SemaDeclCXX.cpp revision 03b2ad28d67ed14e2203eb1e92ce042f63182bcd
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
109                                ExprTy *defarg) {
110  ParmVarDecl *Param = (ParmVarDecl *)param;
111  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName());
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl.
205FunctionDecl *
206Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  // C++ [dcl.fct.default]p4:
208  //
209  //   For non-template functions, default arguments can be added in
210  //   later declarations of a function in the same
211  //   scope. Declarations in different scopes have completely
212  //   distinct sets of default arguments. That is, declarations in
213  //   inner scopes do not acquire default arguments from
214  //   declarations in outer scopes, and vice versa. In a given
215  //   function declaration, all parameters subsequent to a
216  //   parameter with a default argument shall have default
217  //   arguments supplied in this or previous declarations. A
218  //   default argument shall not be redefined by a later
219  //   declaration (not even to the same value).
220  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
221    ParmVarDecl *OldParam = Old->getParamDecl(p);
222    ParmVarDecl *NewParam = New->getParamDecl(p);
223
224    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
225      Diag(NewParam->getLocation(),
226           diag::err_param_default_argument_redefinition)
227        << NewParam->getDefaultArg()->getSourceRange();
228      Diag(OldParam->getLocation(), diag::note_previous_definition);
229    } else if (OldParam->getDefaultArg()) {
230      // Merge the old default argument into the new parameter
231      NewParam->setDefaultArg(OldParam->getDefaultArg());
232    }
233  }
234
235  return New;
236}
237
238/// CheckCXXDefaultArguments - Verify that the default arguments for a
239/// function declaration are well-formed according to C++
240/// [dcl.fct.default].
241void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
242  unsigned NumParams = FD->getNumParams();
243  unsigned p;
244
245  // Find first parameter with a default argument
246  for (p = 0; p < NumParams; ++p) {
247    ParmVarDecl *Param = FD->getParamDecl(p);
248    if (Param->getDefaultArg())
249      break;
250  }
251
252  // C++ [dcl.fct.default]p4:
253  //   In a given function declaration, all parameters
254  //   subsequent to a parameter with a default argument shall
255  //   have default arguments supplied in this or previous
256  //   declarations. A default argument shall not be redefined
257  //   by a later declaration (not even to the same value).
258  unsigned LastMissingDefaultArg = 0;
259  for(; p < NumParams; ++p) {
260    ParmVarDecl *Param = FD->getParamDecl(p);
261    if (!Param->getDefaultArg()) {
262      if (Param->isInvalidDecl())
263        /* We already complained about this parameter. */;
264      else if (Param->getIdentifier())
265        Diag(Param->getLocation(),
266             diag::err_param_default_argument_missing_name)
267          << Param->getIdentifier();
268      else
269        Diag(Param->getLocation(),
270             diag::err_param_default_argument_missing);
271
272      LastMissingDefaultArg = p;
273    }
274  }
275
276  if (LastMissingDefaultArg > 0) {
277    // Some default arguments were missing. Clear out all of the
278    // default arguments up to (and including) the last missing
279    // default argument, so that we leave the function parameters
280    // in a semantically valid state.
281    for (p = 0; p <= LastMissingDefaultArg; ++p) {
282      ParmVarDecl *Param = FD->getParamDecl(p);
283      if (Param->getDefaultArg()) {
284        if (!Param->hasUnparsedDefaultArg())
285          Param->getDefaultArg()->Destroy(Context);
286        Param->setDefaultArg(0);
287      }
288    }
289  }
290}
291
292/// isCurrentClassName - Determine whether the identifier II is the
293/// name of the class type currently being defined. In the case of
294/// nested classes, this will only return true if II is the name of
295/// the innermost class.
296bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
297                              const CXXScopeSpec *SS) {
298  CXXRecordDecl *CurDecl;
299  if (SS) {
300    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
301    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
302  } else
303    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
304
305  if (CurDecl)
306    return &II == CurDecl->getIdentifier();
307  else
308    return false;
309}
310
311/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
312/// one entry in the base class list of a class specifier, for
313/// example:
314///    class foo : public bar, virtual private baz {
315/// 'public bar' and 'virtual private baz' are each base-specifiers.
316Sema::BaseResult
317Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
318                         bool Virtual, AccessSpecifier Access,
319                         TypeTy *basetype, SourceLocation BaseLoc) {
320  CXXRecordDecl *Decl = (CXXRecordDecl*)classdecl;
321  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
322
323  // Base specifiers must be record types.
324  if (!BaseType->isRecordType())
325    return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
326
327  // C++ [class.union]p1:
328  //   A union shall not be used as a base class.
329  if (BaseType->isUnionType())
330    return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
331
332  // C++ [class.union]p1:
333  //   A union shall not have base classes.
334  if (Decl->isUnion())
335    return Diag(Decl->getLocation(), diag::err_base_clause_on_union)
336              << SpecifierRange;
337
338  // C++ [class.derived]p2:
339  //   The class-name in a base-specifier shall not be an incompletely
340  //   defined class.
341  if (BaseType->isIncompleteType())
342    return Diag(BaseLoc, diag::err_incomplete_base_class) << SpecifierRange;
343
344  // If the base class is polymorphic, the new one is, too.
345  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
346  assert(BaseDecl && "Record type has no declaration");
347  BaseDecl = BaseDecl->getDefinition(Context);
348  assert(BaseDecl && "Base type is not incomplete, but has no definition");
349  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
350    Decl->setPolymorphic(true);
351
352  // C++ [dcl.init.aggr]p1:
353  //   An aggregate is [...] a class with [...] no base classes [...].
354  Decl->setAggregate(false);
355  Decl->setPOD(false);
356
357  // Create the base specifier.
358  return new CXXBaseSpecifier(SpecifierRange, Virtual,
359                              BaseType->isClassType(), Access, BaseType);
360}
361
362/// ActOnBaseSpecifiers - Attach the given base specifiers to the
363/// class, after checking whether there are any duplicate base
364/// classes.
365void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
366                               unsigned NumBases) {
367  if (NumBases == 0)
368    return;
369
370  // Used to keep track of which base types we have already seen, so
371  // that we can properly diagnose redundant direct base types. Note
372  // that the key is always the unqualified canonical type of the base
373  // class.
374  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
375
376  // Copy non-redundant base specifiers into permanent storage.
377  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
378  unsigned NumGoodBases = 0;
379  for (unsigned idx = 0; idx < NumBases; ++idx) {
380    QualType NewBaseType
381      = Context.getCanonicalType(BaseSpecs[idx]->getType());
382    NewBaseType = NewBaseType.getUnqualifiedType();
383
384    if (KnownBaseTypes[NewBaseType]) {
385      // C++ [class.mi]p3:
386      //   A class shall not be specified as a direct base class of a
387      //   derived class more than once.
388      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
389           diag::err_duplicate_base_class)
390        << KnownBaseTypes[NewBaseType]->getType()
391        << BaseSpecs[idx]->getSourceRange();
392
393      // Delete the duplicate base class specifier; we're going to
394      // overwrite its pointer later.
395      delete BaseSpecs[idx];
396    } else {
397      // Okay, add this new base class.
398      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
399      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
400    }
401  }
402
403  // Attach the remaining base class specifiers to the derived class.
404  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
405  Decl->setBases(BaseSpecs, NumGoodBases);
406
407  // Delete the remaining (good) base class specifiers, since their
408  // data has been copied into the CXXRecordDecl.
409  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
410    delete BaseSpecs[idx];
411}
412
413//===----------------------------------------------------------------------===//
414// C++ class member Handling
415//===----------------------------------------------------------------------===//
416
417/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
418/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
419/// bitfield width if there is one and 'InitExpr' specifies the initializer if
420/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
421/// declarators on it.
422///
423/// FIXME: The note below is out-of-date.
424/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
425/// an instance field is declared, a new CXXFieldDecl is created but the method
426/// does *not* return it; it returns LastInGroup instead. The other C++ members
427/// (which are all ScopedDecls) are returned after appending them to
428/// LastInGroup.
429Sema::DeclTy *
430Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
431                               ExprTy *BW, ExprTy *InitExpr,
432                               DeclTy *LastInGroup) {
433  const DeclSpec &DS = D.getDeclSpec();
434  DeclarationName Name = GetNameForDeclarator(D);
435  Expr *BitWidth = static_cast<Expr*>(BW);
436  Expr *Init = static_cast<Expr*>(InitExpr);
437  SourceLocation Loc = D.getIdentifierLoc();
438
439  bool isFunc = D.isFunctionDeclarator();
440
441  // C++ 9.2p6: A member shall not be declared to have automatic storage
442  // duration (auto, register) or with the extern storage-class-specifier.
443  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
444  // data members and cannot be applied to names declared const or static,
445  // and cannot be applied to reference members.
446  switch (DS.getStorageClassSpec()) {
447    case DeclSpec::SCS_unspecified:
448    case DeclSpec::SCS_typedef:
449    case DeclSpec::SCS_static:
450      // FALL THROUGH.
451      break;
452    case DeclSpec::SCS_mutable:
453      if (isFunc) {
454        if (DS.getStorageClassSpecLoc().isValid())
455          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
456        else
457          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
458
459        // FIXME: It would be nicer if the keyword was ignored only for this
460        // declarator. Otherwise we could get follow-up errors.
461        D.getMutableDeclSpec().ClearStorageClassSpecs();
462      } else {
463        QualType T = GetTypeForDeclarator(D, S);
464        diag::kind err = static_cast<diag::kind>(0);
465        if (T->isReferenceType())
466          err = diag::err_mutable_reference;
467        else if (T.isConstQualified())
468          err = diag::err_mutable_const;
469        if (err != 0) {
470          if (DS.getStorageClassSpecLoc().isValid())
471            Diag(DS.getStorageClassSpecLoc(), err);
472          else
473            Diag(DS.getThreadSpecLoc(), err);
474          // FIXME: It would be nicer if the keyword was ignored only for this
475          // declarator. Otherwise we could get follow-up errors.
476          D.getMutableDeclSpec().ClearStorageClassSpecs();
477        }
478      }
479      break;
480    default:
481      if (DS.getStorageClassSpecLoc().isValid())
482        Diag(DS.getStorageClassSpecLoc(),
483             diag::err_storageclass_invalid_for_member);
484      else
485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
486      D.getMutableDeclSpec().ClearStorageClassSpecs();
487  }
488
489  if (!isFunc &&
490      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
491      D.getNumTypeObjects() == 0) {
492    // Check also for this case:
493    //
494    // typedef int f();
495    // f a;
496    //
497    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
498    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
499  }
500
501  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
502                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
503                      !isFunc);
504
505  Decl *Member;
506  bool InvalidDecl = false;
507
508  if (isInstField)
509    Member = static_cast<Decl*>(ActOnField(S, cast<CXXRecordDecl>(CurContext),
510                                           Loc, D, BitWidth));
511  else
512    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
513
514  if (!Member) return LastInGroup;
515
516  assert((Name || isInstField) && "No identifier for non-field ?");
517
518  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
519  // specific methods. Use a wrapper class that can be used with all C++ class
520  // member decls.
521  CXXClassMemberWrapper(Member).setAccess(AS);
522
523  // C++ [dcl.init.aggr]p1:
524  //   An aggregate is an array or a class (clause 9) with [...] no
525  //   private or protected non-static data members (clause 11).
526  // A POD must be an aggregate.
527  if (isInstField && (AS == AS_private || AS == AS_protected)) {
528    CXXRecordDecl *Record = cast<CXXRecordDecl>(CurContext);
529    Record->setAggregate(false);
530    Record->setPOD(false);
531  }
532
533  if (DS.isVirtualSpecified()) {
534    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
535      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
536      InvalidDecl = true;
537    } else {
538      cast<CXXMethodDecl>(Member)->setVirtual();
539      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
540      CurClass->setAggregate(false);
541      CurClass->setPOD(false);
542      CurClass->setPolymorphic(true);
543    }
544  }
545
546  // FIXME: The above definition of virtual is not sufficient. A function is
547  // also virtual if it overrides an already virtual function. This is important
548  // to do here because it decides the validity of a pure specifier.
549
550  if (BitWidth) {
551    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
552    // constant-expression be a value equal to zero.
553    // FIXME: Check this.
554
555    if (D.isFunctionDeclarator()) {
556      // FIXME: Emit diagnostic about only constructors taking base initializers
557      // or something similar, when constructor support is in place.
558      Diag(Loc, diag::err_not_bitfield_type)
559        << Name << BitWidth->getSourceRange();
560      InvalidDecl = true;
561
562    } else if (isInstField) {
563      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
564      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
565        Diag(Loc, diag::err_not_integral_type_bitfield)
566          << Name << BitWidth->getSourceRange();
567        InvalidDecl = true;
568      }
569
570    } else if (isa<FunctionDecl>(Member)) {
571      // A function typedef ("typedef int f(); f a;").
572      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
573      Diag(Loc, diag::err_not_integral_type_bitfield)
574        << Name << BitWidth->getSourceRange();
575      InvalidDecl = true;
576
577    } else if (isa<TypedefDecl>(Member)) {
578      // "cannot declare 'A' to be a bit-field type"
579      Diag(Loc, diag::err_not_bitfield_type)
580        << Name << BitWidth->getSourceRange();
581      InvalidDecl = true;
582
583    } else {
584      assert(isa<CXXClassVarDecl>(Member) &&
585             "Didn't we cover all member kinds?");
586      // C++ 9.6p3: A bit-field shall not be a static member.
587      // "static member 'A' cannot be a bit-field"
588      Diag(Loc, diag::err_static_not_bitfield)
589        << Name << BitWidth->getSourceRange();
590      InvalidDecl = true;
591    }
592  }
593
594  if (Init) {
595    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
596    // if it declares a static member of const integral or const enumeration
597    // type.
598    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
599      // ...static member of...
600      CVD->setInit(Init);
601      // ...const integral or const enumeration type.
602      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
603          CVD->getType()->isIntegralType()) {
604        // constant-initializer
605        if (CheckForConstantInitializer(Init, CVD->getType()))
606          InvalidDecl = true;
607
608      } else {
609        // not const integral.
610        Diag(Loc, diag::err_member_initialization)
611          << Name << Init->getSourceRange();
612        InvalidDecl = true;
613      }
614
615    } else {
616      // not static member. perhaps virtual function?
617      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
618        // With declarators parsed the way they are, the parser cannot
619        // distinguish between a normal initializer and a pure-specifier.
620        // Thus this grotesque test.
621        IntegerLiteral *IL;
622        if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
623            Context.getCanonicalType(IL->getType()) == Context.IntTy) {
624          if (MD->isVirtual())
625            MD->setPure();
626          else {
627            Diag(Loc, diag::err_non_virtual_pure)
628              << Name << Init->getSourceRange();
629            InvalidDecl = true;
630          }
631        } else {
632          Diag(Loc, diag::err_member_function_initialization)
633            << Name << Init->getSourceRange();
634          InvalidDecl = true;
635        }
636      } else {
637        Diag(Loc, diag::err_member_initialization)
638          << Name << Init->getSourceRange();
639        InvalidDecl = true;
640      }
641    }
642  }
643
644  if (InvalidDecl)
645    Member->setInvalidDecl();
646
647  if (isInstField) {
648    FieldCollector->Add(cast<FieldDecl>(Member));
649    return LastInGroup;
650  }
651  return Member;
652}
653
654/// ActOnMemInitializer - Handle a C++ member initializer.
655Sema::MemInitResult
656Sema::ActOnMemInitializer(DeclTy *ConstructorD,
657                          Scope *S,
658                          IdentifierInfo *MemberOrBase,
659                          SourceLocation IdLoc,
660                          SourceLocation LParenLoc,
661                          ExprTy **Args, unsigned NumArgs,
662                          SourceLocation *CommaLocs,
663                          SourceLocation RParenLoc) {
664  CXXConstructorDecl *Constructor
665    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
666  if (!Constructor) {
667    // The user wrote a constructor initializer on a function that is
668    // not a C++ constructor. Ignore the error for now, because we may
669    // have more member initializers coming; we'll diagnose it just
670    // once in ActOnMemInitializers.
671    return true;
672  }
673
674  CXXRecordDecl *ClassDecl = Constructor->getParent();
675
676  // C++ [class.base.init]p2:
677  //   Names in a mem-initializer-id are looked up in the scope of the
678  //   constructor’s class and, if not found in that scope, are looked
679  //   up in the scope containing the constructor’s
680  //   definition. [Note: if the constructor’s class contains a member
681  //   with the same name as a direct or virtual base class of the
682  //   class, a mem-initializer-id naming the member or base class and
683  //   composed of a single identifier refers to the class member. A
684  //   mem-initializer-id for the hidden base class may be specified
685  //   using a qualified name. ]
686  // Look for a member, first.
687  FieldDecl *Member = 0;
688  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
689  if (Result.first != Result.second)
690    Member = dyn_cast<FieldDecl>(*Result.first);
691
692  // FIXME: Handle members of an anonymous union.
693
694  if (Member) {
695    // FIXME: Perform direct initialization of the member.
696    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
697  }
698
699  // It didn't name a member, so see if it names a class.
700  TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/);
701  if (!BaseTy)
702    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
703      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
704
705  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
706  if (!BaseType->isRecordType())
707    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
708      << BaseType << SourceRange(IdLoc, RParenLoc);
709
710  // C++ [class.base.init]p2:
711  //   [...] Unless the mem-initializer-id names a nonstatic data
712  //   member of the constructor’s class or a direct or virtual base
713  //   of that class, the mem-initializer is ill-formed. A
714  //   mem-initializer-list can initialize a base class using any
715  //   name that denotes that base class type.
716
717  // First, check for a direct base class.
718  const CXXBaseSpecifier *DirectBaseSpec = 0;
719  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
720       Base != ClassDecl->bases_end(); ++Base) {
721    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
722        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
723      // We found a direct base of this type. That's what we're
724      // initializing.
725      DirectBaseSpec = &*Base;
726      break;
727    }
728  }
729
730  // Check for a virtual base class.
731  // FIXME: We might be able to short-circuit this if we know in
732  // advance that there are no virtual bases.
733  const CXXBaseSpecifier *VirtualBaseSpec = 0;
734  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
735    // We haven't found a base yet; search the class hierarchy for a
736    // virtual base class.
737    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
738                    /*DetectVirtual=*/false);
739    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
740      for (BasePaths::paths_iterator Path = Paths.begin();
741           Path != Paths.end(); ++Path) {
742        if (Path->back().Base->isVirtual()) {
743          VirtualBaseSpec = Path->back().Base;
744          break;
745        }
746      }
747    }
748  }
749
750  // C++ [base.class.init]p2:
751  //   If a mem-initializer-id is ambiguous because it designates both
752  //   a direct non-virtual base class and an inherited virtual base
753  //   class, the mem-initializer is ill-formed.
754  if (DirectBaseSpec && VirtualBaseSpec)
755    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
756      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
757
758  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
759}
760
761
762void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
763                                             DeclTy *TagDecl,
764                                             SourceLocation LBrac,
765                                             SourceLocation RBrac) {
766  ActOnFields(S, RLoc, TagDecl,
767              (DeclTy**)FieldCollector->getCurFields(),
768              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
769  AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
770}
771
772/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
773/// special functions, such as the default constructor, copy
774/// constructor, or destructor, to the given C++ class (C++
775/// [special]p1).  This routine can only be executed just before the
776/// definition of the class is complete.
777void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
778  QualType ClassType = Context.getTypeDeclType(ClassDecl);
779  ClassType = Context.getCanonicalType(ClassType);
780
781  if (!ClassDecl->hasUserDeclaredConstructor()) {
782    // C++ [class.ctor]p5:
783    //   A default constructor for a class X is a constructor of class X
784    //   that can be called without an argument. If there is no
785    //   user-declared constructor for class X, a default constructor is
786    //   implicitly declared. An implicitly-declared default constructor
787    //   is an inline public member of its class.
788    DeclarationName Name
789      = Context.DeclarationNames.getCXXConstructorName(ClassType);
790    CXXConstructorDecl *DefaultCon =
791      CXXConstructorDecl::Create(Context, ClassDecl,
792                                 ClassDecl->getLocation(), Name,
793                                 Context.getFunctionType(Context.VoidTy,
794                                                         0, 0, false, 0),
795                                 /*isExplicit=*/false,
796                                 /*isInline=*/true,
797                                 /*isImplicitlyDeclared=*/true);
798    DefaultCon->setAccess(AS_public);
799    DefaultCon->setImplicit();
800    ClassDecl->addDecl(DefaultCon);
801
802    // Notify the class that we've added a constructor.
803    ClassDecl->addedConstructor(Context, DefaultCon);
804  }
805
806  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
807    // C++ [class.copy]p4:
808    //   If the class definition does not explicitly declare a copy
809    //   constructor, one is declared implicitly.
810
811    // C++ [class.copy]p5:
812    //   The implicitly-declared copy constructor for a class X will
813    //   have the form
814    //
815    //       X::X(const X&)
816    //
817    //   if
818    bool HasConstCopyConstructor = true;
819
820    //     -- each direct or virtual base class B of X has a copy
821    //        constructor whose first parameter is of type const B& or
822    //        const volatile B&, and
823    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
824         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
825      const CXXRecordDecl *BaseClassDecl
826        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
827      HasConstCopyConstructor
828        = BaseClassDecl->hasConstCopyConstructor(Context);
829    }
830
831    //     -- for all the nonstatic data members of X that are of a
832    //        class type M (or array thereof), each such class type
833    //        has a copy constructor whose first parameter is of type
834    //        const M& or const volatile M&.
835    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
836         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
837      QualType FieldType = (*Field)->getType();
838      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
839        FieldType = Array->getElementType();
840      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
841        const CXXRecordDecl *FieldClassDecl
842          = cast<CXXRecordDecl>(FieldClassType->getDecl());
843        HasConstCopyConstructor
844          = FieldClassDecl->hasConstCopyConstructor(Context);
845      }
846    }
847
848    //   Otherwise, the implicitly declared copy constructor will have
849    //   the form
850    //
851    //       X::X(X&)
852    QualType ArgType = ClassType;
853    if (HasConstCopyConstructor)
854      ArgType = ArgType.withConst();
855    ArgType = Context.getReferenceType(ArgType);
856
857    //   An implicitly-declared copy constructor is an inline public
858    //   member of its class.
859    DeclarationName Name
860      = Context.DeclarationNames.getCXXConstructorName(ClassType);
861    CXXConstructorDecl *CopyConstructor
862      = CXXConstructorDecl::Create(Context, ClassDecl,
863                                   ClassDecl->getLocation(), Name,
864                                   Context.getFunctionType(Context.VoidTy,
865                                                           &ArgType, 1,
866                                                           false, 0),
867                                   /*isExplicit=*/false,
868                                   /*isInline=*/true,
869                                   /*isImplicitlyDeclared=*/true);
870    CopyConstructor->setAccess(AS_public);
871    CopyConstructor->setImplicit();
872
873    // Add the parameter to the constructor.
874    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
875                                                 ClassDecl->getLocation(),
876                                                 /*IdentifierInfo=*/0,
877                                                 ArgType, VarDecl::None, 0, 0);
878    CopyConstructor->setParams(&FromParam, 1);
879
880    ClassDecl->addedConstructor(Context, CopyConstructor);
881    ClassDecl->addDecl(CopyConstructor);
882  }
883
884  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
885    // Note: The following rules are largely analoguous to the copy
886    // constructor rules. Note that virtual bases are not taken into account
887    // for determining the argument type of the operator. Note also that
888    // operators taking an object instead of a reference are allowed.
889    //
890    // C++ [class.copy]p10:
891    //   If the class definition does not explicitly declare a copy
892    //   assignment operator, one is declared implicitly.
893    //   The implicitly-defined copy assignment operator for a class X
894    //   will have the form
895    //
896    //       X& X::operator=(const X&)
897    //
898    //   if
899    bool HasConstCopyAssignment = true;
900
901    //       -- each direct base class B of X has a copy assignment operator
902    //          whose parameter is of type const B&, const volatile B& or B,
903    //          and
904    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
905         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
906      const CXXRecordDecl *BaseClassDecl
907        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
908      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
909    }
910
911    //       -- for all the nonstatic data members of X that are of a class
912    //          type M (or array thereof), each such class type has a copy
913    //          assignment operator whose parameter is of type const M&,
914    //          const volatile M& or M.
915    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
916         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
917      QualType FieldType = (*Field)->getType();
918      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
919        FieldType = Array->getElementType();
920      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
921        const CXXRecordDecl *FieldClassDecl
922          = cast<CXXRecordDecl>(FieldClassType->getDecl());
923        HasConstCopyAssignment
924          = FieldClassDecl->hasConstCopyAssignment(Context);
925      }
926    }
927
928    //   Otherwise, the implicitly declared copy assignment operator will
929    //   have the form
930    //
931    //       X& X::operator=(X&)
932    QualType ArgType = ClassType;
933    QualType RetType = Context.getReferenceType(ArgType);
934    if (HasConstCopyAssignment)
935      ArgType = ArgType.withConst();
936    ArgType = Context.getReferenceType(ArgType);
937
938    //   An implicitly-declared copy assignment operator is an inline public
939    //   member of its class.
940    DeclarationName Name =
941      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
942    CXXMethodDecl *CopyAssignment =
943      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
944                            Context.getFunctionType(RetType, &ArgType, 1,
945                                                    false, 0),
946                            /*isStatic=*/false, /*isInline=*/true, 0);
947    CopyAssignment->setAccess(AS_public);
948    CopyAssignment->setImplicit();
949
950    // Add the parameter to the operator.
951    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
952                                                 ClassDecl->getLocation(),
953                                                 /*IdentifierInfo=*/0,
954                                                 ArgType, VarDecl::None, 0, 0);
955    CopyAssignment->setParams(&FromParam, 1);
956
957    // Don't call addedAssignmentOperator. There is no way to distinguish an
958    // implicit from an explicit assignment operator.
959    ClassDecl->addDecl(CopyAssignment);
960  }
961
962  if (!ClassDecl->hasUserDeclaredDestructor()) {
963    // C++ [class.dtor]p2:
964    //   If a class has no user-declared destructor, a destructor is
965    //   declared implicitly. An implicitly-declared destructor is an
966    //   inline public member of its class.
967    DeclarationName Name
968      = Context.DeclarationNames.getCXXDestructorName(ClassType);
969    CXXDestructorDecl *Destructor
970      = CXXDestructorDecl::Create(Context, ClassDecl,
971                                  ClassDecl->getLocation(), Name,
972                                  Context.getFunctionType(Context.VoidTy,
973                                                          0, 0, false, 0),
974                                  /*isInline=*/true,
975                                  /*isImplicitlyDeclared=*/true);
976    Destructor->setAccess(AS_public);
977    Destructor->setImplicit();
978    ClassDecl->addDecl(Destructor);
979  }
980}
981
982/// ActOnStartDelayedCXXMethodDeclaration - We have completed
983/// parsing a top-level (non-nested) C++ class, and we are now
984/// parsing those parts of the given Method declaration that could
985/// not be parsed earlier (C++ [class.mem]p2), such as default
986/// arguments. This action should enter the scope of the given
987/// Method declaration as if we had just parsed the qualified method
988/// name. However, it should not bring the parameters into scope;
989/// that will be performed by ActOnDelayedCXXMethodParameter.
990void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
991  CXXScopeSpec SS;
992  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
993  ActOnCXXEnterDeclaratorScope(S, SS);
994}
995
996/// ActOnDelayedCXXMethodParameter - We've already started a delayed
997/// C++ method declaration. We're (re-)introducing the given
998/// function parameter into scope for use in parsing later parts of
999/// the method declaration. For example, we could see an
1000/// ActOnParamDefaultArgument event for this parameter.
1001void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1002  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1003
1004  // If this parameter has an unparsed default argument, clear it out
1005  // to make way for the parsed default argument.
1006  if (Param->hasUnparsedDefaultArg())
1007    Param->setDefaultArg(0);
1008
1009  S->AddDecl(Param);
1010  if (Param->getDeclName())
1011    IdResolver.AddDecl(Param);
1012}
1013
1014/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1015/// processing the delayed method declaration for Method. The method
1016/// declaration is now considered finished. There may be a separate
1017/// ActOnStartOfFunctionDef action later (not necessarily
1018/// immediately!) for this method, if it was also defined inside the
1019/// class body.
1020void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1021  FunctionDecl *Method = (FunctionDecl*)MethodD;
1022  CXXScopeSpec SS;
1023  SS.setScopeRep(Method->getDeclContext());
1024  ActOnCXXExitDeclaratorScope(S, SS);
1025
1026  // Now that we have our default arguments, check the constructor
1027  // again. It could produce additional diagnostics or affect whether
1028  // the class has implicitly-declared destructors, among other
1029  // things.
1030  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1031    if (CheckConstructor(Constructor))
1032      Constructor->setInvalidDecl();
1033  }
1034
1035  // Check the default arguments, which we may have added.
1036  if (!Method->isInvalidDecl())
1037    CheckCXXDefaultArguments(Method);
1038}
1039
1040/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1041/// the well-formedness of the constructor declarator @p D with type @p
1042/// R. If there are any errors in the declarator, this routine will
1043/// emit diagnostics and return true. Otherwise, it will return
1044/// false. Either way, the type @p R will be updated to reflect a
1045/// well-formed type for the constructor.
1046bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1047                                      FunctionDecl::StorageClass& SC) {
1048  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1049  bool isInvalid = false;
1050
1051  // C++ [class.ctor]p3:
1052  //   A constructor shall not be virtual (10.3) or static (9.4). A
1053  //   constructor can be invoked for a const, volatile or const
1054  //   volatile object. A constructor shall not be declared const,
1055  //   volatile, or const volatile (9.3.2).
1056  if (isVirtual) {
1057    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1058      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1059      << SourceRange(D.getIdentifierLoc());
1060    isInvalid = true;
1061  }
1062  if (SC == FunctionDecl::Static) {
1063    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1064      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1065      << SourceRange(D.getIdentifierLoc());
1066    isInvalid = true;
1067    SC = FunctionDecl::None;
1068  }
1069  if (D.getDeclSpec().hasTypeSpecifier()) {
1070    // Constructors don't have return types, but the parser will
1071    // happily parse something like:
1072    //
1073    //   class X {
1074    //     float X(float);
1075    //   };
1076    //
1077    // The return type will be eliminated later.
1078    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1079      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1080      << SourceRange(D.getIdentifierLoc());
1081  }
1082  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
1083    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1084    if (FTI.TypeQuals & QualType::Const)
1085      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1086        << "const" << SourceRange(D.getIdentifierLoc());
1087    if (FTI.TypeQuals & QualType::Volatile)
1088      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1089        << "volatile" << SourceRange(D.getIdentifierLoc());
1090    if (FTI.TypeQuals & QualType::Restrict)
1091      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1092        << "restrict" << SourceRange(D.getIdentifierLoc());
1093  }
1094
1095  // Rebuild the function type "R" without any type qualifiers (in
1096  // case any of the errors above fired) and with "void" as the
1097  // return type, since constructors don't have return types. We
1098  // *always* have to do this, because GetTypeForDeclarator will
1099  // put in a result type of "int" when none was specified.
1100  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
1101  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1102                              Proto->getNumArgs(),
1103                              Proto->isVariadic(),
1104                              0);
1105
1106  return isInvalid;
1107}
1108
1109/// CheckConstructor - Checks a fully-formed constructor for
1110/// well-formedness, issuing any diagnostics required. Returns true if
1111/// the constructor declarator is invalid.
1112bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1113  if (Constructor->isInvalidDecl())
1114    return true;
1115
1116  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1117  bool Invalid = false;
1118
1119  // C++ [class.copy]p3:
1120  //   A declaration of a constructor for a class X is ill-formed if
1121  //   its first parameter is of type (optionally cv-qualified) X and
1122  //   either there are no other parameters or else all other
1123  //   parameters have default arguments.
1124  if ((Constructor->getNumParams() == 1) ||
1125      (Constructor->getNumParams() > 1 &&
1126       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1127    QualType ParamType = Constructor->getParamDecl(0)->getType();
1128    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1129    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1130      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1131        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1132      Invalid = true;
1133    }
1134  }
1135
1136  // Notify the class that we've added a constructor.
1137  ClassDecl->addedConstructor(Context, Constructor);
1138
1139  return Invalid;
1140}
1141
1142/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1143/// the well-formednes of the destructor declarator @p D with type @p
1144/// R. If there are any errors in the declarator, this routine will
1145/// emit diagnostics and return true. Otherwise, it will return
1146/// false. Either way, the type @p R will be updated to reflect a
1147/// well-formed type for the destructor.
1148bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1149                                     FunctionDecl::StorageClass& SC) {
1150  bool isInvalid = false;
1151
1152  // C++ [class.dtor]p1:
1153  //   [...] A typedef-name that names a class is a class-name
1154  //   (7.1.3); however, a typedef-name that names a class shall not
1155  //   be used as the identifier in the declarator for a destructor
1156  //   declaration.
1157  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
1158  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
1159    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1160      << TypedefD->getDeclName();
1161    isInvalid = true;
1162  }
1163
1164  // C++ [class.dtor]p2:
1165  //   A destructor is used to destroy objects of its class type. A
1166  //   destructor takes no parameters, and no return type can be
1167  //   specified for it (not even void). The address of a destructor
1168  //   shall not be taken. A destructor shall not be static. A
1169  //   destructor can be invoked for a const, volatile or const
1170  //   volatile object. A destructor shall not be declared const,
1171  //   volatile or const volatile (9.3.2).
1172  if (SC == FunctionDecl::Static) {
1173    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1174      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1175      << SourceRange(D.getIdentifierLoc());
1176    isInvalid = true;
1177    SC = FunctionDecl::None;
1178  }
1179  if (D.getDeclSpec().hasTypeSpecifier()) {
1180    // Destructors don't have return types, but the parser will
1181    // happily parse something like:
1182    //
1183    //   class X {
1184    //     float ~X();
1185    //   };
1186    //
1187    // The return type will be eliminated later.
1188    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1189      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1190      << SourceRange(D.getIdentifierLoc());
1191  }
1192  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
1193    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1194    if (FTI.TypeQuals & QualType::Const)
1195      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1196        << "const" << SourceRange(D.getIdentifierLoc());
1197    if (FTI.TypeQuals & QualType::Volatile)
1198      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1199        << "volatile" << SourceRange(D.getIdentifierLoc());
1200    if (FTI.TypeQuals & QualType::Restrict)
1201      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1202        << "restrict" << SourceRange(D.getIdentifierLoc());
1203  }
1204
1205  // Make sure we don't have any parameters.
1206  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1207    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1208
1209    // Delete the parameters.
1210    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1211    if (FTI.NumArgs) {
1212      delete [] FTI.ArgInfo;
1213      FTI.NumArgs = 0;
1214      FTI.ArgInfo = 0;
1215    }
1216  }
1217
1218  // Make sure the destructor isn't variadic.
1219  if (R->getAsFunctionTypeProto()->isVariadic())
1220    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1221
1222  // Rebuild the function type "R" without any type qualifiers or
1223  // parameters (in case any of the errors above fired) and with
1224  // "void" as the return type, since destructors don't have return
1225  // types. We *always* have to do this, because GetTypeForDeclarator
1226  // will put in a result type of "int" when none was specified.
1227  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1228
1229  return isInvalid;
1230}
1231
1232/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1233/// well-formednes of the conversion function declarator @p D with
1234/// type @p R. If there are any errors in the declarator, this routine
1235/// will emit diagnostics and return true. Otherwise, it will return
1236/// false. Either way, the type @p R will be updated to reflect a
1237/// well-formed type for the conversion operator.
1238bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1239                                     FunctionDecl::StorageClass& SC) {
1240  bool isInvalid = false;
1241
1242  // C++ [class.conv.fct]p1:
1243  //   Neither parameter types nor return type can be specified. The
1244  //   type of a conversion function (8.3.5) is “function taking no
1245  //   parameter returning conversion-type-id.”
1246  if (SC == FunctionDecl::Static) {
1247    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1248      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1249      << SourceRange(D.getIdentifierLoc());
1250    isInvalid = true;
1251    SC = FunctionDecl::None;
1252  }
1253  if (D.getDeclSpec().hasTypeSpecifier()) {
1254    // Conversion functions don't have return types, but the parser will
1255    // happily parse something like:
1256    //
1257    //   class X {
1258    //     float operator bool();
1259    //   };
1260    //
1261    // The return type will be changed later anyway.
1262    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1263      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1264      << SourceRange(D.getIdentifierLoc());
1265  }
1266
1267  // Make sure we don't have any parameters.
1268  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1269    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1270
1271    // Delete the parameters.
1272    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1273    if (FTI.NumArgs) {
1274      delete [] FTI.ArgInfo;
1275      FTI.NumArgs = 0;
1276      FTI.ArgInfo = 0;
1277    }
1278  }
1279
1280  // Make sure the conversion function isn't variadic.
1281  if (R->getAsFunctionTypeProto()->isVariadic())
1282    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1283
1284  // C++ [class.conv.fct]p4:
1285  //   The conversion-type-id shall not represent a function type nor
1286  //   an array type.
1287  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1288  if (ConvType->isArrayType()) {
1289    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1290    ConvType = Context.getPointerType(ConvType);
1291  } else if (ConvType->isFunctionType()) {
1292    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1293    ConvType = Context.getPointerType(ConvType);
1294  }
1295
1296  // Rebuild the function type "R" without any parameters (in case any
1297  // of the errors above fired) and with the conversion type as the
1298  // return type.
1299  R = Context.getFunctionType(ConvType, 0, 0, false,
1300                              R->getAsFunctionTypeProto()->getTypeQuals());
1301
1302  return isInvalid;
1303}
1304
1305/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1306/// the declaration of the given C++ conversion function. This routine
1307/// is responsible for recording the conversion function in the C++
1308/// class, if possible.
1309Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1310  assert(Conversion && "Expected to receive a conversion function declaration");
1311
1312  // Set the lexical context of this conversion function
1313  Conversion->setLexicalDeclContext(CurContext);
1314
1315  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1316
1317  // Make sure we aren't redeclaring the conversion function.
1318  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1319
1320  // C++ [class.conv.fct]p1:
1321  //   [...] A conversion function is never used to convert a
1322  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1323  //   same object type (or a reference to it), to a (possibly
1324  //   cv-qualified) base class of that type (or a reference to it),
1325  //   or to (possibly cv-qualified) void.
1326  // FIXME: Suppress this warning if the conversion function ends up
1327  // being a virtual function that overrides a virtual function in a
1328  // base class.
1329  QualType ClassType
1330    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1331  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1332    ConvType = ConvTypeRef->getPointeeType();
1333  if (ConvType->isRecordType()) {
1334    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1335    if (ConvType == ClassType)
1336      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1337        << ClassType;
1338    else if (IsDerivedFrom(ClassType, ConvType))
1339      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1340        <<  ClassType << ConvType;
1341  } else if (ConvType->isVoidType()) {
1342    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1343      << ClassType << ConvType;
1344  }
1345
1346  if (Conversion->getPreviousDeclaration()) {
1347    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1348    for (OverloadedFunctionDecl::function_iterator
1349           Conv = Conversions->function_begin(),
1350           ConvEnd = Conversions->function_end();
1351         Conv != ConvEnd; ++Conv) {
1352      if (*Conv == Conversion->getPreviousDeclaration()) {
1353        *Conv = Conversion;
1354        return (DeclTy *)Conversion;
1355      }
1356    }
1357    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1358  } else
1359    ClassDecl->addConversionFunction(Context, Conversion);
1360
1361  return (DeclTy *)Conversion;
1362}
1363
1364//===----------------------------------------------------------------------===//
1365// Namespace Handling
1366//===----------------------------------------------------------------------===//
1367
1368/// ActOnStartNamespaceDef - This is called at the start of a namespace
1369/// definition.
1370Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1371                                           SourceLocation IdentLoc,
1372                                           IdentifierInfo *II,
1373                                           SourceLocation LBrace) {
1374  NamespaceDecl *Namespc =
1375      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1376  Namespc->setLBracLoc(LBrace);
1377
1378  Scope *DeclRegionScope = NamespcScope->getParent();
1379
1380  if (II) {
1381    // C++ [namespace.def]p2:
1382    // The identifier in an original-namespace-definition shall not have been
1383    // previously defined in the declarative region in which the
1384    // original-namespace-definition appears. The identifier in an
1385    // original-namespace-definition is the name of the namespace. Subsequently
1386    // in that declarative region, it is treated as an original-namespace-name.
1387
1388    Decl *PrevDecl =
1389      LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, 0,
1390                /*enableLazyBuiltinCreation=*/false,
1391                /*LookupInParent=*/false);
1392
1393    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1394      // This is an extended namespace definition.
1395      // Attach this namespace decl to the chain of extended namespace
1396      // definitions.
1397      OrigNS->setNextNamespace(Namespc);
1398      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1399
1400      // Remove the previous declaration from the scope.
1401      if (DeclRegionScope->isDeclScope(OrigNS)) {
1402        IdResolver.RemoveDecl(OrigNS);
1403        DeclRegionScope->RemoveDecl(OrigNS);
1404      }
1405    } else if (PrevDecl) {
1406      // This is an invalid name redefinition.
1407      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1408       << Namespc->getDeclName();
1409      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1410      Namespc->setInvalidDecl();
1411      // Continue on to push Namespc as current DeclContext and return it.
1412    }
1413
1414    PushOnScopeChains(Namespc, DeclRegionScope);
1415  } else {
1416    // FIXME: Handle anonymous namespaces
1417  }
1418
1419  // Although we could have an invalid decl (i.e. the namespace name is a
1420  // redefinition), push it as current DeclContext and try to continue parsing.
1421  // FIXME: We should be able to push Namespc here, so that the
1422  // each DeclContext for the namespace has the declarations
1423  // that showed up in that particular namespace definition.
1424  PushDeclContext(NamespcScope, Namespc);
1425  return Namespc;
1426}
1427
1428/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1429/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1430void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1431  Decl *Dcl = static_cast<Decl *>(D);
1432  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1433  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1434  Namespc->setRBracLoc(RBrace);
1435  PopDeclContext();
1436}
1437
1438Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1439                                        SourceLocation UsingLoc,
1440                                        SourceLocation NamespcLoc,
1441                                        const CXXScopeSpec &SS,
1442                                        SourceLocation IdentLoc,
1443                                        IdentifierInfo *NamespcName,
1444                                        AttributeList *AttrList) {
1445  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1446  assert(NamespcName && "Invalid NamespcName.");
1447  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1448
1449  // FIXME: This still requires lot more checks, and AST support.
1450  // Lookup namespace name.
1451  DeclContext *DC = static_cast<DeclContext*>(SS.getScopeRep());
1452
1453  if (Decl *NS = LookupNamespaceName(NamespcName, S, DC)) {
1454    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1455  } else {
1456    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1457  }
1458
1459  // FIXME: We ignore AttrList for now, and delete it to avoid leak.
1460  delete AttrList;
1461  return 0;
1462}
1463
1464/// AddCXXDirectInitializerToDecl - This action is called immediately after
1465/// ActOnDeclarator, when a C++ direct initializer is present.
1466/// e.g: "int x(1);"
1467void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1468                                         ExprTy **ExprTys, unsigned NumExprs,
1469                                         SourceLocation *CommaLocs,
1470                                         SourceLocation RParenLoc) {
1471  assert(NumExprs != 0 && ExprTys && "missing expressions");
1472  Decl *RealDecl = static_cast<Decl *>(Dcl);
1473
1474  // If there is no declaration, there was an error parsing it.  Just ignore
1475  // the initializer.
1476  if (RealDecl == 0) {
1477    for (unsigned i = 0; i != NumExprs; ++i)
1478      delete static_cast<Expr *>(ExprTys[i]);
1479    return;
1480  }
1481
1482  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1483  if (!VDecl) {
1484    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1485    RealDecl->setInvalidDecl();
1486    return;
1487  }
1488
1489  // We will treat direct-initialization as a copy-initialization:
1490  //    int x(1);  -as-> int x = 1;
1491  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1492  //
1493  // Clients that want to distinguish between the two forms, can check for
1494  // direct initializer using VarDecl::hasCXXDirectInitializer().
1495  // A major benefit is that clients that don't particularly care about which
1496  // exactly form was it (like the CodeGen) can handle both cases without
1497  // special case code.
1498
1499  // C++ 8.5p11:
1500  // The form of initialization (using parentheses or '=') is generally
1501  // insignificant, but does matter when the entity being initialized has a
1502  // class type.
1503  QualType DeclInitType = VDecl->getType();
1504  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1505    DeclInitType = Array->getElementType();
1506
1507  if (VDecl->getType()->isRecordType()) {
1508    CXXConstructorDecl *Constructor
1509      = PerformInitializationByConstructor(DeclInitType,
1510                                           (Expr **)ExprTys, NumExprs,
1511                                           VDecl->getLocation(),
1512                                           SourceRange(VDecl->getLocation(),
1513                                                       RParenLoc),
1514                                           VDecl->getDeclName(),
1515                                           IK_Direct);
1516    if (!Constructor) {
1517      RealDecl->setInvalidDecl();
1518    }
1519
1520    // Let clients know that initialization was done with a direct
1521    // initializer.
1522    VDecl->setCXXDirectInitializer(true);
1523
1524    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1525    // the initializer.
1526    return;
1527  }
1528
1529  if (NumExprs > 1) {
1530    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1531      << SourceRange(VDecl->getLocation(), RParenLoc);
1532    RealDecl->setInvalidDecl();
1533    return;
1534  }
1535
1536  // Let clients know that initialization was done with a direct initializer.
1537  VDecl->setCXXDirectInitializer(true);
1538
1539  assert(NumExprs == 1 && "Expected 1 expression");
1540  // Set the init expression, handles conversions.
1541  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]));
1542}
1543
1544/// PerformInitializationByConstructor - Perform initialization by
1545/// constructor (C++ [dcl.init]p14), which may occur as part of
1546/// direct-initialization or copy-initialization. We are initializing
1547/// an object of type @p ClassType with the given arguments @p
1548/// Args. @p Loc is the location in the source code where the
1549/// initializer occurs (e.g., a declaration, member initializer,
1550/// functional cast, etc.) while @p Range covers the whole
1551/// initialization. @p InitEntity is the entity being initialized,
1552/// which may by the name of a declaration or a type. @p Kind is the
1553/// kind of initialization we're performing, which affects whether
1554/// explicit constructors will be considered. When successful, returns
1555/// the constructor that will be used to perform the initialization;
1556/// when the initialization fails, emits a diagnostic and returns
1557/// null.
1558CXXConstructorDecl *
1559Sema::PerformInitializationByConstructor(QualType ClassType,
1560                                         Expr **Args, unsigned NumArgs,
1561                                         SourceLocation Loc, SourceRange Range,
1562                                         DeclarationName InitEntity,
1563                                         InitializationKind Kind) {
1564  const RecordType *ClassRec = ClassType->getAsRecordType();
1565  assert(ClassRec && "Can only initialize a class type here");
1566
1567  // C++ [dcl.init]p14:
1568  //
1569  //   If the initialization is direct-initialization, or if it is
1570  //   copy-initialization where the cv-unqualified version of the
1571  //   source type is the same class as, or a derived class of, the
1572  //   class of the destination, constructors are considered. The
1573  //   applicable constructors are enumerated (13.3.1.3), and the
1574  //   best one is chosen through overload resolution (13.3). The
1575  //   constructor so selected is called to initialize the object,
1576  //   with the initializer expression(s) as its argument(s). If no
1577  //   constructor applies, or the overload resolution is ambiguous,
1578  //   the initialization is ill-formed.
1579  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1580  OverloadCandidateSet CandidateSet;
1581
1582  // Add constructors to the overload set.
1583  DeclarationName ConstructorName
1584    = Context.DeclarationNames.getCXXConstructorName(
1585                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1586  DeclContext::lookup_const_iterator Con, ConEnd;
1587  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1588       Con != ConEnd; ++Con) {
1589    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1590    if ((Kind == IK_Direct) ||
1591        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1592        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1593      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1594  }
1595
1596  // FIXME: When we decide not to synthesize the implicitly-declared
1597  // constructors, we'll need to make them appear here.
1598
1599  OverloadCandidateSet::iterator Best;
1600  switch (BestViableFunction(CandidateSet, Best)) {
1601  case OR_Success:
1602    // We found a constructor. Return it.
1603    return cast<CXXConstructorDecl>(Best->Function);
1604
1605  case OR_No_Viable_Function:
1606    Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1607      << InitEntity << (unsigned)CandidateSet.size() << Range;
1608    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1609    return 0;
1610
1611  case OR_Ambiguous:
1612    Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1613    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1614    return 0;
1615  }
1616
1617  return 0;
1618}
1619
1620/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1621/// determine whether they are reference-related,
1622/// reference-compatible, reference-compatible with added
1623/// qualification, or incompatible, for use in C++ initialization by
1624/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1625/// type, and the first type (T1) is the pointee type of the reference
1626/// type being initialized.
1627Sema::ReferenceCompareResult
1628Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1629                                   bool& DerivedToBase) {
1630  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1631  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1632
1633  T1 = Context.getCanonicalType(T1);
1634  T2 = Context.getCanonicalType(T2);
1635  QualType UnqualT1 = T1.getUnqualifiedType();
1636  QualType UnqualT2 = T2.getUnqualifiedType();
1637
1638  // C++ [dcl.init.ref]p4:
1639  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1640  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1641  //   T1 is a base class of T2.
1642  if (UnqualT1 == UnqualT2)
1643    DerivedToBase = false;
1644  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1645    DerivedToBase = true;
1646  else
1647    return Ref_Incompatible;
1648
1649  // At this point, we know that T1 and T2 are reference-related (at
1650  // least).
1651
1652  // C++ [dcl.init.ref]p4:
1653  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1654  //   reference-related to T2 and cv1 is the same cv-qualification
1655  //   as, or greater cv-qualification than, cv2. For purposes of
1656  //   overload resolution, cases for which cv1 is greater
1657  //   cv-qualification than cv2 are identified as
1658  //   reference-compatible with added qualification (see 13.3.3.2).
1659  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1660    return Ref_Compatible;
1661  else if (T1.isMoreQualifiedThan(T2))
1662    return Ref_Compatible_With_Added_Qualification;
1663  else
1664    return Ref_Related;
1665}
1666
1667/// CheckReferenceInit - Check the initialization of a reference
1668/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1669/// the initializer (either a simple initializer or an initializer
1670/// list), and DeclType is the type of the declaration. When ICS is
1671/// non-null, this routine will compute the implicit conversion
1672/// sequence according to C++ [over.ics.ref] and will not produce any
1673/// diagnostics; when ICS is null, it will emit diagnostics when any
1674/// errors are found. Either way, a return value of true indicates
1675/// that there was a failure, a return value of false indicates that
1676/// the reference initialization succeeded.
1677///
1678/// When @p SuppressUserConversions, user-defined conversions are
1679/// suppressed.
1680bool
1681Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1682                         ImplicitConversionSequence *ICS,
1683                         bool SuppressUserConversions) {
1684  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1685
1686  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1687  QualType T2 = Init->getType();
1688
1689  // If the initializer is the address of an overloaded function, try
1690  // to resolve the overloaded function. If all goes well, T2 is the
1691  // type of the resulting function.
1692  if (T2->isOverloadType()) {
1693    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1694                                                          ICS != 0);
1695    if (Fn) {
1696      // Since we're performing this reference-initialization for
1697      // real, update the initializer with the resulting function.
1698      if (!ICS)
1699        FixOverloadedFunctionReference(Init, Fn);
1700
1701      T2 = Fn->getType();
1702    }
1703  }
1704
1705  // Compute some basic properties of the types and the initializer.
1706  bool DerivedToBase = false;
1707  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1708  ReferenceCompareResult RefRelationship
1709    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1710
1711  // Most paths end in a failed conversion.
1712  if (ICS)
1713    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1714
1715  // C++ [dcl.init.ref]p5:
1716  //   A reference to type “cv1 T1” is initialized by an expression
1717  //   of type “cv2 T2” as follows:
1718
1719  //     -- If the initializer expression
1720
1721  bool BindsDirectly = false;
1722  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1723  //          reference-compatible with “cv2 T2,” or
1724  //
1725  // Note that the bit-field check is skipped if we are just computing
1726  // the implicit conversion sequence (C++ [over.best.ics]p2).
1727  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1728      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1729    BindsDirectly = true;
1730
1731    if (ICS) {
1732      // C++ [over.ics.ref]p1:
1733      //   When a parameter of reference type binds directly (8.5.3)
1734      //   to an argument expression, the implicit conversion sequence
1735      //   is the identity conversion, unless the argument expression
1736      //   has a type that is a derived class of the parameter type,
1737      //   in which case the implicit conversion sequence is a
1738      //   derived-to-base Conversion (13.3.3.1).
1739      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1740      ICS->Standard.First = ICK_Identity;
1741      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1742      ICS->Standard.Third = ICK_Identity;
1743      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1744      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1745      ICS->Standard.ReferenceBinding = true;
1746      ICS->Standard.DirectBinding = true;
1747
1748      // Nothing more to do: the inaccessibility/ambiguity check for
1749      // derived-to-base conversions is suppressed when we're
1750      // computing the implicit conversion sequence (C++
1751      // [over.best.ics]p2).
1752      return false;
1753    } else {
1754      // Perform the conversion.
1755      // FIXME: Binding to a subobject of the lvalue is going to require
1756      // more AST annotation than this.
1757      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1758    }
1759  }
1760
1761  //       -- has a class type (i.e., T2 is a class type) and can be
1762  //          implicitly converted to an lvalue of type “cv3 T3,”
1763  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1764  //          92) (this conversion is selected by enumerating the
1765  //          applicable conversion functions (13.3.1.6) and choosing
1766  //          the best one through overload resolution (13.3)),
1767  if (!SuppressUserConversions && T2->isRecordType()) {
1768    // FIXME: Look for conversions in base classes!
1769    CXXRecordDecl *T2RecordDecl
1770      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1771
1772    OverloadCandidateSet CandidateSet;
1773    OverloadedFunctionDecl *Conversions
1774      = T2RecordDecl->getConversionFunctions();
1775    for (OverloadedFunctionDecl::function_iterator Func
1776           = Conversions->function_begin();
1777         Func != Conversions->function_end(); ++Func) {
1778      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1779
1780      // If the conversion function doesn't return a reference type,
1781      // it can't be considered for this conversion.
1782      // FIXME: This will change when we support rvalue references.
1783      if (Conv->getConversionType()->isReferenceType())
1784        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1785    }
1786
1787    OverloadCandidateSet::iterator Best;
1788    switch (BestViableFunction(CandidateSet, Best)) {
1789    case OR_Success:
1790      // This is a direct binding.
1791      BindsDirectly = true;
1792
1793      if (ICS) {
1794        // C++ [over.ics.ref]p1:
1795        //
1796        //   [...] If the parameter binds directly to the result of
1797        //   applying a conversion function to the argument
1798        //   expression, the implicit conversion sequence is a
1799        //   user-defined conversion sequence (13.3.3.1.2), with the
1800        //   second standard conversion sequence either an identity
1801        //   conversion or, if the conversion function returns an
1802        //   entity of a type that is a derived class of the parameter
1803        //   type, a derived-to-base Conversion.
1804        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1805        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1806        ICS->UserDefined.After = Best->FinalConversion;
1807        ICS->UserDefined.ConversionFunction = Best->Function;
1808        assert(ICS->UserDefined.After.ReferenceBinding &&
1809               ICS->UserDefined.After.DirectBinding &&
1810               "Expected a direct reference binding!");
1811        return false;
1812      } else {
1813        // Perform the conversion.
1814        // FIXME: Binding to a subobject of the lvalue is going to require
1815        // more AST annotation than this.
1816        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1817      }
1818      break;
1819
1820    case OR_Ambiguous:
1821      assert(false && "Ambiguous reference binding conversions not implemented.");
1822      return true;
1823
1824    case OR_No_Viable_Function:
1825      // There was no suitable conversion; continue with other checks.
1826      break;
1827    }
1828  }
1829
1830  if (BindsDirectly) {
1831    // C++ [dcl.init.ref]p4:
1832    //   [...] In all cases where the reference-related or
1833    //   reference-compatible relationship of two types is used to
1834    //   establish the validity of a reference binding, and T1 is a
1835    //   base class of T2, a program that necessitates such a binding
1836    //   is ill-formed if T1 is an inaccessible (clause 11) or
1837    //   ambiguous (10.2) base class of T2.
1838    //
1839    // Note that we only check this condition when we're allowed to
1840    // complain about errors, because we should not be checking for
1841    // ambiguity (or inaccessibility) unless the reference binding
1842    // actually happens.
1843    if (DerivedToBase)
1844      return CheckDerivedToBaseConversion(T2, T1,
1845                                          Init->getSourceRange().getBegin(),
1846                                          Init->getSourceRange());
1847    else
1848      return false;
1849  }
1850
1851  //     -- Otherwise, the reference shall be to a non-volatile const
1852  //        type (i.e., cv1 shall be const).
1853  if (T1.getCVRQualifiers() != QualType::Const) {
1854    if (!ICS)
1855      Diag(Init->getSourceRange().getBegin(),
1856           diag::err_not_reference_to_const_init)
1857        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1858        << T2 << Init->getSourceRange();
1859    return true;
1860  }
1861
1862  //       -- If the initializer expression is an rvalue, with T2 a
1863  //          class type, and “cv1 T1” is reference-compatible with
1864  //          “cv2 T2,” the reference is bound in one of the
1865  //          following ways (the choice is implementation-defined):
1866  //
1867  //          -- The reference is bound to the object represented by
1868  //             the rvalue (see 3.10) or to a sub-object within that
1869  //             object.
1870  //
1871  //          -- A temporary of type “cv1 T2” [sic] is created, and
1872  //             a constructor is called to copy the entire rvalue
1873  //             object into the temporary. The reference is bound to
1874  //             the temporary or to a sub-object within the
1875  //             temporary.
1876  //
1877  //
1878  //          The constructor that would be used to make the copy
1879  //          shall be callable whether or not the copy is actually
1880  //          done.
1881  //
1882  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1883  // freedom, so we will always take the first option and never build
1884  // a temporary in this case. FIXME: We will, however, have to check
1885  // for the presence of a copy constructor in C++98/03 mode.
1886  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1887      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1888    if (ICS) {
1889      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1890      ICS->Standard.First = ICK_Identity;
1891      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1892      ICS->Standard.Third = ICK_Identity;
1893      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1894      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1895      ICS->Standard.ReferenceBinding = true;
1896      ICS->Standard.DirectBinding = false;
1897    } else {
1898      // FIXME: Binding to a subobject of the rvalue is going to require
1899      // more AST annotation than this.
1900      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1901    }
1902    return false;
1903  }
1904
1905  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1906  //          initialized from the initializer expression using the
1907  //          rules for a non-reference copy initialization (8.5). The
1908  //          reference is then bound to the temporary. If T1 is
1909  //          reference-related to T2, cv1 must be the same
1910  //          cv-qualification as, or greater cv-qualification than,
1911  //          cv2; otherwise, the program is ill-formed.
1912  if (RefRelationship == Ref_Related) {
1913    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1914    // we would be reference-compatible or reference-compatible with
1915    // added qualification. But that wasn't the case, so the reference
1916    // initialization fails.
1917    if (!ICS)
1918      Diag(Init->getSourceRange().getBegin(),
1919           diag::err_reference_init_drops_quals)
1920        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1921        << T2 << Init->getSourceRange();
1922    return true;
1923  }
1924
1925  // Actually try to convert the initializer to T1.
1926  if (ICS) {
1927    /// C++ [over.ics.ref]p2:
1928    ///
1929    ///   When a parameter of reference type is not bound directly to
1930    ///   an argument expression, the conversion sequence is the one
1931    ///   required to convert the argument expression to the
1932    ///   underlying type of the reference according to
1933    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1934    ///   to copy-initializing a temporary of the underlying type with
1935    ///   the argument expression. Any difference in top-level
1936    ///   cv-qualification is subsumed by the initialization itself
1937    ///   and does not constitute a conversion.
1938    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1939    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1940  } else {
1941    return PerformImplicitConversion(Init, T1, "initializing");
1942  }
1943}
1944
1945/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1946/// of this overloaded operator is well-formed. If so, returns false;
1947/// otherwise, emits appropriate diagnostics and returns true.
1948bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1949  assert(FnDecl && FnDecl->isOverloadedOperator() &&
1950         "Expected an overloaded operator declaration");
1951
1952  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1953
1954  // C++ [over.oper]p5:
1955  //   The allocation and deallocation functions, operator new,
1956  //   operator new[], operator delete and operator delete[], are
1957  //   described completely in 3.7.3. The attributes and restrictions
1958  //   found in the rest of this subclause do not apply to them unless
1959  //   explicitly stated in 3.7.3.
1960  // FIXME: Write a separate routine for checking this. For now, just
1961  // allow it.
1962  if (Op == OO_New || Op == OO_Array_New ||
1963      Op == OO_Delete || Op == OO_Array_Delete)
1964    return false;
1965
1966  // C++ [over.oper]p6:
1967  //   An operator function shall either be a non-static member
1968  //   function or be a non-member function and have at least one
1969  //   parameter whose type is a class, a reference to a class, an
1970  //   enumeration, or a reference to an enumeration.
1971  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
1972    if (MethodDecl->isStatic())
1973      return Diag(FnDecl->getLocation(),
1974                  diag::err_operator_overload_static) << FnDecl->getDeclName();
1975  } else {
1976    bool ClassOrEnumParam = false;
1977    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
1978                                   ParamEnd = FnDecl->param_end();
1979         Param != ParamEnd; ++Param) {
1980      QualType ParamType = (*Param)->getType().getNonReferenceType();
1981      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
1982        ClassOrEnumParam = true;
1983        break;
1984      }
1985    }
1986
1987    if (!ClassOrEnumParam)
1988      return Diag(FnDecl->getLocation(),
1989                  diag::err_operator_overload_needs_class_or_enum)
1990        << FnDecl->getDeclName();
1991  }
1992
1993  // C++ [over.oper]p8:
1994  //   An operator function cannot have default arguments (8.3.6),
1995  //   except where explicitly stated below.
1996  //
1997  // Only the function-call operator allows default arguments
1998  // (C++ [over.call]p1).
1999  if (Op != OO_Call) {
2000    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2001         Param != FnDecl->param_end(); ++Param) {
2002      if ((*Param)->hasUnparsedDefaultArg())
2003        return Diag((*Param)->getLocation(),
2004                    diag::err_operator_overload_default_arg)
2005          << FnDecl->getDeclName();
2006      else if (Expr *DefArg = (*Param)->getDefaultArg())
2007        return Diag((*Param)->getLocation(),
2008                    diag::err_operator_overload_default_arg)
2009          << FnDecl->getDeclName() << DefArg->getSourceRange();
2010    }
2011  }
2012
2013  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2014    { false, false, false }
2015#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2016    , { Unary, Binary, MemberOnly }
2017#include "clang/Basic/OperatorKinds.def"
2018  };
2019
2020  bool CanBeUnaryOperator = OperatorUses[Op][0];
2021  bool CanBeBinaryOperator = OperatorUses[Op][1];
2022  bool MustBeMemberOperator = OperatorUses[Op][2];
2023
2024  // C++ [over.oper]p8:
2025  //   [...] Operator functions cannot have more or fewer parameters
2026  //   than the number required for the corresponding operator, as
2027  //   described in the rest of this subclause.
2028  unsigned NumParams = FnDecl->getNumParams()
2029                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2030  if (Op != OO_Call &&
2031      ((NumParams == 1 && !CanBeUnaryOperator) ||
2032       (NumParams == 2 && !CanBeBinaryOperator) ||
2033       (NumParams < 1) || (NumParams > 2))) {
2034    // We have the wrong number of parameters.
2035    unsigned ErrorKind;
2036    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2037      ErrorKind = 2;  // 2 -> unary or binary.
2038    } else if (CanBeUnaryOperator) {
2039      ErrorKind = 0;  // 0 -> unary
2040    } else {
2041      assert(CanBeBinaryOperator &&
2042             "All non-call overloaded operators are unary or binary!");
2043      ErrorKind = 1;  // 1 -> binary
2044    }
2045
2046    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2047      << FnDecl->getDeclName() << NumParams << ErrorKind;
2048  }
2049
2050  // Overloaded operators other than operator() cannot be variadic.
2051  if (Op != OO_Call &&
2052      FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
2053    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2054      << FnDecl->getDeclName();
2055  }
2056
2057  // Some operators must be non-static member functions.
2058  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2059    return Diag(FnDecl->getLocation(),
2060                diag::err_operator_overload_must_be_member)
2061      << FnDecl->getDeclName();
2062  }
2063
2064  // C++ [over.inc]p1:
2065  //   The user-defined function called operator++ implements the
2066  //   prefix and postfix ++ operator. If this function is a member
2067  //   function with no parameters, or a non-member function with one
2068  //   parameter of class or enumeration type, it defines the prefix
2069  //   increment operator ++ for objects of that type. If the function
2070  //   is a member function with one parameter (which shall be of type
2071  //   int) or a non-member function with two parameters (the second
2072  //   of which shall be of type int), it defines the postfix
2073  //   increment operator ++ for objects of that type.
2074  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2075    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2076    bool ParamIsInt = false;
2077    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2078      ParamIsInt = BT->getKind() == BuiltinType::Int;
2079
2080    if (!ParamIsInt)
2081      return Diag(LastParam->getLocation(),
2082                  diag::err_operator_overload_post_incdec_must_be_int)
2083        << LastParam->getType() << (Op == OO_MinusMinus);
2084  }
2085
2086  // Notify the class if it got an assignment operator.
2087  if (Op == OO_Equal) {
2088    // Would have returned earlier otherwise.
2089    assert(isa<CXXMethodDecl>(FnDecl) &&
2090      "Overloaded = not member, but not filtered.");
2091    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2092    Method->getParent()->addedAssignmentOperator(Context, Method);
2093  }
2094
2095  return false;
2096}
2097
2098/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2099/// linkage specification, including the language and (if present)
2100/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2101/// the location of the language string literal, which is provided
2102/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2103/// the '{' brace. Otherwise, this linkage specification does not
2104/// have any braces.
2105Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2106                                                   SourceLocation ExternLoc,
2107                                                   SourceLocation LangLoc,
2108                                                   const char *Lang,
2109                                                   unsigned StrSize,
2110                                                   SourceLocation LBraceLoc) {
2111  LinkageSpecDecl::LanguageIDs Language;
2112  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2113    Language = LinkageSpecDecl::lang_c;
2114  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2115    Language = LinkageSpecDecl::lang_cxx;
2116  else {
2117    Diag(LangLoc, diag::err_bad_language);
2118    return 0;
2119  }
2120
2121  // FIXME: Add all the various semantics of linkage specifications
2122
2123  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2124                                               LangLoc, Language,
2125                                               LBraceLoc.isValid());
2126  CurContext->addDecl(D);
2127  PushDeclContext(S, D);
2128  return D;
2129}
2130
2131/// ActOnFinishLinkageSpecification - Completely the definition of
2132/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2133/// valid, it's the position of the closing '}' brace in a linkage
2134/// specification that uses braces.
2135Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2136                                                    DeclTy *LinkageSpec,
2137                                                    SourceLocation RBraceLoc) {
2138  if (LinkageSpec)
2139    PopDeclContext();
2140  return LinkageSpec;
2141}
2142
2143/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2144/// handler.
2145Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2146{
2147  QualType ExDeclType = GetTypeForDeclarator(D, S);
2148  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2149
2150  bool Invalid = false;
2151
2152  // Arrays and functions decay.
2153  if (ExDeclType->isArrayType())
2154    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2155  else if (ExDeclType->isFunctionType())
2156    ExDeclType = Context.getPointerType(ExDeclType);
2157
2158  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2159  // The exception-declaration shall not denote a pointer or reference to an
2160  // incomplete type, other than [cv] void*.
2161  QualType BaseType = ExDeclType;
2162  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2163  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2164    BaseType = Ptr->getPointeeType();
2165    Mode = 1;
2166  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2167    BaseType = Ref->getPointeeType();
2168    Mode = 2;
2169  }
2170  if ((Mode == 0 || !BaseType->isVoidType()) && BaseType->isIncompleteType()) {
2171    Invalid = true;
2172    Diag(Begin, diag::err_catch_incomplete) << BaseType << Mode;
2173  }
2174
2175  // FIXME: Need to test for ability to copy-construct and destroy the
2176  // exception variable.
2177  // FIXME: Need to check for abstract classes.
2178
2179  IdentifierInfo *II = D.getIdentifier();
2180  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2181    // The scope should be freshly made just for us. There is just no way
2182    // it contains any previous declaration.
2183    assert(!S->isDeclScope(PrevDecl));
2184    if (PrevDecl->isTemplateParameter()) {
2185      // Maybe we will complain about the shadowed template parameter.
2186      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2187
2188    }
2189  }
2190
2191  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2192                                    II, ExDeclType, VarDecl::None, 0, Begin);
2193  if (D.getInvalidType() || Invalid)
2194    ExDecl->setInvalidDecl();
2195
2196  if (D.getCXXScopeSpec().isSet()) {
2197    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2198      << D.getCXXScopeSpec().getRange();
2199    ExDecl->setInvalidDecl();
2200  }
2201
2202  // Add the exception declaration into this scope.
2203  S->AddDecl(ExDecl);
2204  if (II)
2205    IdResolver.AddDecl(ExDecl);
2206
2207  ProcessDeclAttributes(ExDecl, D);
2208  return ExDecl;
2209}
2210