SemaDeclCXX.cpp revision 0629e6403126369d15585aeed9a7f6faf7f5cf17
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl && CurDecl->getIdentifier())
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         TypeSourceInfo *TInfo) {
451  QualType BaseType = TInfo->getType();
452
453  // C++ [class.union]p1:
454  //   A union shall not have base classes.
455  if (Class->isUnion()) {
456    Diag(Class->getLocation(), diag::err_base_clause_on_union)
457      << SpecifierRange;
458    return 0;
459  }
460
461  if (BaseType->isDependentType())
462    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                                          Class->getTagKind() == TTK_Class,
464                                          Access, TInfo);
465
466  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
467
468  // Base specifiers must be record types.
469  if (!BaseType->isRecordType()) {
470    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
471    return 0;
472  }
473
474  // C++ [class.union]p1:
475  //   A union shall not be used as a base class.
476  if (BaseType->isUnionType()) {
477    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
478    return 0;
479  }
480
481  // C++ [class.derived]p2:
482  //   The class-name in a base-specifier shall not be an incompletely
483  //   defined class.
484  if (RequireCompleteType(BaseLoc, BaseType,
485                          PDiag(diag::err_incomplete_base_class)
486                            << SpecifierRange))
487    return 0;
488
489  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
490  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
491  assert(BaseDecl && "Record type has no declaration");
492  BaseDecl = BaseDecl->getDefinition();
493  assert(BaseDecl && "Base type is not incomplete, but has no definition");
494  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
495  assert(CXXBaseDecl && "Base type is not a C++ type");
496
497  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
498  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
499    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
500    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
501      << BaseType;
502    return 0;
503  }
504
505  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
506
507  // Create the base specifier.
508  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
509                                        Class->getTagKind() == TTK_Class,
510                                        Access, TInfo);
511}
512
513void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
514                                          const CXXRecordDecl *BaseClass,
515                                          bool BaseIsVirtual) {
516  // A class with a non-empty base class is not empty.
517  // FIXME: Standard ref?
518  if (!BaseClass->isEmpty())
519    Class->setEmpty(false);
520
521  // C++ [class.virtual]p1:
522  //   A class that [...] inherits a virtual function is called a polymorphic
523  //   class.
524  if (BaseClass->isPolymorphic())
525    Class->setPolymorphic(true);
526
527  // C++ [dcl.init.aggr]p1:
528  //   An aggregate is [...] a class with [...] no base classes [...].
529  Class->setAggregate(false);
530
531  // C++ [class]p4:
532  //   A POD-struct is an aggregate class...
533  Class->setPOD(false);
534
535  if (BaseIsVirtual) {
536    // C++ [class.ctor]p5:
537    //   A constructor is trivial if its class has no virtual base classes.
538    Class->setHasTrivialConstructor(false);
539
540    // C++ [class.copy]p6:
541    //   A copy constructor is trivial if its class has no virtual base classes.
542    Class->setHasTrivialCopyConstructor(false);
543
544    // C++ [class.copy]p11:
545    //   A copy assignment operator is trivial if its class has no virtual
546    //   base classes.
547    Class->setHasTrivialCopyAssignment(false);
548
549    // C++0x [meta.unary.prop] is_empty:
550    //    T is a class type, but not a union type, with ... no virtual base
551    //    classes
552    Class->setEmpty(false);
553  } else {
554    // C++ [class.ctor]p5:
555    //   A constructor is trivial if all the direct base classes of its
556    //   class have trivial constructors.
557    if (!BaseClass->hasTrivialConstructor())
558      Class->setHasTrivialConstructor(false);
559
560    // C++ [class.copy]p6:
561    //   A copy constructor is trivial if all the direct base classes of its
562    //   class have trivial copy constructors.
563    if (!BaseClass->hasTrivialCopyConstructor())
564      Class->setHasTrivialCopyConstructor(false);
565
566    // C++ [class.copy]p11:
567    //   A copy assignment operator is trivial if all the direct base classes
568    //   of its class have trivial copy assignment operators.
569    if (!BaseClass->hasTrivialCopyAssignment())
570      Class->setHasTrivialCopyAssignment(false);
571  }
572
573  // C++ [class.ctor]p3:
574  //   A destructor is trivial if all the direct base classes of its class
575  //   have trivial destructors.
576  if (!BaseClass->hasTrivialDestructor())
577    Class->setHasTrivialDestructor(false);
578}
579
580/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
581/// one entry in the base class list of a class specifier, for
582/// example:
583///    class foo : public bar, virtual private baz {
584/// 'public bar' and 'virtual private baz' are each base-specifiers.
585Sema::BaseResult
586Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
587                         bool Virtual, AccessSpecifier Access,
588                         TypeTy *basetype, SourceLocation BaseLoc) {
589  if (!classdecl)
590    return true;
591
592  AdjustDeclIfTemplate(classdecl);
593  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
594  if (!Class)
595    return true;
596
597  TypeSourceInfo *TInfo = 0;
598  GetTypeFromParser(basetype, &TInfo);
599  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
600                                                      Virtual, Access, TInfo))
601    return BaseSpec;
602
603  return true;
604}
605
606/// \brief Performs the actual work of attaching the given base class
607/// specifiers to a C++ class.
608bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
609                                unsigned NumBases) {
610 if (NumBases == 0)
611    return false;
612
613  // Used to keep track of which base types we have already seen, so
614  // that we can properly diagnose redundant direct base types. Note
615  // that the key is always the unqualified canonical type of the base
616  // class.
617  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
618
619  // Copy non-redundant base specifiers into permanent storage.
620  unsigned NumGoodBases = 0;
621  bool Invalid = false;
622  for (unsigned idx = 0; idx < NumBases; ++idx) {
623    QualType NewBaseType
624      = Context.getCanonicalType(Bases[idx]->getType());
625    NewBaseType = NewBaseType.getLocalUnqualifiedType();
626    if (!Class->hasObjectMember()) {
627      if (const RecordType *FDTTy =
628            NewBaseType.getTypePtr()->getAs<RecordType>())
629        if (FDTTy->getDecl()->hasObjectMember())
630          Class->setHasObjectMember(true);
631    }
632
633    if (KnownBaseTypes[NewBaseType]) {
634      // C++ [class.mi]p3:
635      //   A class shall not be specified as a direct base class of a
636      //   derived class more than once.
637      Diag(Bases[idx]->getSourceRange().getBegin(),
638           diag::err_duplicate_base_class)
639        << KnownBaseTypes[NewBaseType]->getType()
640        << Bases[idx]->getSourceRange();
641
642      // Delete the duplicate base class specifier; we're going to
643      // overwrite its pointer later.
644      Context.Deallocate(Bases[idx]);
645
646      Invalid = true;
647    } else {
648      // Okay, add this new base class.
649      KnownBaseTypes[NewBaseType] = Bases[idx];
650      Bases[NumGoodBases++] = Bases[idx];
651    }
652  }
653
654  // Attach the remaining base class specifiers to the derived class.
655  Class->setBases(Bases, NumGoodBases);
656
657  // Delete the remaining (good) base class specifiers, since their
658  // data has been copied into the CXXRecordDecl.
659  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
660    Context.Deallocate(Bases[idx]);
661
662  return Invalid;
663}
664
665/// ActOnBaseSpecifiers - Attach the given base specifiers to the
666/// class, after checking whether there are any duplicate base
667/// classes.
668void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
669                               unsigned NumBases) {
670  if (!ClassDecl || !Bases || !NumBases)
671    return;
672
673  AdjustDeclIfTemplate(ClassDecl);
674  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
675                       (CXXBaseSpecifier**)(Bases), NumBases);
676}
677
678static CXXRecordDecl *GetClassForType(QualType T) {
679  if (const RecordType *RT = T->getAs<RecordType>())
680    return cast<CXXRecordDecl>(RT->getDecl());
681  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
682    return ICT->getDecl();
683  else
684    return 0;
685}
686
687/// \brief Determine whether the type \p Derived is a C++ class that is
688/// derived from the type \p Base.
689bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
690  if (!getLangOptions().CPlusPlus)
691    return false;
692
693  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
694  if (!DerivedRD)
695    return false;
696
697  CXXRecordDecl *BaseRD = GetClassForType(Base);
698  if (!BaseRD)
699    return false;
700
701  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
702  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
703}
704
705/// \brief Determine whether the type \p Derived is a C++ class that is
706/// derived from the type \p Base.
707bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
708  if (!getLangOptions().CPlusPlus)
709    return false;
710
711  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
712  if (!DerivedRD)
713    return false;
714
715  CXXRecordDecl *BaseRD = GetClassForType(Base);
716  if (!BaseRD)
717    return false;
718
719  return DerivedRD->isDerivedFrom(BaseRD, Paths);
720}
721
722void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
723                              CXXBaseSpecifierArray &BasePathArray) {
724  assert(BasePathArray.empty() && "Base path array must be empty!");
725  assert(Paths.isRecordingPaths() && "Must record paths!");
726
727  const CXXBasePath &Path = Paths.front();
728
729  // We first go backward and check if we have a virtual base.
730  // FIXME: It would be better if CXXBasePath had the base specifier for
731  // the nearest virtual base.
732  unsigned Start = 0;
733  for (unsigned I = Path.size(); I != 0; --I) {
734    if (Path[I - 1].Base->isVirtual()) {
735      Start = I - 1;
736      break;
737    }
738  }
739
740  // Now add all bases.
741  for (unsigned I = Start, E = Path.size(); I != E; ++I)
742    BasePathArray.push_back(Path[I].Base);
743}
744
745/// \brief Determine whether the given base path includes a virtual
746/// base class.
747bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
748  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
749                                    BEnd = BasePath.end();
750       B != BEnd; ++B)
751    if ((*B)->isVirtual())
752      return true;
753
754  return false;
755}
756
757/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
758/// conversion (where Derived and Base are class types) is
759/// well-formed, meaning that the conversion is unambiguous (and
760/// that all of the base classes are accessible). Returns true
761/// and emits a diagnostic if the code is ill-formed, returns false
762/// otherwise. Loc is the location where this routine should point to
763/// if there is an error, and Range is the source range to highlight
764/// if there is an error.
765bool
766Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
767                                   unsigned InaccessibleBaseID,
768                                   unsigned AmbigiousBaseConvID,
769                                   SourceLocation Loc, SourceRange Range,
770                                   DeclarationName Name,
771                                   CXXBaseSpecifierArray *BasePath) {
772  // First, determine whether the path from Derived to Base is
773  // ambiguous. This is slightly more expensive than checking whether
774  // the Derived to Base conversion exists, because here we need to
775  // explore multiple paths to determine if there is an ambiguity.
776  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
777                     /*DetectVirtual=*/false);
778  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
779  assert(DerivationOkay &&
780         "Can only be used with a derived-to-base conversion");
781  (void)DerivationOkay;
782
783  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
784    if (InaccessibleBaseID) {
785      // Check that the base class can be accessed.
786      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
787                                   InaccessibleBaseID)) {
788        case AR_inaccessible:
789          return true;
790        case AR_accessible:
791        case AR_dependent:
792        case AR_delayed:
793          break;
794      }
795    }
796
797    // Build a base path if necessary.
798    if (BasePath)
799      BuildBasePathArray(Paths, *BasePath);
800    return false;
801  }
802
803  // We know that the derived-to-base conversion is ambiguous, and
804  // we're going to produce a diagnostic. Perform the derived-to-base
805  // search just one more time to compute all of the possible paths so
806  // that we can print them out. This is more expensive than any of
807  // the previous derived-to-base checks we've done, but at this point
808  // performance isn't as much of an issue.
809  Paths.clear();
810  Paths.setRecordingPaths(true);
811  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
812  assert(StillOkay && "Can only be used with a derived-to-base conversion");
813  (void)StillOkay;
814
815  // Build up a textual representation of the ambiguous paths, e.g.,
816  // D -> B -> A, that will be used to illustrate the ambiguous
817  // conversions in the diagnostic. We only print one of the paths
818  // to each base class subobject.
819  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
820
821  Diag(Loc, AmbigiousBaseConvID)
822  << Derived << Base << PathDisplayStr << Range << Name;
823  return true;
824}
825
826bool
827Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
828                                   SourceLocation Loc, SourceRange Range,
829                                   CXXBaseSpecifierArray *BasePath,
830                                   bool IgnoreAccess) {
831  return CheckDerivedToBaseConversion(Derived, Base,
832                                      IgnoreAccess ? 0
833                                       : diag::err_upcast_to_inaccessible_base,
834                                      diag::err_ambiguous_derived_to_base_conv,
835                                      Loc, Range, DeclarationName(),
836                                      BasePath);
837}
838
839
840/// @brief Builds a string representing ambiguous paths from a
841/// specific derived class to different subobjects of the same base
842/// class.
843///
844/// This function builds a string that can be used in error messages
845/// to show the different paths that one can take through the
846/// inheritance hierarchy to go from the derived class to different
847/// subobjects of a base class. The result looks something like this:
848/// @code
849/// struct D -> struct B -> struct A
850/// struct D -> struct C -> struct A
851/// @endcode
852std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
853  std::string PathDisplayStr;
854  std::set<unsigned> DisplayedPaths;
855  for (CXXBasePaths::paths_iterator Path = Paths.begin();
856       Path != Paths.end(); ++Path) {
857    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
858      // We haven't displayed a path to this particular base
859      // class subobject yet.
860      PathDisplayStr += "\n    ";
861      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
862      for (CXXBasePath::const_iterator Element = Path->begin();
863           Element != Path->end(); ++Element)
864        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
865    }
866  }
867
868  return PathDisplayStr;
869}
870
871//===----------------------------------------------------------------------===//
872// C++ class member Handling
873//===----------------------------------------------------------------------===//
874
875/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
876Sema::DeclPtrTy
877Sema::ActOnAccessSpecifier(AccessSpecifier Access,
878                           SourceLocation ASLoc, SourceLocation ColonLoc) {
879  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
880  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
881                                                  ASLoc, ColonLoc);
882  CurContext->addHiddenDecl(ASDecl);
883  return DeclPtrTy::make(ASDecl);
884}
885
886/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
887/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
888/// bitfield width if there is one and 'InitExpr' specifies the initializer if
889/// any.
890Sema::DeclPtrTy
891Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
892                               MultiTemplateParamsArg TemplateParameterLists,
893                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
894                               bool Deleted) {
895  const DeclSpec &DS = D.getDeclSpec();
896  DeclarationName Name = GetNameForDeclarator(D);
897  Expr *BitWidth = static_cast<Expr*>(BW);
898  Expr *Init = static_cast<Expr*>(InitExpr);
899  SourceLocation Loc = D.getIdentifierLoc();
900
901  assert(isa<CXXRecordDecl>(CurContext));
902  assert(!DS.isFriendSpecified());
903
904  bool isFunc = false;
905  if (D.isFunctionDeclarator())
906    isFunc = true;
907  else if (D.getNumTypeObjects() == 0 &&
908           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
909    QualType TDType = GetTypeFromParser(DS.getTypeRep());
910    isFunc = TDType->isFunctionType();
911  }
912
913  // C++ 9.2p6: A member shall not be declared to have automatic storage
914  // duration (auto, register) or with the extern storage-class-specifier.
915  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
916  // data members and cannot be applied to names declared const or static,
917  // and cannot be applied to reference members.
918  switch (DS.getStorageClassSpec()) {
919    case DeclSpec::SCS_unspecified:
920    case DeclSpec::SCS_typedef:
921    case DeclSpec::SCS_static:
922      // FALL THROUGH.
923      break;
924    case DeclSpec::SCS_mutable:
925      if (isFunc) {
926        if (DS.getStorageClassSpecLoc().isValid())
927          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
928        else
929          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
930
931        // FIXME: It would be nicer if the keyword was ignored only for this
932        // declarator. Otherwise we could get follow-up errors.
933        D.getMutableDeclSpec().ClearStorageClassSpecs();
934      }
935      break;
936    default:
937      if (DS.getStorageClassSpecLoc().isValid())
938        Diag(DS.getStorageClassSpecLoc(),
939             diag::err_storageclass_invalid_for_member);
940      else
941        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
942      D.getMutableDeclSpec().ClearStorageClassSpecs();
943  }
944
945  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
946                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
947                      !isFunc);
948
949  Decl *Member;
950  if (isInstField) {
951    // FIXME: Check for template parameters!
952    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
953                         AS);
954    assert(Member && "HandleField never returns null");
955  } else {
956    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
957               .getAs<Decl>();
958    if (!Member) {
959      if (BitWidth) DeleteExpr(BitWidth);
960      return DeclPtrTy();
961    }
962
963    // Non-instance-fields can't have a bitfield.
964    if (BitWidth) {
965      if (Member->isInvalidDecl()) {
966        // don't emit another diagnostic.
967      } else if (isa<VarDecl>(Member)) {
968        // C++ 9.6p3: A bit-field shall not be a static member.
969        // "static member 'A' cannot be a bit-field"
970        Diag(Loc, diag::err_static_not_bitfield)
971          << Name << BitWidth->getSourceRange();
972      } else if (isa<TypedefDecl>(Member)) {
973        // "typedef member 'x' cannot be a bit-field"
974        Diag(Loc, diag::err_typedef_not_bitfield)
975          << Name << BitWidth->getSourceRange();
976      } else {
977        // A function typedef ("typedef int f(); f a;").
978        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
979        Diag(Loc, diag::err_not_integral_type_bitfield)
980          << Name << cast<ValueDecl>(Member)->getType()
981          << BitWidth->getSourceRange();
982      }
983
984      DeleteExpr(BitWidth);
985      BitWidth = 0;
986      Member->setInvalidDecl();
987    }
988
989    Member->setAccess(AS);
990
991    // If we have declared a member function template, set the access of the
992    // templated declaration as well.
993    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
994      FunTmpl->getTemplatedDecl()->setAccess(AS);
995  }
996
997  assert((Name || isInstField) && "No identifier for non-field ?");
998
999  if (Init)
1000    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1001  if (Deleted) // FIXME: Source location is not very good.
1002    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1003
1004  if (isInstField) {
1005    FieldCollector->Add(cast<FieldDecl>(Member));
1006    return DeclPtrTy();
1007  }
1008  return DeclPtrTy::make(Member);
1009}
1010
1011/// \brief Find the direct and/or virtual base specifiers that
1012/// correspond to the given base type, for use in base initialization
1013/// within a constructor.
1014static bool FindBaseInitializer(Sema &SemaRef,
1015                                CXXRecordDecl *ClassDecl,
1016                                QualType BaseType,
1017                                const CXXBaseSpecifier *&DirectBaseSpec,
1018                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1019  // First, check for a direct base class.
1020  DirectBaseSpec = 0;
1021  for (CXXRecordDecl::base_class_const_iterator Base
1022         = ClassDecl->bases_begin();
1023       Base != ClassDecl->bases_end(); ++Base) {
1024    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1025      // We found a direct base of this type. That's what we're
1026      // initializing.
1027      DirectBaseSpec = &*Base;
1028      break;
1029    }
1030  }
1031
1032  // Check for a virtual base class.
1033  // FIXME: We might be able to short-circuit this if we know in advance that
1034  // there are no virtual bases.
1035  VirtualBaseSpec = 0;
1036  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1037    // We haven't found a base yet; search the class hierarchy for a
1038    // virtual base class.
1039    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1040                       /*DetectVirtual=*/false);
1041    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1042                              BaseType, Paths)) {
1043      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1044           Path != Paths.end(); ++Path) {
1045        if (Path->back().Base->isVirtual()) {
1046          VirtualBaseSpec = Path->back().Base;
1047          break;
1048        }
1049      }
1050    }
1051  }
1052
1053  return DirectBaseSpec || VirtualBaseSpec;
1054}
1055
1056/// ActOnMemInitializer - Handle a C++ member initializer.
1057Sema::MemInitResult
1058Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1059                          Scope *S,
1060                          CXXScopeSpec &SS,
1061                          IdentifierInfo *MemberOrBase,
1062                          TypeTy *TemplateTypeTy,
1063                          SourceLocation IdLoc,
1064                          SourceLocation LParenLoc,
1065                          ExprTy **Args, unsigned NumArgs,
1066                          SourceLocation *CommaLocs,
1067                          SourceLocation RParenLoc) {
1068  if (!ConstructorD)
1069    return true;
1070
1071  AdjustDeclIfTemplate(ConstructorD);
1072
1073  CXXConstructorDecl *Constructor
1074    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1075  if (!Constructor) {
1076    // The user wrote a constructor initializer on a function that is
1077    // not a C++ constructor. Ignore the error for now, because we may
1078    // have more member initializers coming; we'll diagnose it just
1079    // once in ActOnMemInitializers.
1080    return true;
1081  }
1082
1083  CXXRecordDecl *ClassDecl = Constructor->getParent();
1084
1085  // C++ [class.base.init]p2:
1086  //   Names in a mem-initializer-id are looked up in the scope of the
1087  //   constructor’s class and, if not found in that scope, are looked
1088  //   up in the scope containing the constructor’s
1089  //   definition. [Note: if the constructor’s class contains a member
1090  //   with the same name as a direct or virtual base class of the
1091  //   class, a mem-initializer-id naming the member or base class and
1092  //   composed of a single identifier refers to the class member. A
1093  //   mem-initializer-id for the hidden base class may be specified
1094  //   using a qualified name. ]
1095  if (!SS.getScopeRep() && !TemplateTypeTy) {
1096    // Look for a member, first.
1097    FieldDecl *Member = 0;
1098    DeclContext::lookup_result Result
1099      = ClassDecl->lookup(MemberOrBase);
1100    if (Result.first != Result.second)
1101      Member = dyn_cast<FieldDecl>(*Result.first);
1102
1103    // FIXME: Handle members of an anonymous union.
1104
1105    if (Member)
1106      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1107                                    LParenLoc, RParenLoc);
1108  }
1109  // It didn't name a member, so see if it names a class.
1110  QualType BaseType;
1111  TypeSourceInfo *TInfo = 0;
1112
1113  if (TemplateTypeTy) {
1114    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1115  } else {
1116    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1117    LookupParsedName(R, S, &SS);
1118
1119    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1120    if (!TyD) {
1121      if (R.isAmbiguous()) return true;
1122
1123      // We don't want access-control diagnostics here.
1124      R.suppressDiagnostics();
1125
1126      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1127        bool NotUnknownSpecialization = false;
1128        DeclContext *DC = computeDeclContext(SS, false);
1129        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1130          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1131
1132        if (!NotUnknownSpecialization) {
1133          // When the scope specifier can refer to a member of an unknown
1134          // specialization, we take it as a type name.
1135          BaseType = CheckTypenameType(ETK_None,
1136                                       (NestedNameSpecifier *)SS.getScopeRep(),
1137                                       *MemberOrBase, SourceLocation(),
1138                                       SS.getRange(), IdLoc);
1139          if (BaseType.isNull())
1140            return true;
1141
1142          R.clear();
1143          R.setLookupName(MemberOrBase);
1144        }
1145      }
1146
1147      // If no results were found, try to correct typos.
1148      if (R.empty() && BaseType.isNull() &&
1149          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1150          R.isSingleResult()) {
1151        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1152          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1153            // We have found a non-static data member with a similar
1154            // name to what was typed; complain and initialize that
1155            // member.
1156            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1157              << MemberOrBase << true << R.getLookupName()
1158              << FixItHint::CreateReplacement(R.getNameLoc(),
1159                                              R.getLookupName().getAsString());
1160            Diag(Member->getLocation(), diag::note_previous_decl)
1161              << Member->getDeclName();
1162
1163            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1164                                          LParenLoc, RParenLoc);
1165          }
1166        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1167          const CXXBaseSpecifier *DirectBaseSpec;
1168          const CXXBaseSpecifier *VirtualBaseSpec;
1169          if (FindBaseInitializer(*this, ClassDecl,
1170                                  Context.getTypeDeclType(Type),
1171                                  DirectBaseSpec, VirtualBaseSpec)) {
1172            // We have found a direct or virtual base class with a
1173            // similar name to what was typed; complain and initialize
1174            // that base class.
1175            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1176              << MemberOrBase << false << R.getLookupName()
1177              << FixItHint::CreateReplacement(R.getNameLoc(),
1178                                              R.getLookupName().getAsString());
1179
1180            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1181                                                             : VirtualBaseSpec;
1182            Diag(BaseSpec->getSourceRange().getBegin(),
1183                 diag::note_base_class_specified_here)
1184              << BaseSpec->getType()
1185              << BaseSpec->getSourceRange();
1186
1187            TyD = Type;
1188          }
1189        }
1190      }
1191
1192      if (!TyD && BaseType.isNull()) {
1193        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1194          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195        return true;
1196      }
1197    }
1198
1199    if (BaseType.isNull()) {
1200      BaseType = Context.getTypeDeclType(TyD);
1201      if (SS.isSet()) {
1202        NestedNameSpecifier *Qualifier =
1203          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1204
1205        // FIXME: preserve source range information
1206        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1207      }
1208    }
1209  }
1210
1211  if (!TInfo)
1212    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1213
1214  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1215                              LParenLoc, RParenLoc, ClassDecl);
1216}
1217
1218/// Checks an initializer expression for use of uninitialized fields, such as
1219/// containing the field that is being initialized. Returns true if there is an
1220/// uninitialized field was used an updates the SourceLocation parameter; false
1221/// otherwise.
1222static bool InitExprContainsUninitializedFields(const Stmt *S,
1223                                                const FieldDecl *LhsField,
1224                                                SourceLocation *L) {
1225  if (isa<CallExpr>(S)) {
1226    // Do not descend into function calls or constructors, as the use
1227    // of an uninitialized field may be valid. One would have to inspect
1228    // the contents of the function/ctor to determine if it is safe or not.
1229    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1230    // may be safe, depending on what the function/ctor does.
1231    return false;
1232  }
1233  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1234    const NamedDecl *RhsField = ME->getMemberDecl();
1235    if (RhsField == LhsField) {
1236      // Initializing a field with itself. Throw a warning.
1237      // But wait; there are exceptions!
1238      // Exception #1:  The field may not belong to this record.
1239      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1240      const Expr *base = ME->getBase();
1241      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1242        // Even though the field matches, it does not belong to this record.
1243        return false;
1244      }
1245      // None of the exceptions triggered; return true to indicate an
1246      // uninitialized field was used.
1247      *L = ME->getMemberLoc();
1248      return true;
1249    }
1250  }
1251  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1252       it != e; ++it) {
1253    if (!*it) {
1254      // An expression such as 'member(arg ?: "")' may trigger this.
1255      continue;
1256    }
1257    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1258      return true;
1259  }
1260  return false;
1261}
1262
1263Sema::MemInitResult
1264Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1265                             unsigned NumArgs, SourceLocation IdLoc,
1266                             SourceLocation LParenLoc,
1267                             SourceLocation RParenLoc) {
1268  // Diagnose value-uses of fields to initialize themselves, e.g.
1269  //   foo(foo)
1270  // where foo is not also a parameter to the constructor.
1271  // TODO: implement -Wuninitialized and fold this into that framework.
1272  for (unsigned i = 0; i < NumArgs; ++i) {
1273    SourceLocation L;
1274    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1275      // FIXME: Return true in the case when other fields are used before being
1276      // uninitialized. For example, let this field be the i'th field. When
1277      // initializing the i'th field, throw a warning if any of the >= i'th
1278      // fields are used, as they are not yet initialized.
1279      // Right now we are only handling the case where the i'th field uses
1280      // itself in its initializer.
1281      Diag(L, diag::warn_field_is_uninit);
1282    }
1283  }
1284
1285  bool HasDependentArg = false;
1286  for (unsigned i = 0; i < NumArgs; i++)
1287    HasDependentArg |= Args[i]->isTypeDependent();
1288
1289  if (Member->getType()->isDependentType() || HasDependentArg) {
1290    // Can't check initialization for a member of dependent type or when
1291    // any of the arguments are type-dependent expressions.
1292    OwningExprResult Init
1293      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1294                                          RParenLoc));
1295
1296    // Erase any temporaries within this evaluation context; we're not
1297    // going to track them in the AST, since we'll be rebuilding the
1298    // ASTs during template instantiation.
1299    ExprTemporaries.erase(
1300              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1301                          ExprTemporaries.end());
1302
1303    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1304                                                    LParenLoc,
1305                                                    Init.takeAs<Expr>(),
1306                                                    RParenLoc);
1307
1308  }
1309
1310  if (Member->isInvalidDecl())
1311    return true;
1312
1313  // Initialize the member.
1314  InitializedEntity MemberEntity =
1315    InitializedEntity::InitializeMember(Member, 0);
1316  InitializationKind Kind =
1317    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1318
1319  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1320
1321  OwningExprResult MemberInit =
1322    InitSeq.Perform(*this, MemberEntity, Kind,
1323                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1324  if (MemberInit.isInvalid())
1325    return true;
1326
1327  // C++0x [class.base.init]p7:
1328  //   The initialization of each base and member constitutes a
1329  //   full-expression.
1330  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1331  if (MemberInit.isInvalid())
1332    return true;
1333
1334  // If we are in a dependent context, template instantiation will
1335  // perform this type-checking again. Just save the arguments that we
1336  // received in a ParenListExpr.
1337  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1338  // of the information that we have about the member
1339  // initializer. However, deconstructing the ASTs is a dicey process,
1340  // and this approach is far more likely to get the corner cases right.
1341  if (CurContext->isDependentContext()) {
1342    // Bump the reference count of all of the arguments.
1343    for (unsigned I = 0; I != NumArgs; ++I)
1344      Args[I]->Retain();
1345
1346    OwningExprResult Init
1347      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1348                                          RParenLoc));
1349    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1350                                                    LParenLoc,
1351                                                    Init.takeAs<Expr>(),
1352                                                    RParenLoc);
1353  }
1354
1355  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1356                                                  LParenLoc,
1357                                                  MemberInit.takeAs<Expr>(),
1358                                                  RParenLoc);
1359}
1360
1361Sema::MemInitResult
1362Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1363                           Expr **Args, unsigned NumArgs,
1364                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1365                           CXXRecordDecl *ClassDecl) {
1366  bool HasDependentArg = false;
1367  for (unsigned i = 0; i < NumArgs; i++)
1368    HasDependentArg |= Args[i]->isTypeDependent();
1369
1370  SourceLocation BaseLoc
1371    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1372
1373  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1374    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1375             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1376
1377  // C++ [class.base.init]p2:
1378  //   [...] Unless the mem-initializer-id names a nonstatic data
1379  //   member of the constructor’s class or a direct or virtual base
1380  //   of that class, the mem-initializer is ill-formed. A
1381  //   mem-initializer-list can initialize a base class using any
1382  //   name that denotes that base class type.
1383  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1384
1385  // Check for direct and virtual base classes.
1386  const CXXBaseSpecifier *DirectBaseSpec = 0;
1387  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1388  if (!Dependent) {
1389    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1390                        VirtualBaseSpec);
1391
1392    // C++ [base.class.init]p2:
1393    // Unless the mem-initializer-id names a nonstatic data member of the
1394    // constructor's class or a direct or virtual base of that class, the
1395    // mem-initializer is ill-formed.
1396    if (!DirectBaseSpec && !VirtualBaseSpec) {
1397      // If the class has any dependent bases, then it's possible that
1398      // one of those types will resolve to the same type as
1399      // BaseType. Therefore, just treat this as a dependent base
1400      // class initialization.  FIXME: Should we try to check the
1401      // initialization anyway? It seems odd.
1402      if (ClassDecl->hasAnyDependentBases())
1403        Dependent = true;
1404      else
1405        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1406          << BaseType << Context.getTypeDeclType(ClassDecl)
1407          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1408    }
1409  }
1410
1411  if (Dependent) {
1412    // Can't check initialization for a base of dependent type or when
1413    // any of the arguments are type-dependent expressions.
1414    OwningExprResult BaseInit
1415      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1416                                          RParenLoc));
1417
1418    // Erase any temporaries within this evaluation context; we're not
1419    // going to track them in the AST, since we'll be rebuilding the
1420    // ASTs during template instantiation.
1421    ExprTemporaries.erase(
1422              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1423                          ExprTemporaries.end());
1424
1425    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1426                                                    /*IsVirtual=*/false,
1427                                                    LParenLoc,
1428                                                    BaseInit.takeAs<Expr>(),
1429                                                    RParenLoc);
1430  }
1431
1432  // C++ [base.class.init]p2:
1433  //   If a mem-initializer-id is ambiguous because it designates both
1434  //   a direct non-virtual base class and an inherited virtual base
1435  //   class, the mem-initializer is ill-formed.
1436  if (DirectBaseSpec && VirtualBaseSpec)
1437    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1438      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1439
1440  CXXBaseSpecifier *BaseSpec
1441    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1442  if (!BaseSpec)
1443    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1444
1445  // Initialize the base.
1446  InitializedEntity BaseEntity =
1447    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1448  InitializationKind Kind =
1449    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1450
1451  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1452
1453  OwningExprResult BaseInit =
1454    InitSeq.Perform(*this, BaseEntity, Kind,
1455                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1456  if (BaseInit.isInvalid())
1457    return true;
1458
1459  // C++0x [class.base.init]p7:
1460  //   The initialization of each base and member constitutes a
1461  //   full-expression.
1462  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1463  if (BaseInit.isInvalid())
1464    return true;
1465
1466  // If we are in a dependent context, template instantiation will
1467  // perform this type-checking again. Just save the arguments that we
1468  // received in a ParenListExpr.
1469  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1470  // of the information that we have about the base
1471  // initializer. However, deconstructing the ASTs is a dicey process,
1472  // and this approach is far more likely to get the corner cases right.
1473  if (CurContext->isDependentContext()) {
1474    // Bump the reference count of all of the arguments.
1475    for (unsigned I = 0; I != NumArgs; ++I)
1476      Args[I]->Retain();
1477
1478    OwningExprResult Init
1479      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1480                                          RParenLoc));
1481    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1482                                                    BaseSpec->isVirtual(),
1483                                                    LParenLoc,
1484                                                    Init.takeAs<Expr>(),
1485                                                    RParenLoc);
1486  }
1487
1488  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1489                                                  BaseSpec->isVirtual(),
1490                                                  LParenLoc,
1491                                                  BaseInit.takeAs<Expr>(),
1492                                                  RParenLoc);
1493}
1494
1495/// ImplicitInitializerKind - How an implicit base or member initializer should
1496/// initialize its base or member.
1497enum ImplicitInitializerKind {
1498  IIK_Default,
1499  IIK_Copy,
1500  IIK_Move
1501};
1502
1503static bool
1504BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1505                             ImplicitInitializerKind ImplicitInitKind,
1506                             CXXBaseSpecifier *BaseSpec,
1507                             bool IsInheritedVirtualBase,
1508                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1509  InitializedEntity InitEntity
1510    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1511                                        IsInheritedVirtualBase);
1512
1513  Sema::OwningExprResult BaseInit(SemaRef);
1514
1515  switch (ImplicitInitKind) {
1516  case IIK_Default: {
1517    InitializationKind InitKind
1518      = InitializationKind::CreateDefault(Constructor->getLocation());
1519    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1520    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1521                               Sema::MultiExprArg(SemaRef, 0, 0));
1522    break;
1523  }
1524
1525  case IIK_Copy: {
1526    ParmVarDecl *Param = Constructor->getParamDecl(0);
1527    QualType ParamType = Param->getType().getNonReferenceType();
1528
1529    Expr *CopyCtorArg =
1530      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1531                          Constructor->getLocation(), ParamType, 0);
1532
1533    // Cast to the base class to avoid ambiguities.
1534    QualType ArgTy =
1535      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1536                                       ParamType.getQualifiers());
1537    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1538                              CastExpr::CK_UncheckedDerivedToBase,
1539                              ImplicitCastExpr::LValue,
1540                              CXXBaseSpecifierArray(BaseSpec));
1541
1542    InitializationKind InitKind
1543      = InitializationKind::CreateDirect(Constructor->getLocation(),
1544                                         SourceLocation(), SourceLocation());
1545    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1546                                   &CopyCtorArg, 1);
1547    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1548                               Sema::MultiExprArg(SemaRef,
1549                                                  (void**)&CopyCtorArg, 1));
1550    break;
1551  }
1552
1553  case IIK_Move:
1554    assert(false && "Unhandled initializer kind!");
1555  }
1556
1557  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1558  if (BaseInit.isInvalid())
1559    return true;
1560
1561  CXXBaseInit =
1562    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1563               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1564                                                        SourceLocation()),
1565                                             BaseSpec->isVirtual(),
1566                                             SourceLocation(),
1567                                             BaseInit.takeAs<Expr>(),
1568                                             SourceLocation());
1569
1570  return false;
1571}
1572
1573static bool
1574BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1575                               ImplicitInitializerKind ImplicitInitKind,
1576                               FieldDecl *Field,
1577                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1578  if (Field->isInvalidDecl())
1579    return true;
1580
1581  SourceLocation Loc = Constructor->getLocation();
1582
1583  if (ImplicitInitKind == IIK_Copy) {
1584    ParmVarDecl *Param = Constructor->getParamDecl(0);
1585    QualType ParamType = Param->getType().getNonReferenceType();
1586
1587    Expr *MemberExprBase =
1588      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1589                          Loc, ParamType, 0);
1590
1591    // Build a reference to this field within the parameter.
1592    CXXScopeSpec SS;
1593    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1594                              Sema::LookupMemberName);
1595    MemberLookup.addDecl(Field, AS_public);
1596    MemberLookup.resolveKind();
1597    Sema::OwningExprResult CopyCtorArg
1598      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1599                                         ParamType, Loc,
1600                                         /*IsArrow=*/false,
1601                                         SS,
1602                                         /*FirstQualifierInScope=*/0,
1603                                         MemberLookup,
1604                                         /*TemplateArgs=*/0);
1605    if (CopyCtorArg.isInvalid())
1606      return true;
1607
1608    // When the field we are copying is an array, create index variables for
1609    // each dimension of the array. We use these index variables to subscript
1610    // the source array, and other clients (e.g., CodeGen) will perform the
1611    // necessary iteration with these index variables.
1612    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1613    QualType BaseType = Field->getType();
1614    QualType SizeType = SemaRef.Context.getSizeType();
1615    while (const ConstantArrayType *Array
1616                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1617      // Create the iteration variable for this array index.
1618      IdentifierInfo *IterationVarName = 0;
1619      {
1620        llvm::SmallString<8> Str;
1621        llvm::raw_svector_ostream OS(Str);
1622        OS << "__i" << IndexVariables.size();
1623        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1624      }
1625      VarDecl *IterationVar
1626        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1627                          IterationVarName, SizeType,
1628                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1629                          VarDecl::None, VarDecl::None);
1630      IndexVariables.push_back(IterationVar);
1631
1632      // Create a reference to the iteration variable.
1633      Sema::OwningExprResult IterationVarRef
1634        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1635      assert(!IterationVarRef.isInvalid() &&
1636             "Reference to invented variable cannot fail!");
1637
1638      // Subscript the array with this iteration variable.
1639      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1640                                                            Loc,
1641                                                          move(IterationVarRef),
1642                                                            Loc);
1643      if (CopyCtorArg.isInvalid())
1644        return true;
1645
1646      BaseType = Array->getElementType();
1647    }
1648
1649    // Construct the entity that we will be initializing. For an array, this
1650    // will be first element in the array, which may require several levels
1651    // of array-subscript entities.
1652    llvm::SmallVector<InitializedEntity, 4> Entities;
1653    Entities.reserve(1 + IndexVariables.size());
1654    Entities.push_back(InitializedEntity::InitializeMember(Field));
1655    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1656      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1657                                                              0,
1658                                                              Entities.back()));
1659
1660    // Direct-initialize to use the copy constructor.
1661    InitializationKind InitKind =
1662      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1663
1664    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1665    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1666                                   &CopyCtorArgE, 1);
1667
1668    Sema::OwningExprResult MemberInit
1669      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1670                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1671    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1672    if (MemberInit.isInvalid())
1673      return true;
1674
1675    CXXMemberInit
1676      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1677                                           MemberInit.takeAs<Expr>(), Loc,
1678                                           IndexVariables.data(),
1679                                           IndexVariables.size());
1680    return false;
1681  }
1682
1683  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1684
1685  QualType FieldBaseElementType =
1686    SemaRef.Context.getBaseElementType(Field->getType());
1687
1688  if (FieldBaseElementType->isRecordType()) {
1689    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1690    InitializationKind InitKind =
1691      InitializationKind::CreateDefault(Loc);
1692
1693    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1694    Sema::OwningExprResult MemberInit =
1695      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1696                      Sema::MultiExprArg(SemaRef, 0, 0));
1697    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1698    if (MemberInit.isInvalid())
1699      return true;
1700
1701    CXXMemberInit =
1702      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1703                                                       Field, Loc, Loc,
1704                                                      MemberInit.takeAs<Expr>(),
1705                                                       Loc);
1706    return false;
1707  }
1708
1709  if (FieldBaseElementType->isReferenceType()) {
1710    SemaRef.Diag(Constructor->getLocation(),
1711                 diag::err_uninitialized_member_in_ctor)
1712    << (int)Constructor->isImplicit()
1713    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1714    << 0 << Field->getDeclName();
1715    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1716    return true;
1717  }
1718
1719  if (FieldBaseElementType.isConstQualified()) {
1720    SemaRef.Diag(Constructor->getLocation(),
1721                 diag::err_uninitialized_member_in_ctor)
1722    << (int)Constructor->isImplicit()
1723    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1724    << 1 << Field->getDeclName();
1725    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1726    return true;
1727  }
1728
1729  // Nothing to initialize.
1730  CXXMemberInit = 0;
1731  return false;
1732}
1733
1734namespace {
1735struct BaseAndFieldInfo {
1736  Sema &S;
1737  CXXConstructorDecl *Ctor;
1738  bool AnyErrorsInInits;
1739  ImplicitInitializerKind IIK;
1740  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1741  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1742
1743  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1744    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1745    // FIXME: Handle implicit move constructors.
1746    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1747      IIK = IIK_Copy;
1748    else
1749      IIK = IIK_Default;
1750  }
1751};
1752}
1753
1754static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1755                                   FieldDecl *Top, FieldDecl *Field,
1756                                   CXXBaseOrMemberInitializer *Init) {
1757  // If the member doesn't need to be initialized, Init will still be null.
1758  if (!Init)
1759    return;
1760
1761  Info.AllToInit.push_back(Init);
1762  if (Field != Top) {
1763    Init->setMember(Top);
1764    Init->setAnonUnionMember(Field);
1765  }
1766}
1767
1768static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1769                                    FieldDecl *Top, FieldDecl *Field) {
1770
1771  // Overwhelmingly common case: we have a direct initializer for this field.
1772  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1773    RecordFieldInitializer(Info, Top, Field, Init);
1774    return false;
1775  }
1776
1777  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1778    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1779    assert(FieldClassType && "anonymous struct/union without record type");
1780    CXXRecordDecl *FieldClassDecl
1781      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1782
1783    // Even though union members never have non-trivial default
1784    // constructions in C++03, we still build member initializers for aggregate
1785    // record types which can be union members, and C++0x allows non-trivial
1786    // default constructors for union members, so we ensure that only one
1787    // member is initialized for these.
1788    if (FieldClassDecl->isUnion()) {
1789      // First check for an explicit initializer for one field.
1790      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1791           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1792        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1793          RecordFieldInitializer(Info, Top, *FA, Init);
1794
1795          // Once we've initialized a field of an anonymous union, the union
1796          // field in the class is also initialized, so exit immediately.
1797          return false;
1798        }
1799      }
1800
1801      // Fallthrough and construct a default initializer for the union as
1802      // a whole, which can call its default constructor if such a thing exists
1803      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1804      // behavior going forward with C++0x, when anonymous unions there are
1805      // finalized, we should revisit this.
1806    } else {
1807      // For structs, we simply descend through to initialize all members where
1808      // necessary.
1809      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1810           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1811        if (CollectFieldInitializer(Info, Top, *FA))
1812          return true;
1813      }
1814    }
1815  }
1816
1817  // Don't try to build an implicit initializer if there were semantic
1818  // errors in any of the initializers (and therefore we might be
1819  // missing some that the user actually wrote).
1820  if (Info.AnyErrorsInInits)
1821    return false;
1822
1823  CXXBaseOrMemberInitializer *Init = 0;
1824  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1825    return true;
1826
1827  RecordFieldInitializer(Info, Top, Field, Init);
1828  return false;
1829}
1830
1831bool
1832Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1833                                  CXXBaseOrMemberInitializer **Initializers,
1834                                  unsigned NumInitializers,
1835                                  bool AnyErrors) {
1836  if (Constructor->getDeclContext()->isDependentContext()) {
1837    // Just store the initializers as written, they will be checked during
1838    // instantiation.
1839    if (NumInitializers > 0) {
1840      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1841      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1842        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1843      memcpy(baseOrMemberInitializers, Initializers,
1844             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1845      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1846    }
1847
1848    return false;
1849  }
1850
1851  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1852
1853  // We need to build the initializer AST according to order of construction
1854  // and not what user specified in the Initializers list.
1855  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1856  if (!ClassDecl)
1857    return true;
1858
1859  bool HadError = false;
1860
1861  for (unsigned i = 0; i < NumInitializers; i++) {
1862    CXXBaseOrMemberInitializer *Member = Initializers[i];
1863
1864    if (Member->isBaseInitializer())
1865      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1866    else
1867      Info.AllBaseFields[Member->getMember()] = Member;
1868  }
1869
1870  // Keep track of the direct virtual bases.
1871  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1872  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1873       E = ClassDecl->bases_end(); I != E; ++I) {
1874    if (I->isVirtual())
1875      DirectVBases.insert(I);
1876  }
1877
1878  // Push virtual bases before others.
1879  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1880       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1881
1882    if (CXXBaseOrMemberInitializer *Value
1883        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1884      Info.AllToInit.push_back(Value);
1885    } else if (!AnyErrors) {
1886      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1887      CXXBaseOrMemberInitializer *CXXBaseInit;
1888      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1889                                       VBase, IsInheritedVirtualBase,
1890                                       CXXBaseInit)) {
1891        HadError = true;
1892        continue;
1893      }
1894
1895      Info.AllToInit.push_back(CXXBaseInit);
1896    }
1897  }
1898
1899  // Non-virtual bases.
1900  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1901       E = ClassDecl->bases_end(); Base != E; ++Base) {
1902    // Virtuals are in the virtual base list and already constructed.
1903    if (Base->isVirtual())
1904      continue;
1905
1906    if (CXXBaseOrMemberInitializer *Value
1907          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1908      Info.AllToInit.push_back(Value);
1909    } else if (!AnyErrors) {
1910      CXXBaseOrMemberInitializer *CXXBaseInit;
1911      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1912                                       Base, /*IsInheritedVirtualBase=*/false,
1913                                       CXXBaseInit)) {
1914        HadError = true;
1915        continue;
1916      }
1917
1918      Info.AllToInit.push_back(CXXBaseInit);
1919    }
1920  }
1921
1922  // Fields.
1923  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1924       E = ClassDecl->field_end(); Field != E; ++Field) {
1925    if ((*Field)->getType()->isIncompleteArrayType()) {
1926      assert(ClassDecl->hasFlexibleArrayMember() &&
1927             "Incomplete array type is not valid");
1928      continue;
1929    }
1930    if (CollectFieldInitializer(Info, *Field, *Field))
1931      HadError = true;
1932  }
1933
1934  NumInitializers = Info.AllToInit.size();
1935  if (NumInitializers > 0) {
1936    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1937    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1938      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1939    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1940           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1941    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1942
1943    // Constructors implicitly reference the base and member
1944    // destructors.
1945    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1946                                           Constructor->getParent());
1947  }
1948
1949  return HadError;
1950}
1951
1952static void *GetKeyForTopLevelField(FieldDecl *Field) {
1953  // For anonymous unions, use the class declaration as the key.
1954  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1955    if (RT->getDecl()->isAnonymousStructOrUnion())
1956      return static_cast<void *>(RT->getDecl());
1957  }
1958  return static_cast<void *>(Field);
1959}
1960
1961static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1962  return Context.getCanonicalType(BaseType).getTypePtr();
1963}
1964
1965static void *GetKeyForMember(ASTContext &Context,
1966                             CXXBaseOrMemberInitializer *Member,
1967                             bool MemberMaybeAnon = false) {
1968  if (!Member->isMemberInitializer())
1969    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1970
1971  // For fields injected into the class via declaration of an anonymous union,
1972  // use its anonymous union class declaration as the unique key.
1973  FieldDecl *Field = Member->getMember();
1974
1975  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1976  // data member of the class. Data member used in the initializer list is
1977  // in AnonUnionMember field.
1978  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1979    Field = Member->getAnonUnionMember();
1980
1981  // If the field is a member of an anonymous struct or union, our key
1982  // is the anonymous record decl that's a direct child of the class.
1983  RecordDecl *RD = Field->getParent();
1984  if (RD->isAnonymousStructOrUnion()) {
1985    while (true) {
1986      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1987      if (Parent->isAnonymousStructOrUnion())
1988        RD = Parent;
1989      else
1990        break;
1991    }
1992
1993    return static_cast<void *>(RD);
1994  }
1995
1996  return static_cast<void *>(Field);
1997}
1998
1999static void
2000DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2001                                  const CXXConstructorDecl *Constructor,
2002                                  CXXBaseOrMemberInitializer **Inits,
2003                                  unsigned NumInits) {
2004  if (Constructor->getDeclContext()->isDependentContext())
2005    return;
2006
2007  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2008        == Diagnostic::Ignored)
2009    return;
2010
2011  // Build the list of bases and members in the order that they'll
2012  // actually be initialized.  The explicit initializers should be in
2013  // this same order but may be missing things.
2014  llvm::SmallVector<const void*, 32> IdealInitKeys;
2015
2016  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2017
2018  // 1. Virtual bases.
2019  for (CXXRecordDecl::base_class_const_iterator VBase =
2020       ClassDecl->vbases_begin(),
2021       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2022    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2023
2024  // 2. Non-virtual bases.
2025  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2026       E = ClassDecl->bases_end(); Base != E; ++Base) {
2027    if (Base->isVirtual())
2028      continue;
2029    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2030  }
2031
2032  // 3. Direct fields.
2033  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2034       E = ClassDecl->field_end(); Field != E; ++Field)
2035    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2036
2037  unsigned NumIdealInits = IdealInitKeys.size();
2038  unsigned IdealIndex = 0;
2039
2040  CXXBaseOrMemberInitializer *PrevInit = 0;
2041  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2042    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2043    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2044
2045    // Scan forward to try to find this initializer in the idealized
2046    // initializers list.
2047    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2048      if (InitKey == IdealInitKeys[IdealIndex])
2049        break;
2050
2051    // If we didn't find this initializer, it must be because we
2052    // scanned past it on a previous iteration.  That can only
2053    // happen if we're out of order;  emit a warning.
2054    if (IdealIndex == NumIdealInits && PrevInit) {
2055      Sema::SemaDiagnosticBuilder D =
2056        SemaRef.Diag(PrevInit->getSourceLocation(),
2057                     diag::warn_initializer_out_of_order);
2058
2059      if (PrevInit->isMemberInitializer())
2060        D << 0 << PrevInit->getMember()->getDeclName();
2061      else
2062        D << 1 << PrevInit->getBaseClassInfo()->getType();
2063
2064      if (Init->isMemberInitializer())
2065        D << 0 << Init->getMember()->getDeclName();
2066      else
2067        D << 1 << Init->getBaseClassInfo()->getType();
2068
2069      // Move back to the initializer's location in the ideal list.
2070      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2071        if (InitKey == IdealInitKeys[IdealIndex])
2072          break;
2073
2074      assert(IdealIndex != NumIdealInits &&
2075             "initializer not found in initializer list");
2076    }
2077
2078    PrevInit = Init;
2079  }
2080}
2081
2082namespace {
2083bool CheckRedundantInit(Sema &S,
2084                        CXXBaseOrMemberInitializer *Init,
2085                        CXXBaseOrMemberInitializer *&PrevInit) {
2086  if (!PrevInit) {
2087    PrevInit = Init;
2088    return false;
2089  }
2090
2091  if (FieldDecl *Field = Init->getMember())
2092    S.Diag(Init->getSourceLocation(),
2093           diag::err_multiple_mem_initialization)
2094      << Field->getDeclName()
2095      << Init->getSourceRange();
2096  else {
2097    Type *BaseClass = Init->getBaseClass();
2098    assert(BaseClass && "neither field nor base");
2099    S.Diag(Init->getSourceLocation(),
2100           diag::err_multiple_base_initialization)
2101      << QualType(BaseClass, 0)
2102      << Init->getSourceRange();
2103  }
2104  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2105    << 0 << PrevInit->getSourceRange();
2106
2107  return true;
2108}
2109
2110typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2111typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2112
2113bool CheckRedundantUnionInit(Sema &S,
2114                             CXXBaseOrMemberInitializer *Init,
2115                             RedundantUnionMap &Unions) {
2116  FieldDecl *Field = Init->getMember();
2117  RecordDecl *Parent = Field->getParent();
2118  if (!Parent->isAnonymousStructOrUnion())
2119    return false;
2120
2121  NamedDecl *Child = Field;
2122  do {
2123    if (Parent->isUnion()) {
2124      UnionEntry &En = Unions[Parent];
2125      if (En.first && En.first != Child) {
2126        S.Diag(Init->getSourceLocation(),
2127               diag::err_multiple_mem_union_initialization)
2128          << Field->getDeclName()
2129          << Init->getSourceRange();
2130        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2131          << 0 << En.second->getSourceRange();
2132        return true;
2133      } else if (!En.first) {
2134        En.first = Child;
2135        En.second = Init;
2136      }
2137    }
2138
2139    Child = Parent;
2140    Parent = cast<RecordDecl>(Parent->getDeclContext());
2141  } while (Parent->isAnonymousStructOrUnion());
2142
2143  return false;
2144}
2145}
2146
2147/// ActOnMemInitializers - Handle the member initializers for a constructor.
2148void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2149                                SourceLocation ColonLoc,
2150                                MemInitTy **meminits, unsigned NumMemInits,
2151                                bool AnyErrors) {
2152  if (!ConstructorDecl)
2153    return;
2154
2155  AdjustDeclIfTemplate(ConstructorDecl);
2156
2157  CXXConstructorDecl *Constructor
2158    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2159
2160  if (!Constructor) {
2161    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2162    return;
2163  }
2164
2165  CXXBaseOrMemberInitializer **MemInits =
2166    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2167
2168  // Mapping for the duplicate initializers check.
2169  // For member initializers, this is keyed with a FieldDecl*.
2170  // For base initializers, this is keyed with a Type*.
2171  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2172
2173  // Mapping for the inconsistent anonymous-union initializers check.
2174  RedundantUnionMap MemberUnions;
2175
2176  bool HadError = false;
2177  for (unsigned i = 0; i < NumMemInits; i++) {
2178    CXXBaseOrMemberInitializer *Init = MemInits[i];
2179
2180    // Set the source order index.
2181    Init->setSourceOrder(i);
2182
2183    if (Init->isMemberInitializer()) {
2184      FieldDecl *Field = Init->getMember();
2185      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2186          CheckRedundantUnionInit(*this, Init, MemberUnions))
2187        HadError = true;
2188    } else {
2189      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2190      if (CheckRedundantInit(*this, Init, Members[Key]))
2191        HadError = true;
2192    }
2193  }
2194
2195  if (HadError)
2196    return;
2197
2198  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2199
2200  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2201}
2202
2203void
2204Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2205                                             CXXRecordDecl *ClassDecl) {
2206  // Ignore dependent contexts.
2207  if (ClassDecl->isDependentContext())
2208    return;
2209
2210  // FIXME: all the access-control diagnostics are positioned on the
2211  // field/base declaration.  That's probably good; that said, the
2212  // user might reasonably want to know why the destructor is being
2213  // emitted, and we currently don't say.
2214
2215  // Non-static data members.
2216  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2217       E = ClassDecl->field_end(); I != E; ++I) {
2218    FieldDecl *Field = *I;
2219    if (Field->isInvalidDecl())
2220      continue;
2221    QualType FieldType = Context.getBaseElementType(Field->getType());
2222
2223    const RecordType* RT = FieldType->getAs<RecordType>();
2224    if (!RT)
2225      continue;
2226
2227    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2228    if (FieldClassDecl->hasTrivialDestructor())
2229      continue;
2230
2231    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2232    CheckDestructorAccess(Field->getLocation(), Dtor,
2233                          PDiag(diag::err_access_dtor_field)
2234                            << Field->getDeclName()
2235                            << FieldType);
2236
2237    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2238  }
2239
2240  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2241
2242  // Bases.
2243  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2244       E = ClassDecl->bases_end(); Base != E; ++Base) {
2245    // Bases are always records in a well-formed non-dependent class.
2246    const RecordType *RT = Base->getType()->getAs<RecordType>();
2247
2248    // Remember direct virtual bases.
2249    if (Base->isVirtual())
2250      DirectVirtualBases.insert(RT);
2251
2252    // Ignore trivial destructors.
2253    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2254    if (BaseClassDecl->hasTrivialDestructor())
2255      continue;
2256
2257    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2258
2259    // FIXME: caret should be on the start of the class name
2260    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2261                          PDiag(diag::err_access_dtor_base)
2262                            << Base->getType()
2263                            << Base->getSourceRange());
2264
2265    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2266  }
2267
2268  // Virtual bases.
2269  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2270       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2271
2272    // Bases are always records in a well-formed non-dependent class.
2273    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2274
2275    // Ignore direct virtual bases.
2276    if (DirectVirtualBases.count(RT))
2277      continue;
2278
2279    // Ignore trivial destructors.
2280    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2281    if (BaseClassDecl->hasTrivialDestructor())
2282      continue;
2283
2284    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2285    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2286                          PDiag(diag::err_access_dtor_vbase)
2287                            << VBase->getType());
2288
2289    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2290  }
2291}
2292
2293void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2294  if (!CDtorDecl)
2295    return;
2296
2297  if (CXXConstructorDecl *Constructor
2298      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2299    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2300}
2301
2302bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2303                                  unsigned DiagID, AbstractDiagSelID SelID,
2304                                  const CXXRecordDecl *CurrentRD) {
2305  if (SelID == -1)
2306    return RequireNonAbstractType(Loc, T,
2307                                  PDiag(DiagID), CurrentRD);
2308  else
2309    return RequireNonAbstractType(Loc, T,
2310                                  PDiag(DiagID) << SelID, CurrentRD);
2311}
2312
2313bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2314                                  const PartialDiagnostic &PD,
2315                                  const CXXRecordDecl *CurrentRD) {
2316  if (!getLangOptions().CPlusPlus)
2317    return false;
2318
2319  if (const ArrayType *AT = Context.getAsArrayType(T))
2320    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2321                                  CurrentRD);
2322
2323  if (const PointerType *PT = T->getAs<PointerType>()) {
2324    // Find the innermost pointer type.
2325    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2326      PT = T;
2327
2328    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2329      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2330  }
2331
2332  const RecordType *RT = T->getAs<RecordType>();
2333  if (!RT)
2334    return false;
2335
2336  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2337
2338  if (CurrentRD && CurrentRD != RD)
2339    return false;
2340
2341  // FIXME: is this reasonable?  It matches current behavior, but....
2342  if (!RD->getDefinition())
2343    return false;
2344
2345  if (!RD->isAbstract())
2346    return false;
2347
2348  Diag(Loc, PD) << RD->getDeclName();
2349
2350  // Check if we've already emitted the list of pure virtual functions for this
2351  // class.
2352  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2353    return true;
2354
2355  CXXFinalOverriderMap FinalOverriders;
2356  RD->getFinalOverriders(FinalOverriders);
2357
2358  // Keep a set of seen pure methods so we won't diagnose the same method
2359  // more than once.
2360  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2361
2362  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2363                                   MEnd = FinalOverriders.end();
2364       M != MEnd;
2365       ++M) {
2366    for (OverridingMethods::iterator SO = M->second.begin(),
2367                                  SOEnd = M->second.end();
2368         SO != SOEnd; ++SO) {
2369      // C++ [class.abstract]p4:
2370      //   A class is abstract if it contains or inherits at least one
2371      //   pure virtual function for which the final overrider is pure
2372      //   virtual.
2373
2374      //
2375      if (SO->second.size() != 1)
2376        continue;
2377
2378      if (!SO->second.front().Method->isPure())
2379        continue;
2380
2381      if (!SeenPureMethods.insert(SO->second.front().Method))
2382        continue;
2383
2384      Diag(SO->second.front().Method->getLocation(),
2385           diag::note_pure_virtual_function)
2386        << SO->second.front().Method->getDeclName();
2387    }
2388  }
2389
2390  if (!PureVirtualClassDiagSet)
2391    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2392  PureVirtualClassDiagSet->insert(RD);
2393
2394  return true;
2395}
2396
2397namespace {
2398  class AbstractClassUsageDiagnoser
2399    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2400    Sema &SemaRef;
2401    CXXRecordDecl *AbstractClass;
2402
2403    bool VisitDeclContext(const DeclContext *DC) {
2404      bool Invalid = false;
2405
2406      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2407           E = DC->decls_end(); I != E; ++I)
2408        Invalid |= Visit(*I);
2409
2410      return Invalid;
2411    }
2412
2413  public:
2414    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2415      : SemaRef(SemaRef), AbstractClass(ac) {
2416        Visit(SemaRef.Context.getTranslationUnitDecl());
2417    }
2418
2419    bool VisitFunctionDecl(const FunctionDecl *FD) {
2420      if (FD->isThisDeclarationADefinition()) {
2421        // No need to do the check if we're in a definition, because it requires
2422        // that the return/param types are complete.
2423        // because that requires
2424        return VisitDeclContext(FD);
2425      }
2426
2427      // Check the return type.
2428      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2429      bool Invalid =
2430        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2431                                       diag::err_abstract_type_in_decl,
2432                                       Sema::AbstractReturnType,
2433                                       AbstractClass);
2434
2435      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2436           E = FD->param_end(); I != E; ++I) {
2437        const ParmVarDecl *VD = *I;
2438        Invalid |=
2439          SemaRef.RequireNonAbstractType(VD->getLocation(),
2440                                         VD->getOriginalType(),
2441                                         diag::err_abstract_type_in_decl,
2442                                         Sema::AbstractParamType,
2443                                         AbstractClass);
2444      }
2445
2446      return Invalid;
2447    }
2448
2449    bool VisitDecl(const Decl* D) {
2450      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2451        return VisitDeclContext(DC);
2452
2453      return false;
2454    }
2455  };
2456}
2457
2458/// \brief Perform semantic checks on a class definition that has been
2459/// completing, introducing implicitly-declared members, checking for
2460/// abstract types, etc.
2461void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2462  if (!Record || Record->isInvalidDecl())
2463    return;
2464
2465  if (!Record->isDependentType())
2466    AddImplicitlyDeclaredMembersToClass(Record);
2467
2468  if (Record->isInvalidDecl())
2469    return;
2470
2471  // Set access bits correctly on the directly-declared conversions.
2472  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2473  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2474    Convs->setAccess(I, (*I)->getAccess());
2475
2476  // Determine whether we need to check for final overriders. We do
2477  // this either when there are virtual base classes (in which case we
2478  // may end up finding multiple final overriders for a given virtual
2479  // function) or any of the base classes is abstract (in which case
2480  // we might detect that this class is abstract).
2481  bool CheckFinalOverriders = false;
2482  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2483      !Record->isDependentType()) {
2484    if (Record->getNumVBases())
2485      CheckFinalOverriders = true;
2486    else if (!Record->isAbstract()) {
2487      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2488                                                 BEnd = Record->bases_end();
2489           B != BEnd; ++B) {
2490        CXXRecordDecl *BaseDecl
2491          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2492        if (BaseDecl->isAbstract()) {
2493          CheckFinalOverriders = true;
2494          break;
2495        }
2496      }
2497    }
2498  }
2499
2500  if (CheckFinalOverriders) {
2501    CXXFinalOverriderMap FinalOverriders;
2502    Record->getFinalOverriders(FinalOverriders);
2503
2504    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2505                                     MEnd = FinalOverriders.end();
2506         M != MEnd; ++M) {
2507      for (OverridingMethods::iterator SO = M->second.begin(),
2508                                    SOEnd = M->second.end();
2509           SO != SOEnd; ++SO) {
2510        assert(SO->second.size() > 0 &&
2511               "All virtual functions have overridding virtual functions");
2512        if (SO->second.size() == 1) {
2513          // C++ [class.abstract]p4:
2514          //   A class is abstract if it contains or inherits at least one
2515          //   pure virtual function for which the final overrider is pure
2516          //   virtual.
2517          if (SO->second.front().Method->isPure())
2518            Record->setAbstract(true);
2519          continue;
2520        }
2521
2522        // C++ [class.virtual]p2:
2523        //   In a derived class, if a virtual member function of a base
2524        //   class subobject has more than one final overrider the
2525        //   program is ill-formed.
2526        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2527          << (NamedDecl *)M->first << Record;
2528        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2529        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2530                                                 OMEnd = SO->second.end();
2531             OM != OMEnd; ++OM)
2532          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2533            << (NamedDecl *)M->first << OM->Method->getParent();
2534
2535        Record->setInvalidDecl();
2536      }
2537    }
2538  }
2539
2540  if (Record->isAbstract() && !Record->isInvalidDecl())
2541    (void)AbstractClassUsageDiagnoser(*this, Record);
2542
2543  // If this is not an aggregate type and has no user-declared constructor,
2544  // complain about any non-static data members of reference or const scalar
2545  // type, since they will never get initializers.
2546  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2547      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2548    bool Complained = false;
2549    for (RecordDecl::field_iterator F = Record->field_begin(),
2550                                 FEnd = Record->field_end();
2551         F != FEnd; ++F) {
2552      if (F->getType()->isReferenceType() ||
2553          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2554        if (!Complained) {
2555          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2556            << Record->getTagKind() << Record;
2557          Complained = true;
2558        }
2559
2560        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2561          << F->getType()->isReferenceType()
2562          << F->getDeclName();
2563      }
2564    }
2565  }
2566
2567  if (Record->isDynamicClass())
2568    DynamicClasses.push_back(Record);
2569}
2570
2571void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2572                                             DeclPtrTy TagDecl,
2573                                             SourceLocation LBrac,
2574                                             SourceLocation RBrac,
2575                                             AttributeList *AttrList) {
2576  if (!TagDecl)
2577    return;
2578
2579  AdjustDeclIfTemplate(TagDecl);
2580
2581  ActOnFields(S, RLoc, TagDecl,
2582              (DeclPtrTy*)FieldCollector->getCurFields(),
2583              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2584
2585  CheckCompletedCXXClass(
2586                        dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2587}
2588
2589namespace {
2590  /// \brief Helper class that collects exception specifications for
2591  /// implicitly-declared special member functions.
2592  class ImplicitExceptionSpecification {
2593    ASTContext &Context;
2594    bool AllowsAllExceptions;
2595    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2596    llvm::SmallVector<QualType, 4> Exceptions;
2597
2598  public:
2599    explicit ImplicitExceptionSpecification(ASTContext &Context)
2600      : Context(Context), AllowsAllExceptions(false) { }
2601
2602    /// \brief Whether the special member function should have any
2603    /// exception specification at all.
2604    bool hasExceptionSpecification() const {
2605      return !AllowsAllExceptions;
2606    }
2607
2608    /// \brief Whether the special member function should have a
2609    /// throw(...) exception specification (a Microsoft extension).
2610    bool hasAnyExceptionSpecification() const {
2611      return false;
2612    }
2613
2614    /// \brief The number of exceptions in the exception specification.
2615    unsigned size() const { return Exceptions.size(); }
2616
2617    /// \brief The set of exceptions in the exception specification.
2618    const QualType *data() const { return Exceptions.data(); }
2619
2620    /// \brief Note that
2621    void CalledDecl(CXXMethodDecl *Method) {
2622      // If we already know that we allow all exceptions, do nothing.
2623      if (AllowsAllExceptions || !Method)
2624        return;
2625
2626      const FunctionProtoType *Proto
2627        = Method->getType()->getAs<FunctionProtoType>();
2628
2629      // If this function can throw any exceptions, make a note of that.
2630      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2631        AllowsAllExceptions = true;
2632        ExceptionsSeen.clear();
2633        Exceptions.clear();
2634        return;
2635      }
2636
2637      // Record the exceptions in this function's exception specification.
2638      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2639                                              EEnd = Proto->exception_end();
2640           E != EEnd; ++E)
2641        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2642          Exceptions.push_back(*E);
2643    }
2644  };
2645}
2646
2647
2648/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2649/// special functions, such as the default constructor, copy
2650/// constructor, or destructor, to the given C++ class (C++
2651/// [special]p1).  This routine can only be executed just before the
2652/// definition of the class is complete.
2653void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2654  if (!ClassDecl->hasUserDeclaredConstructor())
2655    ++ASTContext::NumImplicitDefaultConstructors;
2656
2657  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2658    ++ASTContext::NumImplicitCopyConstructors;
2659
2660  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2661    ++ASTContext::NumImplicitCopyAssignmentOperators;
2662
2663    // If we have a dynamic class, then the copy assignment operator may be
2664    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2665    // it shows up in the right place in the vtable and that we diagnose
2666    // problems with the implicit exception specification.
2667    if (ClassDecl->isDynamicClass())
2668      DeclareImplicitCopyAssignment(ClassDecl);
2669  }
2670
2671  if (!ClassDecl->hasUserDeclaredDestructor()) {
2672    ++ASTContext::NumImplicitDestructors;
2673
2674    // If we have a dynamic class, then the destructor may be virtual, so we
2675    // have to declare the destructor immediately. This ensures that, e.g., it
2676    // shows up in the right place in the vtable and that we diagnose problems
2677    // with the implicit exception specification.
2678    if (ClassDecl->isDynamicClass())
2679      DeclareImplicitDestructor(ClassDecl);
2680  }
2681}
2682
2683void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2684  Decl *D = TemplateD.getAs<Decl>();
2685  if (!D)
2686    return;
2687
2688  TemplateParameterList *Params = 0;
2689  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2690    Params = Template->getTemplateParameters();
2691  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2692           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2693    Params = PartialSpec->getTemplateParameters();
2694  else
2695    return;
2696
2697  for (TemplateParameterList::iterator Param = Params->begin(),
2698                                    ParamEnd = Params->end();
2699       Param != ParamEnd; ++Param) {
2700    NamedDecl *Named = cast<NamedDecl>(*Param);
2701    if (Named->getDeclName()) {
2702      S->AddDecl(DeclPtrTy::make(Named));
2703      IdResolver.AddDecl(Named);
2704    }
2705  }
2706}
2707
2708void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2709  if (!RecordD) return;
2710  AdjustDeclIfTemplate(RecordD);
2711  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2712  PushDeclContext(S, Record);
2713}
2714
2715void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2716  if (!RecordD) return;
2717  PopDeclContext();
2718}
2719
2720/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2721/// parsing a top-level (non-nested) C++ class, and we are now
2722/// parsing those parts of the given Method declaration that could
2723/// not be parsed earlier (C++ [class.mem]p2), such as default
2724/// arguments. This action should enter the scope of the given
2725/// Method declaration as if we had just parsed the qualified method
2726/// name. However, it should not bring the parameters into scope;
2727/// that will be performed by ActOnDelayedCXXMethodParameter.
2728void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2729}
2730
2731/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2732/// C++ method declaration. We're (re-)introducing the given
2733/// function parameter into scope for use in parsing later parts of
2734/// the method declaration. For example, we could see an
2735/// ActOnParamDefaultArgument event for this parameter.
2736void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2737  if (!ParamD)
2738    return;
2739
2740  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2741
2742  // If this parameter has an unparsed default argument, clear it out
2743  // to make way for the parsed default argument.
2744  if (Param->hasUnparsedDefaultArg())
2745    Param->setDefaultArg(0);
2746
2747  S->AddDecl(DeclPtrTy::make(Param));
2748  if (Param->getDeclName())
2749    IdResolver.AddDecl(Param);
2750}
2751
2752/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2753/// processing the delayed method declaration for Method. The method
2754/// declaration is now considered finished. There may be a separate
2755/// ActOnStartOfFunctionDef action later (not necessarily
2756/// immediately!) for this method, if it was also defined inside the
2757/// class body.
2758void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2759  if (!MethodD)
2760    return;
2761
2762  AdjustDeclIfTemplate(MethodD);
2763
2764  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2765
2766  // Now that we have our default arguments, check the constructor
2767  // again. It could produce additional diagnostics or affect whether
2768  // the class has implicitly-declared destructors, among other
2769  // things.
2770  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2771    CheckConstructor(Constructor);
2772
2773  // Check the default arguments, which we may have added.
2774  if (!Method->isInvalidDecl())
2775    CheckCXXDefaultArguments(Method);
2776}
2777
2778/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2779/// the well-formedness of the constructor declarator @p D with type @p
2780/// R. If there are any errors in the declarator, this routine will
2781/// emit diagnostics and set the invalid bit to true.  In any case, the type
2782/// will be updated to reflect a well-formed type for the constructor and
2783/// returned.
2784QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2785                                          FunctionDecl::StorageClass &SC) {
2786  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2787
2788  // C++ [class.ctor]p3:
2789  //   A constructor shall not be virtual (10.3) or static (9.4). A
2790  //   constructor can be invoked for a const, volatile or const
2791  //   volatile object. A constructor shall not be declared const,
2792  //   volatile, or const volatile (9.3.2).
2793  if (isVirtual) {
2794    if (!D.isInvalidType())
2795      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2796        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2797        << SourceRange(D.getIdentifierLoc());
2798    D.setInvalidType();
2799  }
2800  if (SC == FunctionDecl::Static) {
2801    if (!D.isInvalidType())
2802      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2803        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2804        << SourceRange(D.getIdentifierLoc());
2805    D.setInvalidType();
2806    SC = FunctionDecl::None;
2807  }
2808
2809  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2810  if (FTI.TypeQuals != 0) {
2811    if (FTI.TypeQuals & Qualifiers::Const)
2812      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2813        << "const" << SourceRange(D.getIdentifierLoc());
2814    if (FTI.TypeQuals & Qualifiers::Volatile)
2815      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2816        << "volatile" << SourceRange(D.getIdentifierLoc());
2817    if (FTI.TypeQuals & Qualifiers::Restrict)
2818      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2819        << "restrict" << SourceRange(D.getIdentifierLoc());
2820  }
2821
2822  // Rebuild the function type "R" without any type qualifiers (in
2823  // case any of the errors above fired) and with "void" as the
2824  // return type, since constructors don't have return types.
2825  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2826  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2827                                 Proto->getNumArgs(),
2828                                 Proto->isVariadic(), 0,
2829                                 Proto->hasExceptionSpec(),
2830                                 Proto->hasAnyExceptionSpec(),
2831                                 Proto->getNumExceptions(),
2832                                 Proto->exception_begin(),
2833                                 Proto->getExtInfo());
2834}
2835
2836/// CheckConstructor - Checks a fully-formed constructor for
2837/// well-formedness, issuing any diagnostics required. Returns true if
2838/// the constructor declarator is invalid.
2839void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2840  CXXRecordDecl *ClassDecl
2841    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2842  if (!ClassDecl)
2843    return Constructor->setInvalidDecl();
2844
2845  // C++ [class.copy]p3:
2846  //   A declaration of a constructor for a class X is ill-formed if
2847  //   its first parameter is of type (optionally cv-qualified) X and
2848  //   either there are no other parameters or else all other
2849  //   parameters have default arguments.
2850  if (!Constructor->isInvalidDecl() &&
2851      ((Constructor->getNumParams() == 1) ||
2852       (Constructor->getNumParams() > 1 &&
2853        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2854      Constructor->getTemplateSpecializationKind()
2855                                              != TSK_ImplicitInstantiation) {
2856    QualType ParamType = Constructor->getParamDecl(0)->getType();
2857    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2858    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2859      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2860      const char *ConstRef
2861        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2862                                                        : " const &";
2863      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2864        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2865
2866      // FIXME: Rather that making the constructor invalid, we should endeavor
2867      // to fix the type.
2868      Constructor->setInvalidDecl();
2869    }
2870  }
2871
2872  // Notify the class that we've added a constructor.  In principle we
2873  // don't need to do this for out-of-line declarations; in practice
2874  // we only instantiate the most recent declaration of a method, so
2875  // we have to call this for everything but friends.
2876  if (!Constructor->getFriendObjectKind())
2877    ClassDecl->addedConstructor(Context, Constructor);
2878}
2879
2880/// CheckDestructor - Checks a fully-formed destructor definition for
2881/// well-formedness, issuing any diagnostics required.  Returns true
2882/// on error.
2883bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2884  CXXRecordDecl *RD = Destructor->getParent();
2885
2886  if (Destructor->isVirtual()) {
2887    SourceLocation Loc;
2888
2889    if (!Destructor->isImplicit())
2890      Loc = Destructor->getLocation();
2891    else
2892      Loc = RD->getLocation();
2893
2894    // If we have a virtual destructor, look up the deallocation function
2895    FunctionDecl *OperatorDelete = 0;
2896    DeclarationName Name =
2897    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2898    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2899      return true;
2900
2901    MarkDeclarationReferenced(Loc, OperatorDelete);
2902
2903    Destructor->setOperatorDelete(OperatorDelete);
2904  }
2905
2906  return false;
2907}
2908
2909static inline bool
2910FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2911  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2912          FTI.ArgInfo[0].Param &&
2913          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2914}
2915
2916/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2917/// the well-formednes of the destructor declarator @p D with type @p
2918/// R. If there are any errors in the declarator, this routine will
2919/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2920/// will be updated to reflect a well-formed type for the destructor and
2921/// returned.
2922QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2923                                         FunctionDecl::StorageClass& SC) {
2924  // C++ [class.dtor]p1:
2925  //   [...] A typedef-name that names a class is a class-name
2926  //   (7.1.3); however, a typedef-name that names a class shall not
2927  //   be used as the identifier in the declarator for a destructor
2928  //   declaration.
2929  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2930  if (isa<TypedefType>(DeclaratorType))
2931    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2932      << DeclaratorType;
2933
2934  // C++ [class.dtor]p2:
2935  //   A destructor is used to destroy objects of its class type. A
2936  //   destructor takes no parameters, and no return type can be
2937  //   specified for it (not even void). The address of a destructor
2938  //   shall not be taken. A destructor shall not be static. A
2939  //   destructor can be invoked for a const, volatile or const
2940  //   volatile object. A destructor shall not be declared const,
2941  //   volatile or const volatile (9.3.2).
2942  if (SC == FunctionDecl::Static) {
2943    if (!D.isInvalidType())
2944      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2945        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2946        << SourceRange(D.getIdentifierLoc())
2947        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2948
2949    SC = FunctionDecl::None;
2950  }
2951  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2952    // Destructors don't have return types, but the parser will
2953    // happily parse something like:
2954    //
2955    //   class X {
2956    //     float ~X();
2957    //   };
2958    //
2959    // The return type will be eliminated later.
2960    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2961      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2962      << SourceRange(D.getIdentifierLoc());
2963  }
2964
2965  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2966  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2967    if (FTI.TypeQuals & Qualifiers::Const)
2968      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2969        << "const" << SourceRange(D.getIdentifierLoc());
2970    if (FTI.TypeQuals & Qualifiers::Volatile)
2971      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2972        << "volatile" << SourceRange(D.getIdentifierLoc());
2973    if (FTI.TypeQuals & Qualifiers::Restrict)
2974      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2975        << "restrict" << SourceRange(D.getIdentifierLoc());
2976    D.setInvalidType();
2977  }
2978
2979  // Make sure we don't have any parameters.
2980  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2981    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2982
2983    // Delete the parameters.
2984    FTI.freeArgs();
2985    D.setInvalidType();
2986  }
2987
2988  // Make sure the destructor isn't variadic.
2989  if (FTI.isVariadic) {
2990    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2991    D.setInvalidType();
2992  }
2993
2994  // Rebuild the function type "R" without any type qualifiers or
2995  // parameters (in case any of the errors above fired) and with
2996  // "void" as the return type, since destructors don't have return
2997  // types.
2998  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2999  if (!Proto)
3000    return QualType();
3001
3002  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3003                                 Proto->hasExceptionSpec(),
3004                                 Proto->hasAnyExceptionSpec(),
3005                                 Proto->getNumExceptions(),
3006                                 Proto->exception_begin(),
3007                                 Proto->getExtInfo());
3008}
3009
3010/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3011/// well-formednes of the conversion function declarator @p D with
3012/// type @p R. If there are any errors in the declarator, this routine
3013/// will emit diagnostics and return true. Otherwise, it will return
3014/// false. Either way, the type @p R will be updated to reflect a
3015/// well-formed type for the conversion operator.
3016void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3017                                     FunctionDecl::StorageClass& SC) {
3018  // C++ [class.conv.fct]p1:
3019  //   Neither parameter types nor return type can be specified. The
3020  //   type of a conversion function (8.3.5) is "function taking no
3021  //   parameter returning conversion-type-id."
3022  if (SC == FunctionDecl::Static) {
3023    if (!D.isInvalidType())
3024      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3025        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3026        << SourceRange(D.getIdentifierLoc());
3027    D.setInvalidType();
3028    SC = FunctionDecl::None;
3029  }
3030
3031  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3032
3033  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3034    // Conversion functions don't have return types, but the parser will
3035    // happily parse something like:
3036    //
3037    //   class X {
3038    //     float operator bool();
3039    //   };
3040    //
3041    // The return type will be changed later anyway.
3042    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3043      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3044      << SourceRange(D.getIdentifierLoc());
3045    D.setInvalidType();
3046  }
3047
3048  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3049
3050  // Make sure we don't have any parameters.
3051  if (Proto->getNumArgs() > 0) {
3052    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3053
3054    // Delete the parameters.
3055    D.getTypeObject(0).Fun.freeArgs();
3056    D.setInvalidType();
3057  } else if (Proto->isVariadic()) {
3058    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3059    D.setInvalidType();
3060  }
3061
3062  // Diagnose "&operator bool()" and other such nonsense.  This
3063  // is actually a gcc extension which we don't support.
3064  if (Proto->getResultType() != ConvType) {
3065    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3066      << Proto->getResultType();
3067    D.setInvalidType();
3068    ConvType = Proto->getResultType();
3069  }
3070
3071  // C++ [class.conv.fct]p4:
3072  //   The conversion-type-id shall not represent a function type nor
3073  //   an array type.
3074  if (ConvType->isArrayType()) {
3075    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3076    ConvType = Context.getPointerType(ConvType);
3077    D.setInvalidType();
3078  } else if (ConvType->isFunctionType()) {
3079    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3080    ConvType = Context.getPointerType(ConvType);
3081    D.setInvalidType();
3082  }
3083
3084  // Rebuild the function type "R" without any parameters (in case any
3085  // of the errors above fired) and with the conversion type as the
3086  // return type.
3087  if (D.isInvalidType()) {
3088    R = Context.getFunctionType(ConvType, 0, 0, false,
3089                                Proto->getTypeQuals(),
3090                                Proto->hasExceptionSpec(),
3091                                Proto->hasAnyExceptionSpec(),
3092                                Proto->getNumExceptions(),
3093                                Proto->exception_begin(),
3094                                Proto->getExtInfo());
3095  }
3096
3097  // C++0x explicit conversion operators.
3098  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3099    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3100         diag::warn_explicit_conversion_functions)
3101      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3102}
3103
3104/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3105/// the declaration of the given C++ conversion function. This routine
3106/// is responsible for recording the conversion function in the C++
3107/// class, if possible.
3108Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3109  assert(Conversion && "Expected to receive a conversion function declaration");
3110
3111  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3112
3113  // Make sure we aren't redeclaring the conversion function.
3114  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3115
3116  // C++ [class.conv.fct]p1:
3117  //   [...] A conversion function is never used to convert a
3118  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3119  //   same object type (or a reference to it), to a (possibly
3120  //   cv-qualified) base class of that type (or a reference to it),
3121  //   or to (possibly cv-qualified) void.
3122  // FIXME: Suppress this warning if the conversion function ends up being a
3123  // virtual function that overrides a virtual function in a base class.
3124  QualType ClassType
3125    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3126  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3127    ConvType = ConvTypeRef->getPointeeType();
3128  if (ConvType->isRecordType()) {
3129    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3130    if (ConvType == ClassType)
3131      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3132        << ClassType;
3133    else if (IsDerivedFrom(ClassType, ConvType))
3134      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3135        <<  ClassType << ConvType;
3136  } else if (ConvType->isVoidType()) {
3137    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3138      << ClassType << ConvType;
3139  }
3140
3141  if (Conversion->getPrimaryTemplate()) {
3142    // ignore specializations
3143  } else if (Conversion->getPreviousDeclaration()) {
3144    if (FunctionTemplateDecl *ConversionTemplate
3145                                  = Conversion->getDescribedFunctionTemplate()) {
3146      if (ClassDecl->replaceConversion(
3147                                   ConversionTemplate->getPreviousDeclaration(),
3148                                       ConversionTemplate))
3149        return DeclPtrTy::make(ConversionTemplate);
3150    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3151                                            Conversion))
3152      return DeclPtrTy::make(Conversion);
3153    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3154  } else if (FunctionTemplateDecl *ConversionTemplate
3155               = Conversion->getDescribedFunctionTemplate())
3156    ClassDecl->addConversionFunction(ConversionTemplate);
3157  else
3158    ClassDecl->addConversionFunction(Conversion);
3159
3160  return DeclPtrTy::make(Conversion);
3161}
3162
3163//===----------------------------------------------------------------------===//
3164// Namespace Handling
3165//===----------------------------------------------------------------------===//
3166
3167/// ActOnStartNamespaceDef - This is called at the start of a namespace
3168/// definition.
3169Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3170                                             SourceLocation IdentLoc,
3171                                             IdentifierInfo *II,
3172                                             SourceLocation LBrace,
3173                                             AttributeList *AttrList) {
3174  NamespaceDecl *Namespc =
3175      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3176  Namespc->setLBracLoc(LBrace);
3177
3178  Scope *DeclRegionScope = NamespcScope->getParent();
3179
3180  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3181
3182  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3183    PushPragmaVisibility(attr->getVisibility());
3184
3185  if (II) {
3186    // C++ [namespace.def]p2:
3187    // The identifier in an original-namespace-definition shall not have been
3188    // previously defined in the declarative region in which the
3189    // original-namespace-definition appears. The identifier in an
3190    // original-namespace-definition is the name of the namespace. Subsequently
3191    // in that declarative region, it is treated as an original-namespace-name.
3192
3193    NamedDecl *PrevDecl
3194      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3195                         ForRedeclaration);
3196
3197    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3198      // This is an extended namespace definition.
3199      // Attach this namespace decl to the chain of extended namespace
3200      // definitions.
3201      OrigNS->setNextNamespace(Namespc);
3202      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3203
3204      // Remove the previous declaration from the scope.
3205      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3206        IdResolver.RemoveDecl(OrigNS);
3207        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3208      }
3209    } else if (PrevDecl) {
3210      // This is an invalid name redefinition.
3211      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3212       << Namespc->getDeclName();
3213      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3214      Namespc->setInvalidDecl();
3215      // Continue on to push Namespc as current DeclContext and return it.
3216    } else if (II->isStr("std") &&
3217               CurContext->getLookupContext()->isTranslationUnit()) {
3218      // This is the first "real" definition of the namespace "std", so update
3219      // our cache of the "std" namespace to point at this definition.
3220      if (NamespaceDecl *StdNS = getStdNamespace()) {
3221        // We had already defined a dummy namespace "std". Link this new
3222        // namespace definition to the dummy namespace "std".
3223        StdNS->setNextNamespace(Namespc);
3224        StdNS->setLocation(IdentLoc);
3225        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3226      }
3227
3228      // Make our StdNamespace cache point at the first real definition of the
3229      // "std" namespace.
3230      StdNamespace = Namespc;
3231    }
3232
3233    PushOnScopeChains(Namespc, DeclRegionScope);
3234  } else {
3235    // Anonymous namespaces.
3236    assert(Namespc->isAnonymousNamespace());
3237
3238    // Link the anonymous namespace into its parent.
3239    NamespaceDecl *PrevDecl;
3240    DeclContext *Parent = CurContext->getLookupContext();
3241    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3242      PrevDecl = TU->getAnonymousNamespace();
3243      TU->setAnonymousNamespace(Namespc);
3244    } else {
3245      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3246      PrevDecl = ND->getAnonymousNamespace();
3247      ND->setAnonymousNamespace(Namespc);
3248    }
3249
3250    // Link the anonymous namespace with its previous declaration.
3251    if (PrevDecl) {
3252      assert(PrevDecl->isAnonymousNamespace());
3253      assert(!PrevDecl->getNextNamespace());
3254      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3255      PrevDecl->setNextNamespace(Namespc);
3256    }
3257
3258    CurContext->addDecl(Namespc);
3259
3260    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3261    //   behaves as if it were replaced by
3262    //     namespace unique { /* empty body */ }
3263    //     using namespace unique;
3264    //     namespace unique { namespace-body }
3265    //   where all occurrences of 'unique' in a translation unit are
3266    //   replaced by the same identifier and this identifier differs
3267    //   from all other identifiers in the entire program.
3268
3269    // We just create the namespace with an empty name and then add an
3270    // implicit using declaration, just like the standard suggests.
3271    //
3272    // CodeGen enforces the "universally unique" aspect by giving all
3273    // declarations semantically contained within an anonymous
3274    // namespace internal linkage.
3275
3276    if (!PrevDecl) {
3277      UsingDirectiveDecl* UD
3278        = UsingDirectiveDecl::Create(Context, CurContext,
3279                                     /* 'using' */ LBrace,
3280                                     /* 'namespace' */ SourceLocation(),
3281                                     /* qualifier */ SourceRange(),
3282                                     /* NNS */ NULL,
3283                                     /* identifier */ SourceLocation(),
3284                                     Namespc,
3285                                     /* Ancestor */ CurContext);
3286      UD->setImplicit();
3287      CurContext->addDecl(UD);
3288    }
3289  }
3290
3291  // Although we could have an invalid decl (i.e. the namespace name is a
3292  // redefinition), push it as current DeclContext and try to continue parsing.
3293  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3294  // for the namespace has the declarations that showed up in that particular
3295  // namespace definition.
3296  PushDeclContext(NamespcScope, Namespc);
3297  return DeclPtrTy::make(Namespc);
3298}
3299
3300/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3301/// is a namespace alias, returns the namespace it points to.
3302static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3303  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3304    return AD->getNamespace();
3305  return dyn_cast_or_null<NamespaceDecl>(D);
3306}
3307
3308/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3309/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3310void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3311  Decl *Dcl = D.getAs<Decl>();
3312  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3313  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3314  Namespc->setRBracLoc(RBrace);
3315  PopDeclContext();
3316  if (Namespc->hasAttr<VisibilityAttr>())
3317    PopPragmaVisibility();
3318}
3319
3320/// \brief Retrieve the special "std" namespace, which may require us to
3321/// implicitly define the namespace.
3322NamespaceDecl *Sema::getOrCreateStdNamespace() {
3323  if (!StdNamespace) {
3324    // The "std" namespace has not yet been defined, so build one implicitly.
3325    StdNamespace = NamespaceDecl::Create(Context,
3326                                         Context.getTranslationUnitDecl(),
3327                                         SourceLocation(),
3328                                         &PP.getIdentifierTable().get("std"));
3329    getStdNamespace()->setImplicit(true);
3330  }
3331
3332  return getStdNamespace();
3333}
3334
3335Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3336                                          SourceLocation UsingLoc,
3337                                          SourceLocation NamespcLoc,
3338                                          CXXScopeSpec &SS,
3339                                          SourceLocation IdentLoc,
3340                                          IdentifierInfo *NamespcName,
3341                                          AttributeList *AttrList) {
3342  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3343  assert(NamespcName && "Invalid NamespcName.");
3344  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3345  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3346
3347  UsingDirectiveDecl *UDir = 0;
3348  NestedNameSpecifier *Qualifier = 0;
3349  if (SS.isSet())
3350    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3351
3352  // Lookup namespace name.
3353  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3354  LookupParsedName(R, S, &SS);
3355  if (R.isAmbiguous())
3356    return DeclPtrTy();
3357
3358  if (R.empty()) {
3359    // Allow "using namespace std;" or "using namespace ::std;" even if
3360    // "std" hasn't been defined yet, for GCC compatibility.
3361    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3362        NamespcName->isStr("std")) {
3363      Diag(IdentLoc, diag::ext_using_undefined_std);
3364      R.addDecl(getOrCreateStdNamespace());
3365      R.resolveKind();
3366    }
3367    // Otherwise, attempt typo correction.
3368    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3369                                                       CTC_NoKeywords, 0)) {
3370      if (R.getAsSingle<NamespaceDecl>() ||
3371          R.getAsSingle<NamespaceAliasDecl>()) {
3372        if (DeclContext *DC = computeDeclContext(SS, false))
3373          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3374            << NamespcName << DC << Corrected << SS.getRange()
3375            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3376        else
3377          Diag(IdentLoc, diag::err_using_directive_suggest)
3378            << NamespcName << Corrected
3379            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3380        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3381          << Corrected;
3382
3383        NamespcName = Corrected.getAsIdentifierInfo();
3384      } else {
3385        R.clear();
3386        R.setLookupName(NamespcName);
3387      }
3388    }
3389  }
3390
3391  if (!R.empty()) {
3392    NamedDecl *Named = R.getFoundDecl();
3393    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3394        && "expected namespace decl");
3395    // C++ [namespace.udir]p1:
3396    //   A using-directive specifies that the names in the nominated
3397    //   namespace can be used in the scope in which the
3398    //   using-directive appears after the using-directive. During
3399    //   unqualified name lookup (3.4.1), the names appear as if they
3400    //   were declared in the nearest enclosing namespace which
3401    //   contains both the using-directive and the nominated
3402    //   namespace. [Note: in this context, "contains" means "contains
3403    //   directly or indirectly". ]
3404
3405    // Find enclosing context containing both using-directive and
3406    // nominated namespace.
3407    NamespaceDecl *NS = getNamespaceDecl(Named);
3408    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3409    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3410      CommonAncestor = CommonAncestor->getParent();
3411
3412    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3413                                      SS.getRange(),
3414                                      (NestedNameSpecifier *)SS.getScopeRep(),
3415                                      IdentLoc, Named, CommonAncestor);
3416    PushUsingDirective(S, UDir);
3417  } else {
3418    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3419  }
3420
3421  // FIXME: We ignore attributes for now.
3422  delete AttrList;
3423  return DeclPtrTy::make(UDir);
3424}
3425
3426void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3427  // If scope has associated entity, then using directive is at namespace
3428  // or translation unit scope. We add UsingDirectiveDecls, into
3429  // it's lookup structure.
3430  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3431    Ctx->addDecl(UDir);
3432  else
3433    // Otherwise it is block-sope. using-directives will affect lookup
3434    // only to the end of scope.
3435    S->PushUsingDirective(DeclPtrTy::make(UDir));
3436}
3437
3438
3439Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3440                                            AccessSpecifier AS,
3441                                            bool HasUsingKeyword,
3442                                            SourceLocation UsingLoc,
3443                                            CXXScopeSpec &SS,
3444                                            UnqualifiedId &Name,
3445                                            AttributeList *AttrList,
3446                                            bool IsTypeName,
3447                                            SourceLocation TypenameLoc) {
3448  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3449
3450  switch (Name.getKind()) {
3451  case UnqualifiedId::IK_Identifier:
3452  case UnqualifiedId::IK_OperatorFunctionId:
3453  case UnqualifiedId::IK_LiteralOperatorId:
3454  case UnqualifiedId::IK_ConversionFunctionId:
3455    break;
3456
3457  case UnqualifiedId::IK_ConstructorName:
3458  case UnqualifiedId::IK_ConstructorTemplateId:
3459    // C++0x inherited constructors.
3460    if (getLangOptions().CPlusPlus0x) break;
3461
3462    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3463      << SS.getRange();
3464    return DeclPtrTy();
3465
3466  case UnqualifiedId::IK_DestructorName:
3467    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3468      << SS.getRange();
3469    return DeclPtrTy();
3470
3471  case UnqualifiedId::IK_TemplateId:
3472    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3473      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3474    return DeclPtrTy();
3475  }
3476
3477  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3478  if (!TargetName)
3479    return DeclPtrTy();
3480
3481  // Warn about using declarations.
3482  // TODO: store that the declaration was written without 'using' and
3483  // talk about access decls instead of using decls in the
3484  // diagnostics.
3485  if (!HasUsingKeyword) {
3486    UsingLoc = Name.getSourceRange().getBegin();
3487
3488    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3489      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3490  }
3491
3492  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3493                                        Name.getSourceRange().getBegin(),
3494                                        TargetName, AttrList,
3495                                        /* IsInstantiation */ false,
3496                                        IsTypeName, TypenameLoc);
3497  if (UD)
3498    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3499
3500  return DeclPtrTy::make(UD);
3501}
3502
3503/// \brief Determine whether a using declaration considers the given
3504/// declarations as "equivalent", e.g., if they are redeclarations of
3505/// the same entity or are both typedefs of the same type.
3506static bool
3507IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3508                         bool &SuppressRedeclaration) {
3509  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3510    SuppressRedeclaration = false;
3511    return true;
3512  }
3513
3514  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3515    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3516      SuppressRedeclaration = true;
3517      return Context.hasSameType(TD1->getUnderlyingType(),
3518                                 TD2->getUnderlyingType());
3519    }
3520
3521  return false;
3522}
3523
3524
3525/// Determines whether to create a using shadow decl for a particular
3526/// decl, given the set of decls existing prior to this using lookup.
3527bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3528                                const LookupResult &Previous) {
3529  // Diagnose finding a decl which is not from a base class of the
3530  // current class.  We do this now because there are cases where this
3531  // function will silently decide not to build a shadow decl, which
3532  // will pre-empt further diagnostics.
3533  //
3534  // We don't need to do this in C++0x because we do the check once on
3535  // the qualifier.
3536  //
3537  // FIXME: diagnose the following if we care enough:
3538  //   struct A { int foo; };
3539  //   struct B : A { using A::foo; };
3540  //   template <class T> struct C : A {};
3541  //   template <class T> struct D : C<T> { using B::foo; } // <---
3542  // This is invalid (during instantiation) in C++03 because B::foo
3543  // resolves to the using decl in B, which is not a base class of D<T>.
3544  // We can't diagnose it immediately because C<T> is an unknown
3545  // specialization.  The UsingShadowDecl in D<T> then points directly
3546  // to A::foo, which will look well-formed when we instantiate.
3547  // The right solution is to not collapse the shadow-decl chain.
3548  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3549    DeclContext *OrigDC = Orig->getDeclContext();
3550
3551    // Handle enums and anonymous structs.
3552    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3553    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3554    while (OrigRec->isAnonymousStructOrUnion())
3555      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3556
3557    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3558      if (OrigDC == CurContext) {
3559        Diag(Using->getLocation(),
3560             diag::err_using_decl_nested_name_specifier_is_current_class)
3561          << Using->getNestedNameRange();
3562        Diag(Orig->getLocation(), diag::note_using_decl_target);
3563        return true;
3564      }
3565
3566      Diag(Using->getNestedNameRange().getBegin(),
3567           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3568        << Using->getTargetNestedNameDecl()
3569        << cast<CXXRecordDecl>(CurContext)
3570        << Using->getNestedNameRange();
3571      Diag(Orig->getLocation(), diag::note_using_decl_target);
3572      return true;
3573    }
3574  }
3575
3576  if (Previous.empty()) return false;
3577
3578  NamedDecl *Target = Orig;
3579  if (isa<UsingShadowDecl>(Target))
3580    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3581
3582  // If the target happens to be one of the previous declarations, we
3583  // don't have a conflict.
3584  //
3585  // FIXME: but we might be increasing its access, in which case we
3586  // should redeclare it.
3587  NamedDecl *NonTag = 0, *Tag = 0;
3588  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3589         I != E; ++I) {
3590    NamedDecl *D = (*I)->getUnderlyingDecl();
3591    bool Result;
3592    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3593      return Result;
3594
3595    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3596  }
3597
3598  if (Target->isFunctionOrFunctionTemplate()) {
3599    FunctionDecl *FD;
3600    if (isa<FunctionTemplateDecl>(Target))
3601      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3602    else
3603      FD = cast<FunctionDecl>(Target);
3604
3605    NamedDecl *OldDecl = 0;
3606    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3607    case Ovl_Overload:
3608      return false;
3609
3610    case Ovl_NonFunction:
3611      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3612      break;
3613
3614    // We found a decl with the exact signature.
3615    case Ovl_Match:
3616      // If we're in a record, we want to hide the target, so we
3617      // return true (without a diagnostic) to tell the caller not to
3618      // build a shadow decl.
3619      if (CurContext->isRecord())
3620        return true;
3621
3622      // If we're not in a record, this is an error.
3623      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3624      break;
3625    }
3626
3627    Diag(Target->getLocation(), diag::note_using_decl_target);
3628    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3629    return true;
3630  }
3631
3632  // Target is not a function.
3633
3634  if (isa<TagDecl>(Target)) {
3635    // No conflict between a tag and a non-tag.
3636    if (!Tag) return false;
3637
3638    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3639    Diag(Target->getLocation(), diag::note_using_decl_target);
3640    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3641    return true;
3642  }
3643
3644  // No conflict between a tag and a non-tag.
3645  if (!NonTag) return false;
3646
3647  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3648  Diag(Target->getLocation(), diag::note_using_decl_target);
3649  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3650  return true;
3651}
3652
3653/// Builds a shadow declaration corresponding to a 'using' declaration.
3654UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3655                                            UsingDecl *UD,
3656                                            NamedDecl *Orig) {
3657
3658  // If we resolved to another shadow declaration, just coalesce them.
3659  NamedDecl *Target = Orig;
3660  if (isa<UsingShadowDecl>(Target)) {
3661    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3662    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3663  }
3664
3665  UsingShadowDecl *Shadow
3666    = UsingShadowDecl::Create(Context, CurContext,
3667                              UD->getLocation(), UD, Target);
3668  UD->addShadowDecl(Shadow);
3669
3670  if (S)
3671    PushOnScopeChains(Shadow, S);
3672  else
3673    CurContext->addDecl(Shadow);
3674  Shadow->setAccess(UD->getAccess());
3675
3676  // Register it as a conversion if appropriate.
3677  if (Shadow->getDeclName().getNameKind()
3678        == DeclarationName::CXXConversionFunctionName)
3679    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3680
3681  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3682    Shadow->setInvalidDecl();
3683
3684  return Shadow;
3685}
3686
3687/// Hides a using shadow declaration.  This is required by the current
3688/// using-decl implementation when a resolvable using declaration in a
3689/// class is followed by a declaration which would hide or override
3690/// one or more of the using decl's targets; for example:
3691///
3692///   struct Base { void foo(int); };
3693///   struct Derived : Base {
3694///     using Base::foo;
3695///     void foo(int);
3696///   };
3697///
3698/// The governing language is C++03 [namespace.udecl]p12:
3699///
3700///   When a using-declaration brings names from a base class into a
3701///   derived class scope, member functions in the derived class
3702///   override and/or hide member functions with the same name and
3703///   parameter types in a base class (rather than conflicting).
3704///
3705/// There are two ways to implement this:
3706///   (1) optimistically create shadow decls when they're not hidden
3707///       by existing declarations, or
3708///   (2) don't create any shadow decls (or at least don't make them
3709///       visible) until we've fully parsed/instantiated the class.
3710/// The problem with (1) is that we might have to retroactively remove
3711/// a shadow decl, which requires several O(n) operations because the
3712/// decl structures are (very reasonably) not designed for removal.
3713/// (2) avoids this but is very fiddly and phase-dependent.
3714void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3715  if (Shadow->getDeclName().getNameKind() ==
3716        DeclarationName::CXXConversionFunctionName)
3717    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3718
3719  // Remove it from the DeclContext...
3720  Shadow->getDeclContext()->removeDecl(Shadow);
3721
3722  // ...and the scope, if applicable...
3723  if (S) {
3724    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3725    IdResolver.RemoveDecl(Shadow);
3726  }
3727
3728  // ...and the using decl.
3729  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3730
3731  // TODO: complain somehow if Shadow was used.  It shouldn't
3732  // be possible for this to happen, because...?
3733}
3734
3735/// Builds a using declaration.
3736///
3737/// \param IsInstantiation - Whether this call arises from an
3738///   instantiation of an unresolved using declaration.  We treat
3739///   the lookup differently for these declarations.
3740NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3741                                       SourceLocation UsingLoc,
3742                                       CXXScopeSpec &SS,
3743                                       SourceLocation IdentLoc,
3744                                       DeclarationName Name,
3745                                       AttributeList *AttrList,
3746                                       bool IsInstantiation,
3747                                       bool IsTypeName,
3748                                       SourceLocation TypenameLoc) {
3749  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3750  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3751
3752  // FIXME: We ignore attributes for now.
3753  delete AttrList;
3754
3755  if (SS.isEmpty()) {
3756    Diag(IdentLoc, diag::err_using_requires_qualname);
3757    return 0;
3758  }
3759
3760  // Do the redeclaration lookup in the current scope.
3761  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3762                        ForRedeclaration);
3763  Previous.setHideTags(false);
3764  if (S) {
3765    LookupName(Previous, S);
3766
3767    // It is really dumb that we have to do this.
3768    LookupResult::Filter F = Previous.makeFilter();
3769    while (F.hasNext()) {
3770      NamedDecl *D = F.next();
3771      if (!isDeclInScope(D, CurContext, S))
3772        F.erase();
3773    }
3774    F.done();
3775  } else {
3776    assert(IsInstantiation && "no scope in non-instantiation");
3777    assert(CurContext->isRecord() && "scope not record in instantiation");
3778    LookupQualifiedName(Previous, CurContext);
3779  }
3780
3781  NestedNameSpecifier *NNS =
3782    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3783
3784  // Check for invalid redeclarations.
3785  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3786    return 0;
3787
3788  // Check for bad qualifiers.
3789  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3790    return 0;
3791
3792  DeclContext *LookupContext = computeDeclContext(SS);
3793  NamedDecl *D;
3794  if (!LookupContext) {
3795    if (IsTypeName) {
3796      // FIXME: not all declaration name kinds are legal here
3797      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3798                                              UsingLoc, TypenameLoc,
3799                                              SS.getRange(), NNS,
3800                                              IdentLoc, Name);
3801    } else {
3802      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3803                                           UsingLoc, SS.getRange(), NNS,
3804                                           IdentLoc, Name);
3805    }
3806  } else {
3807    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3808                          SS.getRange(), UsingLoc, NNS, Name,
3809                          IsTypeName);
3810  }
3811  D->setAccess(AS);
3812  CurContext->addDecl(D);
3813
3814  if (!LookupContext) return D;
3815  UsingDecl *UD = cast<UsingDecl>(D);
3816
3817  if (RequireCompleteDeclContext(SS, LookupContext)) {
3818    UD->setInvalidDecl();
3819    return UD;
3820  }
3821
3822  // Look up the target name.
3823
3824  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3825
3826  // Unlike most lookups, we don't always want to hide tag
3827  // declarations: tag names are visible through the using declaration
3828  // even if hidden by ordinary names, *except* in a dependent context
3829  // where it's important for the sanity of two-phase lookup.
3830  if (!IsInstantiation)
3831    R.setHideTags(false);
3832
3833  LookupQualifiedName(R, LookupContext);
3834
3835  if (R.empty()) {
3836    Diag(IdentLoc, diag::err_no_member)
3837      << Name << LookupContext << SS.getRange();
3838    UD->setInvalidDecl();
3839    return UD;
3840  }
3841
3842  if (R.isAmbiguous()) {
3843    UD->setInvalidDecl();
3844    return UD;
3845  }
3846
3847  if (IsTypeName) {
3848    // If we asked for a typename and got a non-type decl, error out.
3849    if (!R.getAsSingle<TypeDecl>()) {
3850      Diag(IdentLoc, diag::err_using_typename_non_type);
3851      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3852        Diag((*I)->getUnderlyingDecl()->getLocation(),
3853             diag::note_using_decl_target);
3854      UD->setInvalidDecl();
3855      return UD;
3856    }
3857  } else {
3858    // If we asked for a non-typename and we got a type, error out,
3859    // but only if this is an instantiation of an unresolved using
3860    // decl.  Otherwise just silently find the type name.
3861    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3862      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3863      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3864      UD->setInvalidDecl();
3865      return UD;
3866    }
3867  }
3868
3869  // C++0x N2914 [namespace.udecl]p6:
3870  // A using-declaration shall not name a namespace.
3871  if (R.getAsSingle<NamespaceDecl>()) {
3872    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3873      << SS.getRange();
3874    UD->setInvalidDecl();
3875    return UD;
3876  }
3877
3878  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3879    if (!CheckUsingShadowDecl(UD, *I, Previous))
3880      BuildUsingShadowDecl(S, UD, *I);
3881  }
3882
3883  return UD;
3884}
3885
3886/// Checks that the given using declaration is not an invalid
3887/// redeclaration.  Note that this is checking only for the using decl
3888/// itself, not for any ill-formedness among the UsingShadowDecls.
3889bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3890                                       bool isTypeName,
3891                                       const CXXScopeSpec &SS,
3892                                       SourceLocation NameLoc,
3893                                       const LookupResult &Prev) {
3894  // C++03 [namespace.udecl]p8:
3895  // C++0x [namespace.udecl]p10:
3896  //   A using-declaration is a declaration and can therefore be used
3897  //   repeatedly where (and only where) multiple declarations are
3898  //   allowed.
3899  //
3900  // That's in non-member contexts.
3901  if (!CurContext->getLookupContext()->isRecord())
3902    return false;
3903
3904  NestedNameSpecifier *Qual
3905    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3906
3907  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3908    NamedDecl *D = *I;
3909
3910    bool DTypename;
3911    NestedNameSpecifier *DQual;
3912    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3913      DTypename = UD->isTypeName();
3914      DQual = UD->getTargetNestedNameDecl();
3915    } else if (UnresolvedUsingValueDecl *UD
3916                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3917      DTypename = false;
3918      DQual = UD->getTargetNestedNameSpecifier();
3919    } else if (UnresolvedUsingTypenameDecl *UD
3920                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3921      DTypename = true;
3922      DQual = UD->getTargetNestedNameSpecifier();
3923    } else continue;
3924
3925    // using decls differ if one says 'typename' and the other doesn't.
3926    // FIXME: non-dependent using decls?
3927    if (isTypeName != DTypename) continue;
3928
3929    // using decls differ if they name different scopes (but note that
3930    // template instantiation can cause this check to trigger when it
3931    // didn't before instantiation).
3932    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3933        Context.getCanonicalNestedNameSpecifier(DQual))
3934      continue;
3935
3936    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3937    Diag(D->getLocation(), diag::note_using_decl) << 1;
3938    return true;
3939  }
3940
3941  return false;
3942}
3943
3944
3945/// Checks that the given nested-name qualifier used in a using decl
3946/// in the current context is appropriately related to the current
3947/// scope.  If an error is found, diagnoses it and returns true.
3948bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3949                                   const CXXScopeSpec &SS,
3950                                   SourceLocation NameLoc) {
3951  DeclContext *NamedContext = computeDeclContext(SS);
3952
3953  if (!CurContext->isRecord()) {
3954    // C++03 [namespace.udecl]p3:
3955    // C++0x [namespace.udecl]p8:
3956    //   A using-declaration for a class member shall be a member-declaration.
3957
3958    // If we weren't able to compute a valid scope, it must be a
3959    // dependent class scope.
3960    if (!NamedContext || NamedContext->isRecord()) {
3961      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3962        << SS.getRange();
3963      return true;
3964    }
3965
3966    // Otherwise, everything is known to be fine.
3967    return false;
3968  }
3969
3970  // The current scope is a record.
3971
3972  // If the named context is dependent, we can't decide much.
3973  if (!NamedContext) {
3974    // FIXME: in C++0x, we can diagnose if we can prove that the
3975    // nested-name-specifier does not refer to a base class, which is
3976    // still possible in some cases.
3977
3978    // Otherwise we have to conservatively report that things might be
3979    // okay.
3980    return false;
3981  }
3982
3983  if (!NamedContext->isRecord()) {
3984    // Ideally this would point at the last name in the specifier,
3985    // but we don't have that level of source info.
3986    Diag(SS.getRange().getBegin(),
3987         diag::err_using_decl_nested_name_specifier_is_not_class)
3988      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3989    return true;
3990  }
3991
3992  if (getLangOptions().CPlusPlus0x) {
3993    // C++0x [namespace.udecl]p3:
3994    //   In a using-declaration used as a member-declaration, the
3995    //   nested-name-specifier shall name a base class of the class
3996    //   being defined.
3997
3998    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3999                                 cast<CXXRecordDecl>(NamedContext))) {
4000      if (CurContext == NamedContext) {
4001        Diag(NameLoc,
4002             diag::err_using_decl_nested_name_specifier_is_current_class)
4003          << SS.getRange();
4004        return true;
4005      }
4006
4007      Diag(SS.getRange().getBegin(),
4008           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4009        << (NestedNameSpecifier*) SS.getScopeRep()
4010        << cast<CXXRecordDecl>(CurContext)
4011        << SS.getRange();
4012      return true;
4013    }
4014
4015    return false;
4016  }
4017
4018  // C++03 [namespace.udecl]p4:
4019  //   A using-declaration used as a member-declaration shall refer
4020  //   to a member of a base class of the class being defined [etc.].
4021
4022  // Salient point: SS doesn't have to name a base class as long as
4023  // lookup only finds members from base classes.  Therefore we can
4024  // diagnose here only if we can prove that that can't happen,
4025  // i.e. if the class hierarchies provably don't intersect.
4026
4027  // TODO: it would be nice if "definitely valid" results were cached
4028  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4029  // need to be repeated.
4030
4031  struct UserData {
4032    llvm::DenseSet<const CXXRecordDecl*> Bases;
4033
4034    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4035      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4036      Data->Bases.insert(Base);
4037      return true;
4038    }
4039
4040    bool hasDependentBases(const CXXRecordDecl *Class) {
4041      return !Class->forallBases(collect, this);
4042    }
4043
4044    /// Returns true if the base is dependent or is one of the
4045    /// accumulated base classes.
4046    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4047      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4048      return !Data->Bases.count(Base);
4049    }
4050
4051    bool mightShareBases(const CXXRecordDecl *Class) {
4052      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4053    }
4054  };
4055
4056  UserData Data;
4057
4058  // Returns false if we find a dependent base.
4059  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4060    return false;
4061
4062  // Returns false if the class has a dependent base or if it or one
4063  // of its bases is present in the base set of the current context.
4064  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4065    return false;
4066
4067  Diag(SS.getRange().getBegin(),
4068       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4069    << (NestedNameSpecifier*) SS.getScopeRep()
4070    << cast<CXXRecordDecl>(CurContext)
4071    << SS.getRange();
4072
4073  return true;
4074}
4075
4076Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4077                                             SourceLocation NamespaceLoc,
4078                                             SourceLocation AliasLoc,
4079                                             IdentifierInfo *Alias,
4080                                             CXXScopeSpec &SS,
4081                                             SourceLocation IdentLoc,
4082                                             IdentifierInfo *Ident) {
4083
4084  // Lookup the namespace name.
4085  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4086  LookupParsedName(R, S, &SS);
4087
4088  // Check if we have a previous declaration with the same name.
4089  NamedDecl *PrevDecl
4090    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4091                       ForRedeclaration);
4092  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4093    PrevDecl = 0;
4094
4095  if (PrevDecl) {
4096    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4097      // We already have an alias with the same name that points to the same
4098      // namespace, so don't create a new one.
4099      // FIXME: At some point, we'll want to create the (redundant)
4100      // declaration to maintain better source information.
4101      if (!R.isAmbiguous() && !R.empty() &&
4102          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4103        return DeclPtrTy();
4104    }
4105
4106    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4107      diag::err_redefinition_different_kind;
4108    Diag(AliasLoc, DiagID) << Alias;
4109    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4110    return DeclPtrTy();
4111  }
4112
4113  if (R.isAmbiguous())
4114    return DeclPtrTy();
4115
4116  if (R.empty()) {
4117    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4118                                                CTC_NoKeywords, 0)) {
4119      if (R.getAsSingle<NamespaceDecl>() ||
4120          R.getAsSingle<NamespaceAliasDecl>()) {
4121        if (DeclContext *DC = computeDeclContext(SS, false))
4122          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4123            << Ident << DC << Corrected << SS.getRange()
4124            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4125        else
4126          Diag(IdentLoc, diag::err_using_directive_suggest)
4127            << Ident << Corrected
4128            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4129
4130        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4131          << Corrected;
4132
4133        Ident = Corrected.getAsIdentifierInfo();
4134      } else {
4135        R.clear();
4136        R.setLookupName(Ident);
4137      }
4138    }
4139
4140    if (R.empty()) {
4141      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4142      return DeclPtrTy();
4143    }
4144  }
4145
4146  NamespaceAliasDecl *AliasDecl =
4147    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4148                               Alias, SS.getRange(),
4149                               (NestedNameSpecifier *)SS.getScopeRep(),
4150                               IdentLoc, R.getFoundDecl());
4151
4152  PushOnScopeChains(AliasDecl, S);
4153  return DeclPtrTy::make(AliasDecl);
4154}
4155
4156namespace {
4157  /// \brief Scoped object used to handle the state changes required in Sema
4158  /// to implicitly define the body of a C++ member function;
4159  class ImplicitlyDefinedFunctionScope {
4160    Sema &S;
4161    DeclContext *PreviousContext;
4162
4163  public:
4164    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4165      : S(S), PreviousContext(S.CurContext)
4166    {
4167      S.CurContext = Method;
4168      S.PushFunctionScope();
4169      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4170    }
4171
4172    ~ImplicitlyDefinedFunctionScope() {
4173      S.PopExpressionEvaluationContext();
4174      S.PopFunctionOrBlockScope();
4175      S.CurContext = PreviousContext;
4176    }
4177  };
4178}
4179
4180CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4181                                                     CXXRecordDecl *ClassDecl) {
4182  // C++ [class.ctor]p5:
4183  //   A default constructor for a class X is a constructor of class X
4184  //   that can be called without an argument. If there is no
4185  //   user-declared constructor for class X, a default constructor is
4186  //   implicitly declared. An implicitly-declared default constructor
4187  //   is an inline public member of its class.
4188  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4189         "Should not build implicit default constructor!");
4190
4191  // C++ [except.spec]p14:
4192  //   An implicitly declared special member function (Clause 12) shall have an
4193  //   exception-specification. [...]
4194  ImplicitExceptionSpecification ExceptSpec(Context);
4195
4196  // Direct base-class destructors.
4197  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4198                                       BEnd = ClassDecl->bases_end();
4199       B != BEnd; ++B) {
4200    if (B->isVirtual()) // Handled below.
4201      continue;
4202
4203    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4204      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4205      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4206        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4207      else if (CXXConstructorDecl *Constructor
4208                                       = BaseClassDecl->getDefaultConstructor())
4209        ExceptSpec.CalledDecl(Constructor);
4210    }
4211  }
4212
4213  // Virtual base-class destructors.
4214  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4215                                       BEnd = ClassDecl->vbases_end();
4216       B != BEnd; ++B) {
4217    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4218      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4219      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4220        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4221      else if (CXXConstructorDecl *Constructor
4222                                       = BaseClassDecl->getDefaultConstructor())
4223        ExceptSpec.CalledDecl(Constructor);
4224    }
4225  }
4226
4227  // Field destructors.
4228  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4229                               FEnd = ClassDecl->field_end();
4230       F != FEnd; ++F) {
4231    if (const RecordType *RecordTy
4232              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4233      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4234      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4235        ExceptSpec.CalledDecl(
4236                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4237      else if (CXXConstructorDecl *Constructor
4238                                      = FieldClassDecl->getDefaultConstructor())
4239        ExceptSpec.CalledDecl(Constructor);
4240    }
4241  }
4242
4243
4244  // Create the actual constructor declaration.
4245  CanQualType ClassType
4246    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4247  DeclarationName Name
4248    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4249  CXXConstructorDecl *DefaultCon
4250    = CXXConstructorDecl::Create(Context, ClassDecl,
4251                                 ClassDecl->getLocation(), Name,
4252                                 Context.getFunctionType(Context.VoidTy,
4253                                                         0, 0, false, 0,
4254                                       ExceptSpec.hasExceptionSpecification(),
4255                                     ExceptSpec.hasAnyExceptionSpecification(),
4256                                                         ExceptSpec.size(),
4257                                                         ExceptSpec.data(),
4258                                                       FunctionType::ExtInfo()),
4259                                 /*TInfo=*/0,
4260                                 /*isExplicit=*/false,
4261                                 /*isInline=*/true,
4262                                 /*isImplicitlyDeclared=*/true);
4263  DefaultCon->setAccess(AS_public);
4264  DefaultCon->setImplicit();
4265  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4266
4267  // Note that we have declared this constructor.
4268  ClassDecl->setDeclaredDefaultConstructor(true);
4269  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4270
4271  if (Scope *S = getScopeForContext(ClassDecl))
4272    PushOnScopeChains(DefaultCon, S, false);
4273  ClassDecl->addDecl(DefaultCon);
4274
4275  return DefaultCon;
4276}
4277
4278void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4279                                            CXXConstructorDecl *Constructor) {
4280  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4281          !Constructor->isUsed(false)) &&
4282    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4283
4284  CXXRecordDecl *ClassDecl = Constructor->getParent();
4285  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4286
4287  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4288  ErrorTrap Trap(*this);
4289  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4290      Trap.hasErrorOccurred()) {
4291    Diag(CurrentLocation, diag::note_member_synthesized_at)
4292      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4293    Constructor->setInvalidDecl();
4294  } else {
4295    Constructor->setUsed();
4296    MarkVTableUsed(CurrentLocation, ClassDecl);
4297  }
4298}
4299
4300CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4301  // C++ [class.dtor]p2:
4302  //   If a class has no user-declared destructor, a destructor is
4303  //   declared implicitly. An implicitly-declared destructor is an
4304  //   inline public member of its class.
4305
4306  // C++ [except.spec]p14:
4307  //   An implicitly declared special member function (Clause 12) shall have
4308  //   an exception-specification.
4309  ImplicitExceptionSpecification ExceptSpec(Context);
4310
4311  // Direct base-class destructors.
4312  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4313                                       BEnd = ClassDecl->bases_end();
4314       B != BEnd; ++B) {
4315    if (B->isVirtual()) // Handled below.
4316      continue;
4317
4318    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4319      ExceptSpec.CalledDecl(
4320                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4321  }
4322
4323  // Virtual base-class destructors.
4324  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4325                                       BEnd = ClassDecl->vbases_end();
4326       B != BEnd; ++B) {
4327    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4328      ExceptSpec.CalledDecl(
4329                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4330  }
4331
4332  // Field destructors.
4333  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4334                               FEnd = ClassDecl->field_end();
4335       F != FEnd; ++F) {
4336    if (const RecordType *RecordTy
4337        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4338      ExceptSpec.CalledDecl(
4339                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4340  }
4341
4342  // Create the actual destructor declaration.
4343  QualType Ty = Context.getFunctionType(Context.VoidTy,
4344                                        0, 0, false, 0,
4345                                        ExceptSpec.hasExceptionSpecification(),
4346                                    ExceptSpec.hasAnyExceptionSpecification(),
4347                                        ExceptSpec.size(),
4348                                        ExceptSpec.data(),
4349                                        FunctionType::ExtInfo());
4350
4351  CanQualType ClassType
4352    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4353  DeclarationName Name
4354    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4355  CXXDestructorDecl *Destructor
4356    = CXXDestructorDecl::Create(Context, ClassDecl,
4357                                ClassDecl->getLocation(), Name, Ty,
4358                                /*isInline=*/true,
4359                                /*isImplicitlyDeclared=*/true);
4360  Destructor->setAccess(AS_public);
4361  Destructor->setImplicit();
4362  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4363
4364  // Note that we have declared this destructor.
4365  ClassDecl->setDeclaredDestructor(true);
4366  ++ASTContext::NumImplicitDestructorsDeclared;
4367
4368  // Introduce this destructor into its scope.
4369  if (Scope *S = getScopeForContext(ClassDecl))
4370    PushOnScopeChains(Destructor, S, false);
4371  ClassDecl->addDecl(Destructor);
4372
4373  // This could be uniqued if it ever proves significant.
4374  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4375
4376  AddOverriddenMethods(ClassDecl, Destructor);
4377
4378  return Destructor;
4379}
4380
4381void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4382                                    CXXDestructorDecl *Destructor) {
4383  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4384         "DefineImplicitDestructor - call it for implicit default dtor");
4385  CXXRecordDecl *ClassDecl = Destructor->getParent();
4386  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4387
4388  if (Destructor->isInvalidDecl())
4389    return;
4390
4391  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4392
4393  ErrorTrap Trap(*this);
4394  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4395                                         Destructor->getParent());
4396
4397  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4398    Diag(CurrentLocation, diag::note_member_synthesized_at)
4399      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4400
4401    Destructor->setInvalidDecl();
4402    return;
4403  }
4404
4405  Destructor->setUsed();
4406  MarkVTableUsed(CurrentLocation, ClassDecl);
4407}
4408
4409/// \brief Builds a statement that copies the given entity from \p From to
4410/// \c To.
4411///
4412/// This routine is used to copy the members of a class with an
4413/// implicitly-declared copy assignment operator. When the entities being
4414/// copied are arrays, this routine builds for loops to copy them.
4415///
4416/// \param S The Sema object used for type-checking.
4417///
4418/// \param Loc The location where the implicit copy is being generated.
4419///
4420/// \param T The type of the expressions being copied. Both expressions must
4421/// have this type.
4422///
4423/// \param To The expression we are copying to.
4424///
4425/// \param From The expression we are copying from.
4426///
4427/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4428/// Otherwise, it's a non-static member subobject.
4429///
4430/// \param Depth Internal parameter recording the depth of the recursion.
4431///
4432/// \returns A statement or a loop that copies the expressions.
4433static Sema::OwningStmtResult
4434BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4435                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4436                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4437  typedef Sema::OwningStmtResult OwningStmtResult;
4438  typedef Sema::OwningExprResult OwningExprResult;
4439
4440  // C++0x [class.copy]p30:
4441  //   Each subobject is assigned in the manner appropriate to its type:
4442  //
4443  //     - if the subobject is of class type, the copy assignment operator
4444  //       for the class is used (as if by explicit qualification; that is,
4445  //       ignoring any possible virtual overriding functions in more derived
4446  //       classes);
4447  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4448    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4449
4450    // Look for operator=.
4451    DeclarationName Name
4452      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4453    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4454    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4455
4456    // Filter out any result that isn't a copy-assignment operator.
4457    LookupResult::Filter F = OpLookup.makeFilter();
4458    while (F.hasNext()) {
4459      NamedDecl *D = F.next();
4460      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4461        if (Method->isCopyAssignmentOperator())
4462          continue;
4463
4464      F.erase();
4465    }
4466    F.done();
4467
4468    // Suppress the protected check (C++ [class.protected]) for each of the
4469    // assignment operators we found. This strange dance is required when
4470    // we're assigning via a base classes's copy-assignment operator. To
4471    // ensure that we're getting the right base class subobject (without
4472    // ambiguities), we need to cast "this" to that subobject type; to
4473    // ensure that we don't go through the virtual call mechanism, we need
4474    // to qualify the operator= name with the base class (see below). However,
4475    // this means that if the base class has a protected copy assignment
4476    // operator, the protected member access check will fail. So, we
4477    // rewrite "protected" access to "public" access in this case, since we
4478    // know by construction that we're calling from a derived class.
4479    if (CopyingBaseSubobject) {
4480      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4481           L != LEnd; ++L) {
4482        if (L.getAccess() == AS_protected)
4483          L.setAccess(AS_public);
4484      }
4485    }
4486
4487    // Create the nested-name-specifier that will be used to qualify the
4488    // reference to operator=; this is required to suppress the virtual
4489    // call mechanism.
4490    CXXScopeSpec SS;
4491    SS.setRange(Loc);
4492    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4493                                               T.getTypePtr()));
4494
4495    // Create the reference to operator=.
4496    OwningExprResult OpEqualRef
4497      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4498                                   /*FirstQualifierInScope=*/0, OpLookup,
4499                                   /*TemplateArgs=*/0,
4500                                   /*SuppressQualifierCheck=*/true);
4501    if (OpEqualRef.isInvalid())
4502      return S.StmtError();
4503
4504    // Build the call to the assignment operator.
4505    Expr *FromE = From.takeAs<Expr>();
4506    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4507                                                      OpEqualRef.takeAs<Expr>(),
4508                                                        Loc, &FromE, 1, 0, Loc);
4509    if (Call.isInvalid())
4510      return S.StmtError();
4511
4512    return S.Owned(Call.takeAs<Stmt>());
4513  }
4514
4515  //     - if the subobject is of scalar type, the built-in assignment
4516  //       operator is used.
4517  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4518  if (!ArrayTy) {
4519    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4520                                                       BinaryOperator::Assign,
4521                                                       To.takeAs<Expr>(),
4522                                                       From.takeAs<Expr>());
4523    if (Assignment.isInvalid())
4524      return S.StmtError();
4525
4526    return S.Owned(Assignment.takeAs<Stmt>());
4527  }
4528
4529  //     - if the subobject is an array, each element is assigned, in the
4530  //       manner appropriate to the element type;
4531
4532  // Construct a loop over the array bounds, e.g.,
4533  //
4534  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4535  //
4536  // that will copy each of the array elements.
4537  QualType SizeType = S.Context.getSizeType();
4538
4539  // Create the iteration variable.
4540  IdentifierInfo *IterationVarName = 0;
4541  {
4542    llvm::SmallString<8> Str;
4543    llvm::raw_svector_ostream OS(Str);
4544    OS << "__i" << Depth;
4545    IterationVarName = &S.Context.Idents.get(OS.str());
4546  }
4547  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4548                                          IterationVarName, SizeType,
4549                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4550                                          VarDecl::None, VarDecl::None);
4551
4552  // Initialize the iteration variable to zero.
4553  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4554  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4555
4556  // Create a reference to the iteration variable; we'll use this several
4557  // times throughout.
4558  Expr *IterationVarRef
4559    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4560  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4561
4562  // Create the DeclStmt that holds the iteration variable.
4563  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4564
4565  // Create the comparison against the array bound.
4566  llvm::APInt Upper = ArrayTy->getSize();
4567  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4568  OwningExprResult Comparison
4569    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4570                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4571                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4572
4573  // Create the pre-increment of the iteration variable.
4574  OwningExprResult Increment
4575    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4576                                            UnaryOperator::PreInc,
4577                                            SizeType, Loc));
4578
4579  // Subscript the "from" and "to" expressions with the iteration variable.
4580  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4581                                           S.Owned(IterationVarRef->Retain()),
4582                                           Loc);
4583  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4584                                         S.Owned(IterationVarRef->Retain()),
4585                                         Loc);
4586  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4587  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4588
4589  // Build the copy for an individual element of the array.
4590  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4591                                                ArrayTy->getElementType(),
4592                                                move(To), move(From),
4593                                                CopyingBaseSubobject, Depth+1);
4594  if (Copy.isInvalid())
4595    return S.StmtError();
4596
4597  // Construct the loop that copies all elements of this array.
4598  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4599                        S.MakeFullExpr(Comparison),
4600                        Sema::DeclPtrTy(),
4601                        S.MakeFullExpr(Increment),
4602                        Loc, move(Copy));
4603}
4604
4605/// \brief Determine whether the given class has a copy assignment operator
4606/// that accepts a const-qualified argument.
4607static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4608  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4609
4610  if (!Class->hasDeclaredCopyAssignment())
4611    S.DeclareImplicitCopyAssignment(Class);
4612
4613  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4614  DeclarationName OpName
4615    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4616
4617  DeclContext::lookup_const_iterator Op, OpEnd;
4618  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4619    // C++ [class.copy]p9:
4620    //   A user-declared copy assignment operator is a non-static non-template
4621    //   member function of class X with exactly one parameter of type X, X&,
4622    //   const X&, volatile X& or const volatile X&.
4623    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4624    if (!Method)
4625      continue;
4626
4627    if (Method->isStatic())
4628      continue;
4629    if (Method->getPrimaryTemplate())
4630      continue;
4631    const FunctionProtoType *FnType =
4632    Method->getType()->getAs<FunctionProtoType>();
4633    assert(FnType && "Overloaded operator has no prototype.");
4634    // Don't assert on this; an invalid decl might have been left in the AST.
4635    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4636      continue;
4637    bool AcceptsConst = true;
4638    QualType ArgType = FnType->getArgType(0);
4639    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4640      ArgType = Ref->getPointeeType();
4641      // Is it a non-const lvalue reference?
4642      if (!ArgType.isConstQualified())
4643        AcceptsConst = false;
4644    }
4645    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4646      continue;
4647
4648    // We have a single argument of type cv X or cv X&, i.e. we've found the
4649    // copy assignment operator. Return whether it accepts const arguments.
4650    return AcceptsConst;
4651  }
4652  assert(Class->isInvalidDecl() &&
4653         "No copy assignment operator declared in valid code.");
4654  return false;
4655}
4656
4657CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4658  // Note: The following rules are largely analoguous to the copy
4659  // constructor rules. Note that virtual bases are not taken into account
4660  // for determining the argument type of the operator. Note also that
4661  // operators taking an object instead of a reference are allowed.
4662
4663
4664  // C++ [class.copy]p10:
4665  //   If the class definition does not explicitly declare a copy
4666  //   assignment operator, one is declared implicitly.
4667  //   The implicitly-defined copy assignment operator for a class X
4668  //   will have the form
4669  //
4670  //       X& X::operator=(const X&)
4671  //
4672  //   if
4673  bool HasConstCopyAssignment = true;
4674
4675  //       -- each direct base class B of X has a copy assignment operator
4676  //          whose parameter is of type const B&, const volatile B& or B,
4677  //          and
4678  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4679                                       BaseEnd = ClassDecl->bases_end();
4680       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4681    assert(!Base->getType()->isDependentType() &&
4682           "Cannot generate implicit members for class with dependent bases.");
4683    const CXXRecordDecl *BaseClassDecl
4684      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4685    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4686  }
4687
4688  //       -- for all the nonstatic data members of X that are of a class
4689  //          type M (or array thereof), each such class type has a copy
4690  //          assignment operator whose parameter is of type const M&,
4691  //          const volatile M& or M.
4692  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4693                                  FieldEnd = ClassDecl->field_end();
4694       HasConstCopyAssignment && Field != FieldEnd;
4695       ++Field) {
4696    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4697    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4698      const CXXRecordDecl *FieldClassDecl
4699        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4700      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4701    }
4702  }
4703
4704  //   Otherwise, the implicitly declared copy assignment operator will
4705  //   have the form
4706  //
4707  //       X& X::operator=(X&)
4708  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4709  QualType RetType = Context.getLValueReferenceType(ArgType);
4710  if (HasConstCopyAssignment)
4711    ArgType = ArgType.withConst();
4712  ArgType = Context.getLValueReferenceType(ArgType);
4713
4714  // C++ [except.spec]p14:
4715  //   An implicitly declared special member function (Clause 12) shall have an
4716  //   exception-specification. [...]
4717  ImplicitExceptionSpecification ExceptSpec(Context);
4718  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4719                                       BaseEnd = ClassDecl->bases_end();
4720       Base != BaseEnd; ++Base) {
4721    CXXRecordDecl *BaseClassDecl
4722      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4723
4724    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4725      DeclareImplicitCopyAssignment(BaseClassDecl);
4726
4727    if (CXXMethodDecl *CopyAssign
4728           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4729      ExceptSpec.CalledDecl(CopyAssign);
4730  }
4731  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4732                                  FieldEnd = ClassDecl->field_end();
4733       Field != FieldEnd;
4734       ++Field) {
4735    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4736    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4737      CXXRecordDecl *FieldClassDecl
4738        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4739
4740      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4741        DeclareImplicitCopyAssignment(FieldClassDecl);
4742
4743      if (CXXMethodDecl *CopyAssign
4744            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4745        ExceptSpec.CalledDecl(CopyAssign);
4746    }
4747  }
4748
4749  //   An implicitly-declared copy assignment operator is an inline public
4750  //   member of its class.
4751  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4752  CXXMethodDecl *CopyAssignment
4753    = CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
4754                            Context.getFunctionType(RetType, &ArgType, 1,
4755                                                    false, 0,
4756                                         ExceptSpec.hasExceptionSpecification(),
4757                                      ExceptSpec.hasAnyExceptionSpecification(),
4758                                                    ExceptSpec.size(),
4759                                                    ExceptSpec.data(),
4760                                                    FunctionType::ExtInfo()),
4761                            /*TInfo=*/0, /*isStatic=*/false,
4762                            /*StorageClassAsWritten=*/FunctionDecl::None,
4763                            /*isInline=*/true);
4764  CopyAssignment->setAccess(AS_public);
4765  CopyAssignment->setImplicit();
4766  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4767  CopyAssignment->setCopyAssignment(true);
4768
4769  // Add the parameter to the operator.
4770  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4771                                               ClassDecl->getLocation(),
4772                                               /*Id=*/0,
4773                                               ArgType, /*TInfo=*/0,
4774                                               VarDecl::None,
4775                                               VarDecl::None, 0);
4776  CopyAssignment->setParams(&FromParam, 1);
4777
4778  // Note that we have added this copy-assignment operator.
4779  ClassDecl->setDeclaredCopyAssignment(true);
4780  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4781
4782  if (Scope *S = getScopeForContext(ClassDecl))
4783    PushOnScopeChains(CopyAssignment, S, false);
4784  ClassDecl->addDecl(CopyAssignment);
4785
4786  AddOverriddenMethods(ClassDecl, CopyAssignment);
4787  return CopyAssignment;
4788}
4789
4790void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4791                                        CXXMethodDecl *CopyAssignOperator) {
4792  assert((CopyAssignOperator->isImplicit() &&
4793          CopyAssignOperator->isOverloadedOperator() &&
4794          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4795          !CopyAssignOperator->isUsed(false)) &&
4796         "DefineImplicitCopyAssignment called for wrong function");
4797
4798  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4799
4800  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4801    CopyAssignOperator->setInvalidDecl();
4802    return;
4803  }
4804
4805  CopyAssignOperator->setUsed();
4806
4807  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4808  ErrorTrap Trap(*this);
4809
4810  // C++0x [class.copy]p30:
4811  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4812  //   for a non-union class X performs memberwise copy assignment of its
4813  //   subobjects. The direct base classes of X are assigned first, in the
4814  //   order of their declaration in the base-specifier-list, and then the
4815  //   immediate non-static data members of X are assigned, in the order in
4816  //   which they were declared in the class definition.
4817
4818  // The statements that form the synthesized function body.
4819  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4820
4821  // The parameter for the "other" object, which we are copying from.
4822  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4823  Qualifiers OtherQuals = Other->getType().getQualifiers();
4824  QualType OtherRefType = Other->getType();
4825  if (const LValueReferenceType *OtherRef
4826                                = OtherRefType->getAs<LValueReferenceType>()) {
4827    OtherRefType = OtherRef->getPointeeType();
4828    OtherQuals = OtherRefType.getQualifiers();
4829  }
4830
4831  // Our location for everything implicitly-generated.
4832  SourceLocation Loc = CopyAssignOperator->getLocation();
4833
4834  // Construct a reference to the "other" object. We'll be using this
4835  // throughout the generated ASTs.
4836  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4837  assert(OtherRef && "Reference to parameter cannot fail!");
4838
4839  // Construct the "this" pointer. We'll be using this throughout the generated
4840  // ASTs.
4841  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4842  assert(This && "Reference to this cannot fail!");
4843
4844  // Assign base classes.
4845  bool Invalid = false;
4846  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4847       E = ClassDecl->bases_end(); Base != E; ++Base) {
4848    // Form the assignment:
4849    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4850    QualType BaseType = Base->getType().getUnqualifiedType();
4851    CXXRecordDecl *BaseClassDecl = 0;
4852    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4853      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4854    else {
4855      Invalid = true;
4856      continue;
4857    }
4858
4859    // Construct the "from" expression, which is an implicit cast to the
4860    // appropriately-qualified base type.
4861    Expr *From = OtherRef->Retain();
4862    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4863                      CastExpr::CK_UncheckedDerivedToBase,
4864                      ImplicitCastExpr::LValue, CXXBaseSpecifierArray(Base));
4865
4866    // Dereference "this".
4867    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4868                                               Owned(This->Retain()));
4869
4870    // Implicitly cast "this" to the appropriately-qualified base type.
4871    Expr *ToE = To.takeAs<Expr>();
4872    ImpCastExprToType(ToE,
4873                      Context.getCVRQualifiedType(BaseType,
4874                                      CopyAssignOperator->getTypeQualifiers()),
4875                      CastExpr::CK_UncheckedDerivedToBase,
4876                      ImplicitCastExpr::LValue, CXXBaseSpecifierArray(Base));
4877    To = Owned(ToE);
4878
4879    // Build the copy.
4880    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4881                                                  move(To), Owned(From),
4882                                                /*CopyingBaseSubobject=*/true);
4883    if (Copy.isInvalid()) {
4884      Diag(CurrentLocation, diag::note_member_synthesized_at)
4885        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4886      CopyAssignOperator->setInvalidDecl();
4887      return;
4888    }
4889
4890    // Success! Record the copy.
4891    Statements.push_back(Copy.takeAs<Expr>());
4892  }
4893
4894  // \brief Reference to the __builtin_memcpy function.
4895  Expr *BuiltinMemCpyRef = 0;
4896  // \brief Reference to the __builtin_objc_memmove_collectable function.
4897  Expr *CollectableMemCpyRef = 0;
4898
4899  // Assign non-static members.
4900  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4901                                  FieldEnd = ClassDecl->field_end();
4902       Field != FieldEnd; ++Field) {
4903    // Check for members of reference type; we can't copy those.
4904    if (Field->getType()->isReferenceType()) {
4905      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4906        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4907      Diag(Field->getLocation(), diag::note_declared_at);
4908      Diag(CurrentLocation, diag::note_member_synthesized_at)
4909        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4910      Invalid = true;
4911      continue;
4912    }
4913
4914    // Check for members of const-qualified, non-class type.
4915    QualType BaseType = Context.getBaseElementType(Field->getType());
4916    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4917      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4918        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4919      Diag(Field->getLocation(), diag::note_declared_at);
4920      Diag(CurrentLocation, diag::note_member_synthesized_at)
4921        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4922      Invalid = true;
4923      continue;
4924    }
4925
4926    QualType FieldType = Field->getType().getNonReferenceType();
4927    if (FieldType->isIncompleteArrayType()) {
4928      assert(ClassDecl->hasFlexibleArrayMember() &&
4929             "Incomplete array type is not valid");
4930      continue;
4931    }
4932
4933    // Build references to the field in the object we're copying from and to.
4934    CXXScopeSpec SS; // Intentionally empty
4935    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4936                              LookupMemberName);
4937    MemberLookup.addDecl(*Field);
4938    MemberLookup.resolveKind();
4939    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4940                                                     OtherRefType,
4941                                                     Loc, /*IsArrow=*/false,
4942                                                     SS, 0, MemberLookup, 0);
4943    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4944                                                   This->getType(),
4945                                                   Loc, /*IsArrow=*/true,
4946                                                   SS, 0, MemberLookup, 0);
4947    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4948    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4949
4950    // If the field should be copied with __builtin_memcpy rather than via
4951    // explicit assignments, do so. This optimization only applies for arrays
4952    // of scalars and arrays of class type with trivial copy-assignment
4953    // operators.
4954    if (FieldType->isArrayType() &&
4955        (!BaseType->isRecordType() ||
4956         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4957           ->hasTrivialCopyAssignment())) {
4958      // Compute the size of the memory buffer to be copied.
4959      QualType SizeType = Context.getSizeType();
4960      llvm::APInt Size(Context.getTypeSize(SizeType),
4961                       Context.getTypeSizeInChars(BaseType).getQuantity());
4962      for (const ConstantArrayType *Array
4963              = Context.getAsConstantArrayType(FieldType);
4964           Array;
4965           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4966        llvm::APInt ArraySize = Array->getSize();
4967        ArraySize.zextOrTrunc(Size.getBitWidth());
4968        Size *= ArraySize;
4969      }
4970
4971      // Take the address of the field references for "from" and "to".
4972      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4973      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4974
4975      bool NeedsCollectableMemCpy =
4976          (BaseType->isRecordType() &&
4977           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4978
4979      if (NeedsCollectableMemCpy) {
4980        if (!CollectableMemCpyRef) {
4981          // Create a reference to the __builtin_objc_memmove_collectable function.
4982          LookupResult R(*this,
4983                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4984                         Loc, LookupOrdinaryName);
4985          LookupName(R, TUScope, true);
4986
4987          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4988          if (!CollectableMemCpy) {
4989            // Something went horribly wrong earlier, and we will have
4990            // complained about it.
4991            Invalid = true;
4992            continue;
4993          }
4994
4995          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4996                                                  CollectableMemCpy->getType(),
4997                                                  Loc, 0).takeAs<Expr>();
4998          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4999        }
5000      }
5001      // Create a reference to the __builtin_memcpy builtin function.
5002      else if (!BuiltinMemCpyRef) {
5003        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5004                       LookupOrdinaryName);
5005        LookupName(R, TUScope, true);
5006
5007        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5008        if (!BuiltinMemCpy) {
5009          // Something went horribly wrong earlier, and we will have complained
5010          // about it.
5011          Invalid = true;
5012          continue;
5013        }
5014
5015        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5016                                            BuiltinMemCpy->getType(),
5017                                            Loc, 0).takeAs<Expr>();
5018        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5019      }
5020
5021      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
5022      CallArgs.push_back(To.takeAs<Expr>());
5023      CallArgs.push_back(From.takeAs<Expr>());
5024      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
5025      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
5026      Commas.push_back(Loc);
5027      Commas.push_back(Loc);
5028      OwningExprResult Call = ExprError();
5029      if (NeedsCollectableMemCpy)
5030        Call = ActOnCallExpr(/*Scope=*/0,
5031                             Owned(CollectableMemCpyRef->Retain()),
5032                             Loc, move_arg(CallArgs),
5033                             Commas.data(), Loc);
5034      else
5035        Call = ActOnCallExpr(/*Scope=*/0,
5036                             Owned(BuiltinMemCpyRef->Retain()),
5037                             Loc, move_arg(CallArgs),
5038                             Commas.data(), Loc);
5039
5040      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5041      Statements.push_back(Call.takeAs<Expr>());
5042      continue;
5043    }
5044
5045    // Build the copy of this field.
5046    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5047                                                  move(To), move(From),
5048                                              /*CopyingBaseSubobject=*/false);
5049    if (Copy.isInvalid()) {
5050      Diag(CurrentLocation, diag::note_member_synthesized_at)
5051        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5052      CopyAssignOperator->setInvalidDecl();
5053      return;
5054    }
5055
5056    // Success! Record the copy.
5057    Statements.push_back(Copy.takeAs<Stmt>());
5058  }
5059
5060  if (!Invalid) {
5061    // Add a "return *this;"
5062    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
5063                                                    Owned(This->Retain()));
5064
5065    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
5066    if (Return.isInvalid())
5067      Invalid = true;
5068    else {
5069      Statements.push_back(Return.takeAs<Stmt>());
5070
5071      if (Trap.hasErrorOccurred()) {
5072        Diag(CurrentLocation, diag::note_member_synthesized_at)
5073          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5074        Invalid = true;
5075      }
5076    }
5077  }
5078
5079  if (Invalid) {
5080    CopyAssignOperator->setInvalidDecl();
5081    return;
5082  }
5083
5084  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5085                                            /*isStmtExpr=*/false);
5086  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5087  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5088}
5089
5090CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5091                                                    CXXRecordDecl *ClassDecl) {
5092  // C++ [class.copy]p4:
5093  //   If the class definition does not explicitly declare a copy
5094  //   constructor, one is declared implicitly.
5095
5096  // C++ [class.copy]p5:
5097  //   The implicitly-declared copy constructor for a class X will
5098  //   have the form
5099  //
5100  //       X::X(const X&)
5101  //
5102  //   if
5103  bool HasConstCopyConstructor = true;
5104
5105  //     -- each direct or virtual base class B of X has a copy
5106  //        constructor whose first parameter is of type const B& or
5107  //        const volatile B&, and
5108  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5109                                       BaseEnd = ClassDecl->bases_end();
5110       HasConstCopyConstructor && Base != BaseEnd;
5111       ++Base) {
5112    // Virtual bases are handled below.
5113    if (Base->isVirtual())
5114      continue;
5115
5116    CXXRecordDecl *BaseClassDecl
5117      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5118    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5119      DeclareImplicitCopyConstructor(BaseClassDecl);
5120
5121    HasConstCopyConstructor
5122      = BaseClassDecl->hasConstCopyConstructor(Context);
5123  }
5124
5125  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5126                                       BaseEnd = ClassDecl->vbases_end();
5127       HasConstCopyConstructor && Base != BaseEnd;
5128       ++Base) {
5129    CXXRecordDecl *BaseClassDecl
5130      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5131    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5132      DeclareImplicitCopyConstructor(BaseClassDecl);
5133
5134    HasConstCopyConstructor
5135      = BaseClassDecl->hasConstCopyConstructor(Context);
5136  }
5137
5138  //     -- for all the nonstatic data members of X that are of a
5139  //        class type M (or array thereof), each such class type
5140  //        has a copy constructor whose first parameter is of type
5141  //        const M& or const volatile M&.
5142  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5143                                  FieldEnd = ClassDecl->field_end();
5144       HasConstCopyConstructor && Field != FieldEnd;
5145       ++Field) {
5146    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5147    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5148      CXXRecordDecl *FieldClassDecl
5149        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5150      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5151        DeclareImplicitCopyConstructor(FieldClassDecl);
5152
5153      HasConstCopyConstructor
5154        = FieldClassDecl->hasConstCopyConstructor(Context);
5155    }
5156  }
5157
5158  //   Otherwise, the implicitly declared copy constructor will have
5159  //   the form
5160  //
5161  //       X::X(X&)
5162  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5163  QualType ArgType = ClassType;
5164  if (HasConstCopyConstructor)
5165    ArgType = ArgType.withConst();
5166  ArgType = Context.getLValueReferenceType(ArgType);
5167
5168  // C++ [except.spec]p14:
5169  //   An implicitly declared special member function (Clause 12) shall have an
5170  //   exception-specification. [...]
5171  ImplicitExceptionSpecification ExceptSpec(Context);
5172  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5173  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5174                                       BaseEnd = ClassDecl->bases_end();
5175       Base != BaseEnd;
5176       ++Base) {
5177    // Virtual bases are handled below.
5178    if (Base->isVirtual())
5179      continue;
5180
5181    CXXRecordDecl *BaseClassDecl
5182      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5183    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5184      DeclareImplicitCopyConstructor(BaseClassDecl);
5185
5186    if (CXXConstructorDecl *CopyConstructor
5187                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5188      ExceptSpec.CalledDecl(CopyConstructor);
5189  }
5190  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5191                                       BaseEnd = ClassDecl->vbases_end();
5192       Base != BaseEnd;
5193       ++Base) {
5194    CXXRecordDecl *BaseClassDecl
5195      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5196    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5197      DeclareImplicitCopyConstructor(BaseClassDecl);
5198
5199    if (CXXConstructorDecl *CopyConstructor
5200                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5201      ExceptSpec.CalledDecl(CopyConstructor);
5202  }
5203  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5204                                  FieldEnd = ClassDecl->field_end();
5205       Field != FieldEnd;
5206       ++Field) {
5207    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5208    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5209      CXXRecordDecl *FieldClassDecl
5210        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5211      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5212        DeclareImplicitCopyConstructor(FieldClassDecl);
5213
5214      if (CXXConstructorDecl *CopyConstructor
5215                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5216        ExceptSpec.CalledDecl(CopyConstructor);
5217    }
5218  }
5219
5220  //   An implicitly-declared copy constructor is an inline public
5221  //   member of its class.
5222  DeclarationName Name
5223    = Context.DeclarationNames.getCXXConstructorName(
5224                                           Context.getCanonicalType(ClassType));
5225  CXXConstructorDecl *CopyConstructor
5226    = CXXConstructorDecl::Create(Context, ClassDecl,
5227                                 ClassDecl->getLocation(), Name,
5228                                 Context.getFunctionType(Context.VoidTy,
5229                                                         &ArgType, 1,
5230                                                         false, 0,
5231                                         ExceptSpec.hasExceptionSpecification(),
5232                                      ExceptSpec.hasAnyExceptionSpecification(),
5233                                                         ExceptSpec.size(),
5234                                                         ExceptSpec.data(),
5235                                                       FunctionType::ExtInfo()),
5236                                 /*TInfo=*/0,
5237                                 /*isExplicit=*/false,
5238                                 /*isInline=*/true,
5239                                 /*isImplicitlyDeclared=*/true);
5240  CopyConstructor->setAccess(AS_public);
5241  CopyConstructor->setImplicit();
5242  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5243
5244  // Note that we have declared this constructor.
5245  ClassDecl->setDeclaredCopyConstructor(true);
5246  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5247
5248  // Add the parameter to the constructor.
5249  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5250                                               ClassDecl->getLocation(),
5251                                               /*IdentifierInfo=*/0,
5252                                               ArgType, /*TInfo=*/0,
5253                                               VarDecl::None,
5254                                               VarDecl::None, 0);
5255  CopyConstructor->setParams(&FromParam, 1);
5256  if (Scope *S = getScopeForContext(ClassDecl))
5257    PushOnScopeChains(CopyConstructor, S, false);
5258  ClassDecl->addDecl(CopyConstructor);
5259
5260  return CopyConstructor;
5261}
5262
5263void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5264                                   CXXConstructorDecl *CopyConstructor,
5265                                   unsigned TypeQuals) {
5266  assert((CopyConstructor->isImplicit() &&
5267          CopyConstructor->isCopyConstructor(TypeQuals) &&
5268          !CopyConstructor->isUsed(false)) &&
5269         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5270
5271  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5272  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5273
5274  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5275  ErrorTrap Trap(*this);
5276
5277  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5278      Trap.hasErrorOccurred()) {
5279    Diag(CurrentLocation, diag::note_member_synthesized_at)
5280      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5281    CopyConstructor->setInvalidDecl();
5282  }  else {
5283    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5284                                               CopyConstructor->getLocation(),
5285                                               MultiStmtArg(*this, 0, 0),
5286                                               /*isStmtExpr=*/false)
5287                                                              .takeAs<Stmt>());
5288  }
5289
5290  CopyConstructor->setUsed();
5291}
5292
5293Sema::OwningExprResult
5294Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5295                            CXXConstructorDecl *Constructor,
5296                            MultiExprArg ExprArgs,
5297                            bool RequiresZeroInit,
5298                            CXXConstructExpr::ConstructionKind ConstructKind) {
5299  bool Elidable = false;
5300
5301  // C++0x [class.copy]p34:
5302  //   When certain criteria are met, an implementation is allowed to
5303  //   omit the copy/move construction of a class object, even if the
5304  //   copy/move constructor and/or destructor for the object have
5305  //   side effects. [...]
5306  //     - when a temporary class object that has not been bound to a
5307  //       reference (12.2) would be copied/moved to a class object
5308  //       with the same cv-unqualified type, the copy/move operation
5309  //       can be omitted by constructing the temporary object
5310  //       directly into the target of the omitted copy/move
5311  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5312    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5313    Elidable = SubExpr->isTemporaryObject() &&
5314      Context.hasSameUnqualifiedType(SubExpr->getType(),
5315                           Context.getTypeDeclType(Constructor->getParent()));
5316  }
5317
5318  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5319                               Elidable, move(ExprArgs), RequiresZeroInit,
5320                               ConstructKind);
5321}
5322
5323/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5324/// including handling of its default argument expressions.
5325Sema::OwningExprResult
5326Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5327                            CXXConstructorDecl *Constructor, bool Elidable,
5328                            MultiExprArg ExprArgs,
5329                            bool RequiresZeroInit,
5330                            CXXConstructExpr::ConstructionKind ConstructKind) {
5331  unsigned NumExprs = ExprArgs.size();
5332  Expr **Exprs = (Expr **)ExprArgs.release();
5333
5334  MarkDeclarationReferenced(ConstructLoc, Constructor);
5335  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5336                                        Constructor, Elidable, Exprs, NumExprs,
5337                                        RequiresZeroInit, ConstructKind));
5338}
5339
5340bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5341                                        CXXConstructorDecl *Constructor,
5342                                        MultiExprArg Exprs) {
5343  OwningExprResult TempResult =
5344    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5345                          move(Exprs));
5346  if (TempResult.isInvalid())
5347    return true;
5348
5349  Expr *Temp = TempResult.takeAs<Expr>();
5350  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5351  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5352  VD->setInit(Temp);
5353
5354  return false;
5355}
5356
5357void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5358  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5359  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5360      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5361    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5362    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5363    CheckDestructorAccess(VD->getLocation(), Destructor,
5364                          PDiag(diag::err_access_dtor_var)
5365                            << VD->getDeclName()
5366                            << VD->getType());
5367
5368    if (!VD->isInvalidDecl() && VD->hasGlobalStorage())
5369      Diag(VD->getLocation(), diag::warn_global_destructor);
5370  }
5371}
5372
5373/// AddCXXDirectInitializerToDecl - This action is called immediately after
5374/// ActOnDeclarator, when a C++ direct initializer is present.
5375/// e.g: "int x(1);"
5376void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
5377                                         SourceLocation LParenLoc,
5378                                         MultiExprArg Exprs,
5379                                         SourceLocation *CommaLocs,
5380                                         SourceLocation RParenLoc) {
5381  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5382  Decl *RealDecl = Dcl.getAs<Decl>();
5383
5384  // If there is no declaration, there was an error parsing it.  Just ignore
5385  // the initializer.
5386  if (RealDecl == 0)
5387    return;
5388
5389  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5390  if (!VDecl) {
5391    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5392    RealDecl->setInvalidDecl();
5393    return;
5394  }
5395
5396  // We will represent direct-initialization similarly to copy-initialization:
5397  //    int x(1);  -as-> int x = 1;
5398  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5399  //
5400  // Clients that want to distinguish between the two forms, can check for
5401  // direct initializer using VarDecl::hasCXXDirectInitializer().
5402  // A major benefit is that clients that don't particularly care about which
5403  // exactly form was it (like the CodeGen) can handle both cases without
5404  // special case code.
5405
5406  // C++ 8.5p11:
5407  // The form of initialization (using parentheses or '=') is generally
5408  // insignificant, but does matter when the entity being initialized has a
5409  // class type.
5410
5411  if (!VDecl->getType()->isDependentType() &&
5412      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5413                          diag::err_typecheck_decl_incomplete_type)) {
5414    VDecl->setInvalidDecl();
5415    return;
5416  }
5417
5418  // The variable can not have an abstract class type.
5419  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5420                             diag::err_abstract_type_in_decl,
5421                             AbstractVariableType))
5422    VDecl->setInvalidDecl();
5423
5424  const VarDecl *Def;
5425  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5426    Diag(VDecl->getLocation(), diag::err_redefinition)
5427    << VDecl->getDeclName();
5428    Diag(Def->getLocation(), diag::note_previous_definition);
5429    VDecl->setInvalidDecl();
5430    return;
5431  }
5432
5433  // If either the declaration has a dependent type or if any of the
5434  // expressions is type-dependent, we represent the initialization
5435  // via a ParenListExpr for later use during template instantiation.
5436  if (VDecl->getType()->isDependentType() ||
5437      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5438    // Let clients know that initialization was done with a direct initializer.
5439    VDecl->setCXXDirectInitializer(true);
5440
5441    // Store the initialization expressions as a ParenListExpr.
5442    unsigned NumExprs = Exprs.size();
5443    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5444                                               (Expr **)Exprs.release(),
5445                                               NumExprs, RParenLoc));
5446    return;
5447  }
5448
5449  // Capture the variable that is being initialized and the style of
5450  // initialization.
5451  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5452
5453  // FIXME: Poor source location information.
5454  InitializationKind Kind
5455    = InitializationKind::CreateDirect(VDecl->getLocation(),
5456                                       LParenLoc, RParenLoc);
5457
5458  InitializationSequence InitSeq(*this, Entity, Kind,
5459                                 (Expr**)Exprs.get(), Exprs.size());
5460  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5461  if (Result.isInvalid()) {
5462    VDecl->setInvalidDecl();
5463    return;
5464  }
5465
5466  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5467  VDecl->setInit(Result.takeAs<Expr>());
5468  VDecl->setCXXDirectInitializer(true);
5469
5470    if (!VDecl->isInvalidDecl() &&
5471        !VDecl->getDeclContext()->isDependentContext() &&
5472        VDecl->hasGlobalStorage() &&
5473        !VDecl->getInit()->isConstantInitializer(Context,
5474                                        VDecl->getType()->isReferenceType()))
5475      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5476        << VDecl->getInit()->getSourceRange();
5477
5478  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5479    FinalizeVarWithDestructor(VDecl, Record);
5480}
5481
5482/// \brief Given a constructor and the set of arguments provided for the
5483/// constructor, convert the arguments and add any required default arguments
5484/// to form a proper call to this constructor.
5485///
5486/// \returns true if an error occurred, false otherwise.
5487bool
5488Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5489                              MultiExprArg ArgsPtr,
5490                              SourceLocation Loc,
5491                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5492  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5493  unsigned NumArgs = ArgsPtr.size();
5494  Expr **Args = (Expr **)ArgsPtr.get();
5495
5496  const FunctionProtoType *Proto
5497    = Constructor->getType()->getAs<FunctionProtoType>();
5498  assert(Proto && "Constructor without a prototype?");
5499  unsigned NumArgsInProto = Proto->getNumArgs();
5500
5501  // If too few arguments are available, we'll fill in the rest with defaults.
5502  if (NumArgs < NumArgsInProto)
5503    ConvertedArgs.reserve(NumArgsInProto);
5504  else
5505    ConvertedArgs.reserve(NumArgs);
5506
5507  VariadicCallType CallType =
5508    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5509  llvm::SmallVector<Expr *, 8> AllArgs;
5510  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5511                                        Proto, 0, Args, NumArgs, AllArgs,
5512                                        CallType);
5513  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5514    ConvertedArgs.push_back(AllArgs[i]);
5515  return Invalid;
5516}
5517
5518static inline bool
5519CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5520                                       const FunctionDecl *FnDecl) {
5521  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5522  if (isa<NamespaceDecl>(DC)) {
5523    return SemaRef.Diag(FnDecl->getLocation(),
5524                        diag::err_operator_new_delete_declared_in_namespace)
5525      << FnDecl->getDeclName();
5526  }
5527
5528  if (isa<TranslationUnitDecl>(DC) &&
5529      FnDecl->getStorageClass() == FunctionDecl::Static) {
5530    return SemaRef.Diag(FnDecl->getLocation(),
5531                        diag::err_operator_new_delete_declared_static)
5532      << FnDecl->getDeclName();
5533  }
5534
5535  return false;
5536}
5537
5538static inline bool
5539CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5540                            CanQualType ExpectedResultType,
5541                            CanQualType ExpectedFirstParamType,
5542                            unsigned DependentParamTypeDiag,
5543                            unsigned InvalidParamTypeDiag) {
5544  QualType ResultType =
5545    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5546
5547  // Check that the result type is not dependent.
5548  if (ResultType->isDependentType())
5549    return SemaRef.Diag(FnDecl->getLocation(),
5550                        diag::err_operator_new_delete_dependent_result_type)
5551    << FnDecl->getDeclName() << ExpectedResultType;
5552
5553  // Check that the result type is what we expect.
5554  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5555    return SemaRef.Diag(FnDecl->getLocation(),
5556                        diag::err_operator_new_delete_invalid_result_type)
5557    << FnDecl->getDeclName() << ExpectedResultType;
5558
5559  // A function template must have at least 2 parameters.
5560  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5561    return SemaRef.Diag(FnDecl->getLocation(),
5562                      diag::err_operator_new_delete_template_too_few_parameters)
5563        << FnDecl->getDeclName();
5564
5565  // The function decl must have at least 1 parameter.
5566  if (FnDecl->getNumParams() == 0)
5567    return SemaRef.Diag(FnDecl->getLocation(),
5568                        diag::err_operator_new_delete_too_few_parameters)
5569      << FnDecl->getDeclName();
5570
5571  // Check the the first parameter type is not dependent.
5572  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5573  if (FirstParamType->isDependentType())
5574    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5575      << FnDecl->getDeclName() << ExpectedFirstParamType;
5576
5577  // Check that the first parameter type is what we expect.
5578  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5579      ExpectedFirstParamType)
5580    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5581    << FnDecl->getDeclName() << ExpectedFirstParamType;
5582
5583  return false;
5584}
5585
5586static bool
5587CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5588  // C++ [basic.stc.dynamic.allocation]p1:
5589  //   A program is ill-formed if an allocation function is declared in a
5590  //   namespace scope other than global scope or declared static in global
5591  //   scope.
5592  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5593    return true;
5594
5595  CanQualType SizeTy =
5596    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5597
5598  // C++ [basic.stc.dynamic.allocation]p1:
5599  //  The return type shall be void*. The first parameter shall have type
5600  //  std::size_t.
5601  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5602                                  SizeTy,
5603                                  diag::err_operator_new_dependent_param_type,
5604                                  diag::err_operator_new_param_type))
5605    return true;
5606
5607  // C++ [basic.stc.dynamic.allocation]p1:
5608  //  The first parameter shall not have an associated default argument.
5609  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5610    return SemaRef.Diag(FnDecl->getLocation(),
5611                        diag::err_operator_new_default_arg)
5612      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5613
5614  return false;
5615}
5616
5617static bool
5618CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5619  // C++ [basic.stc.dynamic.deallocation]p1:
5620  //   A program is ill-formed if deallocation functions are declared in a
5621  //   namespace scope other than global scope or declared static in global
5622  //   scope.
5623  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5624    return true;
5625
5626  // C++ [basic.stc.dynamic.deallocation]p2:
5627  //   Each deallocation function shall return void and its first parameter
5628  //   shall be void*.
5629  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5630                                  SemaRef.Context.VoidPtrTy,
5631                                 diag::err_operator_delete_dependent_param_type,
5632                                 diag::err_operator_delete_param_type))
5633    return true;
5634
5635  return false;
5636}
5637
5638/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5639/// of this overloaded operator is well-formed. If so, returns false;
5640/// otherwise, emits appropriate diagnostics and returns true.
5641bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5642  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5643         "Expected an overloaded operator declaration");
5644
5645  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5646
5647  // C++ [over.oper]p5:
5648  //   The allocation and deallocation functions, operator new,
5649  //   operator new[], operator delete and operator delete[], are
5650  //   described completely in 3.7.3. The attributes and restrictions
5651  //   found in the rest of this subclause do not apply to them unless
5652  //   explicitly stated in 3.7.3.
5653  if (Op == OO_Delete || Op == OO_Array_Delete)
5654    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5655
5656  if (Op == OO_New || Op == OO_Array_New)
5657    return CheckOperatorNewDeclaration(*this, FnDecl);
5658
5659  // C++ [over.oper]p6:
5660  //   An operator function shall either be a non-static member
5661  //   function or be a non-member function and have at least one
5662  //   parameter whose type is a class, a reference to a class, an
5663  //   enumeration, or a reference to an enumeration.
5664  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5665    if (MethodDecl->isStatic())
5666      return Diag(FnDecl->getLocation(),
5667                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5668  } else {
5669    bool ClassOrEnumParam = false;
5670    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5671                                   ParamEnd = FnDecl->param_end();
5672         Param != ParamEnd; ++Param) {
5673      QualType ParamType = (*Param)->getType().getNonReferenceType();
5674      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5675          ParamType->isEnumeralType()) {
5676        ClassOrEnumParam = true;
5677        break;
5678      }
5679    }
5680
5681    if (!ClassOrEnumParam)
5682      return Diag(FnDecl->getLocation(),
5683                  diag::err_operator_overload_needs_class_or_enum)
5684        << FnDecl->getDeclName();
5685  }
5686
5687  // C++ [over.oper]p8:
5688  //   An operator function cannot have default arguments (8.3.6),
5689  //   except where explicitly stated below.
5690  //
5691  // Only the function-call operator allows default arguments
5692  // (C++ [over.call]p1).
5693  if (Op != OO_Call) {
5694    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5695         Param != FnDecl->param_end(); ++Param) {
5696      if ((*Param)->hasDefaultArg())
5697        return Diag((*Param)->getLocation(),
5698                    diag::err_operator_overload_default_arg)
5699          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5700    }
5701  }
5702
5703  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5704    { false, false, false }
5705#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5706    , { Unary, Binary, MemberOnly }
5707#include "clang/Basic/OperatorKinds.def"
5708  };
5709
5710  bool CanBeUnaryOperator = OperatorUses[Op][0];
5711  bool CanBeBinaryOperator = OperatorUses[Op][1];
5712  bool MustBeMemberOperator = OperatorUses[Op][2];
5713
5714  // C++ [over.oper]p8:
5715  //   [...] Operator functions cannot have more or fewer parameters
5716  //   than the number required for the corresponding operator, as
5717  //   described in the rest of this subclause.
5718  unsigned NumParams = FnDecl->getNumParams()
5719                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5720  if (Op != OO_Call &&
5721      ((NumParams == 1 && !CanBeUnaryOperator) ||
5722       (NumParams == 2 && !CanBeBinaryOperator) ||
5723       (NumParams < 1) || (NumParams > 2))) {
5724    // We have the wrong number of parameters.
5725    unsigned ErrorKind;
5726    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5727      ErrorKind = 2;  // 2 -> unary or binary.
5728    } else if (CanBeUnaryOperator) {
5729      ErrorKind = 0;  // 0 -> unary
5730    } else {
5731      assert(CanBeBinaryOperator &&
5732             "All non-call overloaded operators are unary or binary!");
5733      ErrorKind = 1;  // 1 -> binary
5734    }
5735
5736    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5737      << FnDecl->getDeclName() << NumParams << ErrorKind;
5738  }
5739
5740  // Overloaded operators other than operator() cannot be variadic.
5741  if (Op != OO_Call &&
5742      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5743    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5744      << FnDecl->getDeclName();
5745  }
5746
5747  // Some operators must be non-static member functions.
5748  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5749    return Diag(FnDecl->getLocation(),
5750                diag::err_operator_overload_must_be_member)
5751      << FnDecl->getDeclName();
5752  }
5753
5754  // C++ [over.inc]p1:
5755  //   The user-defined function called operator++ implements the
5756  //   prefix and postfix ++ operator. If this function is a member
5757  //   function with no parameters, or a non-member function with one
5758  //   parameter of class or enumeration type, it defines the prefix
5759  //   increment operator ++ for objects of that type. If the function
5760  //   is a member function with one parameter (which shall be of type
5761  //   int) or a non-member function with two parameters (the second
5762  //   of which shall be of type int), it defines the postfix
5763  //   increment operator ++ for objects of that type.
5764  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5765    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5766    bool ParamIsInt = false;
5767    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5768      ParamIsInt = BT->getKind() == BuiltinType::Int;
5769
5770    if (!ParamIsInt)
5771      return Diag(LastParam->getLocation(),
5772                  diag::err_operator_overload_post_incdec_must_be_int)
5773        << LastParam->getType() << (Op == OO_MinusMinus);
5774  }
5775
5776  // Notify the class if it got an assignment operator.
5777  if (Op == OO_Equal) {
5778    // Would have returned earlier otherwise.
5779    assert(isa<CXXMethodDecl>(FnDecl) &&
5780      "Overloaded = not member, but not filtered.");
5781    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5782    Method->getParent()->addedAssignmentOperator(Context, Method);
5783  }
5784
5785  return false;
5786}
5787
5788/// CheckLiteralOperatorDeclaration - Check whether the declaration
5789/// of this literal operator function is well-formed. If so, returns
5790/// false; otherwise, emits appropriate diagnostics and returns true.
5791bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5792  DeclContext *DC = FnDecl->getDeclContext();
5793  Decl::Kind Kind = DC->getDeclKind();
5794  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5795      Kind != Decl::LinkageSpec) {
5796    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5797      << FnDecl->getDeclName();
5798    return true;
5799  }
5800
5801  bool Valid = false;
5802
5803  // template <char...> type operator "" name() is the only valid template
5804  // signature, and the only valid signature with no parameters.
5805  if (FnDecl->param_size() == 0) {
5806    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5807      // Must have only one template parameter
5808      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5809      if (Params->size() == 1) {
5810        NonTypeTemplateParmDecl *PmDecl =
5811          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5812
5813        // The template parameter must be a char parameter pack.
5814        // FIXME: This test will always fail because non-type parameter packs
5815        //   have not been implemented.
5816        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5817            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5818          Valid = true;
5819      }
5820    }
5821  } else {
5822    // Check the first parameter
5823    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5824
5825    QualType T = (*Param)->getType();
5826
5827    // unsigned long long int, long double, and any character type are allowed
5828    // as the only parameters.
5829    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5830        Context.hasSameType(T, Context.LongDoubleTy) ||
5831        Context.hasSameType(T, Context.CharTy) ||
5832        Context.hasSameType(T, Context.WCharTy) ||
5833        Context.hasSameType(T, Context.Char16Ty) ||
5834        Context.hasSameType(T, Context.Char32Ty)) {
5835      if (++Param == FnDecl->param_end())
5836        Valid = true;
5837      goto FinishedParams;
5838    }
5839
5840    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5841    const PointerType *PT = T->getAs<PointerType>();
5842    if (!PT)
5843      goto FinishedParams;
5844    T = PT->getPointeeType();
5845    if (!T.isConstQualified())
5846      goto FinishedParams;
5847    T = T.getUnqualifiedType();
5848
5849    // Move on to the second parameter;
5850    ++Param;
5851
5852    // If there is no second parameter, the first must be a const char *
5853    if (Param == FnDecl->param_end()) {
5854      if (Context.hasSameType(T, Context.CharTy))
5855        Valid = true;
5856      goto FinishedParams;
5857    }
5858
5859    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5860    // are allowed as the first parameter to a two-parameter function
5861    if (!(Context.hasSameType(T, Context.CharTy) ||
5862          Context.hasSameType(T, Context.WCharTy) ||
5863          Context.hasSameType(T, Context.Char16Ty) ||
5864          Context.hasSameType(T, Context.Char32Ty)))
5865      goto FinishedParams;
5866
5867    // The second and final parameter must be an std::size_t
5868    T = (*Param)->getType().getUnqualifiedType();
5869    if (Context.hasSameType(T, Context.getSizeType()) &&
5870        ++Param == FnDecl->param_end())
5871      Valid = true;
5872  }
5873
5874  // FIXME: This diagnostic is absolutely terrible.
5875FinishedParams:
5876  if (!Valid) {
5877    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5878      << FnDecl->getDeclName();
5879    return true;
5880  }
5881
5882  return false;
5883}
5884
5885/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5886/// linkage specification, including the language and (if present)
5887/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5888/// the location of the language string literal, which is provided
5889/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5890/// the '{' brace. Otherwise, this linkage specification does not
5891/// have any braces.
5892Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5893                                                     SourceLocation ExternLoc,
5894                                                     SourceLocation LangLoc,
5895                                                     llvm::StringRef Lang,
5896                                                     SourceLocation LBraceLoc) {
5897  LinkageSpecDecl::LanguageIDs Language;
5898  if (Lang == "\"C\"")
5899    Language = LinkageSpecDecl::lang_c;
5900  else if (Lang == "\"C++\"")
5901    Language = LinkageSpecDecl::lang_cxx;
5902  else {
5903    Diag(LangLoc, diag::err_bad_language);
5904    return DeclPtrTy();
5905  }
5906
5907  // FIXME: Add all the various semantics of linkage specifications
5908
5909  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5910                                               LangLoc, Language,
5911                                               LBraceLoc.isValid());
5912  CurContext->addDecl(D);
5913  PushDeclContext(S, D);
5914  return DeclPtrTy::make(D);
5915}
5916
5917/// ActOnFinishLinkageSpecification - Complete the definition of
5918/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5919/// valid, it's the position of the closing '}' brace in a linkage
5920/// specification that uses braces.
5921Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5922                                                      DeclPtrTy LinkageSpec,
5923                                                      SourceLocation RBraceLoc) {
5924  if (LinkageSpec)
5925    PopDeclContext();
5926  return LinkageSpec;
5927}
5928
5929/// \brief Perform semantic analysis for the variable declaration that
5930/// occurs within a C++ catch clause, returning the newly-created
5931/// variable.
5932VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5933                                         TypeSourceInfo *TInfo,
5934                                         IdentifierInfo *Name,
5935                                         SourceLocation Loc,
5936                                         SourceRange Range) {
5937  bool Invalid = false;
5938
5939  // Arrays and functions decay.
5940  if (ExDeclType->isArrayType())
5941    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5942  else if (ExDeclType->isFunctionType())
5943    ExDeclType = Context.getPointerType(ExDeclType);
5944
5945  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5946  // The exception-declaration shall not denote a pointer or reference to an
5947  // incomplete type, other than [cv] void*.
5948  // N2844 forbids rvalue references.
5949  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5950    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5951    Invalid = true;
5952  }
5953
5954  // GCC allows catching pointers and references to incomplete types
5955  // as an extension; so do we, but we warn by default.
5956
5957  QualType BaseType = ExDeclType;
5958  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5959  unsigned DK = diag::err_catch_incomplete;
5960  bool IncompleteCatchIsInvalid = true;
5961  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5962    BaseType = Ptr->getPointeeType();
5963    Mode = 1;
5964    DK = diag::ext_catch_incomplete_ptr;
5965    IncompleteCatchIsInvalid = false;
5966  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5967    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5968    BaseType = Ref->getPointeeType();
5969    Mode = 2;
5970    DK = diag::ext_catch_incomplete_ref;
5971    IncompleteCatchIsInvalid = false;
5972  }
5973  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5974      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5975      IncompleteCatchIsInvalid)
5976    Invalid = true;
5977
5978  if (!Invalid && !ExDeclType->isDependentType() &&
5979      RequireNonAbstractType(Loc, ExDeclType,
5980                             diag::err_abstract_type_in_decl,
5981                             AbstractVariableType))
5982    Invalid = true;
5983
5984  // Only the non-fragile NeXT runtime currently supports C++ catches
5985  // of ObjC types, and no runtime supports catching ObjC types by value.
5986  if (!Invalid && getLangOptions().ObjC1) {
5987    QualType T = ExDeclType;
5988    if (const ReferenceType *RT = T->getAs<ReferenceType>())
5989      T = RT->getPointeeType();
5990
5991    if (T->isObjCObjectType()) {
5992      Diag(Loc, diag::err_objc_object_catch);
5993      Invalid = true;
5994    } else if (T->isObjCObjectPointerType()) {
5995      if (!getLangOptions().NeXTRuntime) {
5996        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
5997        Invalid = true;
5998      } else if (!getLangOptions().ObjCNonFragileABI) {
5999        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6000        Invalid = true;
6001      }
6002    }
6003  }
6004
6005  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6006                                    Name, ExDeclType, TInfo, VarDecl::None,
6007                                    VarDecl::None);
6008  ExDecl->setExceptionVariable(true);
6009
6010  if (!Invalid) {
6011    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6012      // C++ [except.handle]p16:
6013      //   The object declared in an exception-declaration or, if the
6014      //   exception-declaration does not specify a name, a temporary (12.2) is
6015      //   copy-initialized (8.5) from the exception object. [...]
6016      //   The object is destroyed when the handler exits, after the destruction
6017      //   of any automatic objects initialized within the handler.
6018      //
6019      // We just pretend to initialize the object with itself, then make sure
6020      // it can be destroyed later.
6021      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6022      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6023                                            Loc, ExDeclType, 0);
6024      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6025                                                               SourceLocation());
6026      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6027      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6028                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
6029      if (Result.isInvalid())
6030        Invalid = true;
6031      else
6032        FinalizeVarWithDestructor(ExDecl, RecordTy);
6033    }
6034  }
6035
6036  if (Invalid)
6037    ExDecl->setInvalidDecl();
6038
6039  return ExDecl;
6040}
6041
6042/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6043/// handler.
6044Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6045  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6046  QualType ExDeclType = TInfo->getType();
6047
6048  bool Invalid = D.isInvalidType();
6049  IdentifierInfo *II = D.getIdentifier();
6050  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6051                                             LookupOrdinaryName,
6052                                             ForRedeclaration)) {
6053    // The scope should be freshly made just for us. There is just no way
6054    // it contains any previous declaration.
6055    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
6056    if (PrevDecl->isTemplateParameter()) {
6057      // Maybe we will complain about the shadowed template parameter.
6058      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6059    }
6060  }
6061
6062  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6063    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6064      << D.getCXXScopeSpec().getRange();
6065    Invalid = true;
6066  }
6067
6068  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
6069                                              D.getIdentifier(),
6070                                              D.getIdentifierLoc(),
6071                                            D.getDeclSpec().getSourceRange());
6072
6073  if (Invalid)
6074    ExDecl->setInvalidDecl();
6075
6076  // Add the exception declaration into this scope.
6077  if (II)
6078    PushOnScopeChains(ExDecl, S);
6079  else
6080    CurContext->addDecl(ExDecl);
6081
6082  ProcessDeclAttributes(S, ExDecl, D);
6083  return DeclPtrTy::make(ExDecl);
6084}
6085
6086Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6087                                                   ExprArg assertexpr,
6088                                                   ExprArg assertmessageexpr) {
6089  Expr *AssertExpr = (Expr *)assertexpr.get();
6090  StringLiteral *AssertMessage =
6091    cast<StringLiteral>((Expr *)assertmessageexpr.get());
6092
6093  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6094    llvm::APSInt Value(32);
6095    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6096      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6097        AssertExpr->getSourceRange();
6098      return DeclPtrTy();
6099    }
6100
6101    if (Value == 0) {
6102      Diag(AssertLoc, diag::err_static_assert_failed)
6103        << AssertMessage->getString() << AssertExpr->getSourceRange();
6104    }
6105  }
6106
6107  assertexpr.release();
6108  assertmessageexpr.release();
6109  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6110                                        AssertExpr, AssertMessage);
6111
6112  CurContext->addDecl(Decl);
6113  return DeclPtrTy::make(Decl);
6114}
6115
6116/// \brief Perform semantic analysis of the given friend type declaration.
6117///
6118/// \returns A friend declaration that.
6119FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6120                                      TypeSourceInfo *TSInfo) {
6121  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6122
6123  QualType T = TSInfo->getType();
6124  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6125
6126  if (!getLangOptions().CPlusPlus0x) {
6127    // C++03 [class.friend]p2:
6128    //   An elaborated-type-specifier shall be used in a friend declaration
6129    //   for a class.*
6130    //
6131    //   * The class-key of the elaborated-type-specifier is required.
6132    if (!ActiveTemplateInstantiations.empty()) {
6133      // Do not complain about the form of friend template types during
6134      // template instantiation; we will already have complained when the
6135      // template was declared.
6136    } else if (!T->isElaboratedTypeSpecifier()) {
6137      // If we evaluated the type to a record type, suggest putting
6138      // a tag in front.
6139      if (const RecordType *RT = T->getAs<RecordType>()) {
6140        RecordDecl *RD = RT->getDecl();
6141
6142        std::string InsertionText = std::string(" ") + RD->getKindName();
6143
6144        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6145          << (unsigned) RD->getTagKind()
6146          << T
6147          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6148                                        InsertionText);
6149      } else {
6150        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6151          << T
6152          << SourceRange(FriendLoc, TypeRange.getEnd());
6153      }
6154    } else if (T->getAs<EnumType>()) {
6155      Diag(FriendLoc, diag::ext_enum_friend)
6156        << T
6157        << SourceRange(FriendLoc, TypeRange.getEnd());
6158    }
6159  }
6160
6161  // C++0x [class.friend]p3:
6162  //   If the type specifier in a friend declaration designates a (possibly
6163  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6164  //   the friend declaration is ignored.
6165
6166  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6167  // in [class.friend]p3 that we do not implement.
6168
6169  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6170}
6171
6172/// Handle a friend type declaration.  This works in tandem with
6173/// ActOnTag.
6174///
6175/// Notes on friend class templates:
6176///
6177/// We generally treat friend class declarations as if they were
6178/// declaring a class.  So, for example, the elaborated type specifier
6179/// in a friend declaration is required to obey the restrictions of a
6180/// class-head (i.e. no typedefs in the scope chain), template
6181/// parameters are required to match up with simple template-ids, &c.
6182/// However, unlike when declaring a template specialization, it's
6183/// okay to refer to a template specialization without an empty
6184/// template parameter declaration, e.g.
6185///   friend class A<T>::B<unsigned>;
6186/// We permit this as a special case; if there are any template
6187/// parameters present at all, require proper matching, i.e.
6188///   template <> template <class T> friend class A<int>::B;
6189Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6190                                          MultiTemplateParamsArg TempParams) {
6191  SourceLocation Loc = DS.getSourceRange().getBegin();
6192
6193  assert(DS.isFriendSpecified());
6194  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6195
6196  // Try to convert the decl specifier to a type.  This works for
6197  // friend templates because ActOnTag never produces a ClassTemplateDecl
6198  // for a TUK_Friend.
6199  Declarator TheDeclarator(DS, Declarator::MemberContext);
6200  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6201  QualType T = TSI->getType();
6202  if (TheDeclarator.isInvalidType())
6203    return DeclPtrTy();
6204
6205  // This is definitely an error in C++98.  It's probably meant to
6206  // be forbidden in C++0x, too, but the specification is just
6207  // poorly written.
6208  //
6209  // The problem is with declarations like the following:
6210  //   template <T> friend A<T>::foo;
6211  // where deciding whether a class C is a friend or not now hinges
6212  // on whether there exists an instantiation of A that causes
6213  // 'foo' to equal C.  There are restrictions on class-heads
6214  // (which we declare (by fiat) elaborated friend declarations to
6215  // be) that makes this tractable.
6216  //
6217  // FIXME: handle "template <> friend class A<T>;", which
6218  // is possibly well-formed?  Who even knows?
6219  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6220    Diag(Loc, diag::err_tagless_friend_type_template)
6221      << DS.getSourceRange();
6222    return DeclPtrTy();
6223  }
6224
6225  // C++98 [class.friend]p1: A friend of a class is a function
6226  //   or class that is not a member of the class . . .
6227  // This is fixed in DR77, which just barely didn't make the C++03
6228  // deadline.  It's also a very silly restriction that seriously
6229  // affects inner classes and which nobody else seems to implement;
6230  // thus we never diagnose it, not even in -pedantic.
6231  //
6232  // But note that we could warn about it: it's always useless to
6233  // friend one of your own members (it's not, however, worthless to
6234  // friend a member of an arbitrary specialization of your template).
6235
6236  Decl *D;
6237  if (unsigned NumTempParamLists = TempParams.size())
6238    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6239                                   NumTempParamLists,
6240                                 (TemplateParameterList**) TempParams.release(),
6241                                   TSI,
6242                                   DS.getFriendSpecLoc());
6243  else
6244    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6245
6246  if (!D)
6247    return DeclPtrTy();
6248
6249  D->setAccess(AS_public);
6250  CurContext->addDecl(D);
6251
6252  return DeclPtrTy::make(D);
6253}
6254
6255Sema::DeclPtrTy
6256Sema::ActOnFriendFunctionDecl(Scope *S,
6257                              Declarator &D,
6258                              bool IsDefinition,
6259                              MultiTemplateParamsArg TemplateParams) {
6260  const DeclSpec &DS = D.getDeclSpec();
6261
6262  assert(DS.isFriendSpecified());
6263  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6264
6265  SourceLocation Loc = D.getIdentifierLoc();
6266  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6267  QualType T = TInfo->getType();
6268
6269  // C++ [class.friend]p1
6270  //   A friend of a class is a function or class....
6271  // Note that this sees through typedefs, which is intended.
6272  // It *doesn't* see through dependent types, which is correct
6273  // according to [temp.arg.type]p3:
6274  //   If a declaration acquires a function type through a
6275  //   type dependent on a template-parameter and this causes
6276  //   a declaration that does not use the syntactic form of a
6277  //   function declarator to have a function type, the program
6278  //   is ill-formed.
6279  if (!T->isFunctionType()) {
6280    Diag(Loc, diag::err_unexpected_friend);
6281
6282    // It might be worthwhile to try to recover by creating an
6283    // appropriate declaration.
6284    return DeclPtrTy();
6285  }
6286
6287  // C++ [namespace.memdef]p3
6288  //  - If a friend declaration in a non-local class first declares a
6289  //    class or function, the friend class or function is a member
6290  //    of the innermost enclosing namespace.
6291  //  - The name of the friend is not found by simple name lookup
6292  //    until a matching declaration is provided in that namespace
6293  //    scope (either before or after the class declaration granting
6294  //    friendship).
6295  //  - If a friend function is called, its name may be found by the
6296  //    name lookup that considers functions from namespaces and
6297  //    classes associated with the types of the function arguments.
6298  //  - When looking for a prior declaration of a class or a function
6299  //    declared as a friend, scopes outside the innermost enclosing
6300  //    namespace scope are not considered.
6301
6302  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6303  DeclarationName Name = GetNameForDeclarator(D);
6304  assert(Name);
6305
6306  // The context we found the declaration in, or in which we should
6307  // create the declaration.
6308  DeclContext *DC;
6309
6310  // FIXME: handle local classes
6311
6312  // Recover from invalid scope qualifiers as if they just weren't there.
6313  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
6314                        ForRedeclaration);
6315  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6316    DC = computeDeclContext(ScopeQual);
6317
6318    // FIXME: handle dependent contexts
6319    if (!DC) return DeclPtrTy();
6320    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
6321
6322    LookupQualifiedName(Previous, DC);
6323
6324    // Ignore things found implicitly in the wrong scope.
6325    // TODO: better diagnostics for this case.  Suggesting the right
6326    // qualified scope would be nice...
6327    LookupResult::Filter F = Previous.makeFilter();
6328    while (F.hasNext()) {
6329      NamedDecl *D = F.next();
6330      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6331        F.erase();
6332    }
6333    F.done();
6334
6335    if (Previous.empty()) {
6336      D.setInvalidType();
6337      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6338      return DeclPtrTy();
6339    }
6340
6341    // C++ [class.friend]p1: A friend of a class is a function or
6342    //   class that is not a member of the class . . .
6343    if (DC->Equals(CurContext))
6344      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6345
6346  // Otherwise walk out to the nearest namespace scope looking for matches.
6347  } else {
6348    // TODO: handle local class contexts.
6349
6350    DC = CurContext;
6351    while (true) {
6352      // Skip class contexts.  If someone can cite chapter and verse
6353      // for this behavior, that would be nice --- it's what GCC and
6354      // EDG do, and it seems like a reasonable intent, but the spec
6355      // really only says that checks for unqualified existing
6356      // declarations should stop at the nearest enclosing namespace,
6357      // not that they should only consider the nearest enclosing
6358      // namespace.
6359      while (DC->isRecord())
6360        DC = DC->getParent();
6361
6362      LookupQualifiedName(Previous, DC);
6363
6364      // TODO: decide what we think about using declarations.
6365      if (!Previous.empty())
6366        break;
6367
6368      if (DC->isFileContext()) break;
6369      DC = DC->getParent();
6370    }
6371
6372    // C++ [class.friend]p1: A friend of a class is a function or
6373    //   class that is not a member of the class . . .
6374    // C++0x changes this for both friend types and functions.
6375    // Most C++ 98 compilers do seem to give an error here, so
6376    // we do, too.
6377    if (!Previous.empty() && DC->Equals(CurContext)
6378        && !getLangOptions().CPlusPlus0x)
6379      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6380  }
6381
6382  if (DC->isFileContext()) {
6383    // This implies that it has to be an operator or function.
6384    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6385        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6386        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6387      Diag(Loc, diag::err_introducing_special_friend) <<
6388        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6389         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6390      return DeclPtrTy();
6391    }
6392  }
6393
6394  bool Redeclaration = false;
6395  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6396                                          move(TemplateParams),
6397                                          IsDefinition,
6398                                          Redeclaration);
6399  if (!ND) return DeclPtrTy();
6400
6401  assert(ND->getDeclContext() == DC);
6402  assert(ND->getLexicalDeclContext() == CurContext);
6403
6404  // Add the function declaration to the appropriate lookup tables,
6405  // adjusting the redeclarations list as necessary.  We don't
6406  // want to do this yet if the friending class is dependent.
6407  //
6408  // Also update the scope-based lookup if the target context's
6409  // lookup context is in lexical scope.
6410  if (!CurContext->isDependentContext()) {
6411    DC = DC->getLookupContext();
6412    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6413    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6414      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6415  }
6416
6417  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6418                                       D.getIdentifierLoc(), ND,
6419                                       DS.getFriendSpecLoc());
6420  FrD->setAccess(AS_public);
6421  CurContext->addDecl(FrD);
6422
6423  return DeclPtrTy::make(ND);
6424}
6425
6426void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6427  AdjustDeclIfTemplate(dcl);
6428
6429  Decl *Dcl = dcl.getAs<Decl>();
6430  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6431  if (!Fn) {
6432    Diag(DelLoc, diag::err_deleted_non_function);
6433    return;
6434  }
6435  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6436    Diag(DelLoc, diag::err_deleted_decl_not_first);
6437    Diag(Prev->getLocation(), diag::note_previous_declaration);
6438    // If the declaration wasn't the first, we delete the function anyway for
6439    // recovery.
6440  }
6441  Fn->setDeleted();
6442}
6443
6444static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6445  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6446       ++CI) {
6447    Stmt *SubStmt = *CI;
6448    if (!SubStmt)
6449      continue;
6450    if (isa<ReturnStmt>(SubStmt))
6451      Self.Diag(SubStmt->getSourceRange().getBegin(),
6452           diag::err_return_in_constructor_handler);
6453    if (!isa<Expr>(SubStmt))
6454      SearchForReturnInStmt(Self, SubStmt);
6455  }
6456}
6457
6458void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6459  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6460    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6461    SearchForReturnInStmt(*this, Handler);
6462  }
6463}
6464
6465bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6466                                             const CXXMethodDecl *Old) {
6467  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6468  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6469
6470  if (Context.hasSameType(NewTy, OldTy) ||
6471      NewTy->isDependentType() || OldTy->isDependentType())
6472    return false;
6473
6474  // Check if the return types are covariant
6475  QualType NewClassTy, OldClassTy;
6476
6477  /// Both types must be pointers or references to classes.
6478  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6479    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6480      NewClassTy = NewPT->getPointeeType();
6481      OldClassTy = OldPT->getPointeeType();
6482    }
6483  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6484    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6485      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6486        NewClassTy = NewRT->getPointeeType();
6487        OldClassTy = OldRT->getPointeeType();
6488      }
6489    }
6490  }
6491
6492  // The return types aren't either both pointers or references to a class type.
6493  if (NewClassTy.isNull()) {
6494    Diag(New->getLocation(),
6495         diag::err_different_return_type_for_overriding_virtual_function)
6496      << New->getDeclName() << NewTy << OldTy;
6497    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6498
6499    return true;
6500  }
6501
6502  // C++ [class.virtual]p6:
6503  //   If the return type of D::f differs from the return type of B::f, the
6504  //   class type in the return type of D::f shall be complete at the point of
6505  //   declaration of D::f or shall be the class type D.
6506  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6507    if (!RT->isBeingDefined() &&
6508        RequireCompleteType(New->getLocation(), NewClassTy,
6509                            PDiag(diag::err_covariant_return_incomplete)
6510                              << New->getDeclName()))
6511    return true;
6512  }
6513
6514  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6515    // Check if the new class derives from the old class.
6516    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6517      Diag(New->getLocation(),
6518           diag::err_covariant_return_not_derived)
6519      << New->getDeclName() << NewTy << OldTy;
6520      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6521      return true;
6522    }
6523
6524    // Check if we the conversion from derived to base is valid.
6525    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6526                    diag::err_covariant_return_inaccessible_base,
6527                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6528                    // FIXME: Should this point to the return type?
6529                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6530      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6531      return true;
6532    }
6533  }
6534
6535  // The qualifiers of the return types must be the same.
6536  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6537    Diag(New->getLocation(),
6538         diag::err_covariant_return_type_different_qualifications)
6539    << New->getDeclName() << NewTy << OldTy;
6540    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6541    return true;
6542  };
6543
6544
6545  // The new class type must have the same or less qualifiers as the old type.
6546  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6547    Diag(New->getLocation(),
6548         diag::err_covariant_return_type_class_type_more_qualified)
6549    << New->getDeclName() << NewTy << OldTy;
6550    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6551    return true;
6552  };
6553
6554  return false;
6555}
6556
6557bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6558                                             const CXXMethodDecl *Old)
6559{
6560  if (Old->hasAttr<FinalAttr>()) {
6561    Diag(New->getLocation(), diag::err_final_function_overridden)
6562      << New->getDeclName();
6563    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6564    return true;
6565  }
6566
6567  return false;
6568}
6569
6570/// \brief Mark the given method pure.
6571///
6572/// \param Method the method to be marked pure.
6573///
6574/// \param InitRange the source range that covers the "0" initializer.
6575bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6576  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6577    Method->setPure();
6578
6579    // A class is abstract if at least one function is pure virtual.
6580    Method->getParent()->setAbstract(true);
6581    return false;
6582  }
6583
6584  if (!Method->isInvalidDecl())
6585    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6586      << Method->getDeclName() << InitRange;
6587  return true;
6588}
6589
6590/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6591/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6592/// is a fresh scope pushed for just this purpose.
6593///
6594/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6595/// static data member of class X, names should be looked up in the scope of
6596/// class X.
6597void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6598  // If there is no declaration, there was an error parsing it.
6599  Decl *D = Dcl.getAs<Decl>();
6600  if (D == 0) return;
6601
6602  // We should only get called for declarations with scope specifiers, like:
6603  //   int foo::bar;
6604  assert(D->isOutOfLine());
6605  EnterDeclaratorContext(S, D->getDeclContext());
6606}
6607
6608/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6609/// initializer for the out-of-line declaration 'Dcl'.
6610void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6611  // If there is no declaration, there was an error parsing it.
6612  Decl *D = Dcl.getAs<Decl>();
6613  if (D == 0) return;
6614
6615  assert(D->isOutOfLine());
6616  ExitDeclaratorContext(S);
6617}
6618
6619/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6620/// C++ if/switch/while/for statement.
6621/// e.g: "if (int x = f()) {...}"
6622Action::DeclResult
6623Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6624  // C++ 6.4p2:
6625  // The declarator shall not specify a function or an array.
6626  // The type-specifier-seq shall not contain typedef and shall not declare a
6627  // new class or enumeration.
6628  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6629         "Parser allowed 'typedef' as storage class of condition decl.");
6630
6631  TagDecl *OwnedTag = 0;
6632  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6633  QualType Ty = TInfo->getType();
6634
6635  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6636                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6637                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6638    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6639      << D.getSourceRange();
6640    return DeclResult();
6641  } else if (OwnedTag && OwnedTag->isDefinition()) {
6642    // The type-specifier-seq shall not declare a new class or enumeration.
6643    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6644  }
6645
6646  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6647  if (!Dcl)
6648    return DeclResult();
6649
6650  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6651  VD->setDeclaredInCondition(true);
6652  return Dcl;
6653}
6654
6655void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6656                          bool DefinitionRequired) {
6657  // Ignore any vtable uses in unevaluated operands or for classes that do
6658  // not have a vtable.
6659  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6660      CurContext->isDependentContext() ||
6661      ExprEvalContexts.back().Context == Unevaluated)
6662    return;
6663
6664  // Try to insert this class into the map.
6665  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6666  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6667    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6668  if (!Pos.second) {
6669    // If we already had an entry, check to see if we are promoting this vtable
6670    // to required a definition. If so, we need to reappend to the VTableUses
6671    // list, since we may have already processed the first entry.
6672    if (DefinitionRequired && !Pos.first->second) {
6673      Pos.first->second = true;
6674    } else {
6675      // Otherwise, we can early exit.
6676      return;
6677    }
6678  }
6679
6680  // Local classes need to have their virtual members marked
6681  // immediately. For all other classes, we mark their virtual members
6682  // at the end of the translation unit.
6683  if (Class->isLocalClass())
6684    MarkVirtualMembersReferenced(Loc, Class);
6685  else
6686    VTableUses.push_back(std::make_pair(Class, Loc));
6687}
6688
6689bool Sema::DefineUsedVTables() {
6690  // If any dynamic classes have their key function defined within
6691  // this translation unit, then those vtables are considered "used" and must
6692  // be emitted.
6693  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6694    if (const CXXMethodDecl *KeyFunction
6695                             = Context.getKeyFunction(DynamicClasses[I])) {
6696      const FunctionDecl *Definition = 0;
6697      if (KeyFunction->hasBody(Definition))
6698        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6699    }
6700  }
6701
6702  if (VTableUses.empty())
6703    return false;
6704
6705  // Note: The VTableUses vector could grow as a result of marking
6706  // the members of a class as "used", so we check the size each
6707  // time through the loop and prefer indices (with are stable) to
6708  // iterators (which are not).
6709  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6710    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6711    if (!Class)
6712      continue;
6713
6714    SourceLocation Loc = VTableUses[I].second;
6715
6716    // If this class has a key function, but that key function is
6717    // defined in another translation unit, we don't need to emit the
6718    // vtable even though we're using it.
6719    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6720    if (KeyFunction && !KeyFunction->hasBody()) {
6721      switch (KeyFunction->getTemplateSpecializationKind()) {
6722      case TSK_Undeclared:
6723      case TSK_ExplicitSpecialization:
6724      case TSK_ExplicitInstantiationDeclaration:
6725        // The key function is in another translation unit.
6726        continue;
6727
6728      case TSK_ExplicitInstantiationDefinition:
6729      case TSK_ImplicitInstantiation:
6730        // We will be instantiating the key function.
6731        break;
6732      }
6733    } else if (!KeyFunction) {
6734      // If we have a class with no key function that is the subject
6735      // of an explicit instantiation declaration, suppress the
6736      // vtable; it will live with the explicit instantiation
6737      // definition.
6738      bool IsExplicitInstantiationDeclaration
6739        = Class->getTemplateSpecializationKind()
6740                                      == TSK_ExplicitInstantiationDeclaration;
6741      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6742                                 REnd = Class->redecls_end();
6743           R != REnd; ++R) {
6744        TemplateSpecializationKind TSK
6745          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6746        if (TSK == TSK_ExplicitInstantiationDeclaration)
6747          IsExplicitInstantiationDeclaration = true;
6748        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6749          IsExplicitInstantiationDeclaration = false;
6750          break;
6751        }
6752      }
6753
6754      if (IsExplicitInstantiationDeclaration)
6755        continue;
6756    }
6757
6758    // Mark all of the virtual members of this class as referenced, so
6759    // that we can build a vtable. Then, tell the AST consumer that a
6760    // vtable for this class is required.
6761    MarkVirtualMembersReferenced(Loc, Class);
6762    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6763    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6764
6765    // Optionally warn if we're emitting a weak vtable.
6766    if (Class->getLinkage() == ExternalLinkage &&
6767        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6768      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6769        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6770    }
6771  }
6772  VTableUses.clear();
6773
6774  return true;
6775}
6776
6777void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6778                                        const CXXRecordDecl *RD) {
6779  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6780       e = RD->method_end(); i != e; ++i) {
6781    CXXMethodDecl *MD = *i;
6782
6783    // C++ [basic.def.odr]p2:
6784    //   [...] A virtual member function is used if it is not pure. [...]
6785    if (MD->isVirtual() && !MD->isPure())
6786      MarkDeclarationReferenced(Loc, MD);
6787  }
6788
6789  // Only classes that have virtual bases need a VTT.
6790  if (RD->getNumVBases() == 0)
6791    return;
6792
6793  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6794           e = RD->bases_end(); i != e; ++i) {
6795    const CXXRecordDecl *Base =
6796        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6797    if (i->isVirtual())
6798      continue;
6799    if (Base->getNumVBases() == 0)
6800      continue;
6801    MarkVirtualMembersReferenced(Loc, Base);
6802  }
6803}
6804
6805/// SetIvarInitializers - This routine builds initialization ASTs for the
6806/// Objective-C implementation whose ivars need be initialized.
6807void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6808  if (!getLangOptions().CPlusPlus)
6809    return;
6810  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6811    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6812    CollectIvarsToConstructOrDestruct(OID, ivars);
6813    if (ivars.empty())
6814      return;
6815    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6816    for (unsigned i = 0; i < ivars.size(); i++) {
6817      FieldDecl *Field = ivars[i];
6818      if (Field->isInvalidDecl())
6819        continue;
6820
6821      CXXBaseOrMemberInitializer *Member;
6822      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6823      InitializationKind InitKind =
6824        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6825
6826      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6827      Sema::OwningExprResult MemberInit =
6828        InitSeq.Perform(*this, InitEntity, InitKind,
6829                        Sema::MultiExprArg(*this, 0, 0));
6830      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6831      // Note, MemberInit could actually come back empty if no initialization
6832      // is required (e.g., because it would call a trivial default constructor)
6833      if (!MemberInit.get() || MemberInit.isInvalid())
6834        continue;
6835
6836      Member =
6837        new (Context) CXXBaseOrMemberInitializer(Context,
6838                                                 Field, SourceLocation(),
6839                                                 SourceLocation(),
6840                                                 MemberInit.takeAs<Expr>(),
6841                                                 SourceLocation());
6842      AllToInit.push_back(Member);
6843
6844      // Be sure that the destructor is accessible and is marked as referenced.
6845      if (const RecordType *RecordTy
6846                  = Context.getBaseElementType(Field->getType())
6847                                                        ->getAs<RecordType>()) {
6848                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6849        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6850          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6851          CheckDestructorAccess(Field->getLocation(), Destructor,
6852                            PDiag(diag::err_access_dtor_ivar)
6853                              << Context.getBaseElementType(Field->getType()));
6854        }
6855      }
6856    }
6857    ObjCImplementation->setIvarInitializers(Context,
6858                                            AllToInit.data(), AllToInit.size());
6859  }
6860}
6861