SemaDeclCXX.cpp revision 0368a85c12e24c008960c9b73c8f79343bec38c0
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28#include <set>
29
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// CheckDefaultArgumentVisitor
34//===----------------------------------------------------------------------===//
35
36namespace {
37  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
38  /// the default argument of a parameter to determine whether it
39  /// contains any ill-formed subexpressions. For example, this will
40  /// diagnose the use of local variables or parameters within the
41  /// default argument expression.
42  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
43    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
44    Expr *DefaultArg;
45    Sema *S;
46
47  public:
48    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
49      : DefaultArg(defarg), S(s) {}
50
51    bool VisitExpr(Expr *Node);
52    bool VisitDeclRefExpr(DeclRefExpr *DRE);
53    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
54  };
55
56  /// VisitExpr - Visit all of the children of this expression.
57  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
58    bool IsInvalid = false;
59    for (Stmt::child_iterator I = Node->child_begin(),
60         E = Node->child_end(); I != E; ++I)
61      IsInvalid |= Visit(*I);
62    return IsInvalid;
63  }
64
65  /// VisitDeclRefExpr - Visit a reference to a declaration, to
66  /// determine whether this declaration can be used in the default
67  /// argument expression.
68  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
69    NamedDecl *Decl = DRE->getDecl();
70    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
71      // C++ [dcl.fct.default]p9
72      //   Default arguments are evaluated each time the function is
73      //   called. The order of evaluation of function arguments is
74      //   unspecified. Consequently, parameters of a function shall not
75      //   be used in default argument expressions, even if they are not
76      //   evaluated. Parameters of a function declared before a default
77      //   argument expression are in scope and can hide namespace and
78      //   class member names.
79      return S->Diag(DRE->getSourceRange().getBegin(),
80                     diag::err_param_default_argument_references_param)
81         << Param->getDeclName() << DefaultArg->getSourceRange();
82    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p7
84      //   Local variables shall not be used in default argument
85      //   expressions.
86      if (VDecl->isBlockVarDecl())
87        return S->Diag(DRE->getSourceRange().getBegin(),
88                       diag::err_param_default_argument_references_local)
89          << VDecl->getDeclName() << DefaultArg->getSourceRange();
90    }
91
92    return false;
93  }
94
95  /// VisitCXXThisExpr - Visit a C++ "this" expression.
96  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
97    // C++ [dcl.fct.default]p8:
98    //   The keyword this shall not be used in a default argument of a
99    //   member function.
100    return S->Diag(ThisE->getSourceRange().getBegin(),
101                   diag::err_param_default_argument_references_this)
102               << ThisE->getSourceRange();
103  }
104}
105
106bool
107Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
108                              SourceLocation EqualLoc) {
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //   For non-template functions, default arguments can be added in
246  //   later declarations of a function in the same
247  //   scope. Declarations in different scopes have completely
248  //   distinct sets of default arguments. That is, declarations in
249  //   inner scopes do not acquire default arguments from
250  //   declarations in outer scopes, and vice versa. In a given
251  //   function declaration, all parameters subsequent to a
252  //   parameter with a default argument shall have default
253  //   arguments supplied in this or previous declarations. A
254  //   default argument shall not be redefined by a later
255  //   declaration (not even to the same value).
256  //
257  // C++ [dcl.fct.default]p6:
258  //   Except for member functions of class templates, the default arguments
259  //   in a member function definition that appears outside of the class
260  //   definition are added to the set of default arguments provided by the
261  //   member function declaration in the class definition.
262  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
263    ParmVarDecl *OldParam = Old->getParamDecl(p);
264    ParmVarDecl *NewParam = New->getParamDecl(p);
265
266    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
267      Diag(NewParam->getLocation(),
268           diag::err_param_default_argument_redefinition)
269        << NewParam->getDefaultArgRange();
270
271      // Look for the function declaration where the default argument was
272      // actually written, which may be a declaration prior to Old.
273      for (FunctionDecl *Older = Old->getPreviousDeclaration();
274           Older; Older = Older->getPreviousDeclaration()) {
275        if (!Older->getParamDecl(p)->hasDefaultArg())
276          break;
277
278        OldParam = Older->getParamDecl(p);
279      }
280
281      Diag(OldParam->getLocation(), diag::note_previous_definition)
282        << OldParam->getDefaultArgRange();
283      Invalid = true;
284    } else if (OldParam->hasDefaultArg()) {
285      // Merge the old default argument into the new parameter
286      if (OldParam->hasUninstantiatedDefaultArg())
287        NewParam->setUninstantiatedDefaultArg(
288                                      OldParam->getUninstantiatedDefaultArg());
289      else
290        NewParam->setDefaultArg(OldParam->getDefaultArg());
291    } else if (NewParam->hasDefaultArg()) {
292      if (New->getDescribedFunctionTemplate()) {
293        // Paragraph 4, quoted above, only applies to non-template functions.
294        Diag(NewParam->getLocation(),
295             diag::err_param_default_argument_template_redecl)
296          << NewParam->getDefaultArgRange();
297        Diag(Old->getLocation(), diag::note_template_prev_declaration)
298          << false;
299      } else if (New->getDeclContext()->isDependentContext()) {
300        // C++ [dcl.fct.default]p6 (DR217):
301        //   Default arguments for a member function of a class template shall
302        //   be specified on the initial declaration of the member function
303        //   within the class template.
304        //
305        // Reading the tea leaves a bit in DR217 and its reference to DR205
306        // leads me to the conclusion that one cannot add default function
307        // arguments for an out-of-line definition of a member function of a
308        // dependent type.
309        int WhichKind = 2;
310        if (CXXRecordDecl *Record
311              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
312          if (Record->getDescribedClassTemplate())
313            WhichKind = 0;
314          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
315            WhichKind = 1;
316          else
317            WhichKind = 2;
318        }
319
320        Diag(NewParam->getLocation(),
321             diag::err_param_default_argument_member_template_redecl)
322          << WhichKind
323          << NewParam->getDefaultArgRange();
324      }
325    }
326  }
327
328  if (CheckEquivalentExceptionSpec(
329          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
330          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
331    Invalid = true;
332  }
333
334  return Invalid;
335}
336
337/// CheckCXXDefaultArguments - Verify that the default arguments for a
338/// function declaration are well-formed according to C++
339/// [dcl.fct.default].
340void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
341  unsigned NumParams = FD->getNumParams();
342  unsigned p;
343
344  // Find first parameter with a default argument
345  for (p = 0; p < NumParams; ++p) {
346    ParmVarDecl *Param = FD->getParamDecl(p);
347    if (Param->hasDefaultArg())
348      break;
349  }
350
351  // C++ [dcl.fct.default]p4:
352  //   In a given function declaration, all parameters
353  //   subsequent to a parameter with a default argument shall
354  //   have default arguments supplied in this or previous
355  //   declarations. A default argument shall not be redefined
356  //   by a later declaration (not even to the same value).
357  unsigned LastMissingDefaultArg = 0;
358  for (; p < NumParams; ++p) {
359    ParmVarDecl *Param = FD->getParamDecl(p);
360    if (!Param->hasDefaultArg()) {
361      if (Param->isInvalidDecl())
362        /* We already complained about this parameter. */;
363      else if (Param->getIdentifier())
364        Diag(Param->getLocation(),
365             diag::err_param_default_argument_missing_name)
366          << Param->getIdentifier();
367      else
368        Diag(Param->getLocation(),
369             diag::err_param_default_argument_missing);
370
371      LastMissingDefaultArg = p;
372    }
373  }
374
375  if (LastMissingDefaultArg > 0) {
376    // Some default arguments were missing. Clear out all of the
377    // default arguments up to (and including) the last missing
378    // default argument, so that we leave the function parameters
379    // in a semantically valid state.
380    for (p = 0; p <= LastMissingDefaultArg; ++p) {
381      ParmVarDecl *Param = FD->getParamDecl(p);
382      if (Param->hasDefaultArg()) {
383        if (!Param->hasUnparsedDefaultArg())
384          Param->getDefaultArg()->Destroy(Context);
385        Param->setDefaultArg(0);
386      }
387    }
388  }
389}
390
391/// isCurrentClassName - Determine whether the identifier II is the
392/// name of the class type currently being defined. In the case of
393/// nested classes, this will only return true if II is the name of
394/// the innermost class.
395bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
396                              const CXXScopeSpec *SS) {
397  CXXRecordDecl *CurDecl;
398  if (SS && SS->isSet() && !SS->isInvalid()) {
399    DeclContext *DC = computeDeclContext(*SS, true);
400    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
401  } else
402    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
403
404  if (CurDecl)
405    return &II == CurDecl->getIdentifier();
406  else
407    return false;
408}
409
410/// \brief Check the validity of a C++ base class specifier.
411///
412/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
413/// and returns NULL otherwise.
414CXXBaseSpecifier *
415Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
416                         SourceRange SpecifierRange,
417                         bool Virtual, AccessSpecifier Access,
418                         QualType BaseType,
419                         SourceLocation BaseLoc) {
420  // C++ [class.union]p1:
421  //   A union shall not have base classes.
422  if (Class->isUnion()) {
423    Diag(Class->getLocation(), diag::err_base_clause_on_union)
424      << SpecifierRange;
425    return 0;
426  }
427
428  if (BaseType->isDependentType())
429    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
430                                Class->getTagKind() == RecordDecl::TK_class,
431                                Access, BaseType);
432
433  // Base specifiers must be record types.
434  if (!BaseType->isRecordType()) {
435    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
436    return 0;
437  }
438
439  // C++ [class.union]p1:
440  //   A union shall not be used as a base class.
441  if (BaseType->isUnionType()) {
442    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
443    return 0;
444  }
445
446  // C++ [class.derived]p2:
447  //   The class-name in a base-specifier shall not be an incompletely
448  //   defined class.
449  if (RequireCompleteType(BaseLoc, BaseType,
450                          PDiag(diag::err_incomplete_base_class)
451                            << SpecifierRange))
452    return 0;
453
454  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
455  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
456  assert(BaseDecl && "Record type has no declaration");
457  BaseDecl = BaseDecl->getDefinition(Context);
458  assert(BaseDecl && "Base type is not incomplete, but has no definition");
459  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
460  assert(CXXBaseDecl && "Base type is not a C++ type");
461  if (!CXXBaseDecl->isEmpty())
462    Class->setEmpty(false);
463  if (CXXBaseDecl->isPolymorphic())
464    Class->setPolymorphic(true);
465
466  // C++ [dcl.init.aggr]p1:
467  //   An aggregate is [...] a class with [...] no base classes [...].
468  Class->setAggregate(false);
469  Class->setPOD(false);
470
471  if (Virtual) {
472    // C++ [class.ctor]p5:
473    //   A constructor is trivial if its class has no virtual base classes.
474    Class->setHasTrivialConstructor(false);
475
476    // C++ [class.copy]p6:
477    //   A copy constructor is trivial if its class has no virtual base classes.
478    Class->setHasTrivialCopyConstructor(false);
479
480    // C++ [class.copy]p11:
481    //   A copy assignment operator is trivial if its class has no virtual
482    //   base classes.
483    Class->setHasTrivialCopyAssignment(false);
484
485    // C++0x [meta.unary.prop] is_empty:
486    //    T is a class type, but not a union type, with ... no virtual base
487    //    classes
488    Class->setEmpty(false);
489  } else {
490    // C++ [class.ctor]p5:
491    //   A constructor is trivial if all the direct base classes of its
492    //   class have trivial constructors.
493    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
494      Class->setHasTrivialConstructor(false);
495
496    // C++ [class.copy]p6:
497    //   A copy constructor is trivial if all the direct base classes of its
498    //   class have trivial copy constructors.
499    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
500      Class->setHasTrivialCopyConstructor(false);
501
502    // C++ [class.copy]p11:
503    //   A copy assignment operator is trivial if all the direct base classes
504    //   of its class have trivial copy assignment operators.
505    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
506      Class->setHasTrivialCopyAssignment(false);
507  }
508
509  // C++ [class.ctor]p3:
510  //   A destructor is trivial if all the direct base classes of its class
511  //   have trivial destructors.
512  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
513    Class->setHasTrivialDestructor(false);
514
515  // Create the base specifier.
516  // FIXME: Allocate via ASTContext?
517  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
518                              Class->getTagKind() == RecordDecl::TK_class,
519                              Access, BaseType);
520}
521
522/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
523/// one entry in the base class list of a class specifier, for
524/// example:
525///    class foo : public bar, virtual private baz {
526/// 'public bar' and 'virtual private baz' are each base-specifiers.
527Sema::BaseResult
528Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
529                         bool Virtual, AccessSpecifier Access,
530                         TypeTy *basetype, SourceLocation BaseLoc) {
531  if (!classdecl)
532    return true;
533
534  AdjustDeclIfTemplate(classdecl);
535  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
536  QualType BaseType = GetTypeFromParser(basetype);
537  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
538                                                      Virtual, Access,
539                                                      BaseType, BaseLoc))
540    return BaseSpec;
541
542  return true;
543}
544
545/// \brief Performs the actual work of attaching the given base class
546/// specifiers to a C++ class.
547bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
548                                unsigned NumBases) {
549 if (NumBases == 0)
550    return false;
551
552  // Used to keep track of which base types we have already seen, so
553  // that we can properly diagnose redundant direct base types. Note
554  // that the key is always the unqualified canonical type of the base
555  // class.
556  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
557
558  // Copy non-redundant base specifiers into permanent storage.
559  unsigned NumGoodBases = 0;
560  bool Invalid = false;
561  for (unsigned idx = 0; idx < NumBases; ++idx) {
562    QualType NewBaseType
563      = Context.getCanonicalType(Bases[idx]->getType());
564    NewBaseType = NewBaseType.getUnqualifiedType();
565
566    if (KnownBaseTypes[NewBaseType]) {
567      // C++ [class.mi]p3:
568      //   A class shall not be specified as a direct base class of a
569      //   derived class more than once.
570      Diag(Bases[idx]->getSourceRange().getBegin(),
571           diag::err_duplicate_base_class)
572        << KnownBaseTypes[NewBaseType]->getType()
573        << Bases[idx]->getSourceRange();
574
575      // Delete the duplicate base class specifier; we're going to
576      // overwrite its pointer later.
577      Context.Deallocate(Bases[idx]);
578
579      Invalid = true;
580    } else {
581      // Okay, add this new base class.
582      KnownBaseTypes[NewBaseType] = Bases[idx];
583      Bases[NumGoodBases++] = Bases[idx];
584    }
585  }
586
587  // Attach the remaining base class specifiers to the derived class.
588  Class->setBases(Context, Bases, NumGoodBases);
589
590  // Delete the remaining (good) base class specifiers, since their
591  // data has been copied into the CXXRecordDecl.
592  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
593    Context.Deallocate(Bases[idx]);
594
595  return Invalid;
596}
597
598/// ActOnBaseSpecifiers - Attach the given base specifiers to the
599/// class, after checking whether there are any duplicate base
600/// classes.
601void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
602                               unsigned NumBases) {
603  if (!ClassDecl || !Bases || !NumBases)
604    return;
605
606  AdjustDeclIfTemplate(ClassDecl);
607  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
608                       (CXXBaseSpecifier**)(Bases), NumBases);
609}
610
611/// \brief Determine whether the type \p Derived is a C++ class that is
612/// derived from the type \p Base.
613bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
614  if (!getLangOptions().CPlusPlus)
615    return false;
616
617  const RecordType *DerivedRT = Derived->getAs<RecordType>();
618  if (!DerivedRT)
619    return false;
620
621  const RecordType *BaseRT = Base->getAs<RecordType>();
622  if (!BaseRT)
623    return false;
624
625  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
626  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
627  return DerivedRD->isDerivedFrom(BaseRD);
628}
629
630/// \brief Determine whether the type \p Derived is a C++ class that is
631/// derived from the type \p Base.
632bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
633  if (!getLangOptions().CPlusPlus)
634    return false;
635
636  const RecordType *DerivedRT = Derived->getAs<RecordType>();
637  if (!DerivedRT)
638    return false;
639
640  const RecordType *BaseRT = Base->getAs<RecordType>();
641  if (!BaseRT)
642    return false;
643
644  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
645  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
646  return DerivedRD->isDerivedFrom(BaseRD, Paths);
647}
648
649/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
650/// conversion (where Derived and Base are class types) is
651/// well-formed, meaning that the conversion is unambiguous (and
652/// that all of the base classes are accessible). Returns true
653/// and emits a diagnostic if the code is ill-formed, returns false
654/// otherwise. Loc is the location where this routine should point to
655/// if there is an error, and Range is the source range to highlight
656/// if there is an error.
657bool
658Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
659                                   unsigned InaccessibleBaseID,
660                                   unsigned AmbigiousBaseConvID,
661                                   SourceLocation Loc, SourceRange Range,
662                                   DeclarationName Name) {
663  // First, determine whether the path from Derived to Base is
664  // ambiguous. This is slightly more expensive than checking whether
665  // the Derived to Base conversion exists, because here we need to
666  // explore multiple paths to determine if there is an ambiguity.
667  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
668                     /*DetectVirtual=*/false);
669  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
670  assert(DerivationOkay &&
671         "Can only be used with a derived-to-base conversion");
672  (void)DerivationOkay;
673
674  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
675    // Check that the base class can be accessed.
676    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
677                                Name);
678  }
679
680  // We know that the derived-to-base conversion is ambiguous, and
681  // we're going to produce a diagnostic. Perform the derived-to-base
682  // search just one more time to compute all of the possible paths so
683  // that we can print them out. This is more expensive than any of
684  // the previous derived-to-base checks we've done, but at this point
685  // performance isn't as much of an issue.
686  Paths.clear();
687  Paths.setRecordingPaths(true);
688  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
689  assert(StillOkay && "Can only be used with a derived-to-base conversion");
690  (void)StillOkay;
691
692  // Build up a textual representation of the ambiguous paths, e.g.,
693  // D -> B -> A, that will be used to illustrate the ambiguous
694  // conversions in the diagnostic. We only print one of the paths
695  // to each base class subobject.
696  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
697
698  Diag(Loc, AmbigiousBaseConvID)
699  << Derived << Base << PathDisplayStr << Range << Name;
700  return true;
701}
702
703bool
704Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
705                                   SourceLocation Loc, SourceRange Range) {
706  return CheckDerivedToBaseConversion(Derived, Base,
707                                      diag::err_conv_to_inaccessible_base,
708                                      diag::err_ambiguous_derived_to_base_conv,
709                                      Loc, Range, DeclarationName());
710}
711
712
713/// @brief Builds a string representing ambiguous paths from a
714/// specific derived class to different subobjects of the same base
715/// class.
716///
717/// This function builds a string that can be used in error messages
718/// to show the different paths that one can take through the
719/// inheritance hierarchy to go from the derived class to different
720/// subobjects of a base class. The result looks something like this:
721/// @code
722/// struct D -> struct B -> struct A
723/// struct D -> struct C -> struct A
724/// @endcode
725std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
726  std::string PathDisplayStr;
727  std::set<unsigned> DisplayedPaths;
728  for (CXXBasePaths::paths_iterator Path = Paths.begin();
729       Path != Paths.end(); ++Path) {
730    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
731      // We haven't displayed a path to this particular base
732      // class subobject yet.
733      PathDisplayStr += "\n    ";
734      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
735      for (CXXBasePath::const_iterator Element = Path->begin();
736           Element != Path->end(); ++Element)
737        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
738    }
739  }
740
741  return PathDisplayStr;
742}
743
744//===----------------------------------------------------------------------===//
745// C++ class member Handling
746//===----------------------------------------------------------------------===//
747
748/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
749/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
750/// bitfield width if there is one and 'InitExpr' specifies the initializer if
751/// any.
752Sema::DeclPtrTy
753Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
754                               MultiTemplateParamsArg TemplateParameterLists,
755                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
756  const DeclSpec &DS = D.getDeclSpec();
757  DeclarationName Name = GetNameForDeclarator(D);
758  Expr *BitWidth = static_cast<Expr*>(BW);
759  Expr *Init = static_cast<Expr*>(InitExpr);
760  SourceLocation Loc = D.getIdentifierLoc();
761
762  bool isFunc = D.isFunctionDeclarator();
763
764  assert(!DS.isFriendSpecified());
765
766  // C++ 9.2p6: A member shall not be declared to have automatic storage
767  // duration (auto, register) or with the extern storage-class-specifier.
768  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
769  // data members and cannot be applied to names declared const or static,
770  // and cannot be applied to reference members.
771  switch (DS.getStorageClassSpec()) {
772    case DeclSpec::SCS_unspecified:
773    case DeclSpec::SCS_typedef:
774    case DeclSpec::SCS_static:
775      // FALL THROUGH.
776      break;
777    case DeclSpec::SCS_mutable:
778      if (isFunc) {
779        if (DS.getStorageClassSpecLoc().isValid())
780          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
781        else
782          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
783
784        // FIXME: It would be nicer if the keyword was ignored only for this
785        // declarator. Otherwise we could get follow-up errors.
786        D.getMutableDeclSpec().ClearStorageClassSpecs();
787      } else {
788        QualType T = GetTypeForDeclarator(D, S);
789        diag::kind err = static_cast<diag::kind>(0);
790        if (T->isReferenceType())
791          err = diag::err_mutable_reference;
792        else if (T.isConstQualified())
793          err = diag::err_mutable_const;
794        if (err != 0) {
795          if (DS.getStorageClassSpecLoc().isValid())
796            Diag(DS.getStorageClassSpecLoc(), err);
797          else
798            Diag(DS.getThreadSpecLoc(), err);
799          // FIXME: It would be nicer if the keyword was ignored only for this
800          // declarator. Otherwise we could get follow-up errors.
801          D.getMutableDeclSpec().ClearStorageClassSpecs();
802        }
803      }
804      break;
805    default:
806      if (DS.getStorageClassSpecLoc().isValid())
807        Diag(DS.getStorageClassSpecLoc(),
808             diag::err_storageclass_invalid_for_member);
809      else
810        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
811      D.getMutableDeclSpec().ClearStorageClassSpecs();
812  }
813
814  if (!isFunc &&
815      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
816      D.getNumTypeObjects() == 0) {
817    // Check also for this case:
818    //
819    // typedef int f();
820    // f a;
821    //
822    QualType TDType = GetTypeFromParser(DS.getTypeRep());
823    isFunc = TDType->isFunctionType();
824  }
825
826  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
827                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
828                      !isFunc);
829
830  Decl *Member;
831  if (isInstField) {
832    // FIXME: Check for template parameters!
833    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
834                         AS);
835    assert(Member && "HandleField never returns null");
836  } else {
837    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
838               .getAs<Decl>();
839    if (!Member) {
840      if (BitWidth) DeleteExpr(BitWidth);
841      return DeclPtrTy();
842    }
843
844    // Non-instance-fields can't have a bitfield.
845    if (BitWidth) {
846      if (Member->isInvalidDecl()) {
847        // don't emit another diagnostic.
848      } else if (isa<VarDecl>(Member)) {
849        // C++ 9.6p3: A bit-field shall not be a static member.
850        // "static member 'A' cannot be a bit-field"
851        Diag(Loc, diag::err_static_not_bitfield)
852          << Name << BitWidth->getSourceRange();
853      } else if (isa<TypedefDecl>(Member)) {
854        // "typedef member 'x' cannot be a bit-field"
855        Diag(Loc, diag::err_typedef_not_bitfield)
856          << Name << BitWidth->getSourceRange();
857      } else {
858        // A function typedef ("typedef int f(); f a;").
859        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
860        Diag(Loc, diag::err_not_integral_type_bitfield)
861          << Name << cast<ValueDecl>(Member)->getType()
862          << BitWidth->getSourceRange();
863      }
864
865      DeleteExpr(BitWidth);
866      BitWidth = 0;
867      Member->setInvalidDecl();
868    }
869
870    Member->setAccess(AS);
871
872    // If we have declared a member function template, set the access of the
873    // templated declaration as well.
874    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
875      FunTmpl->getTemplatedDecl()->setAccess(AS);
876  }
877
878  assert((Name || isInstField) && "No identifier for non-field ?");
879
880  if (Init)
881    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
882  if (Deleted) // FIXME: Source location is not very good.
883    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
884
885  if (isInstField) {
886    FieldCollector->Add(cast<FieldDecl>(Member));
887    return DeclPtrTy();
888  }
889  return DeclPtrTy::make(Member);
890}
891
892/// ActOnMemInitializer - Handle a C++ member initializer.
893Sema::MemInitResult
894Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
895                          Scope *S,
896                          const CXXScopeSpec &SS,
897                          IdentifierInfo *MemberOrBase,
898                          TypeTy *TemplateTypeTy,
899                          SourceLocation IdLoc,
900                          SourceLocation LParenLoc,
901                          ExprTy **Args, unsigned NumArgs,
902                          SourceLocation *CommaLocs,
903                          SourceLocation RParenLoc) {
904  if (!ConstructorD)
905    return true;
906
907  AdjustDeclIfTemplate(ConstructorD);
908
909  CXXConstructorDecl *Constructor
910    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
911  if (!Constructor) {
912    // The user wrote a constructor initializer on a function that is
913    // not a C++ constructor. Ignore the error for now, because we may
914    // have more member initializers coming; we'll diagnose it just
915    // once in ActOnMemInitializers.
916    return true;
917  }
918
919  CXXRecordDecl *ClassDecl = Constructor->getParent();
920
921  // C++ [class.base.init]p2:
922  //   Names in a mem-initializer-id are looked up in the scope of the
923  //   constructor’s class and, if not found in that scope, are looked
924  //   up in the scope containing the constructor’s
925  //   definition. [Note: if the constructor’s class contains a member
926  //   with the same name as a direct or virtual base class of the
927  //   class, a mem-initializer-id naming the member or base class and
928  //   composed of a single identifier refers to the class member. A
929  //   mem-initializer-id for the hidden base class may be specified
930  //   using a qualified name. ]
931  if (!SS.getScopeRep() && !TemplateTypeTy) {
932    // Look for a member, first.
933    FieldDecl *Member = 0;
934    DeclContext::lookup_result Result
935      = ClassDecl->lookup(MemberOrBase);
936    if (Result.first != Result.second)
937      Member = dyn_cast<FieldDecl>(*Result.first);
938
939    // FIXME: Handle members of an anonymous union.
940
941    if (Member)
942      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
943                                    RParenLoc);
944  }
945  // It didn't name a member, so see if it names a class.
946  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
947                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
948  if (!BaseTy)
949    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
950      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
951
952  QualType BaseType = GetTypeFromParser(BaseTy);
953
954  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
955                              RParenLoc, ClassDecl);
956}
957
958Sema::MemInitResult
959Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
960                             unsigned NumArgs, SourceLocation IdLoc,
961                             SourceLocation RParenLoc) {
962  bool HasDependentArg = false;
963  for (unsigned i = 0; i < NumArgs; i++)
964    HasDependentArg |= Args[i]->isTypeDependent();
965
966  CXXConstructorDecl *C = 0;
967  QualType FieldType = Member->getType();
968  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
969    FieldType = Array->getElementType();
970  if (FieldType->isDependentType()) {
971    // Can't check init for dependent type.
972  } else if (FieldType->getAs<RecordType>()) {
973    if (!HasDependentArg) {
974      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
975
976      C = PerformInitializationByConstructor(FieldType,
977                                             MultiExprArg(*this,
978                                                          (void**)Args,
979                                                          NumArgs),
980                                             IdLoc,
981                                             SourceRange(IdLoc, RParenLoc),
982                                             Member->getDeclName(), IK_Direct,
983                                             ConstructorArgs);
984
985      if (C) {
986        // Take over the constructor arguments as our own.
987        NumArgs = ConstructorArgs.size();
988        Args = (Expr **)ConstructorArgs.take();
989      }
990    }
991  } else if (NumArgs != 1 && NumArgs != 0) {
992    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
993                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
994  } else if (!HasDependentArg) {
995    Expr *NewExp;
996    if (NumArgs == 0) {
997      if (FieldType->isReferenceType()) {
998        Diag(IdLoc, diag::err_null_intialized_reference_member)
999              << Member->getDeclName();
1000        return Diag(Member->getLocation(), diag::note_declared_at);
1001      }
1002      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1003      NumArgs = 1;
1004    }
1005    else
1006      NewExp = (Expr*)Args[0];
1007    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1008      return true;
1009    Args[0] = NewExp;
1010  }
1011  // FIXME: Perform direct initialization of the member.
1012  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1013                                                  NumArgs, C, IdLoc, RParenLoc);
1014}
1015
1016Sema::MemInitResult
1017Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1018                           unsigned NumArgs, SourceLocation IdLoc,
1019                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1020  bool HasDependentArg = false;
1021  for (unsigned i = 0; i < NumArgs; i++)
1022    HasDependentArg |= Args[i]->isTypeDependent();
1023
1024  if (!BaseType->isDependentType()) {
1025    if (!BaseType->isRecordType())
1026      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1027        << BaseType << SourceRange(IdLoc, RParenLoc);
1028
1029    // C++ [class.base.init]p2:
1030    //   [...] Unless the mem-initializer-id names a nonstatic data
1031    //   member of the constructor’s class or a direct or virtual base
1032    //   of that class, the mem-initializer is ill-formed. A
1033    //   mem-initializer-list can initialize a base class using any
1034    //   name that denotes that base class type.
1035
1036    // First, check for a direct base class.
1037    const CXXBaseSpecifier *DirectBaseSpec = 0;
1038    for (CXXRecordDecl::base_class_const_iterator Base =
1039         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1040      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1041          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1042        // We found a direct base of this type. That's what we're
1043        // initializing.
1044        DirectBaseSpec = &*Base;
1045        break;
1046      }
1047    }
1048
1049    // Check for a virtual base class.
1050    // FIXME: We might be able to short-circuit this if we know in advance that
1051    // there are no virtual bases.
1052    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1053    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1054      // We haven't found a base yet; search the class hierarchy for a
1055      // virtual base class.
1056      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1057                         /*DetectVirtual=*/false);
1058      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1059        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1060             Path != Paths.end(); ++Path) {
1061          if (Path->back().Base->isVirtual()) {
1062            VirtualBaseSpec = Path->back().Base;
1063            break;
1064          }
1065        }
1066      }
1067    }
1068
1069    // C++ [base.class.init]p2:
1070    //   If a mem-initializer-id is ambiguous because it designates both
1071    //   a direct non-virtual base class and an inherited virtual base
1072    //   class, the mem-initializer is ill-formed.
1073    if (DirectBaseSpec && VirtualBaseSpec)
1074      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1075        << BaseType << SourceRange(IdLoc, RParenLoc);
1076    // C++ [base.class.init]p2:
1077    // Unless the mem-initializer-id names a nonstatic data membeer of the
1078    // constructor's class ot a direst or virtual base of that class, the
1079    // mem-initializer is ill-formed.
1080    if (!DirectBaseSpec && !VirtualBaseSpec)
1081      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1082      << BaseType << ClassDecl->getNameAsCString()
1083      << SourceRange(IdLoc, RParenLoc);
1084  }
1085
1086  CXXConstructorDecl *C = 0;
1087  if (!BaseType->isDependentType() && !HasDependentArg) {
1088    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1089                                            Context.getCanonicalType(BaseType));
1090    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1091
1092    C = PerformInitializationByConstructor(BaseType,
1093                                           MultiExprArg(*this,
1094                                                        (void**)Args, NumArgs),
1095                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1096                                           Name, IK_Direct,
1097                                           ConstructorArgs);
1098    if (C) {
1099      // Take over the constructor arguments as our own.
1100      NumArgs = ConstructorArgs.size();
1101      Args = (Expr **)ConstructorArgs.take();
1102    }
1103  }
1104
1105  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1106                                                  NumArgs, C, IdLoc, RParenLoc);
1107}
1108
1109void
1110Sema::setBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1111                              CXXBaseOrMemberInitializer **Initializers,
1112                              unsigned NumInitializers,
1113                              llvm::SmallVectorImpl<CXXBaseSpecifier *>& Bases,
1114                              llvm::SmallVectorImpl<FieldDecl *>&Fields) {
1115  // We need to build the initializer AST according to order of construction
1116  // and not what user specified in the Initializers list.
1117  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1118  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1119  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1120  bool HasDependentBaseInit = false;
1121
1122  for (unsigned i = 0; i < NumInitializers; i++) {
1123    CXXBaseOrMemberInitializer *Member = Initializers[i];
1124    if (Member->isBaseInitializer()) {
1125      if (Member->getBaseClass()->isDependentType())
1126        HasDependentBaseInit = true;
1127      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1128    } else {
1129      AllBaseFields[Member->getMember()] = Member;
1130    }
1131  }
1132
1133  if (HasDependentBaseInit) {
1134    // FIXME. This does not preserve the ordering of the initializers.
1135    // Try (with -Wreorder)
1136    // template<class X> struct A {};
1137    // template<class X> struct B : A<X> {
1138    //   B() : x1(10), A<X>() {}
1139    //   int x1;
1140    // };
1141    // B<int> x;
1142    // On seeing one dependent type, we should essentially exit this routine
1143    // while preserving user-declared initializer list. When this routine is
1144    // called during instantiatiation process, this routine will rebuild the
1145    // oderdered initializer list correctly.
1146
1147    // If we have a dependent base initialization, we can't determine the
1148    // association between initializers and bases; just dump the known
1149    // initializers into the list, and don't try to deal with other bases.
1150    for (unsigned i = 0; i < NumInitializers; i++) {
1151      CXXBaseOrMemberInitializer *Member = Initializers[i];
1152      if (Member->isBaseInitializer())
1153        AllToInit.push_back(Member);
1154    }
1155  } else {
1156    // Push virtual bases before others.
1157    for (CXXRecordDecl::base_class_iterator VBase =
1158         ClassDecl->vbases_begin(),
1159         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1160      if (VBase->getType()->isDependentType())
1161        continue;
1162      if (CXXBaseOrMemberInitializer *Value =
1163          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1164        CXXRecordDecl *BaseDecl =
1165          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1166        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1167        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1168          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1169        AllToInit.push_back(Value);
1170      }
1171      else {
1172        CXXRecordDecl *VBaseDecl =
1173        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1174        assert(VBaseDecl && "setBaseOrMemberInitializers - VBaseDecl null");
1175        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1176        if (!Ctor)
1177          Bases.push_back(VBase);
1178        else
1179          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1180
1181        CXXBaseOrMemberInitializer *Member =
1182        new (Context) CXXBaseOrMemberInitializer(VBase->getType(), 0, 0,
1183                                    Ctor,
1184                                    SourceLocation(),
1185                                    SourceLocation());
1186        AllToInit.push_back(Member);
1187      }
1188    }
1189
1190    for (CXXRecordDecl::base_class_iterator Base =
1191         ClassDecl->bases_begin(),
1192         E = ClassDecl->bases_end(); Base != E; ++Base) {
1193      // Virtuals are in the virtual base list and already constructed.
1194      if (Base->isVirtual())
1195        continue;
1196      // Skip dependent types.
1197      if (Base->getType()->isDependentType())
1198        continue;
1199      if (CXXBaseOrMemberInitializer *Value =
1200          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1201        CXXRecordDecl *BaseDecl =
1202          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1203        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1204        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1205          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1206        AllToInit.push_back(Value);
1207      }
1208      else {
1209        CXXRecordDecl *BaseDecl =
1210          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1211        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1212         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1213        if (!Ctor)
1214          Bases.push_back(Base);
1215        else
1216          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1217
1218        CXXBaseOrMemberInitializer *Member =
1219        new (Context) CXXBaseOrMemberInitializer(Base->getType(), 0, 0,
1220                                      BaseDecl->getDefaultConstructor(Context),
1221                                      SourceLocation(),
1222                                      SourceLocation());
1223        AllToInit.push_back(Member);
1224      }
1225    }
1226  }
1227
1228  // non-static data members.
1229  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1230       E = ClassDecl->field_end(); Field != E; ++Field) {
1231    if ((*Field)->isAnonymousStructOrUnion()) {
1232      if (const RecordType *FieldClassType =
1233          Field->getType()->getAs<RecordType>()) {
1234        CXXRecordDecl *FieldClassDecl
1235        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1236        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1237            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1238          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1239            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1240            // set to the anonymous union data member used in the initializer
1241            // list.
1242            Value->setMember(*Field);
1243            Value->setAnonUnionMember(*FA);
1244            AllToInit.push_back(Value);
1245            break;
1246          }
1247        }
1248      }
1249      continue;
1250    }
1251    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1252      QualType FT = (*Field)->getType();
1253      if (const RecordType* RT = FT->getAs<RecordType>()) {
1254        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1255        assert(FieldRecDecl && "setBaseOrMemberInitializers - BaseDecl null");
1256        if (CXXConstructorDecl *Ctor =
1257              FieldRecDecl->getDefaultConstructor(Context))
1258          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1259      }
1260      AllToInit.push_back(Value);
1261      continue;
1262    }
1263
1264    QualType FT = Context.getBaseElementType((*Field)->getType());
1265    if (const RecordType* RT = FT->getAs<RecordType>()) {
1266      CXXConstructorDecl *Ctor =
1267        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1268      if (!Ctor && !FT->isDependentType())
1269        Fields.push_back(*Field);
1270      CXXBaseOrMemberInitializer *Member =
1271      new (Context) CXXBaseOrMemberInitializer((*Field), 0, 0,
1272                                         Ctor,
1273                                         SourceLocation(),
1274                                         SourceLocation());
1275      AllToInit.push_back(Member);
1276      if (Ctor)
1277        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1278      if (FT.isConstQualified() && (!Ctor || Ctor->isTrivial())) {
1279        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1280          << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1281        Diag((*Field)->getLocation(), diag::note_declared_at);
1282      }
1283    }
1284    else if (FT->isReferenceType()) {
1285      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1286        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getDeclName();
1287      Diag((*Field)->getLocation(), diag::note_declared_at);
1288    }
1289    else if (FT.isConstQualified()) {
1290      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1291        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1292      Diag((*Field)->getLocation(), diag::note_declared_at);
1293    }
1294  }
1295
1296  NumInitializers = AllToInit.size();
1297  if (NumInitializers > 0) {
1298    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1299    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1300      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1301
1302    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1303    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1304      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1305  }
1306}
1307
1308void
1309Sema::BuildBaseOrMemberInitializers(ASTContext &C,
1310                                 CXXConstructorDecl *Constructor,
1311                                 CXXBaseOrMemberInitializer **Initializers,
1312                                 unsigned NumInitializers
1313                                 ) {
1314  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
1315  llvm::SmallVector<FieldDecl *, 4>Members;
1316
1317  setBaseOrMemberInitializers(Constructor,
1318                              Initializers, NumInitializers, Bases, Members);
1319  for (unsigned int i = 0; i < Bases.size(); i++)
1320    Diag(Bases[i]->getSourceRange().getBegin(),
1321         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
1322  for (unsigned int i = 0; i < Members.size(); i++)
1323    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
1324          << 1 << Members[i]->getType();
1325}
1326
1327static void *GetKeyForTopLevelField(FieldDecl *Field) {
1328  // For anonymous unions, use the class declaration as the key.
1329  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1330    if (RT->getDecl()->isAnonymousStructOrUnion())
1331      return static_cast<void *>(RT->getDecl());
1332  }
1333  return static_cast<void *>(Field);
1334}
1335
1336static void *GetKeyForBase(QualType BaseType) {
1337  if (const RecordType *RT = BaseType->getAs<RecordType>())
1338    return (void *)RT;
1339
1340  assert(0 && "Unexpected base type!");
1341  return 0;
1342}
1343
1344static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1345                             bool MemberMaybeAnon = false) {
1346  // For fields injected into the class via declaration of an anonymous union,
1347  // use its anonymous union class declaration as the unique key.
1348  if (Member->isMemberInitializer()) {
1349    FieldDecl *Field = Member->getMember();
1350
1351    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
1352    // data member of the class. Data member used in the initializer list is
1353    // in AnonUnionMember field.
1354    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1355      Field = Member->getAnonUnionMember();
1356    if (Field->getDeclContext()->isRecord()) {
1357      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1358      if (RD->isAnonymousStructOrUnion())
1359        return static_cast<void *>(RD);
1360    }
1361    return static_cast<void *>(Field);
1362  }
1363
1364  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1365}
1366
1367void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1368                                SourceLocation ColonLoc,
1369                                MemInitTy **MemInits, unsigned NumMemInits) {
1370  if (!ConstructorDecl)
1371    return;
1372
1373  AdjustDeclIfTemplate(ConstructorDecl);
1374
1375  CXXConstructorDecl *Constructor
1376    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1377
1378  if (!Constructor) {
1379    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1380    return;
1381  }
1382
1383  if (!Constructor->isDependentContext()) {
1384    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1385    bool err = false;
1386    for (unsigned i = 0; i < NumMemInits; i++) {
1387      CXXBaseOrMemberInitializer *Member =
1388        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1389      void *KeyToMember = GetKeyForMember(Member);
1390      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1391      if (!PrevMember) {
1392        PrevMember = Member;
1393        continue;
1394      }
1395      if (FieldDecl *Field = Member->getMember())
1396        Diag(Member->getSourceLocation(),
1397             diag::error_multiple_mem_initialization)
1398        << Field->getNameAsString();
1399      else {
1400        Type *BaseClass = Member->getBaseClass();
1401        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1402        Diag(Member->getSourceLocation(),
1403             diag::error_multiple_base_initialization)
1404          << QualType(BaseClass, 0);
1405      }
1406      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1407        << 0;
1408      err = true;
1409    }
1410
1411    if (err)
1412      return;
1413  }
1414
1415  BuildBaseOrMemberInitializers(Context, Constructor,
1416                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1417                      NumMemInits);
1418
1419  if (Constructor->isDependentContext())
1420    return;
1421
1422  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1423      Diagnostic::Ignored &&
1424      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1425      Diagnostic::Ignored)
1426    return;
1427
1428  // Also issue warning if order of ctor-initializer list does not match order
1429  // of 1) base class declarations and 2) order of non-static data members.
1430  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1431
1432  CXXRecordDecl *ClassDecl
1433    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1434  // Push virtual bases before others.
1435  for (CXXRecordDecl::base_class_iterator VBase =
1436       ClassDecl->vbases_begin(),
1437       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1438    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1439
1440  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1441       E = ClassDecl->bases_end(); Base != E; ++Base) {
1442    // Virtuals are alread in the virtual base list and are constructed
1443    // first.
1444    if (Base->isVirtual())
1445      continue;
1446    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1447  }
1448
1449  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1450       E = ClassDecl->field_end(); Field != E; ++Field)
1451    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1452
1453  int Last = AllBaseOrMembers.size();
1454  int curIndex = 0;
1455  CXXBaseOrMemberInitializer *PrevMember = 0;
1456  for (unsigned i = 0; i < NumMemInits; i++) {
1457    CXXBaseOrMemberInitializer *Member =
1458      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1459    void *MemberInCtorList = GetKeyForMember(Member, true);
1460
1461    for (; curIndex < Last; curIndex++)
1462      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1463        break;
1464    if (curIndex == Last) {
1465      assert(PrevMember && "Member not in member list?!");
1466      // Initializer as specified in ctor-initializer list is out of order.
1467      // Issue a warning diagnostic.
1468      if (PrevMember->isBaseInitializer()) {
1469        // Diagnostics is for an initialized base class.
1470        Type *BaseClass = PrevMember->getBaseClass();
1471        Diag(PrevMember->getSourceLocation(),
1472             diag::warn_base_initialized)
1473          << QualType(BaseClass, 0);
1474      } else {
1475        FieldDecl *Field = PrevMember->getMember();
1476        Diag(PrevMember->getSourceLocation(),
1477             diag::warn_field_initialized)
1478          << Field->getNameAsString();
1479      }
1480      // Also the note!
1481      if (FieldDecl *Field = Member->getMember())
1482        Diag(Member->getSourceLocation(),
1483             diag::note_fieldorbase_initialized_here) << 0
1484          << Field->getNameAsString();
1485      else {
1486        Type *BaseClass = Member->getBaseClass();
1487        Diag(Member->getSourceLocation(),
1488             diag::note_fieldorbase_initialized_here) << 1
1489          << QualType(BaseClass, 0);
1490      }
1491      for (curIndex = 0; curIndex < Last; curIndex++)
1492        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1493          break;
1494    }
1495    PrevMember = Member;
1496  }
1497}
1498
1499void
1500Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1501  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1502  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1503
1504  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1505       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1506    if (VBase->getType()->isDependentType())
1507      continue;
1508    // Skip over virtual bases which have trivial destructors.
1509    CXXRecordDecl *BaseClassDecl
1510      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1511    if (BaseClassDecl->hasTrivialDestructor())
1512      continue;
1513    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1514      MarkDeclarationReferenced(Destructor->getLocation(),
1515                                const_cast<CXXDestructorDecl*>(Dtor));
1516
1517    uintptr_t Member =
1518    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1519      | CXXDestructorDecl::VBASE;
1520    AllToDestruct.push_back(Member);
1521  }
1522  for (CXXRecordDecl::base_class_iterator Base =
1523       ClassDecl->bases_begin(),
1524       E = ClassDecl->bases_end(); Base != E; ++Base) {
1525    if (Base->isVirtual())
1526      continue;
1527    if (Base->getType()->isDependentType())
1528      continue;
1529    // Skip over virtual bases which have trivial destructors.
1530    CXXRecordDecl *BaseClassDecl
1531    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1532    if (BaseClassDecl->hasTrivialDestructor())
1533      continue;
1534    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1535      MarkDeclarationReferenced(Destructor->getLocation(),
1536                                const_cast<CXXDestructorDecl*>(Dtor));
1537    uintptr_t Member =
1538    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1539      | CXXDestructorDecl::DRCTNONVBASE;
1540    AllToDestruct.push_back(Member);
1541  }
1542
1543  // non-static data members.
1544  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1545       E = ClassDecl->field_end(); Field != E; ++Field) {
1546    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1547
1548    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1549      // Skip over virtual bases which have trivial destructors.
1550      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1551      if (FieldClassDecl->hasTrivialDestructor())
1552        continue;
1553      if (const CXXDestructorDecl *Dtor =
1554            FieldClassDecl->getDestructor(Context))
1555        MarkDeclarationReferenced(Destructor->getLocation(),
1556                                  const_cast<CXXDestructorDecl*>(Dtor));
1557      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1558      AllToDestruct.push_back(Member);
1559    }
1560  }
1561
1562  unsigned NumDestructions = AllToDestruct.size();
1563  if (NumDestructions > 0) {
1564    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1565    uintptr_t *BaseOrMemberDestructions =
1566      new (Context) uintptr_t [NumDestructions];
1567    // Insert in reverse order.
1568    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1569      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1570    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1571  }
1572}
1573
1574void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1575  if (!CDtorDecl)
1576    return;
1577
1578  AdjustDeclIfTemplate(CDtorDecl);
1579
1580  if (CXXConstructorDecl *Constructor
1581      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1582    BuildBaseOrMemberInitializers(Context,
1583                                     Constructor,
1584                                     (CXXBaseOrMemberInitializer **)0, 0);
1585}
1586
1587namespace {
1588  /// PureVirtualMethodCollector - traverses a class and its superclasses
1589  /// and determines if it has any pure virtual methods.
1590  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1591    ASTContext &Context;
1592
1593  public:
1594    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1595
1596  private:
1597    MethodList Methods;
1598
1599    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1600
1601  public:
1602    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1603      : Context(Ctx) {
1604
1605      MethodList List;
1606      Collect(RD, List);
1607
1608      // Copy the temporary list to methods, and make sure to ignore any
1609      // null entries.
1610      for (size_t i = 0, e = List.size(); i != e; ++i) {
1611        if (List[i])
1612          Methods.push_back(List[i]);
1613      }
1614    }
1615
1616    bool empty() const { return Methods.empty(); }
1617
1618    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1619    MethodList::const_iterator methods_end() { return Methods.end(); }
1620  };
1621
1622  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1623                                           MethodList& Methods) {
1624    // First, collect the pure virtual methods for the base classes.
1625    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1626         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1627      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1628        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1629        if (BaseDecl && BaseDecl->isAbstract())
1630          Collect(BaseDecl, Methods);
1631      }
1632    }
1633
1634    // Next, zero out any pure virtual methods that this class overrides.
1635    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1636
1637    MethodSetTy OverriddenMethods;
1638    size_t MethodsSize = Methods.size();
1639
1640    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1641         i != e; ++i) {
1642      // Traverse the record, looking for methods.
1643      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1644        // If the method is pure virtual, add it to the methods vector.
1645        if (MD->isPure()) {
1646          Methods.push_back(MD);
1647          continue;
1648        }
1649
1650        // Otherwise, record all the overridden methods in our set.
1651        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1652             E = MD->end_overridden_methods(); I != E; ++I) {
1653          // Keep track of the overridden methods.
1654          OverriddenMethods.insert(*I);
1655        }
1656      }
1657    }
1658
1659    // Now go through the methods and zero out all the ones we know are
1660    // overridden.
1661    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1662      if (OverriddenMethods.count(Methods[i]))
1663        Methods[i] = 0;
1664    }
1665
1666  }
1667}
1668
1669
1670bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1671                                  unsigned DiagID, AbstractDiagSelID SelID,
1672                                  const CXXRecordDecl *CurrentRD) {
1673  if (SelID == -1)
1674    return RequireNonAbstractType(Loc, T,
1675                                  PDiag(DiagID), CurrentRD);
1676  else
1677    return RequireNonAbstractType(Loc, T,
1678                                  PDiag(DiagID) << SelID, CurrentRD);
1679}
1680
1681bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1682                                  const PartialDiagnostic &PD,
1683                                  const CXXRecordDecl *CurrentRD) {
1684  if (!getLangOptions().CPlusPlus)
1685    return false;
1686
1687  if (const ArrayType *AT = Context.getAsArrayType(T))
1688    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1689                                  CurrentRD);
1690
1691  if (const PointerType *PT = T->getAs<PointerType>()) {
1692    // Find the innermost pointer type.
1693    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1694      PT = T;
1695
1696    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1697      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1698  }
1699
1700  const RecordType *RT = T->getAs<RecordType>();
1701  if (!RT)
1702    return false;
1703
1704  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1705  if (!RD)
1706    return false;
1707
1708  if (CurrentRD && CurrentRD != RD)
1709    return false;
1710
1711  if (!RD->isAbstract())
1712    return false;
1713
1714  Diag(Loc, PD) << RD->getDeclName();
1715
1716  // Check if we've already emitted the list of pure virtual functions for this
1717  // class.
1718  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1719    return true;
1720
1721  PureVirtualMethodCollector Collector(Context, RD);
1722
1723  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1724       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1725    const CXXMethodDecl *MD = *I;
1726
1727    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1728      MD->getDeclName();
1729  }
1730
1731  if (!PureVirtualClassDiagSet)
1732    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1733  PureVirtualClassDiagSet->insert(RD);
1734
1735  return true;
1736}
1737
1738namespace {
1739  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1740    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1741    Sema &SemaRef;
1742    CXXRecordDecl *AbstractClass;
1743
1744    bool VisitDeclContext(const DeclContext *DC) {
1745      bool Invalid = false;
1746
1747      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1748           E = DC->decls_end(); I != E; ++I)
1749        Invalid |= Visit(*I);
1750
1751      return Invalid;
1752    }
1753
1754  public:
1755    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1756      : SemaRef(SemaRef), AbstractClass(ac) {
1757        Visit(SemaRef.Context.getTranslationUnitDecl());
1758    }
1759
1760    bool VisitFunctionDecl(const FunctionDecl *FD) {
1761      if (FD->isThisDeclarationADefinition()) {
1762        // No need to do the check if we're in a definition, because it requires
1763        // that the return/param types are complete.
1764        // because that requires
1765        return VisitDeclContext(FD);
1766      }
1767
1768      // Check the return type.
1769      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1770      bool Invalid =
1771        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1772                                       diag::err_abstract_type_in_decl,
1773                                       Sema::AbstractReturnType,
1774                                       AbstractClass);
1775
1776      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1777           E = FD->param_end(); I != E; ++I) {
1778        const ParmVarDecl *VD = *I;
1779        Invalid |=
1780          SemaRef.RequireNonAbstractType(VD->getLocation(),
1781                                         VD->getOriginalType(),
1782                                         diag::err_abstract_type_in_decl,
1783                                         Sema::AbstractParamType,
1784                                         AbstractClass);
1785      }
1786
1787      return Invalid;
1788    }
1789
1790    bool VisitDecl(const Decl* D) {
1791      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1792        return VisitDeclContext(DC);
1793
1794      return false;
1795    }
1796  };
1797}
1798
1799void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1800                                             DeclPtrTy TagDecl,
1801                                             SourceLocation LBrac,
1802                                             SourceLocation RBrac) {
1803  if (!TagDecl)
1804    return;
1805
1806  AdjustDeclIfTemplate(TagDecl);
1807  ActOnFields(S, RLoc, TagDecl,
1808              (DeclPtrTy*)FieldCollector->getCurFields(),
1809              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1810
1811  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1812  if (!RD->isAbstract()) {
1813    // Collect all the pure virtual methods and see if this is an abstract
1814    // class after all.
1815    PureVirtualMethodCollector Collector(Context, RD);
1816    if (!Collector.empty())
1817      RD->setAbstract(true);
1818  }
1819
1820  if (RD->isAbstract())
1821    AbstractClassUsageDiagnoser(*this, RD);
1822
1823  if (!RD->isDependentType())
1824    AddImplicitlyDeclaredMembersToClass(RD);
1825}
1826
1827/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1828/// special functions, such as the default constructor, copy
1829/// constructor, or destructor, to the given C++ class (C++
1830/// [special]p1).  This routine can only be executed just before the
1831/// definition of the class is complete.
1832void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1833  CanQualType ClassType
1834    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1835
1836  // FIXME: Implicit declarations have exception specifications, which are
1837  // the union of the specifications of the implicitly called functions.
1838
1839  if (!ClassDecl->hasUserDeclaredConstructor()) {
1840    // C++ [class.ctor]p5:
1841    //   A default constructor for a class X is a constructor of class X
1842    //   that can be called without an argument. If there is no
1843    //   user-declared constructor for class X, a default constructor is
1844    //   implicitly declared. An implicitly-declared default constructor
1845    //   is an inline public member of its class.
1846    DeclarationName Name
1847      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1848    CXXConstructorDecl *DefaultCon =
1849      CXXConstructorDecl::Create(Context, ClassDecl,
1850                                 ClassDecl->getLocation(), Name,
1851                                 Context.getFunctionType(Context.VoidTy,
1852                                                         0, 0, false, 0),
1853                                 /*DInfo=*/0,
1854                                 /*isExplicit=*/false,
1855                                 /*isInline=*/true,
1856                                 /*isImplicitlyDeclared=*/true);
1857    DefaultCon->setAccess(AS_public);
1858    DefaultCon->setImplicit();
1859    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1860    ClassDecl->addDecl(DefaultCon);
1861  }
1862
1863  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1864    // C++ [class.copy]p4:
1865    //   If the class definition does not explicitly declare a copy
1866    //   constructor, one is declared implicitly.
1867
1868    // C++ [class.copy]p5:
1869    //   The implicitly-declared copy constructor for a class X will
1870    //   have the form
1871    //
1872    //       X::X(const X&)
1873    //
1874    //   if
1875    bool HasConstCopyConstructor = true;
1876
1877    //     -- each direct or virtual base class B of X has a copy
1878    //        constructor whose first parameter is of type const B& or
1879    //        const volatile B&, and
1880    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1881         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1882      const CXXRecordDecl *BaseClassDecl
1883        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1884      HasConstCopyConstructor
1885        = BaseClassDecl->hasConstCopyConstructor(Context);
1886    }
1887
1888    //     -- for all the nonstatic data members of X that are of a
1889    //        class type M (or array thereof), each such class type
1890    //        has a copy constructor whose first parameter is of type
1891    //        const M& or const volatile M&.
1892    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1893         HasConstCopyConstructor && Field != ClassDecl->field_end();
1894         ++Field) {
1895      QualType FieldType = (*Field)->getType();
1896      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1897        FieldType = Array->getElementType();
1898      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1899        const CXXRecordDecl *FieldClassDecl
1900          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1901        HasConstCopyConstructor
1902          = FieldClassDecl->hasConstCopyConstructor(Context);
1903      }
1904    }
1905
1906    //   Otherwise, the implicitly declared copy constructor will have
1907    //   the form
1908    //
1909    //       X::X(X&)
1910    QualType ArgType = ClassType;
1911    if (HasConstCopyConstructor)
1912      ArgType = ArgType.withConst();
1913    ArgType = Context.getLValueReferenceType(ArgType);
1914
1915    //   An implicitly-declared copy constructor is an inline public
1916    //   member of its class.
1917    DeclarationName Name
1918      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1919    CXXConstructorDecl *CopyConstructor
1920      = CXXConstructorDecl::Create(Context, ClassDecl,
1921                                   ClassDecl->getLocation(), Name,
1922                                   Context.getFunctionType(Context.VoidTy,
1923                                                           &ArgType, 1,
1924                                                           false, 0),
1925                                   /*DInfo=*/0,
1926                                   /*isExplicit=*/false,
1927                                   /*isInline=*/true,
1928                                   /*isImplicitlyDeclared=*/true);
1929    CopyConstructor->setAccess(AS_public);
1930    CopyConstructor->setImplicit();
1931    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1932
1933    // Add the parameter to the constructor.
1934    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1935                                                 ClassDecl->getLocation(),
1936                                                 /*IdentifierInfo=*/0,
1937                                                 ArgType, /*DInfo=*/0,
1938                                                 VarDecl::None, 0);
1939    CopyConstructor->setParams(Context, &FromParam, 1);
1940    ClassDecl->addDecl(CopyConstructor);
1941  }
1942
1943  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1944    // Note: The following rules are largely analoguous to the copy
1945    // constructor rules. Note that virtual bases are not taken into account
1946    // for determining the argument type of the operator. Note also that
1947    // operators taking an object instead of a reference are allowed.
1948    //
1949    // C++ [class.copy]p10:
1950    //   If the class definition does not explicitly declare a copy
1951    //   assignment operator, one is declared implicitly.
1952    //   The implicitly-defined copy assignment operator for a class X
1953    //   will have the form
1954    //
1955    //       X& X::operator=(const X&)
1956    //
1957    //   if
1958    bool HasConstCopyAssignment = true;
1959
1960    //       -- each direct base class B of X has a copy assignment operator
1961    //          whose parameter is of type const B&, const volatile B& or B,
1962    //          and
1963    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1964         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1965      const CXXRecordDecl *BaseClassDecl
1966        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1967      const CXXMethodDecl *MD = 0;
1968      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1969                                                                     MD);
1970    }
1971
1972    //       -- for all the nonstatic data members of X that are of a class
1973    //          type M (or array thereof), each such class type has a copy
1974    //          assignment operator whose parameter is of type const M&,
1975    //          const volatile M& or M.
1976    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1977         HasConstCopyAssignment && Field != ClassDecl->field_end();
1978         ++Field) {
1979      QualType FieldType = (*Field)->getType();
1980      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1981        FieldType = Array->getElementType();
1982      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1983        const CXXRecordDecl *FieldClassDecl
1984          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1985        const CXXMethodDecl *MD = 0;
1986        HasConstCopyAssignment
1987          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1988      }
1989    }
1990
1991    //   Otherwise, the implicitly declared copy assignment operator will
1992    //   have the form
1993    //
1994    //       X& X::operator=(X&)
1995    QualType ArgType = ClassType;
1996    QualType RetType = Context.getLValueReferenceType(ArgType);
1997    if (HasConstCopyAssignment)
1998      ArgType = ArgType.withConst();
1999    ArgType = Context.getLValueReferenceType(ArgType);
2000
2001    //   An implicitly-declared copy assignment operator is an inline public
2002    //   member of its class.
2003    DeclarationName Name =
2004      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2005    CXXMethodDecl *CopyAssignment =
2006      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2007                            Context.getFunctionType(RetType, &ArgType, 1,
2008                                                    false, 0),
2009                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2010    CopyAssignment->setAccess(AS_public);
2011    CopyAssignment->setImplicit();
2012    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2013    CopyAssignment->setCopyAssignment(true);
2014
2015    // Add the parameter to the operator.
2016    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2017                                                 ClassDecl->getLocation(),
2018                                                 /*IdentifierInfo=*/0,
2019                                                 ArgType, /*DInfo=*/0,
2020                                                 VarDecl::None, 0);
2021    CopyAssignment->setParams(Context, &FromParam, 1);
2022
2023    // Don't call addedAssignmentOperator. There is no way to distinguish an
2024    // implicit from an explicit assignment operator.
2025    ClassDecl->addDecl(CopyAssignment);
2026  }
2027
2028  if (!ClassDecl->hasUserDeclaredDestructor()) {
2029    // C++ [class.dtor]p2:
2030    //   If a class has no user-declared destructor, a destructor is
2031    //   declared implicitly. An implicitly-declared destructor is an
2032    //   inline public member of its class.
2033    DeclarationName Name
2034      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2035    CXXDestructorDecl *Destructor
2036      = CXXDestructorDecl::Create(Context, ClassDecl,
2037                                  ClassDecl->getLocation(), Name,
2038                                  Context.getFunctionType(Context.VoidTy,
2039                                                          0, 0, false, 0),
2040                                  /*isInline=*/true,
2041                                  /*isImplicitlyDeclared=*/true);
2042    Destructor->setAccess(AS_public);
2043    Destructor->setImplicit();
2044    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2045    ClassDecl->addDecl(Destructor);
2046  }
2047}
2048
2049void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2050  Decl *D = TemplateD.getAs<Decl>();
2051  if (!D)
2052    return;
2053
2054  TemplateParameterList *Params = 0;
2055  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2056    Params = Template->getTemplateParameters();
2057  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2058           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2059    Params = PartialSpec->getTemplateParameters();
2060  else
2061    return;
2062
2063  for (TemplateParameterList::iterator Param = Params->begin(),
2064                                    ParamEnd = Params->end();
2065       Param != ParamEnd; ++Param) {
2066    NamedDecl *Named = cast<NamedDecl>(*Param);
2067    if (Named->getDeclName()) {
2068      S->AddDecl(DeclPtrTy::make(Named));
2069      IdResolver.AddDecl(Named);
2070    }
2071  }
2072}
2073
2074/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2075/// parsing a top-level (non-nested) C++ class, and we are now
2076/// parsing those parts of the given Method declaration that could
2077/// not be parsed earlier (C++ [class.mem]p2), such as default
2078/// arguments. This action should enter the scope of the given
2079/// Method declaration as if we had just parsed the qualified method
2080/// name. However, it should not bring the parameters into scope;
2081/// that will be performed by ActOnDelayedCXXMethodParameter.
2082void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2083  if (!MethodD)
2084    return;
2085
2086  AdjustDeclIfTemplate(MethodD);
2087
2088  CXXScopeSpec SS;
2089  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2090  QualType ClassTy
2091    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2092  SS.setScopeRep(
2093    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2094  ActOnCXXEnterDeclaratorScope(S, SS);
2095}
2096
2097/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2098/// C++ method declaration. We're (re-)introducing the given
2099/// function parameter into scope for use in parsing later parts of
2100/// the method declaration. For example, we could see an
2101/// ActOnParamDefaultArgument event for this parameter.
2102void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2103  if (!ParamD)
2104    return;
2105
2106  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2107
2108  // If this parameter has an unparsed default argument, clear it out
2109  // to make way for the parsed default argument.
2110  if (Param->hasUnparsedDefaultArg())
2111    Param->setDefaultArg(0);
2112
2113  S->AddDecl(DeclPtrTy::make(Param));
2114  if (Param->getDeclName())
2115    IdResolver.AddDecl(Param);
2116}
2117
2118/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2119/// processing the delayed method declaration for Method. The method
2120/// declaration is now considered finished. There may be a separate
2121/// ActOnStartOfFunctionDef action later (not necessarily
2122/// immediately!) for this method, if it was also defined inside the
2123/// class body.
2124void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2125  if (!MethodD)
2126    return;
2127
2128  AdjustDeclIfTemplate(MethodD);
2129
2130  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2131  CXXScopeSpec SS;
2132  QualType ClassTy
2133    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2134  SS.setScopeRep(
2135    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2136  ActOnCXXExitDeclaratorScope(S, SS);
2137
2138  // Now that we have our default arguments, check the constructor
2139  // again. It could produce additional diagnostics or affect whether
2140  // the class has implicitly-declared destructors, among other
2141  // things.
2142  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2143    CheckConstructor(Constructor);
2144
2145  // Check the default arguments, which we may have added.
2146  if (!Method->isInvalidDecl())
2147    CheckCXXDefaultArguments(Method);
2148}
2149
2150/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2151/// the well-formedness of the constructor declarator @p D with type @p
2152/// R. If there are any errors in the declarator, this routine will
2153/// emit diagnostics and set the invalid bit to true.  In any case, the type
2154/// will be updated to reflect a well-formed type for the constructor and
2155/// returned.
2156QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2157                                          FunctionDecl::StorageClass &SC) {
2158  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2159
2160  // C++ [class.ctor]p3:
2161  //   A constructor shall not be virtual (10.3) or static (9.4). A
2162  //   constructor can be invoked for a const, volatile or const
2163  //   volatile object. A constructor shall not be declared const,
2164  //   volatile, or const volatile (9.3.2).
2165  if (isVirtual) {
2166    if (!D.isInvalidType())
2167      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2168        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2169        << SourceRange(D.getIdentifierLoc());
2170    D.setInvalidType();
2171  }
2172  if (SC == FunctionDecl::Static) {
2173    if (!D.isInvalidType())
2174      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2175        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2176        << SourceRange(D.getIdentifierLoc());
2177    D.setInvalidType();
2178    SC = FunctionDecl::None;
2179  }
2180
2181  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2182  if (FTI.TypeQuals != 0) {
2183    if (FTI.TypeQuals & Qualifiers::Const)
2184      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2185        << "const" << SourceRange(D.getIdentifierLoc());
2186    if (FTI.TypeQuals & Qualifiers::Volatile)
2187      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2188        << "volatile" << SourceRange(D.getIdentifierLoc());
2189    if (FTI.TypeQuals & Qualifiers::Restrict)
2190      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2191        << "restrict" << SourceRange(D.getIdentifierLoc());
2192  }
2193
2194  // Rebuild the function type "R" without any type qualifiers (in
2195  // case any of the errors above fired) and with "void" as the
2196  // return type, since constructors don't have return types. We
2197  // *always* have to do this, because GetTypeForDeclarator will
2198  // put in a result type of "int" when none was specified.
2199  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2200  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2201                                 Proto->getNumArgs(),
2202                                 Proto->isVariadic(), 0);
2203}
2204
2205/// CheckConstructor - Checks a fully-formed constructor for
2206/// well-formedness, issuing any diagnostics required. Returns true if
2207/// the constructor declarator is invalid.
2208void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2209  CXXRecordDecl *ClassDecl
2210    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2211  if (!ClassDecl)
2212    return Constructor->setInvalidDecl();
2213
2214  // C++ [class.copy]p3:
2215  //   A declaration of a constructor for a class X is ill-formed if
2216  //   its first parameter is of type (optionally cv-qualified) X and
2217  //   either there are no other parameters or else all other
2218  //   parameters have default arguments.
2219  if (!Constructor->isInvalidDecl() &&
2220      ((Constructor->getNumParams() == 1) ||
2221       (Constructor->getNumParams() > 1 &&
2222        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2223    QualType ParamType = Constructor->getParamDecl(0)->getType();
2224    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2225    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2226      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2227      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2228        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2229      Constructor->setInvalidDecl();
2230    }
2231  }
2232
2233  // Notify the class that we've added a constructor.
2234  ClassDecl->addedConstructor(Context, Constructor);
2235}
2236
2237static inline bool
2238FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2239  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2240          FTI.ArgInfo[0].Param &&
2241          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2242}
2243
2244/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2245/// the well-formednes of the destructor declarator @p D with type @p
2246/// R. If there are any errors in the declarator, this routine will
2247/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2248/// will be updated to reflect a well-formed type for the destructor and
2249/// returned.
2250QualType Sema::CheckDestructorDeclarator(Declarator &D,
2251                                         FunctionDecl::StorageClass& SC) {
2252  // C++ [class.dtor]p1:
2253  //   [...] A typedef-name that names a class is a class-name
2254  //   (7.1.3); however, a typedef-name that names a class shall not
2255  //   be used as the identifier in the declarator for a destructor
2256  //   declaration.
2257  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
2258  if (isa<TypedefType>(DeclaratorType)) {
2259    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2260      << DeclaratorType;
2261    D.setInvalidType();
2262  }
2263
2264  // C++ [class.dtor]p2:
2265  //   A destructor is used to destroy objects of its class type. A
2266  //   destructor takes no parameters, and no return type can be
2267  //   specified for it (not even void). The address of a destructor
2268  //   shall not be taken. A destructor shall not be static. A
2269  //   destructor can be invoked for a const, volatile or const
2270  //   volatile object. A destructor shall not be declared const,
2271  //   volatile or const volatile (9.3.2).
2272  if (SC == FunctionDecl::Static) {
2273    if (!D.isInvalidType())
2274      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2275        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2276        << SourceRange(D.getIdentifierLoc());
2277    SC = FunctionDecl::None;
2278    D.setInvalidType();
2279  }
2280  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2281    // Destructors don't have return types, but the parser will
2282    // happily parse something like:
2283    //
2284    //   class X {
2285    //     float ~X();
2286    //   };
2287    //
2288    // The return type will be eliminated later.
2289    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2290      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2291      << SourceRange(D.getIdentifierLoc());
2292  }
2293
2294  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2295  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2296    if (FTI.TypeQuals & Qualifiers::Const)
2297      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2298        << "const" << SourceRange(D.getIdentifierLoc());
2299    if (FTI.TypeQuals & Qualifiers::Volatile)
2300      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2301        << "volatile" << SourceRange(D.getIdentifierLoc());
2302    if (FTI.TypeQuals & Qualifiers::Restrict)
2303      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2304        << "restrict" << SourceRange(D.getIdentifierLoc());
2305    D.setInvalidType();
2306  }
2307
2308  // Make sure we don't have any parameters.
2309  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2310    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2311
2312    // Delete the parameters.
2313    FTI.freeArgs();
2314    D.setInvalidType();
2315  }
2316
2317  // Make sure the destructor isn't variadic.
2318  if (FTI.isVariadic) {
2319    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2320    D.setInvalidType();
2321  }
2322
2323  // Rebuild the function type "R" without any type qualifiers or
2324  // parameters (in case any of the errors above fired) and with
2325  // "void" as the return type, since destructors don't have return
2326  // types. We *always* have to do this, because GetTypeForDeclarator
2327  // will put in a result type of "int" when none was specified.
2328  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2329}
2330
2331/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2332/// well-formednes of the conversion function declarator @p D with
2333/// type @p R. If there are any errors in the declarator, this routine
2334/// will emit diagnostics and return true. Otherwise, it will return
2335/// false. Either way, the type @p R will be updated to reflect a
2336/// well-formed type for the conversion operator.
2337void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2338                                     FunctionDecl::StorageClass& SC) {
2339  // C++ [class.conv.fct]p1:
2340  //   Neither parameter types nor return type can be specified. The
2341  //   type of a conversion function (8.3.5) is "function taking no
2342  //   parameter returning conversion-type-id."
2343  if (SC == FunctionDecl::Static) {
2344    if (!D.isInvalidType())
2345      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2346        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2347        << SourceRange(D.getIdentifierLoc());
2348    D.setInvalidType();
2349    SC = FunctionDecl::None;
2350  }
2351  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2352    // Conversion functions don't have return types, but the parser will
2353    // happily parse something like:
2354    //
2355    //   class X {
2356    //     float operator bool();
2357    //   };
2358    //
2359    // The return type will be changed later anyway.
2360    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2361      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2362      << SourceRange(D.getIdentifierLoc());
2363  }
2364
2365  // Make sure we don't have any parameters.
2366  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2367    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2368
2369    // Delete the parameters.
2370    D.getTypeObject(0).Fun.freeArgs();
2371    D.setInvalidType();
2372  }
2373
2374  // Make sure the conversion function isn't variadic.
2375  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2376    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2377    D.setInvalidType();
2378  }
2379
2380  // C++ [class.conv.fct]p4:
2381  //   The conversion-type-id shall not represent a function type nor
2382  //   an array type.
2383  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
2384  if (ConvType->isArrayType()) {
2385    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2386    ConvType = Context.getPointerType(ConvType);
2387    D.setInvalidType();
2388  } else if (ConvType->isFunctionType()) {
2389    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2390    ConvType = Context.getPointerType(ConvType);
2391    D.setInvalidType();
2392  }
2393
2394  // Rebuild the function type "R" without any parameters (in case any
2395  // of the errors above fired) and with the conversion type as the
2396  // return type.
2397  R = Context.getFunctionType(ConvType, 0, 0, false,
2398                              R->getAs<FunctionProtoType>()->getTypeQuals());
2399
2400  // C++0x explicit conversion operators.
2401  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2402    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2403         diag::warn_explicit_conversion_functions)
2404      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2405}
2406
2407/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2408/// the declaration of the given C++ conversion function. This routine
2409/// is responsible for recording the conversion function in the C++
2410/// class, if possible.
2411Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2412  assert(Conversion && "Expected to receive a conversion function declaration");
2413
2414  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2415
2416  // Make sure we aren't redeclaring the conversion function.
2417  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2418
2419  // C++ [class.conv.fct]p1:
2420  //   [...] A conversion function is never used to convert a
2421  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2422  //   same object type (or a reference to it), to a (possibly
2423  //   cv-qualified) base class of that type (or a reference to it),
2424  //   or to (possibly cv-qualified) void.
2425  // FIXME: Suppress this warning if the conversion function ends up being a
2426  // virtual function that overrides a virtual function in a base class.
2427  QualType ClassType
2428    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2429  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2430    ConvType = ConvTypeRef->getPointeeType();
2431  if (ConvType->isRecordType()) {
2432    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2433    if (ConvType == ClassType)
2434      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2435        << ClassType;
2436    else if (IsDerivedFrom(ClassType, ConvType))
2437      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2438        <<  ClassType << ConvType;
2439  } else if (ConvType->isVoidType()) {
2440    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2441      << ClassType << ConvType;
2442  }
2443
2444  if (Conversion->getPreviousDeclaration()) {
2445    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2446    if (FunctionTemplateDecl *ConversionTemplate
2447          = Conversion->getDescribedFunctionTemplate())
2448      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2449    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2450    for (OverloadedFunctionDecl::function_iterator
2451           Conv = Conversions->function_begin(),
2452           ConvEnd = Conversions->function_end();
2453         Conv != ConvEnd; ++Conv) {
2454      if (*Conv == ExpectedPrevDecl) {
2455        *Conv = Conversion;
2456        return DeclPtrTy::make(Conversion);
2457      }
2458    }
2459    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2460  } else if (FunctionTemplateDecl *ConversionTemplate
2461               = Conversion->getDescribedFunctionTemplate())
2462    ClassDecl->addConversionFunction(ConversionTemplate);
2463  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2464    ClassDecl->addConversionFunction(Conversion);
2465
2466  return DeclPtrTy::make(Conversion);
2467}
2468
2469//===----------------------------------------------------------------------===//
2470// Namespace Handling
2471//===----------------------------------------------------------------------===//
2472
2473/// ActOnStartNamespaceDef - This is called at the start of a namespace
2474/// definition.
2475Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2476                                             SourceLocation IdentLoc,
2477                                             IdentifierInfo *II,
2478                                             SourceLocation LBrace) {
2479  NamespaceDecl *Namespc =
2480      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2481  Namespc->setLBracLoc(LBrace);
2482
2483  Scope *DeclRegionScope = NamespcScope->getParent();
2484
2485  if (II) {
2486    // C++ [namespace.def]p2:
2487    // The identifier in an original-namespace-definition shall not have been
2488    // previously defined in the declarative region in which the
2489    // original-namespace-definition appears. The identifier in an
2490    // original-namespace-definition is the name of the namespace. Subsequently
2491    // in that declarative region, it is treated as an original-namespace-name.
2492
2493    NamedDecl *PrevDecl
2494      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2495
2496    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2497      // This is an extended namespace definition.
2498      // Attach this namespace decl to the chain of extended namespace
2499      // definitions.
2500      OrigNS->setNextNamespace(Namespc);
2501      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2502
2503      // Remove the previous declaration from the scope.
2504      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2505        IdResolver.RemoveDecl(OrigNS);
2506        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2507      }
2508    } else if (PrevDecl) {
2509      // This is an invalid name redefinition.
2510      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2511       << Namespc->getDeclName();
2512      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2513      Namespc->setInvalidDecl();
2514      // Continue on to push Namespc as current DeclContext and return it.
2515    } else if (II->isStr("std") &&
2516               CurContext->getLookupContext()->isTranslationUnit()) {
2517      // This is the first "real" definition of the namespace "std", so update
2518      // our cache of the "std" namespace to point at this definition.
2519      if (StdNamespace) {
2520        // We had already defined a dummy namespace "std". Link this new
2521        // namespace definition to the dummy namespace "std".
2522        StdNamespace->setNextNamespace(Namespc);
2523        StdNamespace->setLocation(IdentLoc);
2524        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2525      }
2526
2527      // Make our StdNamespace cache point at the first real definition of the
2528      // "std" namespace.
2529      StdNamespace = Namespc;
2530    }
2531
2532    PushOnScopeChains(Namespc, DeclRegionScope);
2533  } else {
2534    // Anonymous namespaces.
2535
2536    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2537    //   behaves as if it were replaced by
2538    //     namespace unique { /* empty body */ }
2539    //     using namespace unique;
2540    //     namespace unique { namespace-body }
2541    //   where all occurrences of 'unique' in a translation unit are
2542    //   replaced by the same identifier and this identifier differs
2543    //   from all other identifiers in the entire program.
2544
2545    // We just create the namespace with an empty name and then add an
2546    // implicit using declaration, just like the standard suggests.
2547    //
2548    // CodeGen enforces the "universally unique" aspect by giving all
2549    // declarations semantically contained within an anonymous
2550    // namespace internal linkage.
2551
2552    assert(Namespc->isAnonymousNamespace());
2553    CurContext->addDecl(Namespc);
2554
2555    UsingDirectiveDecl* UD
2556      = UsingDirectiveDecl::Create(Context, CurContext,
2557                                   /* 'using' */ LBrace,
2558                                   /* 'namespace' */ SourceLocation(),
2559                                   /* qualifier */ SourceRange(),
2560                                   /* NNS */ NULL,
2561                                   /* identifier */ SourceLocation(),
2562                                   Namespc,
2563                                   /* Ancestor */ CurContext);
2564    UD->setImplicit();
2565    CurContext->addDecl(UD);
2566  }
2567
2568  // Although we could have an invalid decl (i.e. the namespace name is a
2569  // redefinition), push it as current DeclContext and try to continue parsing.
2570  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2571  // for the namespace has the declarations that showed up in that particular
2572  // namespace definition.
2573  PushDeclContext(NamespcScope, Namespc);
2574  return DeclPtrTy::make(Namespc);
2575}
2576
2577/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2578/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2579void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2580  Decl *Dcl = D.getAs<Decl>();
2581  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2582  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2583  Namespc->setRBracLoc(RBrace);
2584  PopDeclContext();
2585}
2586
2587Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2588                                          SourceLocation UsingLoc,
2589                                          SourceLocation NamespcLoc,
2590                                          const CXXScopeSpec &SS,
2591                                          SourceLocation IdentLoc,
2592                                          IdentifierInfo *NamespcName,
2593                                          AttributeList *AttrList) {
2594  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2595  assert(NamespcName && "Invalid NamespcName.");
2596  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2597  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2598
2599  UsingDirectiveDecl *UDir = 0;
2600
2601  // Lookup namespace name.
2602  LookupResult R;
2603  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2604  if (R.isAmbiguous()) {
2605    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2606    return DeclPtrTy();
2607  }
2608  if (!R.empty()) {
2609    NamedDecl *NS = R.getFoundDecl();
2610    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2611    // C++ [namespace.udir]p1:
2612    //   A using-directive specifies that the names in the nominated
2613    //   namespace can be used in the scope in which the
2614    //   using-directive appears after the using-directive. During
2615    //   unqualified name lookup (3.4.1), the names appear as if they
2616    //   were declared in the nearest enclosing namespace which
2617    //   contains both the using-directive and the nominated
2618    //   namespace. [Note: in this context, "contains" means "contains
2619    //   directly or indirectly". ]
2620
2621    // Find enclosing context containing both using-directive and
2622    // nominated namespace.
2623    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2624    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2625      CommonAncestor = CommonAncestor->getParent();
2626
2627    UDir = UsingDirectiveDecl::Create(Context,
2628                                      CurContext, UsingLoc,
2629                                      NamespcLoc,
2630                                      SS.getRange(),
2631                                      (NestedNameSpecifier *)SS.getScopeRep(),
2632                                      IdentLoc,
2633                                      cast<NamespaceDecl>(NS),
2634                                      CommonAncestor);
2635    PushUsingDirective(S, UDir);
2636  } else {
2637    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2638  }
2639
2640  // FIXME: We ignore attributes for now.
2641  delete AttrList;
2642  return DeclPtrTy::make(UDir);
2643}
2644
2645void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2646  // If scope has associated entity, then using directive is at namespace
2647  // or translation unit scope. We add UsingDirectiveDecls, into
2648  // it's lookup structure.
2649  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2650    Ctx->addDecl(UDir);
2651  else
2652    // Otherwise it is block-sope. using-directives will affect lookup
2653    // only to the end of scope.
2654    S->PushUsingDirective(DeclPtrTy::make(UDir));
2655}
2656
2657
2658Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2659                                            AccessSpecifier AS,
2660                                            SourceLocation UsingLoc,
2661                                            const CXXScopeSpec &SS,
2662                                            SourceLocation IdentLoc,
2663                                            IdentifierInfo *TargetName,
2664                                            OverloadedOperatorKind Op,
2665                                            AttributeList *AttrList,
2666                                            bool IsTypeName) {
2667  assert((TargetName || Op) && "Invalid TargetName.");
2668  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2669
2670  DeclarationName Name;
2671  if (TargetName)
2672    Name = TargetName;
2673  else
2674    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2675
2676  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2677                                        Name, AttrList, IsTypeName);
2678  if (UD) {
2679    PushOnScopeChains(UD, S);
2680    UD->setAccess(AS);
2681  }
2682
2683  return DeclPtrTy::make(UD);
2684}
2685
2686NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2687                                       const CXXScopeSpec &SS,
2688                                       SourceLocation IdentLoc,
2689                                       DeclarationName Name,
2690                                       AttributeList *AttrList,
2691                                       bool IsTypeName) {
2692  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2693  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2694
2695  // FIXME: We ignore attributes for now.
2696  delete AttrList;
2697
2698  if (SS.isEmpty()) {
2699    Diag(IdentLoc, diag::err_using_requires_qualname);
2700    return 0;
2701  }
2702
2703  NestedNameSpecifier *NNS =
2704    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2705
2706  if (isUnknownSpecialization(SS)) {
2707    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2708                                       SS.getRange(), NNS,
2709                                       IdentLoc, Name, IsTypeName);
2710  }
2711
2712  DeclContext *LookupContext = 0;
2713
2714  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2715    // C++0x N2914 [namespace.udecl]p3:
2716    // A using-declaration used as a member-declaration shall refer to a member
2717    // of a base class of the class being defined, shall refer to a member of an
2718    // anonymous union that is a member of a base class of the class being
2719    // defined, or shall refer to an enumerator for an enumeration type that is
2720    // a member of a base class of the class being defined.
2721    const Type *Ty = NNS->getAsType();
2722    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2723      Diag(SS.getRange().getBegin(),
2724           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2725        << NNS << RD->getDeclName();
2726      return 0;
2727    }
2728
2729    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2730    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2731  } else {
2732    // C++0x N2914 [namespace.udecl]p8:
2733    // A using-declaration for a class member shall be a member-declaration.
2734    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2735      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2736        << SS.getRange();
2737      return 0;
2738    }
2739
2740    // C++0x N2914 [namespace.udecl]p9:
2741    // In a using-declaration, a prefix :: refers to the global namespace.
2742    if (NNS->getKind() == NestedNameSpecifier::Global)
2743      LookupContext = Context.getTranslationUnitDecl();
2744    else
2745      LookupContext = NNS->getAsNamespace();
2746  }
2747
2748
2749  // Lookup target name.
2750  LookupResult R;
2751  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2752
2753  if (R.empty()) {
2754    DiagnoseMissingMember(IdentLoc, Name, NNS, SS.getRange());
2755    return 0;
2756  }
2757
2758  // FIXME: handle ambiguity?
2759  NamedDecl *ND = R.getAsSingleDecl(Context);
2760
2761  if (IsTypeName && !isa<TypeDecl>(ND)) {
2762    Diag(IdentLoc, diag::err_using_typename_non_type);
2763    return 0;
2764  }
2765
2766  // C++0x N2914 [namespace.udecl]p6:
2767  // A using-declaration shall not name a namespace.
2768  if (isa<NamespaceDecl>(ND)) {
2769    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2770      << SS.getRange();
2771    return 0;
2772  }
2773
2774  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2775                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2776}
2777
2778/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2779/// is a namespace alias, returns the namespace it points to.
2780static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2781  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2782    return AD->getNamespace();
2783  return dyn_cast_or_null<NamespaceDecl>(D);
2784}
2785
2786Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2787                                             SourceLocation NamespaceLoc,
2788                                             SourceLocation AliasLoc,
2789                                             IdentifierInfo *Alias,
2790                                             const CXXScopeSpec &SS,
2791                                             SourceLocation IdentLoc,
2792                                             IdentifierInfo *Ident) {
2793
2794  // Lookup the namespace name.
2795  LookupResult R;
2796  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2797
2798  // Check if we have a previous declaration with the same name.
2799  if (NamedDecl *PrevDecl
2800        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2801    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2802      // We already have an alias with the same name that points to the same
2803      // namespace, so don't create a new one.
2804      if (!R.isAmbiguous() && !R.empty() &&
2805          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2806        return DeclPtrTy();
2807    }
2808
2809    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2810      diag::err_redefinition_different_kind;
2811    Diag(AliasLoc, DiagID) << Alias;
2812    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2813    return DeclPtrTy();
2814  }
2815
2816  if (R.isAmbiguous()) {
2817    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2818    return DeclPtrTy();
2819  }
2820
2821  if (R.empty()) {
2822    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2823    return DeclPtrTy();
2824  }
2825
2826  NamespaceAliasDecl *AliasDecl =
2827    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2828                               Alias, SS.getRange(),
2829                               (NestedNameSpecifier *)SS.getScopeRep(),
2830                               IdentLoc, R.getFoundDecl());
2831
2832  CurContext->addDecl(AliasDecl);
2833  return DeclPtrTy::make(AliasDecl);
2834}
2835
2836void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2837                                            CXXConstructorDecl *Constructor) {
2838  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2839          !Constructor->isUsed()) &&
2840    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2841
2842  CXXRecordDecl *ClassDecl
2843    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2844  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2845  // Before the implicitly-declared default constructor for a class is
2846  // implicitly defined, all the implicitly-declared default constructors
2847  // for its base class and its non-static data members shall have been
2848  // implicitly defined.
2849  bool err = false;
2850  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2851       E = ClassDecl->bases_end(); Base != E; ++Base) {
2852    CXXRecordDecl *BaseClassDecl
2853      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2854    if (!BaseClassDecl->hasTrivialConstructor()) {
2855      if (CXXConstructorDecl *BaseCtor =
2856            BaseClassDecl->getDefaultConstructor(Context))
2857        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2858      else {
2859        Diag(CurrentLocation, diag::err_defining_default_ctor)
2860          << Context.getTagDeclType(ClassDecl) << 0
2861          << Context.getTagDeclType(BaseClassDecl);
2862        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2863              << Context.getTagDeclType(BaseClassDecl);
2864        err = true;
2865      }
2866    }
2867  }
2868  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2869       E = ClassDecl->field_end(); Field != E; ++Field) {
2870    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2871    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2872      FieldType = Array->getElementType();
2873    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2874      CXXRecordDecl *FieldClassDecl
2875        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2876      if (!FieldClassDecl->hasTrivialConstructor()) {
2877        if (CXXConstructorDecl *FieldCtor =
2878            FieldClassDecl->getDefaultConstructor(Context))
2879          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2880        else {
2881          Diag(CurrentLocation, diag::err_defining_default_ctor)
2882          << Context.getTagDeclType(ClassDecl) << 1 <<
2883              Context.getTagDeclType(FieldClassDecl);
2884          Diag((*Field)->getLocation(), diag::note_field_decl);
2885          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2886          << Context.getTagDeclType(FieldClassDecl);
2887          err = true;
2888        }
2889      }
2890    } else if (FieldType->isReferenceType()) {
2891      Diag(CurrentLocation, diag::err_unintialized_member)
2892        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2893      Diag((*Field)->getLocation(), diag::note_declared_at);
2894      err = true;
2895    } else if (FieldType.isConstQualified()) {
2896      Diag(CurrentLocation, diag::err_unintialized_member)
2897        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2898       Diag((*Field)->getLocation(), diag::note_declared_at);
2899      err = true;
2900    }
2901  }
2902  if (!err)
2903    Constructor->setUsed();
2904  else
2905    Constructor->setInvalidDecl();
2906}
2907
2908void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2909                                    CXXDestructorDecl *Destructor) {
2910  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2911         "DefineImplicitDestructor - call it for implicit default dtor");
2912
2913  CXXRecordDecl *ClassDecl
2914  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2915  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2916  // C++ [class.dtor] p5
2917  // Before the implicitly-declared default destructor for a class is
2918  // implicitly defined, all the implicitly-declared default destructors
2919  // for its base class and its non-static data members shall have been
2920  // implicitly defined.
2921  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2922       E = ClassDecl->bases_end(); Base != E; ++Base) {
2923    CXXRecordDecl *BaseClassDecl
2924      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2925    if (!BaseClassDecl->hasTrivialDestructor()) {
2926      if (CXXDestructorDecl *BaseDtor =
2927          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2928        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2929      else
2930        assert(false &&
2931               "DefineImplicitDestructor - missing dtor in a base class");
2932    }
2933  }
2934
2935  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2936       E = ClassDecl->field_end(); Field != E; ++Field) {
2937    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2938    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2939      FieldType = Array->getElementType();
2940    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2941      CXXRecordDecl *FieldClassDecl
2942        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2943      if (!FieldClassDecl->hasTrivialDestructor()) {
2944        if (CXXDestructorDecl *FieldDtor =
2945            const_cast<CXXDestructorDecl*>(
2946                                        FieldClassDecl->getDestructor(Context)))
2947          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2948        else
2949          assert(false &&
2950          "DefineImplicitDestructor - missing dtor in class of a data member");
2951      }
2952    }
2953  }
2954  Destructor->setUsed();
2955}
2956
2957void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2958                                          CXXMethodDecl *MethodDecl) {
2959  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2960          MethodDecl->getOverloadedOperator() == OO_Equal &&
2961          !MethodDecl->isUsed()) &&
2962         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2963
2964  CXXRecordDecl *ClassDecl
2965    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2966
2967  // C++[class.copy] p12
2968  // Before the implicitly-declared copy assignment operator for a class is
2969  // implicitly defined, all implicitly-declared copy assignment operators
2970  // for its direct base classes and its nonstatic data members shall have
2971  // been implicitly defined.
2972  bool err = false;
2973  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2974       E = ClassDecl->bases_end(); Base != E; ++Base) {
2975    CXXRecordDecl *BaseClassDecl
2976      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2977    if (CXXMethodDecl *BaseAssignOpMethod =
2978          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2979      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2980  }
2981  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2982       E = ClassDecl->field_end(); Field != E; ++Field) {
2983    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2984    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2985      FieldType = Array->getElementType();
2986    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2987      CXXRecordDecl *FieldClassDecl
2988        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2989      if (CXXMethodDecl *FieldAssignOpMethod =
2990          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2991        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2992    } else if (FieldType->isReferenceType()) {
2993      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2994      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2995      Diag(Field->getLocation(), diag::note_declared_at);
2996      Diag(CurrentLocation, diag::note_first_required_here);
2997      err = true;
2998    } else if (FieldType.isConstQualified()) {
2999      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3000      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3001      Diag(Field->getLocation(), diag::note_declared_at);
3002      Diag(CurrentLocation, diag::note_first_required_here);
3003      err = true;
3004    }
3005  }
3006  if (!err)
3007    MethodDecl->setUsed();
3008}
3009
3010CXXMethodDecl *
3011Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3012                              CXXRecordDecl *ClassDecl) {
3013  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3014  QualType RHSType(LHSType);
3015  // If class's assignment operator argument is const/volatile qualified,
3016  // look for operator = (const/volatile B&). Otherwise, look for
3017  // operator = (B&).
3018  RHSType = Context.getCVRQualifiedType(RHSType,
3019                                     ParmDecl->getType().getCVRQualifiers());
3020  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3021                                                          LHSType,
3022                                                          SourceLocation()));
3023  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3024                                                          RHSType,
3025                                                          SourceLocation()));
3026  Expr *Args[2] = { &*LHS, &*RHS };
3027  OverloadCandidateSet CandidateSet;
3028  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3029                              CandidateSet);
3030  OverloadCandidateSet::iterator Best;
3031  if (BestViableFunction(CandidateSet,
3032                         ClassDecl->getLocation(), Best) == OR_Success)
3033    return cast<CXXMethodDecl>(Best->Function);
3034  assert(false &&
3035         "getAssignOperatorMethod - copy assignment operator method not found");
3036  return 0;
3037}
3038
3039void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3040                                   CXXConstructorDecl *CopyConstructor,
3041                                   unsigned TypeQuals) {
3042  assert((CopyConstructor->isImplicit() &&
3043          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3044          !CopyConstructor->isUsed()) &&
3045         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3046
3047  CXXRecordDecl *ClassDecl
3048    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3049  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3050  // C++ [class.copy] p209
3051  // Before the implicitly-declared copy constructor for a class is
3052  // implicitly defined, all the implicitly-declared copy constructors
3053  // for its base class and its non-static data members shall have been
3054  // implicitly defined.
3055  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3056       Base != ClassDecl->bases_end(); ++Base) {
3057    CXXRecordDecl *BaseClassDecl
3058      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3059    if (CXXConstructorDecl *BaseCopyCtor =
3060        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3061      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3062  }
3063  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3064                                  FieldEnd = ClassDecl->field_end();
3065       Field != FieldEnd; ++Field) {
3066    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3067    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3068      FieldType = Array->getElementType();
3069    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3070      CXXRecordDecl *FieldClassDecl
3071        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3072      if (CXXConstructorDecl *FieldCopyCtor =
3073          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3074        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3075    }
3076  }
3077  CopyConstructor->setUsed();
3078}
3079
3080Sema::OwningExprResult
3081Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3082                            CXXConstructorDecl *Constructor,
3083                            MultiExprArg ExprArgs) {
3084  bool Elidable = false;
3085
3086  // C++ [class.copy]p15:
3087  //   Whenever a temporary class object is copied using a copy constructor, and
3088  //   this object and the copy have the same cv-unqualified type, an
3089  //   implementation is permitted to treat the original and the copy as two
3090  //   different ways of referring to the same object and not perform a copy at
3091  //   all, even if the class copy constructor or destructor have side effects.
3092
3093  // FIXME: Is this enough?
3094  if (Constructor->isCopyConstructor(Context)) {
3095    Expr *E = ((Expr **)ExprArgs.get())[0];
3096    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3097      E = BE->getSubExpr();
3098    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3099      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3100        E = ICE->getSubExpr();
3101
3102    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3103      Elidable = true;
3104  }
3105
3106  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3107                               Elidable, move(ExprArgs));
3108}
3109
3110/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3111/// including handling of its default argument expressions.
3112Sema::OwningExprResult
3113Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3114                            CXXConstructorDecl *Constructor, bool Elidable,
3115                            MultiExprArg ExprArgs) {
3116  unsigned NumExprs = ExprArgs.size();
3117  Expr **Exprs = (Expr **)ExprArgs.release();
3118
3119  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3120                                        Elidable, Exprs, NumExprs));
3121}
3122
3123Sema::OwningExprResult
3124Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3125                                  QualType Ty,
3126                                  SourceLocation TyBeginLoc,
3127                                  MultiExprArg Args,
3128                                  SourceLocation RParenLoc) {
3129  unsigned NumExprs = Args.size();
3130  Expr **Exprs = (Expr **)Args.release();
3131
3132  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3133                                                    TyBeginLoc, Exprs,
3134                                                    NumExprs, RParenLoc));
3135}
3136
3137
3138bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3139                                        CXXConstructorDecl *Constructor,
3140                                        QualType DeclInitType,
3141                                        MultiExprArg Exprs) {
3142  OwningExprResult TempResult =
3143    BuildCXXConstructExpr(VD->getLocation(), DeclInitType, Constructor,
3144                          move(Exprs));
3145  if (TempResult.isInvalid())
3146    return true;
3147
3148  Expr *Temp = TempResult.takeAs<Expr>();
3149  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3150  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3151  VD->setInit(Context, Temp);
3152
3153  return false;
3154}
3155
3156void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3157  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3158                                  DeclInitType->getAs<RecordType>()->getDecl());
3159  if (!ClassDecl->hasTrivialDestructor())
3160    if (CXXDestructorDecl *Destructor =
3161        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3162      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3163}
3164
3165/// AddCXXDirectInitializerToDecl - This action is called immediately after
3166/// ActOnDeclarator, when a C++ direct initializer is present.
3167/// e.g: "int x(1);"
3168void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3169                                         SourceLocation LParenLoc,
3170                                         MultiExprArg Exprs,
3171                                         SourceLocation *CommaLocs,
3172                                         SourceLocation RParenLoc) {
3173  unsigned NumExprs = Exprs.size();
3174  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3175  Decl *RealDecl = Dcl.getAs<Decl>();
3176
3177  // If there is no declaration, there was an error parsing it.  Just ignore
3178  // the initializer.
3179  if (RealDecl == 0)
3180    return;
3181
3182  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3183  if (!VDecl) {
3184    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3185    RealDecl->setInvalidDecl();
3186    return;
3187  }
3188
3189  // We will represent direct-initialization similarly to copy-initialization:
3190  //    int x(1);  -as-> int x = 1;
3191  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3192  //
3193  // Clients that want to distinguish between the two forms, can check for
3194  // direct initializer using VarDecl::hasCXXDirectInitializer().
3195  // A major benefit is that clients that don't particularly care about which
3196  // exactly form was it (like the CodeGen) can handle both cases without
3197  // special case code.
3198
3199  // If either the declaration has a dependent type or if any of the expressions
3200  // is type-dependent, we represent the initialization via a ParenListExpr for
3201  // later use during template instantiation.
3202  if (VDecl->getType()->isDependentType() ||
3203      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3204    // Let clients know that initialization was done with a direct initializer.
3205    VDecl->setCXXDirectInitializer(true);
3206
3207    // Store the initialization expressions as a ParenListExpr.
3208    unsigned NumExprs = Exprs.size();
3209    VDecl->setInit(Context,
3210                   new (Context) ParenListExpr(Context, LParenLoc,
3211                                               (Expr **)Exprs.release(),
3212                                               NumExprs, RParenLoc));
3213    return;
3214  }
3215
3216
3217  // C++ 8.5p11:
3218  // The form of initialization (using parentheses or '=') is generally
3219  // insignificant, but does matter when the entity being initialized has a
3220  // class type.
3221  QualType DeclInitType = VDecl->getType();
3222  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3223    DeclInitType = Array->getElementType();
3224
3225  // FIXME: This isn't the right place to complete the type.
3226  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3227                          diag::err_typecheck_decl_incomplete_type)) {
3228    VDecl->setInvalidDecl();
3229    return;
3230  }
3231
3232  if (VDecl->getType()->isRecordType()) {
3233    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3234
3235    CXXConstructorDecl *Constructor
3236      = PerformInitializationByConstructor(DeclInitType,
3237                                           move(Exprs),
3238                                           VDecl->getLocation(),
3239                                           SourceRange(VDecl->getLocation(),
3240                                                       RParenLoc),
3241                                           VDecl->getDeclName(),
3242                                           IK_Direct,
3243                                           ConstructorArgs);
3244    if (!Constructor)
3245      RealDecl->setInvalidDecl();
3246    else {
3247      VDecl->setCXXDirectInitializer(true);
3248      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
3249                                       move_arg(ConstructorArgs)))
3250        RealDecl->setInvalidDecl();
3251      FinalizeVarWithDestructor(VDecl, DeclInitType);
3252    }
3253    return;
3254  }
3255
3256  if (NumExprs > 1) {
3257    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3258      << SourceRange(VDecl->getLocation(), RParenLoc);
3259    RealDecl->setInvalidDecl();
3260    return;
3261  }
3262
3263  // Let clients know that initialization was done with a direct initializer.
3264  VDecl->setCXXDirectInitializer(true);
3265
3266  assert(NumExprs == 1 && "Expected 1 expression");
3267  // Set the init expression, handles conversions.
3268  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3269                       /*DirectInit=*/true);
3270}
3271
3272/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3273/// may occur as part of direct-initialization or copy-initialization.
3274///
3275/// \param ClassType the type of the object being initialized, which must have
3276/// class type.
3277///
3278/// \param ArgsPtr the arguments provided to initialize the object
3279///
3280/// \param Loc the source location where the initialization occurs
3281///
3282/// \param Range the source range that covers the entire initialization
3283///
3284/// \param InitEntity the name of the entity being initialized, if known
3285///
3286/// \param Kind the type of initialization being performed
3287///
3288/// \param ConvertedArgs a vector that will be filled in with the
3289/// appropriately-converted arguments to the constructor (if initialization
3290/// succeeded).
3291///
3292/// \returns the constructor used to initialize the object, if successful.
3293/// Otherwise, emits a diagnostic and returns NULL.
3294CXXConstructorDecl *
3295Sema::PerformInitializationByConstructor(QualType ClassType,
3296                                         MultiExprArg ArgsPtr,
3297                                         SourceLocation Loc, SourceRange Range,
3298                                         DeclarationName InitEntity,
3299                                         InitializationKind Kind,
3300                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3301  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3302  assert(ClassRec && "Can only initialize a class type here");
3303  Expr **Args = (Expr **)ArgsPtr.get();
3304  unsigned NumArgs = ArgsPtr.size();
3305
3306  // C++ [dcl.init]p14:
3307  //   If the initialization is direct-initialization, or if it is
3308  //   copy-initialization where the cv-unqualified version of the
3309  //   source type is the same class as, or a derived class of, the
3310  //   class of the destination, constructors are considered. The
3311  //   applicable constructors are enumerated (13.3.1.3), and the
3312  //   best one is chosen through overload resolution (13.3). The
3313  //   constructor so selected is called to initialize the object,
3314  //   with the initializer expression(s) as its argument(s). If no
3315  //   constructor applies, or the overload resolution is ambiguous,
3316  //   the initialization is ill-formed.
3317  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3318  OverloadCandidateSet CandidateSet;
3319
3320  // Add constructors to the overload set.
3321  DeclarationName ConstructorName
3322    = Context.DeclarationNames.getCXXConstructorName(
3323                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
3324  DeclContext::lookup_const_iterator Con, ConEnd;
3325  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3326       Con != ConEnd; ++Con) {
3327    // Find the constructor (which may be a template).
3328    CXXConstructorDecl *Constructor = 0;
3329    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3330    if (ConstructorTmpl)
3331      Constructor
3332        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3333    else
3334      Constructor = cast<CXXConstructorDecl>(*Con);
3335
3336    if ((Kind == IK_Direct) ||
3337        (Kind == IK_Copy &&
3338         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3339        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3340      if (ConstructorTmpl)
3341        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3342                                     Args, NumArgs, CandidateSet);
3343      else
3344        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3345    }
3346  }
3347
3348  // FIXME: When we decide not to synthesize the implicitly-declared
3349  // constructors, we'll need to make them appear here.
3350
3351  OverloadCandidateSet::iterator Best;
3352  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3353  case OR_Success:
3354    // We found a constructor. Break out so that we can convert the arguments
3355    // appropriately.
3356    break;
3357
3358  case OR_No_Viable_Function:
3359    if (InitEntity)
3360      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3361        << InitEntity << Range;
3362    else
3363      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3364        << ClassType << Range;
3365    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3366    return 0;
3367
3368  case OR_Ambiguous:
3369    if (InitEntity)
3370      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3371    else
3372      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3373    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3374    return 0;
3375
3376  case OR_Deleted:
3377    if (InitEntity)
3378      Diag(Loc, diag::err_ovl_deleted_init)
3379        << Best->Function->isDeleted()
3380        << InitEntity << Range;
3381    else
3382      Diag(Loc, diag::err_ovl_deleted_init)
3383        << Best->Function->isDeleted()
3384        << InitEntity << Range;
3385    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3386    return 0;
3387  }
3388
3389  // Convert the arguments, fill in default arguments, etc.
3390  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3391  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3392    return 0;
3393
3394  return Constructor;
3395}
3396
3397/// \brief Given a constructor and the set of arguments provided for the
3398/// constructor, convert the arguments and add any required default arguments
3399/// to form a proper call to this constructor.
3400///
3401/// \returns true if an error occurred, false otherwise.
3402bool
3403Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3404                              MultiExprArg ArgsPtr,
3405                              SourceLocation Loc,
3406                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3407  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3408  unsigned NumArgs = ArgsPtr.size();
3409  Expr **Args = (Expr **)ArgsPtr.get();
3410
3411  const FunctionProtoType *Proto
3412    = Constructor->getType()->getAs<FunctionProtoType>();
3413  assert(Proto && "Constructor without a prototype?");
3414  unsigned NumArgsInProto = Proto->getNumArgs();
3415  unsigned NumArgsToCheck = NumArgs;
3416
3417  // If too few arguments are available, we'll fill in the rest with defaults.
3418  if (NumArgs < NumArgsInProto) {
3419    NumArgsToCheck = NumArgsInProto;
3420    ConvertedArgs.reserve(NumArgsInProto);
3421  } else {
3422    ConvertedArgs.reserve(NumArgs);
3423    if (NumArgs > NumArgsInProto)
3424      NumArgsToCheck = NumArgsInProto;
3425  }
3426
3427  // Convert arguments
3428  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3429    QualType ProtoArgType = Proto->getArgType(i);
3430
3431    Expr *Arg;
3432    if (i < NumArgs) {
3433      Arg = Args[i];
3434
3435      // Pass the argument.
3436      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3437        return true;
3438
3439      Args[i] = 0;
3440    } else {
3441      ParmVarDecl *Param = Constructor->getParamDecl(i);
3442
3443      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3444      if (DefArg.isInvalid())
3445        return true;
3446
3447      Arg = DefArg.takeAs<Expr>();
3448    }
3449
3450    ConvertedArgs.push_back(Arg);
3451  }
3452
3453  // If this is a variadic call, handle args passed through "...".
3454  if (Proto->isVariadic()) {
3455    // Promote the arguments (C99 6.5.2.2p7).
3456    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3457      Expr *Arg = Args[i];
3458      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3459        return true;
3460
3461      ConvertedArgs.push_back(Arg);
3462      Args[i] = 0;
3463    }
3464  }
3465
3466  return false;
3467}
3468
3469/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3470/// determine whether they are reference-related,
3471/// reference-compatible, reference-compatible with added
3472/// qualification, or incompatible, for use in C++ initialization by
3473/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3474/// type, and the first type (T1) is the pointee type of the reference
3475/// type being initialized.
3476Sema::ReferenceCompareResult
3477Sema::CompareReferenceRelationship(QualType T1, QualType T2,
3478                                   bool& DerivedToBase) {
3479  assert(!T1->isReferenceType() &&
3480    "T1 must be the pointee type of the reference type");
3481  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
3482
3483  T1 = Context.getCanonicalType(T1);
3484  T2 = Context.getCanonicalType(T2);
3485  QualType UnqualT1 = T1.getUnqualifiedType();
3486  QualType UnqualT2 = T2.getUnqualifiedType();
3487
3488  // C++ [dcl.init.ref]p4:
3489  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3490  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3491  //   T1 is a base class of T2.
3492  if (UnqualT1 == UnqualT2)
3493    DerivedToBase = false;
3494  else if (IsDerivedFrom(UnqualT2, UnqualT1))
3495    DerivedToBase = true;
3496  else
3497    return Ref_Incompatible;
3498
3499  // At this point, we know that T1 and T2 are reference-related (at
3500  // least).
3501
3502  // C++ [dcl.init.ref]p4:
3503  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3504  //   reference-related to T2 and cv1 is the same cv-qualification
3505  //   as, or greater cv-qualification than, cv2. For purposes of
3506  //   overload resolution, cases for which cv1 is greater
3507  //   cv-qualification than cv2 are identified as
3508  //   reference-compatible with added qualification (see 13.3.3.2).
3509  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3510    return Ref_Compatible;
3511  else if (T1.isMoreQualifiedThan(T2))
3512    return Ref_Compatible_With_Added_Qualification;
3513  else
3514    return Ref_Related;
3515}
3516
3517/// CheckReferenceInit - Check the initialization of a reference
3518/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3519/// the initializer (either a simple initializer or an initializer
3520/// list), and DeclType is the type of the declaration. When ICS is
3521/// non-null, this routine will compute the implicit conversion
3522/// sequence according to C++ [over.ics.ref] and will not produce any
3523/// diagnostics; when ICS is null, it will emit diagnostics when any
3524/// errors are found. Either way, a return value of true indicates
3525/// that there was a failure, a return value of false indicates that
3526/// the reference initialization succeeded.
3527///
3528/// When @p SuppressUserConversions, user-defined conversions are
3529/// suppressed.
3530/// When @p AllowExplicit, we also permit explicit user-defined
3531/// conversion functions.
3532/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3533bool
3534Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3535                         SourceLocation DeclLoc,
3536                         bool SuppressUserConversions,
3537                         bool AllowExplicit, bool ForceRValue,
3538                         ImplicitConversionSequence *ICS) {
3539  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3540
3541  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3542  QualType T2 = Init->getType();
3543
3544  // If the initializer is the address of an overloaded function, try
3545  // to resolve the overloaded function. If all goes well, T2 is the
3546  // type of the resulting function.
3547  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3548    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3549                                                          ICS != 0);
3550    if (Fn) {
3551      // Since we're performing this reference-initialization for
3552      // real, update the initializer with the resulting function.
3553      if (!ICS) {
3554        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3555          return true;
3556
3557        FixOverloadedFunctionReference(Init, Fn);
3558      }
3559
3560      T2 = Fn->getType();
3561    }
3562  }
3563
3564  // Compute some basic properties of the types and the initializer.
3565  bool isRValRef = DeclType->isRValueReferenceType();
3566  bool DerivedToBase = false;
3567  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3568                                                  Init->isLvalue(Context);
3569  ReferenceCompareResult RefRelationship
3570    = CompareReferenceRelationship(T1, T2, DerivedToBase);
3571
3572  // Most paths end in a failed conversion.
3573  if (ICS)
3574    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3575
3576  // C++ [dcl.init.ref]p5:
3577  //   A reference to type "cv1 T1" is initialized by an expression
3578  //   of type "cv2 T2" as follows:
3579
3580  //     -- If the initializer expression
3581
3582  // Rvalue references cannot bind to lvalues (N2812).
3583  // There is absolutely no situation where they can. In particular, note that
3584  // this is ill-formed, even if B has a user-defined conversion to A&&:
3585  //   B b;
3586  //   A&& r = b;
3587  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3588    if (!ICS)
3589      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3590        << Init->getSourceRange();
3591    return true;
3592  }
3593
3594  bool BindsDirectly = false;
3595  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3596  //          reference-compatible with "cv2 T2," or
3597  //
3598  // Note that the bit-field check is skipped if we are just computing
3599  // the implicit conversion sequence (C++ [over.best.ics]p2).
3600  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3601      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3602    BindsDirectly = true;
3603
3604    if (ICS) {
3605      // C++ [over.ics.ref]p1:
3606      //   When a parameter of reference type binds directly (8.5.3)
3607      //   to an argument expression, the implicit conversion sequence
3608      //   is the identity conversion, unless the argument expression
3609      //   has a type that is a derived class of the parameter type,
3610      //   in which case the implicit conversion sequence is a
3611      //   derived-to-base Conversion (13.3.3.1).
3612      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3613      ICS->Standard.First = ICK_Identity;
3614      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3615      ICS->Standard.Third = ICK_Identity;
3616      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3617      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3618      ICS->Standard.ReferenceBinding = true;
3619      ICS->Standard.DirectBinding = true;
3620      ICS->Standard.RRefBinding = false;
3621      ICS->Standard.CopyConstructor = 0;
3622
3623      // Nothing more to do: the inaccessibility/ambiguity check for
3624      // derived-to-base conversions is suppressed when we're
3625      // computing the implicit conversion sequence (C++
3626      // [over.best.ics]p2).
3627      return false;
3628    } else {
3629      // Perform the conversion.
3630      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3631      if (DerivedToBase)
3632        CK = CastExpr::CK_DerivedToBase;
3633      else if(CheckExceptionSpecCompatibility(Init, T1))
3634        return true;
3635      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3636    }
3637  }
3638
3639  //       -- has a class type (i.e., T2 is a class type) and can be
3640  //          implicitly converted to an lvalue of type "cv3 T3,"
3641  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3642  //          92) (this conversion is selected by enumerating the
3643  //          applicable conversion functions (13.3.1.6) and choosing
3644  //          the best one through overload resolution (13.3)),
3645  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3646      !RequireCompleteType(SourceLocation(), T2, 0)) {
3647    CXXRecordDecl *T2RecordDecl
3648      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3649
3650    OverloadCandidateSet CandidateSet;
3651    OverloadedFunctionDecl *Conversions
3652      = T2RecordDecl->getVisibleConversionFunctions();
3653    for (OverloadedFunctionDecl::function_iterator Func
3654           = Conversions->function_begin();
3655         Func != Conversions->function_end(); ++Func) {
3656      FunctionTemplateDecl *ConvTemplate
3657        = dyn_cast<FunctionTemplateDecl>(*Func);
3658      CXXConversionDecl *Conv;
3659      if (ConvTemplate)
3660        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3661      else
3662        Conv = cast<CXXConversionDecl>(*Func);
3663
3664      // If the conversion function doesn't return a reference type,
3665      // it can't be considered for this conversion.
3666      if (Conv->getConversionType()->isLValueReferenceType() &&
3667          (AllowExplicit || !Conv->isExplicit())) {
3668        if (ConvTemplate)
3669          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3670                                         CandidateSet);
3671        else
3672          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3673      }
3674    }
3675
3676    OverloadCandidateSet::iterator Best;
3677    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3678    case OR_Success:
3679      // This is a direct binding.
3680      BindsDirectly = true;
3681
3682      if (ICS) {
3683        // C++ [over.ics.ref]p1:
3684        //
3685        //   [...] If the parameter binds directly to the result of
3686        //   applying a conversion function to the argument
3687        //   expression, the implicit conversion sequence is a
3688        //   user-defined conversion sequence (13.3.3.1.2), with the
3689        //   second standard conversion sequence either an identity
3690        //   conversion or, if the conversion function returns an
3691        //   entity of a type that is a derived class of the parameter
3692        //   type, a derived-to-base Conversion.
3693        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3694        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3695        ICS->UserDefined.After = Best->FinalConversion;
3696        ICS->UserDefined.ConversionFunction = Best->Function;
3697        assert(ICS->UserDefined.After.ReferenceBinding &&
3698               ICS->UserDefined.After.DirectBinding &&
3699               "Expected a direct reference binding!");
3700        return false;
3701      } else {
3702        OwningExprResult InitConversion =
3703          BuildCXXCastArgument(DeclLoc, QualType(),
3704                               CastExpr::CK_UserDefinedConversion,
3705                               cast<CXXMethodDecl>(Best->Function),
3706                               Owned(Init));
3707        Init = InitConversion.takeAs<Expr>();
3708
3709        if (CheckExceptionSpecCompatibility(Init, T1))
3710          return true;
3711        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3712                          /*isLvalue=*/true);
3713      }
3714      break;
3715
3716    case OR_Ambiguous:
3717      assert(false && "Ambiguous reference binding conversions not implemented.");
3718      return true;
3719
3720    case OR_No_Viable_Function:
3721    case OR_Deleted:
3722      // There was no suitable conversion, or we found a deleted
3723      // conversion; continue with other checks.
3724      break;
3725    }
3726  }
3727
3728  if (BindsDirectly) {
3729    // C++ [dcl.init.ref]p4:
3730    //   [...] In all cases where the reference-related or
3731    //   reference-compatible relationship of two types is used to
3732    //   establish the validity of a reference binding, and T1 is a
3733    //   base class of T2, a program that necessitates such a binding
3734    //   is ill-formed if T1 is an inaccessible (clause 11) or
3735    //   ambiguous (10.2) base class of T2.
3736    //
3737    // Note that we only check this condition when we're allowed to
3738    // complain about errors, because we should not be checking for
3739    // ambiguity (or inaccessibility) unless the reference binding
3740    // actually happens.
3741    if (DerivedToBase)
3742      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3743                                          Init->getSourceRange());
3744    else
3745      return false;
3746  }
3747
3748  //     -- Otherwise, the reference shall be to a non-volatile const
3749  //        type (i.e., cv1 shall be const), or the reference shall be an
3750  //        rvalue reference and the initializer expression shall be an rvalue.
3751  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3752    if (!ICS)
3753      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3754        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3755        << T2 << Init->getSourceRange();
3756    return true;
3757  }
3758
3759  //       -- If the initializer expression is an rvalue, with T2 a
3760  //          class type, and "cv1 T1" is reference-compatible with
3761  //          "cv2 T2," the reference is bound in one of the
3762  //          following ways (the choice is implementation-defined):
3763  //
3764  //          -- The reference is bound to the object represented by
3765  //             the rvalue (see 3.10) or to a sub-object within that
3766  //             object.
3767  //
3768  //          -- A temporary of type "cv1 T2" [sic] is created, and
3769  //             a constructor is called to copy the entire rvalue
3770  //             object into the temporary. The reference is bound to
3771  //             the temporary or to a sub-object within the
3772  //             temporary.
3773  //
3774  //          The constructor that would be used to make the copy
3775  //          shall be callable whether or not the copy is actually
3776  //          done.
3777  //
3778  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3779  // freedom, so we will always take the first option and never build
3780  // a temporary in this case. FIXME: We will, however, have to check
3781  // for the presence of a copy constructor in C++98/03 mode.
3782  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3783      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3784    if (ICS) {
3785      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3786      ICS->Standard.First = ICK_Identity;
3787      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3788      ICS->Standard.Third = ICK_Identity;
3789      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3790      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3791      ICS->Standard.ReferenceBinding = true;
3792      ICS->Standard.DirectBinding = false;
3793      ICS->Standard.RRefBinding = isRValRef;
3794      ICS->Standard.CopyConstructor = 0;
3795    } else {
3796      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3797      if (DerivedToBase)
3798        CK = CastExpr::CK_DerivedToBase;
3799      else if(CheckExceptionSpecCompatibility(Init, T1))
3800        return true;
3801      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3802    }
3803    return false;
3804  }
3805
3806  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3807  //          initialized from the initializer expression using the
3808  //          rules for a non-reference copy initialization (8.5). The
3809  //          reference is then bound to the temporary. If T1 is
3810  //          reference-related to T2, cv1 must be the same
3811  //          cv-qualification as, or greater cv-qualification than,
3812  //          cv2; otherwise, the program is ill-formed.
3813  if (RefRelationship == Ref_Related) {
3814    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3815    // we would be reference-compatible or reference-compatible with
3816    // added qualification. But that wasn't the case, so the reference
3817    // initialization fails.
3818    if (!ICS)
3819      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3820        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3821        << T2 << Init->getSourceRange();
3822    return true;
3823  }
3824
3825  // If at least one of the types is a class type, the types are not
3826  // related, and we aren't allowed any user conversions, the
3827  // reference binding fails. This case is important for breaking
3828  // recursion, since TryImplicitConversion below will attempt to
3829  // create a temporary through the use of a copy constructor.
3830  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3831      (T1->isRecordType() || T2->isRecordType())) {
3832    if (!ICS)
3833      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3834        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3835    return true;
3836  }
3837
3838  // Actually try to convert the initializer to T1.
3839  if (ICS) {
3840    // C++ [over.ics.ref]p2:
3841    //
3842    //   When a parameter of reference type is not bound directly to
3843    //   an argument expression, the conversion sequence is the one
3844    //   required to convert the argument expression to the
3845    //   underlying type of the reference according to
3846    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3847    //   to copy-initializing a temporary of the underlying type with
3848    //   the argument expression. Any difference in top-level
3849    //   cv-qualification is subsumed by the initialization itself
3850    //   and does not constitute a conversion.
3851    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3852                                 /*AllowExplicit=*/false,
3853                                 /*ForceRValue=*/false,
3854                                 /*InOverloadResolution=*/false);
3855
3856    // Of course, that's still a reference binding.
3857    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3858      ICS->Standard.ReferenceBinding = true;
3859      ICS->Standard.RRefBinding = isRValRef;
3860    } else if (ICS->ConversionKind ==
3861              ImplicitConversionSequence::UserDefinedConversion) {
3862      ICS->UserDefined.After.ReferenceBinding = true;
3863      ICS->UserDefined.After.RRefBinding = isRValRef;
3864    }
3865    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3866  } else {
3867    ImplicitConversionSequence Conversions;
3868    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3869                                                   false, false,
3870                                                   Conversions);
3871    if (badConversion) {
3872      if ((Conversions.ConversionKind  ==
3873            ImplicitConversionSequence::BadConversion)
3874          && !Conversions.ConversionFunctionSet.empty()) {
3875        Diag(DeclLoc,
3876             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3877        for (int j = Conversions.ConversionFunctionSet.size()-1;
3878             j >= 0; j--) {
3879          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3880          Diag(Func->getLocation(), diag::err_ovl_candidate);
3881        }
3882      }
3883      else {
3884        if (isRValRef)
3885          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3886            << Init->getSourceRange();
3887        else
3888          Diag(DeclLoc, diag::err_invalid_initialization)
3889            << DeclType << Init->getType() << Init->getSourceRange();
3890      }
3891    }
3892    return badConversion;
3893  }
3894}
3895
3896/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3897/// of this overloaded operator is well-formed. If so, returns false;
3898/// otherwise, emits appropriate diagnostics and returns true.
3899bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3900  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3901         "Expected an overloaded operator declaration");
3902
3903  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3904
3905  // C++ [over.oper]p5:
3906  //   The allocation and deallocation functions, operator new,
3907  //   operator new[], operator delete and operator delete[], are
3908  //   described completely in 3.7.3. The attributes and restrictions
3909  //   found in the rest of this subclause do not apply to them unless
3910  //   explicitly stated in 3.7.3.
3911  // FIXME: Write a separate routine for checking this. For now, just allow it.
3912  if (Op == OO_New || Op == OO_Array_New ||
3913      Op == OO_Delete || Op == OO_Array_Delete)
3914    return false;
3915
3916  // C++ [over.oper]p6:
3917  //   An operator function shall either be a non-static member
3918  //   function or be a non-member function and have at least one
3919  //   parameter whose type is a class, a reference to a class, an
3920  //   enumeration, or a reference to an enumeration.
3921  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3922    if (MethodDecl->isStatic())
3923      return Diag(FnDecl->getLocation(),
3924                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3925  } else {
3926    bool ClassOrEnumParam = false;
3927    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3928                                   ParamEnd = FnDecl->param_end();
3929         Param != ParamEnd; ++Param) {
3930      QualType ParamType = (*Param)->getType().getNonReferenceType();
3931      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3932          ParamType->isEnumeralType()) {
3933        ClassOrEnumParam = true;
3934        break;
3935      }
3936    }
3937
3938    if (!ClassOrEnumParam)
3939      return Diag(FnDecl->getLocation(),
3940                  diag::err_operator_overload_needs_class_or_enum)
3941        << FnDecl->getDeclName();
3942  }
3943
3944  // C++ [over.oper]p8:
3945  //   An operator function cannot have default arguments (8.3.6),
3946  //   except where explicitly stated below.
3947  //
3948  // Only the function-call operator allows default arguments
3949  // (C++ [over.call]p1).
3950  if (Op != OO_Call) {
3951    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3952         Param != FnDecl->param_end(); ++Param) {
3953      if ((*Param)->hasUnparsedDefaultArg())
3954        return Diag((*Param)->getLocation(),
3955                    diag::err_operator_overload_default_arg)
3956          << FnDecl->getDeclName();
3957      else if (Expr *DefArg = (*Param)->getDefaultArg())
3958        return Diag((*Param)->getLocation(),
3959                    diag::err_operator_overload_default_arg)
3960          << FnDecl->getDeclName() << DefArg->getSourceRange();
3961    }
3962  }
3963
3964  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3965    { false, false, false }
3966#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3967    , { Unary, Binary, MemberOnly }
3968#include "clang/Basic/OperatorKinds.def"
3969  };
3970
3971  bool CanBeUnaryOperator = OperatorUses[Op][0];
3972  bool CanBeBinaryOperator = OperatorUses[Op][1];
3973  bool MustBeMemberOperator = OperatorUses[Op][2];
3974
3975  // C++ [over.oper]p8:
3976  //   [...] Operator functions cannot have more or fewer parameters
3977  //   than the number required for the corresponding operator, as
3978  //   described in the rest of this subclause.
3979  unsigned NumParams = FnDecl->getNumParams()
3980                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3981  if (Op != OO_Call &&
3982      ((NumParams == 1 && !CanBeUnaryOperator) ||
3983       (NumParams == 2 && !CanBeBinaryOperator) ||
3984       (NumParams < 1) || (NumParams > 2))) {
3985    // We have the wrong number of parameters.
3986    unsigned ErrorKind;
3987    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3988      ErrorKind = 2;  // 2 -> unary or binary.
3989    } else if (CanBeUnaryOperator) {
3990      ErrorKind = 0;  // 0 -> unary
3991    } else {
3992      assert(CanBeBinaryOperator &&
3993             "All non-call overloaded operators are unary or binary!");
3994      ErrorKind = 1;  // 1 -> binary
3995    }
3996
3997    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3998      << FnDecl->getDeclName() << NumParams << ErrorKind;
3999  }
4000
4001  // Overloaded operators other than operator() cannot be variadic.
4002  if (Op != OO_Call &&
4003      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4004    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4005      << FnDecl->getDeclName();
4006  }
4007
4008  // Some operators must be non-static member functions.
4009  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4010    return Diag(FnDecl->getLocation(),
4011                diag::err_operator_overload_must_be_member)
4012      << FnDecl->getDeclName();
4013  }
4014
4015  // C++ [over.inc]p1:
4016  //   The user-defined function called operator++ implements the
4017  //   prefix and postfix ++ operator. If this function is a member
4018  //   function with no parameters, or a non-member function with one
4019  //   parameter of class or enumeration type, it defines the prefix
4020  //   increment operator ++ for objects of that type. If the function
4021  //   is a member function with one parameter (which shall be of type
4022  //   int) or a non-member function with two parameters (the second
4023  //   of which shall be of type int), it defines the postfix
4024  //   increment operator ++ for objects of that type.
4025  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4026    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4027    bool ParamIsInt = false;
4028    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4029      ParamIsInt = BT->getKind() == BuiltinType::Int;
4030
4031    if (!ParamIsInt)
4032      return Diag(LastParam->getLocation(),
4033                  diag::err_operator_overload_post_incdec_must_be_int)
4034        << LastParam->getType() << (Op == OO_MinusMinus);
4035  }
4036
4037  // Notify the class if it got an assignment operator.
4038  if (Op == OO_Equal) {
4039    // Would have returned earlier otherwise.
4040    assert(isa<CXXMethodDecl>(FnDecl) &&
4041      "Overloaded = not member, but not filtered.");
4042    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4043    Method->setCopyAssignment(true);
4044    Method->getParent()->addedAssignmentOperator(Context, Method);
4045  }
4046
4047  return false;
4048}
4049
4050/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4051/// linkage specification, including the language and (if present)
4052/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4053/// the location of the language string literal, which is provided
4054/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4055/// the '{' brace. Otherwise, this linkage specification does not
4056/// have any braces.
4057Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4058                                                     SourceLocation ExternLoc,
4059                                                     SourceLocation LangLoc,
4060                                                     const char *Lang,
4061                                                     unsigned StrSize,
4062                                                     SourceLocation LBraceLoc) {
4063  LinkageSpecDecl::LanguageIDs Language;
4064  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4065    Language = LinkageSpecDecl::lang_c;
4066  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4067    Language = LinkageSpecDecl::lang_cxx;
4068  else {
4069    Diag(LangLoc, diag::err_bad_language);
4070    return DeclPtrTy();
4071  }
4072
4073  // FIXME: Add all the various semantics of linkage specifications
4074
4075  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4076                                               LangLoc, Language,
4077                                               LBraceLoc.isValid());
4078  CurContext->addDecl(D);
4079  PushDeclContext(S, D);
4080  return DeclPtrTy::make(D);
4081}
4082
4083/// ActOnFinishLinkageSpecification - Completely the definition of
4084/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4085/// valid, it's the position of the closing '}' brace in a linkage
4086/// specification that uses braces.
4087Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4088                                                      DeclPtrTy LinkageSpec,
4089                                                      SourceLocation RBraceLoc) {
4090  if (LinkageSpec)
4091    PopDeclContext();
4092  return LinkageSpec;
4093}
4094
4095/// \brief Perform semantic analysis for the variable declaration that
4096/// occurs within a C++ catch clause, returning the newly-created
4097/// variable.
4098VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4099                                         DeclaratorInfo *DInfo,
4100                                         IdentifierInfo *Name,
4101                                         SourceLocation Loc,
4102                                         SourceRange Range) {
4103  bool Invalid = false;
4104
4105  // Arrays and functions decay.
4106  if (ExDeclType->isArrayType())
4107    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4108  else if (ExDeclType->isFunctionType())
4109    ExDeclType = Context.getPointerType(ExDeclType);
4110
4111  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4112  // The exception-declaration shall not denote a pointer or reference to an
4113  // incomplete type, other than [cv] void*.
4114  // N2844 forbids rvalue references.
4115  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4116    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4117    Invalid = true;
4118  }
4119
4120  QualType BaseType = ExDeclType;
4121  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4122  unsigned DK = diag::err_catch_incomplete;
4123  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4124    BaseType = Ptr->getPointeeType();
4125    Mode = 1;
4126    DK = diag::err_catch_incomplete_ptr;
4127  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4128    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4129    BaseType = Ref->getPointeeType();
4130    Mode = 2;
4131    DK = diag::err_catch_incomplete_ref;
4132  }
4133  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4134      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4135    Invalid = true;
4136
4137  if (!Invalid && !ExDeclType->isDependentType() &&
4138      RequireNonAbstractType(Loc, ExDeclType,
4139                             diag::err_abstract_type_in_decl,
4140                             AbstractVariableType))
4141    Invalid = true;
4142
4143  // FIXME: Need to test for ability to copy-construct and destroy the
4144  // exception variable.
4145
4146  // FIXME: Need to check for abstract classes.
4147
4148  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4149                                    Name, ExDeclType, DInfo, VarDecl::None);
4150
4151  if (Invalid)
4152    ExDecl->setInvalidDecl();
4153
4154  return ExDecl;
4155}
4156
4157/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4158/// handler.
4159Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4160  DeclaratorInfo *DInfo = 0;
4161  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4162
4163  bool Invalid = D.isInvalidType();
4164  IdentifierInfo *II = D.getIdentifier();
4165  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4166    // The scope should be freshly made just for us. There is just no way
4167    // it contains any previous declaration.
4168    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4169    if (PrevDecl->isTemplateParameter()) {
4170      // Maybe we will complain about the shadowed template parameter.
4171      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4172    }
4173  }
4174
4175  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4176    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4177      << D.getCXXScopeSpec().getRange();
4178    Invalid = true;
4179  }
4180
4181  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4182                                              D.getIdentifier(),
4183                                              D.getIdentifierLoc(),
4184                                            D.getDeclSpec().getSourceRange());
4185
4186  if (Invalid)
4187    ExDecl->setInvalidDecl();
4188
4189  // Add the exception declaration into this scope.
4190  if (II)
4191    PushOnScopeChains(ExDecl, S);
4192  else
4193    CurContext->addDecl(ExDecl);
4194
4195  ProcessDeclAttributes(S, ExDecl, D);
4196  return DeclPtrTy::make(ExDecl);
4197}
4198
4199Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4200                                                   ExprArg assertexpr,
4201                                                   ExprArg assertmessageexpr) {
4202  Expr *AssertExpr = (Expr *)assertexpr.get();
4203  StringLiteral *AssertMessage =
4204    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4205
4206  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4207    llvm::APSInt Value(32);
4208    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4209      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4210        AssertExpr->getSourceRange();
4211      return DeclPtrTy();
4212    }
4213
4214    if (Value == 0) {
4215      std::string str(AssertMessage->getStrData(),
4216                      AssertMessage->getByteLength());
4217      Diag(AssertLoc, diag::err_static_assert_failed)
4218        << str << AssertExpr->getSourceRange();
4219    }
4220  }
4221
4222  assertexpr.release();
4223  assertmessageexpr.release();
4224  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4225                                        AssertExpr, AssertMessage);
4226
4227  CurContext->addDecl(Decl);
4228  return DeclPtrTy::make(Decl);
4229}
4230
4231/// Handle a friend type declaration.  This works in tandem with
4232/// ActOnTag.
4233///
4234/// Notes on friend class templates:
4235///
4236/// We generally treat friend class declarations as if they were
4237/// declaring a class.  So, for example, the elaborated type specifier
4238/// in a friend declaration is required to obey the restrictions of a
4239/// class-head (i.e. no typedefs in the scope chain), template
4240/// parameters are required to match up with simple template-ids, &c.
4241/// However, unlike when declaring a template specialization, it's
4242/// okay to refer to a template specialization without an empty
4243/// template parameter declaration, e.g.
4244///   friend class A<T>::B<unsigned>;
4245/// We permit this as a special case; if there are any template
4246/// parameters present at all, require proper matching, i.e.
4247///   template <> template <class T> friend class A<int>::B;
4248Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
4249                                          const DeclSpec &DS,
4250                                          MultiTemplateParamsArg TempParams) {
4251  SourceLocation Loc = DS.getSourceRange().getBegin();
4252
4253  assert(DS.isFriendSpecified());
4254  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4255
4256  // Try to convert the decl specifier to a type.  This works for
4257  // friend templates because ActOnTag never produces a ClassTemplateDecl
4258  // for a TUK_Friend.
4259  bool invalid = false;
4260  QualType SourceTy;
4261  QualType T = ConvertDeclSpecToType(DS, Loc, invalid, SourceTy);
4262  if (invalid) return DeclPtrTy();
4263
4264  // This is definitely an error in C++98.  It's probably meant to
4265  // be forbidden in C++0x, too, but the specification is just
4266  // poorly written.
4267  //
4268  // The problem is with declarations like the following:
4269  //   template <T> friend A<T>::foo;
4270  // where deciding whether a class C is a friend or not now hinges
4271  // on whether there exists an instantiation of A that causes
4272  // 'foo' to equal C.  There are restrictions on class-heads
4273  // (which we declare (by fiat) elaborated friend declarations to
4274  // be) that makes this tractable.
4275  //
4276  // FIXME: handle "template <> friend class A<T>;", which
4277  // is possibly well-formed?  Who even knows?
4278  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4279    Diag(Loc, diag::err_tagless_friend_type_template)
4280      << DS.getSourceRange();
4281    return DeclPtrTy();
4282  }
4283
4284  // C++ [class.friend]p2:
4285  //   An elaborated-type-specifier shall be used in a friend declaration
4286  //   for a class.*
4287  //   * The class-key of the elaborated-type-specifier is required.
4288  // This is one of the rare places in Clang where it's legitimate to
4289  // ask about the "spelling" of the type.
4290  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4291    // If we evaluated the type to a record type, suggest putting
4292    // a tag in front.
4293    if (const RecordType *RT = T->getAs<RecordType>()) {
4294      RecordDecl *RD = RT->getDecl();
4295
4296      std::string InsertionText = std::string(" ") + RD->getKindName();
4297
4298      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4299        << (unsigned) RD->getTagKind()
4300        << T
4301        << SourceRange(DS.getFriendSpecLoc())
4302        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4303                                                 InsertionText);
4304      return DeclPtrTy();
4305    }else {
4306      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4307          << DS.getSourceRange();
4308      return DeclPtrTy();
4309    }
4310  }
4311
4312  // Enum types cannot be friends.
4313  if (T->getAs<EnumType>()) {
4314    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4315      << SourceRange(DS.getFriendSpecLoc());
4316    return DeclPtrTy();
4317  }
4318
4319  // C++98 [class.friend]p1: A friend of a class is a function
4320  //   or class that is not a member of the class . . .
4321  // But that's a silly restriction which nobody implements for
4322  // inner classes, and C++0x removes it anyway, so we only report
4323  // this (as a warning) if we're being pedantic.
4324  if (!getLangOptions().CPlusPlus0x)
4325    if (const RecordType *RT = T->getAs<RecordType>())
4326      if (RT->getDecl()->getDeclContext() == CurContext)
4327        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4328
4329  Decl *D;
4330  if (TempParams.size())
4331    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4332                                   TempParams.size(),
4333                                 (TemplateParameterList**) TempParams.release(),
4334                                   T.getTypePtr(),
4335                                   DS.getFriendSpecLoc());
4336  else
4337    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4338                           DS.getFriendSpecLoc());
4339  D->setAccess(AS_public);
4340  CurContext->addDecl(D);
4341
4342  return DeclPtrTy::make(D);
4343}
4344
4345Sema::DeclPtrTy
4346Sema::ActOnFriendFunctionDecl(Scope *S,
4347                              Declarator &D,
4348                              bool IsDefinition,
4349                              MultiTemplateParamsArg TemplateParams) {
4350  // FIXME: do something with template parameters
4351
4352  const DeclSpec &DS = D.getDeclSpec();
4353
4354  assert(DS.isFriendSpecified());
4355  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4356
4357  SourceLocation Loc = D.getIdentifierLoc();
4358  DeclaratorInfo *DInfo = 0;
4359  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4360
4361  // C++ [class.friend]p1
4362  //   A friend of a class is a function or class....
4363  // Note that this sees through typedefs, which is intended.
4364  // It *doesn't* see through dependent types, which is correct
4365  // according to [temp.arg.type]p3:
4366  //   If a declaration acquires a function type through a
4367  //   type dependent on a template-parameter and this causes
4368  //   a declaration that does not use the syntactic form of a
4369  //   function declarator to have a function type, the program
4370  //   is ill-formed.
4371  if (!T->isFunctionType()) {
4372    Diag(Loc, diag::err_unexpected_friend);
4373
4374    // It might be worthwhile to try to recover by creating an
4375    // appropriate declaration.
4376    return DeclPtrTy();
4377  }
4378
4379  // C++ [namespace.memdef]p3
4380  //  - If a friend declaration in a non-local class first declares a
4381  //    class or function, the friend class or function is a member
4382  //    of the innermost enclosing namespace.
4383  //  - The name of the friend is not found by simple name lookup
4384  //    until a matching declaration is provided in that namespace
4385  //    scope (either before or after the class declaration granting
4386  //    friendship).
4387  //  - If a friend function is called, its name may be found by the
4388  //    name lookup that considers functions from namespaces and
4389  //    classes associated with the types of the function arguments.
4390  //  - When looking for a prior declaration of a class or a function
4391  //    declared as a friend, scopes outside the innermost enclosing
4392  //    namespace scope are not considered.
4393
4394  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4395  DeclarationName Name = GetNameForDeclarator(D);
4396  assert(Name);
4397
4398  // The context we found the declaration in, or in which we should
4399  // create the declaration.
4400  DeclContext *DC;
4401
4402  // FIXME: handle local classes
4403
4404  // Recover from invalid scope qualifiers as if they just weren't there.
4405  NamedDecl *PrevDecl = 0;
4406  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4407    DC = computeDeclContext(ScopeQual);
4408
4409    // FIXME: handle dependent contexts
4410    if (!DC) return DeclPtrTy();
4411
4412    LookupResult R;
4413    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4414    PrevDecl = R.getAsSingleDecl(Context);
4415
4416    // If searching in that context implicitly found a declaration in
4417    // a different context, treat it like it wasn't found at all.
4418    // TODO: better diagnostics for this case.  Suggesting the right
4419    // qualified scope would be nice...
4420    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4421      D.setInvalidType();
4422      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4423      return DeclPtrTy();
4424    }
4425
4426    // C++ [class.friend]p1: A friend of a class is a function or
4427    //   class that is not a member of the class . . .
4428    if (DC->Equals(CurContext))
4429      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4430
4431  // Otherwise walk out to the nearest namespace scope looking for matches.
4432  } else {
4433    // TODO: handle local class contexts.
4434
4435    DC = CurContext;
4436    while (true) {
4437      // Skip class contexts.  If someone can cite chapter and verse
4438      // for this behavior, that would be nice --- it's what GCC and
4439      // EDG do, and it seems like a reasonable intent, but the spec
4440      // really only says that checks for unqualified existing
4441      // declarations should stop at the nearest enclosing namespace,
4442      // not that they should only consider the nearest enclosing
4443      // namespace.
4444      while (DC->isRecord())
4445        DC = DC->getParent();
4446
4447      LookupResult R;
4448      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4449      PrevDecl = R.getAsSingleDecl(Context);
4450
4451      // TODO: decide what we think about using declarations.
4452      if (PrevDecl)
4453        break;
4454
4455      if (DC->isFileContext()) break;
4456      DC = DC->getParent();
4457    }
4458
4459    // C++ [class.friend]p1: A friend of a class is a function or
4460    //   class that is not a member of the class . . .
4461    // C++0x changes this for both friend types and functions.
4462    // Most C++ 98 compilers do seem to give an error here, so
4463    // we do, too.
4464    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4465      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4466  }
4467
4468  if (DC->isFileContext()) {
4469    // This implies that it has to be an operator or function.
4470    if (D.getKind() == Declarator::DK_Constructor ||
4471        D.getKind() == Declarator::DK_Destructor ||
4472        D.getKind() == Declarator::DK_Conversion) {
4473      Diag(Loc, diag::err_introducing_special_friend) <<
4474        (D.getKind() == Declarator::DK_Constructor ? 0 :
4475         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
4476      return DeclPtrTy();
4477    }
4478  }
4479
4480  bool Redeclaration = false;
4481  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4482                                          MultiTemplateParamsArg(*this),
4483                                          IsDefinition,
4484                                          Redeclaration);
4485  if (!ND) return DeclPtrTy();
4486
4487  assert(ND->getDeclContext() == DC);
4488  assert(ND->getLexicalDeclContext() == CurContext);
4489
4490  // Add the function declaration to the appropriate lookup tables,
4491  // adjusting the redeclarations list as necessary.  We don't
4492  // want to do this yet if the friending class is dependent.
4493  //
4494  // Also update the scope-based lookup if the target context's
4495  // lookup context is in lexical scope.
4496  if (!CurContext->isDependentContext()) {
4497    DC = DC->getLookupContext();
4498    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4499    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4500      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4501  }
4502
4503  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4504                                       D.getIdentifierLoc(), ND,
4505                                       DS.getFriendSpecLoc());
4506  FrD->setAccess(AS_public);
4507  CurContext->addDecl(FrD);
4508
4509  return DeclPtrTy::make(ND);
4510}
4511
4512void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4513  AdjustDeclIfTemplate(dcl);
4514
4515  Decl *Dcl = dcl.getAs<Decl>();
4516  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4517  if (!Fn) {
4518    Diag(DelLoc, diag::err_deleted_non_function);
4519    return;
4520  }
4521  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4522    Diag(DelLoc, diag::err_deleted_decl_not_first);
4523    Diag(Prev->getLocation(), diag::note_previous_declaration);
4524    // If the declaration wasn't the first, we delete the function anyway for
4525    // recovery.
4526  }
4527  Fn->setDeleted();
4528}
4529
4530static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4531  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4532       ++CI) {
4533    Stmt *SubStmt = *CI;
4534    if (!SubStmt)
4535      continue;
4536    if (isa<ReturnStmt>(SubStmt))
4537      Self.Diag(SubStmt->getSourceRange().getBegin(),
4538           diag::err_return_in_constructor_handler);
4539    if (!isa<Expr>(SubStmt))
4540      SearchForReturnInStmt(Self, SubStmt);
4541  }
4542}
4543
4544void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4545  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4546    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4547    SearchForReturnInStmt(*this, Handler);
4548  }
4549}
4550
4551bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4552                                             const CXXMethodDecl *Old) {
4553  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4554  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4555
4556  QualType CNewTy = Context.getCanonicalType(NewTy);
4557  QualType COldTy = Context.getCanonicalType(OldTy);
4558
4559  if (CNewTy == COldTy &&
4560      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4561    return false;
4562
4563  // Check if the return types are covariant
4564  QualType NewClassTy, OldClassTy;
4565
4566  /// Both types must be pointers or references to classes.
4567  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4568    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4569      NewClassTy = NewPT->getPointeeType();
4570      OldClassTy = OldPT->getPointeeType();
4571    }
4572  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4573    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4574      NewClassTy = NewRT->getPointeeType();
4575      OldClassTy = OldRT->getPointeeType();
4576    }
4577  }
4578
4579  // The return types aren't either both pointers or references to a class type.
4580  if (NewClassTy.isNull()) {
4581    Diag(New->getLocation(),
4582         diag::err_different_return_type_for_overriding_virtual_function)
4583      << New->getDeclName() << NewTy << OldTy;
4584    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4585
4586    return true;
4587  }
4588
4589  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4590    // Check if the new class derives from the old class.
4591    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4592      Diag(New->getLocation(),
4593           diag::err_covariant_return_not_derived)
4594      << New->getDeclName() << NewTy << OldTy;
4595      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4596      return true;
4597    }
4598
4599    // Check if we the conversion from derived to base is valid.
4600    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4601                      diag::err_covariant_return_inaccessible_base,
4602                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4603                      // FIXME: Should this point to the return type?
4604                      New->getLocation(), SourceRange(), New->getDeclName())) {
4605      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4606      return true;
4607    }
4608  }
4609
4610  // The qualifiers of the return types must be the same.
4611  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4612    Diag(New->getLocation(),
4613         diag::err_covariant_return_type_different_qualifications)
4614    << New->getDeclName() << NewTy << OldTy;
4615    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4616    return true;
4617  };
4618
4619
4620  // The new class type must have the same or less qualifiers as the old type.
4621  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4622    Diag(New->getLocation(),
4623         diag::err_covariant_return_type_class_type_more_qualified)
4624    << New->getDeclName() << NewTy << OldTy;
4625    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4626    return true;
4627  };
4628
4629  return false;
4630}
4631
4632/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4633/// initializer for the declaration 'Dcl'.
4634/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4635/// static data member of class X, names should be looked up in the scope of
4636/// class X.
4637void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4638  AdjustDeclIfTemplate(Dcl);
4639
4640  Decl *D = Dcl.getAs<Decl>();
4641  // If there is no declaration, there was an error parsing it.
4642  if (D == 0)
4643    return;
4644
4645  // Check whether it is a declaration with a nested name specifier like
4646  // int foo::bar;
4647  if (!D->isOutOfLine())
4648    return;
4649
4650  // C++ [basic.lookup.unqual]p13
4651  //
4652  // A name used in the definition of a static data member of class X
4653  // (after the qualified-id of the static member) is looked up as if the name
4654  // was used in a member function of X.
4655
4656  // Change current context into the context of the initializing declaration.
4657  EnterDeclaratorContext(S, D->getDeclContext());
4658}
4659
4660/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4661/// initializer for the declaration 'Dcl'.
4662void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4663  AdjustDeclIfTemplate(Dcl);
4664
4665  Decl *D = Dcl.getAs<Decl>();
4666  // If there is no declaration, there was an error parsing it.
4667  if (D == 0)
4668    return;
4669
4670  // Check whether it is a declaration with a nested name specifier like
4671  // int foo::bar;
4672  if (!D->isOutOfLine())
4673    return;
4674
4675  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4676  ExitDeclaratorContext(S);
4677}
4678