1631      Diag(Init->getSourceRange().getBegin(),
1632           diag::err_not_reference_to_const_init,
1633           T1.getAsString(),
1634           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1635           T2.getAsString(), Init->getSourceRange());
1636    return true;
1637  }
1638
1639  //       -- If the initializer expression is an rvalue, with T2 a
1640  //          class type, and “cv1 T1” is reference-compatible with
1641  //          “cv2 T2,” the reference is bound in one of the
1642  //          following ways (the choice is implementation-defined):
1643  //
1644  //          -- The reference is bound to the object represented by
1645  //             the rvalue (see 3.10) or to a sub-object within that
1646  //             object.
1647  //
1648  //          -- A temporary of type “cv1 T2” [sic] is created, and
1649  //             a constructor is called to copy the entire rvalue
1650  //             object into the temporary. The reference is bound to
1651  //             the temporary or to a sub-object within the
1652  //             temporary.
1653  //
1654  //
1655  //          The constructor that would be used to make the copy
1656  //          shall be callable whether or not the copy is actually
1657  //          done.
1658  //
1659  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1660  // freedom, so we will always take the first option and never build
1661  // a temporary in this case. FIXME: We will, however, have to check
1662  // for the presence of a copy constructor in C++98/03 mode.
1663  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1664      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1665    if (ICS) {
1666      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1667      ICS->Standard.First = ICK_Identity;
1668      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1669      ICS->Standard.Third = ICK_Identity;
1670      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1671      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1672      ICS->Standard.ReferenceBinding = true;
1673      ICS->Standard.DirectBinding = false;
1674    } else {
1675      // FIXME: Binding to a subobject of the rvalue is going to require
1676      // more AST annotation than this.
1677      ImpCastExprToType(Init, T1);
1678    }
1679    return false;
1680  }
1681
1682  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1683  //          initialized from the initializer expression using the
1684  //          rules for a non-reference copy initialization (8.5). The
1685  //          reference is then bound to the temporary. If T1 is
1686  //          reference-related to T2, cv1 must be the same
1687  //          cv-qualification as, or greater cv-qualification than,
1688  //          cv2; otherwise, the program is ill-formed.
1689  if (RefRelationship == Ref_Related) {
1690    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1691    // we would be reference-compatible or reference-compatible with
1692    // added qualification. But that wasn't the case, so the reference
1693    // initialization fails.
1694    if (!ICS)
1695      Diag(Init->getSourceRange().getBegin(),
1696           diag::err_reference_init_drops_quals,
1697           T1.getAsString(),
1698           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1699           T2.getAsString(), Init->getSourceRange());
1700    return true;
1701  }
1702
1703  // Actually try to convert the initializer to T1.
1704  if (ICS) {
1705    /// C++ [over.ics.ref]p2:
1706    ///
1707    ///   When a parameter of reference type is not bound directly to
1708    ///   an argument expression, the conversion sequence is the one
1709    ///   required to convert the argument expression to the
1710    ///   underlying type of the reference according to
1711    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1712    ///   to copy-initializing a temporary of the underlying type with
1713    ///   the argument expression. Any difference in top-level
1714    ///   cv-qualification is subsumed by the initialization itself
1715    ///   and does not constitute a conversion.
1716    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1717    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1718  } else {
1719    return PerformImplicitConversion(Init, T1);
1720  }
1721}
1722
1723/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1724/// of this overloaded operator is well-formed. If so, returns false;
1725/// otherwise, emits appropriate diagnostics and returns true.
1726bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1727  assert(FnDecl && FnDecl->getOverloadedOperator() != OO_None &&
1728         "Expected an overloaded operator declaration");
1729
1730  bool IsInvalid = false;
1731
1732  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1733
1734  // C++ [over.oper]p5:
1735  //   The allocation and deallocation functions, operator new,
1736  //   operator new[], operator delete and operator delete[], are
1737  //   described completely in 3.7.3. The attributes and restrictions
1738  //   found in the rest of this subclause do not apply to them unless
1739  //   explicitly stated in 3.7.3.
1740  // FIXME: Write a separate routine for checking this. For now, just
1741  // allow it.
1742  if (Op == OO_New || Op == OO_Array_New ||
1743      Op == OO_Delete || Op == OO_Array_Delete)
1744    return false;
1745
1746  // C++ [over.oper]p6:
1747  //   An operator function shall either be a non-static member
1748  //   function or be a non-member function and have at least one
1749  //   parameter whose type is a class, a reference to a class, an
1750  //   enumeration, or a reference to an enumeration.
1751  CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl);
1752  if (MethodDecl) {
1753    if (MethodDecl->isStatic()) {
1754      Diag(FnDecl->getLocation(),
1755           diag::err_operator_overload_static,
1756           FnDecl->getName(),
1757           SourceRange(FnDecl->getLocation()));
1758      IsInvalid = true;
1759
1760      // Pretend this isn't a member function; it'll supress
1761      // additional, unnecessary error messages.
1762      MethodDecl = 0;
1763    }
1764  } else {
1765    bool ClassOrEnumParam = false;
1766    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1767         Param != FnDecl->param_end(); ++Param) {
1768      QualType ParamType = (*Param)->getType();
1769      if (const ReferenceType *RefType = ParamType->getAsReferenceType())
1770        ParamType = RefType->getPointeeType();
1771      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
1772        ClassOrEnumParam = true;
1773        break;
1774      }
1775    }
1776
1777    if (!ClassOrEnumParam) {
1778      Diag(FnDecl->getLocation(),
1779           diag::err_operator_overload_needs_class_or_enum,
1780           FnDecl->getName(),
1781           SourceRange(FnDecl->getLocation()));
1782      IsInvalid = true;
1783    }
1784  }
1785
1786  // C++ [over.oper]p8:
1787  //   An operator function cannot have default arguments (8.3.6),
1788  //   except where explicitly stated below.
1789  //
1790  // Only the function-call operator allows default arguments
1791  // (C++ [over.call]p1).
1792  if (Op != OO_Call) {
1793    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1794         Param != FnDecl->param_end(); ++Param) {
1795      if (Expr *DefArg = (*Param)->getDefaultArg()) {
1796        Diag((*Param)->getLocation(),
1797             diag::err_operator_overload_default_arg,
1798             DefArg->getSourceRange());
1799        IsInvalid = true;
1800      }
1801    }
1802  }
1803
1804  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
1805    { false, false, false }
1806#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1807    , { Unary, Binary, MemberOnly }
1808#include "clang/Basic/OperatorKinds.def"
1809  };
1810
1811  bool CanBeUnaryOperator = OperatorUses[Op][0];
1812  bool CanBeBinaryOperator = OperatorUses[Op][1];
1813  bool MustBeMemberOperator = OperatorUses[Op][2];
1814
1815  // C++ [over.oper]p8:
1816  //   [...] Operator functions cannot have more or fewer parameters
1817  //   than the number required for the corresponding operator, as
1818  //   described in the rest of this subclause.
1819  unsigned NumParams = FnDecl->getNumParams() + (MethodDecl? 1 : 0);
1820  if (Op != OO_Call &&
1821      ((NumParams == 1 && !CanBeUnaryOperator) ||
1822       (NumParams == 2 && !CanBeBinaryOperator) ||
1823       (NumParams < 1) || (NumParams > 2))) {
1824    // We have the wrong number of parameters.
1825    std::string NumParamsStr = (llvm::APSInt(32) = NumParams).toString(10);
1826
1827    diag::kind DK;
1828
1829    if (CanBeUnaryOperator && CanBeBinaryOperator) {
1830      if (NumParams == 1)
1831        DK = diag::err_operator_overload_must_be_unary_or_binary;
1832      else
1833        DK = diag::err_operator_overload_must_be_unary_or_binary;
1834    } else if (CanBeUnaryOperator) {
1835      if (NumParams == 1)
1836        DK = diag::err_operator_overload_must_be_unary;
1837      else
1838        DK = diag::err_operator_overload_must_be_unary_plural;
1839    } else if (CanBeBinaryOperator) {
1840      if (NumParams == 1)
1841        DK = diag::err_operator_overload_must_be_binary;
1842      else
1843        DK = diag::err_operator_overload_must_be_binary_plural;
1844    } else {
1845      assert(false && "All non-call overloaded operators are unary or binary!");
1846    }
1847
1848    Diag(FnDecl->getLocation(), DK,
1849         FnDecl->getName(), NumParamsStr,
1850         SourceRange(FnDecl->getLocation()));
1851    IsInvalid = true;
1852  }
1853
1854  // Overloaded operators cannot be variadic.
1855  if (FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
1856    Diag(FnDecl->getLocation(),
1857         diag::err_operator_overload_variadic,
1858         SourceRange(FnDecl->getLocation()));
1859    IsInvalid = true;
1860  }
1861
1862  // Some operators must be non-static member functions.
1863  if (MustBeMemberOperator && !MethodDecl) {
1864    Diag(FnDecl->getLocation(),
1865         diag::err_operator_overload_must_be_member,
1866         FnDecl->getName(),
1867         SourceRange(FnDecl->getLocation()));
1868    IsInvalid = true;
1869  }
1870
1871  // C++ [over.inc]p1:
1872  //   The user-defined function called operator++ implements the
1873  //   prefix and postfix ++ operator. If this function is a member
1874  //   function with no parameters, or a non-member function with one
1875  //   parameter of class or enumeration type, it defines the prefix
1876  //   increment operator ++ for objects of that type. If the function
1877  //   is a member function with one parameter (which shall be of type
1878  //   int) or a non-member function with two parameters (the second
1879  //   of which shall be of type int), it defines the postfix
1880  //   increment operator ++ for objects of that type.
1881  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
1882    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
1883    bool ParamIsInt = false;
1884    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
1885      ParamIsInt = BT->getKind() == BuiltinType::Int;
1886
1887    if (!ParamIsInt) {
1888      diag::kind DK;
1889      if (Op == OO_PlusPlus) {
1890        if (MethodDecl)
1891          DK = diag::err_operator_overload_post_inc_must_be_int_member;
1892        else
1893          DK = diag::err_operator_overload_post_inc_must_be_int;
1894      } else {
1895        if (MethodDecl)
1896          DK = diag::err_operator_overload_post_dec_must_be_int_member;
1897        else
1898          DK = diag::err_operator_overload_post_dec_must_be_int;
1899      }
1900      Diag(LastParam->getLocation(), DK,
1901           Context.getCanonicalType(LastParam->getType()).getAsString(),
1902           SourceRange(FnDecl->getLocation()));
1903      IsInvalid = true;
1904    }
1905  }
1906
1907  return IsInvalid;
1908}
1909