SemaDeclCXX.cpp revision 08235661cf457978ba4645ec8e22697aebabe4fa
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/CXXFieldCollector.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Initialization.h"
36#include "clang/Sema/Lookup.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Scope.h"
39#include "clang/Sema/ScopeInfo.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include <map>
43#include <set>
44
45using namespace clang;
46
47//===----------------------------------------------------------------------===//
48// CheckDefaultArgumentVisitor
49//===----------------------------------------------------------------------===//
50
51namespace {
52  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53  /// the default argument of a parameter to determine whether it
54  /// contains any ill-formed subexpressions. For example, this will
55  /// diagnose the use of local variables or parameters within the
56  /// default argument expression.
57  class CheckDefaultArgumentVisitor
58    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59    Expr *DefaultArg;
60    Sema *S;
61
62  public:
63    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64      : DefaultArg(defarg), S(s) {}
65
66    bool VisitExpr(Expr *Node);
67    bool VisitDeclRefExpr(DeclRefExpr *DRE);
68    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69    bool VisitLambdaExpr(LambdaExpr *Lambda);
70    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71  };
72
73  /// VisitExpr - Visit all of the children of this expression.
74  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75    bool IsInvalid = false;
76    for (Stmt::child_range I = Node->children(); I; ++I)
77      IsInvalid |= Visit(*I);
78    return IsInvalid;
79  }
80
81  /// VisitDeclRefExpr - Visit a reference to a declaration, to
82  /// determine whether this declaration can be used in the default
83  /// argument expression.
84  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85    NamedDecl *Decl = DRE->getDecl();
86    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p9
88      //   Default arguments are evaluated each time the function is
89      //   called. The order of evaluation of function arguments is
90      //   unspecified. Consequently, parameters of a function shall not
91      //   be used in default argument expressions, even if they are not
92      //   evaluated. Parameters of a function declared before a default
93      //   argument expression are in scope and can hide namespace and
94      //   class member names.
95      return S->Diag(DRE->getLocStart(),
96                     diag::err_param_default_argument_references_param)
97         << Param->getDeclName() << DefaultArg->getSourceRange();
98    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99      // C++ [dcl.fct.default]p7
100      //   Local variables shall not be used in default argument
101      //   expressions.
102      if (VDecl->isLocalVarDecl())
103        return S->Diag(DRE->getLocStart(),
104                       diag::err_param_default_argument_references_local)
105          << VDecl->getDeclName() << DefaultArg->getSourceRange();
106    }
107
108    return false;
109  }
110
111  /// VisitCXXThisExpr - Visit a C++ "this" expression.
112  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113    // C++ [dcl.fct.default]p8:
114    //   The keyword this shall not be used in a default argument of a
115    //   member function.
116    return S->Diag(ThisE->getLocStart(),
117                   diag::err_param_default_argument_references_this)
118               << ThisE->getSourceRange();
119  }
120
121  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122    bool Invalid = false;
123    for (PseudoObjectExpr::semantics_iterator
124           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125      Expr *E = *i;
126
127      // Look through bindings.
128      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129        E = OVE->getSourceExpr();
130        assert(E && "pseudo-object binding without source expression?");
131      }
132
133      Invalid |= Visit(E);
134    }
135    return Invalid;
136  }
137
138  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139    // C++11 [expr.lambda.prim]p13:
140    //   A lambda-expression appearing in a default argument shall not
141    //   implicitly or explicitly capture any entity.
142    if (Lambda->capture_begin() == Lambda->capture_end())
143      return false;
144
145    return S->Diag(Lambda->getLocStart(),
146                   diag::err_lambda_capture_default_arg);
147  }
148}
149
150void
151Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152                                                 const CXXMethodDecl *Method) {
153  // If we have an MSAny spec already, don't bother.
154  if (!Method || ComputedEST == EST_MSAny)
155    return;
156
157  const FunctionProtoType *Proto
158    = Method->getType()->getAs<FunctionProtoType>();
159  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160  if (!Proto)
161    return;
162
163  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164
165  // If this function can throw any exceptions, make a note of that.
166  if (EST == EST_MSAny || EST == EST_None) {
167    ClearExceptions();
168    ComputedEST = EST;
169    return;
170  }
171
172  // FIXME: If the call to this decl is using any of its default arguments, we
173  // need to search them for potentially-throwing calls.
174
175  // If this function has a basic noexcept, it doesn't affect the outcome.
176  if (EST == EST_BasicNoexcept)
177    return;
178
179  // If we have a throw-all spec at this point, ignore the function.
180  if (ComputedEST == EST_None)
181    return;
182
183  // If we're still at noexcept(true) and there's a nothrow() callee,
184  // change to that specification.
185  if (EST == EST_DynamicNone) {
186    if (ComputedEST == EST_BasicNoexcept)
187      ComputedEST = EST_DynamicNone;
188    return;
189  }
190
191  // Check out noexcept specs.
192  if (EST == EST_ComputedNoexcept) {
193    FunctionProtoType::NoexceptResult NR =
194        Proto->getNoexceptSpec(Self->Context);
195    assert(NR != FunctionProtoType::NR_NoNoexcept &&
196           "Must have noexcept result for EST_ComputedNoexcept.");
197    assert(NR != FunctionProtoType::NR_Dependent &&
198           "Should not generate implicit declarations for dependent cases, "
199           "and don't know how to handle them anyway.");
200
201    // noexcept(false) -> no spec on the new function
202    if (NR == FunctionProtoType::NR_Throw) {
203      ClearExceptions();
204      ComputedEST = EST_None;
205    }
206    // noexcept(true) won't change anything either.
207    return;
208  }
209
210  assert(EST == EST_Dynamic && "EST case not considered earlier.");
211  assert(ComputedEST != EST_None &&
212         "Shouldn't collect exceptions when throw-all is guaranteed.");
213  ComputedEST = EST_Dynamic;
214  // Record the exceptions in this function's exception specification.
215  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
216                                          EEnd = Proto->exception_end();
217       E != EEnd; ++E)
218    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
219      Exceptions.push_back(*E);
220}
221
222void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
223  if (!E || ComputedEST == EST_MSAny)
224    return;
225
226  // FIXME:
227  //
228  // C++0x [except.spec]p14:
229  //   [An] implicit exception-specification specifies the type-id T if and
230  // only if T is allowed by the exception-specification of a function directly
231  // invoked by f's implicit definition; f shall allow all exceptions if any
232  // function it directly invokes allows all exceptions, and f shall allow no
233  // exceptions if every function it directly invokes allows no exceptions.
234  //
235  // Note in particular that if an implicit exception-specification is generated
236  // for a function containing a throw-expression, that specification can still
237  // be noexcept(true).
238  //
239  // Note also that 'directly invoked' is not defined in the standard, and there
240  // is no indication that we should only consider potentially-evaluated calls.
241  //
242  // Ultimately we should implement the intent of the standard: the exception
243  // specification should be the set of exceptions which can be thrown by the
244  // implicit definition. For now, we assume that any non-nothrow expression can
245  // throw any exception.
246
247  if (Self->canThrow(E))
248    ComputedEST = EST_None;
249}
250
251bool
252Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
253                              SourceLocation EqualLoc) {
254  if (RequireCompleteType(Param->getLocation(), Param->getType(),
255                          diag::err_typecheck_decl_incomplete_type)) {
256    Param->setInvalidDecl();
257    return true;
258  }
259
260  // C++ [dcl.fct.default]p5
261  //   A default argument expression is implicitly converted (clause
262  //   4) to the parameter type. The default argument expression has
263  //   the same semantic constraints as the initializer expression in
264  //   a declaration of a variable of the parameter type, using the
265  //   copy-initialization semantics (8.5).
266  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
267                                                                    Param);
268  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
269                                                           EqualLoc);
270  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
271  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
272  if (Result.isInvalid())
273    return true;
274  Arg = Result.takeAs<Expr>();
275
276  CheckCompletedExpr(Arg, EqualLoc);
277  Arg = MaybeCreateExprWithCleanups(Arg);
278
279  // Okay: add the default argument to the parameter
280  Param->setDefaultArg(Arg);
281
282  // We have already instantiated this parameter; provide each of the
283  // instantiations with the uninstantiated default argument.
284  UnparsedDefaultArgInstantiationsMap::iterator InstPos
285    = UnparsedDefaultArgInstantiations.find(Param);
286  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
287    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
288      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
289
290    // We're done tracking this parameter's instantiations.
291    UnparsedDefaultArgInstantiations.erase(InstPos);
292  }
293
294  return false;
295}
296
297/// ActOnParamDefaultArgument - Check whether the default argument
298/// provided for a function parameter is well-formed. If so, attach it
299/// to the parameter declaration.
300void
301Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
302                                Expr *DefaultArg) {
303  if (!param || !DefaultArg)
304    return;
305
306  ParmVarDecl *Param = cast<ParmVarDecl>(param);
307  UnparsedDefaultArgLocs.erase(Param);
308
309  // Default arguments are only permitted in C++
310  if (!getLangOpts().CPlusPlus) {
311    Diag(EqualLoc, diag::err_param_default_argument)
312      << DefaultArg->getSourceRange();
313    Param->setInvalidDecl();
314    return;
315  }
316
317  // Check for unexpanded parameter packs.
318  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
319    Param->setInvalidDecl();
320    return;
321  }
322
323  // Check that the default argument is well-formed
324  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
325  if (DefaultArgChecker.Visit(DefaultArg)) {
326    Param->setInvalidDecl();
327    return;
328  }
329
330  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
331}
332
333/// ActOnParamUnparsedDefaultArgument - We've seen a default
334/// argument for a function parameter, but we can't parse it yet
335/// because we're inside a class definition. Note that this default
336/// argument will be parsed later.
337void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
338                                             SourceLocation EqualLoc,
339                                             SourceLocation ArgLoc) {
340  if (!param)
341    return;
342
343  ParmVarDecl *Param = cast<ParmVarDecl>(param);
344  Param->setUnparsedDefaultArg();
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355  Param->setInvalidDecl();
356  UnparsedDefaultArgLocs.erase(Param);
357}
358
359/// CheckExtraCXXDefaultArguments - Check for any extra default
360/// arguments in the declarator, which is not a function declaration
361/// or definition and therefore is not permitted to have default
362/// arguments. This routine should be invoked for every declarator
363/// that is not a function declaration or definition.
364void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
365  // C++ [dcl.fct.default]p3
366  //   A default argument expression shall be specified only in the
367  //   parameter-declaration-clause of a function declaration or in a
368  //   template-parameter (14.1). It shall not be specified for a
369  //   parameter pack. If it is specified in a
370  //   parameter-declaration-clause, it shall not occur within a
371  //   declarator or abstract-declarator of a parameter-declaration.
372  bool MightBeFunction = D.isFunctionDeclarationContext();
373  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
374    DeclaratorChunk &chunk = D.getTypeObject(i);
375    if (chunk.Kind == DeclaratorChunk::Function) {
376      if (MightBeFunction) {
377        // This is a function declaration. It can have default arguments, but
378        // keep looking in case its return type is a function type with default
379        // arguments.
380        MightBeFunction = false;
381        continue;
382      }
383      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
384        ParmVarDecl *Param =
385          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
386        if (Param->hasUnparsedDefaultArg()) {
387          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
388          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
389            << SourceRange((*Toks)[1].getLocation(),
390                           Toks->back().getLocation());
391          delete Toks;
392          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
393        } else if (Param->getDefaultArg()) {
394          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
395            << Param->getDefaultArg()->getSourceRange();
396          Param->setDefaultArg(0);
397        }
398      }
399    } else if (chunk.Kind != DeclaratorChunk::Paren) {
400      MightBeFunction = false;
401    }
402  }
403}
404
405static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
406  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
407    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
408    if (!PVD->hasDefaultArg())
409      return false;
410    if (!PVD->hasInheritedDefaultArg())
411      return true;
412  }
413  return false;
414}
415
416/// MergeCXXFunctionDecl - Merge two declarations of the same C++
417/// function, once we already know that they have the same
418/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
419/// error, false otherwise.
420bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
421                                Scope *S) {
422  bool Invalid = false;
423
424  // C++ [dcl.fct.default]p4:
425  //   For non-template functions, default arguments can be added in
426  //   later declarations of a function in the same
427  //   scope. Declarations in different scopes have completely
428  //   distinct sets of default arguments. That is, declarations in
429  //   inner scopes do not acquire default arguments from
430  //   declarations in outer scopes, and vice versa. In a given
431  //   function declaration, all parameters subsequent to a
432  //   parameter with a default argument shall have default
433  //   arguments supplied in this or previous declarations. A
434  //   default argument shall not be redefined by a later
435  //   declaration (not even to the same value).
436  //
437  // C++ [dcl.fct.default]p6:
438  //   Except for member functions of class templates, the default arguments
439  //   in a member function definition that appears outside of the class
440  //   definition are added to the set of default arguments provided by the
441  //   member function declaration in the class definition.
442  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
443    ParmVarDecl *OldParam = Old->getParamDecl(p);
444    ParmVarDecl *NewParam = New->getParamDecl(p);
445
446    bool OldParamHasDfl = OldParam->hasDefaultArg();
447    bool NewParamHasDfl = NewParam->hasDefaultArg();
448
449    NamedDecl *ND = Old;
450
451    // The declaration context corresponding to the scope is the semantic
452    // parent, unless this is a local function declaration, in which case
453    // it is that surrounding function.
454    DeclContext *ScopeDC = New->getLexicalDeclContext();
455    if (!ScopeDC->isFunctionOrMethod())
456      ScopeDC = New->getDeclContext();
457    if (S && !isDeclInScope(ND, ScopeDC, S) &&
458        !New->getDeclContext()->isRecord())
459      // Ignore default parameters of old decl if they are not in
460      // the same scope and this is not an out-of-line definition of
461      // a member function.
462      OldParamHasDfl = false;
463
464    if (OldParamHasDfl && NewParamHasDfl) {
465
466      unsigned DiagDefaultParamID =
467        diag::err_param_default_argument_redefinition;
468
469      // MSVC accepts that default parameters be redefined for member functions
470      // of template class. The new default parameter's value is ignored.
471      Invalid = true;
472      if (getLangOpts().MicrosoftExt) {
473        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
474        if (MD && MD->getParent()->getDescribedClassTemplate()) {
475          // Merge the old default argument into the new parameter.
476          NewParam->setHasInheritedDefaultArg();
477          if (OldParam->hasUninstantiatedDefaultArg())
478            NewParam->setUninstantiatedDefaultArg(
479                                      OldParam->getUninstantiatedDefaultArg());
480          else
481            NewParam->setDefaultArg(OldParam->getInit());
482          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
483          Invalid = false;
484        }
485      }
486
487      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
488      // hint here. Alternatively, we could walk the type-source information
489      // for NewParam to find the last source location in the type... but it
490      // isn't worth the effort right now. This is the kind of test case that
491      // is hard to get right:
492      //   int f(int);
493      //   void g(int (*fp)(int) = f);
494      //   void g(int (*fp)(int) = &f);
495      Diag(NewParam->getLocation(), DiagDefaultParamID)
496        << NewParam->getDefaultArgRange();
497
498      // Look for the function declaration where the default argument was
499      // actually written, which may be a declaration prior to Old.
500      for (FunctionDecl *Older = Old->getPreviousDecl();
501           Older; Older = Older->getPreviousDecl()) {
502        if (!Older->getParamDecl(p)->hasDefaultArg())
503          break;
504
505        OldParam = Older->getParamDecl(p);
506      }
507
508      Diag(OldParam->getLocation(), diag::note_previous_definition)
509        << OldParam->getDefaultArgRange();
510    } else if (OldParamHasDfl) {
511      // Merge the old default argument into the new parameter.
512      // It's important to use getInit() here;  getDefaultArg()
513      // strips off any top-level ExprWithCleanups.
514      NewParam->setHasInheritedDefaultArg();
515      if (OldParam->hasUninstantiatedDefaultArg())
516        NewParam->setUninstantiatedDefaultArg(
517                                      OldParam->getUninstantiatedDefaultArg());
518      else
519        NewParam->setDefaultArg(OldParam->getInit());
520    } else if (NewParamHasDfl) {
521      if (New->getDescribedFunctionTemplate()) {
522        // Paragraph 4, quoted above, only applies to non-template functions.
523        Diag(NewParam->getLocation(),
524             diag::err_param_default_argument_template_redecl)
525          << NewParam->getDefaultArgRange();
526        Diag(Old->getLocation(), diag::note_template_prev_declaration)
527          << false;
528      } else if (New->getTemplateSpecializationKind()
529                   != TSK_ImplicitInstantiation &&
530                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
531        // C++ [temp.expr.spec]p21:
532        //   Default function arguments shall not be specified in a declaration
533        //   or a definition for one of the following explicit specializations:
534        //     - the explicit specialization of a function template;
535        //     - the explicit specialization of a member function template;
536        //     - the explicit specialization of a member function of a class
537        //       template where the class template specialization to which the
538        //       member function specialization belongs is implicitly
539        //       instantiated.
540        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
541          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
542          << New->getDeclName()
543          << NewParam->getDefaultArgRange();
544      } else if (New->getDeclContext()->isDependentContext()) {
545        // C++ [dcl.fct.default]p6 (DR217):
546        //   Default arguments for a member function of a class template shall
547        //   be specified on the initial declaration of the member function
548        //   within the class template.
549        //
550        // Reading the tea leaves a bit in DR217 and its reference to DR205
551        // leads me to the conclusion that one cannot add default function
552        // arguments for an out-of-line definition of a member function of a
553        // dependent type.
554        int WhichKind = 2;
555        if (CXXRecordDecl *Record
556              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
557          if (Record->getDescribedClassTemplate())
558            WhichKind = 0;
559          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
560            WhichKind = 1;
561          else
562            WhichKind = 2;
563        }
564
565        Diag(NewParam->getLocation(),
566             diag::err_param_default_argument_member_template_redecl)
567          << WhichKind
568          << NewParam->getDefaultArgRange();
569      }
570    }
571  }
572
573  // DR1344: If a default argument is added outside a class definition and that
574  // default argument makes the function a special member function, the program
575  // is ill-formed. This can only happen for constructors.
576  if (isa<CXXConstructorDecl>(New) &&
577      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
578    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
579                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
580    if (NewSM != OldSM) {
581      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
582      assert(NewParam->hasDefaultArg());
583      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
584        << NewParam->getDefaultArgRange() << NewSM;
585      Diag(Old->getLocation(), diag::note_previous_declaration);
586    }
587  }
588
589  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
590  // template has a constexpr specifier then all its declarations shall
591  // contain the constexpr specifier.
592  if (New->isConstexpr() != Old->isConstexpr()) {
593    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
594      << New << New->isConstexpr();
595    Diag(Old->getLocation(), diag::note_previous_declaration);
596    Invalid = true;
597  }
598
599  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
600  // argument expression, that declaration shall be a definition and shall be
601  // the only declaration of the function or function template in the
602  // translation unit.
603  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
604      functionDeclHasDefaultArgument(Old)) {
605    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
606    Diag(Old->getLocation(), diag::note_previous_declaration);
607    Invalid = true;
608  }
609
610  if (CheckEquivalentExceptionSpec(Old, New))
611    Invalid = true;
612
613  return Invalid;
614}
615
616/// \brief Merge the exception specifications of two variable declarations.
617///
618/// This is called when there's a redeclaration of a VarDecl. The function
619/// checks if the redeclaration might have an exception specification and
620/// validates compatibility and merges the specs if necessary.
621void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
622  // Shortcut if exceptions are disabled.
623  if (!getLangOpts().CXXExceptions)
624    return;
625
626  assert(Context.hasSameType(New->getType(), Old->getType()) &&
627         "Should only be called if types are otherwise the same.");
628
629  QualType NewType = New->getType();
630  QualType OldType = Old->getType();
631
632  // We're only interested in pointers and references to functions, as well
633  // as pointers to member functions.
634  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
635    NewType = R->getPointeeType();
636    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
637  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
638    NewType = P->getPointeeType();
639    OldType = OldType->getAs<PointerType>()->getPointeeType();
640  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
641    NewType = M->getPointeeType();
642    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
643  }
644
645  if (!NewType->isFunctionProtoType())
646    return;
647
648  // There's lots of special cases for functions. For function pointers, system
649  // libraries are hopefully not as broken so that we don't need these
650  // workarounds.
651  if (CheckEquivalentExceptionSpec(
652        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
653        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
654    New->setInvalidDecl();
655  }
656}
657
658/// CheckCXXDefaultArguments - Verify that the default arguments for a
659/// function declaration are well-formed according to C++
660/// [dcl.fct.default].
661void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
662  unsigned NumParams = FD->getNumParams();
663  unsigned p;
664
665  // Find first parameter with a default argument
666  for (p = 0; p < NumParams; ++p) {
667    ParmVarDecl *Param = FD->getParamDecl(p);
668    if (Param->hasDefaultArg())
669      break;
670  }
671
672  // C++ [dcl.fct.default]p4:
673  //   In a given function declaration, all parameters
674  //   subsequent to a parameter with a default argument shall
675  //   have default arguments supplied in this or previous
676  //   declarations. A default argument shall not be redefined
677  //   by a later declaration (not even to the same value).
678  unsigned LastMissingDefaultArg = 0;
679  for (; p < NumParams; ++p) {
680    ParmVarDecl *Param = FD->getParamDecl(p);
681    if (!Param->hasDefaultArg()) {
682      if (Param->isInvalidDecl())
683        /* We already complained about this parameter. */;
684      else if (Param->getIdentifier())
685        Diag(Param->getLocation(),
686             diag::err_param_default_argument_missing_name)
687          << Param->getIdentifier();
688      else
689        Diag(Param->getLocation(),
690             diag::err_param_default_argument_missing);
691
692      LastMissingDefaultArg = p;
693    }
694  }
695
696  if (LastMissingDefaultArg > 0) {
697    // Some default arguments were missing. Clear out all of the
698    // default arguments up to (and including) the last missing
699    // default argument, so that we leave the function parameters
700    // in a semantically valid state.
701    for (p = 0; p <= LastMissingDefaultArg; ++p) {
702      ParmVarDecl *Param = FD->getParamDecl(p);
703      if (Param->hasDefaultArg()) {
704        Param->setDefaultArg(0);
705      }
706    }
707  }
708}
709
710// CheckConstexprParameterTypes - Check whether a function's parameter types
711// are all literal types. If so, return true. If not, produce a suitable
712// diagnostic and return false.
713static bool CheckConstexprParameterTypes(Sema &SemaRef,
714                                         const FunctionDecl *FD) {
715  unsigned ArgIndex = 0;
716  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
717  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
718       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
719    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
720    SourceLocation ParamLoc = PD->getLocation();
721    if (!(*i)->isDependentType() &&
722        SemaRef.RequireLiteralType(ParamLoc, *i,
723                                   diag::err_constexpr_non_literal_param,
724                                   ArgIndex+1, PD->getSourceRange(),
725                                   isa<CXXConstructorDecl>(FD)))
726      return false;
727  }
728  return true;
729}
730
731/// \brief Get diagnostic %select index for tag kind for
732/// record diagnostic message.
733/// WARNING: Indexes apply to particular diagnostics only!
734///
735/// \returns diagnostic %select index.
736static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
737  switch (Tag) {
738  case TTK_Struct: return 0;
739  case TTK_Interface: return 1;
740  case TTK_Class:  return 2;
741  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
742  }
743}
744
745// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
746// the requirements of a constexpr function definition or a constexpr
747// constructor definition. If so, return true. If not, produce appropriate
748// diagnostics and return false.
749//
750// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
751bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
752  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
753  if (MD && MD->isInstance()) {
754    // C++11 [dcl.constexpr]p4:
755    //  The definition of a constexpr constructor shall satisfy the following
756    //  constraints:
757    //  - the class shall not have any virtual base classes;
758    const CXXRecordDecl *RD = MD->getParent();
759    if (RD->getNumVBases()) {
760      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
761        << isa<CXXConstructorDecl>(NewFD)
762        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
763      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
764             E = RD->vbases_end(); I != E; ++I)
765        Diag(I->getLocStart(),
766             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
767      return false;
768    }
769  }
770
771  if (!isa<CXXConstructorDecl>(NewFD)) {
772    // C++11 [dcl.constexpr]p3:
773    //  The definition of a constexpr function shall satisfy the following
774    //  constraints:
775    // - it shall not be virtual;
776    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
777    if (Method && Method->isVirtual()) {
778      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
779
780      // If it's not obvious why this function is virtual, find an overridden
781      // function which uses the 'virtual' keyword.
782      const CXXMethodDecl *WrittenVirtual = Method;
783      while (!WrittenVirtual->isVirtualAsWritten())
784        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
785      if (WrittenVirtual != Method)
786        Diag(WrittenVirtual->getLocation(),
787             diag::note_overridden_virtual_function);
788      return false;
789    }
790
791    // - its return type shall be a literal type;
792    QualType RT = NewFD->getResultType();
793    if (!RT->isDependentType() &&
794        RequireLiteralType(NewFD->getLocation(), RT,
795                           diag::err_constexpr_non_literal_return))
796      return false;
797  }
798
799  // - each of its parameter types shall be a literal type;
800  if (!CheckConstexprParameterTypes(*this, NewFD))
801    return false;
802
803  return true;
804}
805
806/// Check the given declaration statement is legal within a constexpr function
807/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
808///
809/// \return true if the body is OK (maybe only as an extension), false if we
810///         have diagnosed a problem.
811static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
812                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
813  // C++11 [dcl.constexpr]p3 and p4:
814  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
815  //  contain only
816  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
817         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
818    switch ((*DclIt)->getKind()) {
819    case Decl::StaticAssert:
820    case Decl::Using:
821    case Decl::UsingShadow:
822    case Decl::UsingDirective:
823    case Decl::UnresolvedUsingTypename:
824    case Decl::UnresolvedUsingValue:
825      //   - static_assert-declarations
826      //   - using-declarations,
827      //   - using-directives,
828      continue;
829
830    case Decl::Typedef:
831    case Decl::TypeAlias: {
832      //   - typedef declarations and alias-declarations that do not define
833      //     classes or enumerations,
834      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
835      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
836        // Don't allow variably-modified types in constexpr functions.
837        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
838        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
839          << TL.getSourceRange() << TL.getType()
840          << isa<CXXConstructorDecl>(Dcl);
841        return false;
842      }
843      continue;
844    }
845
846    case Decl::Enum:
847    case Decl::CXXRecord:
848      // C++1y allows types to be defined, not just declared.
849      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
850        SemaRef.Diag(DS->getLocStart(),
851                     SemaRef.getLangOpts().CPlusPlus1y
852                       ? diag::warn_cxx11_compat_constexpr_type_definition
853                       : diag::ext_constexpr_type_definition)
854          << isa<CXXConstructorDecl>(Dcl);
855      continue;
856
857    case Decl::EnumConstant:
858    case Decl::IndirectField:
859    case Decl::ParmVar:
860      // These can only appear with other declarations which are banned in
861      // C++11 and permitted in C++1y, so ignore them.
862      continue;
863
864    case Decl::Var: {
865      // C++1y [dcl.constexpr]p3 allows anything except:
866      //   a definition of a variable of non-literal type or of static or
867      //   thread storage duration or for which no initialization is performed.
868      VarDecl *VD = cast<VarDecl>(*DclIt);
869      if (VD->isThisDeclarationADefinition()) {
870        if (VD->isStaticLocal()) {
871          SemaRef.Diag(VD->getLocation(),
872                       diag::err_constexpr_local_var_static)
873            << isa<CXXConstructorDecl>(Dcl)
874            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
875          return false;
876        }
877        if (!VD->getType()->isDependentType() &&
878            SemaRef.RequireLiteralType(
879              VD->getLocation(), VD->getType(),
880              diag::err_constexpr_local_var_non_literal_type,
881              isa<CXXConstructorDecl>(Dcl)))
882          return false;
883        if (!VD->hasInit()) {
884          SemaRef.Diag(VD->getLocation(),
885                       diag::err_constexpr_local_var_no_init)
886            << isa<CXXConstructorDecl>(Dcl);
887          return false;
888        }
889      }
890      SemaRef.Diag(VD->getLocation(),
891                   SemaRef.getLangOpts().CPlusPlus1y
892                    ? diag::warn_cxx11_compat_constexpr_local_var
893                    : diag::ext_constexpr_local_var)
894        << isa<CXXConstructorDecl>(Dcl);
895      continue;
896    }
897
898    case Decl::NamespaceAlias:
899    case Decl::Function:
900      // These are disallowed in C++11 and permitted in C++1y. Allow them
901      // everywhere as an extension.
902      if (!Cxx1yLoc.isValid())
903        Cxx1yLoc = DS->getLocStart();
904      continue;
905
906    default:
907      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
908        << isa<CXXConstructorDecl>(Dcl);
909      return false;
910    }
911  }
912
913  return true;
914}
915
916/// Check that the given field is initialized within a constexpr constructor.
917///
918/// \param Dcl The constexpr constructor being checked.
919/// \param Field The field being checked. This may be a member of an anonymous
920///        struct or union nested within the class being checked.
921/// \param Inits All declarations, including anonymous struct/union members and
922///        indirect members, for which any initialization was provided.
923/// \param Diagnosed Set to true if an error is produced.
924static void CheckConstexprCtorInitializer(Sema &SemaRef,
925                                          const FunctionDecl *Dcl,
926                                          FieldDecl *Field,
927                                          llvm::SmallSet<Decl*, 16> &Inits,
928                                          bool &Diagnosed) {
929  if (Field->isInvalidDecl())
930    return;
931
932  if (Field->isUnnamedBitfield())
933    return;
934
935  if (Field->isAnonymousStructOrUnion() &&
936      Field->getType()->getAsCXXRecordDecl()->isEmpty())
937    return;
938
939  if (!Inits.count(Field)) {
940    if (!Diagnosed) {
941      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
942      Diagnosed = true;
943    }
944    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
945  } else if (Field->isAnonymousStructOrUnion()) {
946    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
947    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
948         I != E; ++I)
949      // If an anonymous union contains an anonymous struct of which any member
950      // is initialized, all members must be initialized.
951      if (!RD->isUnion() || Inits.count(*I))
952        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
953  }
954}
955
956/// Check the provided statement is allowed in a constexpr function
957/// definition.
958static bool
959CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
960                           SmallVectorImpl<SourceLocation> &ReturnStmts,
961                           SourceLocation &Cxx1yLoc) {
962  // - its function-body shall be [...] a compound-statement that contains only
963  switch (S->getStmtClass()) {
964  case Stmt::NullStmtClass:
965    //   - null statements,
966    return true;
967
968  case Stmt::DeclStmtClass:
969    //   - static_assert-declarations
970    //   - using-declarations,
971    //   - using-directives,
972    //   - typedef declarations and alias-declarations that do not define
973    //     classes or enumerations,
974    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
975      return false;
976    return true;
977
978  case Stmt::ReturnStmtClass:
979    //   - and exactly one return statement;
980    if (isa<CXXConstructorDecl>(Dcl)) {
981      // C++1y allows return statements in constexpr constructors.
982      if (!Cxx1yLoc.isValid())
983        Cxx1yLoc = S->getLocStart();
984      return true;
985    }
986
987    ReturnStmts.push_back(S->getLocStart());
988    return true;
989
990  case Stmt::CompoundStmtClass: {
991    // C++1y allows compound-statements.
992    if (!Cxx1yLoc.isValid())
993      Cxx1yLoc = S->getLocStart();
994
995    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
996    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
997           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
998      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
999                                      Cxx1yLoc))
1000        return false;
1001    }
1002    return true;
1003  }
1004
1005  case Stmt::AttributedStmtClass:
1006    if (!Cxx1yLoc.isValid())
1007      Cxx1yLoc = S->getLocStart();
1008    return true;
1009
1010  case Stmt::IfStmtClass: {
1011    // C++1y allows if-statements.
1012    if (!Cxx1yLoc.isValid())
1013      Cxx1yLoc = S->getLocStart();
1014
1015    IfStmt *If = cast<IfStmt>(S);
1016    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1017                                    Cxx1yLoc))
1018      return false;
1019    if (If->getElse() &&
1020        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1021                                    Cxx1yLoc))
1022      return false;
1023    return true;
1024  }
1025
1026  case Stmt::WhileStmtClass:
1027  case Stmt::DoStmtClass:
1028  case Stmt::ForStmtClass:
1029  case Stmt::CXXForRangeStmtClass:
1030  case Stmt::ContinueStmtClass:
1031    // C++1y allows all of these. We don't allow them as extensions in C++11,
1032    // because they don't make sense without variable mutation.
1033    if (!SemaRef.getLangOpts().CPlusPlus1y)
1034      break;
1035    if (!Cxx1yLoc.isValid())
1036      Cxx1yLoc = S->getLocStart();
1037    for (Stmt::child_range Children = S->children(); Children; ++Children)
1038      if (*Children &&
1039          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1040                                      Cxx1yLoc))
1041        return false;
1042    return true;
1043
1044  case Stmt::SwitchStmtClass:
1045  case Stmt::CaseStmtClass:
1046  case Stmt::DefaultStmtClass:
1047  case Stmt::BreakStmtClass:
1048    // C++1y allows switch-statements, and since they don't need variable
1049    // mutation, we can reasonably allow them in C++11 as an extension.
1050    if (!Cxx1yLoc.isValid())
1051      Cxx1yLoc = S->getLocStart();
1052    for (Stmt::child_range Children = S->children(); Children; ++Children)
1053      if (*Children &&
1054          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1055                                      Cxx1yLoc))
1056        return false;
1057    return true;
1058
1059  default:
1060    if (!isa<Expr>(S))
1061      break;
1062
1063    // C++1y allows expression-statements.
1064    if (!Cxx1yLoc.isValid())
1065      Cxx1yLoc = S->getLocStart();
1066    return true;
1067  }
1068
1069  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1070    << isa<CXXConstructorDecl>(Dcl);
1071  return false;
1072}
1073
1074/// Check the body for the given constexpr function declaration only contains
1075/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1076///
1077/// \return true if the body is OK, false if we have diagnosed a problem.
1078bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1079  if (isa<CXXTryStmt>(Body)) {
1080    // C++11 [dcl.constexpr]p3:
1081    //  The definition of a constexpr function shall satisfy the following
1082    //  constraints: [...]
1083    // - its function-body shall be = delete, = default, or a
1084    //   compound-statement
1085    //
1086    // C++11 [dcl.constexpr]p4:
1087    //  In the definition of a constexpr constructor, [...]
1088    // - its function-body shall not be a function-try-block;
1089    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1090      << isa<CXXConstructorDecl>(Dcl);
1091    return false;
1092  }
1093
1094  SmallVector<SourceLocation, 4> ReturnStmts;
1095
1096  // - its function-body shall be [...] a compound-statement that contains only
1097  //   [... list of cases ...]
1098  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1099  SourceLocation Cxx1yLoc;
1100  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1101         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1102    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1103      return false;
1104  }
1105
1106  if (Cxx1yLoc.isValid())
1107    Diag(Cxx1yLoc,
1108         getLangOpts().CPlusPlus1y
1109           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1110           : diag::ext_constexpr_body_invalid_stmt)
1111      << isa<CXXConstructorDecl>(Dcl);
1112
1113  if (const CXXConstructorDecl *Constructor
1114        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1115    const CXXRecordDecl *RD = Constructor->getParent();
1116    // DR1359:
1117    // - every non-variant non-static data member and base class sub-object
1118    //   shall be initialized;
1119    // - if the class is a non-empty union, or for each non-empty anonymous
1120    //   union member of a non-union class, exactly one non-static data member
1121    //   shall be initialized;
1122    if (RD->isUnion()) {
1123      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1124        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1125        return false;
1126      }
1127    } else if (!Constructor->isDependentContext() &&
1128               !Constructor->isDelegatingConstructor()) {
1129      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1130
1131      // Skip detailed checking if we have enough initializers, and we would
1132      // allow at most one initializer per member.
1133      bool AnyAnonStructUnionMembers = false;
1134      unsigned Fields = 0;
1135      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1136           E = RD->field_end(); I != E; ++I, ++Fields) {
1137        if (I->isAnonymousStructOrUnion()) {
1138          AnyAnonStructUnionMembers = true;
1139          break;
1140        }
1141      }
1142      if (AnyAnonStructUnionMembers ||
1143          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1144        // Check initialization of non-static data members. Base classes are
1145        // always initialized so do not need to be checked. Dependent bases
1146        // might not have initializers in the member initializer list.
1147        llvm::SmallSet<Decl*, 16> Inits;
1148        for (CXXConstructorDecl::init_const_iterator
1149               I = Constructor->init_begin(), E = Constructor->init_end();
1150             I != E; ++I) {
1151          if (FieldDecl *FD = (*I)->getMember())
1152            Inits.insert(FD);
1153          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1154            Inits.insert(ID->chain_begin(), ID->chain_end());
1155        }
1156
1157        bool Diagnosed = false;
1158        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1159             E = RD->field_end(); I != E; ++I)
1160          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1161        if (Diagnosed)
1162          return false;
1163      }
1164    }
1165  } else {
1166    if (ReturnStmts.empty()) {
1167      // C++1y doesn't require constexpr functions to contain a 'return'
1168      // statement. We still do, unless the return type is void, because
1169      // otherwise if there's no return statement, the function cannot
1170      // be used in a core constant expression.
1171      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1172      Diag(Dcl->getLocation(),
1173           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1174              : diag::err_constexpr_body_no_return);
1175      return OK;
1176    }
1177    if (ReturnStmts.size() > 1) {
1178      Diag(ReturnStmts.back(),
1179           getLangOpts().CPlusPlus1y
1180             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1181             : diag::ext_constexpr_body_multiple_return);
1182      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1183        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1184    }
1185  }
1186
1187  // C++11 [dcl.constexpr]p5:
1188  //   if no function argument values exist such that the function invocation
1189  //   substitution would produce a constant expression, the program is
1190  //   ill-formed; no diagnostic required.
1191  // C++11 [dcl.constexpr]p3:
1192  //   - every constructor call and implicit conversion used in initializing the
1193  //     return value shall be one of those allowed in a constant expression.
1194  // C++11 [dcl.constexpr]p4:
1195  //   - every constructor involved in initializing non-static data members and
1196  //     base class sub-objects shall be a constexpr constructor.
1197  SmallVector<PartialDiagnosticAt, 8> Diags;
1198  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1199    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1200      << isa<CXXConstructorDecl>(Dcl);
1201    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1202      Diag(Diags[I].first, Diags[I].second);
1203    // Don't return false here: we allow this for compatibility in
1204    // system headers.
1205  }
1206
1207  return true;
1208}
1209
1210/// isCurrentClassName - Determine whether the identifier II is the
1211/// name of the class type currently being defined. In the case of
1212/// nested classes, this will only return true if II is the name of
1213/// the innermost class.
1214bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1215                              const CXXScopeSpec *SS) {
1216  assert(getLangOpts().CPlusPlus && "No class names in C!");
1217
1218  CXXRecordDecl *CurDecl;
1219  if (SS && SS->isSet() && !SS->isInvalid()) {
1220    DeclContext *DC = computeDeclContext(*SS, true);
1221    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1222  } else
1223    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1224
1225  if (CurDecl && CurDecl->getIdentifier())
1226    return &II == CurDecl->getIdentifier();
1227  return false;
1228}
1229
1230/// \brief Determine whether the identifier II is a typo for the name of
1231/// the class type currently being defined. If so, update it to the identifier
1232/// that should have been used.
1233bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1234  assert(getLangOpts().CPlusPlus && "No class names in C!");
1235
1236  if (!getLangOpts().SpellChecking)
1237    return false;
1238
1239  CXXRecordDecl *CurDecl;
1240  if (SS && SS->isSet() && !SS->isInvalid()) {
1241    DeclContext *DC = computeDeclContext(*SS, true);
1242    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1243  } else
1244    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1245
1246  if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1247      3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1248          < II->getLength()) {
1249    II = CurDecl->getIdentifier();
1250    return true;
1251  }
1252
1253  return false;
1254}
1255
1256/// \brief Determine whether the given class is a base class of the given
1257/// class, including looking at dependent bases.
1258static bool findCircularInheritance(const CXXRecordDecl *Class,
1259                                    const CXXRecordDecl *Current) {
1260  SmallVector<const CXXRecordDecl*, 8> Queue;
1261
1262  Class = Class->getCanonicalDecl();
1263  while (true) {
1264    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1265                                                  E = Current->bases_end();
1266         I != E; ++I) {
1267      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1268      if (!Base)
1269        continue;
1270
1271      Base = Base->getDefinition();
1272      if (!Base)
1273        continue;
1274
1275      if (Base->getCanonicalDecl() == Class)
1276        return true;
1277
1278      Queue.push_back(Base);
1279    }
1280
1281    if (Queue.empty())
1282      return false;
1283
1284    Current = Queue.pop_back_val();
1285  }
1286
1287  return false;
1288}
1289
1290/// \brief Check the validity of a C++ base class specifier.
1291///
1292/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1293/// and returns NULL otherwise.
1294CXXBaseSpecifier *
1295Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1296                         SourceRange SpecifierRange,
1297                         bool Virtual, AccessSpecifier Access,
1298                         TypeSourceInfo *TInfo,
1299                         SourceLocation EllipsisLoc) {
1300  QualType BaseType = TInfo->getType();
1301
1302  // C++ [class.union]p1:
1303  //   A union shall not have base classes.
1304  if (Class->isUnion()) {
1305    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1306      << SpecifierRange;
1307    return 0;
1308  }
1309
1310  if (EllipsisLoc.isValid() &&
1311      !TInfo->getType()->containsUnexpandedParameterPack()) {
1312    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1313      << TInfo->getTypeLoc().getSourceRange();
1314    EllipsisLoc = SourceLocation();
1315  }
1316
1317  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1318
1319  if (BaseType->isDependentType()) {
1320    // Make sure that we don't have circular inheritance among our dependent
1321    // bases. For non-dependent bases, the check for completeness below handles
1322    // this.
1323    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1324      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1325          ((BaseDecl = BaseDecl->getDefinition()) &&
1326           findCircularInheritance(Class, BaseDecl))) {
1327        Diag(BaseLoc, diag::err_circular_inheritance)
1328          << BaseType << Context.getTypeDeclType(Class);
1329
1330        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1331          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1332            << BaseType;
1333
1334        return 0;
1335      }
1336    }
1337
1338    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1339                                          Class->getTagKind() == TTK_Class,
1340                                          Access, TInfo, EllipsisLoc);
1341  }
1342
1343  // Base specifiers must be record types.
1344  if (!BaseType->isRecordType()) {
1345    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1346    return 0;
1347  }
1348
1349  // C++ [class.union]p1:
1350  //   A union shall not be used as a base class.
1351  if (BaseType->isUnionType()) {
1352    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1353    return 0;
1354  }
1355
1356  // C++ [class.derived]p2:
1357  //   The class-name in a base-specifier shall not be an incompletely
1358  //   defined class.
1359  if (RequireCompleteType(BaseLoc, BaseType,
1360                          diag::err_incomplete_base_class, SpecifierRange)) {
1361    Class->setInvalidDecl();
1362    return 0;
1363  }
1364
1365  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1366  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1367  assert(BaseDecl && "Record type has no declaration");
1368  BaseDecl = BaseDecl->getDefinition();
1369  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1370  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1371  assert(CXXBaseDecl && "Base type is not a C++ type");
1372
1373  // C++ [class]p3:
1374  //   If a class is marked final and it appears as a base-type-specifier in
1375  //   base-clause, the program is ill-formed.
1376  if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1377    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1378      << CXXBaseDecl->getDeclName()
1379      << FA->isSpelledAsSealed();
1380    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1381      << CXXBaseDecl->getDeclName();
1382    return 0;
1383  }
1384
1385  if (BaseDecl->isInvalidDecl())
1386    Class->setInvalidDecl();
1387
1388  // Create the base specifier.
1389  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1390                                        Class->getTagKind() == TTK_Class,
1391                                        Access, TInfo, EllipsisLoc);
1392}
1393
1394/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1395/// one entry in the base class list of a class specifier, for
1396/// example:
1397///    class foo : public bar, virtual private baz {
1398/// 'public bar' and 'virtual private baz' are each base-specifiers.
1399BaseResult
1400Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1401                         ParsedAttributes &Attributes,
1402                         bool Virtual, AccessSpecifier Access,
1403                         ParsedType basetype, SourceLocation BaseLoc,
1404                         SourceLocation EllipsisLoc) {
1405  if (!classdecl)
1406    return true;
1407
1408  AdjustDeclIfTemplate(classdecl);
1409  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1410  if (!Class)
1411    return true;
1412
1413  // We do not support any C++11 attributes on base-specifiers yet.
1414  // Diagnose any attributes we see.
1415  if (!Attributes.empty()) {
1416    for (AttributeList *Attr = Attributes.getList(); Attr;
1417         Attr = Attr->getNext()) {
1418      if (Attr->isInvalid() ||
1419          Attr->getKind() == AttributeList::IgnoredAttribute)
1420        continue;
1421      Diag(Attr->getLoc(),
1422           Attr->getKind() == AttributeList::UnknownAttribute
1423             ? diag::warn_unknown_attribute_ignored
1424             : diag::err_base_specifier_attribute)
1425        << Attr->getName();
1426    }
1427  }
1428
1429  TypeSourceInfo *TInfo = 0;
1430  GetTypeFromParser(basetype, &TInfo);
1431
1432  if (EllipsisLoc.isInvalid() &&
1433      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1434                                      UPPC_BaseType))
1435    return true;
1436
1437  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1438                                                      Virtual, Access, TInfo,
1439                                                      EllipsisLoc))
1440    return BaseSpec;
1441  else
1442    Class->setInvalidDecl();
1443
1444  return true;
1445}
1446
1447/// \brief Performs the actual work of attaching the given base class
1448/// specifiers to a C++ class.
1449bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1450                                unsigned NumBases) {
1451 if (NumBases == 0)
1452    return false;
1453
1454  // Used to keep track of which base types we have already seen, so
1455  // that we can properly diagnose redundant direct base types. Note
1456  // that the key is always the unqualified canonical type of the base
1457  // class.
1458  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1459
1460  // Copy non-redundant base specifiers into permanent storage.
1461  unsigned NumGoodBases = 0;
1462  bool Invalid = false;
1463  for (unsigned idx = 0; idx < NumBases; ++idx) {
1464    QualType NewBaseType
1465      = Context.getCanonicalType(Bases[idx]->getType());
1466    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1467
1468    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1469    if (KnownBase) {
1470      // C++ [class.mi]p3:
1471      //   A class shall not be specified as a direct base class of a
1472      //   derived class more than once.
1473      Diag(Bases[idx]->getLocStart(),
1474           diag::err_duplicate_base_class)
1475        << KnownBase->getType()
1476        << Bases[idx]->getSourceRange();
1477
1478      // Delete the duplicate base class specifier; we're going to
1479      // overwrite its pointer later.
1480      Context.Deallocate(Bases[idx]);
1481
1482      Invalid = true;
1483    } else {
1484      // Okay, add this new base class.
1485      KnownBase = Bases[idx];
1486      Bases[NumGoodBases++] = Bases[idx];
1487      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1488        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1489        if (Class->isInterface() &&
1490              (!RD->isInterface() ||
1491               KnownBase->getAccessSpecifier() != AS_public)) {
1492          // The Microsoft extension __interface does not permit bases that
1493          // are not themselves public interfaces.
1494          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1495            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1496            << RD->getSourceRange();
1497          Invalid = true;
1498        }
1499        if (RD->hasAttr<WeakAttr>())
1500          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1501      }
1502    }
1503  }
1504
1505  // Attach the remaining base class specifiers to the derived class.
1506  Class->setBases(Bases, NumGoodBases);
1507
1508  // Delete the remaining (good) base class specifiers, since their
1509  // data has been copied into the CXXRecordDecl.
1510  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1511    Context.Deallocate(Bases[idx]);
1512
1513  return Invalid;
1514}
1515
1516/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1517/// class, after checking whether there are any duplicate base
1518/// classes.
1519void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1520                               unsigned NumBases) {
1521  if (!ClassDecl || !Bases || !NumBases)
1522    return;
1523
1524  AdjustDeclIfTemplate(ClassDecl);
1525  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1526}
1527
1528/// \brief Determine whether the type \p Derived is a C++ class that is
1529/// derived from the type \p Base.
1530bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1531  if (!getLangOpts().CPlusPlus)
1532    return false;
1533
1534  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1535  if (!DerivedRD)
1536    return false;
1537
1538  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1539  if (!BaseRD)
1540    return false;
1541
1542  // If either the base or the derived type is invalid, don't try to
1543  // check whether one is derived from the other.
1544  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1545    return false;
1546
1547  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1548  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1549}
1550
1551/// \brief Determine whether the type \p Derived is a C++ class that is
1552/// derived from the type \p Base.
1553bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1554  if (!getLangOpts().CPlusPlus)
1555    return false;
1556
1557  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1558  if (!DerivedRD)
1559    return false;
1560
1561  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1562  if (!BaseRD)
1563    return false;
1564
1565  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1566}
1567
1568void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1569                              CXXCastPath &BasePathArray) {
1570  assert(BasePathArray.empty() && "Base path array must be empty!");
1571  assert(Paths.isRecordingPaths() && "Must record paths!");
1572
1573  const CXXBasePath &Path = Paths.front();
1574
1575  // We first go backward and check if we have a virtual base.
1576  // FIXME: It would be better if CXXBasePath had the base specifier for
1577  // the nearest virtual base.
1578  unsigned Start = 0;
1579  for (unsigned I = Path.size(); I != 0; --I) {
1580    if (Path[I - 1].Base->isVirtual()) {
1581      Start = I - 1;
1582      break;
1583    }
1584  }
1585
1586  // Now add all bases.
1587  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1588    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1589}
1590
1591/// \brief Determine whether the given base path includes a virtual
1592/// base class.
1593bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1594  for (CXXCastPath::const_iterator B = BasePath.begin(),
1595                                BEnd = BasePath.end();
1596       B != BEnd; ++B)
1597    if ((*B)->isVirtual())
1598      return true;
1599
1600  return false;
1601}
1602
1603/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1604/// conversion (where Derived and Base are class types) is
1605/// well-formed, meaning that the conversion is unambiguous (and
1606/// that all of the base classes are accessible). Returns true
1607/// and emits a diagnostic if the code is ill-formed, returns false
1608/// otherwise. Loc is the location where this routine should point to
1609/// if there is an error, and Range is the source range to highlight
1610/// if there is an error.
1611bool
1612Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1613                                   unsigned InaccessibleBaseID,
1614                                   unsigned AmbigiousBaseConvID,
1615                                   SourceLocation Loc, SourceRange Range,
1616                                   DeclarationName Name,
1617                                   CXXCastPath *BasePath) {
1618  // First, determine whether the path from Derived to Base is
1619  // ambiguous. This is slightly more expensive than checking whether
1620  // the Derived to Base conversion exists, because here we need to
1621  // explore multiple paths to determine if there is an ambiguity.
1622  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1623                     /*DetectVirtual=*/false);
1624  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1625  assert(DerivationOkay &&
1626         "Can only be used with a derived-to-base conversion");
1627  (void)DerivationOkay;
1628
1629  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1630    if (InaccessibleBaseID) {
1631      // Check that the base class can be accessed.
1632      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1633                                   InaccessibleBaseID)) {
1634        case AR_inaccessible:
1635          return true;
1636        case AR_accessible:
1637        case AR_dependent:
1638        case AR_delayed:
1639          break;
1640      }
1641    }
1642
1643    // Build a base path if necessary.
1644    if (BasePath)
1645      BuildBasePathArray(Paths, *BasePath);
1646    return false;
1647  }
1648
1649  if (AmbigiousBaseConvID) {
1650    // We know that the derived-to-base conversion is ambiguous, and
1651    // we're going to produce a diagnostic. Perform the derived-to-base
1652    // search just one more time to compute all of the possible paths so
1653    // that we can print them out. This is more expensive than any of
1654    // the previous derived-to-base checks we've done, but at this point
1655    // performance isn't as much of an issue.
1656    Paths.clear();
1657    Paths.setRecordingPaths(true);
1658    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1659    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1660    (void)StillOkay;
1661
1662    // Build up a textual representation of the ambiguous paths, e.g.,
1663    // D -> B -> A, that will be used to illustrate the ambiguous
1664    // conversions in the diagnostic. We only print one of the paths
1665    // to each base class subobject.
1666    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1667
1668    Diag(Loc, AmbigiousBaseConvID)
1669    << Derived << Base << PathDisplayStr << Range << Name;
1670  }
1671  return true;
1672}
1673
1674bool
1675Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1676                                   SourceLocation Loc, SourceRange Range,
1677                                   CXXCastPath *BasePath,
1678                                   bool IgnoreAccess) {
1679  return CheckDerivedToBaseConversion(Derived, Base,
1680                                      IgnoreAccess ? 0
1681                                       : diag::err_upcast_to_inaccessible_base,
1682                                      diag::err_ambiguous_derived_to_base_conv,
1683                                      Loc, Range, DeclarationName(),
1684                                      BasePath);
1685}
1686
1687
1688/// @brief Builds a string representing ambiguous paths from a
1689/// specific derived class to different subobjects of the same base
1690/// class.
1691///
1692/// This function builds a string that can be used in error messages
1693/// to show the different paths that one can take through the
1694/// inheritance hierarchy to go from the derived class to different
1695/// subobjects of a base class. The result looks something like this:
1696/// @code
1697/// struct D -> struct B -> struct A
1698/// struct D -> struct C -> struct A
1699/// @endcode
1700std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1701  std::string PathDisplayStr;
1702  std::set<unsigned> DisplayedPaths;
1703  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704       Path != Paths.end(); ++Path) {
1705    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1706      // We haven't displayed a path to this particular base
1707      // class subobject yet.
1708      PathDisplayStr += "\n    ";
1709      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1710      for (CXXBasePath::const_iterator Element = Path->begin();
1711           Element != Path->end(); ++Element)
1712        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1713    }
1714  }
1715
1716  return PathDisplayStr;
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// C++ class member Handling
1721//===----------------------------------------------------------------------===//
1722
1723/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1724bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1725                                SourceLocation ASLoc,
1726                                SourceLocation ColonLoc,
1727                                AttributeList *Attrs) {
1728  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1729  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1730                                                  ASLoc, ColonLoc);
1731  CurContext->addHiddenDecl(ASDecl);
1732  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1733}
1734
1735/// CheckOverrideControl - Check C++11 override control semantics.
1736void Sema::CheckOverrideControl(NamedDecl *D) {
1737  if (D->isInvalidDecl())
1738    return;
1739
1740  // We only care about "override" and "final" declarations.
1741  if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1742    return;
1743
1744  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1745
1746  // We can't check dependent instance methods.
1747  if (MD && MD->isInstance() &&
1748      (MD->getParent()->hasAnyDependentBases() ||
1749       MD->getType()->isDependentType()))
1750    return;
1751
1752  if (MD && !MD->isVirtual()) {
1753    // If we have a non-virtual method, check if if hides a virtual method.
1754    // (In that case, it's most likely the method has the wrong type.)
1755    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1756    FindHiddenVirtualMethods(MD, OverloadedMethods);
1757
1758    if (!OverloadedMethods.empty()) {
1759      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1760        Diag(OA->getLocation(),
1761             diag::override_keyword_hides_virtual_member_function)
1762          << "override" << (OverloadedMethods.size() > 1);
1763      } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1764        Diag(FA->getLocation(),
1765             diag::override_keyword_hides_virtual_member_function)
1766          << (FA->isSpelledAsSealed() ? "sealed" : "final")
1767          << (OverloadedMethods.size() > 1);
1768      }
1769      NoteHiddenVirtualMethods(MD, OverloadedMethods);
1770      MD->setInvalidDecl();
1771      return;
1772    }
1773    // Fall through into the general case diagnostic.
1774    // FIXME: We might want to attempt typo correction here.
1775  }
1776
1777  if (!MD || !MD->isVirtual()) {
1778    if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1779      Diag(OA->getLocation(),
1780           diag::override_keyword_only_allowed_on_virtual_member_functions)
1781        << "override" << FixItHint::CreateRemoval(OA->getLocation());
1782      D->dropAttr<OverrideAttr>();
1783    }
1784    if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1785      Diag(FA->getLocation(),
1786           diag::override_keyword_only_allowed_on_virtual_member_functions)
1787        << (FA->isSpelledAsSealed() ? "sealed" : "final")
1788        << FixItHint::CreateRemoval(FA->getLocation());
1789      D->dropAttr<FinalAttr>();
1790    }
1791    return;
1792  }
1793
1794  // C++11 [class.virtual]p5:
1795  //   If a virtual function is marked with the virt-specifier override and
1796  //   does not override a member function of a base class, the program is
1797  //   ill-formed.
1798  bool HasOverriddenMethods =
1799    MD->begin_overridden_methods() != MD->end_overridden_methods();
1800  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1801    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1802      << MD->getDeclName();
1803}
1804
1805/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1806/// function overrides a virtual member function marked 'final', according to
1807/// C++11 [class.virtual]p4.
1808bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1809                                                  const CXXMethodDecl *Old) {
1810  FinalAttr *FA = Old->getAttr<FinalAttr>();
1811  if (!FA)
1812    return false;
1813
1814  Diag(New->getLocation(), diag::err_final_function_overridden)
1815    << New->getDeclName()
1816    << FA->isSpelledAsSealed();
1817  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1818  return true;
1819}
1820
1821static bool InitializationHasSideEffects(const FieldDecl &FD) {
1822  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1823  // FIXME: Destruction of ObjC lifetime types has side-effects.
1824  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1825    return !RD->isCompleteDefinition() ||
1826           !RD->hasTrivialDefaultConstructor() ||
1827           !RD->hasTrivialDestructor();
1828  return false;
1829}
1830
1831static AttributeList *getMSPropertyAttr(AttributeList *list) {
1832  for (AttributeList* it = list; it != 0; it = it->getNext())
1833    if (it->isDeclspecPropertyAttribute())
1834      return it;
1835  return 0;
1836}
1837
1838/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1839/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1840/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1841/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1842/// present (but parsing it has been deferred).
1843NamedDecl *
1844Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1845                               MultiTemplateParamsArg TemplateParameterLists,
1846                               Expr *BW, const VirtSpecifiers &VS,
1847                               InClassInitStyle InitStyle) {
1848  const DeclSpec &DS = D.getDeclSpec();
1849  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1850  DeclarationName Name = NameInfo.getName();
1851  SourceLocation Loc = NameInfo.getLoc();
1852
1853  // For anonymous bitfields, the location should point to the type.
1854  if (Loc.isInvalid())
1855    Loc = D.getLocStart();
1856
1857  Expr *BitWidth = static_cast<Expr*>(BW);
1858
1859  assert(isa<CXXRecordDecl>(CurContext));
1860  assert(!DS.isFriendSpecified());
1861
1862  bool isFunc = D.isDeclarationOfFunction();
1863
1864  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1865    // The Microsoft extension __interface only permits public member functions
1866    // and prohibits constructors, destructors, operators, non-public member
1867    // functions, static methods and data members.
1868    unsigned InvalidDecl;
1869    bool ShowDeclName = true;
1870    if (!isFunc)
1871      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1872    else if (AS != AS_public)
1873      InvalidDecl = 2;
1874    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1875      InvalidDecl = 3;
1876    else switch (Name.getNameKind()) {
1877      case DeclarationName::CXXConstructorName:
1878        InvalidDecl = 4;
1879        ShowDeclName = false;
1880        break;
1881
1882      case DeclarationName::CXXDestructorName:
1883        InvalidDecl = 5;
1884        ShowDeclName = false;
1885        break;
1886
1887      case DeclarationName::CXXOperatorName:
1888      case DeclarationName::CXXConversionFunctionName:
1889        InvalidDecl = 6;
1890        break;
1891
1892      default:
1893        InvalidDecl = 0;
1894        break;
1895    }
1896
1897    if (InvalidDecl) {
1898      if (ShowDeclName)
1899        Diag(Loc, diag::err_invalid_member_in_interface)
1900          << (InvalidDecl-1) << Name;
1901      else
1902        Diag(Loc, diag::err_invalid_member_in_interface)
1903          << (InvalidDecl-1) << "";
1904      return 0;
1905    }
1906  }
1907
1908  // C++ 9.2p6: A member shall not be declared to have automatic storage
1909  // duration (auto, register) or with the extern storage-class-specifier.
1910  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1911  // data members and cannot be applied to names declared const or static,
1912  // and cannot be applied to reference members.
1913  switch (DS.getStorageClassSpec()) {
1914  case DeclSpec::SCS_unspecified:
1915  case DeclSpec::SCS_typedef:
1916  case DeclSpec::SCS_static:
1917    break;
1918  case DeclSpec::SCS_mutable:
1919    if (isFunc) {
1920      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1921
1922      // FIXME: It would be nicer if the keyword was ignored only for this
1923      // declarator. Otherwise we could get follow-up errors.
1924      D.getMutableDeclSpec().ClearStorageClassSpecs();
1925    }
1926    break;
1927  default:
1928    Diag(DS.getStorageClassSpecLoc(),
1929         diag::err_storageclass_invalid_for_member);
1930    D.getMutableDeclSpec().ClearStorageClassSpecs();
1931    break;
1932  }
1933
1934  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1935                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1936                      !isFunc);
1937
1938  if (DS.isConstexprSpecified() && isInstField) {
1939    SemaDiagnosticBuilder B =
1940        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1941    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1942    if (InitStyle == ICIS_NoInit) {
1943      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1944      D.getMutableDeclSpec().ClearConstexprSpec();
1945      const char *PrevSpec;
1946      unsigned DiagID;
1947      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1948                                         PrevSpec, DiagID, getLangOpts());
1949      (void)Failed;
1950      assert(!Failed && "Making a constexpr member const shouldn't fail");
1951    } else {
1952      B << 1;
1953      const char *PrevSpec;
1954      unsigned DiagID;
1955      if (D.getMutableDeclSpec().SetStorageClassSpec(
1956          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1957        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1958               "This is the only DeclSpec that should fail to be applied");
1959        B << 1;
1960      } else {
1961        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1962        isInstField = false;
1963      }
1964    }
1965  }
1966
1967  NamedDecl *Member;
1968  if (isInstField) {
1969    CXXScopeSpec &SS = D.getCXXScopeSpec();
1970
1971    // Data members must have identifiers for names.
1972    if (!Name.isIdentifier()) {
1973      Diag(Loc, diag::err_bad_variable_name)
1974        << Name;
1975      return 0;
1976    }
1977
1978    IdentifierInfo *II = Name.getAsIdentifierInfo();
1979
1980    // Member field could not be with "template" keyword.
1981    // So TemplateParameterLists should be empty in this case.
1982    if (TemplateParameterLists.size()) {
1983      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1984      if (TemplateParams->size()) {
1985        // There is no such thing as a member field template.
1986        Diag(D.getIdentifierLoc(), diag::err_template_member)
1987            << II
1988            << SourceRange(TemplateParams->getTemplateLoc(),
1989                TemplateParams->getRAngleLoc());
1990      } else {
1991        // There is an extraneous 'template<>' for this member.
1992        Diag(TemplateParams->getTemplateLoc(),
1993            diag::err_template_member_noparams)
1994            << II
1995            << SourceRange(TemplateParams->getTemplateLoc(),
1996                TemplateParams->getRAngleLoc());
1997      }
1998      return 0;
1999    }
2000
2001    if (SS.isSet() && !SS.isInvalid()) {
2002      // The user provided a superfluous scope specifier inside a class
2003      // definition:
2004      //
2005      // class X {
2006      //   int X::member;
2007      // };
2008      if (DeclContext *DC = computeDeclContext(SS, false))
2009        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2010      else
2011        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2012          << Name << SS.getRange();
2013
2014      SS.clear();
2015    }
2016
2017    AttributeList *MSPropertyAttr =
2018      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2019    if (MSPropertyAttr) {
2020      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2021                                BitWidth, InitStyle, AS, MSPropertyAttr);
2022      if (!Member)
2023        return 0;
2024      isInstField = false;
2025    } else {
2026      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2027                                BitWidth, InitStyle, AS);
2028      assert(Member && "HandleField never returns null");
2029    }
2030  } else {
2031    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2032
2033    Member = HandleDeclarator(S, D, TemplateParameterLists);
2034    if (!Member)
2035      return 0;
2036
2037    // Non-instance-fields can't have a bitfield.
2038    if (BitWidth) {
2039      if (Member->isInvalidDecl()) {
2040        // don't emit another diagnostic.
2041      } else if (isa<VarDecl>(Member)) {
2042        // C++ 9.6p3: A bit-field shall not be a static member.
2043        // "static member 'A' cannot be a bit-field"
2044        Diag(Loc, diag::err_static_not_bitfield)
2045          << Name << BitWidth->getSourceRange();
2046      } else if (isa<TypedefDecl>(Member)) {
2047        // "typedef member 'x' cannot be a bit-field"
2048        Diag(Loc, diag::err_typedef_not_bitfield)
2049          << Name << BitWidth->getSourceRange();
2050      } else {
2051        // A function typedef ("typedef int f(); f a;").
2052        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2053        Diag(Loc, diag::err_not_integral_type_bitfield)
2054          << Name << cast<ValueDecl>(Member)->getType()
2055          << BitWidth->getSourceRange();
2056      }
2057
2058      BitWidth = 0;
2059      Member->setInvalidDecl();
2060    }
2061
2062    Member->setAccess(AS);
2063
2064    // If we have declared a member function template or static data member
2065    // template, set the access of the templated declaration as well.
2066    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2067      FunTmpl->getTemplatedDecl()->setAccess(AS);
2068    else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2069      VarTmpl->getTemplatedDecl()->setAccess(AS);
2070  }
2071
2072  if (VS.isOverrideSpecified())
2073    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2074  if (VS.isFinalSpecified())
2075    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2076                                            VS.isFinalSpelledSealed()));
2077
2078  if (VS.getLastLocation().isValid()) {
2079    // Update the end location of a method that has a virt-specifiers.
2080    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2081      MD->setRangeEnd(VS.getLastLocation());
2082  }
2083
2084  CheckOverrideControl(Member);
2085
2086  assert((Name || isInstField) && "No identifier for non-field ?");
2087
2088  if (isInstField) {
2089    FieldDecl *FD = cast<FieldDecl>(Member);
2090    FieldCollector->Add(FD);
2091
2092    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2093                                 FD->getLocation())
2094          != DiagnosticsEngine::Ignored) {
2095      // Remember all explicit private FieldDecls that have a name, no side
2096      // effects and are not part of a dependent type declaration.
2097      if (!FD->isImplicit() && FD->getDeclName() &&
2098          FD->getAccess() == AS_private &&
2099          !FD->hasAttr<UnusedAttr>() &&
2100          !FD->getParent()->isDependentContext() &&
2101          !InitializationHasSideEffects(*FD))
2102        UnusedPrivateFields.insert(FD);
2103    }
2104  }
2105
2106  return Member;
2107}
2108
2109namespace {
2110  class UninitializedFieldVisitor
2111      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2112    Sema &S;
2113    // If VD is null, this visitor will only update the Decls set.
2114    ValueDecl *VD;
2115    bool isReferenceType;
2116    // List of Decls to generate a warning on.
2117    llvm::SmallPtrSet<ValueDecl*, 4> &Decls;
2118    bool WarnOnSelfReference;
2119    // If non-null, add a note to the warning pointing back to the constructor.
2120    const CXXConstructorDecl *Constructor;
2121  public:
2122    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2123    UninitializedFieldVisitor(Sema &S, ValueDecl *VD,
2124                              llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2125                              bool WarnOnSelfReference,
2126                              const CXXConstructorDecl *Constructor)
2127      : Inherited(S.Context), S(S), VD(VD), isReferenceType(false), Decls(Decls),
2128        WarnOnSelfReference(WarnOnSelfReference), Constructor(Constructor) {
2129      // When VD is null, this visitor is used to detect initialization of other
2130      // fields.
2131      if (VD) {
2132        if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2133          this->VD = IFD->getAnonField();
2134        else
2135          this->VD = VD;
2136        isReferenceType = this->VD->getType()->isReferenceType();
2137      }
2138    }
2139
2140    void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly) {
2141      if (!VD)
2142        return;
2143
2144      if (CheckReferenceOnly && !isReferenceType)
2145        return;
2146
2147      if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2148        return;
2149
2150      // FieldME is the inner-most MemberExpr that is not an anonymous struct
2151      // or union.
2152      MemberExpr *FieldME = ME;
2153
2154      Expr *Base = ME;
2155      while (isa<MemberExpr>(Base)) {
2156        ME = cast<MemberExpr>(Base);
2157
2158        if (isa<VarDecl>(ME->getMemberDecl()))
2159          return;
2160
2161        if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2162          if (!FD->isAnonymousStructOrUnion())
2163            FieldME = ME;
2164
2165        Base = ME->getBase();
2166      }
2167
2168      if (!isa<CXXThisExpr>(Base))
2169        return;
2170
2171      ValueDecl* FoundVD = FieldME->getMemberDecl();
2172
2173      if (VD == FoundVD) {
2174        if (!WarnOnSelfReference)
2175          return;
2176
2177        unsigned diag = isReferenceType
2178            ? diag::warn_reference_field_is_uninit
2179            : diag::warn_field_is_uninit;
2180        S.Diag(FieldME->getExprLoc(), diag) << VD;
2181        if (Constructor)
2182          S.Diag(Constructor->getLocation(),
2183                 diag::note_uninit_in_this_constructor);
2184        return;
2185      }
2186
2187      if (CheckReferenceOnly)
2188        return;
2189
2190      if (Decls.count(FoundVD)) {
2191        S.Diag(FieldME->getExprLoc(), diag::warn_field_is_uninit) << FoundVD;
2192        if (Constructor)
2193          S.Diag(Constructor->getLocation(),
2194                 diag::note_uninit_in_this_constructor);
2195
2196      }
2197    }
2198
2199    void HandleValue(Expr *E) {
2200      if (!VD)
2201        return;
2202
2203      E = E->IgnoreParens();
2204
2205      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2206        HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2207        return;
2208      }
2209
2210      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2211        HandleValue(CO->getTrueExpr());
2212        HandleValue(CO->getFalseExpr());
2213        return;
2214      }
2215
2216      if (BinaryConditionalOperator *BCO =
2217              dyn_cast<BinaryConditionalOperator>(E)) {
2218        HandleValue(BCO->getCommon());
2219        HandleValue(BCO->getFalseExpr());
2220        return;
2221      }
2222
2223      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2224        switch (BO->getOpcode()) {
2225        default:
2226          return;
2227        case(BO_PtrMemD):
2228        case(BO_PtrMemI):
2229          HandleValue(BO->getLHS());
2230          return;
2231        case(BO_Comma):
2232          HandleValue(BO->getRHS());
2233          return;
2234        }
2235      }
2236    }
2237
2238    void VisitMemberExpr(MemberExpr *ME) {
2239      HandleMemberExpr(ME, true /*CheckReferenceOnly*/);
2240
2241      Inherited::VisitMemberExpr(ME);
2242    }
2243
2244    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2245      if (E->getCastKind() == CK_LValueToRValue)
2246        HandleValue(E->getSubExpr());
2247
2248      Inherited::VisitImplicitCastExpr(E);
2249    }
2250
2251    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2252      if (E->getConstructor()->isCopyConstructor())
2253        if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E->getArg(0)))
2254          if (ICE->getCastKind() == CK_NoOp)
2255            if (MemberExpr *ME = dyn_cast<MemberExpr>(ICE->getSubExpr()))
2256              HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2257
2258      Inherited::VisitCXXConstructExpr(E);
2259    }
2260
2261    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2262      Expr *Callee = E->getCallee();
2263      if (isa<MemberExpr>(Callee))
2264        HandleValue(Callee);
2265
2266      Inherited::VisitCXXMemberCallExpr(E);
2267    }
2268
2269    void VisitBinaryOperator(BinaryOperator *E) {
2270      // If a field assignment is detected, remove the field from the
2271      // uninitiailized field set.
2272      if (E->getOpcode() == BO_Assign)
2273        if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2274          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2275            Decls.erase(FD);
2276
2277      Inherited::VisitBinaryOperator(E);
2278    }
2279  };
2280  static void CheckInitExprContainsUninitializedFields(
2281      Sema &S, Expr *E, ValueDecl *VD, llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2282      bool WarnOnSelfReference, const CXXConstructorDecl *Constructor = 0) {
2283    if (Decls.size() == 0 && !WarnOnSelfReference)
2284      return;
2285
2286    if (E)
2287      UninitializedFieldVisitor(S, VD, Decls, WarnOnSelfReference, Constructor)
2288          .Visit(E);
2289  }
2290} // namespace
2291
2292/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2293/// in-class initializer for a non-static C++ class member, and after
2294/// instantiating an in-class initializer in a class template. Such actions
2295/// are deferred until the class is complete.
2296void
2297Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2298                                       Expr *InitExpr) {
2299  FieldDecl *FD = cast<FieldDecl>(D);
2300  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2301         "must set init style when field is created");
2302
2303  if (!InitExpr) {
2304    FD->setInvalidDecl();
2305    FD->removeInClassInitializer();
2306    return;
2307  }
2308
2309  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2310    FD->setInvalidDecl();
2311    FD->removeInClassInitializer();
2312    return;
2313  }
2314
2315  ExprResult Init = InitExpr;
2316  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2317    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2318    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2319        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2320        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2321    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2322    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2323    if (Init.isInvalid()) {
2324      FD->setInvalidDecl();
2325      return;
2326    }
2327  }
2328
2329  // C++11 [class.base.init]p7:
2330  //   The initialization of each base and member constitutes a
2331  //   full-expression.
2332  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2333  if (Init.isInvalid()) {
2334    FD->setInvalidDecl();
2335    return;
2336  }
2337
2338  InitExpr = Init.release();
2339
2340  FD->setInClassInitializer(InitExpr);
2341}
2342
2343/// \brief Find the direct and/or virtual base specifiers that
2344/// correspond to the given base type, for use in base initialization
2345/// within a constructor.
2346static bool FindBaseInitializer(Sema &SemaRef,
2347                                CXXRecordDecl *ClassDecl,
2348                                QualType BaseType,
2349                                const CXXBaseSpecifier *&DirectBaseSpec,
2350                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2351  // First, check for a direct base class.
2352  DirectBaseSpec = 0;
2353  for (CXXRecordDecl::base_class_const_iterator Base
2354         = ClassDecl->bases_begin();
2355       Base != ClassDecl->bases_end(); ++Base) {
2356    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2357      // We found a direct base of this type. That's what we're
2358      // initializing.
2359      DirectBaseSpec = &*Base;
2360      break;
2361    }
2362  }
2363
2364  // Check for a virtual base class.
2365  // FIXME: We might be able to short-circuit this if we know in advance that
2366  // there are no virtual bases.
2367  VirtualBaseSpec = 0;
2368  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2369    // We haven't found a base yet; search the class hierarchy for a
2370    // virtual base class.
2371    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2372                       /*DetectVirtual=*/false);
2373    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2374                              BaseType, Paths)) {
2375      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2376           Path != Paths.end(); ++Path) {
2377        if (Path->back().Base->isVirtual()) {
2378          VirtualBaseSpec = Path->back().Base;
2379          break;
2380        }
2381      }
2382    }
2383  }
2384
2385  return DirectBaseSpec || VirtualBaseSpec;
2386}
2387
2388/// \brief Handle a C++ member initializer using braced-init-list syntax.
2389MemInitResult
2390Sema::ActOnMemInitializer(Decl *ConstructorD,
2391                          Scope *S,
2392                          CXXScopeSpec &SS,
2393                          IdentifierInfo *MemberOrBase,
2394                          ParsedType TemplateTypeTy,
2395                          const DeclSpec &DS,
2396                          SourceLocation IdLoc,
2397                          Expr *InitList,
2398                          SourceLocation EllipsisLoc) {
2399  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2400                             DS, IdLoc, InitList,
2401                             EllipsisLoc);
2402}
2403
2404/// \brief Handle a C++ member initializer using parentheses syntax.
2405MemInitResult
2406Sema::ActOnMemInitializer(Decl *ConstructorD,
2407                          Scope *S,
2408                          CXXScopeSpec &SS,
2409                          IdentifierInfo *MemberOrBase,
2410                          ParsedType TemplateTypeTy,
2411                          const DeclSpec &DS,
2412                          SourceLocation IdLoc,
2413                          SourceLocation LParenLoc,
2414                          ArrayRef<Expr *> Args,
2415                          SourceLocation RParenLoc,
2416                          SourceLocation EllipsisLoc) {
2417  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2418                                           Args, RParenLoc);
2419  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2420                             DS, IdLoc, List, EllipsisLoc);
2421}
2422
2423namespace {
2424
2425// Callback to only accept typo corrections that can be a valid C++ member
2426// intializer: either a non-static field member or a base class.
2427class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2428public:
2429  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2430      : ClassDecl(ClassDecl) {}
2431
2432  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
2433    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2434      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2435        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2436      return isa<TypeDecl>(ND);
2437    }
2438    return false;
2439  }
2440
2441private:
2442  CXXRecordDecl *ClassDecl;
2443};
2444
2445}
2446
2447/// \brief Handle a C++ member initializer.
2448MemInitResult
2449Sema::BuildMemInitializer(Decl *ConstructorD,
2450                          Scope *S,
2451                          CXXScopeSpec &SS,
2452                          IdentifierInfo *MemberOrBase,
2453                          ParsedType TemplateTypeTy,
2454                          const DeclSpec &DS,
2455                          SourceLocation IdLoc,
2456                          Expr *Init,
2457                          SourceLocation EllipsisLoc) {
2458  if (!ConstructorD)
2459    return true;
2460
2461  AdjustDeclIfTemplate(ConstructorD);
2462
2463  CXXConstructorDecl *Constructor
2464    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2465  if (!Constructor) {
2466    // The user wrote a constructor initializer on a function that is
2467    // not a C++ constructor. Ignore the error for now, because we may
2468    // have more member initializers coming; we'll diagnose it just
2469    // once in ActOnMemInitializers.
2470    return true;
2471  }
2472
2473  CXXRecordDecl *ClassDecl = Constructor->getParent();
2474
2475  // C++ [class.base.init]p2:
2476  //   Names in a mem-initializer-id are looked up in the scope of the
2477  //   constructor's class and, if not found in that scope, are looked
2478  //   up in the scope containing the constructor's definition.
2479  //   [Note: if the constructor's class contains a member with the
2480  //   same name as a direct or virtual base class of the class, a
2481  //   mem-initializer-id naming the member or base class and composed
2482  //   of a single identifier refers to the class member. A
2483  //   mem-initializer-id for the hidden base class may be specified
2484  //   using a qualified name. ]
2485  if (!SS.getScopeRep() && !TemplateTypeTy) {
2486    // Look for a member, first.
2487    DeclContext::lookup_result Result
2488      = ClassDecl->lookup(MemberOrBase);
2489    if (!Result.empty()) {
2490      ValueDecl *Member;
2491      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2492          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2493        if (EllipsisLoc.isValid())
2494          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2495            << MemberOrBase
2496            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2497
2498        return BuildMemberInitializer(Member, Init, IdLoc);
2499      }
2500    }
2501  }
2502  // It didn't name a member, so see if it names a class.
2503  QualType BaseType;
2504  TypeSourceInfo *TInfo = 0;
2505
2506  if (TemplateTypeTy) {
2507    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2508  } else if (DS.getTypeSpecType() == TST_decltype) {
2509    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2510  } else {
2511    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2512    LookupParsedName(R, S, &SS);
2513
2514    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2515    if (!TyD) {
2516      if (R.isAmbiguous()) return true;
2517
2518      // We don't want access-control diagnostics here.
2519      R.suppressDiagnostics();
2520
2521      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2522        bool NotUnknownSpecialization = false;
2523        DeclContext *DC = computeDeclContext(SS, false);
2524        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2525          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2526
2527        if (!NotUnknownSpecialization) {
2528          // When the scope specifier can refer to a member of an unknown
2529          // specialization, we take it as a type name.
2530          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2531                                       SS.getWithLocInContext(Context),
2532                                       *MemberOrBase, IdLoc);
2533          if (BaseType.isNull())
2534            return true;
2535
2536          R.clear();
2537          R.setLookupName(MemberOrBase);
2538        }
2539      }
2540
2541      // If no results were found, try to correct typos.
2542      TypoCorrection Corr;
2543      MemInitializerValidatorCCC Validator(ClassDecl);
2544      if (R.empty() && BaseType.isNull() &&
2545          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2546                              Validator, ClassDecl))) {
2547        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2548          // We have found a non-static data member with a similar
2549          // name to what was typed; complain and initialize that
2550          // member.
2551          diagnoseTypo(Corr,
2552                       PDiag(diag::err_mem_init_not_member_or_class_suggest)
2553                         << MemberOrBase << true);
2554          return BuildMemberInitializer(Member, Init, IdLoc);
2555        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2556          const CXXBaseSpecifier *DirectBaseSpec;
2557          const CXXBaseSpecifier *VirtualBaseSpec;
2558          if (FindBaseInitializer(*this, ClassDecl,
2559                                  Context.getTypeDeclType(Type),
2560                                  DirectBaseSpec, VirtualBaseSpec)) {
2561            // We have found a direct or virtual base class with a
2562            // similar name to what was typed; complain and initialize
2563            // that base class.
2564            diagnoseTypo(Corr,
2565                         PDiag(diag::err_mem_init_not_member_or_class_suggest)
2566                           << MemberOrBase << false,
2567                         PDiag() /*Suppress note, we provide our own.*/);
2568
2569            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2570                                                              : VirtualBaseSpec;
2571            Diag(BaseSpec->getLocStart(),
2572                 diag::note_base_class_specified_here)
2573              << BaseSpec->getType()
2574              << BaseSpec->getSourceRange();
2575
2576            TyD = Type;
2577          }
2578        }
2579      }
2580
2581      if (!TyD && BaseType.isNull()) {
2582        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2583          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2584        return true;
2585      }
2586    }
2587
2588    if (BaseType.isNull()) {
2589      BaseType = Context.getTypeDeclType(TyD);
2590      if (SS.isSet()) {
2591        NestedNameSpecifier *Qualifier =
2592          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2593
2594        // FIXME: preserve source range information
2595        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2596      }
2597    }
2598  }
2599
2600  if (!TInfo)
2601    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2602
2603  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2604}
2605
2606/// Checks a member initializer expression for cases where reference (or
2607/// pointer) members are bound to by-value parameters (or their addresses).
2608static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2609                                               Expr *Init,
2610                                               SourceLocation IdLoc) {
2611  QualType MemberTy = Member->getType();
2612
2613  // We only handle pointers and references currently.
2614  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2615  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2616    return;
2617
2618  const bool IsPointer = MemberTy->isPointerType();
2619  if (IsPointer) {
2620    if (const UnaryOperator *Op
2621          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2622      // The only case we're worried about with pointers requires taking the
2623      // address.
2624      if (Op->getOpcode() != UO_AddrOf)
2625        return;
2626
2627      Init = Op->getSubExpr();
2628    } else {
2629      // We only handle address-of expression initializers for pointers.
2630      return;
2631    }
2632  }
2633
2634  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2635    // We only warn when referring to a non-reference parameter declaration.
2636    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2637    if (!Parameter || Parameter->getType()->isReferenceType())
2638      return;
2639
2640    S.Diag(Init->getExprLoc(),
2641           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2642                     : diag::warn_bind_ref_member_to_parameter)
2643      << Member << Parameter << Init->getSourceRange();
2644  } else {
2645    // Other initializers are fine.
2646    return;
2647  }
2648
2649  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2650    << (unsigned)IsPointer;
2651}
2652
2653MemInitResult
2654Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2655                             SourceLocation IdLoc) {
2656  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2657  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2658  assert((DirectMember || IndirectMember) &&
2659         "Member must be a FieldDecl or IndirectFieldDecl");
2660
2661  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2662    return true;
2663
2664  if (Member->isInvalidDecl())
2665    return true;
2666
2667  MultiExprArg Args;
2668  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2669    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2670  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2671    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2672  } else {
2673    // Template instantiation doesn't reconstruct ParenListExprs for us.
2674    Args = Init;
2675  }
2676
2677  SourceRange InitRange = Init->getSourceRange();
2678
2679  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2680    // Can't check initialization for a member of dependent type or when
2681    // any of the arguments are type-dependent expressions.
2682    DiscardCleanupsInEvaluationContext();
2683  } else {
2684    bool InitList = false;
2685    if (isa<InitListExpr>(Init)) {
2686      InitList = true;
2687      Args = Init;
2688    }
2689
2690    // Initialize the member.
2691    InitializedEntity MemberEntity =
2692      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2693                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2694    InitializationKind Kind =
2695      InitList ? InitializationKind::CreateDirectList(IdLoc)
2696               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2697                                                  InitRange.getEnd());
2698
2699    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2700    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2701    if (MemberInit.isInvalid())
2702      return true;
2703
2704    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2705
2706    // C++11 [class.base.init]p7:
2707    //   The initialization of each base and member constitutes a
2708    //   full-expression.
2709    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2710    if (MemberInit.isInvalid())
2711      return true;
2712
2713    Init = MemberInit.get();
2714  }
2715
2716  if (DirectMember) {
2717    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2718                                            InitRange.getBegin(), Init,
2719                                            InitRange.getEnd());
2720  } else {
2721    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2722                                            InitRange.getBegin(), Init,
2723                                            InitRange.getEnd());
2724  }
2725}
2726
2727MemInitResult
2728Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2729                                 CXXRecordDecl *ClassDecl) {
2730  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2731  if (!LangOpts.CPlusPlus11)
2732    return Diag(NameLoc, diag::err_delegating_ctor)
2733      << TInfo->getTypeLoc().getLocalSourceRange();
2734  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2735
2736  bool InitList = true;
2737  MultiExprArg Args = Init;
2738  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2739    InitList = false;
2740    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2741  }
2742
2743  SourceRange InitRange = Init->getSourceRange();
2744  // Initialize the object.
2745  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2746                                     QualType(ClassDecl->getTypeForDecl(), 0));
2747  InitializationKind Kind =
2748    InitList ? InitializationKind::CreateDirectList(NameLoc)
2749             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2750                                                InitRange.getEnd());
2751  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2752  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2753                                              Args, 0);
2754  if (DelegationInit.isInvalid())
2755    return true;
2756
2757  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2758         "Delegating constructor with no target?");
2759
2760  // C++11 [class.base.init]p7:
2761  //   The initialization of each base and member constitutes a
2762  //   full-expression.
2763  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2764                                       InitRange.getBegin());
2765  if (DelegationInit.isInvalid())
2766    return true;
2767
2768  // If we are in a dependent context, template instantiation will
2769  // perform this type-checking again. Just save the arguments that we
2770  // received in a ParenListExpr.
2771  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2772  // of the information that we have about the base
2773  // initializer. However, deconstructing the ASTs is a dicey process,
2774  // and this approach is far more likely to get the corner cases right.
2775  if (CurContext->isDependentContext())
2776    DelegationInit = Owned(Init);
2777
2778  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2779                                          DelegationInit.takeAs<Expr>(),
2780                                          InitRange.getEnd());
2781}
2782
2783MemInitResult
2784Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2785                           Expr *Init, CXXRecordDecl *ClassDecl,
2786                           SourceLocation EllipsisLoc) {
2787  SourceLocation BaseLoc
2788    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2789
2790  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2791    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2792             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2793
2794  // C++ [class.base.init]p2:
2795  //   [...] Unless the mem-initializer-id names a nonstatic data
2796  //   member of the constructor's class or a direct or virtual base
2797  //   of that class, the mem-initializer is ill-formed. A
2798  //   mem-initializer-list can initialize a base class using any
2799  //   name that denotes that base class type.
2800  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2801
2802  SourceRange InitRange = Init->getSourceRange();
2803  if (EllipsisLoc.isValid()) {
2804    // This is a pack expansion.
2805    if (!BaseType->containsUnexpandedParameterPack())  {
2806      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2807        << SourceRange(BaseLoc, InitRange.getEnd());
2808
2809      EllipsisLoc = SourceLocation();
2810    }
2811  } else {
2812    // Check for any unexpanded parameter packs.
2813    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2814      return true;
2815
2816    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2817      return true;
2818  }
2819
2820  // Check for direct and virtual base classes.
2821  const CXXBaseSpecifier *DirectBaseSpec = 0;
2822  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2823  if (!Dependent) {
2824    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2825                                       BaseType))
2826      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2827
2828    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2829                        VirtualBaseSpec);
2830
2831    // C++ [base.class.init]p2:
2832    // Unless the mem-initializer-id names a nonstatic data member of the
2833    // constructor's class or a direct or virtual base of that class, the
2834    // mem-initializer is ill-formed.
2835    if (!DirectBaseSpec && !VirtualBaseSpec) {
2836      // If the class has any dependent bases, then it's possible that
2837      // one of those types will resolve to the same type as
2838      // BaseType. Therefore, just treat this as a dependent base
2839      // class initialization.  FIXME: Should we try to check the
2840      // initialization anyway? It seems odd.
2841      if (ClassDecl->hasAnyDependentBases())
2842        Dependent = true;
2843      else
2844        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2845          << BaseType << Context.getTypeDeclType(ClassDecl)
2846          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2847    }
2848  }
2849
2850  if (Dependent) {
2851    DiscardCleanupsInEvaluationContext();
2852
2853    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2854                                            /*IsVirtual=*/false,
2855                                            InitRange.getBegin(), Init,
2856                                            InitRange.getEnd(), EllipsisLoc);
2857  }
2858
2859  // C++ [base.class.init]p2:
2860  //   If a mem-initializer-id is ambiguous because it designates both
2861  //   a direct non-virtual base class and an inherited virtual base
2862  //   class, the mem-initializer is ill-formed.
2863  if (DirectBaseSpec && VirtualBaseSpec)
2864    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2865      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2866
2867  const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2868  if (!BaseSpec)
2869    BaseSpec = VirtualBaseSpec;
2870
2871  // Initialize the base.
2872  bool InitList = true;
2873  MultiExprArg Args = Init;
2874  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2875    InitList = false;
2876    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2877  }
2878
2879  InitializedEntity BaseEntity =
2880    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2881  InitializationKind Kind =
2882    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2883             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2884                                                InitRange.getEnd());
2885  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2886  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2887  if (BaseInit.isInvalid())
2888    return true;
2889
2890  // C++11 [class.base.init]p7:
2891  //   The initialization of each base and member constitutes a
2892  //   full-expression.
2893  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2894  if (BaseInit.isInvalid())
2895    return true;
2896
2897  // If we are in a dependent context, template instantiation will
2898  // perform this type-checking again. Just save the arguments that we
2899  // received in a ParenListExpr.
2900  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2901  // of the information that we have about the base
2902  // initializer. However, deconstructing the ASTs is a dicey process,
2903  // and this approach is far more likely to get the corner cases right.
2904  if (CurContext->isDependentContext())
2905    BaseInit = Owned(Init);
2906
2907  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2908                                          BaseSpec->isVirtual(),
2909                                          InitRange.getBegin(),
2910                                          BaseInit.takeAs<Expr>(),
2911                                          InitRange.getEnd(), EllipsisLoc);
2912}
2913
2914// Create a static_cast\<T&&>(expr).
2915static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2916  if (T.isNull()) T = E->getType();
2917  QualType TargetType = SemaRef.BuildReferenceType(
2918      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2919  SourceLocation ExprLoc = E->getLocStart();
2920  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2921      TargetType, ExprLoc);
2922
2923  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2924                                   SourceRange(ExprLoc, ExprLoc),
2925                                   E->getSourceRange()).take();
2926}
2927
2928/// ImplicitInitializerKind - How an implicit base or member initializer should
2929/// initialize its base or member.
2930enum ImplicitInitializerKind {
2931  IIK_Default,
2932  IIK_Copy,
2933  IIK_Move,
2934  IIK_Inherit
2935};
2936
2937static bool
2938BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2939                             ImplicitInitializerKind ImplicitInitKind,
2940                             CXXBaseSpecifier *BaseSpec,
2941                             bool IsInheritedVirtualBase,
2942                             CXXCtorInitializer *&CXXBaseInit) {
2943  InitializedEntity InitEntity
2944    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2945                                        IsInheritedVirtualBase);
2946
2947  ExprResult BaseInit;
2948
2949  switch (ImplicitInitKind) {
2950  case IIK_Inherit: {
2951    const CXXRecordDecl *Inherited =
2952        Constructor->getInheritedConstructor()->getParent();
2953    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2954    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2955      // C++11 [class.inhctor]p8:
2956      //   Each expression in the expression-list is of the form
2957      //   static_cast<T&&>(p), where p is the name of the corresponding
2958      //   constructor parameter and T is the declared type of p.
2959      SmallVector<Expr*, 16> Args;
2960      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2961        ParmVarDecl *PD = Constructor->getParamDecl(I);
2962        ExprResult ArgExpr =
2963            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2964                                     VK_LValue, SourceLocation());
2965        if (ArgExpr.isInvalid())
2966          return true;
2967        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2968      }
2969
2970      InitializationKind InitKind = InitializationKind::CreateDirect(
2971          Constructor->getLocation(), SourceLocation(), SourceLocation());
2972      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2973      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2974      break;
2975    }
2976  }
2977  // Fall through.
2978  case IIK_Default: {
2979    InitializationKind InitKind
2980      = InitializationKind::CreateDefault(Constructor->getLocation());
2981    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2982    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2983    break;
2984  }
2985
2986  case IIK_Move:
2987  case IIK_Copy: {
2988    bool Moving = ImplicitInitKind == IIK_Move;
2989    ParmVarDecl *Param = Constructor->getParamDecl(0);
2990    QualType ParamType = Param->getType().getNonReferenceType();
2991
2992    Expr *CopyCtorArg =
2993      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2994                          SourceLocation(), Param, false,
2995                          Constructor->getLocation(), ParamType,
2996                          VK_LValue, 0);
2997
2998    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2999
3000    // Cast to the base class to avoid ambiguities.
3001    QualType ArgTy =
3002      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3003                                       ParamType.getQualifiers());
3004
3005    if (Moving) {
3006      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3007    }
3008
3009    CXXCastPath BasePath;
3010    BasePath.push_back(BaseSpec);
3011    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3012                                            CK_UncheckedDerivedToBase,
3013                                            Moving ? VK_XValue : VK_LValue,
3014                                            &BasePath).take();
3015
3016    InitializationKind InitKind
3017      = InitializationKind::CreateDirect(Constructor->getLocation(),
3018                                         SourceLocation(), SourceLocation());
3019    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3020    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3021    break;
3022  }
3023  }
3024
3025  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3026  if (BaseInit.isInvalid())
3027    return true;
3028
3029  CXXBaseInit =
3030    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3031               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3032                                                        SourceLocation()),
3033                                             BaseSpec->isVirtual(),
3034                                             SourceLocation(),
3035                                             BaseInit.takeAs<Expr>(),
3036                                             SourceLocation(),
3037                                             SourceLocation());
3038
3039  return false;
3040}
3041
3042static bool RefersToRValueRef(Expr *MemRef) {
3043  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3044  return Referenced->getType()->isRValueReferenceType();
3045}
3046
3047static bool
3048BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3049                               ImplicitInitializerKind ImplicitInitKind,
3050                               FieldDecl *Field, IndirectFieldDecl *Indirect,
3051                               CXXCtorInitializer *&CXXMemberInit) {
3052  if (Field->isInvalidDecl())
3053    return true;
3054
3055  SourceLocation Loc = Constructor->getLocation();
3056
3057  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3058    bool Moving = ImplicitInitKind == IIK_Move;
3059    ParmVarDecl *Param = Constructor->getParamDecl(0);
3060    QualType ParamType = Param->getType().getNonReferenceType();
3061
3062    // Suppress copying zero-width bitfields.
3063    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3064      return false;
3065
3066    Expr *MemberExprBase =
3067      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3068                          SourceLocation(), Param, false,
3069                          Loc, ParamType, VK_LValue, 0);
3070
3071    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3072
3073    if (Moving) {
3074      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3075    }
3076
3077    // Build a reference to this field within the parameter.
3078    CXXScopeSpec SS;
3079    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3080                              Sema::LookupMemberName);
3081    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3082                                  : cast<ValueDecl>(Field), AS_public);
3083    MemberLookup.resolveKind();
3084    ExprResult CtorArg
3085      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3086                                         ParamType, Loc,
3087                                         /*IsArrow=*/false,
3088                                         SS,
3089                                         /*TemplateKWLoc=*/SourceLocation(),
3090                                         /*FirstQualifierInScope=*/0,
3091                                         MemberLookup,
3092                                         /*TemplateArgs=*/0);
3093    if (CtorArg.isInvalid())
3094      return true;
3095
3096    // C++11 [class.copy]p15:
3097    //   - if a member m has rvalue reference type T&&, it is direct-initialized
3098    //     with static_cast<T&&>(x.m);
3099    if (RefersToRValueRef(CtorArg.get())) {
3100      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3101    }
3102
3103    // When the field we are copying is an array, create index variables for
3104    // each dimension of the array. We use these index variables to subscript
3105    // the source array, and other clients (e.g., CodeGen) will perform the
3106    // necessary iteration with these index variables.
3107    SmallVector<VarDecl *, 4> IndexVariables;
3108    QualType BaseType = Field->getType();
3109    QualType SizeType = SemaRef.Context.getSizeType();
3110    bool InitializingArray = false;
3111    while (const ConstantArrayType *Array
3112                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3113      InitializingArray = true;
3114      // Create the iteration variable for this array index.
3115      IdentifierInfo *IterationVarName = 0;
3116      {
3117        SmallString<8> Str;
3118        llvm::raw_svector_ostream OS(Str);
3119        OS << "__i" << IndexVariables.size();
3120        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3121      }
3122      VarDecl *IterationVar
3123        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3124                          IterationVarName, SizeType,
3125                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3126                          SC_None);
3127      IndexVariables.push_back(IterationVar);
3128
3129      // Create a reference to the iteration variable.
3130      ExprResult IterationVarRef
3131        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3132      assert(!IterationVarRef.isInvalid() &&
3133             "Reference to invented variable cannot fail!");
3134      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3135      assert(!IterationVarRef.isInvalid() &&
3136             "Conversion of invented variable cannot fail!");
3137
3138      // Subscript the array with this iteration variable.
3139      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3140                                                        IterationVarRef.take(),
3141                                                        Loc);
3142      if (CtorArg.isInvalid())
3143        return true;
3144
3145      BaseType = Array->getElementType();
3146    }
3147
3148    // The array subscript expression is an lvalue, which is wrong for moving.
3149    if (Moving && InitializingArray)
3150      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3151
3152    // Construct the entity that we will be initializing. For an array, this
3153    // will be first element in the array, which may require several levels
3154    // of array-subscript entities.
3155    SmallVector<InitializedEntity, 4> Entities;
3156    Entities.reserve(1 + IndexVariables.size());
3157    if (Indirect)
3158      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3159    else
3160      Entities.push_back(InitializedEntity::InitializeMember(Field));
3161    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3162      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3163                                                              0,
3164                                                              Entities.back()));
3165
3166    // Direct-initialize to use the copy constructor.
3167    InitializationKind InitKind =
3168      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3169
3170    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3171    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3172
3173    ExprResult MemberInit
3174      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3175                        MultiExprArg(&CtorArgE, 1));
3176    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3177    if (MemberInit.isInvalid())
3178      return true;
3179
3180    if (Indirect) {
3181      assert(IndexVariables.size() == 0 &&
3182             "Indirect field improperly initialized");
3183      CXXMemberInit
3184        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3185                                                   Loc, Loc,
3186                                                   MemberInit.takeAs<Expr>(),
3187                                                   Loc);
3188    } else
3189      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3190                                                 Loc, MemberInit.takeAs<Expr>(),
3191                                                 Loc,
3192                                                 IndexVariables.data(),
3193                                                 IndexVariables.size());
3194    return false;
3195  }
3196
3197  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3198         "Unhandled implicit init kind!");
3199
3200  QualType FieldBaseElementType =
3201    SemaRef.Context.getBaseElementType(Field->getType());
3202
3203  if (FieldBaseElementType->isRecordType()) {
3204    InitializedEntity InitEntity
3205      = Indirect? InitializedEntity::InitializeMember(Indirect)
3206                : InitializedEntity::InitializeMember(Field);
3207    InitializationKind InitKind =
3208      InitializationKind::CreateDefault(Loc);
3209
3210    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3211    ExprResult MemberInit =
3212      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3213
3214    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3215    if (MemberInit.isInvalid())
3216      return true;
3217
3218    if (Indirect)
3219      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3220                                                               Indirect, Loc,
3221                                                               Loc,
3222                                                               MemberInit.get(),
3223                                                               Loc);
3224    else
3225      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3226                                                               Field, Loc, Loc,
3227                                                               MemberInit.get(),
3228                                                               Loc);
3229    return false;
3230  }
3231
3232  if (!Field->getParent()->isUnion()) {
3233    if (FieldBaseElementType->isReferenceType()) {
3234      SemaRef.Diag(Constructor->getLocation(),
3235                   diag::err_uninitialized_member_in_ctor)
3236      << (int)Constructor->isImplicit()
3237      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3238      << 0 << Field->getDeclName();
3239      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3240      return true;
3241    }
3242
3243    if (FieldBaseElementType.isConstQualified()) {
3244      SemaRef.Diag(Constructor->getLocation(),
3245                   diag::err_uninitialized_member_in_ctor)
3246      << (int)Constructor->isImplicit()
3247      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3248      << 1 << Field->getDeclName();
3249      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3250      return true;
3251    }
3252  }
3253
3254  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3255      FieldBaseElementType->isObjCRetainableType() &&
3256      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3257      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3258    // ARC:
3259    //   Default-initialize Objective-C pointers to NULL.
3260    CXXMemberInit
3261      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3262                                                 Loc, Loc,
3263                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3264                                                 Loc);
3265    return false;
3266  }
3267
3268  // Nothing to initialize.
3269  CXXMemberInit = 0;
3270  return false;
3271}
3272
3273namespace {
3274struct BaseAndFieldInfo {
3275  Sema &S;
3276  CXXConstructorDecl *Ctor;
3277  bool AnyErrorsInInits;
3278  ImplicitInitializerKind IIK;
3279  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3280  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3281
3282  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3283    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3284    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3285    if (Generated && Ctor->isCopyConstructor())
3286      IIK = IIK_Copy;
3287    else if (Generated && Ctor->isMoveConstructor())
3288      IIK = IIK_Move;
3289    else if (Ctor->getInheritedConstructor())
3290      IIK = IIK_Inherit;
3291    else
3292      IIK = IIK_Default;
3293  }
3294
3295  bool isImplicitCopyOrMove() const {
3296    switch (IIK) {
3297    case IIK_Copy:
3298    case IIK_Move:
3299      return true;
3300
3301    case IIK_Default:
3302    case IIK_Inherit:
3303      return false;
3304    }
3305
3306    llvm_unreachable("Invalid ImplicitInitializerKind!");
3307  }
3308
3309  bool addFieldInitializer(CXXCtorInitializer *Init) {
3310    AllToInit.push_back(Init);
3311
3312    // Check whether this initializer makes the field "used".
3313    if (Init->getInit()->HasSideEffects(S.Context))
3314      S.UnusedPrivateFields.remove(Init->getAnyMember());
3315
3316    return false;
3317  }
3318};
3319}
3320
3321/// \brief Determine whether the given indirect field declaration is somewhere
3322/// within an anonymous union.
3323static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3324  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3325                                      CEnd = F->chain_end();
3326       C != CEnd; ++C)
3327    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3328      if (Record->isUnion())
3329        return true;
3330
3331  return false;
3332}
3333
3334/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3335/// array type.
3336static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3337  if (T->isIncompleteArrayType())
3338    return true;
3339
3340  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3341    if (!ArrayT->getSize())
3342      return true;
3343
3344    T = ArrayT->getElementType();
3345  }
3346
3347  return false;
3348}
3349
3350static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3351                                    FieldDecl *Field,
3352                                    IndirectFieldDecl *Indirect = 0) {
3353  if (Field->isInvalidDecl())
3354    return false;
3355
3356  // Overwhelmingly common case: we have a direct initializer for this field.
3357  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3358    return Info.addFieldInitializer(Init);
3359
3360  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3361  // has a brace-or-equal-initializer, the entity is initialized as specified
3362  // in [dcl.init].
3363  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3364    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3365                                           Info.Ctor->getLocation(), Field);
3366    CXXCtorInitializer *Init;
3367    if (Indirect)
3368      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3369                                                      SourceLocation(),
3370                                                      SourceLocation(), DIE,
3371                                                      SourceLocation());
3372    else
3373      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3374                                                      SourceLocation(),
3375                                                      SourceLocation(), DIE,
3376                                                      SourceLocation());
3377    return Info.addFieldInitializer(Init);
3378  }
3379
3380  // Don't build an implicit initializer for union members if none was
3381  // explicitly specified.
3382  if (Field->getParent()->isUnion() ||
3383      (Indirect && isWithinAnonymousUnion(Indirect)))
3384    return false;
3385
3386  // Don't initialize incomplete or zero-length arrays.
3387  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3388    return false;
3389
3390  // Don't try to build an implicit initializer if there were semantic
3391  // errors in any of the initializers (and therefore we might be
3392  // missing some that the user actually wrote).
3393  if (Info.AnyErrorsInInits)
3394    return false;
3395
3396  CXXCtorInitializer *Init = 0;
3397  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3398                                     Indirect, Init))
3399    return true;
3400
3401  if (!Init)
3402    return false;
3403
3404  return Info.addFieldInitializer(Init);
3405}
3406
3407bool
3408Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3409                               CXXCtorInitializer *Initializer) {
3410  assert(Initializer->isDelegatingInitializer());
3411  Constructor->setNumCtorInitializers(1);
3412  CXXCtorInitializer **initializer =
3413    new (Context) CXXCtorInitializer*[1];
3414  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3415  Constructor->setCtorInitializers(initializer);
3416
3417  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3418    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3419    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3420  }
3421
3422  DelegatingCtorDecls.push_back(Constructor);
3423
3424  return false;
3425}
3426
3427bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3428                               ArrayRef<CXXCtorInitializer *> Initializers) {
3429  if (Constructor->isDependentContext()) {
3430    // Just store the initializers as written, they will be checked during
3431    // instantiation.
3432    if (!Initializers.empty()) {
3433      Constructor->setNumCtorInitializers(Initializers.size());
3434      CXXCtorInitializer **baseOrMemberInitializers =
3435        new (Context) CXXCtorInitializer*[Initializers.size()];
3436      memcpy(baseOrMemberInitializers, Initializers.data(),
3437             Initializers.size() * sizeof(CXXCtorInitializer*));
3438      Constructor->setCtorInitializers(baseOrMemberInitializers);
3439    }
3440
3441    // Let template instantiation know whether we had errors.
3442    if (AnyErrors)
3443      Constructor->setInvalidDecl();
3444
3445    return false;
3446  }
3447
3448  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3449
3450  // We need to build the initializer AST according to order of construction
3451  // and not what user specified in the Initializers list.
3452  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3453  if (!ClassDecl)
3454    return true;
3455
3456  bool HadError = false;
3457
3458  for (unsigned i = 0; i < Initializers.size(); i++) {
3459    CXXCtorInitializer *Member = Initializers[i];
3460
3461    if (Member->isBaseInitializer())
3462      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3463    else
3464      Info.AllBaseFields[Member->getAnyMember()] = Member;
3465  }
3466
3467  // Keep track of the direct virtual bases.
3468  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3469  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3470       E = ClassDecl->bases_end(); I != E; ++I) {
3471    if (I->isVirtual())
3472      DirectVBases.insert(I);
3473  }
3474
3475  // Push virtual bases before others.
3476  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3477       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3478
3479    if (CXXCtorInitializer *Value
3480        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3481      // [class.base.init]p7, per DR257:
3482      //   A mem-initializer where the mem-initializer-id names a virtual base
3483      //   class is ignored during execution of a constructor of any class that
3484      //   is not the most derived class.
3485      if (ClassDecl->isAbstract()) {
3486        // FIXME: Provide a fixit to remove the base specifier. This requires
3487        // tracking the location of the associated comma for a base specifier.
3488        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3489          << VBase->getType() << ClassDecl;
3490        DiagnoseAbstractType(ClassDecl);
3491      }
3492
3493      Info.AllToInit.push_back(Value);
3494    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3495      // [class.base.init]p8, per DR257:
3496      //   If a given [...] base class is not named by a mem-initializer-id
3497      //   [...] and the entity is not a virtual base class of an abstract
3498      //   class, then [...] the entity is default-initialized.
3499      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3500      CXXCtorInitializer *CXXBaseInit;
3501      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3502                                       VBase, IsInheritedVirtualBase,
3503                                       CXXBaseInit)) {
3504        HadError = true;
3505        continue;
3506      }
3507
3508      Info.AllToInit.push_back(CXXBaseInit);
3509    }
3510  }
3511
3512  // Non-virtual bases.
3513  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3514       E = ClassDecl->bases_end(); Base != E; ++Base) {
3515    // Virtuals are in the virtual base list and already constructed.
3516    if (Base->isVirtual())
3517      continue;
3518
3519    if (CXXCtorInitializer *Value
3520          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3521      Info.AllToInit.push_back(Value);
3522    } else if (!AnyErrors) {
3523      CXXCtorInitializer *CXXBaseInit;
3524      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3525                                       Base, /*IsInheritedVirtualBase=*/false,
3526                                       CXXBaseInit)) {
3527        HadError = true;
3528        continue;
3529      }
3530
3531      Info.AllToInit.push_back(CXXBaseInit);
3532    }
3533  }
3534
3535  // Fields.
3536  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3537                               MemEnd = ClassDecl->decls_end();
3538       Mem != MemEnd; ++Mem) {
3539    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3540      // C++ [class.bit]p2:
3541      //   A declaration for a bit-field that omits the identifier declares an
3542      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3543      //   initialized.
3544      if (F->isUnnamedBitfield())
3545        continue;
3546
3547      // If we're not generating the implicit copy/move constructor, then we'll
3548      // handle anonymous struct/union fields based on their individual
3549      // indirect fields.
3550      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3551        continue;
3552
3553      if (CollectFieldInitializer(*this, Info, F))
3554        HadError = true;
3555      continue;
3556    }
3557
3558    // Beyond this point, we only consider default initialization.
3559    if (Info.isImplicitCopyOrMove())
3560      continue;
3561
3562    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3563      if (F->getType()->isIncompleteArrayType()) {
3564        assert(ClassDecl->hasFlexibleArrayMember() &&
3565               "Incomplete array type is not valid");
3566        continue;
3567      }
3568
3569      // Initialize each field of an anonymous struct individually.
3570      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3571        HadError = true;
3572
3573      continue;
3574    }
3575  }
3576
3577  unsigned NumInitializers = Info.AllToInit.size();
3578  if (NumInitializers > 0) {
3579    Constructor->setNumCtorInitializers(NumInitializers);
3580    CXXCtorInitializer **baseOrMemberInitializers =
3581      new (Context) CXXCtorInitializer*[NumInitializers];
3582    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3583           NumInitializers * sizeof(CXXCtorInitializer*));
3584    Constructor->setCtorInitializers(baseOrMemberInitializers);
3585
3586    // Constructors implicitly reference the base and member
3587    // destructors.
3588    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3589                                           Constructor->getParent());
3590  }
3591
3592  return HadError;
3593}
3594
3595static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3596  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3597    const RecordDecl *RD = RT->getDecl();
3598    if (RD->isAnonymousStructOrUnion()) {
3599      for (RecordDecl::field_iterator Field = RD->field_begin(),
3600          E = RD->field_end(); Field != E; ++Field)
3601        PopulateKeysForFields(*Field, IdealInits);
3602      return;
3603    }
3604  }
3605  IdealInits.push_back(Field);
3606}
3607
3608static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3609  return Context.getCanonicalType(BaseType).getTypePtr();
3610}
3611
3612static const void *GetKeyForMember(ASTContext &Context,
3613                                   CXXCtorInitializer *Member) {
3614  if (!Member->isAnyMemberInitializer())
3615    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3616
3617  return Member->getAnyMember();
3618}
3619
3620static void DiagnoseBaseOrMemInitializerOrder(
3621    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3622    ArrayRef<CXXCtorInitializer *> Inits) {
3623  if (Constructor->getDeclContext()->isDependentContext())
3624    return;
3625
3626  // Don't check initializers order unless the warning is enabled at the
3627  // location of at least one initializer.
3628  bool ShouldCheckOrder = false;
3629  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3630    CXXCtorInitializer *Init = Inits[InitIndex];
3631    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3632                                         Init->getSourceLocation())
3633          != DiagnosticsEngine::Ignored) {
3634      ShouldCheckOrder = true;
3635      break;
3636    }
3637  }
3638  if (!ShouldCheckOrder)
3639    return;
3640
3641  // Build the list of bases and members in the order that they'll
3642  // actually be initialized.  The explicit initializers should be in
3643  // this same order but may be missing things.
3644  SmallVector<const void*, 32> IdealInitKeys;
3645
3646  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3647
3648  // 1. Virtual bases.
3649  for (CXXRecordDecl::base_class_const_iterator VBase =
3650       ClassDecl->vbases_begin(),
3651       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3652    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3653
3654  // 2. Non-virtual bases.
3655  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3656       E = ClassDecl->bases_end(); Base != E; ++Base) {
3657    if (Base->isVirtual())
3658      continue;
3659    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3660  }
3661
3662  // 3. Direct fields.
3663  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3664       E = ClassDecl->field_end(); Field != E; ++Field) {
3665    if (Field->isUnnamedBitfield())
3666      continue;
3667
3668    PopulateKeysForFields(*Field, IdealInitKeys);
3669  }
3670
3671  unsigned NumIdealInits = IdealInitKeys.size();
3672  unsigned IdealIndex = 0;
3673
3674  CXXCtorInitializer *PrevInit = 0;
3675  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3676    CXXCtorInitializer *Init = Inits[InitIndex];
3677    const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3678
3679    // Scan forward to try to find this initializer in the idealized
3680    // initializers list.
3681    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3682      if (InitKey == IdealInitKeys[IdealIndex])
3683        break;
3684
3685    // If we didn't find this initializer, it must be because we
3686    // scanned past it on a previous iteration.  That can only
3687    // happen if we're out of order;  emit a warning.
3688    if (IdealIndex == NumIdealInits && PrevInit) {
3689      Sema::SemaDiagnosticBuilder D =
3690        SemaRef.Diag(PrevInit->getSourceLocation(),
3691                     diag::warn_initializer_out_of_order);
3692
3693      if (PrevInit->isAnyMemberInitializer())
3694        D << 0 << PrevInit->getAnyMember()->getDeclName();
3695      else
3696        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3697
3698      if (Init->isAnyMemberInitializer())
3699        D << 0 << Init->getAnyMember()->getDeclName();
3700      else
3701        D << 1 << Init->getTypeSourceInfo()->getType();
3702
3703      // Move back to the initializer's location in the ideal list.
3704      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3705        if (InitKey == IdealInitKeys[IdealIndex])
3706          break;
3707
3708      assert(IdealIndex != NumIdealInits &&
3709             "initializer not found in initializer list");
3710    }
3711
3712    PrevInit = Init;
3713  }
3714}
3715
3716namespace {
3717bool CheckRedundantInit(Sema &S,
3718                        CXXCtorInitializer *Init,
3719                        CXXCtorInitializer *&PrevInit) {
3720  if (!PrevInit) {
3721    PrevInit = Init;
3722    return false;
3723  }
3724
3725  if (FieldDecl *Field = Init->getAnyMember())
3726    S.Diag(Init->getSourceLocation(),
3727           diag::err_multiple_mem_initialization)
3728      << Field->getDeclName()
3729      << Init->getSourceRange();
3730  else {
3731    const Type *BaseClass = Init->getBaseClass();
3732    assert(BaseClass && "neither field nor base");
3733    S.Diag(Init->getSourceLocation(),
3734           diag::err_multiple_base_initialization)
3735      << QualType(BaseClass, 0)
3736      << Init->getSourceRange();
3737  }
3738  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3739    << 0 << PrevInit->getSourceRange();
3740
3741  return true;
3742}
3743
3744typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3745typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3746
3747bool CheckRedundantUnionInit(Sema &S,
3748                             CXXCtorInitializer *Init,
3749                             RedundantUnionMap &Unions) {
3750  FieldDecl *Field = Init->getAnyMember();
3751  RecordDecl *Parent = Field->getParent();
3752  NamedDecl *Child = Field;
3753
3754  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3755    if (Parent->isUnion()) {
3756      UnionEntry &En = Unions[Parent];
3757      if (En.first && En.first != Child) {
3758        S.Diag(Init->getSourceLocation(),
3759               diag::err_multiple_mem_union_initialization)
3760          << Field->getDeclName()
3761          << Init->getSourceRange();
3762        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3763          << 0 << En.second->getSourceRange();
3764        return true;
3765      }
3766      if (!En.first) {
3767        En.first = Child;
3768        En.second = Init;
3769      }
3770      if (!Parent->isAnonymousStructOrUnion())
3771        return false;
3772    }
3773
3774    Child = Parent;
3775    Parent = cast<RecordDecl>(Parent->getDeclContext());
3776  }
3777
3778  return false;
3779}
3780}
3781
3782// Diagnose value-uses of fields to initialize themselves, e.g.
3783//   foo(foo)
3784// where foo is not also a parameter to the constructor.
3785// Also diagnose across field uninitialized use such as
3786//   x(y), y(x)
3787// TODO: implement -Wuninitialized and fold this into that framework.
3788static void DiagnoseUnitializedFields(
3789    Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3790
3791  if (SemaRef.getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit,
3792                                                  Constructor->getLocation())
3793      == DiagnosticsEngine::Ignored) {
3794    return;
3795  }
3796
3797  const CXXRecordDecl *RD = Constructor->getParent();
3798
3799  // Holds fields that are uninitialized.
3800  llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3801
3802  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
3803       I != E; ++I) {
3804    if (FieldDecl *FD = dyn_cast<FieldDecl>(*I)) {
3805      UninitializedFields.insert(FD);
3806    } else if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I)) {
3807      UninitializedFields.insert(IFD->getAnonField());
3808    }
3809  }
3810
3811  // Fields already checked when processing the in class initializers.
3812  llvm::SmallPtrSet<ValueDecl*, 4>
3813      InClassUninitializedFields = UninitializedFields;
3814
3815  for (CXXConstructorDecl::init_const_iterator FieldInit =
3816           Constructor->init_begin(),
3817           FieldInitEnd = Constructor->init_end();
3818       FieldInit != FieldInitEnd; ++FieldInit) {
3819
3820    FieldDecl *Field = (*FieldInit)->getAnyMember();
3821    Expr *InitExpr = (*FieldInit)->getInit();
3822
3823    if (!Field) {
3824      CheckInitExprContainsUninitializedFields(
3825          SemaRef, InitExpr, 0, UninitializedFields,
3826          false/*WarnOnSelfReference*/);
3827      continue;
3828    }
3829
3830    if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3831      // This field is initialized with an in-class initailzer.  Remove the
3832      // fields already checked to prevent duplicate warnings.
3833      llvm::SmallPtrSet<ValueDecl*, 4> DiffSet = UninitializedFields;
3834      for (llvm::SmallPtrSet<ValueDecl*, 4>::iterator
3835               I = InClassUninitializedFields.begin(),
3836               E = InClassUninitializedFields.end();
3837           I != E; ++I) {
3838        DiffSet.erase(*I);
3839      }
3840      CheckInitExprContainsUninitializedFields(
3841            SemaRef, Default->getExpr(), Field, DiffSet,
3842            DiffSet.count(Field), Constructor);
3843
3844      // Update the unitialized field sets.
3845      CheckInitExprContainsUninitializedFields(
3846            SemaRef, Default->getExpr(), 0, UninitializedFields,
3847            false);
3848      CheckInitExprContainsUninitializedFields(
3849            SemaRef, Default->getExpr(), 0, InClassUninitializedFields,
3850            false);
3851    } else {
3852      CheckInitExprContainsUninitializedFields(
3853          SemaRef, InitExpr, Field, UninitializedFields,
3854          UninitializedFields.count(Field));
3855      if (Expr* InClassInit = Field->getInClassInitializer()) {
3856        CheckInitExprContainsUninitializedFields(
3857            SemaRef, InClassInit, 0, InClassUninitializedFields,
3858            false);
3859      }
3860    }
3861    UninitializedFields.erase(Field);
3862    InClassUninitializedFields.erase(Field);
3863  }
3864}
3865
3866/// ActOnMemInitializers - Handle the member initializers for a constructor.
3867void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3868                                SourceLocation ColonLoc,
3869                                ArrayRef<CXXCtorInitializer*> MemInits,
3870                                bool AnyErrors) {
3871  if (!ConstructorDecl)
3872    return;
3873
3874  AdjustDeclIfTemplate(ConstructorDecl);
3875
3876  CXXConstructorDecl *Constructor
3877    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3878
3879  if (!Constructor) {
3880    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3881    return;
3882  }
3883
3884  // Mapping for the duplicate initializers check.
3885  // For member initializers, this is keyed with a FieldDecl*.
3886  // For base initializers, this is keyed with a Type*.
3887  llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3888
3889  // Mapping for the inconsistent anonymous-union initializers check.
3890  RedundantUnionMap MemberUnions;
3891
3892  bool HadError = false;
3893  for (unsigned i = 0; i < MemInits.size(); i++) {
3894    CXXCtorInitializer *Init = MemInits[i];
3895
3896    // Set the source order index.
3897    Init->setSourceOrder(i);
3898
3899    if (Init->isAnyMemberInitializer()) {
3900      FieldDecl *Field = Init->getAnyMember();
3901      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3902          CheckRedundantUnionInit(*this, Init, MemberUnions))
3903        HadError = true;
3904    } else if (Init->isBaseInitializer()) {
3905      const void *Key =
3906          GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3907      if (CheckRedundantInit(*this, Init, Members[Key]))
3908        HadError = true;
3909    } else {
3910      assert(Init->isDelegatingInitializer());
3911      // This must be the only initializer
3912      if (MemInits.size() != 1) {
3913        Diag(Init->getSourceLocation(),
3914             diag::err_delegating_initializer_alone)
3915          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3916        // We will treat this as being the only initializer.
3917      }
3918      SetDelegatingInitializer(Constructor, MemInits[i]);
3919      // Return immediately as the initializer is set.
3920      return;
3921    }
3922  }
3923
3924  if (HadError)
3925    return;
3926
3927  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3928
3929  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3930
3931  DiagnoseUnitializedFields(*this, Constructor);
3932}
3933
3934void
3935Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3936                                             CXXRecordDecl *ClassDecl) {
3937  // Ignore dependent contexts. Also ignore unions, since their members never
3938  // have destructors implicitly called.
3939  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3940    return;
3941
3942  // FIXME: all the access-control diagnostics are positioned on the
3943  // field/base declaration.  That's probably good; that said, the
3944  // user might reasonably want to know why the destructor is being
3945  // emitted, and we currently don't say.
3946
3947  // Non-static data members.
3948  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3949       E = ClassDecl->field_end(); I != E; ++I) {
3950    FieldDecl *Field = *I;
3951    if (Field->isInvalidDecl())
3952      continue;
3953
3954    // Don't destroy incomplete or zero-length arrays.
3955    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3956      continue;
3957
3958    QualType FieldType = Context.getBaseElementType(Field->getType());
3959
3960    const RecordType* RT = FieldType->getAs<RecordType>();
3961    if (!RT)
3962      continue;
3963
3964    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3965    if (FieldClassDecl->isInvalidDecl())
3966      continue;
3967    if (FieldClassDecl->hasIrrelevantDestructor())
3968      continue;
3969    // The destructor for an implicit anonymous union member is never invoked.
3970    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3971      continue;
3972
3973    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3974    assert(Dtor && "No dtor found for FieldClassDecl!");
3975    CheckDestructorAccess(Field->getLocation(), Dtor,
3976                          PDiag(diag::err_access_dtor_field)
3977                            << Field->getDeclName()
3978                            << FieldType);
3979
3980    MarkFunctionReferenced(Location, Dtor);
3981    DiagnoseUseOfDecl(Dtor, Location);
3982  }
3983
3984  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3985
3986  // Bases.
3987  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3988       E = ClassDecl->bases_end(); Base != E; ++Base) {
3989    // Bases are always records in a well-formed non-dependent class.
3990    const RecordType *RT = Base->getType()->getAs<RecordType>();
3991
3992    // Remember direct virtual bases.
3993    if (Base->isVirtual())
3994      DirectVirtualBases.insert(RT);
3995
3996    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3997    // If our base class is invalid, we probably can't get its dtor anyway.
3998    if (BaseClassDecl->isInvalidDecl())
3999      continue;
4000    if (BaseClassDecl->hasIrrelevantDestructor())
4001      continue;
4002
4003    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4004    assert(Dtor && "No dtor found for BaseClassDecl!");
4005
4006    // FIXME: caret should be on the start of the class name
4007    CheckDestructorAccess(Base->getLocStart(), Dtor,
4008                          PDiag(diag::err_access_dtor_base)
4009                            << Base->getType()
4010                            << Base->getSourceRange(),
4011                          Context.getTypeDeclType(ClassDecl));
4012
4013    MarkFunctionReferenced(Location, Dtor);
4014    DiagnoseUseOfDecl(Dtor, Location);
4015  }
4016
4017  // Virtual bases.
4018  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
4019       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
4020
4021    // Bases are always records in a well-formed non-dependent class.
4022    const RecordType *RT = VBase->getType()->castAs<RecordType>();
4023
4024    // Ignore direct virtual bases.
4025    if (DirectVirtualBases.count(RT))
4026      continue;
4027
4028    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4029    // If our base class is invalid, we probably can't get its dtor anyway.
4030    if (BaseClassDecl->isInvalidDecl())
4031      continue;
4032    if (BaseClassDecl->hasIrrelevantDestructor())
4033      continue;
4034
4035    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4036    assert(Dtor && "No dtor found for BaseClassDecl!");
4037    if (CheckDestructorAccess(
4038            ClassDecl->getLocation(), Dtor,
4039            PDiag(diag::err_access_dtor_vbase)
4040                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
4041            Context.getTypeDeclType(ClassDecl)) ==
4042        AR_accessible) {
4043      CheckDerivedToBaseConversion(
4044          Context.getTypeDeclType(ClassDecl), VBase->getType(),
4045          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4046          SourceRange(), DeclarationName(), 0);
4047    }
4048
4049    MarkFunctionReferenced(Location, Dtor);
4050    DiagnoseUseOfDecl(Dtor, Location);
4051  }
4052}
4053
4054void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4055  if (!CDtorDecl)
4056    return;
4057
4058  if (CXXConstructorDecl *Constructor
4059      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
4060    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4061}
4062
4063bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4064                                  unsigned DiagID, AbstractDiagSelID SelID) {
4065  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4066    unsigned DiagID;
4067    AbstractDiagSelID SelID;
4068
4069  public:
4070    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4071      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4072
4073    void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
4074      if (Suppressed) return;
4075      if (SelID == -1)
4076        S.Diag(Loc, DiagID) << T;
4077      else
4078        S.Diag(Loc, DiagID) << SelID << T;
4079    }
4080  } Diagnoser(DiagID, SelID);
4081
4082  return RequireNonAbstractType(Loc, T, Diagnoser);
4083}
4084
4085bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4086                                  TypeDiagnoser &Diagnoser) {
4087  if (!getLangOpts().CPlusPlus)
4088    return false;
4089
4090  if (const ArrayType *AT = Context.getAsArrayType(T))
4091    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4092
4093  if (const PointerType *PT = T->getAs<PointerType>()) {
4094    // Find the innermost pointer type.
4095    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4096      PT = T;
4097
4098    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4099      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4100  }
4101
4102  const RecordType *RT = T->getAs<RecordType>();
4103  if (!RT)
4104    return false;
4105
4106  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4107
4108  // We can't answer whether something is abstract until it has a
4109  // definition.  If it's currently being defined, we'll walk back
4110  // over all the declarations when we have a full definition.
4111  const CXXRecordDecl *Def = RD->getDefinition();
4112  if (!Def || Def->isBeingDefined())
4113    return false;
4114
4115  if (!RD->isAbstract())
4116    return false;
4117
4118  Diagnoser.diagnose(*this, Loc, T);
4119  DiagnoseAbstractType(RD);
4120
4121  return true;
4122}
4123
4124void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4125  // Check if we've already emitted the list of pure virtual functions
4126  // for this class.
4127  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4128    return;
4129
4130  // If the diagnostic is suppressed, don't emit the notes. We're only
4131  // going to emit them once, so try to attach them to a diagnostic we're
4132  // actually going to show.
4133  if (Diags.isLastDiagnosticIgnored())
4134    return;
4135
4136  CXXFinalOverriderMap FinalOverriders;
4137  RD->getFinalOverriders(FinalOverriders);
4138
4139  // Keep a set of seen pure methods so we won't diagnose the same method
4140  // more than once.
4141  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4142
4143  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4144                                   MEnd = FinalOverriders.end();
4145       M != MEnd;
4146       ++M) {
4147    for (OverridingMethods::iterator SO = M->second.begin(),
4148                                  SOEnd = M->second.end();
4149         SO != SOEnd; ++SO) {
4150      // C++ [class.abstract]p4:
4151      //   A class is abstract if it contains or inherits at least one
4152      //   pure virtual function for which the final overrider is pure
4153      //   virtual.
4154
4155      //
4156      if (SO->second.size() != 1)
4157        continue;
4158
4159      if (!SO->second.front().Method->isPure())
4160        continue;
4161
4162      if (!SeenPureMethods.insert(SO->second.front().Method))
4163        continue;
4164
4165      Diag(SO->second.front().Method->getLocation(),
4166           diag::note_pure_virtual_function)
4167        << SO->second.front().Method->getDeclName() << RD->getDeclName();
4168    }
4169  }
4170
4171  if (!PureVirtualClassDiagSet)
4172    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4173  PureVirtualClassDiagSet->insert(RD);
4174}
4175
4176namespace {
4177struct AbstractUsageInfo {
4178  Sema &S;
4179  CXXRecordDecl *Record;
4180  CanQualType AbstractType;
4181  bool Invalid;
4182
4183  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4184    : S(S), Record(Record),
4185      AbstractType(S.Context.getCanonicalType(
4186                   S.Context.getTypeDeclType(Record))),
4187      Invalid(false) {}
4188
4189  void DiagnoseAbstractType() {
4190    if (Invalid) return;
4191    S.DiagnoseAbstractType(Record);
4192    Invalid = true;
4193  }
4194
4195  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4196};
4197
4198struct CheckAbstractUsage {
4199  AbstractUsageInfo &Info;
4200  const NamedDecl *Ctx;
4201
4202  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4203    : Info(Info), Ctx(Ctx) {}
4204
4205  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4206    switch (TL.getTypeLocClass()) {
4207#define ABSTRACT_TYPELOC(CLASS, PARENT)
4208#define TYPELOC(CLASS, PARENT) \
4209    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4210#include "clang/AST/TypeLocNodes.def"
4211    }
4212  }
4213
4214  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4215    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4216    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4217      if (!TL.getArg(I))
4218        continue;
4219
4220      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4221      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4222    }
4223  }
4224
4225  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4226    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4227  }
4228
4229  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4230    // Visit the type parameters from a permissive context.
4231    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4232      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4233      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4234        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4235          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4236      // TODO: other template argument types?
4237    }
4238  }
4239
4240  // Visit pointee types from a permissive context.
4241#define CheckPolymorphic(Type) \
4242  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4243    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4244  }
4245  CheckPolymorphic(PointerTypeLoc)
4246  CheckPolymorphic(ReferenceTypeLoc)
4247  CheckPolymorphic(MemberPointerTypeLoc)
4248  CheckPolymorphic(BlockPointerTypeLoc)
4249  CheckPolymorphic(AtomicTypeLoc)
4250
4251  /// Handle all the types we haven't given a more specific
4252  /// implementation for above.
4253  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4254    // Every other kind of type that we haven't called out already
4255    // that has an inner type is either (1) sugar or (2) contains that
4256    // inner type in some way as a subobject.
4257    if (TypeLoc Next = TL.getNextTypeLoc())
4258      return Visit(Next, Sel);
4259
4260    // If there's no inner type and we're in a permissive context,
4261    // don't diagnose.
4262    if (Sel == Sema::AbstractNone) return;
4263
4264    // Check whether the type matches the abstract type.
4265    QualType T = TL.getType();
4266    if (T->isArrayType()) {
4267      Sel = Sema::AbstractArrayType;
4268      T = Info.S.Context.getBaseElementType(T);
4269    }
4270    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4271    if (CT != Info.AbstractType) return;
4272
4273    // It matched; do some magic.
4274    if (Sel == Sema::AbstractArrayType) {
4275      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4276        << T << TL.getSourceRange();
4277    } else {
4278      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4279        << Sel << T << TL.getSourceRange();
4280    }
4281    Info.DiagnoseAbstractType();
4282  }
4283};
4284
4285void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4286                                  Sema::AbstractDiagSelID Sel) {
4287  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4288}
4289
4290}
4291
4292/// Check for invalid uses of an abstract type in a method declaration.
4293static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4294                                    CXXMethodDecl *MD) {
4295  // No need to do the check on definitions, which require that
4296  // the return/param types be complete.
4297  if (MD->doesThisDeclarationHaveABody())
4298    return;
4299
4300  // For safety's sake, just ignore it if we don't have type source
4301  // information.  This should never happen for non-implicit methods,
4302  // but...
4303  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4304    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4305}
4306
4307/// Check for invalid uses of an abstract type within a class definition.
4308static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4309                                    CXXRecordDecl *RD) {
4310  for (CXXRecordDecl::decl_iterator
4311         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4312    Decl *D = *I;
4313    if (D->isImplicit()) continue;
4314
4315    // Methods and method templates.
4316    if (isa<CXXMethodDecl>(D)) {
4317      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4318    } else if (isa<FunctionTemplateDecl>(D)) {
4319      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4320      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4321
4322    // Fields and static variables.
4323    } else if (isa<FieldDecl>(D)) {
4324      FieldDecl *FD = cast<FieldDecl>(D);
4325      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4326        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4327    } else if (isa<VarDecl>(D)) {
4328      VarDecl *VD = cast<VarDecl>(D);
4329      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4330        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4331
4332    // Nested classes and class templates.
4333    } else if (isa<CXXRecordDecl>(D)) {
4334      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4335    } else if (isa<ClassTemplateDecl>(D)) {
4336      CheckAbstractClassUsage(Info,
4337                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4338    }
4339  }
4340}
4341
4342/// \brief Perform semantic checks on a class definition that has been
4343/// completing, introducing implicitly-declared members, checking for
4344/// abstract types, etc.
4345void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4346  if (!Record)
4347    return;
4348
4349  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4350    AbstractUsageInfo Info(*this, Record);
4351    CheckAbstractClassUsage(Info, Record);
4352  }
4353
4354  // If this is not an aggregate type and has no user-declared constructor,
4355  // complain about any non-static data members of reference or const scalar
4356  // type, since they will never get initializers.
4357  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4358      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4359      !Record->isLambda()) {
4360    bool Complained = false;
4361    for (RecordDecl::field_iterator F = Record->field_begin(),
4362                                 FEnd = Record->field_end();
4363         F != FEnd; ++F) {
4364      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4365        continue;
4366
4367      if (F->getType()->isReferenceType() ||
4368          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4369        if (!Complained) {
4370          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4371            << Record->getTagKind() << Record;
4372          Complained = true;
4373        }
4374
4375        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4376          << F->getType()->isReferenceType()
4377          << F->getDeclName();
4378      }
4379    }
4380  }
4381
4382  if (Record->isDynamicClass() && !Record->isDependentType())
4383    DynamicClasses.push_back(Record);
4384
4385  if (Record->getIdentifier()) {
4386    // C++ [class.mem]p13:
4387    //   If T is the name of a class, then each of the following shall have a
4388    //   name different from T:
4389    //     - every member of every anonymous union that is a member of class T.
4390    //
4391    // C++ [class.mem]p14:
4392    //   In addition, if class T has a user-declared constructor (12.1), every
4393    //   non-static data member of class T shall have a name different from T.
4394    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4395    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4396         ++I) {
4397      NamedDecl *D = *I;
4398      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4399          isa<IndirectFieldDecl>(D)) {
4400        Diag(D->getLocation(), diag::err_member_name_of_class)
4401          << D->getDeclName();
4402        break;
4403      }
4404    }
4405  }
4406
4407  // Warn if the class has virtual methods but non-virtual public destructor.
4408  if (Record->isPolymorphic() && !Record->isDependentType()) {
4409    CXXDestructorDecl *dtor = Record->getDestructor();
4410    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4411      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4412           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4413  }
4414
4415  if (Record->isAbstract()) {
4416    if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4417      Diag(Record->getLocation(), diag::warn_abstract_final_class)
4418        << FA->isSpelledAsSealed();
4419      DiagnoseAbstractType(Record);
4420    }
4421  }
4422
4423  if (!Record->isDependentType()) {
4424    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4425                                     MEnd = Record->method_end();
4426         M != MEnd; ++M) {
4427      // See if a method overloads virtual methods in a base
4428      // class without overriding any.
4429      if (!M->isStatic())
4430        DiagnoseHiddenVirtualMethods(*M);
4431
4432      // Check whether the explicitly-defaulted special members are valid.
4433      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4434        CheckExplicitlyDefaultedSpecialMember(*M);
4435
4436      // For an explicitly defaulted or deleted special member, we defer
4437      // determining triviality until the class is complete. That time is now!
4438      if (!M->isImplicit() && !M->isUserProvided()) {
4439        CXXSpecialMember CSM = getSpecialMember(*M);
4440        if (CSM != CXXInvalid) {
4441          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4442
4443          // Inform the class that we've finished declaring this member.
4444          Record->finishedDefaultedOrDeletedMember(*M);
4445        }
4446      }
4447    }
4448  }
4449
4450  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4451  // function that is not a constructor declares that member function to be
4452  // const. [...] The class of which that function is a member shall be
4453  // a literal type.
4454  //
4455  // If the class has virtual bases, any constexpr members will already have
4456  // been diagnosed by the checks performed on the member declaration, so
4457  // suppress this (less useful) diagnostic.
4458  //
4459  // We delay this until we know whether an explicitly-defaulted (or deleted)
4460  // destructor for the class is trivial.
4461  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4462      !Record->isLiteral() && !Record->getNumVBases()) {
4463    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4464                                     MEnd = Record->method_end();
4465         M != MEnd; ++M) {
4466      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4467        switch (Record->getTemplateSpecializationKind()) {
4468        case TSK_ImplicitInstantiation:
4469        case TSK_ExplicitInstantiationDeclaration:
4470        case TSK_ExplicitInstantiationDefinition:
4471          // If a template instantiates to a non-literal type, but its members
4472          // instantiate to constexpr functions, the template is technically
4473          // ill-formed, but we allow it for sanity.
4474          continue;
4475
4476        case TSK_Undeclared:
4477        case TSK_ExplicitSpecialization:
4478          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4479                             diag::err_constexpr_method_non_literal);
4480          break;
4481        }
4482
4483        // Only produce one error per class.
4484        break;
4485      }
4486    }
4487  }
4488
4489  // Check to see if we're trying to lay out a struct using the ms_struct
4490  // attribute that is dynamic.
4491  if (Record->isMsStruct(Context) && Record->isDynamicClass()) {
4492    Diag(Record->getLocation(), diag::warn_pragma_ms_struct_failed);
4493    Record->dropAttr<MsStructAttr>();
4494  }
4495
4496  // Declare inheriting constructors. We do this eagerly here because:
4497  // - The standard requires an eager diagnostic for conflicting inheriting
4498  //   constructors from different classes.
4499  // - The lazy declaration of the other implicit constructors is so as to not
4500  //   waste space and performance on classes that are not meant to be
4501  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4502  //   have inheriting constructors.
4503  DeclareInheritingConstructors(Record);
4504}
4505
4506/// Is the special member function which would be selected to perform the
4507/// specified operation on the specified class type a constexpr constructor?
4508static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4509                                     Sema::CXXSpecialMember CSM,
4510                                     bool ConstArg) {
4511  Sema::SpecialMemberOverloadResult *SMOR =
4512      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4513                            false, false, false, false);
4514  if (!SMOR || !SMOR->getMethod())
4515    // A constructor we wouldn't select can't be "involved in initializing"
4516    // anything.
4517    return true;
4518  return SMOR->getMethod()->isConstexpr();
4519}
4520
4521/// Determine whether the specified special member function would be constexpr
4522/// if it were implicitly defined.
4523static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4524                                              Sema::CXXSpecialMember CSM,
4525                                              bool ConstArg) {
4526  if (!S.getLangOpts().CPlusPlus11)
4527    return false;
4528
4529  // C++11 [dcl.constexpr]p4:
4530  // In the definition of a constexpr constructor [...]
4531  bool Ctor = true;
4532  switch (CSM) {
4533  case Sema::CXXDefaultConstructor:
4534    // Since default constructor lookup is essentially trivial (and cannot
4535    // involve, for instance, template instantiation), we compute whether a
4536    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4537    //
4538    // This is important for performance; we need to know whether the default
4539    // constructor is constexpr to determine whether the type is a literal type.
4540    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4541
4542  case Sema::CXXCopyConstructor:
4543  case Sema::CXXMoveConstructor:
4544    // For copy or move constructors, we need to perform overload resolution.
4545    break;
4546
4547  case Sema::CXXCopyAssignment:
4548  case Sema::CXXMoveAssignment:
4549    if (!S.getLangOpts().CPlusPlus1y)
4550      return false;
4551    // In C++1y, we need to perform overload resolution.
4552    Ctor = false;
4553    break;
4554
4555  case Sema::CXXDestructor:
4556  case Sema::CXXInvalid:
4557    return false;
4558  }
4559
4560  //   -- if the class is a non-empty union, or for each non-empty anonymous
4561  //      union member of a non-union class, exactly one non-static data member
4562  //      shall be initialized; [DR1359]
4563  //
4564  // If we squint, this is guaranteed, since exactly one non-static data member
4565  // will be initialized (if the constructor isn't deleted), we just don't know
4566  // which one.
4567  if (Ctor && ClassDecl->isUnion())
4568    return true;
4569
4570  //   -- the class shall not have any virtual base classes;
4571  if (Ctor && ClassDecl->getNumVBases())
4572    return false;
4573
4574  // C++1y [class.copy]p26:
4575  //   -- [the class] is a literal type, and
4576  if (!Ctor && !ClassDecl->isLiteral())
4577    return false;
4578
4579  //   -- every constructor involved in initializing [...] base class
4580  //      sub-objects shall be a constexpr constructor;
4581  //   -- the assignment operator selected to copy/move each direct base
4582  //      class is a constexpr function, and
4583  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4584                                       BEnd = ClassDecl->bases_end();
4585       B != BEnd; ++B) {
4586    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4587    if (!BaseType) continue;
4588
4589    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4590    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4591      return false;
4592  }
4593
4594  //   -- every constructor involved in initializing non-static data members
4595  //      [...] shall be a constexpr constructor;
4596  //   -- every non-static data member and base class sub-object shall be
4597  //      initialized
4598  //   -- for each non-stastic data member of X that is of class type (or array
4599  //      thereof), the assignment operator selected to copy/move that member is
4600  //      a constexpr function
4601  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4602                               FEnd = ClassDecl->field_end();
4603       F != FEnd; ++F) {
4604    if (F->isInvalidDecl())
4605      continue;
4606    if (const RecordType *RecordTy =
4607            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4608      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4609      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4610        return false;
4611    }
4612  }
4613
4614  // All OK, it's constexpr!
4615  return true;
4616}
4617
4618static Sema::ImplicitExceptionSpecification
4619computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4620  switch (S.getSpecialMember(MD)) {
4621  case Sema::CXXDefaultConstructor:
4622    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4623  case Sema::CXXCopyConstructor:
4624    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4625  case Sema::CXXCopyAssignment:
4626    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4627  case Sema::CXXMoveConstructor:
4628    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4629  case Sema::CXXMoveAssignment:
4630    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4631  case Sema::CXXDestructor:
4632    return S.ComputeDefaultedDtorExceptionSpec(MD);
4633  case Sema::CXXInvalid:
4634    break;
4635  }
4636  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4637         "only special members have implicit exception specs");
4638  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4639}
4640
4641static void
4642updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4643                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4644  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4645  ExceptSpec.getEPI(EPI);
4646  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4647                                        FPT->getArgTypes(), EPI));
4648}
4649
4650static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
4651                                                            CXXMethodDecl *MD) {
4652  FunctionProtoType::ExtProtoInfo EPI;
4653
4654  // Build an exception specification pointing back at this member.
4655  EPI.ExceptionSpecType = EST_Unevaluated;
4656  EPI.ExceptionSpecDecl = MD;
4657
4658  // Set the calling convention to the default for C++ instance methods.
4659  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
4660      S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4661                                            /*IsCXXMethod=*/true));
4662  return EPI;
4663}
4664
4665void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4666  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4667  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4668    return;
4669
4670  // Evaluate the exception specification.
4671  ImplicitExceptionSpecification ExceptSpec =
4672      computeImplicitExceptionSpec(*this, Loc, MD);
4673
4674  // Update the type of the special member to use it.
4675  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4676
4677  // A user-provided destructor can be defined outside the class. When that
4678  // happens, be sure to update the exception specification on both
4679  // declarations.
4680  const FunctionProtoType *CanonicalFPT =
4681    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4682  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4683    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4684                        CanonicalFPT, ExceptSpec);
4685}
4686
4687void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4688  CXXRecordDecl *RD = MD->getParent();
4689  CXXSpecialMember CSM = getSpecialMember(MD);
4690
4691  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4692         "not an explicitly-defaulted special member");
4693
4694  // Whether this was the first-declared instance of the constructor.
4695  // This affects whether we implicitly add an exception spec and constexpr.
4696  bool First = MD == MD->getCanonicalDecl();
4697
4698  bool HadError = false;
4699
4700  // C++11 [dcl.fct.def.default]p1:
4701  //   A function that is explicitly defaulted shall
4702  //     -- be a special member function (checked elsewhere),
4703  //     -- have the same type (except for ref-qualifiers, and except that a
4704  //        copy operation can take a non-const reference) as an implicit
4705  //        declaration, and
4706  //     -- not have default arguments.
4707  unsigned ExpectedParams = 1;
4708  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4709    ExpectedParams = 0;
4710  if (MD->getNumParams() != ExpectedParams) {
4711    // This also checks for default arguments: a copy or move constructor with a
4712    // default argument is classified as a default constructor, and assignment
4713    // operations and destructors can't have default arguments.
4714    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4715      << CSM << MD->getSourceRange();
4716    HadError = true;
4717  } else if (MD->isVariadic()) {
4718    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4719      << CSM << MD->getSourceRange();
4720    HadError = true;
4721  }
4722
4723  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4724
4725  bool CanHaveConstParam = false;
4726  if (CSM == CXXCopyConstructor)
4727    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4728  else if (CSM == CXXCopyAssignment)
4729    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4730
4731  QualType ReturnType = Context.VoidTy;
4732  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4733    // Check for return type matching.
4734    ReturnType = Type->getResultType();
4735    QualType ExpectedReturnType =
4736        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4737    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4738      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4739        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4740      HadError = true;
4741    }
4742
4743    // A defaulted special member cannot have cv-qualifiers.
4744    if (Type->getTypeQuals()) {
4745      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4746        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4747      HadError = true;
4748    }
4749  }
4750
4751  // Check for parameter type matching.
4752  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4753  bool HasConstParam = false;
4754  if (ExpectedParams && ArgType->isReferenceType()) {
4755    // Argument must be reference to possibly-const T.
4756    QualType ReferentType = ArgType->getPointeeType();
4757    HasConstParam = ReferentType.isConstQualified();
4758
4759    if (ReferentType.isVolatileQualified()) {
4760      Diag(MD->getLocation(),
4761           diag::err_defaulted_special_member_volatile_param) << CSM;
4762      HadError = true;
4763    }
4764
4765    if (HasConstParam && !CanHaveConstParam) {
4766      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4767        Diag(MD->getLocation(),
4768             diag::err_defaulted_special_member_copy_const_param)
4769          << (CSM == CXXCopyAssignment);
4770        // FIXME: Explain why this special member can't be const.
4771      } else {
4772        Diag(MD->getLocation(),
4773             diag::err_defaulted_special_member_move_const_param)
4774          << (CSM == CXXMoveAssignment);
4775      }
4776      HadError = true;
4777    }
4778  } else if (ExpectedParams) {
4779    // A copy assignment operator can take its argument by value, but a
4780    // defaulted one cannot.
4781    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4782    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4783    HadError = true;
4784  }
4785
4786  // C++11 [dcl.fct.def.default]p2:
4787  //   An explicitly-defaulted function may be declared constexpr only if it
4788  //   would have been implicitly declared as constexpr,
4789  // Do not apply this rule to members of class templates, since core issue 1358
4790  // makes such functions always instantiate to constexpr functions. For
4791  // functions which cannot be constexpr (for non-constructors in C++11 and for
4792  // destructors in C++1y), this is checked elsewhere.
4793  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4794                                                     HasConstParam);
4795  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4796                                 : isa<CXXConstructorDecl>(MD)) &&
4797      MD->isConstexpr() && !Constexpr &&
4798      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4799    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4800    // FIXME: Explain why the special member can't be constexpr.
4801    HadError = true;
4802  }
4803
4804  //   and may have an explicit exception-specification only if it is compatible
4805  //   with the exception-specification on the implicit declaration.
4806  if (Type->hasExceptionSpec()) {
4807    // Delay the check if this is the first declaration of the special member,
4808    // since we may not have parsed some necessary in-class initializers yet.
4809    if (First) {
4810      // If the exception specification needs to be instantiated, do so now,
4811      // before we clobber it with an EST_Unevaluated specification below.
4812      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4813        InstantiateExceptionSpec(MD->getLocStart(), MD);
4814        Type = MD->getType()->getAs<FunctionProtoType>();
4815      }
4816      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4817    } else
4818      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4819  }
4820
4821  //   If a function is explicitly defaulted on its first declaration,
4822  if (First) {
4823    //  -- it is implicitly considered to be constexpr if the implicit
4824    //     definition would be,
4825    MD->setConstexpr(Constexpr);
4826
4827    //  -- it is implicitly considered to have the same exception-specification
4828    //     as if it had been implicitly declared,
4829    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4830    EPI.ExceptionSpecType = EST_Unevaluated;
4831    EPI.ExceptionSpecDecl = MD;
4832    MD->setType(Context.getFunctionType(ReturnType,
4833                                        ArrayRef<QualType>(&ArgType,
4834                                                           ExpectedParams),
4835                                        EPI));
4836  }
4837
4838  if (ShouldDeleteSpecialMember(MD, CSM)) {
4839    if (First) {
4840      SetDeclDeleted(MD, MD->getLocation());
4841    } else {
4842      // C++11 [dcl.fct.def.default]p4:
4843      //   [For a] user-provided explicitly-defaulted function [...] if such a
4844      //   function is implicitly defined as deleted, the program is ill-formed.
4845      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4846      HadError = true;
4847    }
4848  }
4849
4850  if (HadError)
4851    MD->setInvalidDecl();
4852}
4853
4854/// Check whether the exception specification provided for an
4855/// explicitly-defaulted special member matches the exception specification
4856/// that would have been generated for an implicit special member, per
4857/// C++11 [dcl.fct.def.default]p2.
4858void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4859    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4860  // Compute the implicit exception specification.
4861  CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4862                                                       /*IsCXXMethod=*/true);
4863  FunctionProtoType::ExtProtoInfo EPI(CC);
4864  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4865  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4866    Context.getFunctionType(Context.VoidTy, None, EPI));
4867
4868  // Ensure that it matches.
4869  CheckEquivalentExceptionSpec(
4870    PDiag(diag::err_incorrect_defaulted_exception_spec)
4871      << getSpecialMember(MD), PDiag(),
4872    ImplicitType, SourceLocation(),
4873    SpecifiedType, MD->getLocation());
4874}
4875
4876void Sema::CheckDelayedMemberExceptionSpecs() {
4877  SmallVector<std::pair<const CXXDestructorDecl *, const CXXDestructorDecl *>,
4878              2> Checks;
4879  SmallVector<std::pair<CXXMethodDecl *, const FunctionProtoType *>, 2> Specs;
4880
4881  std::swap(Checks, DelayedDestructorExceptionSpecChecks);
4882  std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
4883
4884  // Perform any deferred checking of exception specifications for virtual
4885  // destructors.
4886  for (unsigned i = 0, e = Checks.size(); i != e; ++i) {
4887    const CXXDestructorDecl *Dtor = Checks[i].first;
4888    assert(!Dtor->getParent()->isDependentType() &&
4889           "Should not ever add destructors of templates into the list.");
4890    CheckOverridingFunctionExceptionSpec(Dtor, Checks[i].second);
4891  }
4892
4893  // Check that any explicitly-defaulted methods have exception specifications
4894  // compatible with their implicit exception specifications.
4895  for (unsigned I = 0, N = Specs.size(); I != N; ++I)
4896    CheckExplicitlyDefaultedMemberExceptionSpec(Specs[I].first,
4897                                                Specs[I].second);
4898}
4899
4900namespace {
4901struct SpecialMemberDeletionInfo {
4902  Sema &S;
4903  CXXMethodDecl *MD;
4904  Sema::CXXSpecialMember CSM;
4905  bool Diagnose;
4906
4907  // Properties of the special member, computed for convenience.
4908  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4909  SourceLocation Loc;
4910
4911  bool AllFieldsAreConst;
4912
4913  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4914                            Sema::CXXSpecialMember CSM, bool Diagnose)
4915    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4916      IsConstructor(false), IsAssignment(false), IsMove(false),
4917      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4918      AllFieldsAreConst(true) {
4919    switch (CSM) {
4920      case Sema::CXXDefaultConstructor:
4921      case Sema::CXXCopyConstructor:
4922        IsConstructor = true;
4923        break;
4924      case Sema::CXXMoveConstructor:
4925        IsConstructor = true;
4926        IsMove = true;
4927        break;
4928      case Sema::CXXCopyAssignment:
4929        IsAssignment = true;
4930        break;
4931      case Sema::CXXMoveAssignment:
4932        IsAssignment = true;
4933        IsMove = true;
4934        break;
4935      case Sema::CXXDestructor:
4936        break;
4937      case Sema::CXXInvalid:
4938        llvm_unreachable("invalid special member kind");
4939    }
4940
4941    if (MD->getNumParams()) {
4942      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4943      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4944    }
4945  }
4946
4947  bool inUnion() const { return MD->getParent()->isUnion(); }
4948
4949  /// Look up the corresponding special member in the given class.
4950  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4951                                              unsigned Quals) {
4952    unsigned TQ = MD->getTypeQualifiers();
4953    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4954    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4955      Quals = 0;
4956    return S.LookupSpecialMember(Class, CSM,
4957                                 ConstArg || (Quals & Qualifiers::Const),
4958                                 VolatileArg || (Quals & Qualifiers::Volatile),
4959                                 MD->getRefQualifier() == RQ_RValue,
4960                                 TQ & Qualifiers::Const,
4961                                 TQ & Qualifiers::Volatile);
4962  }
4963
4964  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4965
4966  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4967  bool shouldDeleteForField(FieldDecl *FD);
4968  bool shouldDeleteForAllConstMembers();
4969
4970  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4971                                     unsigned Quals);
4972  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4973                                    Sema::SpecialMemberOverloadResult *SMOR,
4974                                    bool IsDtorCallInCtor);
4975
4976  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4977};
4978}
4979
4980/// Is the given special member inaccessible when used on the given
4981/// sub-object.
4982bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4983                                             CXXMethodDecl *target) {
4984  /// If we're operating on a base class, the object type is the
4985  /// type of this special member.
4986  QualType objectTy;
4987  AccessSpecifier access = target->getAccess();
4988  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4989    objectTy = S.Context.getTypeDeclType(MD->getParent());
4990    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4991
4992  // If we're operating on a field, the object type is the type of the field.
4993  } else {
4994    objectTy = S.Context.getTypeDeclType(target->getParent());
4995  }
4996
4997  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4998}
4999
5000/// Check whether we should delete a special member due to the implicit
5001/// definition containing a call to a special member of a subobject.
5002bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
5003    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
5004    bool IsDtorCallInCtor) {
5005  CXXMethodDecl *Decl = SMOR->getMethod();
5006  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5007
5008  int DiagKind = -1;
5009
5010  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
5011    DiagKind = !Decl ? 0 : 1;
5012  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5013    DiagKind = 2;
5014  else if (!isAccessible(Subobj, Decl))
5015    DiagKind = 3;
5016  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
5017           !Decl->isTrivial()) {
5018    // A member of a union must have a trivial corresponding special member.
5019    // As a weird special case, a destructor call from a union's constructor
5020    // must be accessible and non-deleted, but need not be trivial. Such a
5021    // destructor is never actually called, but is semantically checked as
5022    // if it were.
5023    DiagKind = 4;
5024  }
5025
5026  if (DiagKind == -1)
5027    return false;
5028
5029  if (Diagnose) {
5030    if (Field) {
5031      S.Diag(Field->getLocation(),
5032             diag::note_deleted_special_member_class_subobject)
5033        << CSM << MD->getParent() << /*IsField*/true
5034        << Field << DiagKind << IsDtorCallInCtor;
5035    } else {
5036      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5037      S.Diag(Base->getLocStart(),
5038             diag::note_deleted_special_member_class_subobject)
5039        << CSM << MD->getParent() << /*IsField*/false
5040        << Base->getType() << DiagKind << IsDtorCallInCtor;
5041    }
5042
5043    if (DiagKind == 1)
5044      S.NoteDeletedFunction(Decl);
5045    // FIXME: Explain inaccessibility if DiagKind == 3.
5046  }
5047
5048  return true;
5049}
5050
5051/// Check whether we should delete a special member function due to having a
5052/// direct or virtual base class or non-static data member of class type M.
5053bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5054    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5055  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5056
5057  // C++11 [class.ctor]p5:
5058  // -- any direct or virtual base class, or non-static data member with no
5059  //    brace-or-equal-initializer, has class type M (or array thereof) and
5060  //    either M has no default constructor or overload resolution as applied
5061  //    to M's default constructor results in an ambiguity or in a function
5062  //    that is deleted or inaccessible
5063  // C++11 [class.copy]p11, C++11 [class.copy]p23:
5064  // -- a direct or virtual base class B that cannot be copied/moved because
5065  //    overload resolution, as applied to B's corresponding special member,
5066  //    results in an ambiguity or a function that is deleted or inaccessible
5067  //    from the defaulted special member
5068  // C++11 [class.dtor]p5:
5069  // -- any direct or virtual base class [...] has a type with a destructor
5070  //    that is deleted or inaccessible
5071  if (!(CSM == Sema::CXXDefaultConstructor &&
5072        Field && Field->hasInClassInitializer()) &&
5073      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
5074    return true;
5075
5076  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5077  // -- any direct or virtual base class or non-static data member has a
5078  //    type with a destructor that is deleted or inaccessible
5079  if (IsConstructor) {
5080    Sema::SpecialMemberOverloadResult *SMOR =
5081        S.LookupSpecialMember(Class, Sema::CXXDestructor,
5082                              false, false, false, false, false);
5083    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5084      return true;
5085  }
5086
5087  return false;
5088}
5089
5090/// Check whether we should delete a special member function due to the class
5091/// having a particular direct or virtual base class.
5092bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5093  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5094  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5095}
5096
5097/// Check whether we should delete a special member function due to the class
5098/// having a particular non-static data member.
5099bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5100  QualType FieldType = S.Context.getBaseElementType(FD->getType());
5101  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5102
5103  if (CSM == Sema::CXXDefaultConstructor) {
5104    // For a default constructor, all references must be initialized in-class
5105    // and, if a union, it must have a non-const member.
5106    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5107      if (Diagnose)
5108        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5109          << MD->getParent() << FD << FieldType << /*Reference*/0;
5110      return true;
5111    }
5112    // C++11 [class.ctor]p5: any non-variant non-static data member of
5113    // const-qualified type (or array thereof) with no
5114    // brace-or-equal-initializer does not have a user-provided default
5115    // constructor.
5116    if (!inUnion() && FieldType.isConstQualified() &&
5117        !FD->hasInClassInitializer() &&
5118        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5119      if (Diagnose)
5120        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5121          << MD->getParent() << FD << FD->getType() << /*Const*/1;
5122      return true;
5123    }
5124
5125    if (inUnion() && !FieldType.isConstQualified())
5126      AllFieldsAreConst = false;
5127  } else if (CSM == Sema::CXXCopyConstructor) {
5128    // For a copy constructor, data members must not be of rvalue reference
5129    // type.
5130    if (FieldType->isRValueReferenceType()) {
5131      if (Diagnose)
5132        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5133          << MD->getParent() << FD << FieldType;
5134      return true;
5135    }
5136  } else if (IsAssignment) {
5137    // For an assignment operator, data members must not be of reference type.
5138    if (FieldType->isReferenceType()) {
5139      if (Diagnose)
5140        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5141          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5142      return true;
5143    }
5144    if (!FieldRecord && FieldType.isConstQualified()) {
5145      // C++11 [class.copy]p23:
5146      // -- a non-static data member of const non-class type (or array thereof)
5147      if (Diagnose)
5148        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5149          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5150      return true;
5151    }
5152  }
5153
5154  if (FieldRecord) {
5155    // Some additional restrictions exist on the variant members.
5156    if (!inUnion() && FieldRecord->isUnion() &&
5157        FieldRecord->isAnonymousStructOrUnion()) {
5158      bool AllVariantFieldsAreConst = true;
5159
5160      // FIXME: Handle anonymous unions declared within anonymous unions.
5161      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
5162                                         UE = FieldRecord->field_end();
5163           UI != UE; ++UI) {
5164        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5165
5166        if (!UnionFieldType.isConstQualified())
5167          AllVariantFieldsAreConst = false;
5168
5169        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5170        if (UnionFieldRecord &&
5171            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
5172                                          UnionFieldType.getCVRQualifiers()))
5173          return true;
5174      }
5175
5176      // At least one member in each anonymous union must be non-const
5177      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5178          FieldRecord->field_begin() != FieldRecord->field_end()) {
5179        if (Diagnose)
5180          S.Diag(FieldRecord->getLocation(),
5181                 diag::note_deleted_default_ctor_all_const)
5182            << MD->getParent() << /*anonymous union*/1;
5183        return true;
5184      }
5185
5186      // Don't check the implicit member of the anonymous union type.
5187      // This is technically non-conformant, but sanity demands it.
5188      return false;
5189    }
5190
5191    if (shouldDeleteForClassSubobject(FieldRecord, FD,
5192                                      FieldType.getCVRQualifiers()))
5193      return true;
5194  }
5195
5196  return false;
5197}
5198
5199/// C++11 [class.ctor] p5:
5200///   A defaulted default constructor for a class X is defined as deleted if
5201/// X is a union and all of its variant members are of const-qualified type.
5202bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5203  // This is a silly definition, because it gives an empty union a deleted
5204  // default constructor. Don't do that.
5205  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5206      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
5207    if (Diagnose)
5208      S.Diag(MD->getParent()->getLocation(),
5209             diag::note_deleted_default_ctor_all_const)
5210        << MD->getParent() << /*not anonymous union*/0;
5211    return true;
5212  }
5213  return false;
5214}
5215
5216/// Determine whether a defaulted special member function should be defined as
5217/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5218/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
5219bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5220                                     bool Diagnose) {
5221  if (MD->isInvalidDecl())
5222    return false;
5223  CXXRecordDecl *RD = MD->getParent();
5224  assert(!RD->isDependentType() && "do deletion after instantiation");
5225  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5226    return false;
5227
5228  // C++11 [expr.lambda.prim]p19:
5229  //   The closure type associated with a lambda-expression has a
5230  //   deleted (8.4.3) default constructor and a deleted copy
5231  //   assignment operator.
5232  if (RD->isLambda() &&
5233      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5234    if (Diagnose)
5235      Diag(RD->getLocation(), diag::note_lambda_decl);
5236    return true;
5237  }
5238
5239  // For an anonymous struct or union, the copy and assignment special members
5240  // will never be used, so skip the check. For an anonymous union declared at
5241  // namespace scope, the constructor and destructor are used.
5242  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5243      RD->isAnonymousStructOrUnion())
5244    return false;
5245
5246  // C++11 [class.copy]p7, p18:
5247  //   If the class definition declares a move constructor or move assignment
5248  //   operator, an implicitly declared copy constructor or copy assignment
5249  //   operator is defined as deleted.
5250  if (MD->isImplicit() &&
5251      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5252    CXXMethodDecl *UserDeclaredMove = 0;
5253
5254    // In Microsoft mode, a user-declared move only causes the deletion of the
5255    // corresponding copy operation, not both copy operations.
5256    if (RD->hasUserDeclaredMoveConstructor() &&
5257        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5258      if (!Diagnose) return true;
5259
5260      // Find any user-declared move constructor.
5261      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5262                                        E = RD->ctor_end(); I != E; ++I) {
5263        if (I->isMoveConstructor()) {
5264          UserDeclaredMove = *I;
5265          break;
5266        }
5267      }
5268      assert(UserDeclaredMove);
5269    } else if (RD->hasUserDeclaredMoveAssignment() &&
5270               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5271      if (!Diagnose) return true;
5272
5273      // Find any user-declared move assignment operator.
5274      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5275                                          E = RD->method_end(); I != E; ++I) {
5276        if (I->isMoveAssignmentOperator()) {
5277          UserDeclaredMove = *I;
5278          break;
5279        }
5280      }
5281      assert(UserDeclaredMove);
5282    }
5283
5284    if (UserDeclaredMove) {
5285      Diag(UserDeclaredMove->getLocation(),
5286           diag::note_deleted_copy_user_declared_move)
5287        << (CSM == CXXCopyAssignment) << RD
5288        << UserDeclaredMove->isMoveAssignmentOperator();
5289      return true;
5290    }
5291  }
5292
5293  // Do access control from the special member function
5294  ContextRAII MethodContext(*this, MD);
5295
5296  // C++11 [class.dtor]p5:
5297  // -- for a virtual destructor, lookup of the non-array deallocation function
5298  //    results in an ambiguity or in a function that is deleted or inaccessible
5299  if (CSM == CXXDestructor && MD->isVirtual()) {
5300    FunctionDecl *OperatorDelete = 0;
5301    DeclarationName Name =
5302      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5303    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5304                                 OperatorDelete, false)) {
5305      if (Diagnose)
5306        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5307      return true;
5308    }
5309  }
5310
5311  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5312
5313  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5314                                          BE = RD->bases_end(); BI != BE; ++BI)
5315    if (!BI->isVirtual() &&
5316        SMI.shouldDeleteForBase(BI))
5317      return true;
5318
5319  // Per DR1611, do not consider virtual bases of constructors of abstract
5320  // classes, since we are not going to construct them.
5321  if (!RD->isAbstract() || !SMI.IsConstructor) {
5322    for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5323                                            BE = RD->vbases_end();
5324         BI != BE; ++BI)
5325      if (SMI.shouldDeleteForBase(BI))
5326        return true;
5327  }
5328
5329  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5330                                     FE = RD->field_end(); FI != FE; ++FI)
5331    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5332        SMI.shouldDeleteForField(*FI))
5333      return true;
5334
5335  if (SMI.shouldDeleteForAllConstMembers())
5336    return true;
5337
5338  return false;
5339}
5340
5341/// Perform lookup for a special member of the specified kind, and determine
5342/// whether it is trivial. If the triviality can be determined without the
5343/// lookup, skip it. This is intended for use when determining whether a
5344/// special member of a containing object is trivial, and thus does not ever
5345/// perform overload resolution for default constructors.
5346///
5347/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5348/// member that was most likely to be intended to be trivial, if any.
5349static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5350                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5351                                     CXXMethodDecl **Selected) {
5352  if (Selected)
5353    *Selected = 0;
5354
5355  switch (CSM) {
5356  case Sema::CXXInvalid:
5357    llvm_unreachable("not a special member");
5358
5359  case Sema::CXXDefaultConstructor:
5360    // C++11 [class.ctor]p5:
5361    //   A default constructor is trivial if:
5362    //    - all the [direct subobjects] have trivial default constructors
5363    //
5364    // Note, no overload resolution is performed in this case.
5365    if (RD->hasTrivialDefaultConstructor())
5366      return true;
5367
5368    if (Selected) {
5369      // If there's a default constructor which could have been trivial, dig it
5370      // out. Otherwise, if there's any user-provided default constructor, point
5371      // to that as an example of why there's not a trivial one.
5372      CXXConstructorDecl *DefCtor = 0;
5373      if (RD->needsImplicitDefaultConstructor())
5374        S.DeclareImplicitDefaultConstructor(RD);
5375      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5376                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5377        if (!CI->isDefaultConstructor())
5378          continue;
5379        DefCtor = *CI;
5380        if (!DefCtor->isUserProvided())
5381          break;
5382      }
5383
5384      *Selected = DefCtor;
5385    }
5386
5387    return false;
5388
5389  case Sema::CXXDestructor:
5390    // C++11 [class.dtor]p5:
5391    //   A destructor is trivial if:
5392    //    - all the direct [subobjects] have trivial destructors
5393    if (RD->hasTrivialDestructor())
5394      return true;
5395
5396    if (Selected) {
5397      if (RD->needsImplicitDestructor())
5398        S.DeclareImplicitDestructor(RD);
5399      *Selected = RD->getDestructor();
5400    }
5401
5402    return false;
5403
5404  case Sema::CXXCopyConstructor:
5405    // C++11 [class.copy]p12:
5406    //   A copy constructor is trivial if:
5407    //    - the constructor selected to copy each direct [subobject] is trivial
5408    if (RD->hasTrivialCopyConstructor()) {
5409      if (Quals == Qualifiers::Const)
5410        // We must either select the trivial copy constructor or reach an
5411        // ambiguity; no need to actually perform overload resolution.
5412        return true;
5413    } else if (!Selected) {
5414      return false;
5415    }
5416    // In C++98, we are not supposed to perform overload resolution here, but we
5417    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5418    // cases like B as having a non-trivial copy constructor:
5419    //   struct A { template<typename T> A(T&); };
5420    //   struct B { mutable A a; };
5421    goto NeedOverloadResolution;
5422
5423  case Sema::CXXCopyAssignment:
5424    // C++11 [class.copy]p25:
5425    //   A copy assignment operator is trivial if:
5426    //    - the assignment operator selected to copy each direct [subobject] is
5427    //      trivial
5428    if (RD->hasTrivialCopyAssignment()) {
5429      if (Quals == Qualifiers::Const)
5430        return true;
5431    } else if (!Selected) {
5432      return false;
5433    }
5434    // In C++98, we are not supposed to perform overload resolution here, but we
5435    // treat that as a language defect.
5436    goto NeedOverloadResolution;
5437
5438  case Sema::CXXMoveConstructor:
5439  case Sema::CXXMoveAssignment:
5440  NeedOverloadResolution:
5441    Sema::SpecialMemberOverloadResult *SMOR =
5442      S.LookupSpecialMember(RD, CSM,
5443                            Quals & Qualifiers::Const,
5444                            Quals & Qualifiers::Volatile,
5445                            /*RValueThis*/false, /*ConstThis*/false,
5446                            /*VolatileThis*/false);
5447
5448    // The standard doesn't describe how to behave if the lookup is ambiguous.
5449    // We treat it as not making the member non-trivial, just like the standard
5450    // mandates for the default constructor. This should rarely matter, because
5451    // the member will also be deleted.
5452    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5453      return true;
5454
5455    if (!SMOR->getMethod()) {
5456      assert(SMOR->getKind() ==
5457             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5458      return false;
5459    }
5460
5461    // We deliberately don't check if we found a deleted special member. We're
5462    // not supposed to!
5463    if (Selected)
5464      *Selected = SMOR->getMethod();
5465    return SMOR->getMethod()->isTrivial();
5466  }
5467
5468  llvm_unreachable("unknown special method kind");
5469}
5470
5471static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5472  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5473       CI != CE; ++CI)
5474    if (!CI->isImplicit())
5475      return *CI;
5476
5477  // Look for constructor templates.
5478  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5479  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5480    if (CXXConstructorDecl *CD =
5481          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5482      return CD;
5483  }
5484
5485  return 0;
5486}
5487
5488/// The kind of subobject we are checking for triviality. The values of this
5489/// enumeration are used in diagnostics.
5490enum TrivialSubobjectKind {
5491  /// The subobject is a base class.
5492  TSK_BaseClass,
5493  /// The subobject is a non-static data member.
5494  TSK_Field,
5495  /// The object is actually the complete object.
5496  TSK_CompleteObject
5497};
5498
5499/// Check whether the special member selected for a given type would be trivial.
5500static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5501                                      QualType SubType,
5502                                      Sema::CXXSpecialMember CSM,
5503                                      TrivialSubobjectKind Kind,
5504                                      bool Diagnose) {
5505  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5506  if (!SubRD)
5507    return true;
5508
5509  CXXMethodDecl *Selected;
5510  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5511                               Diagnose ? &Selected : 0))
5512    return true;
5513
5514  if (Diagnose) {
5515    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5516      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5517        << Kind << SubType.getUnqualifiedType();
5518      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5519        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5520    } else if (!Selected)
5521      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5522        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5523    else if (Selected->isUserProvided()) {
5524      if (Kind == TSK_CompleteObject)
5525        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5526          << Kind << SubType.getUnqualifiedType() << CSM;
5527      else {
5528        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5529          << Kind << SubType.getUnqualifiedType() << CSM;
5530        S.Diag(Selected->getLocation(), diag::note_declared_at);
5531      }
5532    } else {
5533      if (Kind != TSK_CompleteObject)
5534        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5535          << Kind << SubType.getUnqualifiedType() << CSM;
5536
5537      // Explain why the defaulted or deleted special member isn't trivial.
5538      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5539    }
5540  }
5541
5542  return false;
5543}
5544
5545/// Check whether the members of a class type allow a special member to be
5546/// trivial.
5547static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5548                                     Sema::CXXSpecialMember CSM,
5549                                     bool ConstArg, bool Diagnose) {
5550  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5551                                     FE = RD->field_end(); FI != FE; ++FI) {
5552    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5553      continue;
5554
5555    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5556
5557    // Pretend anonymous struct or union members are members of this class.
5558    if (FI->isAnonymousStructOrUnion()) {
5559      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5560                                    CSM, ConstArg, Diagnose))
5561        return false;
5562      continue;
5563    }
5564
5565    // C++11 [class.ctor]p5:
5566    //   A default constructor is trivial if [...]
5567    //    -- no non-static data member of its class has a
5568    //       brace-or-equal-initializer
5569    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5570      if (Diagnose)
5571        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5572      return false;
5573    }
5574
5575    // Objective C ARC 4.3.5:
5576    //   [...] nontrivally ownership-qualified types are [...] not trivially
5577    //   default constructible, copy constructible, move constructible, copy
5578    //   assignable, move assignable, or destructible [...]
5579    if (S.getLangOpts().ObjCAutoRefCount &&
5580        FieldType.hasNonTrivialObjCLifetime()) {
5581      if (Diagnose)
5582        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5583          << RD << FieldType.getObjCLifetime();
5584      return false;
5585    }
5586
5587    if (ConstArg && !FI->isMutable())
5588      FieldType.addConst();
5589    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5590                                   TSK_Field, Diagnose))
5591      return false;
5592  }
5593
5594  return true;
5595}
5596
5597/// Diagnose why the specified class does not have a trivial special member of
5598/// the given kind.
5599void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5600  QualType Ty = Context.getRecordType(RD);
5601  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5602    Ty.addConst();
5603
5604  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5605                            TSK_CompleteObject, /*Diagnose*/true);
5606}
5607
5608/// Determine whether a defaulted or deleted special member function is trivial,
5609/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5610/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5611bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5612                                  bool Diagnose) {
5613  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5614
5615  CXXRecordDecl *RD = MD->getParent();
5616
5617  bool ConstArg = false;
5618
5619  // C++11 [class.copy]p12, p25:
5620  //   A [special member] is trivial if its declared parameter type is the same
5621  //   as if it had been implicitly declared [...]
5622  switch (CSM) {
5623  case CXXDefaultConstructor:
5624  case CXXDestructor:
5625    // Trivial default constructors and destructors cannot have parameters.
5626    break;
5627
5628  case CXXCopyConstructor:
5629  case CXXCopyAssignment: {
5630    // Trivial copy operations always have const, non-volatile parameter types.
5631    ConstArg = true;
5632    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5633    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5634    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5635      if (Diagnose)
5636        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5637          << Param0->getSourceRange() << Param0->getType()
5638          << Context.getLValueReferenceType(
5639               Context.getRecordType(RD).withConst());
5640      return false;
5641    }
5642    break;
5643  }
5644
5645  case CXXMoveConstructor:
5646  case CXXMoveAssignment: {
5647    // Trivial move operations always have non-cv-qualified parameters.
5648    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5649    const RValueReferenceType *RT =
5650      Param0->getType()->getAs<RValueReferenceType>();
5651    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5652      if (Diagnose)
5653        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5654          << Param0->getSourceRange() << Param0->getType()
5655          << Context.getRValueReferenceType(Context.getRecordType(RD));
5656      return false;
5657    }
5658    break;
5659  }
5660
5661  case CXXInvalid:
5662    llvm_unreachable("not a special member");
5663  }
5664
5665  // FIXME: We require that the parameter-declaration-clause is equivalent to
5666  // that of an implicit declaration, not just that the declared parameter type
5667  // matches, in order to prevent absuridities like a function simultaneously
5668  // being a trivial copy constructor and a non-trivial default constructor.
5669  // This issue has not yet been assigned a core issue number.
5670  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5671    if (Diagnose)
5672      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5673           diag::note_nontrivial_default_arg)
5674        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5675    return false;
5676  }
5677  if (MD->isVariadic()) {
5678    if (Diagnose)
5679      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5680    return false;
5681  }
5682
5683  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5684  //   A copy/move [constructor or assignment operator] is trivial if
5685  //    -- the [member] selected to copy/move each direct base class subobject
5686  //       is trivial
5687  //
5688  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5689  //   A [default constructor or destructor] is trivial if
5690  //    -- all the direct base classes have trivial [default constructors or
5691  //       destructors]
5692  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5693                                          BE = RD->bases_end(); BI != BE; ++BI)
5694    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5695                                   ConstArg ? BI->getType().withConst()
5696                                            : BI->getType(),
5697                                   CSM, TSK_BaseClass, Diagnose))
5698      return false;
5699
5700  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5701  //   A copy/move [constructor or assignment operator] for a class X is
5702  //   trivial if
5703  //    -- for each non-static data member of X that is of class type (or array
5704  //       thereof), the constructor selected to copy/move that member is
5705  //       trivial
5706  //
5707  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5708  //   A [default constructor or destructor] is trivial if
5709  //    -- for all of the non-static data members of its class that are of class
5710  //       type (or array thereof), each such class has a trivial [default
5711  //       constructor or destructor]
5712  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5713    return false;
5714
5715  // C++11 [class.dtor]p5:
5716  //   A destructor is trivial if [...]
5717  //    -- the destructor is not virtual
5718  if (CSM == CXXDestructor && MD->isVirtual()) {
5719    if (Diagnose)
5720      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5721    return false;
5722  }
5723
5724  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5725  //   A [special member] for class X is trivial if [...]
5726  //    -- class X has no virtual functions and no virtual base classes
5727  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5728    if (!Diagnose)
5729      return false;
5730
5731    if (RD->getNumVBases()) {
5732      // Check for virtual bases. We already know that the corresponding
5733      // member in all bases is trivial, so vbases must all be direct.
5734      CXXBaseSpecifier &BS = *RD->vbases_begin();
5735      assert(BS.isVirtual());
5736      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5737      return false;
5738    }
5739
5740    // Must have a virtual method.
5741    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5742                                        ME = RD->method_end(); MI != ME; ++MI) {
5743      if (MI->isVirtual()) {
5744        SourceLocation MLoc = MI->getLocStart();
5745        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5746        return false;
5747      }
5748    }
5749
5750    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5751  }
5752
5753  // Looks like it's trivial!
5754  return true;
5755}
5756
5757/// \brief Data used with FindHiddenVirtualMethod
5758namespace {
5759  struct FindHiddenVirtualMethodData {
5760    Sema *S;
5761    CXXMethodDecl *Method;
5762    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5763    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5764  };
5765}
5766
5767/// \brief Check whether any most overriden method from MD in Methods
5768static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5769                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5770  if (MD->size_overridden_methods() == 0)
5771    return Methods.count(MD->getCanonicalDecl());
5772  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5773                                      E = MD->end_overridden_methods();
5774       I != E; ++I)
5775    if (CheckMostOverridenMethods(*I, Methods))
5776      return true;
5777  return false;
5778}
5779
5780/// \brief Member lookup function that determines whether a given C++
5781/// method overloads virtual methods in a base class without overriding any,
5782/// to be used with CXXRecordDecl::lookupInBases().
5783static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5784                                    CXXBasePath &Path,
5785                                    void *UserData) {
5786  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5787
5788  FindHiddenVirtualMethodData &Data
5789    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5790
5791  DeclarationName Name = Data.Method->getDeclName();
5792  assert(Name.getNameKind() == DeclarationName::Identifier);
5793
5794  bool foundSameNameMethod = false;
5795  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5796  for (Path.Decls = BaseRecord->lookup(Name);
5797       !Path.Decls.empty();
5798       Path.Decls = Path.Decls.slice(1)) {
5799    NamedDecl *D = Path.Decls.front();
5800    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5801      MD = MD->getCanonicalDecl();
5802      foundSameNameMethod = true;
5803      // Interested only in hidden virtual methods.
5804      if (!MD->isVirtual())
5805        continue;
5806      // If the method we are checking overrides a method from its base
5807      // don't warn about the other overloaded methods.
5808      if (!Data.S->IsOverload(Data.Method, MD, false))
5809        return true;
5810      // Collect the overload only if its hidden.
5811      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5812        overloadedMethods.push_back(MD);
5813    }
5814  }
5815
5816  if (foundSameNameMethod)
5817    Data.OverloadedMethods.append(overloadedMethods.begin(),
5818                                   overloadedMethods.end());
5819  return foundSameNameMethod;
5820}
5821
5822/// \brief Add the most overriden methods from MD to Methods
5823static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5824                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5825  if (MD->size_overridden_methods() == 0)
5826    Methods.insert(MD->getCanonicalDecl());
5827  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5828                                      E = MD->end_overridden_methods();
5829       I != E; ++I)
5830    AddMostOverridenMethods(*I, Methods);
5831}
5832
5833/// \brief Check if a method overloads virtual methods in a base class without
5834/// overriding any.
5835void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
5836                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5837  if (!MD->getDeclName().isIdentifier())
5838    return;
5839
5840  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5841                     /*bool RecordPaths=*/false,
5842                     /*bool DetectVirtual=*/false);
5843  FindHiddenVirtualMethodData Data;
5844  Data.Method = MD;
5845  Data.S = this;
5846
5847  // Keep the base methods that were overriden or introduced in the subclass
5848  // by 'using' in a set. A base method not in this set is hidden.
5849  CXXRecordDecl *DC = MD->getParent();
5850  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5851  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5852    NamedDecl *ND = *I;
5853    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5854      ND = shad->getTargetDecl();
5855    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5856      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5857  }
5858
5859  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
5860    OverloadedMethods = Data.OverloadedMethods;
5861}
5862
5863void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
5864                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5865  for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
5866    CXXMethodDecl *overloadedMD = OverloadedMethods[i];
5867    PartialDiagnostic PD = PDiag(
5868         diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5869    HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5870    Diag(overloadedMD->getLocation(), PD);
5871  }
5872}
5873
5874/// \brief Diagnose methods which overload virtual methods in a base class
5875/// without overriding any.
5876void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
5877  if (MD->isInvalidDecl())
5878    return;
5879
5880  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5881                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5882    return;
5883
5884  SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5885  FindHiddenVirtualMethods(MD, OverloadedMethods);
5886  if (!OverloadedMethods.empty()) {
5887    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5888      << MD << (OverloadedMethods.size() > 1);
5889
5890    NoteHiddenVirtualMethods(MD, OverloadedMethods);
5891  }
5892}
5893
5894void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5895                                             Decl *TagDecl,
5896                                             SourceLocation LBrac,
5897                                             SourceLocation RBrac,
5898                                             AttributeList *AttrList) {
5899  if (!TagDecl)
5900    return;
5901
5902  AdjustDeclIfTemplate(TagDecl);
5903
5904  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5905    if (l->getKind() != AttributeList::AT_Visibility)
5906      continue;
5907    l->setInvalid();
5908    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5909      l->getName();
5910  }
5911
5912  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5913              // strict aliasing violation!
5914              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5915              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5916
5917  CheckCompletedCXXClass(
5918                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5919}
5920
5921/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5922/// special functions, such as the default constructor, copy
5923/// constructor, or destructor, to the given C++ class (C++
5924/// [special]p1).  This routine can only be executed just before the
5925/// definition of the class is complete.
5926void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5927  if (!ClassDecl->hasUserDeclaredConstructor())
5928    ++ASTContext::NumImplicitDefaultConstructors;
5929
5930  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5931    ++ASTContext::NumImplicitCopyConstructors;
5932
5933    // If the properties or semantics of the copy constructor couldn't be
5934    // determined while the class was being declared, force a declaration
5935    // of it now.
5936    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5937      DeclareImplicitCopyConstructor(ClassDecl);
5938  }
5939
5940  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5941    ++ASTContext::NumImplicitMoveConstructors;
5942
5943    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5944      DeclareImplicitMoveConstructor(ClassDecl);
5945  }
5946
5947  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5948    ++ASTContext::NumImplicitCopyAssignmentOperators;
5949
5950    // If we have a dynamic class, then the copy assignment operator may be
5951    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5952    // it shows up in the right place in the vtable and that we diagnose
5953    // problems with the implicit exception specification.
5954    if (ClassDecl->isDynamicClass() ||
5955        ClassDecl->needsOverloadResolutionForCopyAssignment())
5956      DeclareImplicitCopyAssignment(ClassDecl);
5957  }
5958
5959  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5960    ++ASTContext::NumImplicitMoveAssignmentOperators;
5961
5962    // Likewise for the move assignment operator.
5963    if (ClassDecl->isDynamicClass() ||
5964        ClassDecl->needsOverloadResolutionForMoveAssignment())
5965      DeclareImplicitMoveAssignment(ClassDecl);
5966  }
5967
5968  if (!ClassDecl->hasUserDeclaredDestructor()) {
5969    ++ASTContext::NumImplicitDestructors;
5970
5971    // If we have a dynamic class, then the destructor may be virtual, so we
5972    // have to declare the destructor immediately. This ensures that, e.g., it
5973    // shows up in the right place in the vtable and that we diagnose problems
5974    // with the implicit exception specification.
5975    if (ClassDecl->isDynamicClass() ||
5976        ClassDecl->needsOverloadResolutionForDestructor())
5977      DeclareImplicitDestructor(ClassDecl);
5978  }
5979}
5980
5981void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5982  if (!D)
5983    return;
5984
5985  int NumParamList = D->getNumTemplateParameterLists();
5986  for (int i = 0; i < NumParamList; i++) {
5987    TemplateParameterList* Params = D->getTemplateParameterList(i);
5988    for (TemplateParameterList::iterator Param = Params->begin(),
5989                                      ParamEnd = Params->end();
5990          Param != ParamEnd; ++Param) {
5991      NamedDecl *Named = cast<NamedDecl>(*Param);
5992      if (Named->getDeclName()) {
5993        S->AddDecl(Named);
5994        IdResolver.AddDecl(Named);
5995      }
5996    }
5997  }
5998}
5999
6000void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
6001  if (!D)
6002    return;
6003
6004  TemplateParameterList *Params = 0;
6005  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
6006    Params = Template->getTemplateParameters();
6007  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
6008           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
6009    Params = PartialSpec->getTemplateParameters();
6010  else
6011    return;
6012
6013  for (TemplateParameterList::iterator Param = Params->begin(),
6014                                    ParamEnd = Params->end();
6015       Param != ParamEnd; ++Param) {
6016    NamedDecl *Named = cast<NamedDecl>(*Param);
6017    if (Named->getDeclName()) {
6018      S->AddDecl(Named);
6019      IdResolver.AddDecl(Named);
6020    }
6021  }
6022}
6023
6024void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6025  if (!RecordD) return;
6026  AdjustDeclIfTemplate(RecordD);
6027  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
6028  PushDeclContext(S, Record);
6029}
6030
6031void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6032  if (!RecordD) return;
6033  PopDeclContext();
6034}
6035
6036/// ActOnStartDelayedCXXMethodDeclaration - We have completed
6037/// parsing a top-level (non-nested) C++ class, and we are now
6038/// parsing those parts of the given Method declaration that could
6039/// not be parsed earlier (C++ [class.mem]p2), such as default
6040/// arguments. This action should enter the scope of the given
6041/// Method declaration as if we had just parsed the qualified method
6042/// name. However, it should not bring the parameters into scope;
6043/// that will be performed by ActOnDelayedCXXMethodParameter.
6044void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6045}
6046
6047/// ActOnDelayedCXXMethodParameter - We've already started a delayed
6048/// C++ method declaration. We're (re-)introducing the given
6049/// function parameter into scope for use in parsing later parts of
6050/// the method declaration. For example, we could see an
6051/// ActOnParamDefaultArgument event for this parameter.
6052void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6053  if (!ParamD)
6054    return;
6055
6056  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6057
6058  // If this parameter has an unparsed default argument, clear it out
6059  // to make way for the parsed default argument.
6060  if (Param->hasUnparsedDefaultArg())
6061    Param->setDefaultArg(0);
6062
6063  S->AddDecl(Param);
6064  if (Param->getDeclName())
6065    IdResolver.AddDecl(Param);
6066}
6067
6068/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6069/// processing the delayed method declaration for Method. The method
6070/// declaration is now considered finished. There may be a separate
6071/// ActOnStartOfFunctionDef action later (not necessarily
6072/// immediately!) for this method, if it was also defined inside the
6073/// class body.
6074void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6075  if (!MethodD)
6076    return;
6077
6078  AdjustDeclIfTemplate(MethodD);
6079
6080  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6081
6082  // Now that we have our default arguments, check the constructor
6083  // again. It could produce additional diagnostics or affect whether
6084  // the class has implicitly-declared destructors, among other
6085  // things.
6086  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6087    CheckConstructor(Constructor);
6088
6089  // Check the default arguments, which we may have added.
6090  if (!Method->isInvalidDecl())
6091    CheckCXXDefaultArguments(Method);
6092}
6093
6094/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6095/// the well-formedness of the constructor declarator @p D with type @p
6096/// R. If there are any errors in the declarator, this routine will
6097/// emit diagnostics and set the invalid bit to true.  In any case, the type
6098/// will be updated to reflect a well-formed type for the constructor and
6099/// returned.
6100QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6101                                          StorageClass &SC) {
6102  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6103
6104  // C++ [class.ctor]p3:
6105  //   A constructor shall not be virtual (10.3) or static (9.4). A
6106  //   constructor can be invoked for a const, volatile or const
6107  //   volatile object. A constructor shall not be declared const,
6108  //   volatile, or const volatile (9.3.2).
6109  if (isVirtual) {
6110    if (!D.isInvalidType())
6111      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6112        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6113        << SourceRange(D.getIdentifierLoc());
6114    D.setInvalidType();
6115  }
6116  if (SC == SC_Static) {
6117    if (!D.isInvalidType())
6118      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6119        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6120        << SourceRange(D.getIdentifierLoc());
6121    D.setInvalidType();
6122    SC = SC_None;
6123  }
6124
6125  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6126  if (FTI.TypeQuals != 0) {
6127    if (FTI.TypeQuals & Qualifiers::Const)
6128      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6129        << "const" << SourceRange(D.getIdentifierLoc());
6130    if (FTI.TypeQuals & Qualifiers::Volatile)
6131      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6132        << "volatile" << SourceRange(D.getIdentifierLoc());
6133    if (FTI.TypeQuals & Qualifiers::Restrict)
6134      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6135        << "restrict" << SourceRange(D.getIdentifierLoc());
6136    D.setInvalidType();
6137  }
6138
6139  // C++0x [class.ctor]p4:
6140  //   A constructor shall not be declared with a ref-qualifier.
6141  if (FTI.hasRefQualifier()) {
6142    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6143      << FTI.RefQualifierIsLValueRef
6144      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6145    D.setInvalidType();
6146  }
6147
6148  // Rebuild the function type "R" without any type qualifiers (in
6149  // case any of the errors above fired) and with "void" as the
6150  // return type, since constructors don't have return types.
6151  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6152  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
6153    return R;
6154
6155  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6156  EPI.TypeQuals = 0;
6157  EPI.RefQualifier = RQ_None;
6158
6159  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
6160}
6161
6162/// CheckConstructor - Checks a fully-formed constructor for
6163/// well-formedness, issuing any diagnostics required. Returns true if
6164/// the constructor declarator is invalid.
6165void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6166  CXXRecordDecl *ClassDecl
6167    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6168  if (!ClassDecl)
6169    return Constructor->setInvalidDecl();
6170
6171  // C++ [class.copy]p3:
6172  //   A declaration of a constructor for a class X is ill-formed if
6173  //   its first parameter is of type (optionally cv-qualified) X and
6174  //   either there are no other parameters or else all other
6175  //   parameters have default arguments.
6176  if (!Constructor->isInvalidDecl() &&
6177      ((Constructor->getNumParams() == 1) ||
6178       (Constructor->getNumParams() > 1 &&
6179        Constructor->getParamDecl(1)->hasDefaultArg())) &&
6180      Constructor->getTemplateSpecializationKind()
6181                                              != TSK_ImplicitInstantiation) {
6182    QualType ParamType = Constructor->getParamDecl(0)->getType();
6183    QualType ClassTy = Context.getTagDeclType(ClassDecl);
6184    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6185      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6186      const char *ConstRef
6187        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6188                                                        : " const &";
6189      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6190        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6191
6192      // FIXME: Rather that making the constructor invalid, we should endeavor
6193      // to fix the type.
6194      Constructor->setInvalidDecl();
6195    }
6196  }
6197}
6198
6199/// CheckDestructor - Checks a fully-formed destructor definition for
6200/// well-formedness, issuing any diagnostics required.  Returns true
6201/// on error.
6202bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6203  CXXRecordDecl *RD = Destructor->getParent();
6204
6205  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6206    SourceLocation Loc;
6207
6208    if (!Destructor->isImplicit())
6209      Loc = Destructor->getLocation();
6210    else
6211      Loc = RD->getLocation();
6212
6213    // If we have a virtual destructor, look up the deallocation function
6214    FunctionDecl *OperatorDelete = 0;
6215    DeclarationName Name =
6216    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6217    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6218      return true;
6219
6220    MarkFunctionReferenced(Loc, OperatorDelete);
6221
6222    Destructor->setOperatorDelete(OperatorDelete);
6223  }
6224
6225  return false;
6226}
6227
6228static inline bool
6229FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
6230  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6231          FTI.ArgInfo[0].Param &&
6232          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
6233}
6234
6235/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6236/// the well-formednes of the destructor declarator @p D with type @p
6237/// R. If there are any errors in the declarator, this routine will
6238/// emit diagnostics and set the declarator to invalid.  Even if this happens,
6239/// will be updated to reflect a well-formed type for the destructor and
6240/// returned.
6241QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6242                                         StorageClass& SC) {
6243  // C++ [class.dtor]p1:
6244  //   [...] A typedef-name that names a class is a class-name
6245  //   (7.1.3); however, a typedef-name that names a class shall not
6246  //   be used as the identifier in the declarator for a destructor
6247  //   declaration.
6248  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6249  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6250    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6251      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6252  else if (const TemplateSpecializationType *TST =
6253             DeclaratorType->getAs<TemplateSpecializationType>())
6254    if (TST->isTypeAlias())
6255      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6256        << DeclaratorType << 1;
6257
6258  // C++ [class.dtor]p2:
6259  //   A destructor is used to destroy objects of its class type. A
6260  //   destructor takes no parameters, and no return type can be
6261  //   specified for it (not even void). The address of a destructor
6262  //   shall not be taken. A destructor shall not be static. A
6263  //   destructor can be invoked for a const, volatile or const
6264  //   volatile object. A destructor shall not be declared const,
6265  //   volatile or const volatile (9.3.2).
6266  if (SC == SC_Static) {
6267    if (!D.isInvalidType())
6268      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6269        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6270        << SourceRange(D.getIdentifierLoc())
6271        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6272
6273    SC = SC_None;
6274  }
6275  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6276    // Destructors don't have return types, but the parser will
6277    // happily parse something like:
6278    //
6279    //   class X {
6280    //     float ~X();
6281    //   };
6282    //
6283    // The return type will be eliminated later.
6284    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6285      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6286      << SourceRange(D.getIdentifierLoc());
6287  }
6288
6289  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6290  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6291    if (FTI.TypeQuals & Qualifiers::Const)
6292      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6293        << "const" << SourceRange(D.getIdentifierLoc());
6294    if (FTI.TypeQuals & Qualifiers::Volatile)
6295      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6296        << "volatile" << SourceRange(D.getIdentifierLoc());
6297    if (FTI.TypeQuals & Qualifiers::Restrict)
6298      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6299        << "restrict" << SourceRange(D.getIdentifierLoc());
6300    D.setInvalidType();
6301  }
6302
6303  // C++0x [class.dtor]p2:
6304  //   A destructor shall not be declared with a ref-qualifier.
6305  if (FTI.hasRefQualifier()) {
6306    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6307      << FTI.RefQualifierIsLValueRef
6308      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6309    D.setInvalidType();
6310  }
6311
6312  // Make sure we don't have any parameters.
6313  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6314    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6315
6316    // Delete the parameters.
6317    FTI.freeArgs();
6318    D.setInvalidType();
6319  }
6320
6321  // Make sure the destructor isn't variadic.
6322  if (FTI.isVariadic) {
6323    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6324    D.setInvalidType();
6325  }
6326
6327  // Rebuild the function type "R" without any type qualifiers or
6328  // parameters (in case any of the errors above fired) and with
6329  // "void" as the return type, since destructors don't have return
6330  // types.
6331  if (!D.isInvalidType())
6332    return R;
6333
6334  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6335  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6336  EPI.Variadic = false;
6337  EPI.TypeQuals = 0;
6338  EPI.RefQualifier = RQ_None;
6339  return Context.getFunctionType(Context.VoidTy, None, EPI);
6340}
6341
6342/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6343/// well-formednes of the conversion function declarator @p D with
6344/// type @p R. If there are any errors in the declarator, this routine
6345/// will emit diagnostics and return true. Otherwise, it will return
6346/// false. Either way, the type @p R will be updated to reflect a
6347/// well-formed type for the conversion operator.
6348void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6349                                     StorageClass& SC) {
6350  // C++ [class.conv.fct]p1:
6351  //   Neither parameter types nor return type can be specified. The
6352  //   type of a conversion function (8.3.5) is "function taking no
6353  //   parameter returning conversion-type-id."
6354  if (SC == SC_Static) {
6355    if (!D.isInvalidType())
6356      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6357        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6358        << D.getName().getSourceRange();
6359    D.setInvalidType();
6360    SC = SC_None;
6361  }
6362
6363  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6364
6365  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6366    // Conversion functions don't have return types, but the parser will
6367    // happily parse something like:
6368    //
6369    //   class X {
6370    //     float operator bool();
6371    //   };
6372    //
6373    // The return type will be changed later anyway.
6374    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6375      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6376      << SourceRange(D.getIdentifierLoc());
6377    D.setInvalidType();
6378  }
6379
6380  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6381
6382  // Make sure we don't have any parameters.
6383  if (Proto->getNumArgs() > 0) {
6384    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6385
6386    // Delete the parameters.
6387    D.getFunctionTypeInfo().freeArgs();
6388    D.setInvalidType();
6389  } else if (Proto->isVariadic()) {
6390    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6391    D.setInvalidType();
6392  }
6393
6394  // Diagnose "&operator bool()" and other such nonsense.  This
6395  // is actually a gcc extension which we don't support.
6396  if (Proto->getResultType() != ConvType) {
6397    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6398      << Proto->getResultType();
6399    D.setInvalidType();
6400    ConvType = Proto->getResultType();
6401  }
6402
6403  // C++ [class.conv.fct]p4:
6404  //   The conversion-type-id shall not represent a function type nor
6405  //   an array type.
6406  if (ConvType->isArrayType()) {
6407    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6408    ConvType = Context.getPointerType(ConvType);
6409    D.setInvalidType();
6410  } else if (ConvType->isFunctionType()) {
6411    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6412    ConvType = Context.getPointerType(ConvType);
6413    D.setInvalidType();
6414  }
6415
6416  // Rebuild the function type "R" without any parameters (in case any
6417  // of the errors above fired) and with the conversion type as the
6418  // return type.
6419  if (D.isInvalidType())
6420    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6421
6422  // C++0x explicit conversion operators.
6423  if (D.getDeclSpec().isExplicitSpecified())
6424    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6425         getLangOpts().CPlusPlus11 ?
6426           diag::warn_cxx98_compat_explicit_conversion_functions :
6427           diag::ext_explicit_conversion_functions)
6428      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6429}
6430
6431/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6432/// the declaration of the given C++ conversion function. This routine
6433/// is responsible for recording the conversion function in the C++
6434/// class, if possible.
6435Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6436  assert(Conversion && "Expected to receive a conversion function declaration");
6437
6438  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6439
6440  // Make sure we aren't redeclaring the conversion function.
6441  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6442
6443  // C++ [class.conv.fct]p1:
6444  //   [...] A conversion function is never used to convert a
6445  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6446  //   same object type (or a reference to it), to a (possibly
6447  //   cv-qualified) base class of that type (or a reference to it),
6448  //   or to (possibly cv-qualified) void.
6449  // FIXME: Suppress this warning if the conversion function ends up being a
6450  // virtual function that overrides a virtual function in a base class.
6451  QualType ClassType
6452    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6453  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6454    ConvType = ConvTypeRef->getPointeeType();
6455  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6456      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6457    /* Suppress diagnostics for instantiations. */;
6458  else if (ConvType->isRecordType()) {
6459    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6460    if (ConvType == ClassType)
6461      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6462        << ClassType;
6463    else if (IsDerivedFrom(ClassType, ConvType))
6464      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6465        <<  ClassType << ConvType;
6466  } else if (ConvType->isVoidType()) {
6467    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6468      << ClassType << ConvType;
6469  }
6470
6471  if (FunctionTemplateDecl *ConversionTemplate
6472                                = Conversion->getDescribedFunctionTemplate())
6473    return ConversionTemplate;
6474
6475  return Conversion;
6476}
6477
6478//===----------------------------------------------------------------------===//
6479// Namespace Handling
6480//===----------------------------------------------------------------------===//
6481
6482/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6483/// reopened.
6484static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6485                                            SourceLocation Loc,
6486                                            IdentifierInfo *II, bool *IsInline,
6487                                            NamespaceDecl *PrevNS) {
6488  assert(*IsInline != PrevNS->isInline());
6489
6490  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6491  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6492  // inline namespaces, with the intention of bringing names into namespace std.
6493  //
6494  // We support this just well enough to get that case working; this is not
6495  // sufficient to support reopening namespaces as inline in general.
6496  if (*IsInline && II && II->getName().startswith("__atomic") &&
6497      S.getSourceManager().isInSystemHeader(Loc)) {
6498    // Mark all prior declarations of the namespace as inline.
6499    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6500         NS = NS->getPreviousDecl())
6501      NS->setInline(*IsInline);
6502    // Patch up the lookup table for the containing namespace. This isn't really
6503    // correct, but it's good enough for this particular case.
6504    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6505                                    E = PrevNS->decls_end(); I != E; ++I)
6506      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6507        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6508    return;
6509  }
6510
6511  if (PrevNS->isInline())
6512    // The user probably just forgot the 'inline', so suggest that it
6513    // be added back.
6514    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6515      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6516  else
6517    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6518      << IsInline;
6519
6520  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6521  *IsInline = PrevNS->isInline();
6522}
6523
6524/// ActOnStartNamespaceDef - This is called at the start of a namespace
6525/// definition.
6526Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6527                                   SourceLocation InlineLoc,
6528                                   SourceLocation NamespaceLoc,
6529                                   SourceLocation IdentLoc,
6530                                   IdentifierInfo *II,
6531                                   SourceLocation LBrace,
6532                                   AttributeList *AttrList) {
6533  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6534  // For anonymous namespace, take the location of the left brace.
6535  SourceLocation Loc = II ? IdentLoc : LBrace;
6536  bool IsInline = InlineLoc.isValid();
6537  bool IsInvalid = false;
6538  bool IsStd = false;
6539  bool AddToKnown = false;
6540  Scope *DeclRegionScope = NamespcScope->getParent();
6541
6542  NamespaceDecl *PrevNS = 0;
6543  if (II) {
6544    // C++ [namespace.def]p2:
6545    //   The identifier in an original-namespace-definition shall not
6546    //   have been previously defined in the declarative region in
6547    //   which the original-namespace-definition appears. The
6548    //   identifier in an original-namespace-definition is the name of
6549    //   the namespace. Subsequently in that declarative region, it is
6550    //   treated as an original-namespace-name.
6551    //
6552    // Since namespace names are unique in their scope, and we don't
6553    // look through using directives, just look for any ordinary names.
6554
6555    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6556    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6557    Decl::IDNS_Namespace;
6558    NamedDecl *PrevDecl = 0;
6559    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6560    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6561         ++I) {
6562      if ((*I)->getIdentifierNamespace() & IDNS) {
6563        PrevDecl = *I;
6564        break;
6565      }
6566    }
6567
6568    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6569
6570    if (PrevNS) {
6571      // This is an extended namespace definition.
6572      if (IsInline != PrevNS->isInline())
6573        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6574                                        &IsInline, PrevNS);
6575    } else if (PrevDecl) {
6576      // This is an invalid name redefinition.
6577      Diag(Loc, diag::err_redefinition_different_kind)
6578        << II;
6579      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6580      IsInvalid = true;
6581      // Continue on to push Namespc as current DeclContext and return it.
6582    } else if (II->isStr("std") &&
6583               CurContext->getRedeclContext()->isTranslationUnit()) {
6584      // This is the first "real" definition of the namespace "std", so update
6585      // our cache of the "std" namespace to point at this definition.
6586      PrevNS = getStdNamespace();
6587      IsStd = true;
6588      AddToKnown = !IsInline;
6589    } else {
6590      // We've seen this namespace for the first time.
6591      AddToKnown = !IsInline;
6592    }
6593  } else {
6594    // Anonymous namespaces.
6595
6596    // Determine whether the parent already has an anonymous namespace.
6597    DeclContext *Parent = CurContext->getRedeclContext();
6598    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6599      PrevNS = TU->getAnonymousNamespace();
6600    } else {
6601      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6602      PrevNS = ND->getAnonymousNamespace();
6603    }
6604
6605    if (PrevNS && IsInline != PrevNS->isInline())
6606      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6607                                      &IsInline, PrevNS);
6608  }
6609
6610  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6611                                                 StartLoc, Loc, II, PrevNS);
6612  if (IsInvalid)
6613    Namespc->setInvalidDecl();
6614
6615  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6616
6617  // FIXME: Should we be merging attributes?
6618  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6619    PushNamespaceVisibilityAttr(Attr, Loc);
6620
6621  if (IsStd)
6622    StdNamespace = Namespc;
6623  if (AddToKnown)
6624    KnownNamespaces[Namespc] = false;
6625
6626  if (II) {
6627    PushOnScopeChains(Namespc, DeclRegionScope);
6628  } else {
6629    // Link the anonymous namespace into its parent.
6630    DeclContext *Parent = CurContext->getRedeclContext();
6631    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6632      TU->setAnonymousNamespace(Namespc);
6633    } else {
6634      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6635    }
6636
6637    CurContext->addDecl(Namespc);
6638
6639    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6640    //   behaves as if it were replaced by
6641    //     namespace unique { /* empty body */ }
6642    //     using namespace unique;
6643    //     namespace unique { namespace-body }
6644    //   where all occurrences of 'unique' in a translation unit are
6645    //   replaced by the same identifier and this identifier differs
6646    //   from all other identifiers in the entire program.
6647
6648    // We just create the namespace with an empty name and then add an
6649    // implicit using declaration, just like the standard suggests.
6650    //
6651    // CodeGen enforces the "universally unique" aspect by giving all
6652    // declarations semantically contained within an anonymous
6653    // namespace internal linkage.
6654
6655    if (!PrevNS) {
6656      UsingDirectiveDecl* UD
6657        = UsingDirectiveDecl::Create(Context, Parent,
6658                                     /* 'using' */ LBrace,
6659                                     /* 'namespace' */ SourceLocation(),
6660                                     /* qualifier */ NestedNameSpecifierLoc(),
6661                                     /* identifier */ SourceLocation(),
6662                                     Namespc,
6663                                     /* Ancestor */ Parent);
6664      UD->setImplicit();
6665      Parent->addDecl(UD);
6666    }
6667  }
6668
6669  ActOnDocumentableDecl(Namespc);
6670
6671  // Although we could have an invalid decl (i.e. the namespace name is a
6672  // redefinition), push it as current DeclContext and try to continue parsing.
6673  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6674  // for the namespace has the declarations that showed up in that particular
6675  // namespace definition.
6676  PushDeclContext(NamespcScope, Namespc);
6677  return Namespc;
6678}
6679
6680/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6681/// is a namespace alias, returns the namespace it points to.
6682static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6683  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6684    return AD->getNamespace();
6685  return dyn_cast_or_null<NamespaceDecl>(D);
6686}
6687
6688/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6689/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6690void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6691  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6692  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6693  Namespc->setRBraceLoc(RBrace);
6694  PopDeclContext();
6695  if (Namespc->hasAttr<VisibilityAttr>())
6696    PopPragmaVisibility(true, RBrace);
6697}
6698
6699CXXRecordDecl *Sema::getStdBadAlloc() const {
6700  return cast_or_null<CXXRecordDecl>(
6701                                  StdBadAlloc.get(Context.getExternalSource()));
6702}
6703
6704NamespaceDecl *Sema::getStdNamespace() const {
6705  return cast_or_null<NamespaceDecl>(
6706                                 StdNamespace.get(Context.getExternalSource()));
6707}
6708
6709/// \brief Retrieve the special "std" namespace, which may require us to
6710/// implicitly define the namespace.
6711NamespaceDecl *Sema::getOrCreateStdNamespace() {
6712  if (!StdNamespace) {
6713    // The "std" namespace has not yet been defined, so build one implicitly.
6714    StdNamespace = NamespaceDecl::Create(Context,
6715                                         Context.getTranslationUnitDecl(),
6716                                         /*Inline=*/false,
6717                                         SourceLocation(), SourceLocation(),
6718                                         &PP.getIdentifierTable().get("std"),
6719                                         /*PrevDecl=*/0);
6720    getStdNamespace()->setImplicit(true);
6721  }
6722
6723  return getStdNamespace();
6724}
6725
6726bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6727  assert(getLangOpts().CPlusPlus &&
6728         "Looking for std::initializer_list outside of C++.");
6729
6730  // We're looking for implicit instantiations of
6731  // template <typename E> class std::initializer_list.
6732
6733  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6734    return false;
6735
6736  ClassTemplateDecl *Template = 0;
6737  const TemplateArgument *Arguments = 0;
6738
6739  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6740
6741    ClassTemplateSpecializationDecl *Specialization =
6742        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6743    if (!Specialization)
6744      return false;
6745
6746    Template = Specialization->getSpecializedTemplate();
6747    Arguments = Specialization->getTemplateArgs().data();
6748  } else if (const TemplateSpecializationType *TST =
6749                 Ty->getAs<TemplateSpecializationType>()) {
6750    Template = dyn_cast_or_null<ClassTemplateDecl>(
6751        TST->getTemplateName().getAsTemplateDecl());
6752    Arguments = TST->getArgs();
6753  }
6754  if (!Template)
6755    return false;
6756
6757  if (!StdInitializerList) {
6758    // Haven't recognized std::initializer_list yet, maybe this is it.
6759    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6760    if (TemplateClass->getIdentifier() !=
6761            &PP.getIdentifierTable().get("initializer_list") ||
6762        !getStdNamespace()->InEnclosingNamespaceSetOf(
6763            TemplateClass->getDeclContext()))
6764      return false;
6765    // This is a template called std::initializer_list, but is it the right
6766    // template?
6767    TemplateParameterList *Params = Template->getTemplateParameters();
6768    if (Params->getMinRequiredArguments() != 1)
6769      return false;
6770    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6771      return false;
6772
6773    // It's the right template.
6774    StdInitializerList = Template;
6775  }
6776
6777  if (Template != StdInitializerList)
6778    return false;
6779
6780  // This is an instance of std::initializer_list. Find the argument type.
6781  if (Element)
6782    *Element = Arguments[0].getAsType();
6783  return true;
6784}
6785
6786static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6787  NamespaceDecl *Std = S.getStdNamespace();
6788  if (!Std) {
6789    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6790    return 0;
6791  }
6792
6793  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6794                      Loc, Sema::LookupOrdinaryName);
6795  if (!S.LookupQualifiedName(Result, Std)) {
6796    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6797    return 0;
6798  }
6799  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6800  if (!Template) {
6801    Result.suppressDiagnostics();
6802    // We found something weird. Complain about the first thing we found.
6803    NamedDecl *Found = *Result.begin();
6804    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6805    return 0;
6806  }
6807
6808  // We found some template called std::initializer_list. Now verify that it's
6809  // correct.
6810  TemplateParameterList *Params = Template->getTemplateParameters();
6811  if (Params->getMinRequiredArguments() != 1 ||
6812      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6813    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6814    return 0;
6815  }
6816
6817  return Template;
6818}
6819
6820QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6821  if (!StdInitializerList) {
6822    StdInitializerList = LookupStdInitializerList(*this, Loc);
6823    if (!StdInitializerList)
6824      return QualType();
6825  }
6826
6827  TemplateArgumentListInfo Args(Loc, Loc);
6828  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6829                                       Context.getTrivialTypeSourceInfo(Element,
6830                                                                        Loc)));
6831  return Context.getCanonicalType(
6832      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6833}
6834
6835bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6836  // C++ [dcl.init.list]p2:
6837  //   A constructor is an initializer-list constructor if its first parameter
6838  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6839  //   std::initializer_list<E> for some type E, and either there are no other
6840  //   parameters or else all other parameters have default arguments.
6841  if (Ctor->getNumParams() < 1 ||
6842      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6843    return false;
6844
6845  QualType ArgType = Ctor->getParamDecl(0)->getType();
6846  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6847    ArgType = RT->getPointeeType().getUnqualifiedType();
6848
6849  return isStdInitializerList(ArgType, 0);
6850}
6851
6852/// \brief Determine whether a using statement is in a context where it will be
6853/// apply in all contexts.
6854static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6855  switch (CurContext->getDeclKind()) {
6856    case Decl::TranslationUnit:
6857      return true;
6858    case Decl::LinkageSpec:
6859      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6860    default:
6861      return false;
6862  }
6863}
6864
6865namespace {
6866
6867// Callback to only accept typo corrections that are namespaces.
6868class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6869public:
6870  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
6871    if (NamedDecl *ND = candidate.getCorrectionDecl())
6872      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6873    return false;
6874  }
6875};
6876
6877}
6878
6879static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6880                                       CXXScopeSpec &SS,
6881                                       SourceLocation IdentLoc,
6882                                       IdentifierInfo *Ident) {
6883  NamespaceValidatorCCC Validator;
6884  R.clear();
6885  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6886                                               R.getLookupKind(), Sc, &SS,
6887                                               Validator)) {
6888    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6889      std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6890      bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
6891                              Ident->getName().equals(CorrectedStr);
6892      S.diagnoseTypo(Corrected,
6893                     S.PDiag(diag::err_using_directive_member_suggest)
6894                       << Ident << DC << DroppedSpecifier << SS.getRange(),
6895                     S.PDiag(diag::note_namespace_defined_here));
6896    } else {
6897      S.diagnoseTypo(Corrected,
6898                     S.PDiag(diag::err_using_directive_suggest) << Ident,
6899                     S.PDiag(diag::note_namespace_defined_here));
6900    }
6901    R.addDecl(Corrected.getCorrectionDecl());
6902    return true;
6903  }
6904  return false;
6905}
6906
6907Decl *Sema::ActOnUsingDirective(Scope *S,
6908                                          SourceLocation UsingLoc,
6909                                          SourceLocation NamespcLoc,
6910                                          CXXScopeSpec &SS,
6911                                          SourceLocation IdentLoc,
6912                                          IdentifierInfo *NamespcName,
6913                                          AttributeList *AttrList) {
6914  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6915  assert(NamespcName && "Invalid NamespcName.");
6916  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6917
6918  // This can only happen along a recovery path.
6919  while (S->getFlags() & Scope::TemplateParamScope)
6920    S = S->getParent();
6921  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6922
6923  UsingDirectiveDecl *UDir = 0;
6924  NestedNameSpecifier *Qualifier = 0;
6925  if (SS.isSet())
6926    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6927
6928  // Lookup namespace name.
6929  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6930  LookupParsedName(R, S, &SS);
6931  if (R.isAmbiguous())
6932    return 0;
6933
6934  if (R.empty()) {
6935    R.clear();
6936    // Allow "using namespace std;" or "using namespace ::std;" even if
6937    // "std" hasn't been defined yet, for GCC compatibility.
6938    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6939        NamespcName->isStr("std")) {
6940      Diag(IdentLoc, diag::ext_using_undefined_std);
6941      R.addDecl(getOrCreateStdNamespace());
6942      R.resolveKind();
6943    }
6944    // Otherwise, attempt typo correction.
6945    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6946  }
6947
6948  if (!R.empty()) {
6949    NamedDecl *Named = R.getFoundDecl();
6950    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6951        && "expected namespace decl");
6952    // C++ [namespace.udir]p1:
6953    //   A using-directive specifies that the names in the nominated
6954    //   namespace can be used in the scope in which the
6955    //   using-directive appears after the using-directive. During
6956    //   unqualified name lookup (3.4.1), the names appear as if they
6957    //   were declared in the nearest enclosing namespace which
6958    //   contains both the using-directive and the nominated
6959    //   namespace. [Note: in this context, "contains" means "contains
6960    //   directly or indirectly". ]
6961
6962    // Find enclosing context containing both using-directive and
6963    // nominated namespace.
6964    NamespaceDecl *NS = getNamespaceDecl(Named);
6965    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6966    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6967      CommonAncestor = CommonAncestor->getParent();
6968
6969    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6970                                      SS.getWithLocInContext(Context),
6971                                      IdentLoc, Named, CommonAncestor);
6972
6973    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6974        !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6975      Diag(IdentLoc, diag::warn_using_directive_in_header);
6976    }
6977
6978    PushUsingDirective(S, UDir);
6979  } else {
6980    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6981  }
6982
6983  if (UDir)
6984    ProcessDeclAttributeList(S, UDir, AttrList);
6985
6986  return UDir;
6987}
6988
6989void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6990  // If the scope has an associated entity and the using directive is at
6991  // namespace or translation unit scope, add the UsingDirectiveDecl into
6992  // its lookup structure so qualified name lookup can find it.
6993  DeclContext *Ctx = S->getEntity();
6994  if (Ctx && !Ctx->isFunctionOrMethod())
6995    Ctx->addDecl(UDir);
6996  else
6997    // Otherwise, it is at block sope. The using-directives will affect lookup
6998    // only to the end of the scope.
6999    S->PushUsingDirective(UDir);
7000}
7001
7002
7003Decl *Sema::ActOnUsingDeclaration(Scope *S,
7004                                  AccessSpecifier AS,
7005                                  bool HasUsingKeyword,
7006                                  SourceLocation UsingLoc,
7007                                  CXXScopeSpec &SS,
7008                                  UnqualifiedId &Name,
7009                                  AttributeList *AttrList,
7010                                  bool HasTypenameKeyword,
7011                                  SourceLocation TypenameLoc) {
7012  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7013
7014  switch (Name.getKind()) {
7015  case UnqualifiedId::IK_ImplicitSelfParam:
7016  case UnqualifiedId::IK_Identifier:
7017  case UnqualifiedId::IK_OperatorFunctionId:
7018  case UnqualifiedId::IK_LiteralOperatorId:
7019  case UnqualifiedId::IK_ConversionFunctionId:
7020    break;
7021
7022  case UnqualifiedId::IK_ConstructorName:
7023  case UnqualifiedId::IK_ConstructorTemplateId:
7024    // C++11 inheriting constructors.
7025    Diag(Name.getLocStart(),
7026         getLangOpts().CPlusPlus11 ?
7027           diag::warn_cxx98_compat_using_decl_constructor :
7028           diag::err_using_decl_constructor)
7029      << SS.getRange();
7030
7031    if (getLangOpts().CPlusPlus11) break;
7032
7033    return 0;
7034
7035  case UnqualifiedId::IK_DestructorName:
7036    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7037      << SS.getRange();
7038    return 0;
7039
7040  case UnqualifiedId::IK_TemplateId:
7041    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7042      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7043    return 0;
7044  }
7045
7046  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7047  DeclarationName TargetName = TargetNameInfo.getName();
7048  if (!TargetName)
7049    return 0;
7050
7051  // Warn about access declarations.
7052  if (!HasUsingKeyword) {
7053    Diag(Name.getLocStart(),
7054         getLangOpts().CPlusPlus11 ? diag::err_access_decl
7055                                   : diag::warn_access_decl_deprecated)
7056      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7057  }
7058
7059  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7060      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7061    return 0;
7062
7063  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7064                                        TargetNameInfo, AttrList,
7065                                        /* IsInstantiation */ false,
7066                                        HasTypenameKeyword, TypenameLoc);
7067  if (UD)
7068    PushOnScopeChains(UD, S, /*AddToContext*/ false);
7069
7070  return UD;
7071}
7072
7073/// \brief Determine whether a using declaration considers the given
7074/// declarations as "equivalent", e.g., if they are redeclarations of
7075/// the same entity or are both typedefs of the same type.
7076static bool
7077IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
7078                         bool &SuppressRedeclaration) {
7079  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
7080    SuppressRedeclaration = false;
7081    return true;
7082  }
7083
7084  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7085    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
7086      SuppressRedeclaration = true;
7087      return Context.hasSameType(TD1->getUnderlyingType(),
7088                                 TD2->getUnderlyingType());
7089    }
7090
7091  return false;
7092}
7093
7094
7095/// Determines whether to create a using shadow decl for a particular
7096/// decl, given the set of decls existing prior to this using lookup.
7097bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7098                                const LookupResult &Previous) {
7099  // Diagnose finding a decl which is not from a base class of the
7100  // current class.  We do this now because there are cases where this
7101  // function will silently decide not to build a shadow decl, which
7102  // will pre-empt further diagnostics.
7103  //
7104  // We don't need to do this in C++0x because we do the check once on
7105  // the qualifier.
7106  //
7107  // FIXME: diagnose the following if we care enough:
7108  //   struct A { int foo; };
7109  //   struct B : A { using A::foo; };
7110  //   template <class T> struct C : A {};
7111  //   template <class T> struct D : C<T> { using B::foo; } // <---
7112  // This is invalid (during instantiation) in C++03 because B::foo
7113  // resolves to the using decl in B, which is not a base class of D<T>.
7114  // We can't diagnose it immediately because C<T> is an unknown
7115  // specialization.  The UsingShadowDecl in D<T> then points directly
7116  // to A::foo, which will look well-formed when we instantiate.
7117  // The right solution is to not collapse the shadow-decl chain.
7118  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7119    DeclContext *OrigDC = Orig->getDeclContext();
7120
7121    // Handle enums and anonymous structs.
7122    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7123    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7124    while (OrigRec->isAnonymousStructOrUnion())
7125      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7126
7127    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7128      if (OrigDC == CurContext) {
7129        Diag(Using->getLocation(),
7130             diag::err_using_decl_nested_name_specifier_is_current_class)
7131          << Using->getQualifierLoc().getSourceRange();
7132        Diag(Orig->getLocation(), diag::note_using_decl_target);
7133        return true;
7134      }
7135
7136      Diag(Using->getQualifierLoc().getBeginLoc(),
7137           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7138        << Using->getQualifier()
7139        << cast<CXXRecordDecl>(CurContext)
7140        << Using->getQualifierLoc().getSourceRange();
7141      Diag(Orig->getLocation(), diag::note_using_decl_target);
7142      return true;
7143    }
7144  }
7145
7146  if (Previous.empty()) return false;
7147
7148  NamedDecl *Target = Orig;
7149  if (isa<UsingShadowDecl>(Target))
7150    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7151
7152  // If the target happens to be one of the previous declarations, we
7153  // don't have a conflict.
7154  //
7155  // FIXME: but we might be increasing its access, in which case we
7156  // should redeclare it.
7157  NamedDecl *NonTag = 0, *Tag = 0;
7158  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7159         I != E; ++I) {
7160    NamedDecl *D = (*I)->getUnderlyingDecl();
7161    bool Result;
7162    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
7163      return Result;
7164
7165    (isa<TagDecl>(D) ? Tag : NonTag) = D;
7166  }
7167
7168  if (Target->isFunctionOrFunctionTemplate()) {
7169    FunctionDecl *FD;
7170    if (isa<FunctionTemplateDecl>(Target))
7171      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
7172    else
7173      FD = cast<FunctionDecl>(Target);
7174
7175    NamedDecl *OldDecl = 0;
7176    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
7177    case Ovl_Overload:
7178      return false;
7179
7180    case Ovl_NonFunction:
7181      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7182      break;
7183
7184    // We found a decl with the exact signature.
7185    case Ovl_Match:
7186      // If we're in a record, we want to hide the target, so we
7187      // return true (without a diagnostic) to tell the caller not to
7188      // build a shadow decl.
7189      if (CurContext->isRecord())
7190        return true;
7191
7192      // If we're not in a record, this is an error.
7193      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7194      break;
7195    }
7196
7197    Diag(Target->getLocation(), diag::note_using_decl_target);
7198    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7199    return true;
7200  }
7201
7202  // Target is not a function.
7203
7204  if (isa<TagDecl>(Target)) {
7205    // No conflict between a tag and a non-tag.
7206    if (!Tag) return false;
7207
7208    Diag(Using->getLocation(), diag::err_using_decl_conflict);
7209    Diag(Target->getLocation(), diag::note_using_decl_target);
7210    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7211    return true;
7212  }
7213
7214  // No conflict between a tag and a non-tag.
7215  if (!NonTag) return false;
7216
7217  Diag(Using->getLocation(), diag::err_using_decl_conflict);
7218  Diag(Target->getLocation(), diag::note_using_decl_target);
7219  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7220  return true;
7221}
7222
7223/// Builds a shadow declaration corresponding to a 'using' declaration.
7224UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7225                                            UsingDecl *UD,
7226                                            NamedDecl *Orig) {
7227
7228  // If we resolved to another shadow declaration, just coalesce them.
7229  NamedDecl *Target = Orig;
7230  if (isa<UsingShadowDecl>(Target)) {
7231    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7232    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7233  }
7234
7235  UsingShadowDecl *Shadow
7236    = UsingShadowDecl::Create(Context, CurContext,
7237                              UD->getLocation(), UD, Target);
7238  UD->addShadowDecl(Shadow);
7239
7240  Shadow->setAccess(UD->getAccess());
7241  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7242    Shadow->setInvalidDecl();
7243
7244  if (S)
7245    PushOnScopeChains(Shadow, S);
7246  else
7247    CurContext->addDecl(Shadow);
7248
7249
7250  return Shadow;
7251}
7252
7253/// Hides a using shadow declaration.  This is required by the current
7254/// using-decl implementation when a resolvable using declaration in a
7255/// class is followed by a declaration which would hide or override
7256/// one or more of the using decl's targets; for example:
7257///
7258///   struct Base { void foo(int); };
7259///   struct Derived : Base {
7260///     using Base::foo;
7261///     void foo(int);
7262///   };
7263///
7264/// The governing language is C++03 [namespace.udecl]p12:
7265///
7266///   When a using-declaration brings names from a base class into a
7267///   derived class scope, member functions in the derived class
7268///   override and/or hide member functions with the same name and
7269///   parameter types in a base class (rather than conflicting).
7270///
7271/// There are two ways to implement this:
7272///   (1) optimistically create shadow decls when they're not hidden
7273///       by existing declarations, or
7274///   (2) don't create any shadow decls (or at least don't make them
7275///       visible) until we've fully parsed/instantiated the class.
7276/// The problem with (1) is that we might have to retroactively remove
7277/// a shadow decl, which requires several O(n) operations because the
7278/// decl structures are (very reasonably) not designed for removal.
7279/// (2) avoids this but is very fiddly and phase-dependent.
7280void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7281  if (Shadow->getDeclName().getNameKind() ==
7282        DeclarationName::CXXConversionFunctionName)
7283    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7284
7285  // Remove it from the DeclContext...
7286  Shadow->getDeclContext()->removeDecl(Shadow);
7287
7288  // ...and the scope, if applicable...
7289  if (S) {
7290    S->RemoveDecl(Shadow);
7291    IdResolver.RemoveDecl(Shadow);
7292  }
7293
7294  // ...and the using decl.
7295  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7296
7297  // TODO: complain somehow if Shadow was used.  It shouldn't
7298  // be possible for this to happen, because...?
7299}
7300
7301namespace {
7302class UsingValidatorCCC : public CorrectionCandidateCallback {
7303public:
7304  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
7305      : HasTypenameKeyword(HasTypenameKeyword),
7306        IsInstantiation(IsInstantiation) {}
7307
7308  bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
7309    NamedDecl *ND = Candidate.getCorrectionDecl();
7310
7311    // Keywords are not valid here.
7312    if (!ND || isa<NamespaceDecl>(ND))
7313      return false;
7314
7315    // Completely unqualified names are invalid for a 'using' declaration.
7316    if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7317      return false;
7318
7319    if (isa<TypeDecl>(ND))
7320      return HasTypenameKeyword || !IsInstantiation;
7321
7322    return !HasTypenameKeyword;
7323  }
7324
7325private:
7326  bool HasTypenameKeyword;
7327  bool IsInstantiation;
7328};
7329} // end anonymous namespace
7330
7331/// Builds a using declaration.
7332///
7333/// \param IsInstantiation - Whether this call arises from an
7334///   instantiation of an unresolved using declaration.  We treat
7335///   the lookup differently for these declarations.
7336NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7337                                       SourceLocation UsingLoc,
7338                                       CXXScopeSpec &SS,
7339                                       const DeclarationNameInfo &NameInfo,
7340                                       AttributeList *AttrList,
7341                                       bool IsInstantiation,
7342                                       bool HasTypenameKeyword,
7343                                       SourceLocation TypenameLoc) {
7344  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7345  SourceLocation IdentLoc = NameInfo.getLoc();
7346  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7347
7348  // FIXME: We ignore attributes for now.
7349
7350  if (SS.isEmpty()) {
7351    Diag(IdentLoc, diag::err_using_requires_qualname);
7352    return 0;
7353  }
7354
7355  // Do the redeclaration lookup in the current scope.
7356  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7357                        ForRedeclaration);
7358  Previous.setHideTags(false);
7359  if (S) {
7360    LookupName(Previous, S);
7361
7362    // It is really dumb that we have to do this.
7363    LookupResult::Filter F = Previous.makeFilter();
7364    while (F.hasNext()) {
7365      NamedDecl *D = F.next();
7366      if (!isDeclInScope(D, CurContext, S))
7367        F.erase();
7368    }
7369    F.done();
7370  } else {
7371    assert(IsInstantiation && "no scope in non-instantiation");
7372    assert(CurContext->isRecord() && "scope not record in instantiation");
7373    LookupQualifiedName(Previous, CurContext);
7374  }
7375
7376  // Check for invalid redeclarations.
7377  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7378                                  SS, IdentLoc, Previous))
7379    return 0;
7380
7381  // Check for bad qualifiers.
7382  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7383    return 0;
7384
7385  DeclContext *LookupContext = computeDeclContext(SS);
7386  NamedDecl *D;
7387  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7388  if (!LookupContext) {
7389    if (HasTypenameKeyword) {
7390      // FIXME: not all declaration name kinds are legal here
7391      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7392                                              UsingLoc, TypenameLoc,
7393                                              QualifierLoc,
7394                                              IdentLoc, NameInfo.getName());
7395    } else {
7396      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7397                                           QualifierLoc, NameInfo);
7398    }
7399  } else {
7400    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7401                          NameInfo, HasTypenameKeyword);
7402  }
7403  D->setAccess(AS);
7404  CurContext->addDecl(D);
7405
7406  if (!LookupContext) return D;
7407  UsingDecl *UD = cast<UsingDecl>(D);
7408
7409  if (RequireCompleteDeclContext(SS, LookupContext)) {
7410    UD->setInvalidDecl();
7411    return UD;
7412  }
7413
7414  // The normal rules do not apply to inheriting constructor declarations.
7415  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7416    if (CheckInheritingConstructorUsingDecl(UD))
7417      UD->setInvalidDecl();
7418    return UD;
7419  }
7420
7421  // Otherwise, look up the target name.
7422
7423  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7424
7425  // Unlike most lookups, we don't always want to hide tag
7426  // declarations: tag names are visible through the using declaration
7427  // even if hidden by ordinary names, *except* in a dependent context
7428  // where it's important for the sanity of two-phase lookup.
7429  if (!IsInstantiation)
7430    R.setHideTags(false);
7431
7432  // For the purposes of this lookup, we have a base object type
7433  // equal to that of the current context.
7434  if (CurContext->isRecord()) {
7435    R.setBaseObjectType(
7436                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7437  }
7438
7439  LookupQualifiedName(R, LookupContext);
7440
7441  // Try to correct typos if possible.
7442  if (R.empty()) {
7443    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
7444    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7445                                               R.getLookupKind(), S, &SS, CCC)){
7446      // We reject any correction for which ND would be NULL.
7447      NamedDecl *ND = Corrected.getCorrectionDecl();
7448      R.setLookupName(Corrected.getCorrection());
7449      R.addDecl(ND);
7450      // We reject candidates where DroppedSpecifier == true, hence the
7451      // literal '0' below.
7452      diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
7453                                << NameInfo.getName() << LookupContext << 0
7454                                << SS.getRange());
7455    } else {
7456      Diag(IdentLoc, diag::err_no_member)
7457        << NameInfo.getName() << LookupContext << SS.getRange();
7458      UD->setInvalidDecl();
7459      return UD;
7460    }
7461  }
7462
7463  if (R.isAmbiguous()) {
7464    UD->setInvalidDecl();
7465    return UD;
7466  }
7467
7468  if (HasTypenameKeyword) {
7469    // If we asked for a typename and got a non-type decl, error out.
7470    if (!R.getAsSingle<TypeDecl>()) {
7471      Diag(IdentLoc, diag::err_using_typename_non_type);
7472      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7473        Diag((*I)->getUnderlyingDecl()->getLocation(),
7474             diag::note_using_decl_target);
7475      UD->setInvalidDecl();
7476      return UD;
7477    }
7478  } else {
7479    // If we asked for a non-typename and we got a type, error out,
7480    // but only if this is an instantiation of an unresolved using
7481    // decl.  Otherwise just silently find the type name.
7482    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7483      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7484      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7485      UD->setInvalidDecl();
7486      return UD;
7487    }
7488  }
7489
7490  // C++0x N2914 [namespace.udecl]p6:
7491  // A using-declaration shall not name a namespace.
7492  if (R.getAsSingle<NamespaceDecl>()) {
7493    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7494      << SS.getRange();
7495    UD->setInvalidDecl();
7496    return UD;
7497  }
7498
7499  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7500    if (!CheckUsingShadowDecl(UD, *I, Previous))
7501      BuildUsingShadowDecl(S, UD, *I);
7502  }
7503
7504  return UD;
7505}
7506
7507/// Additional checks for a using declaration referring to a constructor name.
7508bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7509  assert(!UD->hasTypename() && "expecting a constructor name");
7510
7511  const Type *SourceType = UD->getQualifier()->getAsType();
7512  assert(SourceType &&
7513         "Using decl naming constructor doesn't have type in scope spec.");
7514  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7515
7516  // Check whether the named type is a direct base class.
7517  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7518  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7519  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7520       BaseIt != BaseE; ++BaseIt) {
7521    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7522    if (CanonicalSourceType == BaseType)
7523      break;
7524    if (BaseIt->getType()->isDependentType())
7525      break;
7526  }
7527
7528  if (BaseIt == BaseE) {
7529    // Did not find SourceType in the bases.
7530    Diag(UD->getUsingLoc(),
7531         diag::err_using_decl_constructor_not_in_direct_base)
7532      << UD->getNameInfo().getSourceRange()
7533      << QualType(SourceType, 0) << TargetClass;
7534    return true;
7535  }
7536
7537  if (!CurContext->isDependentContext())
7538    BaseIt->setInheritConstructors();
7539
7540  return false;
7541}
7542
7543/// Checks that the given using declaration is not an invalid
7544/// redeclaration.  Note that this is checking only for the using decl
7545/// itself, not for any ill-formedness among the UsingShadowDecls.
7546bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7547                                       bool HasTypenameKeyword,
7548                                       const CXXScopeSpec &SS,
7549                                       SourceLocation NameLoc,
7550                                       const LookupResult &Prev) {
7551  // C++03 [namespace.udecl]p8:
7552  // C++0x [namespace.udecl]p10:
7553  //   A using-declaration is a declaration and can therefore be used
7554  //   repeatedly where (and only where) multiple declarations are
7555  //   allowed.
7556  //
7557  // That's in non-member contexts.
7558  if (!CurContext->getRedeclContext()->isRecord())
7559    return false;
7560
7561  NestedNameSpecifier *Qual
7562    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7563
7564  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7565    NamedDecl *D = *I;
7566
7567    bool DTypename;
7568    NestedNameSpecifier *DQual;
7569    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7570      DTypename = UD->hasTypename();
7571      DQual = UD->getQualifier();
7572    } else if (UnresolvedUsingValueDecl *UD
7573                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7574      DTypename = false;
7575      DQual = UD->getQualifier();
7576    } else if (UnresolvedUsingTypenameDecl *UD
7577                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7578      DTypename = true;
7579      DQual = UD->getQualifier();
7580    } else continue;
7581
7582    // using decls differ if one says 'typename' and the other doesn't.
7583    // FIXME: non-dependent using decls?
7584    if (HasTypenameKeyword != DTypename) continue;
7585
7586    // using decls differ if they name different scopes (but note that
7587    // template instantiation can cause this check to trigger when it
7588    // didn't before instantiation).
7589    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7590        Context.getCanonicalNestedNameSpecifier(DQual))
7591      continue;
7592
7593    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7594    Diag(D->getLocation(), diag::note_using_decl) << 1;
7595    return true;
7596  }
7597
7598  return false;
7599}
7600
7601
7602/// Checks that the given nested-name qualifier used in a using decl
7603/// in the current context is appropriately related to the current
7604/// scope.  If an error is found, diagnoses it and returns true.
7605bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7606                                   const CXXScopeSpec &SS,
7607                                   SourceLocation NameLoc) {
7608  DeclContext *NamedContext = computeDeclContext(SS);
7609
7610  if (!CurContext->isRecord()) {
7611    // C++03 [namespace.udecl]p3:
7612    // C++0x [namespace.udecl]p8:
7613    //   A using-declaration for a class member shall be a member-declaration.
7614
7615    // If we weren't able to compute a valid scope, it must be a
7616    // dependent class scope.
7617    if (!NamedContext || NamedContext->isRecord()) {
7618      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7619        << SS.getRange();
7620      return true;
7621    }
7622
7623    // Otherwise, everything is known to be fine.
7624    return false;
7625  }
7626
7627  // The current scope is a record.
7628
7629  // If the named context is dependent, we can't decide much.
7630  if (!NamedContext) {
7631    // FIXME: in C++0x, we can diagnose if we can prove that the
7632    // nested-name-specifier does not refer to a base class, which is
7633    // still possible in some cases.
7634
7635    // Otherwise we have to conservatively report that things might be
7636    // okay.
7637    return false;
7638  }
7639
7640  if (!NamedContext->isRecord()) {
7641    // Ideally this would point at the last name in the specifier,
7642    // but we don't have that level of source info.
7643    Diag(SS.getRange().getBegin(),
7644         diag::err_using_decl_nested_name_specifier_is_not_class)
7645      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7646    return true;
7647  }
7648
7649  if (!NamedContext->isDependentContext() &&
7650      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7651    return true;
7652
7653  if (getLangOpts().CPlusPlus11) {
7654    // C++0x [namespace.udecl]p3:
7655    //   In a using-declaration used as a member-declaration, the
7656    //   nested-name-specifier shall name a base class of the class
7657    //   being defined.
7658
7659    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7660                                 cast<CXXRecordDecl>(NamedContext))) {
7661      if (CurContext == NamedContext) {
7662        Diag(NameLoc,
7663             diag::err_using_decl_nested_name_specifier_is_current_class)
7664          << SS.getRange();
7665        return true;
7666      }
7667
7668      Diag(SS.getRange().getBegin(),
7669           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7670        << (NestedNameSpecifier*) SS.getScopeRep()
7671        << cast<CXXRecordDecl>(CurContext)
7672        << SS.getRange();
7673      return true;
7674    }
7675
7676    return false;
7677  }
7678
7679  // C++03 [namespace.udecl]p4:
7680  //   A using-declaration used as a member-declaration shall refer
7681  //   to a member of a base class of the class being defined [etc.].
7682
7683  // Salient point: SS doesn't have to name a base class as long as
7684  // lookup only finds members from base classes.  Therefore we can
7685  // diagnose here only if we can prove that that can't happen,
7686  // i.e. if the class hierarchies provably don't intersect.
7687
7688  // TODO: it would be nice if "definitely valid" results were cached
7689  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7690  // need to be repeated.
7691
7692  struct UserData {
7693    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7694
7695    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7696      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7697      Data->Bases.insert(Base);
7698      return true;
7699    }
7700
7701    bool hasDependentBases(const CXXRecordDecl *Class) {
7702      return !Class->forallBases(collect, this);
7703    }
7704
7705    /// Returns true if the base is dependent or is one of the
7706    /// accumulated base classes.
7707    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7708      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7709      return !Data->Bases.count(Base);
7710    }
7711
7712    bool mightShareBases(const CXXRecordDecl *Class) {
7713      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7714    }
7715  };
7716
7717  UserData Data;
7718
7719  // Returns false if we find a dependent base.
7720  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7721    return false;
7722
7723  // Returns false if the class has a dependent base or if it or one
7724  // of its bases is present in the base set of the current context.
7725  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7726    return false;
7727
7728  Diag(SS.getRange().getBegin(),
7729       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7730    << (NestedNameSpecifier*) SS.getScopeRep()
7731    << cast<CXXRecordDecl>(CurContext)
7732    << SS.getRange();
7733
7734  return true;
7735}
7736
7737Decl *Sema::ActOnAliasDeclaration(Scope *S,
7738                                  AccessSpecifier AS,
7739                                  MultiTemplateParamsArg TemplateParamLists,
7740                                  SourceLocation UsingLoc,
7741                                  UnqualifiedId &Name,
7742                                  AttributeList *AttrList,
7743                                  TypeResult Type) {
7744  // Skip up to the relevant declaration scope.
7745  while (S->getFlags() & Scope::TemplateParamScope)
7746    S = S->getParent();
7747  assert((S->getFlags() & Scope::DeclScope) &&
7748         "got alias-declaration outside of declaration scope");
7749
7750  if (Type.isInvalid())
7751    return 0;
7752
7753  bool Invalid = false;
7754  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7755  TypeSourceInfo *TInfo = 0;
7756  GetTypeFromParser(Type.get(), &TInfo);
7757
7758  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7759    return 0;
7760
7761  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7762                                      UPPC_DeclarationType)) {
7763    Invalid = true;
7764    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7765                                             TInfo->getTypeLoc().getBeginLoc());
7766  }
7767
7768  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7769  LookupName(Previous, S);
7770
7771  // Warn about shadowing the name of a template parameter.
7772  if (Previous.isSingleResult() &&
7773      Previous.getFoundDecl()->isTemplateParameter()) {
7774    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7775    Previous.clear();
7776  }
7777
7778  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7779         "name in alias declaration must be an identifier");
7780  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7781                                               Name.StartLocation,
7782                                               Name.Identifier, TInfo);
7783
7784  NewTD->setAccess(AS);
7785
7786  if (Invalid)
7787    NewTD->setInvalidDecl();
7788
7789  ProcessDeclAttributeList(S, NewTD, AttrList);
7790
7791  CheckTypedefForVariablyModifiedType(S, NewTD);
7792  Invalid |= NewTD->isInvalidDecl();
7793
7794  bool Redeclaration = false;
7795
7796  NamedDecl *NewND;
7797  if (TemplateParamLists.size()) {
7798    TypeAliasTemplateDecl *OldDecl = 0;
7799    TemplateParameterList *OldTemplateParams = 0;
7800
7801    if (TemplateParamLists.size() != 1) {
7802      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7803        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7804         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7805    }
7806    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7807
7808    // Only consider previous declarations in the same scope.
7809    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7810                         /*ExplicitInstantiationOrSpecialization*/false);
7811    if (!Previous.empty()) {
7812      Redeclaration = true;
7813
7814      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7815      if (!OldDecl && !Invalid) {
7816        Diag(UsingLoc, diag::err_redefinition_different_kind)
7817          << Name.Identifier;
7818
7819        NamedDecl *OldD = Previous.getRepresentativeDecl();
7820        if (OldD->getLocation().isValid())
7821          Diag(OldD->getLocation(), diag::note_previous_definition);
7822
7823        Invalid = true;
7824      }
7825
7826      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7827        if (TemplateParameterListsAreEqual(TemplateParams,
7828                                           OldDecl->getTemplateParameters(),
7829                                           /*Complain=*/true,
7830                                           TPL_TemplateMatch))
7831          OldTemplateParams = OldDecl->getTemplateParameters();
7832        else
7833          Invalid = true;
7834
7835        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7836        if (!Invalid &&
7837            !Context.hasSameType(OldTD->getUnderlyingType(),
7838                                 NewTD->getUnderlyingType())) {
7839          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7840          // but we can't reasonably accept it.
7841          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7842            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7843          if (OldTD->getLocation().isValid())
7844            Diag(OldTD->getLocation(), diag::note_previous_definition);
7845          Invalid = true;
7846        }
7847      }
7848    }
7849
7850    // Merge any previous default template arguments into our parameters,
7851    // and check the parameter list.
7852    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7853                                   TPC_TypeAliasTemplate))
7854      return 0;
7855
7856    TypeAliasTemplateDecl *NewDecl =
7857      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7858                                    Name.Identifier, TemplateParams,
7859                                    NewTD);
7860
7861    NewDecl->setAccess(AS);
7862
7863    if (Invalid)
7864      NewDecl->setInvalidDecl();
7865    else if (OldDecl)
7866      NewDecl->setPreviousDecl(OldDecl);
7867
7868    NewND = NewDecl;
7869  } else {
7870    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7871    NewND = NewTD;
7872  }
7873
7874  if (!Redeclaration)
7875    PushOnScopeChains(NewND, S);
7876
7877  ActOnDocumentableDecl(NewND);
7878  return NewND;
7879}
7880
7881Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7882                                             SourceLocation NamespaceLoc,
7883                                             SourceLocation AliasLoc,
7884                                             IdentifierInfo *Alias,
7885                                             CXXScopeSpec &SS,
7886                                             SourceLocation IdentLoc,
7887                                             IdentifierInfo *Ident) {
7888
7889  // Lookup the namespace name.
7890  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7891  LookupParsedName(R, S, &SS);
7892
7893  // Check if we have a previous declaration with the same name.
7894  NamedDecl *PrevDecl
7895    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7896                       ForRedeclaration);
7897  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7898    PrevDecl = 0;
7899
7900  if (PrevDecl) {
7901    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7902      // We already have an alias with the same name that points to the same
7903      // namespace, so don't create a new one.
7904      // FIXME: At some point, we'll want to create the (redundant)
7905      // declaration to maintain better source information.
7906      if (!R.isAmbiguous() && !R.empty() &&
7907          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7908        return 0;
7909    }
7910
7911    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7912      diag::err_redefinition_different_kind;
7913    Diag(AliasLoc, DiagID) << Alias;
7914    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7915    return 0;
7916  }
7917
7918  if (R.isAmbiguous())
7919    return 0;
7920
7921  if (R.empty()) {
7922    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7923      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7924      return 0;
7925    }
7926  }
7927
7928  NamespaceAliasDecl *AliasDecl =
7929    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7930                               Alias, SS.getWithLocInContext(Context),
7931                               IdentLoc, R.getFoundDecl());
7932
7933  PushOnScopeChains(AliasDecl, S);
7934  return AliasDecl;
7935}
7936
7937Sema::ImplicitExceptionSpecification
7938Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7939                                               CXXMethodDecl *MD) {
7940  CXXRecordDecl *ClassDecl = MD->getParent();
7941
7942  // C++ [except.spec]p14:
7943  //   An implicitly declared special member function (Clause 12) shall have an
7944  //   exception-specification. [...]
7945  ImplicitExceptionSpecification ExceptSpec(*this);
7946  if (ClassDecl->isInvalidDecl())
7947    return ExceptSpec;
7948
7949  // Direct base-class constructors.
7950  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7951                                       BEnd = ClassDecl->bases_end();
7952       B != BEnd; ++B) {
7953    if (B->isVirtual()) // Handled below.
7954      continue;
7955
7956    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7957      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7958      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7959      // If this is a deleted function, add it anyway. This might be conformant
7960      // with the standard. This might not. I'm not sure. It might not matter.
7961      if (Constructor)
7962        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7963    }
7964  }
7965
7966  // Virtual base-class constructors.
7967  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7968                                       BEnd = ClassDecl->vbases_end();
7969       B != BEnd; ++B) {
7970    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7971      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7972      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7973      // If this is a deleted function, add it anyway. This might be conformant
7974      // with the standard. This might not. I'm not sure. It might not matter.
7975      if (Constructor)
7976        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7977    }
7978  }
7979
7980  // Field constructors.
7981  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7982                               FEnd = ClassDecl->field_end();
7983       F != FEnd; ++F) {
7984    if (F->hasInClassInitializer()) {
7985      if (Expr *E = F->getInClassInitializer())
7986        ExceptSpec.CalledExpr(E);
7987      else if (!F->isInvalidDecl())
7988        // DR1351:
7989        //   If the brace-or-equal-initializer of a non-static data member
7990        //   invokes a defaulted default constructor of its class or of an
7991        //   enclosing class in a potentially evaluated subexpression, the
7992        //   program is ill-formed.
7993        //
7994        // This resolution is unworkable: the exception specification of the
7995        // default constructor can be needed in an unevaluated context, in
7996        // particular, in the operand of a noexcept-expression, and we can be
7997        // unable to compute an exception specification for an enclosed class.
7998        //
7999        // We do not allow an in-class initializer to require the evaluation
8000        // of the exception specification for any in-class initializer whose
8001        // definition is not lexically complete.
8002        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
8003    } else if (const RecordType *RecordTy
8004              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8005      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8006      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8007      // If this is a deleted function, add it anyway. This might be conformant
8008      // with the standard. This might not. I'm not sure. It might not matter.
8009      // In particular, the problem is that this function never gets called. It
8010      // might just be ill-formed because this function attempts to refer to
8011      // a deleted function here.
8012      if (Constructor)
8013        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8014    }
8015  }
8016
8017  return ExceptSpec;
8018}
8019
8020Sema::ImplicitExceptionSpecification
8021Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
8022  CXXRecordDecl *ClassDecl = CD->getParent();
8023
8024  // C++ [except.spec]p14:
8025  //   An inheriting constructor [...] shall have an exception-specification. [...]
8026  ImplicitExceptionSpecification ExceptSpec(*this);
8027  if (ClassDecl->isInvalidDecl())
8028    return ExceptSpec;
8029
8030  // Inherited constructor.
8031  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8032  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8033  // FIXME: Copying or moving the parameters could add extra exceptions to the
8034  // set, as could the default arguments for the inherited constructor. This
8035  // will be addressed when we implement the resolution of core issue 1351.
8036  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8037
8038  // Direct base-class constructors.
8039  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8040                                       BEnd = ClassDecl->bases_end();
8041       B != BEnd; ++B) {
8042    if (B->isVirtual()) // Handled below.
8043      continue;
8044
8045    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8046      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8047      if (BaseClassDecl == InheritedDecl)
8048        continue;
8049      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8050      if (Constructor)
8051        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8052    }
8053  }
8054
8055  // Virtual base-class constructors.
8056  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8057                                       BEnd = ClassDecl->vbases_end();
8058       B != BEnd; ++B) {
8059    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8060      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8061      if (BaseClassDecl == InheritedDecl)
8062        continue;
8063      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8064      if (Constructor)
8065        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8066    }
8067  }
8068
8069  // Field constructors.
8070  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8071                               FEnd = ClassDecl->field_end();
8072       F != FEnd; ++F) {
8073    if (F->hasInClassInitializer()) {
8074      if (Expr *E = F->getInClassInitializer())
8075        ExceptSpec.CalledExpr(E);
8076      else if (!F->isInvalidDecl())
8077        Diag(CD->getLocation(),
8078             diag::err_in_class_initializer_references_def_ctor) << CD;
8079    } else if (const RecordType *RecordTy
8080              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8081      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8082      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8083      if (Constructor)
8084        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8085    }
8086  }
8087
8088  return ExceptSpec;
8089}
8090
8091namespace {
8092/// RAII object to register a special member as being currently declared.
8093struct DeclaringSpecialMember {
8094  Sema &S;
8095  Sema::SpecialMemberDecl D;
8096  bool WasAlreadyBeingDeclared;
8097
8098  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8099    : S(S), D(RD, CSM) {
8100    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
8101    if (WasAlreadyBeingDeclared)
8102      // This almost never happens, but if it does, ensure that our cache
8103      // doesn't contain a stale result.
8104      S.SpecialMemberCache.clear();
8105
8106    // FIXME: Register a note to be produced if we encounter an error while
8107    // declaring the special member.
8108  }
8109  ~DeclaringSpecialMember() {
8110    if (!WasAlreadyBeingDeclared)
8111      S.SpecialMembersBeingDeclared.erase(D);
8112  }
8113
8114  /// \brief Are we already trying to declare this special member?
8115  bool isAlreadyBeingDeclared() const {
8116    return WasAlreadyBeingDeclared;
8117  }
8118};
8119}
8120
8121CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8122                                                     CXXRecordDecl *ClassDecl) {
8123  // C++ [class.ctor]p5:
8124  //   A default constructor for a class X is a constructor of class X
8125  //   that can be called without an argument. If there is no
8126  //   user-declared constructor for class X, a default constructor is
8127  //   implicitly declared. An implicitly-declared default constructor
8128  //   is an inline public member of its class.
8129  assert(ClassDecl->needsImplicitDefaultConstructor() &&
8130         "Should not build implicit default constructor!");
8131
8132  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8133  if (DSM.isAlreadyBeingDeclared())
8134    return 0;
8135
8136  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8137                                                     CXXDefaultConstructor,
8138                                                     false);
8139
8140  // Create the actual constructor declaration.
8141  CanQualType ClassType
8142    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8143  SourceLocation ClassLoc = ClassDecl->getLocation();
8144  DeclarationName Name
8145    = Context.DeclarationNames.getCXXConstructorName(ClassType);
8146  DeclarationNameInfo NameInfo(Name, ClassLoc);
8147  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8148      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
8149      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8150      Constexpr);
8151  DefaultCon->setAccess(AS_public);
8152  DefaultCon->setDefaulted();
8153  DefaultCon->setImplicit();
8154
8155  // Build an exception specification pointing back at this constructor.
8156  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8157  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8158
8159  // We don't need to use SpecialMemberIsTrivial here; triviality for default
8160  // constructors is easy to compute.
8161  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8162
8163  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8164    SetDeclDeleted(DefaultCon, ClassLoc);
8165
8166  // Note that we have declared this constructor.
8167  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8168
8169  if (Scope *S = getScopeForContext(ClassDecl))
8170    PushOnScopeChains(DefaultCon, S, false);
8171  ClassDecl->addDecl(DefaultCon);
8172
8173  return DefaultCon;
8174}
8175
8176void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8177                                            CXXConstructorDecl *Constructor) {
8178  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8179          !Constructor->doesThisDeclarationHaveABody() &&
8180          !Constructor->isDeleted()) &&
8181    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8182
8183  CXXRecordDecl *ClassDecl = Constructor->getParent();
8184  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8185
8186  SynthesizedFunctionScope Scope(*this, Constructor);
8187  DiagnosticErrorTrap Trap(Diags);
8188  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8189      Trap.hasErrorOccurred()) {
8190    Diag(CurrentLocation, diag::note_member_synthesized_at)
8191      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8192    Constructor->setInvalidDecl();
8193    return;
8194  }
8195
8196  SourceLocation Loc = Constructor->getLocation();
8197  Constructor->setBody(new (Context) CompoundStmt(Loc));
8198
8199  Constructor->markUsed(Context);
8200  MarkVTableUsed(CurrentLocation, ClassDecl);
8201
8202  if (ASTMutationListener *L = getASTMutationListener()) {
8203    L->CompletedImplicitDefinition(Constructor);
8204  }
8205}
8206
8207void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8208  // Perform any delayed checks on exception specifications.
8209  CheckDelayedMemberExceptionSpecs();
8210
8211  // Once all the member initializers are processed, perform checks to see if
8212  // any unintialized use is happeneing.
8213  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit,
8214                                          D->getLocation())
8215      == DiagnosticsEngine::Ignored)
8216    return;
8217
8218  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
8219  if (!RD) return;
8220
8221  // Holds fields that are uninitialized.
8222  llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
8223
8224  // In the beginning, every field is uninitialized.
8225  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
8226       I != E; ++I) {
8227    if (FieldDecl *FD = dyn_cast<FieldDecl>(*I)) {
8228      UninitializedFields.insert(FD);
8229    } else if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I)) {
8230      UninitializedFields.insert(IFD->getAnonField());
8231    }
8232  }
8233
8234  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
8235       I != E; ++I) {
8236    FieldDecl *FD = dyn_cast<FieldDecl>(*I);
8237    if (!FD)
8238      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I))
8239        FD = IFD->getAnonField();
8240
8241    if (!FD)
8242      continue;
8243
8244    Expr *InitExpr = FD->getInClassInitializer();
8245    if (!InitExpr) {
8246      // Uninitialized reference types will give an error.
8247      // Record types with an initializer are default initialized.
8248      QualType FieldType = FD->getType();
8249      if (FieldType->isReferenceType() || FieldType->isRecordType())
8250        UninitializedFields.erase(FD);
8251      continue;
8252    }
8253
8254    CheckInitExprContainsUninitializedFields(
8255        *this, InitExpr, FD, UninitializedFields,
8256        UninitializedFields.count(FD)/*WarnOnSelfReference*/);
8257
8258    UninitializedFields.erase(FD);
8259  }
8260}
8261
8262namespace {
8263/// Information on inheriting constructors to declare.
8264class InheritingConstructorInfo {
8265public:
8266  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8267      : SemaRef(SemaRef), Derived(Derived) {
8268    // Mark the constructors that we already have in the derived class.
8269    //
8270    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8271    //   unless there is a user-declared constructor with the same signature in
8272    //   the class where the using-declaration appears.
8273    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8274  }
8275
8276  void inheritAll(CXXRecordDecl *RD) {
8277    visitAll(RD, &InheritingConstructorInfo::inherit);
8278  }
8279
8280private:
8281  /// Information about an inheriting constructor.
8282  struct InheritingConstructor {
8283    InheritingConstructor()
8284      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
8285
8286    /// If \c true, a constructor with this signature is already declared
8287    /// in the derived class.
8288    bool DeclaredInDerived;
8289
8290    /// The constructor which is inherited.
8291    const CXXConstructorDecl *BaseCtor;
8292
8293    /// The derived constructor we declared.
8294    CXXConstructorDecl *DerivedCtor;
8295  };
8296
8297  /// Inheriting constructors with a given canonical type. There can be at
8298  /// most one such non-template constructor, and any number of templated
8299  /// constructors.
8300  struct InheritingConstructorsForType {
8301    InheritingConstructor NonTemplate;
8302    SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8303        Templates;
8304
8305    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8306      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8307        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8308        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8309          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8310                                               false, S.TPL_TemplateMatch))
8311            return Templates[I].second;
8312        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8313        return Templates.back().second;
8314      }
8315
8316      return NonTemplate;
8317    }
8318  };
8319
8320  /// Get or create the inheriting constructor record for a constructor.
8321  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8322                                  QualType CtorType) {
8323    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8324        .getEntry(SemaRef, Ctor);
8325  }
8326
8327  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8328
8329  /// Process all constructors for a class.
8330  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8331    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8332                                      CtorE = RD->ctor_end();
8333         CtorIt != CtorE; ++CtorIt)
8334      (this->*Callback)(*CtorIt);
8335    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8336             I(RD->decls_begin()), E(RD->decls_end());
8337         I != E; ++I) {
8338      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8339      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8340        (this->*Callback)(CD);
8341    }
8342  }
8343
8344  /// Note that a constructor (or constructor template) was declared in Derived.
8345  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8346    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8347  }
8348
8349  /// Inherit a single constructor.
8350  void inherit(const CXXConstructorDecl *Ctor) {
8351    const FunctionProtoType *CtorType =
8352        Ctor->getType()->castAs<FunctionProtoType>();
8353    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8354    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8355
8356    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8357
8358    // Core issue (no number yet): the ellipsis is always discarded.
8359    if (EPI.Variadic) {
8360      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8361      SemaRef.Diag(Ctor->getLocation(),
8362                   diag::note_using_decl_constructor_ellipsis);
8363      EPI.Variadic = false;
8364    }
8365
8366    // Declare a constructor for each number of parameters.
8367    //
8368    // C++11 [class.inhctor]p1:
8369    //   The candidate set of inherited constructors from the class X named in
8370    //   the using-declaration consists of [... modulo defects ...] for each
8371    //   constructor or constructor template of X, the set of constructors or
8372    //   constructor templates that results from omitting any ellipsis parameter
8373    //   specification and successively omitting parameters with a default
8374    //   argument from the end of the parameter-type-list
8375    unsigned MinParams = minParamsToInherit(Ctor);
8376    unsigned Params = Ctor->getNumParams();
8377    if (Params >= MinParams) {
8378      do
8379        declareCtor(UsingLoc, Ctor,
8380                    SemaRef.Context.getFunctionType(
8381                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8382      while (Params > MinParams &&
8383             Ctor->getParamDecl(--Params)->hasDefaultArg());
8384    }
8385  }
8386
8387  /// Find the using-declaration which specified that we should inherit the
8388  /// constructors of \p Base.
8389  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8390    // No fancy lookup required; just look for the base constructor name
8391    // directly within the derived class.
8392    ASTContext &Context = SemaRef.Context;
8393    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8394        Context.getCanonicalType(Context.getRecordType(Base)));
8395    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8396    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8397  }
8398
8399  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8400    // C++11 [class.inhctor]p3:
8401    //   [F]or each constructor template in the candidate set of inherited
8402    //   constructors, a constructor template is implicitly declared
8403    if (Ctor->getDescribedFunctionTemplate())
8404      return 0;
8405
8406    //   For each non-template constructor in the candidate set of inherited
8407    //   constructors other than a constructor having no parameters or a
8408    //   copy/move constructor having a single parameter, a constructor is
8409    //   implicitly declared [...]
8410    if (Ctor->getNumParams() == 0)
8411      return 1;
8412    if (Ctor->isCopyOrMoveConstructor())
8413      return 2;
8414
8415    // Per discussion on core reflector, never inherit a constructor which
8416    // would become a default, copy, or move constructor of Derived either.
8417    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8418    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8419    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8420  }
8421
8422  /// Declare a single inheriting constructor, inheriting the specified
8423  /// constructor, with the given type.
8424  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8425                   QualType DerivedType) {
8426    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8427
8428    // C++11 [class.inhctor]p3:
8429    //   ... a constructor is implicitly declared with the same constructor
8430    //   characteristics unless there is a user-declared constructor with
8431    //   the same signature in the class where the using-declaration appears
8432    if (Entry.DeclaredInDerived)
8433      return;
8434
8435    // C++11 [class.inhctor]p7:
8436    //   If two using-declarations declare inheriting constructors with the
8437    //   same signature, the program is ill-formed
8438    if (Entry.DerivedCtor) {
8439      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8440        // Only diagnose this once per constructor.
8441        if (Entry.DerivedCtor->isInvalidDecl())
8442          return;
8443        Entry.DerivedCtor->setInvalidDecl();
8444
8445        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8446        SemaRef.Diag(BaseCtor->getLocation(),
8447                     diag::note_using_decl_constructor_conflict_current_ctor);
8448        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8449                     diag::note_using_decl_constructor_conflict_previous_ctor);
8450        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8451                     diag::note_using_decl_constructor_conflict_previous_using);
8452      } else {
8453        // Core issue (no number): if the same inheriting constructor is
8454        // produced by multiple base class constructors from the same base
8455        // class, the inheriting constructor is defined as deleted.
8456        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8457      }
8458
8459      return;
8460    }
8461
8462    ASTContext &Context = SemaRef.Context;
8463    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8464        Context.getCanonicalType(Context.getRecordType(Derived)));
8465    DeclarationNameInfo NameInfo(Name, UsingLoc);
8466
8467    TemplateParameterList *TemplateParams = 0;
8468    if (const FunctionTemplateDecl *FTD =
8469            BaseCtor->getDescribedFunctionTemplate()) {
8470      TemplateParams = FTD->getTemplateParameters();
8471      // We're reusing template parameters from a different DeclContext. This
8472      // is questionable at best, but works out because the template depth in
8473      // both places is guaranteed to be 0.
8474      // FIXME: Rebuild the template parameters in the new context, and
8475      // transform the function type to refer to them.
8476    }
8477
8478    // Build type source info pointing at the using-declaration. This is
8479    // required by template instantiation.
8480    TypeSourceInfo *TInfo =
8481        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8482    FunctionProtoTypeLoc ProtoLoc =
8483        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8484
8485    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8486        Context, Derived, UsingLoc, NameInfo, DerivedType,
8487        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8488        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8489
8490    // Build an unevaluated exception specification for this constructor.
8491    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8492    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8493    EPI.ExceptionSpecType = EST_Unevaluated;
8494    EPI.ExceptionSpecDecl = DerivedCtor;
8495    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8496                                                 FPT->getArgTypes(), EPI));
8497
8498    // Build the parameter declarations.
8499    SmallVector<ParmVarDecl *, 16> ParamDecls;
8500    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8501      TypeSourceInfo *TInfo =
8502          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8503      ParmVarDecl *PD = ParmVarDecl::Create(
8504          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8505          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8506      PD->setScopeInfo(0, I);
8507      PD->setImplicit();
8508      ParamDecls.push_back(PD);
8509      ProtoLoc.setArg(I, PD);
8510    }
8511
8512    // Set up the new constructor.
8513    DerivedCtor->setAccess(BaseCtor->getAccess());
8514    DerivedCtor->setParams(ParamDecls);
8515    DerivedCtor->setInheritedConstructor(BaseCtor);
8516    if (BaseCtor->isDeleted())
8517      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8518
8519    // If this is a constructor template, build the template declaration.
8520    if (TemplateParams) {
8521      FunctionTemplateDecl *DerivedTemplate =
8522          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8523                                       TemplateParams, DerivedCtor);
8524      DerivedTemplate->setAccess(BaseCtor->getAccess());
8525      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8526      Derived->addDecl(DerivedTemplate);
8527    } else {
8528      Derived->addDecl(DerivedCtor);
8529    }
8530
8531    Entry.BaseCtor = BaseCtor;
8532    Entry.DerivedCtor = DerivedCtor;
8533  }
8534
8535  Sema &SemaRef;
8536  CXXRecordDecl *Derived;
8537  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8538  MapType Map;
8539};
8540}
8541
8542void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8543  // Defer declaring the inheriting constructors until the class is
8544  // instantiated.
8545  if (ClassDecl->isDependentContext())
8546    return;
8547
8548  // Find base classes from which we might inherit constructors.
8549  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8550  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8551                                          BaseE = ClassDecl->bases_end();
8552       BaseIt != BaseE; ++BaseIt)
8553    if (BaseIt->getInheritConstructors())
8554      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8555
8556  // Go no further if we're not inheriting any constructors.
8557  if (InheritedBases.empty())
8558    return;
8559
8560  // Declare the inherited constructors.
8561  InheritingConstructorInfo ICI(*this, ClassDecl);
8562  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8563    ICI.inheritAll(InheritedBases[I]);
8564}
8565
8566void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8567                                       CXXConstructorDecl *Constructor) {
8568  CXXRecordDecl *ClassDecl = Constructor->getParent();
8569  assert(Constructor->getInheritedConstructor() &&
8570         !Constructor->doesThisDeclarationHaveABody() &&
8571         !Constructor->isDeleted());
8572
8573  SynthesizedFunctionScope Scope(*this, Constructor);
8574  DiagnosticErrorTrap Trap(Diags);
8575  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8576      Trap.hasErrorOccurred()) {
8577    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8578      << Context.getTagDeclType(ClassDecl);
8579    Constructor->setInvalidDecl();
8580    return;
8581  }
8582
8583  SourceLocation Loc = Constructor->getLocation();
8584  Constructor->setBody(new (Context) CompoundStmt(Loc));
8585
8586  Constructor->markUsed(Context);
8587  MarkVTableUsed(CurrentLocation, ClassDecl);
8588
8589  if (ASTMutationListener *L = getASTMutationListener()) {
8590    L->CompletedImplicitDefinition(Constructor);
8591  }
8592}
8593
8594
8595Sema::ImplicitExceptionSpecification
8596Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8597  CXXRecordDecl *ClassDecl = MD->getParent();
8598
8599  // C++ [except.spec]p14:
8600  //   An implicitly declared special member function (Clause 12) shall have
8601  //   an exception-specification.
8602  ImplicitExceptionSpecification ExceptSpec(*this);
8603  if (ClassDecl->isInvalidDecl())
8604    return ExceptSpec;
8605
8606  // Direct base-class destructors.
8607  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8608                                       BEnd = ClassDecl->bases_end();
8609       B != BEnd; ++B) {
8610    if (B->isVirtual()) // Handled below.
8611      continue;
8612
8613    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8614      ExceptSpec.CalledDecl(B->getLocStart(),
8615                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8616  }
8617
8618  // Virtual base-class destructors.
8619  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8620                                       BEnd = ClassDecl->vbases_end();
8621       B != BEnd; ++B) {
8622    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8623      ExceptSpec.CalledDecl(B->getLocStart(),
8624                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8625  }
8626
8627  // Field destructors.
8628  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8629                               FEnd = ClassDecl->field_end();
8630       F != FEnd; ++F) {
8631    if (const RecordType *RecordTy
8632        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8633      ExceptSpec.CalledDecl(F->getLocation(),
8634                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8635  }
8636
8637  return ExceptSpec;
8638}
8639
8640CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8641  // C++ [class.dtor]p2:
8642  //   If a class has no user-declared destructor, a destructor is
8643  //   declared implicitly. An implicitly-declared destructor is an
8644  //   inline public member of its class.
8645  assert(ClassDecl->needsImplicitDestructor());
8646
8647  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8648  if (DSM.isAlreadyBeingDeclared())
8649    return 0;
8650
8651  // Create the actual destructor declaration.
8652  CanQualType ClassType
8653    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8654  SourceLocation ClassLoc = ClassDecl->getLocation();
8655  DeclarationName Name
8656    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8657  DeclarationNameInfo NameInfo(Name, ClassLoc);
8658  CXXDestructorDecl *Destructor
8659      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8660                                  QualType(), 0, /*isInline=*/true,
8661                                  /*isImplicitlyDeclared=*/true);
8662  Destructor->setAccess(AS_public);
8663  Destructor->setDefaulted();
8664  Destructor->setImplicit();
8665
8666  // Build an exception specification pointing back at this destructor.
8667  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
8668  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8669
8670  AddOverriddenMethods(ClassDecl, Destructor);
8671
8672  // We don't need to use SpecialMemberIsTrivial here; triviality for
8673  // destructors is easy to compute.
8674  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8675
8676  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8677    SetDeclDeleted(Destructor, ClassLoc);
8678
8679  // Note that we have declared this destructor.
8680  ++ASTContext::NumImplicitDestructorsDeclared;
8681
8682  // Introduce this destructor into its scope.
8683  if (Scope *S = getScopeForContext(ClassDecl))
8684    PushOnScopeChains(Destructor, S, false);
8685  ClassDecl->addDecl(Destructor);
8686
8687  return Destructor;
8688}
8689
8690void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8691                                    CXXDestructorDecl *Destructor) {
8692  assert((Destructor->isDefaulted() &&
8693          !Destructor->doesThisDeclarationHaveABody() &&
8694          !Destructor->isDeleted()) &&
8695         "DefineImplicitDestructor - call it for implicit default dtor");
8696  CXXRecordDecl *ClassDecl = Destructor->getParent();
8697  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8698
8699  if (Destructor->isInvalidDecl())
8700    return;
8701
8702  SynthesizedFunctionScope Scope(*this, Destructor);
8703
8704  DiagnosticErrorTrap Trap(Diags);
8705  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8706                                         Destructor->getParent());
8707
8708  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8709    Diag(CurrentLocation, diag::note_member_synthesized_at)
8710      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8711
8712    Destructor->setInvalidDecl();
8713    return;
8714  }
8715
8716  SourceLocation Loc = Destructor->getLocation();
8717  Destructor->setBody(new (Context) CompoundStmt(Loc));
8718  Destructor->markUsed(Context);
8719  MarkVTableUsed(CurrentLocation, ClassDecl);
8720
8721  if (ASTMutationListener *L = getASTMutationListener()) {
8722    L->CompletedImplicitDefinition(Destructor);
8723  }
8724}
8725
8726/// \brief Perform any semantic analysis which needs to be delayed until all
8727/// pending class member declarations have been parsed.
8728void Sema::ActOnFinishCXXMemberDecls() {
8729  // If the context is an invalid C++ class, just suppress these checks.
8730  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8731    if (Record->isInvalidDecl()) {
8732      DelayedDefaultedMemberExceptionSpecs.clear();
8733      DelayedDestructorExceptionSpecChecks.clear();
8734      return;
8735    }
8736  }
8737}
8738
8739void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8740                                         CXXDestructorDecl *Destructor) {
8741  assert(getLangOpts().CPlusPlus11 &&
8742         "adjusting dtor exception specs was introduced in c++11");
8743
8744  // C++11 [class.dtor]p3:
8745  //   A declaration of a destructor that does not have an exception-
8746  //   specification is implicitly considered to have the same exception-
8747  //   specification as an implicit declaration.
8748  const FunctionProtoType *DtorType = Destructor->getType()->
8749                                        getAs<FunctionProtoType>();
8750  if (DtorType->hasExceptionSpec())
8751    return;
8752
8753  // Replace the destructor's type, building off the existing one. Fortunately,
8754  // the only thing of interest in the destructor type is its extended info.
8755  // The return and arguments are fixed.
8756  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8757  EPI.ExceptionSpecType = EST_Unevaluated;
8758  EPI.ExceptionSpecDecl = Destructor;
8759  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8760
8761  // FIXME: If the destructor has a body that could throw, and the newly created
8762  // spec doesn't allow exceptions, we should emit a warning, because this
8763  // change in behavior can break conforming C++03 programs at runtime.
8764  // However, we don't have a body or an exception specification yet, so it
8765  // needs to be done somewhere else.
8766}
8767
8768namespace {
8769/// \brief An abstract base class for all helper classes used in building the
8770//  copy/move operators. These classes serve as factory functions and help us
8771//  avoid using the same Expr* in the AST twice.
8772class ExprBuilder {
8773  ExprBuilder(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8774  ExprBuilder &operator=(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8775
8776protected:
8777  static Expr *assertNotNull(Expr *E) {
8778    assert(E && "Expression construction must not fail.");
8779    return E;
8780  }
8781
8782public:
8783  ExprBuilder() {}
8784  virtual ~ExprBuilder() {}
8785
8786  virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
8787};
8788
8789class RefBuilder: public ExprBuilder {
8790  VarDecl *Var;
8791  QualType VarType;
8792
8793public:
8794  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8795    return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).take());
8796  }
8797
8798  RefBuilder(VarDecl *Var, QualType VarType)
8799      : Var(Var), VarType(VarType) {}
8800};
8801
8802class ThisBuilder: public ExprBuilder {
8803public:
8804  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8805    return assertNotNull(S.ActOnCXXThis(Loc).takeAs<Expr>());
8806  }
8807};
8808
8809class CastBuilder: public ExprBuilder {
8810  const ExprBuilder &Builder;
8811  QualType Type;
8812  ExprValueKind Kind;
8813  const CXXCastPath &Path;
8814
8815public:
8816  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8817    return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
8818                                             CK_UncheckedDerivedToBase, Kind,
8819                                             &Path).take());
8820  }
8821
8822  CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
8823              const CXXCastPath &Path)
8824      : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
8825};
8826
8827class DerefBuilder: public ExprBuilder {
8828  const ExprBuilder &Builder;
8829
8830public:
8831  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8832    return assertNotNull(
8833        S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).take());
8834  }
8835
8836  DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8837};
8838
8839class MemberBuilder: public ExprBuilder {
8840  const ExprBuilder &Builder;
8841  QualType Type;
8842  CXXScopeSpec SS;
8843  bool IsArrow;
8844  LookupResult &MemberLookup;
8845
8846public:
8847  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8848    return assertNotNull(S.BuildMemberReferenceExpr(
8849        Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 0,
8850        MemberLookup, 0).take());
8851  }
8852
8853  MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
8854                LookupResult &MemberLookup)
8855      : Builder(Builder), Type(Type), IsArrow(IsArrow),
8856        MemberLookup(MemberLookup) {}
8857};
8858
8859class MoveCastBuilder: public ExprBuilder {
8860  const ExprBuilder &Builder;
8861
8862public:
8863  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8864    return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
8865  }
8866
8867  MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8868};
8869
8870class LvalueConvBuilder: public ExprBuilder {
8871  const ExprBuilder &Builder;
8872
8873public:
8874  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8875    return assertNotNull(
8876        S.DefaultLvalueConversion(Builder.build(S, Loc)).take());
8877  }
8878
8879  LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8880};
8881
8882class SubscriptBuilder: public ExprBuilder {
8883  const ExprBuilder &Base;
8884  const ExprBuilder &Index;
8885
8886public:
8887  virtual Expr *build(Sema &S, SourceLocation Loc) const
8888      LLVM_OVERRIDE {
8889    return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
8890        Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).take());
8891  }
8892
8893  SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
8894      : Base(Base), Index(Index) {}
8895};
8896
8897} // end anonymous namespace
8898
8899/// When generating a defaulted copy or move assignment operator, if a field
8900/// should be copied with __builtin_memcpy rather than via explicit assignments,
8901/// do so. This optimization only applies for arrays of scalars, and for arrays
8902/// of class type where the selected copy/move-assignment operator is trivial.
8903static StmtResult
8904buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8905                           const ExprBuilder &ToB, const ExprBuilder &FromB) {
8906  // Compute the size of the memory buffer to be copied.
8907  QualType SizeType = S.Context.getSizeType();
8908  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8909                   S.Context.getTypeSizeInChars(T).getQuantity());
8910
8911  // Take the address of the field references for "from" and "to". We
8912  // directly construct UnaryOperators here because semantic analysis
8913  // does not permit us to take the address of an xvalue.
8914  Expr *From = FromB.build(S, Loc);
8915  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8916                         S.Context.getPointerType(From->getType()),
8917                         VK_RValue, OK_Ordinary, Loc);
8918  Expr *To = ToB.build(S, Loc);
8919  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8920                       S.Context.getPointerType(To->getType()),
8921                       VK_RValue, OK_Ordinary, Loc);
8922
8923  const Type *E = T->getBaseElementTypeUnsafe();
8924  bool NeedsCollectableMemCpy =
8925    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8926
8927  // Create a reference to the __builtin_objc_memmove_collectable function
8928  StringRef MemCpyName = NeedsCollectableMemCpy ?
8929    "__builtin_objc_memmove_collectable" :
8930    "__builtin_memcpy";
8931  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8932                 Sema::LookupOrdinaryName);
8933  S.LookupName(R, S.TUScope, true);
8934
8935  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8936  if (!MemCpy)
8937    // Something went horribly wrong earlier, and we will have complained
8938    // about it.
8939    return StmtError();
8940
8941  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8942                                            VK_RValue, Loc, 0);
8943  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8944
8945  Expr *CallArgs[] = {
8946    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8947  };
8948  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8949                                    Loc, CallArgs, Loc);
8950
8951  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8952  return S.Owned(Call.takeAs<Stmt>());
8953}
8954
8955/// \brief Builds a statement that copies/moves the given entity from \p From to
8956/// \c To.
8957///
8958/// This routine is used to copy/move the members of a class with an
8959/// implicitly-declared copy/move assignment operator. When the entities being
8960/// copied are arrays, this routine builds for loops to copy them.
8961///
8962/// \param S The Sema object used for type-checking.
8963///
8964/// \param Loc The location where the implicit copy/move is being generated.
8965///
8966/// \param T The type of the expressions being copied/moved. Both expressions
8967/// must have this type.
8968///
8969/// \param To The expression we are copying/moving to.
8970///
8971/// \param From The expression we are copying/moving from.
8972///
8973/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8974/// Otherwise, it's a non-static member subobject.
8975///
8976/// \param Copying Whether we're copying or moving.
8977///
8978/// \param Depth Internal parameter recording the depth of the recursion.
8979///
8980/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8981/// if a memcpy should be used instead.
8982static StmtResult
8983buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8984                                 const ExprBuilder &To, const ExprBuilder &From,
8985                                 bool CopyingBaseSubobject, bool Copying,
8986                                 unsigned Depth = 0) {
8987  // C++11 [class.copy]p28:
8988  //   Each subobject is assigned in the manner appropriate to its type:
8989  //
8990  //     - if the subobject is of class type, as if by a call to operator= with
8991  //       the subobject as the object expression and the corresponding
8992  //       subobject of x as a single function argument (as if by explicit
8993  //       qualification; that is, ignoring any possible virtual overriding
8994  //       functions in more derived classes);
8995  //
8996  // C++03 [class.copy]p13:
8997  //     - if the subobject is of class type, the copy assignment operator for
8998  //       the class is used (as if by explicit qualification; that is,
8999  //       ignoring any possible virtual overriding functions in more derived
9000  //       classes);
9001  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
9002    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
9003
9004    // Look for operator=.
9005    DeclarationName Name
9006      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9007    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
9008    S.LookupQualifiedName(OpLookup, ClassDecl, false);
9009
9010    // Prior to C++11, filter out any result that isn't a copy/move-assignment
9011    // operator.
9012    if (!S.getLangOpts().CPlusPlus11) {
9013      LookupResult::Filter F = OpLookup.makeFilter();
9014      while (F.hasNext()) {
9015        NamedDecl *D = F.next();
9016        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
9017          if (Method->isCopyAssignmentOperator() ||
9018              (!Copying && Method->isMoveAssignmentOperator()))
9019            continue;
9020
9021        F.erase();
9022      }
9023      F.done();
9024    }
9025
9026    // Suppress the protected check (C++ [class.protected]) for each of the
9027    // assignment operators we found. This strange dance is required when
9028    // we're assigning via a base classes's copy-assignment operator. To
9029    // ensure that we're getting the right base class subobject (without
9030    // ambiguities), we need to cast "this" to that subobject type; to
9031    // ensure that we don't go through the virtual call mechanism, we need
9032    // to qualify the operator= name with the base class (see below). However,
9033    // this means that if the base class has a protected copy assignment
9034    // operator, the protected member access check will fail. So, we
9035    // rewrite "protected" access to "public" access in this case, since we
9036    // know by construction that we're calling from a derived class.
9037    if (CopyingBaseSubobject) {
9038      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9039           L != LEnd; ++L) {
9040        if (L.getAccess() == AS_protected)
9041          L.setAccess(AS_public);
9042      }
9043    }
9044
9045    // Create the nested-name-specifier that will be used to qualify the
9046    // reference to operator=; this is required to suppress the virtual
9047    // call mechanism.
9048    CXXScopeSpec SS;
9049    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9050    SS.MakeTrivial(S.Context,
9051                   NestedNameSpecifier::Create(S.Context, 0, false,
9052                                               CanonicalT),
9053                   Loc);
9054
9055    // Create the reference to operator=.
9056    ExprResult OpEqualRef
9057      = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9058                                   SS, /*TemplateKWLoc=*/SourceLocation(),
9059                                   /*FirstQualifierInScope=*/0,
9060                                   OpLookup,
9061                                   /*TemplateArgs=*/0,
9062                                   /*SuppressQualifierCheck=*/true);
9063    if (OpEqualRef.isInvalid())
9064      return StmtError();
9065
9066    // Build the call to the assignment operator.
9067
9068    Expr *FromInst = From.build(S, Loc);
9069    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
9070                                                  OpEqualRef.takeAs<Expr>(),
9071                                                  Loc, FromInst, Loc);
9072    if (Call.isInvalid())
9073      return StmtError();
9074
9075    // If we built a call to a trivial 'operator=' while copying an array,
9076    // bail out. We'll replace the whole shebang with a memcpy.
9077    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9078    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9079      return StmtResult((Stmt*)0);
9080
9081    // Convert to an expression-statement, and clean up any produced
9082    // temporaries.
9083    return S.ActOnExprStmt(Call);
9084  }
9085
9086  //     - if the subobject is of scalar type, the built-in assignment
9087  //       operator is used.
9088  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9089  if (!ArrayTy) {
9090    ExprResult Assignment = S.CreateBuiltinBinOp(
9091        Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9092    if (Assignment.isInvalid())
9093      return StmtError();
9094    return S.ActOnExprStmt(Assignment);
9095  }
9096
9097  //     - if the subobject is an array, each element is assigned, in the
9098  //       manner appropriate to the element type;
9099
9100  // Construct a loop over the array bounds, e.g.,
9101  //
9102  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9103  //
9104  // that will copy each of the array elements.
9105  QualType SizeType = S.Context.getSizeType();
9106
9107  // Create the iteration variable.
9108  IdentifierInfo *IterationVarName = 0;
9109  {
9110    SmallString<8> Str;
9111    llvm::raw_svector_ostream OS(Str);
9112    OS << "__i" << Depth;
9113    IterationVarName = &S.Context.Idents.get(OS.str());
9114  }
9115  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9116                                          IterationVarName, SizeType,
9117                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9118                                          SC_None);
9119
9120  // Initialize the iteration variable to zero.
9121  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9122  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9123
9124  // Creates a reference to the iteration variable.
9125  RefBuilder IterationVarRef(IterationVar, SizeType);
9126  LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9127
9128  // Create the DeclStmt that holds the iteration variable.
9129  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9130
9131  // Subscript the "from" and "to" expressions with the iteration variable.
9132  SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9133  MoveCastBuilder FromIndexMove(FromIndexCopy);
9134  const ExprBuilder *FromIndex;
9135  if (Copying)
9136    FromIndex = &FromIndexCopy;
9137  else
9138    FromIndex = &FromIndexMove;
9139
9140  SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9141
9142  // Build the copy/move for an individual element of the array.
9143  StmtResult Copy =
9144    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9145                                     ToIndex, *FromIndex, CopyingBaseSubobject,
9146                                     Copying, Depth + 1);
9147  // Bail out if copying fails or if we determined that we should use memcpy.
9148  if (Copy.isInvalid() || !Copy.get())
9149    return Copy;
9150
9151  // Create the comparison against the array bound.
9152  llvm::APInt Upper
9153    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9154  Expr *Comparison
9155    = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9156                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9157                                     BO_NE, S.Context.BoolTy,
9158                                     VK_RValue, OK_Ordinary, Loc, false);
9159
9160  // Create the pre-increment of the iteration variable.
9161  Expr *Increment
9162    = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9163                                    SizeType, VK_LValue, OK_Ordinary, Loc);
9164
9165  // Construct the loop that copies all elements of this array.
9166  return S.ActOnForStmt(Loc, Loc, InitStmt,
9167                        S.MakeFullExpr(Comparison),
9168                        0, S.MakeFullDiscardedValueExpr(Increment),
9169                        Loc, Copy.take());
9170}
9171
9172static StmtResult
9173buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9174                      const ExprBuilder &To, const ExprBuilder &From,
9175                      bool CopyingBaseSubobject, bool Copying) {
9176  // Maybe we should use a memcpy?
9177  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9178      T.isTriviallyCopyableType(S.Context))
9179    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9180
9181  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9182                                                     CopyingBaseSubobject,
9183                                                     Copying, 0));
9184
9185  // If we ended up picking a trivial assignment operator for an array of a
9186  // non-trivially-copyable class type, just emit a memcpy.
9187  if (!Result.isInvalid() && !Result.get())
9188    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9189
9190  return Result;
9191}
9192
9193Sema::ImplicitExceptionSpecification
9194Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9195  CXXRecordDecl *ClassDecl = MD->getParent();
9196
9197  ImplicitExceptionSpecification ExceptSpec(*this);
9198  if (ClassDecl->isInvalidDecl())
9199    return ExceptSpec;
9200
9201  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9202  assert(T->getNumArgs() == 1 && "not a copy assignment op");
9203  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9204
9205  // C++ [except.spec]p14:
9206  //   An implicitly declared special member function (Clause 12) shall have an
9207  //   exception-specification. [...]
9208
9209  // It is unspecified whether or not an implicit copy assignment operator
9210  // attempts to deduplicate calls to assignment operators of virtual bases are
9211  // made. As such, this exception specification is effectively unspecified.
9212  // Based on a similar decision made for constness in C++0x, we're erring on
9213  // the side of assuming such calls to be made regardless of whether they
9214  // actually happen.
9215  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9216                                       BaseEnd = ClassDecl->bases_end();
9217       Base != BaseEnd; ++Base) {
9218    if (Base->isVirtual())
9219      continue;
9220
9221    CXXRecordDecl *BaseClassDecl
9222      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9223    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9224                                                            ArgQuals, false, 0))
9225      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9226  }
9227
9228  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9229                                       BaseEnd = ClassDecl->vbases_end();
9230       Base != BaseEnd; ++Base) {
9231    CXXRecordDecl *BaseClassDecl
9232      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9233    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9234                                                            ArgQuals, false, 0))
9235      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9236  }
9237
9238  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9239                                  FieldEnd = ClassDecl->field_end();
9240       Field != FieldEnd;
9241       ++Field) {
9242    QualType FieldType = Context.getBaseElementType(Field->getType());
9243    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9244      if (CXXMethodDecl *CopyAssign =
9245          LookupCopyingAssignment(FieldClassDecl,
9246                                  ArgQuals | FieldType.getCVRQualifiers(),
9247                                  false, 0))
9248        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9249    }
9250  }
9251
9252  return ExceptSpec;
9253}
9254
9255CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9256  // Note: The following rules are largely analoguous to the copy
9257  // constructor rules. Note that virtual bases are not taken into account
9258  // for determining the argument type of the operator. Note also that
9259  // operators taking an object instead of a reference are allowed.
9260  assert(ClassDecl->needsImplicitCopyAssignment());
9261
9262  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9263  if (DSM.isAlreadyBeingDeclared())
9264    return 0;
9265
9266  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9267  QualType RetType = Context.getLValueReferenceType(ArgType);
9268  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9269  if (Const)
9270    ArgType = ArgType.withConst();
9271  ArgType = Context.getLValueReferenceType(ArgType);
9272
9273  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9274                                                     CXXCopyAssignment,
9275                                                     Const);
9276
9277  //   An implicitly-declared copy assignment operator is an inline public
9278  //   member of its class.
9279  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9280  SourceLocation ClassLoc = ClassDecl->getLocation();
9281  DeclarationNameInfo NameInfo(Name, ClassLoc);
9282  CXXMethodDecl *CopyAssignment =
9283      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9284                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
9285                            /*isInline=*/ true, Constexpr, SourceLocation());
9286  CopyAssignment->setAccess(AS_public);
9287  CopyAssignment->setDefaulted();
9288  CopyAssignment->setImplicit();
9289
9290  // Build an exception specification pointing back at this member.
9291  FunctionProtoType::ExtProtoInfo EPI =
9292      getImplicitMethodEPI(*this, CopyAssignment);
9293  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9294
9295  // Add the parameter to the operator.
9296  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
9297                                               ClassLoc, ClassLoc, /*Id=*/0,
9298                                               ArgType, /*TInfo=*/0,
9299                                               SC_None, 0);
9300  CopyAssignment->setParams(FromParam);
9301
9302  AddOverriddenMethods(ClassDecl, CopyAssignment);
9303
9304  CopyAssignment->setTrivial(
9305    ClassDecl->needsOverloadResolutionForCopyAssignment()
9306      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
9307      : ClassDecl->hasTrivialCopyAssignment());
9308
9309  // C++11 [class.copy]p19:
9310  //   ....  If the class definition does not explicitly declare a copy
9311  //   assignment operator, there is no user-declared move constructor, and
9312  //   there is no user-declared move assignment operator, a copy assignment
9313  //   operator is implicitly declared as defaulted.
9314  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
9315    SetDeclDeleted(CopyAssignment, ClassLoc);
9316
9317  // Note that we have added this copy-assignment operator.
9318  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
9319
9320  if (Scope *S = getScopeForContext(ClassDecl))
9321    PushOnScopeChains(CopyAssignment, S, false);
9322  ClassDecl->addDecl(CopyAssignment);
9323
9324  return CopyAssignment;
9325}
9326
9327/// Diagnose an implicit copy operation for a class which is odr-used, but
9328/// which is deprecated because the class has a user-declared copy constructor,
9329/// copy assignment operator, or destructor.
9330static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
9331                                            SourceLocation UseLoc) {
9332  assert(CopyOp->isImplicit());
9333
9334  CXXRecordDecl *RD = CopyOp->getParent();
9335  CXXMethodDecl *UserDeclaredOperation = 0;
9336
9337  // In Microsoft mode, assignment operations don't affect constructors and
9338  // vice versa.
9339  if (RD->hasUserDeclaredDestructor()) {
9340    UserDeclaredOperation = RD->getDestructor();
9341  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
9342             RD->hasUserDeclaredCopyConstructor() &&
9343             !S.getLangOpts().MicrosoftMode) {
9344    // Find any user-declared copy constructor.
9345    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
9346                                      E = RD->ctor_end(); I != E; ++I) {
9347      if (I->isCopyConstructor()) {
9348        UserDeclaredOperation = *I;
9349        break;
9350      }
9351    }
9352    assert(UserDeclaredOperation);
9353  } else if (isa<CXXConstructorDecl>(CopyOp) &&
9354             RD->hasUserDeclaredCopyAssignment() &&
9355             !S.getLangOpts().MicrosoftMode) {
9356    // Find any user-declared move assignment operator.
9357    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
9358                                        E = RD->method_end(); I != E; ++I) {
9359      if (I->isCopyAssignmentOperator()) {
9360        UserDeclaredOperation = *I;
9361        break;
9362      }
9363    }
9364    assert(UserDeclaredOperation);
9365  }
9366
9367  if (UserDeclaredOperation) {
9368    S.Diag(UserDeclaredOperation->getLocation(),
9369         diag::warn_deprecated_copy_operation)
9370      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
9371      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
9372    S.Diag(UseLoc, diag::note_member_synthesized_at)
9373      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
9374                                          : Sema::CXXCopyAssignment)
9375      << RD;
9376  }
9377}
9378
9379void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
9380                                        CXXMethodDecl *CopyAssignOperator) {
9381  assert((CopyAssignOperator->isDefaulted() &&
9382          CopyAssignOperator->isOverloadedOperator() &&
9383          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
9384          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
9385          !CopyAssignOperator->isDeleted()) &&
9386         "DefineImplicitCopyAssignment called for wrong function");
9387
9388  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
9389
9390  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
9391    CopyAssignOperator->setInvalidDecl();
9392    return;
9393  }
9394
9395  // C++11 [class.copy]p18:
9396  //   The [definition of an implicitly declared copy assignment operator] is
9397  //   deprecated if the class has a user-declared copy constructor or a
9398  //   user-declared destructor.
9399  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
9400    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
9401
9402  CopyAssignOperator->markUsed(Context);
9403
9404  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
9405  DiagnosticErrorTrap Trap(Diags);
9406
9407  // C++0x [class.copy]p30:
9408  //   The implicitly-defined or explicitly-defaulted copy assignment operator
9409  //   for a non-union class X performs memberwise copy assignment of its
9410  //   subobjects. The direct base classes of X are assigned first, in the
9411  //   order of their declaration in the base-specifier-list, and then the
9412  //   immediate non-static data members of X are assigned, in the order in
9413  //   which they were declared in the class definition.
9414
9415  // The statements that form the synthesized function body.
9416  SmallVector<Stmt*, 8> Statements;
9417
9418  // The parameter for the "other" object, which we are copying from.
9419  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9420  Qualifiers OtherQuals = Other->getType().getQualifiers();
9421  QualType OtherRefType = Other->getType();
9422  if (const LValueReferenceType *OtherRef
9423                                = OtherRefType->getAs<LValueReferenceType>()) {
9424    OtherRefType = OtherRef->getPointeeType();
9425    OtherQuals = OtherRefType.getQualifiers();
9426  }
9427
9428  // Our location for everything implicitly-generated.
9429  SourceLocation Loc = CopyAssignOperator->getLocation();
9430
9431  // Builds a DeclRefExpr for the "other" object.
9432  RefBuilder OtherRef(Other, OtherRefType);
9433
9434  // Builds the "this" pointer.
9435  ThisBuilder This;
9436
9437  // Assign base classes.
9438  bool Invalid = false;
9439  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9440       E = ClassDecl->bases_end(); Base != E; ++Base) {
9441    // Form the assignment:
9442    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9443    QualType BaseType = Base->getType().getUnqualifiedType();
9444    if (!BaseType->isRecordType()) {
9445      Invalid = true;
9446      continue;
9447    }
9448
9449    CXXCastPath BasePath;
9450    BasePath.push_back(Base);
9451
9452    // Construct the "from" expression, which is an implicit cast to the
9453    // appropriately-qualified base type.
9454    CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
9455                     VK_LValue, BasePath);
9456
9457    // Dereference "this".
9458    DerefBuilder DerefThis(This);
9459    CastBuilder To(DerefThis,
9460                   Context.getCVRQualifiedType(
9461                       BaseType, CopyAssignOperator->getTypeQualifiers()),
9462                   VK_LValue, BasePath);
9463
9464    // Build the copy.
9465    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9466                                            To, From,
9467                                            /*CopyingBaseSubobject=*/true,
9468                                            /*Copying=*/true);
9469    if (Copy.isInvalid()) {
9470      Diag(CurrentLocation, diag::note_member_synthesized_at)
9471        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9472      CopyAssignOperator->setInvalidDecl();
9473      return;
9474    }
9475
9476    // Success! Record the copy.
9477    Statements.push_back(Copy.takeAs<Expr>());
9478  }
9479
9480  // Assign non-static members.
9481  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9482                                  FieldEnd = ClassDecl->field_end();
9483       Field != FieldEnd; ++Field) {
9484    if (Field->isUnnamedBitfield())
9485      continue;
9486
9487    if (Field->isInvalidDecl()) {
9488      Invalid = true;
9489      continue;
9490    }
9491
9492    // Check for members of reference type; we can't copy those.
9493    if (Field->getType()->isReferenceType()) {
9494      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9495        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9496      Diag(Field->getLocation(), diag::note_declared_at);
9497      Diag(CurrentLocation, diag::note_member_synthesized_at)
9498        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9499      Invalid = true;
9500      continue;
9501    }
9502
9503    // Check for members of const-qualified, non-class type.
9504    QualType BaseType = Context.getBaseElementType(Field->getType());
9505    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9506      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9507        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9508      Diag(Field->getLocation(), diag::note_declared_at);
9509      Diag(CurrentLocation, diag::note_member_synthesized_at)
9510        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9511      Invalid = true;
9512      continue;
9513    }
9514
9515    // Suppress assigning zero-width bitfields.
9516    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9517      continue;
9518
9519    QualType FieldType = Field->getType().getNonReferenceType();
9520    if (FieldType->isIncompleteArrayType()) {
9521      assert(ClassDecl->hasFlexibleArrayMember() &&
9522             "Incomplete array type is not valid");
9523      continue;
9524    }
9525
9526    // Build references to the field in the object we're copying from and to.
9527    CXXScopeSpec SS; // Intentionally empty
9528    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9529                              LookupMemberName);
9530    MemberLookup.addDecl(*Field);
9531    MemberLookup.resolveKind();
9532
9533    MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
9534
9535    MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
9536
9537    // Build the copy of this field.
9538    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9539                                            To, From,
9540                                            /*CopyingBaseSubobject=*/false,
9541                                            /*Copying=*/true);
9542    if (Copy.isInvalid()) {
9543      Diag(CurrentLocation, diag::note_member_synthesized_at)
9544        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9545      CopyAssignOperator->setInvalidDecl();
9546      return;
9547    }
9548
9549    // Success! Record the copy.
9550    Statements.push_back(Copy.takeAs<Stmt>());
9551  }
9552
9553  if (!Invalid) {
9554    // Add a "return *this;"
9555    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9556
9557    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9558    if (Return.isInvalid())
9559      Invalid = true;
9560    else {
9561      Statements.push_back(Return.takeAs<Stmt>());
9562
9563      if (Trap.hasErrorOccurred()) {
9564        Diag(CurrentLocation, diag::note_member_synthesized_at)
9565          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9566        Invalid = true;
9567      }
9568    }
9569  }
9570
9571  if (Invalid) {
9572    CopyAssignOperator->setInvalidDecl();
9573    return;
9574  }
9575
9576  StmtResult Body;
9577  {
9578    CompoundScopeRAII CompoundScope(*this);
9579    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9580                             /*isStmtExpr=*/false);
9581    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9582  }
9583  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9584
9585  if (ASTMutationListener *L = getASTMutationListener()) {
9586    L->CompletedImplicitDefinition(CopyAssignOperator);
9587  }
9588}
9589
9590Sema::ImplicitExceptionSpecification
9591Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9592  CXXRecordDecl *ClassDecl = MD->getParent();
9593
9594  ImplicitExceptionSpecification ExceptSpec(*this);
9595  if (ClassDecl->isInvalidDecl())
9596    return ExceptSpec;
9597
9598  // C++0x [except.spec]p14:
9599  //   An implicitly declared special member function (Clause 12) shall have an
9600  //   exception-specification. [...]
9601
9602  // It is unspecified whether or not an implicit move assignment operator
9603  // attempts to deduplicate calls to assignment operators of virtual bases are
9604  // made. As such, this exception specification is effectively unspecified.
9605  // Based on a similar decision made for constness in C++0x, we're erring on
9606  // the side of assuming such calls to be made regardless of whether they
9607  // actually happen.
9608  // Note that a move constructor is not implicitly declared when there are
9609  // virtual bases, but it can still be user-declared and explicitly defaulted.
9610  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9611                                       BaseEnd = ClassDecl->bases_end();
9612       Base != BaseEnd; ++Base) {
9613    if (Base->isVirtual())
9614      continue;
9615
9616    CXXRecordDecl *BaseClassDecl
9617      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9618    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9619                                                           0, false, 0))
9620      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9621  }
9622
9623  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9624                                       BaseEnd = ClassDecl->vbases_end();
9625       Base != BaseEnd; ++Base) {
9626    CXXRecordDecl *BaseClassDecl
9627      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9628    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9629                                                           0, false, 0))
9630      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9631  }
9632
9633  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9634                                  FieldEnd = ClassDecl->field_end();
9635       Field != FieldEnd;
9636       ++Field) {
9637    QualType FieldType = Context.getBaseElementType(Field->getType());
9638    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9639      if (CXXMethodDecl *MoveAssign =
9640              LookupMovingAssignment(FieldClassDecl,
9641                                     FieldType.getCVRQualifiers(),
9642                                     false, 0))
9643        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9644    }
9645  }
9646
9647  return ExceptSpec;
9648}
9649
9650/// Determine whether the class type has any direct or indirect virtual base
9651/// classes which have a non-trivial move assignment operator.
9652static bool
9653hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9654  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9655                                          BaseEnd = ClassDecl->vbases_end();
9656       Base != BaseEnd; ++Base) {
9657    CXXRecordDecl *BaseClass =
9658        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9659
9660    // Try to declare the move assignment. If it would be deleted, then the
9661    // class does not have a non-trivial move assignment.
9662    if (BaseClass->needsImplicitMoveAssignment())
9663      S.DeclareImplicitMoveAssignment(BaseClass);
9664
9665    if (BaseClass->hasNonTrivialMoveAssignment())
9666      return true;
9667  }
9668
9669  return false;
9670}
9671
9672/// Determine whether the given type either has a move constructor or is
9673/// trivially copyable.
9674static bool
9675hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9676  Type = S.Context.getBaseElementType(Type);
9677
9678  // FIXME: Technically, non-trivially-copyable non-class types, such as
9679  // reference types, are supposed to return false here, but that appears
9680  // to be a standard defect.
9681  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9682  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9683    return true;
9684
9685  if (Type.isTriviallyCopyableType(S.Context))
9686    return true;
9687
9688  if (IsConstructor) {
9689    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9690    // give the right answer.
9691    if (ClassDecl->needsImplicitMoveConstructor())
9692      S.DeclareImplicitMoveConstructor(ClassDecl);
9693    return ClassDecl->hasMoveConstructor();
9694  }
9695
9696  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9697  // give the right answer.
9698  if (ClassDecl->needsImplicitMoveAssignment())
9699    S.DeclareImplicitMoveAssignment(ClassDecl);
9700  return ClassDecl->hasMoveAssignment();
9701}
9702
9703/// Determine whether all non-static data members and direct or virtual bases
9704/// of class \p ClassDecl have either a move operation, or are trivially
9705/// copyable.
9706static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9707                                            bool IsConstructor) {
9708  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9709                                          BaseEnd = ClassDecl->bases_end();
9710       Base != BaseEnd; ++Base) {
9711    if (Base->isVirtual())
9712      continue;
9713
9714    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9715      return false;
9716  }
9717
9718  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9719                                          BaseEnd = ClassDecl->vbases_end();
9720       Base != BaseEnd; ++Base) {
9721    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9722      return false;
9723  }
9724
9725  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9726                                     FieldEnd = ClassDecl->field_end();
9727       Field != FieldEnd; ++Field) {
9728    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9729      return false;
9730  }
9731
9732  return true;
9733}
9734
9735CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9736  // C++11 [class.copy]p20:
9737  //   If the definition of a class X does not explicitly declare a move
9738  //   assignment operator, one will be implicitly declared as defaulted
9739  //   if and only if:
9740  //
9741  //   - [first 4 bullets]
9742  assert(ClassDecl->needsImplicitMoveAssignment());
9743
9744  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9745  if (DSM.isAlreadyBeingDeclared())
9746    return 0;
9747
9748  // [Checked after we build the declaration]
9749  //   - the move assignment operator would not be implicitly defined as
9750  //     deleted,
9751
9752  // [DR1402]:
9753  //   - X has no direct or indirect virtual base class with a non-trivial
9754  //     move assignment operator, and
9755  //   - each of X's non-static data members and direct or virtual base classes
9756  //     has a type that either has a move assignment operator or is trivially
9757  //     copyable.
9758  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9759      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9760    ClassDecl->setFailedImplicitMoveAssignment();
9761    return 0;
9762  }
9763
9764  // Note: The following rules are largely analoguous to the move
9765  // constructor rules.
9766
9767  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9768  QualType RetType = Context.getLValueReferenceType(ArgType);
9769  ArgType = Context.getRValueReferenceType(ArgType);
9770
9771  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9772                                                     CXXMoveAssignment,
9773                                                     false);
9774
9775  //   An implicitly-declared move assignment operator is an inline public
9776  //   member of its class.
9777  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9778  SourceLocation ClassLoc = ClassDecl->getLocation();
9779  DeclarationNameInfo NameInfo(Name, ClassLoc);
9780  CXXMethodDecl *MoveAssignment =
9781      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9782                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9783                            /*isInline=*/true, Constexpr, SourceLocation());
9784  MoveAssignment->setAccess(AS_public);
9785  MoveAssignment->setDefaulted();
9786  MoveAssignment->setImplicit();
9787
9788  // Build an exception specification pointing back at this member.
9789  FunctionProtoType::ExtProtoInfo EPI =
9790      getImplicitMethodEPI(*this, MoveAssignment);
9791  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9792
9793  // Add the parameter to the operator.
9794  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9795                                               ClassLoc, ClassLoc, /*Id=*/0,
9796                                               ArgType, /*TInfo=*/0,
9797                                               SC_None, 0);
9798  MoveAssignment->setParams(FromParam);
9799
9800  AddOverriddenMethods(ClassDecl, MoveAssignment);
9801
9802  MoveAssignment->setTrivial(
9803    ClassDecl->needsOverloadResolutionForMoveAssignment()
9804      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9805      : ClassDecl->hasTrivialMoveAssignment());
9806
9807  // C++0x [class.copy]p9:
9808  //   If the definition of a class X does not explicitly declare a move
9809  //   assignment operator, one will be implicitly declared as defaulted if and
9810  //   only if:
9811  //   [...]
9812  //   - the move assignment operator would not be implicitly defined as
9813  //     deleted.
9814  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9815    // Cache this result so that we don't try to generate this over and over
9816    // on every lookup, leaking memory and wasting time.
9817    ClassDecl->setFailedImplicitMoveAssignment();
9818    return 0;
9819  }
9820
9821  // Note that we have added this copy-assignment operator.
9822  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9823
9824  if (Scope *S = getScopeForContext(ClassDecl))
9825    PushOnScopeChains(MoveAssignment, S, false);
9826  ClassDecl->addDecl(MoveAssignment);
9827
9828  return MoveAssignment;
9829}
9830
9831void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9832                                        CXXMethodDecl *MoveAssignOperator) {
9833  assert((MoveAssignOperator->isDefaulted() &&
9834          MoveAssignOperator->isOverloadedOperator() &&
9835          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9836          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9837          !MoveAssignOperator->isDeleted()) &&
9838         "DefineImplicitMoveAssignment called for wrong function");
9839
9840  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9841
9842  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9843    MoveAssignOperator->setInvalidDecl();
9844    return;
9845  }
9846
9847  MoveAssignOperator->markUsed(Context);
9848
9849  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9850  DiagnosticErrorTrap Trap(Diags);
9851
9852  // C++0x [class.copy]p28:
9853  //   The implicitly-defined or move assignment operator for a non-union class
9854  //   X performs memberwise move assignment of its subobjects. The direct base
9855  //   classes of X are assigned first, in the order of their declaration in the
9856  //   base-specifier-list, and then the immediate non-static data members of X
9857  //   are assigned, in the order in which they were declared in the class
9858  //   definition.
9859
9860  // The statements that form the synthesized function body.
9861  SmallVector<Stmt*, 8> Statements;
9862
9863  // The parameter for the "other" object, which we are move from.
9864  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9865  QualType OtherRefType = Other->getType()->
9866      getAs<RValueReferenceType>()->getPointeeType();
9867  assert(!OtherRefType.getQualifiers() &&
9868         "Bad argument type of defaulted move assignment");
9869
9870  // Our location for everything implicitly-generated.
9871  SourceLocation Loc = MoveAssignOperator->getLocation();
9872
9873  // Builds a reference to the "other" object.
9874  RefBuilder OtherRef(Other, OtherRefType);
9875  // Cast to rvalue.
9876  MoveCastBuilder MoveOther(OtherRef);
9877
9878  // Builds the "this" pointer.
9879  ThisBuilder This;
9880
9881  // Assign base classes.
9882  bool Invalid = false;
9883  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9884       E = ClassDecl->bases_end(); Base != E; ++Base) {
9885    // Form the assignment:
9886    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9887    QualType BaseType = Base->getType().getUnqualifiedType();
9888    if (!BaseType->isRecordType()) {
9889      Invalid = true;
9890      continue;
9891    }
9892
9893    CXXCastPath BasePath;
9894    BasePath.push_back(Base);
9895
9896    // Construct the "from" expression, which is an implicit cast to the
9897    // appropriately-qualified base type.
9898    CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
9899
9900    // Dereference "this".
9901    DerefBuilder DerefThis(This);
9902
9903    // Implicitly cast "this" to the appropriately-qualified base type.
9904    CastBuilder To(DerefThis,
9905                   Context.getCVRQualifiedType(
9906                       BaseType, MoveAssignOperator->getTypeQualifiers()),
9907                   VK_LValue, BasePath);
9908
9909    // Build the move.
9910    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9911                                            To, From,
9912                                            /*CopyingBaseSubobject=*/true,
9913                                            /*Copying=*/false);
9914    if (Move.isInvalid()) {
9915      Diag(CurrentLocation, diag::note_member_synthesized_at)
9916        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9917      MoveAssignOperator->setInvalidDecl();
9918      return;
9919    }
9920
9921    // Success! Record the move.
9922    Statements.push_back(Move.takeAs<Expr>());
9923  }
9924
9925  // Assign non-static members.
9926  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9927                                  FieldEnd = ClassDecl->field_end();
9928       Field != FieldEnd; ++Field) {
9929    if (Field->isUnnamedBitfield())
9930      continue;
9931
9932    if (Field->isInvalidDecl()) {
9933      Invalid = true;
9934      continue;
9935    }
9936
9937    // Check for members of reference type; we can't move those.
9938    if (Field->getType()->isReferenceType()) {
9939      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9940        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9941      Diag(Field->getLocation(), diag::note_declared_at);
9942      Diag(CurrentLocation, diag::note_member_synthesized_at)
9943        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9944      Invalid = true;
9945      continue;
9946    }
9947
9948    // Check for members of const-qualified, non-class type.
9949    QualType BaseType = Context.getBaseElementType(Field->getType());
9950    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9951      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9952        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9953      Diag(Field->getLocation(), diag::note_declared_at);
9954      Diag(CurrentLocation, diag::note_member_synthesized_at)
9955        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9956      Invalid = true;
9957      continue;
9958    }
9959
9960    // Suppress assigning zero-width bitfields.
9961    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9962      continue;
9963
9964    QualType FieldType = Field->getType().getNonReferenceType();
9965    if (FieldType->isIncompleteArrayType()) {
9966      assert(ClassDecl->hasFlexibleArrayMember() &&
9967             "Incomplete array type is not valid");
9968      continue;
9969    }
9970
9971    // Build references to the field in the object we're copying from and to.
9972    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9973                              LookupMemberName);
9974    MemberLookup.addDecl(*Field);
9975    MemberLookup.resolveKind();
9976    MemberBuilder From(MoveOther, OtherRefType,
9977                       /*IsArrow=*/false, MemberLookup);
9978    MemberBuilder To(This, getCurrentThisType(),
9979                     /*IsArrow=*/true, MemberLookup);
9980
9981    assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
9982        "Member reference with rvalue base must be rvalue except for reference "
9983        "members, which aren't allowed for move assignment.");
9984
9985    // Build the move of this field.
9986    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9987                                            To, From,
9988                                            /*CopyingBaseSubobject=*/false,
9989                                            /*Copying=*/false);
9990    if (Move.isInvalid()) {
9991      Diag(CurrentLocation, diag::note_member_synthesized_at)
9992        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9993      MoveAssignOperator->setInvalidDecl();
9994      return;
9995    }
9996
9997    // Success! Record the copy.
9998    Statements.push_back(Move.takeAs<Stmt>());
9999  }
10000
10001  if (!Invalid) {
10002    // Add a "return *this;"
10003    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10004
10005    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
10006    if (Return.isInvalid())
10007      Invalid = true;
10008    else {
10009      Statements.push_back(Return.takeAs<Stmt>());
10010
10011      if (Trap.hasErrorOccurred()) {
10012        Diag(CurrentLocation, diag::note_member_synthesized_at)
10013          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10014        Invalid = true;
10015      }
10016    }
10017  }
10018
10019  if (Invalid) {
10020    MoveAssignOperator->setInvalidDecl();
10021    return;
10022  }
10023
10024  StmtResult Body;
10025  {
10026    CompoundScopeRAII CompoundScope(*this);
10027    Body = ActOnCompoundStmt(Loc, Loc, Statements,
10028                             /*isStmtExpr=*/false);
10029    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10030  }
10031  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
10032
10033  if (ASTMutationListener *L = getASTMutationListener()) {
10034    L->CompletedImplicitDefinition(MoveAssignOperator);
10035  }
10036}
10037
10038Sema::ImplicitExceptionSpecification
10039Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10040  CXXRecordDecl *ClassDecl = MD->getParent();
10041
10042  ImplicitExceptionSpecification ExceptSpec(*this);
10043  if (ClassDecl->isInvalidDecl())
10044    return ExceptSpec;
10045
10046  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10047  assert(T->getNumArgs() >= 1 && "not a copy ctor");
10048  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
10049
10050  // C++ [except.spec]p14:
10051  //   An implicitly declared special member function (Clause 12) shall have an
10052  //   exception-specification. [...]
10053  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
10054                                       BaseEnd = ClassDecl->bases_end();
10055       Base != BaseEnd;
10056       ++Base) {
10057    // Virtual bases are handled below.
10058    if (Base->isVirtual())
10059      continue;
10060
10061    CXXRecordDecl *BaseClassDecl
10062      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
10063    if (CXXConstructorDecl *CopyConstructor =
10064          LookupCopyingConstructor(BaseClassDecl, Quals))
10065      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
10066  }
10067  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
10068                                       BaseEnd = ClassDecl->vbases_end();
10069       Base != BaseEnd;
10070       ++Base) {
10071    CXXRecordDecl *BaseClassDecl
10072      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
10073    if (CXXConstructorDecl *CopyConstructor =
10074          LookupCopyingConstructor(BaseClassDecl, Quals))
10075      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
10076  }
10077  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
10078                                  FieldEnd = ClassDecl->field_end();
10079       Field != FieldEnd;
10080       ++Field) {
10081    QualType FieldType = Context.getBaseElementType(Field->getType());
10082    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10083      if (CXXConstructorDecl *CopyConstructor =
10084              LookupCopyingConstructor(FieldClassDecl,
10085                                       Quals | FieldType.getCVRQualifiers()))
10086      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10087    }
10088  }
10089
10090  return ExceptSpec;
10091}
10092
10093CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10094                                                    CXXRecordDecl *ClassDecl) {
10095  // C++ [class.copy]p4:
10096  //   If the class definition does not explicitly declare a copy
10097  //   constructor, one is declared implicitly.
10098  assert(ClassDecl->needsImplicitCopyConstructor());
10099
10100  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10101  if (DSM.isAlreadyBeingDeclared())
10102    return 0;
10103
10104  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10105  QualType ArgType = ClassType;
10106  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10107  if (Const)
10108    ArgType = ArgType.withConst();
10109  ArgType = Context.getLValueReferenceType(ArgType);
10110
10111  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10112                                                     CXXCopyConstructor,
10113                                                     Const);
10114
10115  DeclarationName Name
10116    = Context.DeclarationNames.getCXXConstructorName(
10117                                           Context.getCanonicalType(ClassType));
10118  SourceLocation ClassLoc = ClassDecl->getLocation();
10119  DeclarationNameInfo NameInfo(Name, ClassLoc);
10120
10121  //   An implicitly-declared copy constructor is an inline public
10122  //   member of its class.
10123  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10124      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10125      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10126      Constexpr);
10127  CopyConstructor->setAccess(AS_public);
10128  CopyConstructor->setDefaulted();
10129
10130  // Build an exception specification pointing back at this member.
10131  FunctionProtoType::ExtProtoInfo EPI =
10132      getImplicitMethodEPI(*this, CopyConstructor);
10133  CopyConstructor->setType(
10134      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10135
10136  // Add the parameter to the constructor.
10137  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10138                                               ClassLoc, ClassLoc,
10139                                               /*IdentifierInfo=*/0,
10140                                               ArgType, /*TInfo=*/0,
10141                                               SC_None, 0);
10142  CopyConstructor->setParams(FromParam);
10143
10144  CopyConstructor->setTrivial(
10145    ClassDecl->needsOverloadResolutionForCopyConstructor()
10146      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10147      : ClassDecl->hasTrivialCopyConstructor());
10148
10149  // C++11 [class.copy]p8:
10150  //   ... If the class definition does not explicitly declare a copy
10151  //   constructor, there is no user-declared move constructor, and there is no
10152  //   user-declared move assignment operator, a copy constructor is implicitly
10153  //   declared as defaulted.
10154  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10155    SetDeclDeleted(CopyConstructor, ClassLoc);
10156
10157  // Note that we have declared this constructor.
10158  ++ASTContext::NumImplicitCopyConstructorsDeclared;
10159
10160  if (Scope *S = getScopeForContext(ClassDecl))
10161    PushOnScopeChains(CopyConstructor, S, false);
10162  ClassDecl->addDecl(CopyConstructor);
10163
10164  return CopyConstructor;
10165}
10166
10167void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10168                                   CXXConstructorDecl *CopyConstructor) {
10169  assert((CopyConstructor->isDefaulted() &&
10170          CopyConstructor->isCopyConstructor() &&
10171          !CopyConstructor->doesThisDeclarationHaveABody() &&
10172          !CopyConstructor->isDeleted()) &&
10173         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10174
10175  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10176  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10177
10178  // C++11 [class.copy]p7:
10179  //   The [definition of an implicitly declared copy constructor] is
10180  //   deprecated if the class has a user-declared copy assignment operator
10181  //   or a user-declared destructor.
10182  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10183    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10184
10185  SynthesizedFunctionScope Scope(*this, CopyConstructor);
10186  DiagnosticErrorTrap Trap(Diags);
10187
10188  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10189      Trap.hasErrorOccurred()) {
10190    Diag(CurrentLocation, diag::note_member_synthesized_at)
10191      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10192    CopyConstructor->setInvalidDecl();
10193  }  else {
10194    Sema::CompoundScopeRAII CompoundScope(*this);
10195    CopyConstructor->setBody(ActOnCompoundStmt(
10196        CopyConstructor->getLocation(), CopyConstructor->getLocation(), None,
10197        /*isStmtExpr=*/ false).takeAs<Stmt>());
10198  }
10199
10200  CopyConstructor->markUsed(Context);
10201  if (ASTMutationListener *L = getASTMutationListener()) {
10202    L->CompletedImplicitDefinition(CopyConstructor);
10203  }
10204}
10205
10206Sema::ImplicitExceptionSpecification
10207Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10208  CXXRecordDecl *ClassDecl = MD->getParent();
10209
10210  // C++ [except.spec]p14:
10211  //   An implicitly declared special member function (Clause 12) shall have an
10212  //   exception-specification. [...]
10213  ImplicitExceptionSpecification ExceptSpec(*this);
10214  if (ClassDecl->isInvalidDecl())
10215    return ExceptSpec;
10216
10217  // Direct base-class constructors.
10218  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
10219                                       BEnd = ClassDecl->bases_end();
10220       B != BEnd; ++B) {
10221    if (B->isVirtual()) // Handled below.
10222      continue;
10223
10224    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10225      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10226      CXXConstructorDecl *Constructor =
10227          LookupMovingConstructor(BaseClassDecl, 0);
10228      // If this is a deleted function, add it anyway. This might be conformant
10229      // with the standard. This might not. I'm not sure. It might not matter.
10230      if (Constructor)
10231        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10232    }
10233  }
10234
10235  // Virtual base-class constructors.
10236  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
10237                                       BEnd = ClassDecl->vbases_end();
10238       B != BEnd; ++B) {
10239    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10240      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10241      CXXConstructorDecl *Constructor =
10242          LookupMovingConstructor(BaseClassDecl, 0);
10243      // If this is a deleted function, add it anyway. This might be conformant
10244      // with the standard. This might not. I'm not sure. It might not matter.
10245      if (Constructor)
10246        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10247    }
10248  }
10249
10250  // Field constructors.
10251  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
10252                               FEnd = ClassDecl->field_end();
10253       F != FEnd; ++F) {
10254    QualType FieldType = Context.getBaseElementType(F->getType());
10255    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10256      CXXConstructorDecl *Constructor =
10257          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10258      // If this is a deleted function, add it anyway. This might be conformant
10259      // with the standard. This might not. I'm not sure. It might not matter.
10260      // In particular, the problem is that this function never gets called. It
10261      // might just be ill-formed because this function attempts to refer to
10262      // a deleted function here.
10263      if (Constructor)
10264        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10265    }
10266  }
10267
10268  return ExceptSpec;
10269}
10270
10271CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10272                                                    CXXRecordDecl *ClassDecl) {
10273  // C++11 [class.copy]p9:
10274  //   If the definition of a class X does not explicitly declare a move
10275  //   constructor, one will be implicitly declared as defaulted if and only if:
10276  //
10277  //   - [first 4 bullets]
10278  assert(ClassDecl->needsImplicitMoveConstructor());
10279
10280  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10281  if (DSM.isAlreadyBeingDeclared())
10282    return 0;
10283
10284  // [Checked after we build the declaration]
10285  //   - the move assignment operator would not be implicitly defined as
10286  //     deleted,
10287
10288  // [DR1402]:
10289  //   - each of X's non-static data members and direct or virtual base classes
10290  //     has a type that either has a move constructor or is trivially copyable.
10291  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
10292    ClassDecl->setFailedImplicitMoveConstructor();
10293    return 0;
10294  }
10295
10296  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10297  QualType ArgType = Context.getRValueReferenceType(ClassType);
10298
10299  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10300                                                     CXXMoveConstructor,
10301                                                     false);
10302
10303  DeclarationName Name
10304    = Context.DeclarationNames.getCXXConstructorName(
10305                                           Context.getCanonicalType(ClassType));
10306  SourceLocation ClassLoc = ClassDecl->getLocation();
10307  DeclarationNameInfo NameInfo(Name, ClassLoc);
10308
10309  // C++11 [class.copy]p11:
10310  //   An implicitly-declared copy/move constructor is an inline public
10311  //   member of its class.
10312  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
10313      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10314      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10315      Constexpr);
10316  MoveConstructor->setAccess(AS_public);
10317  MoveConstructor->setDefaulted();
10318
10319  // Build an exception specification pointing back at this member.
10320  FunctionProtoType::ExtProtoInfo EPI =
10321      getImplicitMethodEPI(*this, MoveConstructor);
10322  MoveConstructor->setType(
10323      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10324
10325  // Add the parameter to the constructor.
10326  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
10327                                               ClassLoc, ClassLoc,
10328                                               /*IdentifierInfo=*/0,
10329                                               ArgType, /*TInfo=*/0,
10330                                               SC_None, 0);
10331  MoveConstructor->setParams(FromParam);
10332
10333  MoveConstructor->setTrivial(
10334    ClassDecl->needsOverloadResolutionForMoveConstructor()
10335      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
10336      : ClassDecl->hasTrivialMoveConstructor());
10337
10338  // C++0x [class.copy]p9:
10339  //   If the definition of a class X does not explicitly declare a move
10340  //   constructor, one will be implicitly declared as defaulted if and only if:
10341  //   [...]
10342  //   - the move constructor would not be implicitly defined as deleted.
10343  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
10344    // Cache this result so that we don't try to generate this over and over
10345    // on every lookup, leaking memory and wasting time.
10346    ClassDecl->setFailedImplicitMoveConstructor();
10347    return 0;
10348  }
10349
10350  // Note that we have declared this constructor.
10351  ++ASTContext::NumImplicitMoveConstructorsDeclared;
10352
10353  if (Scope *S = getScopeForContext(ClassDecl))
10354    PushOnScopeChains(MoveConstructor, S, false);
10355  ClassDecl->addDecl(MoveConstructor);
10356
10357  return MoveConstructor;
10358}
10359
10360void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
10361                                   CXXConstructorDecl *MoveConstructor) {
10362  assert((MoveConstructor->isDefaulted() &&
10363          MoveConstructor->isMoveConstructor() &&
10364          !MoveConstructor->doesThisDeclarationHaveABody() &&
10365          !MoveConstructor->isDeleted()) &&
10366         "DefineImplicitMoveConstructor - call it for implicit move ctor");
10367
10368  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
10369  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
10370
10371  SynthesizedFunctionScope Scope(*this, MoveConstructor);
10372  DiagnosticErrorTrap Trap(Diags);
10373
10374  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
10375      Trap.hasErrorOccurred()) {
10376    Diag(CurrentLocation, diag::note_member_synthesized_at)
10377      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10378    MoveConstructor->setInvalidDecl();
10379  }  else {
10380    Sema::CompoundScopeRAII CompoundScope(*this);
10381    MoveConstructor->setBody(ActOnCompoundStmt(
10382        MoveConstructor->getLocation(), MoveConstructor->getLocation(), None,
10383        /*isStmtExpr=*/ false).takeAs<Stmt>());
10384  }
10385
10386  MoveConstructor->markUsed(Context);
10387
10388  if (ASTMutationListener *L = getASTMutationListener()) {
10389    L->CompletedImplicitDefinition(MoveConstructor);
10390  }
10391}
10392
10393bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10394  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10395}
10396
10397void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10398                            SourceLocation CurrentLocation,
10399                            CXXConversionDecl *Conv) {
10400  CXXRecordDecl *Lambda = Conv->getParent();
10401  CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
10402  // If we are defining a specialization of a conversion to function-ptr
10403  // cache the deduced template arguments for this specialization
10404  // so that we can use them to retrieve the corresponding call-operator
10405  // and static-invoker.
10406  const TemplateArgumentList *DeducedTemplateArgs = 0;
10407
10408
10409  // Retrieve the corresponding call-operator specialization.
10410  if (Lambda->isGenericLambda()) {
10411    assert(Conv->isFunctionTemplateSpecialization());
10412    FunctionTemplateDecl *CallOpTemplate =
10413        CallOp->getDescribedFunctionTemplate();
10414    DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
10415    void *InsertPos = 0;
10416    FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
10417                                                DeducedTemplateArgs->data(),
10418                                                DeducedTemplateArgs->size(),
10419                                                InsertPos);
10420    assert(CallOpSpec &&
10421          "Conversion operator must have a corresponding call operator");
10422    CallOp = cast<CXXMethodDecl>(CallOpSpec);
10423  }
10424  // Mark the call operator referenced (and add to pending instantiations
10425  // if necessary).
10426  // For both the conversion and static-invoker template specializations
10427  // we construct their body's in this function, so no need to add them
10428  // to the PendingInstantiations.
10429  MarkFunctionReferenced(CurrentLocation, CallOp);
10430
10431  SynthesizedFunctionScope Scope(*this, Conv);
10432  DiagnosticErrorTrap Trap(Diags);
10433
10434  // Retreive the static invoker...
10435  CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
10436  // ... and get the corresponding specialization for a generic lambda.
10437  if (Lambda->isGenericLambda()) {
10438    assert(DeducedTemplateArgs &&
10439      "Must have deduced template arguments from Conversion Operator");
10440    FunctionTemplateDecl *InvokeTemplate =
10441                          Invoker->getDescribedFunctionTemplate();
10442    void *InsertPos = 0;
10443    FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
10444                                                DeducedTemplateArgs->data(),
10445                                                DeducedTemplateArgs->size(),
10446                                                InsertPos);
10447    assert(InvokeSpec &&
10448      "Must have a corresponding static invoker specialization");
10449    Invoker = cast<CXXMethodDecl>(InvokeSpec);
10450  }
10451  // Construct the body of the conversion function { return __invoke; }.
10452  Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
10453                                        VK_LValue, Conv->getLocation()).take();
10454   assert(FunctionRef && "Can't refer to __invoke function?");
10455   Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10456   Conv->setBody(new (Context) CompoundStmt(Context, Return,
10457                                            Conv->getLocation(),
10458                                            Conv->getLocation()));
10459
10460  Conv->markUsed(Context);
10461  Conv->setReferenced();
10462
10463  // Fill in the __invoke function with a dummy implementation. IR generation
10464  // will fill in the actual details.
10465  Invoker->markUsed(Context);
10466  Invoker->setReferenced();
10467  Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10468
10469  if (ASTMutationListener *L = getASTMutationListener()) {
10470    L->CompletedImplicitDefinition(Conv);
10471    L->CompletedImplicitDefinition(Invoker);
10472   }
10473}
10474
10475
10476
10477void Sema::DefineImplicitLambdaToBlockPointerConversion(
10478       SourceLocation CurrentLocation,
10479       CXXConversionDecl *Conv)
10480{
10481  assert(!Conv->getParent()->isGenericLambda());
10482
10483  Conv->markUsed(Context);
10484
10485  SynthesizedFunctionScope Scope(*this, Conv);
10486  DiagnosticErrorTrap Trap(Diags);
10487
10488  // Copy-initialize the lambda object as needed to capture it.
10489  Expr *This = ActOnCXXThis(CurrentLocation).take();
10490  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10491
10492  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10493                                                        Conv->getLocation(),
10494                                                        Conv, DerefThis);
10495
10496  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10497  // behavior.  Note that only the general conversion function does this
10498  // (since it's unusable otherwise); in the case where we inline the
10499  // block literal, it has block literal lifetime semantics.
10500  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10501    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10502                                          CK_CopyAndAutoreleaseBlockObject,
10503                                          BuildBlock.get(), 0, VK_RValue);
10504
10505  if (BuildBlock.isInvalid()) {
10506    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10507    Conv->setInvalidDecl();
10508    return;
10509  }
10510
10511  // Create the return statement that returns the block from the conversion
10512  // function.
10513  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10514  if (Return.isInvalid()) {
10515    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10516    Conv->setInvalidDecl();
10517    return;
10518  }
10519
10520  // Set the body of the conversion function.
10521  Stmt *ReturnS = Return.take();
10522  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10523                                           Conv->getLocation(),
10524                                           Conv->getLocation()));
10525
10526  // We're done; notify the mutation listener, if any.
10527  if (ASTMutationListener *L = getASTMutationListener()) {
10528    L->CompletedImplicitDefinition(Conv);
10529  }
10530}
10531
10532/// \brief Determine whether the given list arguments contains exactly one
10533/// "real" (non-default) argument.
10534static bool hasOneRealArgument(MultiExprArg Args) {
10535  switch (Args.size()) {
10536  case 0:
10537    return false;
10538
10539  default:
10540    if (!Args[1]->isDefaultArgument())
10541      return false;
10542
10543    // fall through
10544  case 1:
10545    return !Args[0]->isDefaultArgument();
10546  }
10547
10548  return false;
10549}
10550
10551ExprResult
10552Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10553                            CXXConstructorDecl *Constructor,
10554                            MultiExprArg ExprArgs,
10555                            bool HadMultipleCandidates,
10556                            bool IsListInitialization,
10557                            bool RequiresZeroInit,
10558                            unsigned ConstructKind,
10559                            SourceRange ParenRange) {
10560  bool Elidable = false;
10561
10562  // C++0x [class.copy]p34:
10563  //   When certain criteria are met, an implementation is allowed to
10564  //   omit the copy/move construction of a class object, even if the
10565  //   copy/move constructor and/or destructor for the object have
10566  //   side effects. [...]
10567  //     - when a temporary class object that has not been bound to a
10568  //       reference (12.2) would be copied/moved to a class object
10569  //       with the same cv-unqualified type, the copy/move operation
10570  //       can be omitted by constructing the temporary object
10571  //       directly into the target of the omitted copy/move
10572  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10573      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10574    Expr *SubExpr = ExprArgs[0];
10575    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10576  }
10577
10578  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10579                               Elidable, ExprArgs, HadMultipleCandidates,
10580                               IsListInitialization, RequiresZeroInit,
10581                               ConstructKind, ParenRange);
10582}
10583
10584/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10585/// including handling of its default argument expressions.
10586ExprResult
10587Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10588                            CXXConstructorDecl *Constructor, bool Elidable,
10589                            MultiExprArg ExprArgs,
10590                            bool HadMultipleCandidates,
10591                            bool IsListInitialization,
10592                            bool RequiresZeroInit,
10593                            unsigned ConstructKind,
10594                            SourceRange ParenRange) {
10595  MarkFunctionReferenced(ConstructLoc, Constructor);
10596  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10597                                        Constructor, Elidable, ExprArgs,
10598                                        HadMultipleCandidates,
10599                                        IsListInitialization, RequiresZeroInit,
10600              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10601                                        ParenRange));
10602}
10603
10604void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10605  if (VD->isInvalidDecl()) return;
10606
10607  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10608  if (ClassDecl->isInvalidDecl()) return;
10609  if (ClassDecl->hasIrrelevantDestructor()) return;
10610  if (ClassDecl->isDependentContext()) return;
10611
10612  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10613  MarkFunctionReferenced(VD->getLocation(), Destructor);
10614  CheckDestructorAccess(VD->getLocation(), Destructor,
10615                        PDiag(diag::err_access_dtor_var)
10616                        << VD->getDeclName()
10617                        << VD->getType());
10618  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10619
10620  if (!VD->hasGlobalStorage()) return;
10621
10622  // Emit warning for non-trivial dtor in global scope (a real global,
10623  // class-static, function-static).
10624  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10625
10626  // TODO: this should be re-enabled for static locals by !CXAAtExit
10627  if (!VD->isStaticLocal())
10628    Diag(VD->getLocation(), diag::warn_global_destructor);
10629}
10630
10631/// \brief Given a constructor and the set of arguments provided for the
10632/// constructor, convert the arguments and add any required default arguments
10633/// to form a proper call to this constructor.
10634///
10635/// \returns true if an error occurred, false otherwise.
10636bool
10637Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10638                              MultiExprArg ArgsPtr,
10639                              SourceLocation Loc,
10640                              SmallVectorImpl<Expr*> &ConvertedArgs,
10641                              bool AllowExplicit,
10642                              bool IsListInitialization) {
10643  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10644  unsigned NumArgs = ArgsPtr.size();
10645  Expr **Args = ArgsPtr.data();
10646
10647  const FunctionProtoType *Proto
10648    = Constructor->getType()->getAs<FunctionProtoType>();
10649  assert(Proto && "Constructor without a prototype?");
10650  unsigned NumArgsInProto = Proto->getNumArgs();
10651
10652  // If too few arguments are available, we'll fill in the rest with defaults.
10653  if (NumArgs < NumArgsInProto)
10654    ConvertedArgs.reserve(NumArgsInProto);
10655  else
10656    ConvertedArgs.reserve(NumArgs);
10657
10658  VariadicCallType CallType =
10659    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10660  SmallVector<Expr *, 8> AllArgs;
10661  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10662                                        Proto, 0,
10663                                        llvm::makeArrayRef(Args, NumArgs),
10664                                        AllArgs,
10665                                        CallType, AllowExplicit,
10666                                        IsListInitialization);
10667  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10668
10669  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10670
10671  CheckConstructorCall(Constructor,
10672                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10673                                                        AllArgs.size()),
10674                       Proto, Loc);
10675
10676  return Invalid;
10677}
10678
10679static inline bool
10680CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10681                                       const FunctionDecl *FnDecl) {
10682  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10683  if (isa<NamespaceDecl>(DC)) {
10684    return SemaRef.Diag(FnDecl->getLocation(),
10685                        diag::err_operator_new_delete_declared_in_namespace)
10686      << FnDecl->getDeclName();
10687  }
10688
10689  if (isa<TranslationUnitDecl>(DC) &&
10690      FnDecl->getStorageClass() == SC_Static) {
10691    return SemaRef.Diag(FnDecl->getLocation(),
10692                        diag::err_operator_new_delete_declared_static)
10693      << FnDecl->getDeclName();
10694  }
10695
10696  return false;
10697}
10698
10699static inline bool
10700CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10701                            CanQualType ExpectedResultType,
10702                            CanQualType ExpectedFirstParamType,
10703                            unsigned DependentParamTypeDiag,
10704                            unsigned InvalidParamTypeDiag) {
10705  QualType ResultType =
10706    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10707
10708  // Check that the result type is not dependent.
10709  if (ResultType->isDependentType())
10710    return SemaRef.Diag(FnDecl->getLocation(),
10711                        diag::err_operator_new_delete_dependent_result_type)
10712    << FnDecl->getDeclName() << ExpectedResultType;
10713
10714  // Check that the result type is what we expect.
10715  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10716    return SemaRef.Diag(FnDecl->getLocation(),
10717                        diag::err_operator_new_delete_invalid_result_type)
10718    << FnDecl->getDeclName() << ExpectedResultType;
10719
10720  // A function template must have at least 2 parameters.
10721  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10722    return SemaRef.Diag(FnDecl->getLocation(),
10723                      diag::err_operator_new_delete_template_too_few_parameters)
10724        << FnDecl->getDeclName();
10725
10726  // The function decl must have at least 1 parameter.
10727  if (FnDecl->getNumParams() == 0)
10728    return SemaRef.Diag(FnDecl->getLocation(),
10729                        diag::err_operator_new_delete_too_few_parameters)
10730      << FnDecl->getDeclName();
10731
10732  // Check the first parameter type is not dependent.
10733  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10734  if (FirstParamType->isDependentType())
10735    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10736      << FnDecl->getDeclName() << ExpectedFirstParamType;
10737
10738  // Check that the first parameter type is what we expect.
10739  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10740      ExpectedFirstParamType)
10741    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10742    << FnDecl->getDeclName() << ExpectedFirstParamType;
10743
10744  return false;
10745}
10746
10747static bool
10748CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10749  // C++ [basic.stc.dynamic.allocation]p1:
10750  //   A program is ill-formed if an allocation function is declared in a
10751  //   namespace scope other than global scope or declared static in global
10752  //   scope.
10753  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10754    return true;
10755
10756  CanQualType SizeTy =
10757    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10758
10759  // C++ [basic.stc.dynamic.allocation]p1:
10760  //  The return type shall be void*. The first parameter shall have type
10761  //  std::size_t.
10762  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10763                                  SizeTy,
10764                                  diag::err_operator_new_dependent_param_type,
10765                                  diag::err_operator_new_param_type))
10766    return true;
10767
10768  // C++ [basic.stc.dynamic.allocation]p1:
10769  //  The first parameter shall not have an associated default argument.
10770  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10771    return SemaRef.Diag(FnDecl->getLocation(),
10772                        diag::err_operator_new_default_arg)
10773      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10774
10775  return false;
10776}
10777
10778static bool
10779CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10780  // C++ [basic.stc.dynamic.deallocation]p1:
10781  //   A program is ill-formed if deallocation functions are declared in a
10782  //   namespace scope other than global scope or declared static in global
10783  //   scope.
10784  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10785    return true;
10786
10787  // C++ [basic.stc.dynamic.deallocation]p2:
10788  //   Each deallocation function shall return void and its first parameter
10789  //   shall be void*.
10790  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10791                                  SemaRef.Context.VoidPtrTy,
10792                                 diag::err_operator_delete_dependent_param_type,
10793                                 diag::err_operator_delete_param_type))
10794    return true;
10795
10796  return false;
10797}
10798
10799/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10800/// of this overloaded operator is well-formed. If so, returns false;
10801/// otherwise, emits appropriate diagnostics and returns true.
10802bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10803  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10804         "Expected an overloaded operator declaration");
10805
10806  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10807
10808  // C++ [over.oper]p5:
10809  //   The allocation and deallocation functions, operator new,
10810  //   operator new[], operator delete and operator delete[], are
10811  //   described completely in 3.7.3. The attributes and restrictions
10812  //   found in the rest of this subclause do not apply to them unless
10813  //   explicitly stated in 3.7.3.
10814  if (Op == OO_Delete || Op == OO_Array_Delete)
10815    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10816
10817  if (Op == OO_New || Op == OO_Array_New)
10818    return CheckOperatorNewDeclaration(*this, FnDecl);
10819
10820  // C++ [over.oper]p6:
10821  //   An operator function shall either be a non-static member
10822  //   function or be a non-member function and have at least one
10823  //   parameter whose type is a class, a reference to a class, an
10824  //   enumeration, or a reference to an enumeration.
10825  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10826    if (MethodDecl->isStatic())
10827      return Diag(FnDecl->getLocation(),
10828                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10829  } else {
10830    bool ClassOrEnumParam = false;
10831    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10832                                   ParamEnd = FnDecl->param_end();
10833         Param != ParamEnd; ++Param) {
10834      QualType ParamType = (*Param)->getType().getNonReferenceType();
10835      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10836          ParamType->isEnumeralType()) {
10837        ClassOrEnumParam = true;
10838        break;
10839      }
10840    }
10841
10842    if (!ClassOrEnumParam)
10843      return Diag(FnDecl->getLocation(),
10844                  diag::err_operator_overload_needs_class_or_enum)
10845        << FnDecl->getDeclName();
10846  }
10847
10848  // C++ [over.oper]p8:
10849  //   An operator function cannot have default arguments (8.3.6),
10850  //   except where explicitly stated below.
10851  //
10852  // Only the function-call operator allows default arguments
10853  // (C++ [over.call]p1).
10854  if (Op != OO_Call) {
10855    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10856         Param != FnDecl->param_end(); ++Param) {
10857      if ((*Param)->hasDefaultArg())
10858        return Diag((*Param)->getLocation(),
10859                    diag::err_operator_overload_default_arg)
10860          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10861    }
10862  }
10863
10864  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10865    { false, false, false }
10866#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10867    , { Unary, Binary, MemberOnly }
10868#include "clang/Basic/OperatorKinds.def"
10869  };
10870
10871  bool CanBeUnaryOperator = OperatorUses[Op][0];
10872  bool CanBeBinaryOperator = OperatorUses[Op][1];
10873  bool MustBeMemberOperator = OperatorUses[Op][2];
10874
10875  // C++ [over.oper]p8:
10876  //   [...] Operator functions cannot have more or fewer parameters
10877  //   than the number required for the corresponding operator, as
10878  //   described in the rest of this subclause.
10879  unsigned NumParams = FnDecl->getNumParams()
10880                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10881  if (Op != OO_Call &&
10882      ((NumParams == 1 && !CanBeUnaryOperator) ||
10883       (NumParams == 2 && !CanBeBinaryOperator) ||
10884       (NumParams < 1) || (NumParams > 2))) {
10885    // We have the wrong number of parameters.
10886    unsigned ErrorKind;
10887    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10888      ErrorKind = 2;  // 2 -> unary or binary.
10889    } else if (CanBeUnaryOperator) {
10890      ErrorKind = 0;  // 0 -> unary
10891    } else {
10892      assert(CanBeBinaryOperator &&
10893             "All non-call overloaded operators are unary or binary!");
10894      ErrorKind = 1;  // 1 -> binary
10895    }
10896
10897    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10898      << FnDecl->getDeclName() << NumParams << ErrorKind;
10899  }
10900
10901  // Overloaded operators other than operator() cannot be variadic.
10902  if (Op != OO_Call &&
10903      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10904    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10905      << FnDecl->getDeclName();
10906  }
10907
10908  // Some operators must be non-static member functions.
10909  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10910    return Diag(FnDecl->getLocation(),
10911                diag::err_operator_overload_must_be_member)
10912      << FnDecl->getDeclName();
10913  }
10914
10915  // C++ [over.inc]p1:
10916  //   The user-defined function called operator++ implements the
10917  //   prefix and postfix ++ operator. If this function is a member
10918  //   function with no parameters, or a non-member function with one
10919  //   parameter of class or enumeration type, it defines the prefix
10920  //   increment operator ++ for objects of that type. If the function
10921  //   is a member function with one parameter (which shall be of type
10922  //   int) or a non-member function with two parameters (the second
10923  //   of which shall be of type int), it defines the postfix
10924  //   increment operator ++ for objects of that type.
10925  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10926    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10927    bool ParamIsInt = false;
10928    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10929      ParamIsInt = BT->getKind() == BuiltinType::Int;
10930
10931    if (!ParamIsInt)
10932      return Diag(LastParam->getLocation(),
10933                  diag::err_operator_overload_post_incdec_must_be_int)
10934        << LastParam->getType() << (Op == OO_MinusMinus);
10935  }
10936
10937  return false;
10938}
10939
10940/// CheckLiteralOperatorDeclaration - Check whether the declaration
10941/// of this literal operator function is well-formed. If so, returns
10942/// false; otherwise, emits appropriate diagnostics and returns true.
10943bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10944  if (isa<CXXMethodDecl>(FnDecl)) {
10945    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10946      << FnDecl->getDeclName();
10947    return true;
10948  }
10949
10950  if (FnDecl->isExternC()) {
10951    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10952    return true;
10953  }
10954
10955  bool Valid = false;
10956
10957  // This might be the definition of a literal operator template.
10958  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10959  // This might be a specialization of a literal operator template.
10960  if (!TpDecl)
10961    TpDecl = FnDecl->getPrimaryTemplate();
10962
10963  // template <char...> type operator "" name() and
10964  // template <class T, T...> type operator "" name() are the only valid
10965  // template signatures, and the only valid signatures with no parameters.
10966  if (TpDecl) {
10967    if (FnDecl->param_size() == 0) {
10968      // Must have one or two template parameters
10969      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10970      if (Params->size() == 1) {
10971        NonTypeTemplateParmDecl *PmDecl =
10972          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10973
10974        // The template parameter must be a char parameter pack.
10975        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10976            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10977          Valid = true;
10978      } else if (Params->size() == 2) {
10979        TemplateTypeParmDecl *PmType =
10980          dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
10981        NonTypeTemplateParmDecl *PmArgs =
10982          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
10983
10984        // The second template parameter must be a parameter pack with the
10985        // first template parameter as its type.
10986        if (PmType && PmArgs &&
10987            !PmType->isTemplateParameterPack() &&
10988            PmArgs->isTemplateParameterPack()) {
10989          const TemplateTypeParmType *TArgs =
10990            PmArgs->getType()->getAs<TemplateTypeParmType>();
10991          if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
10992              TArgs->getIndex() == PmType->getIndex()) {
10993            Valid = true;
10994            if (ActiveTemplateInstantiations.empty())
10995              Diag(FnDecl->getLocation(),
10996                   diag::ext_string_literal_operator_template);
10997          }
10998        }
10999      }
11000    }
11001  } else if (FnDecl->param_size()) {
11002    // Check the first parameter
11003    FunctionDecl::param_iterator Param = FnDecl->param_begin();
11004
11005    QualType T = (*Param)->getType().getUnqualifiedType();
11006
11007    // unsigned long long int, long double, and any character type are allowed
11008    // as the only parameters.
11009    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
11010        Context.hasSameType(T, Context.LongDoubleTy) ||
11011        Context.hasSameType(T, Context.CharTy) ||
11012        Context.hasSameType(T, Context.WideCharTy) ||
11013        Context.hasSameType(T, Context.Char16Ty) ||
11014        Context.hasSameType(T, Context.Char32Ty)) {
11015      if (++Param == FnDecl->param_end())
11016        Valid = true;
11017      goto FinishedParams;
11018    }
11019
11020    // Otherwise it must be a pointer to const; let's strip those qualifiers.
11021    const PointerType *PT = T->getAs<PointerType>();
11022    if (!PT)
11023      goto FinishedParams;
11024    T = PT->getPointeeType();
11025    if (!T.isConstQualified() || T.isVolatileQualified())
11026      goto FinishedParams;
11027    T = T.getUnqualifiedType();
11028
11029    // Move on to the second parameter;
11030    ++Param;
11031
11032    // If there is no second parameter, the first must be a const char *
11033    if (Param == FnDecl->param_end()) {
11034      if (Context.hasSameType(T, Context.CharTy))
11035        Valid = true;
11036      goto FinishedParams;
11037    }
11038
11039    // const char *, const wchar_t*, const char16_t*, and const char32_t*
11040    // are allowed as the first parameter to a two-parameter function
11041    if (!(Context.hasSameType(T, Context.CharTy) ||
11042          Context.hasSameType(T, Context.WideCharTy) ||
11043          Context.hasSameType(T, Context.Char16Ty) ||
11044          Context.hasSameType(T, Context.Char32Ty)))
11045      goto FinishedParams;
11046
11047    // The second and final parameter must be an std::size_t
11048    T = (*Param)->getType().getUnqualifiedType();
11049    if (Context.hasSameType(T, Context.getSizeType()) &&
11050        ++Param == FnDecl->param_end())
11051      Valid = true;
11052  }
11053
11054  // FIXME: This diagnostic is absolutely terrible.
11055FinishedParams:
11056  if (!Valid) {
11057    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11058      << FnDecl->getDeclName();
11059    return true;
11060  }
11061
11062  // A parameter-declaration-clause containing a default argument is not
11063  // equivalent to any of the permitted forms.
11064  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
11065                                    ParamEnd = FnDecl->param_end();
11066       Param != ParamEnd; ++Param) {
11067    if ((*Param)->hasDefaultArg()) {
11068      Diag((*Param)->getDefaultArgRange().getBegin(),
11069           diag::err_literal_operator_default_argument)
11070        << (*Param)->getDefaultArgRange();
11071      break;
11072    }
11073  }
11074
11075  StringRef LiteralName
11076    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11077  if (LiteralName[0] != '_') {
11078    // C++11 [usrlit.suffix]p1:
11079    //   Literal suffix identifiers that do not start with an underscore
11080    //   are reserved for future standardization.
11081    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11082      << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11083  }
11084
11085  return false;
11086}
11087
11088/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11089/// linkage specification, including the language and (if present)
11090/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
11091/// the location of the language string literal, which is provided
11092/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
11093/// the '{' brace. Otherwise, this linkage specification does not
11094/// have any braces.
11095Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11096                                           SourceLocation LangLoc,
11097                                           StringRef Lang,
11098                                           SourceLocation LBraceLoc) {
11099  LinkageSpecDecl::LanguageIDs Language;
11100  if (Lang == "\"C\"")
11101    Language = LinkageSpecDecl::lang_c;
11102  else if (Lang == "\"C++\"")
11103    Language = LinkageSpecDecl::lang_cxx;
11104  else {
11105    Diag(LangLoc, diag::err_bad_language);
11106    return 0;
11107  }
11108
11109  // FIXME: Add all the various semantics of linkage specifications
11110
11111  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
11112                                               ExternLoc, LangLoc, Language,
11113                                               LBraceLoc.isValid());
11114  CurContext->addDecl(D);
11115  PushDeclContext(S, D);
11116  return D;
11117}
11118
11119/// ActOnFinishLinkageSpecification - Complete the definition of
11120/// the C++ linkage specification LinkageSpec. If RBraceLoc is
11121/// valid, it's the position of the closing '}' brace in a linkage
11122/// specification that uses braces.
11123Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11124                                            Decl *LinkageSpec,
11125                                            SourceLocation RBraceLoc) {
11126  if (LinkageSpec) {
11127    if (RBraceLoc.isValid()) {
11128      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11129      LSDecl->setRBraceLoc(RBraceLoc);
11130    }
11131    PopDeclContext();
11132  }
11133  return LinkageSpec;
11134}
11135
11136Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11137                                  AttributeList *AttrList,
11138                                  SourceLocation SemiLoc) {
11139  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11140  // Attribute declarations appertain to empty declaration so we handle
11141  // them here.
11142  if (AttrList)
11143    ProcessDeclAttributeList(S, ED, AttrList);
11144
11145  CurContext->addDecl(ED);
11146  return ED;
11147}
11148
11149/// \brief Perform semantic analysis for the variable declaration that
11150/// occurs within a C++ catch clause, returning the newly-created
11151/// variable.
11152VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11153                                         TypeSourceInfo *TInfo,
11154                                         SourceLocation StartLoc,
11155                                         SourceLocation Loc,
11156                                         IdentifierInfo *Name) {
11157  bool Invalid = false;
11158  QualType ExDeclType = TInfo->getType();
11159
11160  // Arrays and functions decay.
11161  if (ExDeclType->isArrayType())
11162    ExDeclType = Context.getArrayDecayedType(ExDeclType);
11163  else if (ExDeclType->isFunctionType())
11164    ExDeclType = Context.getPointerType(ExDeclType);
11165
11166  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11167  // The exception-declaration shall not denote a pointer or reference to an
11168  // incomplete type, other than [cv] void*.
11169  // N2844 forbids rvalue references.
11170  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11171    Diag(Loc, diag::err_catch_rvalue_ref);
11172    Invalid = true;
11173  }
11174
11175  QualType BaseType = ExDeclType;
11176  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11177  unsigned DK = diag::err_catch_incomplete;
11178  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11179    BaseType = Ptr->getPointeeType();
11180    Mode = 1;
11181    DK = diag::err_catch_incomplete_ptr;
11182  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11183    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11184    BaseType = Ref->getPointeeType();
11185    Mode = 2;
11186    DK = diag::err_catch_incomplete_ref;
11187  }
11188  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11189      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11190    Invalid = true;
11191
11192  if (!Invalid && !ExDeclType->isDependentType() &&
11193      RequireNonAbstractType(Loc, ExDeclType,
11194                             diag::err_abstract_type_in_decl,
11195                             AbstractVariableType))
11196    Invalid = true;
11197
11198  // Only the non-fragile NeXT runtime currently supports C++ catches
11199  // of ObjC types, and no runtime supports catching ObjC types by value.
11200  if (!Invalid && getLangOpts().ObjC1) {
11201    QualType T = ExDeclType;
11202    if (const ReferenceType *RT = T->getAs<ReferenceType>())
11203      T = RT->getPointeeType();
11204
11205    if (T->isObjCObjectType()) {
11206      Diag(Loc, diag::err_objc_object_catch);
11207      Invalid = true;
11208    } else if (T->isObjCObjectPointerType()) {
11209      // FIXME: should this be a test for macosx-fragile specifically?
11210      if (getLangOpts().ObjCRuntime.isFragile())
11211        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11212    }
11213  }
11214
11215  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11216                                    ExDeclType, TInfo, SC_None);
11217  ExDecl->setExceptionVariable(true);
11218
11219  // In ARC, infer 'retaining' for variables of retainable type.
11220  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11221    Invalid = true;
11222
11223  if (!Invalid && !ExDeclType->isDependentType()) {
11224    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11225      // Insulate this from anything else we might currently be parsing.
11226      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11227
11228      // C++ [except.handle]p16:
11229      //   The object declared in an exception-declaration or, if the
11230      //   exception-declaration does not specify a name, a temporary (12.2) is
11231      //   copy-initialized (8.5) from the exception object. [...]
11232      //   The object is destroyed when the handler exits, after the destruction
11233      //   of any automatic objects initialized within the handler.
11234      //
11235      // We just pretend to initialize the object with itself, then make sure
11236      // it can be destroyed later.
11237      QualType initType = ExDeclType;
11238
11239      InitializedEntity entity =
11240        InitializedEntity::InitializeVariable(ExDecl);
11241      InitializationKind initKind =
11242        InitializationKind::CreateCopy(Loc, SourceLocation());
11243
11244      Expr *opaqueValue =
11245        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
11246      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
11247      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
11248      if (result.isInvalid())
11249        Invalid = true;
11250      else {
11251        // If the constructor used was non-trivial, set this as the
11252        // "initializer".
11253        CXXConstructExpr *construct = result.takeAs<CXXConstructExpr>();
11254        if (!construct->getConstructor()->isTrivial()) {
11255          Expr *init = MaybeCreateExprWithCleanups(construct);
11256          ExDecl->setInit(init);
11257        }
11258
11259        // And make sure it's destructable.
11260        FinalizeVarWithDestructor(ExDecl, recordType);
11261      }
11262    }
11263  }
11264
11265  if (Invalid)
11266    ExDecl->setInvalidDecl();
11267
11268  return ExDecl;
11269}
11270
11271/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
11272/// handler.
11273Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
11274  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11275  bool Invalid = D.isInvalidType();
11276
11277  // Check for unexpanded parameter packs.
11278  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11279                                      UPPC_ExceptionType)) {
11280    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
11281                                             D.getIdentifierLoc());
11282    Invalid = true;
11283  }
11284
11285  IdentifierInfo *II = D.getIdentifier();
11286  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
11287                                             LookupOrdinaryName,
11288                                             ForRedeclaration)) {
11289    // The scope should be freshly made just for us. There is just no way
11290    // it contains any previous declaration.
11291    assert(!S->isDeclScope(PrevDecl));
11292    if (PrevDecl->isTemplateParameter()) {
11293      // Maybe we will complain about the shadowed template parameter.
11294      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11295      PrevDecl = 0;
11296    }
11297  }
11298
11299  if (D.getCXXScopeSpec().isSet() && !Invalid) {
11300    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
11301      << D.getCXXScopeSpec().getRange();
11302    Invalid = true;
11303  }
11304
11305  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
11306                                              D.getLocStart(),
11307                                              D.getIdentifierLoc(),
11308                                              D.getIdentifier());
11309  if (Invalid)
11310    ExDecl->setInvalidDecl();
11311
11312  // Add the exception declaration into this scope.
11313  if (II)
11314    PushOnScopeChains(ExDecl, S);
11315  else
11316    CurContext->addDecl(ExDecl);
11317
11318  ProcessDeclAttributes(S, ExDecl, D);
11319  return ExDecl;
11320}
11321
11322Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11323                                         Expr *AssertExpr,
11324                                         Expr *AssertMessageExpr,
11325                                         SourceLocation RParenLoc) {
11326  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
11327
11328  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
11329    return 0;
11330
11331  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
11332                                      AssertMessage, RParenLoc, false);
11333}
11334
11335Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11336                                         Expr *AssertExpr,
11337                                         StringLiteral *AssertMessage,
11338                                         SourceLocation RParenLoc,
11339                                         bool Failed) {
11340  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
11341      !Failed) {
11342    // In a static_assert-declaration, the constant-expression shall be a
11343    // constant expression that can be contextually converted to bool.
11344    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
11345    if (Converted.isInvalid())
11346      Failed = true;
11347
11348    llvm::APSInt Cond;
11349    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
11350          diag::err_static_assert_expression_is_not_constant,
11351          /*AllowFold=*/false).isInvalid())
11352      Failed = true;
11353
11354    if (!Failed && !Cond) {
11355      SmallString<256> MsgBuffer;
11356      llvm::raw_svector_ostream Msg(MsgBuffer);
11357      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
11358      Diag(StaticAssertLoc, diag::err_static_assert_failed)
11359        << Msg.str() << AssertExpr->getSourceRange();
11360      Failed = true;
11361    }
11362  }
11363
11364  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
11365                                        AssertExpr, AssertMessage, RParenLoc,
11366                                        Failed);
11367
11368  CurContext->addDecl(Decl);
11369  return Decl;
11370}
11371
11372/// \brief Perform semantic analysis of the given friend type declaration.
11373///
11374/// \returns A friend declaration that.
11375FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
11376                                      SourceLocation FriendLoc,
11377                                      TypeSourceInfo *TSInfo) {
11378  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
11379
11380  QualType T = TSInfo->getType();
11381  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
11382
11383  // C++03 [class.friend]p2:
11384  //   An elaborated-type-specifier shall be used in a friend declaration
11385  //   for a class.*
11386  //
11387  //   * The class-key of the elaborated-type-specifier is required.
11388  if (!ActiveTemplateInstantiations.empty()) {
11389    // Do not complain about the form of friend template types during
11390    // template instantiation; we will already have complained when the
11391    // template was declared.
11392  } else {
11393    if (!T->isElaboratedTypeSpecifier()) {
11394      // If we evaluated the type to a record type, suggest putting
11395      // a tag in front.
11396      if (const RecordType *RT = T->getAs<RecordType>()) {
11397        RecordDecl *RD = RT->getDecl();
11398
11399        std::string InsertionText = std::string(" ") + RD->getKindName();
11400
11401        Diag(TypeRange.getBegin(),
11402             getLangOpts().CPlusPlus11 ?
11403               diag::warn_cxx98_compat_unelaborated_friend_type :
11404               diag::ext_unelaborated_friend_type)
11405          << (unsigned) RD->getTagKind()
11406          << T
11407          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
11408                                        InsertionText);
11409      } else {
11410        Diag(FriendLoc,
11411             getLangOpts().CPlusPlus11 ?
11412               diag::warn_cxx98_compat_nonclass_type_friend :
11413               diag::ext_nonclass_type_friend)
11414          << T
11415          << TypeRange;
11416      }
11417    } else if (T->getAs<EnumType>()) {
11418      Diag(FriendLoc,
11419           getLangOpts().CPlusPlus11 ?
11420             diag::warn_cxx98_compat_enum_friend :
11421             diag::ext_enum_friend)
11422        << T
11423        << TypeRange;
11424    }
11425
11426    // C++11 [class.friend]p3:
11427    //   A friend declaration that does not declare a function shall have one
11428    //   of the following forms:
11429    //     friend elaborated-type-specifier ;
11430    //     friend simple-type-specifier ;
11431    //     friend typename-specifier ;
11432    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11433      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11434  }
11435
11436  //   If the type specifier in a friend declaration designates a (possibly
11437  //   cv-qualified) class type, that class is declared as a friend; otherwise,
11438  //   the friend declaration is ignored.
11439  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
11440}
11441
11442/// Handle a friend tag declaration where the scope specifier was
11443/// templated.
11444Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11445                                    unsigned TagSpec, SourceLocation TagLoc,
11446                                    CXXScopeSpec &SS,
11447                                    IdentifierInfo *Name,
11448                                    SourceLocation NameLoc,
11449                                    AttributeList *Attr,
11450                                    MultiTemplateParamsArg TempParamLists) {
11451  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11452
11453  bool isExplicitSpecialization = false;
11454  bool Invalid = false;
11455
11456  if (TemplateParameterList *TemplateParams =
11457          MatchTemplateParametersToScopeSpecifier(
11458              TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11459              isExplicitSpecialization, Invalid)) {
11460    if (TemplateParams->size() > 0) {
11461      // This is a declaration of a class template.
11462      if (Invalid)
11463        return 0;
11464
11465      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11466                                SS, Name, NameLoc, Attr,
11467                                TemplateParams, AS_public,
11468                                /*ModulePrivateLoc=*/SourceLocation(),
11469                                TempParamLists.size() - 1,
11470                                TempParamLists.data()).take();
11471    } else {
11472      // The "template<>" header is extraneous.
11473      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11474        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11475      isExplicitSpecialization = true;
11476    }
11477  }
11478
11479  if (Invalid) return 0;
11480
11481  bool isAllExplicitSpecializations = true;
11482  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11483    if (TempParamLists[I]->size()) {
11484      isAllExplicitSpecializations = false;
11485      break;
11486    }
11487  }
11488
11489  // FIXME: don't ignore attributes.
11490
11491  // If it's explicit specializations all the way down, just forget
11492  // about the template header and build an appropriate non-templated
11493  // friend.  TODO: for source fidelity, remember the headers.
11494  if (isAllExplicitSpecializations) {
11495    if (SS.isEmpty()) {
11496      bool Owned = false;
11497      bool IsDependent = false;
11498      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11499                      Attr, AS_public,
11500                      /*ModulePrivateLoc=*/SourceLocation(),
11501                      MultiTemplateParamsArg(), Owned, IsDependent,
11502                      /*ScopedEnumKWLoc=*/SourceLocation(),
11503                      /*ScopedEnumUsesClassTag=*/false,
11504                      /*UnderlyingType=*/TypeResult());
11505    }
11506
11507    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11508    ElaboratedTypeKeyword Keyword
11509      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11510    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11511                                   *Name, NameLoc);
11512    if (T.isNull())
11513      return 0;
11514
11515    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11516    if (isa<DependentNameType>(T)) {
11517      DependentNameTypeLoc TL =
11518          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11519      TL.setElaboratedKeywordLoc(TagLoc);
11520      TL.setQualifierLoc(QualifierLoc);
11521      TL.setNameLoc(NameLoc);
11522    } else {
11523      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11524      TL.setElaboratedKeywordLoc(TagLoc);
11525      TL.setQualifierLoc(QualifierLoc);
11526      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11527    }
11528
11529    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11530                                            TSI, FriendLoc, TempParamLists);
11531    Friend->setAccess(AS_public);
11532    CurContext->addDecl(Friend);
11533    return Friend;
11534  }
11535
11536  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11537
11538
11539
11540  // Handle the case of a templated-scope friend class.  e.g.
11541  //   template <class T> class A<T>::B;
11542  // FIXME: we don't support these right now.
11543  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11544  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11545  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11546  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11547  TL.setElaboratedKeywordLoc(TagLoc);
11548  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11549  TL.setNameLoc(NameLoc);
11550
11551  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11552                                          TSI, FriendLoc, TempParamLists);
11553  Friend->setAccess(AS_public);
11554  Friend->setUnsupportedFriend(true);
11555  CurContext->addDecl(Friend);
11556  return Friend;
11557}
11558
11559
11560/// Handle a friend type declaration.  This works in tandem with
11561/// ActOnTag.
11562///
11563/// Notes on friend class templates:
11564///
11565/// We generally treat friend class declarations as if they were
11566/// declaring a class.  So, for example, the elaborated type specifier
11567/// in a friend declaration is required to obey the restrictions of a
11568/// class-head (i.e. no typedefs in the scope chain), template
11569/// parameters are required to match up with simple template-ids, &c.
11570/// However, unlike when declaring a template specialization, it's
11571/// okay to refer to a template specialization without an empty
11572/// template parameter declaration, e.g.
11573///   friend class A<T>::B<unsigned>;
11574/// We permit this as a special case; if there are any template
11575/// parameters present at all, require proper matching, i.e.
11576///   template <> template \<class T> friend class A<int>::B;
11577Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11578                                MultiTemplateParamsArg TempParams) {
11579  SourceLocation Loc = DS.getLocStart();
11580
11581  assert(DS.isFriendSpecified());
11582  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11583
11584  // Try to convert the decl specifier to a type.  This works for
11585  // friend templates because ActOnTag never produces a ClassTemplateDecl
11586  // for a TUK_Friend.
11587  Declarator TheDeclarator(DS, Declarator::MemberContext);
11588  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11589  QualType T = TSI->getType();
11590  if (TheDeclarator.isInvalidType())
11591    return 0;
11592
11593  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11594    return 0;
11595
11596  // This is definitely an error in C++98.  It's probably meant to
11597  // be forbidden in C++0x, too, but the specification is just
11598  // poorly written.
11599  //
11600  // The problem is with declarations like the following:
11601  //   template <T> friend A<T>::foo;
11602  // where deciding whether a class C is a friend or not now hinges
11603  // on whether there exists an instantiation of A that causes
11604  // 'foo' to equal C.  There are restrictions on class-heads
11605  // (which we declare (by fiat) elaborated friend declarations to
11606  // be) that makes this tractable.
11607  //
11608  // FIXME: handle "template <> friend class A<T>;", which
11609  // is possibly well-formed?  Who even knows?
11610  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11611    Diag(Loc, diag::err_tagless_friend_type_template)
11612      << DS.getSourceRange();
11613    return 0;
11614  }
11615
11616  // C++98 [class.friend]p1: A friend of a class is a function
11617  //   or class that is not a member of the class . . .
11618  // This is fixed in DR77, which just barely didn't make the C++03
11619  // deadline.  It's also a very silly restriction that seriously
11620  // affects inner classes and which nobody else seems to implement;
11621  // thus we never diagnose it, not even in -pedantic.
11622  //
11623  // But note that we could warn about it: it's always useless to
11624  // friend one of your own members (it's not, however, worthless to
11625  // friend a member of an arbitrary specialization of your template).
11626
11627  Decl *D;
11628  if (unsigned NumTempParamLists = TempParams.size())
11629    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11630                                   NumTempParamLists,
11631                                   TempParams.data(),
11632                                   TSI,
11633                                   DS.getFriendSpecLoc());
11634  else
11635    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11636
11637  if (!D)
11638    return 0;
11639
11640  D->setAccess(AS_public);
11641  CurContext->addDecl(D);
11642
11643  return D;
11644}
11645
11646NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11647                                        MultiTemplateParamsArg TemplateParams) {
11648  const DeclSpec &DS = D.getDeclSpec();
11649
11650  assert(DS.isFriendSpecified());
11651  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11652
11653  SourceLocation Loc = D.getIdentifierLoc();
11654  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11655
11656  // C++ [class.friend]p1
11657  //   A friend of a class is a function or class....
11658  // Note that this sees through typedefs, which is intended.
11659  // It *doesn't* see through dependent types, which is correct
11660  // according to [temp.arg.type]p3:
11661  //   If a declaration acquires a function type through a
11662  //   type dependent on a template-parameter and this causes
11663  //   a declaration that does not use the syntactic form of a
11664  //   function declarator to have a function type, the program
11665  //   is ill-formed.
11666  if (!TInfo->getType()->isFunctionType()) {
11667    Diag(Loc, diag::err_unexpected_friend);
11668
11669    // It might be worthwhile to try to recover by creating an
11670    // appropriate declaration.
11671    return 0;
11672  }
11673
11674  // C++ [namespace.memdef]p3
11675  //  - If a friend declaration in a non-local class first declares a
11676  //    class or function, the friend class or function is a member
11677  //    of the innermost enclosing namespace.
11678  //  - The name of the friend is not found by simple name lookup
11679  //    until a matching declaration is provided in that namespace
11680  //    scope (either before or after the class declaration granting
11681  //    friendship).
11682  //  - If a friend function is called, its name may be found by the
11683  //    name lookup that considers functions from namespaces and
11684  //    classes associated with the types of the function arguments.
11685  //  - When looking for a prior declaration of a class or a function
11686  //    declared as a friend, scopes outside the innermost enclosing
11687  //    namespace scope are not considered.
11688
11689  CXXScopeSpec &SS = D.getCXXScopeSpec();
11690  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11691  DeclarationName Name = NameInfo.getName();
11692  assert(Name);
11693
11694  // Check for unexpanded parameter packs.
11695  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11696      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11697      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11698    return 0;
11699
11700  // The context we found the declaration in, or in which we should
11701  // create the declaration.
11702  DeclContext *DC;
11703  Scope *DCScope = S;
11704  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11705                        ForRedeclaration);
11706
11707  // There are five cases here.
11708  //   - There's no scope specifier and we're in a local class. Only look
11709  //     for functions declared in the immediately-enclosing block scope.
11710  // We recover from invalid scope qualifiers as if they just weren't there.
11711  FunctionDecl *FunctionContainingLocalClass = 0;
11712  if ((SS.isInvalid() || !SS.isSet()) &&
11713      (FunctionContainingLocalClass =
11714           cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
11715    // C++11 [class.friend]p11:
11716    //   If a friend declaration appears in a local class and the name
11717    //   specified is an unqualified name, a prior declaration is
11718    //   looked up without considering scopes that are outside the
11719    //   innermost enclosing non-class scope. For a friend function
11720    //   declaration, if there is no prior declaration, the program is
11721    //   ill-formed.
11722
11723    // Find the innermost enclosing non-class scope. This is the block
11724    // scope containing the local class definition (or for a nested class,
11725    // the outer local class).
11726    DCScope = S->getFnParent();
11727
11728    // Look up the function name in the scope.
11729    Previous.clear(LookupLocalFriendName);
11730    LookupName(Previous, S, /*AllowBuiltinCreation*/false);
11731
11732    if (!Previous.empty()) {
11733      // All possible previous declarations must have the same context:
11734      // either they were declared at block scope or they are members of
11735      // one of the enclosing local classes.
11736      DC = Previous.getRepresentativeDecl()->getDeclContext();
11737    } else {
11738      // This is ill-formed, but provide the context that we would have
11739      // declared the function in, if we were permitted to, for error recovery.
11740      DC = FunctionContainingLocalClass;
11741    }
11742    adjustContextForLocalExternDecl(DC);
11743
11744    // C++ [class.friend]p6:
11745    //   A function can be defined in a friend declaration of a class if and
11746    //   only if the class is a non-local class (9.8), the function name is
11747    //   unqualified, and the function has namespace scope.
11748    if (D.isFunctionDefinition()) {
11749      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11750    }
11751
11752  //   - There's no scope specifier, in which case we just go to the
11753  //     appropriate scope and look for a function or function template
11754  //     there as appropriate.
11755  } else if (SS.isInvalid() || !SS.isSet()) {
11756    // C++11 [namespace.memdef]p3:
11757    //   If the name in a friend declaration is neither qualified nor
11758    //   a template-id and the declaration is a function or an
11759    //   elaborated-type-specifier, the lookup to determine whether
11760    //   the entity has been previously declared shall not consider
11761    //   any scopes outside the innermost enclosing namespace.
11762    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11763
11764    // Find the appropriate context according to the above.
11765    DC = CurContext;
11766
11767    // Skip class contexts.  If someone can cite chapter and verse
11768    // for this behavior, that would be nice --- it's what GCC and
11769    // EDG do, and it seems like a reasonable intent, but the spec
11770    // really only says that checks for unqualified existing
11771    // declarations should stop at the nearest enclosing namespace,
11772    // not that they should only consider the nearest enclosing
11773    // namespace.
11774    while (DC->isRecord())
11775      DC = DC->getParent();
11776
11777    DeclContext *LookupDC = DC;
11778    while (LookupDC->isTransparentContext())
11779      LookupDC = LookupDC->getParent();
11780
11781    while (true) {
11782      LookupQualifiedName(Previous, LookupDC);
11783
11784      if (!Previous.empty()) {
11785        DC = LookupDC;
11786        break;
11787      }
11788
11789      if (isTemplateId) {
11790        if (isa<TranslationUnitDecl>(LookupDC)) break;
11791      } else {
11792        if (LookupDC->isFileContext()) break;
11793      }
11794      LookupDC = LookupDC->getParent();
11795    }
11796
11797    DCScope = getScopeForDeclContext(S, DC);
11798
11799  //   - There's a non-dependent scope specifier, in which case we
11800  //     compute it and do a previous lookup there for a function
11801  //     or function template.
11802  } else if (!SS.getScopeRep()->isDependent()) {
11803    DC = computeDeclContext(SS);
11804    if (!DC) return 0;
11805
11806    if (RequireCompleteDeclContext(SS, DC)) return 0;
11807
11808    LookupQualifiedName(Previous, DC);
11809
11810    // Ignore things found implicitly in the wrong scope.
11811    // TODO: better diagnostics for this case.  Suggesting the right
11812    // qualified scope would be nice...
11813    LookupResult::Filter F = Previous.makeFilter();
11814    while (F.hasNext()) {
11815      NamedDecl *D = F.next();
11816      if (!DC->InEnclosingNamespaceSetOf(
11817              D->getDeclContext()->getRedeclContext()))
11818        F.erase();
11819    }
11820    F.done();
11821
11822    if (Previous.empty()) {
11823      D.setInvalidType();
11824      Diag(Loc, diag::err_qualified_friend_not_found)
11825          << Name << TInfo->getType();
11826      return 0;
11827    }
11828
11829    // C++ [class.friend]p1: A friend of a class is a function or
11830    //   class that is not a member of the class . . .
11831    if (DC->Equals(CurContext))
11832      Diag(DS.getFriendSpecLoc(),
11833           getLangOpts().CPlusPlus11 ?
11834             diag::warn_cxx98_compat_friend_is_member :
11835             diag::err_friend_is_member);
11836
11837    if (D.isFunctionDefinition()) {
11838      // C++ [class.friend]p6:
11839      //   A function can be defined in a friend declaration of a class if and
11840      //   only if the class is a non-local class (9.8), the function name is
11841      //   unqualified, and the function has namespace scope.
11842      SemaDiagnosticBuilder DB
11843        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11844
11845      DB << SS.getScopeRep();
11846      if (DC->isFileContext())
11847        DB << FixItHint::CreateRemoval(SS.getRange());
11848      SS.clear();
11849    }
11850
11851  //   - There's a scope specifier that does not match any template
11852  //     parameter lists, in which case we use some arbitrary context,
11853  //     create a method or method template, and wait for instantiation.
11854  //   - There's a scope specifier that does match some template
11855  //     parameter lists, which we don't handle right now.
11856  } else {
11857    if (D.isFunctionDefinition()) {
11858      // C++ [class.friend]p6:
11859      //   A function can be defined in a friend declaration of a class if and
11860      //   only if the class is a non-local class (9.8), the function name is
11861      //   unqualified, and the function has namespace scope.
11862      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11863        << SS.getScopeRep();
11864    }
11865
11866    DC = CurContext;
11867    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11868  }
11869
11870  if (!DC->isRecord()) {
11871    // This implies that it has to be an operator or function.
11872    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11873        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11874        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11875      Diag(Loc, diag::err_introducing_special_friend) <<
11876        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11877         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11878      return 0;
11879    }
11880  }
11881
11882  // FIXME: This is an egregious hack to cope with cases where the scope stack
11883  // does not contain the declaration context, i.e., in an out-of-line
11884  // definition of a class.
11885  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11886  if (!DCScope) {
11887    FakeDCScope.setEntity(DC);
11888    DCScope = &FakeDCScope;
11889  }
11890
11891  bool AddToScope = true;
11892  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11893                                          TemplateParams, AddToScope);
11894  if (!ND) return 0;
11895
11896  assert(ND->getLexicalDeclContext() == CurContext);
11897
11898  // If we performed typo correction, we might have added a scope specifier
11899  // and changed the decl context.
11900  DC = ND->getDeclContext();
11901
11902  // Add the function declaration to the appropriate lookup tables,
11903  // adjusting the redeclarations list as necessary.  We don't
11904  // want to do this yet if the friending class is dependent.
11905  //
11906  // Also update the scope-based lookup if the target context's
11907  // lookup context is in lexical scope.
11908  if (!CurContext->isDependentContext()) {
11909    DC = DC->getRedeclContext();
11910    DC->makeDeclVisibleInContext(ND);
11911    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11912      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11913  }
11914
11915  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11916                                       D.getIdentifierLoc(), ND,
11917                                       DS.getFriendSpecLoc());
11918  FrD->setAccess(AS_public);
11919  CurContext->addDecl(FrD);
11920
11921  if (ND->isInvalidDecl()) {
11922    FrD->setInvalidDecl();
11923  } else {
11924    if (DC->isRecord()) CheckFriendAccess(ND);
11925
11926    FunctionDecl *FD;
11927    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11928      FD = FTD->getTemplatedDecl();
11929    else
11930      FD = cast<FunctionDecl>(ND);
11931
11932    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11933    // default argument expression, that declaration shall be a definition
11934    // and shall be the only declaration of the function or function
11935    // template in the translation unit.
11936    if (functionDeclHasDefaultArgument(FD)) {
11937      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11938        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11939        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11940      } else if (!D.isFunctionDefinition())
11941        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11942    }
11943
11944    // Mark templated-scope function declarations as unsupported.
11945    if (FD->getNumTemplateParameterLists())
11946      FrD->setUnsupportedFriend(true);
11947  }
11948
11949  return ND;
11950}
11951
11952void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11953  AdjustDeclIfTemplate(Dcl);
11954
11955  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11956  if (!Fn) {
11957    Diag(DelLoc, diag::err_deleted_non_function);
11958    return;
11959  }
11960
11961  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11962    // Don't consider the implicit declaration we generate for explicit
11963    // specializations. FIXME: Do not generate these implicit declarations.
11964    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11965        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11966      Diag(DelLoc, diag::err_deleted_decl_not_first);
11967      Diag(Prev->getLocation(), diag::note_previous_declaration);
11968    }
11969    // If the declaration wasn't the first, we delete the function anyway for
11970    // recovery.
11971    Fn = Fn->getCanonicalDecl();
11972  }
11973
11974  if (Fn->isDeleted())
11975    return;
11976
11977  // See if we're deleting a function which is already known to override a
11978  // non-deleted virtual function.
11979  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11980    bool IssuedDiagnostic = false;
11981    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11982                                        E = MD->end_overridden_methods();
11983         I != E; ++I) {
11984      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11985        if (!IssuedDiagnostic) {
11986          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11987          IssuedDiagnostic = true;
11988        }
11989        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11990      }
11991    }
11992  }
11993
11994  Fn->setDeletedAsWritten();
11995}
11996
11997void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11998  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11999
12000  if (MD) {
12001    if (MD->getParent()->isDependentType()) {
12002      MD->setDefaulted();
12003      MD->setExplicitlyDefaulted();
12004      return;
12005    }
12006
12007    CXXSpecialMember Member = getSpecialMember(MD);
12008    if (Member == CXXInvalid) {
12009      if (!MD->isInvalidDecl())
12010        Diag(DefaultLoc, diag::err_default_special_members);
12011      return;
12012    }
12013
12014    MD->setDefaulted();
12015    MD->setExplicitlyDefaulted();
12016
12017    // If this definition appears within the record, do the checking when
12018    // the record is complete.
12019    const FunctionDecl *Primary = MD;
12020    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
12021      // Find the uninstantiated declaration that actually had the '= default'
12022      // on it.
12023      Pattern->isDefined(Primary);
12024
12025    // If the method was defaulted on its first declaration, we will have
12026    // already performed the checking in CheckCompletedCXXClass. Such a
12027    // declaration doesn't trigger an implicit definition.
12028    if (Primary == Primary->getCanonicalDecl())
12029      return;
12030
12031    CheckExplicitlyDefaultedSpecialMember(MD);
12032
12033    // The exception specification is needed because we are defining the
12034    // function.
12035    ResolveExceptionSpec(DefaultLoc,
12036                         MD->getType()->castAs<FunctionProtoType>());
12037
12038    if (MD->isInvalidDecl())
12039      return;
12040
12041    switch (Member) {
12042    case CXXDefaultConstructor:
12043      DefineImplicitDefaultConstructor(DefaultLoc,
12044                                       cast<CXXConstructorDecl>(MD));
12045      break;
12046    case CXXCopyConstructor:
12047      DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12048      break;
12049    case CXXCopyAssignment:
12050      DefineImplicitCopyAssignment(DefaultLoc, MD);
12051      break;
12052    case CXXDestructor:
12053      DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12054      break;
12055    case CXXMoveConstructor:
12056      DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12057      break;
12058    case CXXMoveAssignment:
12059      DefineImplicitMoveAssignment(DefaultLoc, MD);
12060      break;
12061    case CXXInvalid:
12062      llvm_unreachable("Invalid special member.");
12063    }
12064  } else {
12065    Diag(DefaultLoc, diag::err_default_special_members);
12066  }
12067}
12068
12069static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12070  for (Stmt::child_range CI = S->children(); CI; ++CI) {
12071    Stmt *SubStmt = *CI;
12072    if (!SubStmt)
12073      continue;
12074    if (isa<ReturnStmt>(SubStmt))
12075      Self.Diag(SubStmt->getLocStart(),
12076           diag::err_return_in_constructor_handler);
12077    if (!isa<Expr>(SubStmt))
12078      SearchForReturnInStmt(Self, SubStmt);
12079  }
12080}
12081
12082void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12083  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12084    CXXCatchStmt *Handler = TryBlock->getHandler(I);
12085    SearchForReturnInStmt(*this, Handler);
12086  }
12087}
12088
12089bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12090                                             const CXXMethodDecl *Old) {
12091  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12092  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12093
12094  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12095
12096  // If the calling conventions match, everything is fine
12097  if (NewCC == OldCC)
12098    return false;
12099
12100  Diag(New->getLocation(),
12101       diag::err_conflicting_overriding_cc_attributes)
12102    << New->getDeclName() << New->getType() << Old->getType();
12103  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12104  return true;
12105}
12106
12107bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12108                                             const CXXMethodDecl *Old) {
12109  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
12110  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
12111
12112  if (Context.hasSameType(NewTy, OldTy) ||
12113      NewTy->isDependentType() || OldTy->isDependentType())
12114    return false;
12115
12116  // Check if the return types are covariant
12117  QualType NewClassTy, OldClassTy;
12118
12119  /// Both types must be pointers or references to classes.
12120  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12121    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12122      NewClassTy = NewPT->getPointeeType();
12123      OldClassTy = OldPT->getPointeeType();
12124    }
12125  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12126    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12127      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12128        NewClassTy = NewRT->getPointeeType();
12129        OldClassTy = OldRT->getPointeeType();
12130      }
12131    }
12132  }
12133
12134  // The return types aren't either both pointers or references to a class type.
12135  if (NewClassTy.isNull()) {
12136    Diag(New->getLocation(),
12137         diag::err_different_return_type_for_overriding_virtual_function)
12138      << New->getDeclName() << NewTy << OldTy;
12139    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12140
12141    return true;
12142  }
12143
12144  // C++ [class.virtual]p6:
12145  //   If the return type of D::f differs from the return type of B::f, the
12146  //   class type in the return type of D::f shall be complete at the point of
12147  //   declaration of D::f or shall be the class type D.
12148  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12149    if (!RT->isBeingDefined() &&
12150        RequireCompleteType(New->getLocation(), NewClassTy,
12151                            diag::err_covariant_return_incomplete,
12152                            New->getDeclName()))
12153    return true;
12154  }
12155
12156  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12157    // Check if the new class derives from the old class.
12158    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12159      Diag(New->getLocation(),
12160           diag::err_covariant_return_not_derived)
12161      << New->getDeclName() << NewTy << OldTy;
12162      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12163      return true;
12164    }
12165
12166    // Check if we the conversion from derived to base is valid.
12167    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
12168                    diag::err_covariant_return_inaccessible_base,
12169                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
12170                    // FIXME: Should this point to the return type?
12171                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
12172      // FIXME: this note won't trigger for delayed access control
12173      // diagnostics, and it's impossible to get an undelayed error
12174      // here from access control during the original parse because
12175      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12176      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12177      return true;
12178    }
12179  }
12180
12181  // The qualifiers of the return types must be the same.
12182  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12183    Diag(New->getLocation(),
12184         diag::err_covariant_return_type_different_qualifications)
12185    << New->getDeclName() << NewTy << OldTy;
12186    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12187    return true;
12188  };
12189
12190
12191  // The new class type must have the same or less qualifiers as the old type.
12192  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12193    Diag(New->getLocation(),
12194         diag::err_covariant_return_type_class_type_more_qualified)
12195    << New->getDeclName() << NewTy << OldTy;
12196    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12197    return true;
12198  };
12199
12200  return false;
12201}
12202
12203/// \brief Mark the given method pure.
12204///
12205/// \param Method the method to be marked pure.
12206///
12207/// \param InitRange the source range that covers the "0" initializer.
12208bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
12209  SourceLocation EndLoc = InitRange.getEnd();
12210  if (EndLoc.isValid())
12211    Method->setRangeEnd(EndLoc);
12212
12213  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
12214    Method->setPure();
12215    return false;
12216  }
12217
12218  if (!Method->isInvalidDecl())
12219    Diag(Method->getLocation(), diag::err_non_virtual_pure)
12220      << Method->getDeclName() << InitRange;
12221  return true;
12222}
12223
12224/// \brief Determine whether the given declaration is a static data member.
12225static bool isStaticDataMember(const Decl *D) {
12226  if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
12227    return Var->isStaticDataMember();
12228
12229  return false;
12230}
12231
12232/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
12233/// an initializer for the out-of-line declaration 'Dcl'.  The scope
12234/// is a fresh scope pushed for just this purpose.
12235///
12236/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
12237/// static data member of class X, names should be looked up in the scope of
12238/// class X.
12239void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
12240  // If there is no declaration, there was an error parsing it.
12241  if (D == 0 || D->isInvalidDecl()) return;
12242
12243  // We should only get called for declarations with scope specifiers, like:
12244  //   int foo::bar;
12245  assert(D->isOutOfLine());
12246  EnterDeclaratorContext(S, D->getDeclContext());
12247
12248  // If we are parsing the initializer for a static data member, push a
12249  // new expression evaluation context that is associated with this static
12250  // data member.
12251  if (isStaticDataMember(D))
12252    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
12253}
12254
12255/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
12256/// initializer for the out-of-line declaration 'D'.
12257void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
12258  // If there is no declaration, there was an error parsing it.
12259  if (D == 0 || D->isInvalidDecl()) return;
12260
12261  if (isStaticDataMember(D))
12262    PopExpressionEvaluationContext();
12263
12264  assert(D->isOutOfLine());
12265  ExitDeclaratorContext(S);
12266}
12267
12268/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
12269/// C++ if/switch/while/for statement.
12270/// e.g: "if (int x = f()) {...}"
12271DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
12272  // C++ 6.4p2:
12273  // The declarator shall not specify a function or an array.
12274  // The type-specifier-seq shall not contain typedef and shall not declare a
12275  // new class or enumeration.
12276  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
12277         "Parser allowed 'typedef' as storage class of condition decl.");
12278
12279  Decl *Dcl = ActOnDeclarator(S, D);
12280  if (!Dcl)
12281    return true;
12282
12283  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
12284    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
12285      << D.getSourceRange();
12286    return true;
12287  }
12288
12289  return Dcl;
12290}
12291
12292void Sema::LoadExternalVTableUses() {
12293  if (!ExternalSource)
12294    return;
12295
12296  SmallVector<ExternalVTableUse, 4> VTables;
12297  ExternalSource->ReadUsedVTables(VTables);
12298  SmallVector<VTableUse, 4> NewUses;
12299  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
12300    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
12301      = VTablesUsed.find(VTables[I].Record);
12302    // Even if a definition wasn't required before, it may be required now.
12303    if (Pos != VTablesUsed.end()) {
12304      if (!Pos->second && VTables[I].DefinitionRequired)
12305        Pos->second = true;
12306      continue;
12307    }
12308
12309    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
12310    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
12311  }
12312
12313  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
12314}
12315
12316void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
12317                          bool DefinitionRequired) {
12318  // Ignore any vtable uses in unevaluated operands or for classes that do
12319  // not have a vtable.
12320  if (!Class->isDynamicClass() || Class->isDependentContext() ||
12321      CurContext->isDependentContext() || isUnevaluatedContext())
12322    return;
12323
12324  // Try to insert this class into the map.
12325  LoadExternalVTableUses();
12326  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12327  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
12328    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
12329  if (!Pos.second) {
12330    // If we already had an entry, check to see if we are promoting this vtable
12331    // to required a definition. If so, we need to reappend to the VTableUses
12332    // list, since we may have already processed the first entry.
12333    if (DefinitionRequired && !Pos.first->second) {
12334      Pos.first->second = true;
12335    } else {
12336      // Otherwise, we can early exit.
12337      return;
12338    }
12339  }
12340
12341  // Local classes need to have their virtual members marked
12342  // immediately. For all other classes, we mark their virtual members
12343  // at the end of the translation unit.
12344  if (Class->isLocalClass())
12345    MarkVirtualMembersReferenced(Loc, Class);
12346  else
12347    VTableUses.push_back(std::make_pair(Class, Loc));
12348}
12349
12350bool Sema::DefineUsedVTables() {
12351  LoadExternalVTableUses();
12352  if (VTableUses.empty())
12353    return false;
12354
12355  // Note: The VTableUses vector could grow as a result of marking
12356  // the members of a class as "used", so we check the size each
12357  // time through the loop and prefer indices (which are stable) to
12358  // iterators (which are not).
12359  bool DefinedAnything = false;
12360  for (unsigned I = 0; I != VTableUses.size(); ++I) {
12361    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
12362    if (!Class)
12363      continue;
12364
12365    SourceLocation Loc = VTableUses[I].second;
12366
12367    bool DefineVTable = true;
12368
12369    // If this class has a key function, but that key function is
12370    // defined in another translation unit, we don't need to emit the
12371    // vtable even though we're using it.
12372    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
12373    if (KeyFunction && !KeyFunction->hasBody()) {
12374      // The key function is in another translation unit.
12375      DefineVTable = false;
12376      TemplateSpecializationKind TSK =
12377          KeyFunction->getTemplateSpecializationKind();
12378      assert(TSK != TSK_ExplicitInstantiationDefinition &&
12379             TSK != TSK_ImplicitInstantiation &&
12380             "Instantiations don't have key functions");
12381      (void)TSK;
12382    } else if (!KeyFunction) {
12383      // If we have a class with no key function that is the subject
12384      // of an explicit instantiation declaration, suppress the
12385      // vtable; it will live with the explicit instantiation
12386      // definition.
12387      bool IsExplicitInstantiationDeclaration
12388        = Class->getTemplateSpecializationKind()
12389                                      == TSK_ExplicitInstantiationDeclaration;
12390      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
12391                                 REnd = Class->redecls_end();
12392           R != REnd; ++R) {
12393        TemplateSpecializationKind TSK
12394          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
12395        if (TSK == TSK_ExplicitInstantiationDeclaration)
12396          IsExplicitInstantiationDeclaration = true;
12397        else if (TSK == TSK_ExplicitInstantiationDefinition) {
12398          IsExplicitInstantiationDeclaration = false;
12399          break;
12400        }
12401      }
12402
12403      if (IsExplicitInstantiationDeclaration)
12404        DefineVTable = false;
12405    }
12406
12407    // The exception specifications for all virtual members may be needed even
12408    // if we are not providing an authoritative form of the vtable in this TU.
12409    // We may choose to emit it available_externally anyway.
12410    if (!DefineVTable) {
12411      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
12412      continue;
12413    }
12414
12415    // Mark all of the virtual members of this class as referenced, so
12416    // that we can build a vtable. Then, tell the AST consumer that a
12417    // vtable for this class is required.
12418    DefinedAnything = true;
12419    MarkVirtualMembersReferenced(Loc, Class);
12420    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12421    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
12422
12423    // Optionally warn if we're emitting a weak vtable.
12424    if (Class->isExternallyVisible() &&
12425        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
12426      const FunctionDecl *KeyFunctionDef = 0;
12427      if (!KeyFunction ||
12428          (KeyFunction->hasBody(KeyFunctionDef) &&
12429           KeyFunctionDef->isInlined()))
12430        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12431             TSK_ExplicitInstantiationDefinition
12432             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12433          << Class;
12434    }
12435  }
12436  VTableUses.clear();
12437
12438  return DefinedAnything;
12439}
12440
12441void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12442                                                 const CXXRecordDecl *RD) {
12443  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12444                                      E = RD->method_end(); I != E; ++I)
12445    if ((*I)->isVirtual() && !(*I)->isPure())
12446      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12447}
12448
12449void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12450                                        const CXXRecordDecl *RD) {
12451  // Mark all functions which will appear in RD's vtable as used.
12452  CXXFinalOverriderMap FinalOverriders;
12453  RD->getFinalOverriders(FinalOverriders);
12454  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12455                                            E = FinalOverriders.end();
12456       I != E; ++I) {
12457    for (OverridingMethods::const_iterator OI = I->second.begin(),
12458                                           OE = I->second.end();
12459         OI != OE; ++OI) {
12460      assert(OI->second.size() > 0 && "no final overrider");
12461      CXXMethodDecl *Overrider = OI->second.front().Method;
12462
12463      // C++ [basic.def.odr]p2:
12464      //   [...] A virtual member function is used if it is not pure. [...]
12465      if (!Overrider->isPure())
12466        MarkFunctionReferenced(Loc, Overrider);
12467    }
12468  }
12469
12470  // Only classes that have virtual bases need a VTT.
12471  if (RD->getNumVBases() == 0)
12472    return;
12473
12474  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12475           e = RD->bases_end(); i != e; ++i) {
12476    const CXXRecordDecl *Base =
12477        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12478    if (Base->getNumVBases() == 0)
12479      continue;
12480    MarkVirtualMembersReferenced(Loc, Base);
12481  }
12482}
12483
12484/// SetIvarInitializers - This routine builds initialization ASTs for the
12485/// Objective-C implementation whose ivars need be initialized.
12486void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12487  if (!getLangOpts().CPlusPlus)
12488    return;
12489  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12490    SmallVector<ObjCIvarDecl*, 8> ivars;
12491    CollectIvarsToConstructOrDestruct(OID, ivars);
12492    if (ivars.empty())
12493      return;
12494    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12495    for (unsigned i = 0; i < ivars.size(); i++) {
12496      FieldDecl *Field = ivars[i];
12497      if (Field->isInvalidDecl())
12498        continue;
12499
12500      CXXCtorInitializer *Member;
12501      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12502      InitializationKind InitKind =
12503        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12504
12505      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12506      ExprResult MemberInit =
12507        InitSeq.Perform(*this, InitEntity, InitKind, None);
12508      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12509      // Note, MemberInit could actually come back empty if no initialization
12510      // is required (e.g., because it would call a trivial default constructor)
12511      if (!MemberInit.get() || MemberInit.isInvalid())
12512        continue;
12513
12514      Member =
12515        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12516                                         SourceLocation(),
12517                                         MemberInit.takeAs<Expr>(),
12518                                         SourceLocation());
12519      AllToInit.push_back(Member);
12520
12521      // Be sure that the destructor is accessible and is marked as referenced.
12522      if (const RecordType *RecordTy
12523                  = Context.getBaseElementType(Field->getType())
12524                                                        ->getAs<RecordType>()) {
12525                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12526        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12527          MarkFunctionReferenced(Field->getLocation(), Destructor);
12528          CheckDestructorAccess(Field->getLocation(), Destructor,
12529                            PDiag(diag::err_access_dtor_ivar)
12530                              << Context.getBaseElementType(Field->getType()));
12531        }
12532      }
12533    }
12534    ObjCImplementation->setIvarInitializers(Context,
12535                                            AllToInit.data(), AllToInit.size());
12536  }
12537}
12538
12539static
12540void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12541                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12542                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12543                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12544                           Sema &S) {
12545  if (Ctor->isInvalidDecl())
12546    return;
12547
12548  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12549
12550  // Target may not be determinable yet, for instance if this is a dependent
12551  // call in an uninstantiated template.
12552  if (Target) {
12553    const FunctionDecl *FNTarget = 0;
12554    (void)Target->hasBody(FNTarget);
12555    Target = const_cast<CXXConstructorDecl*>(
12556      cast_or_null<CXXConstructorDecl>(FNTarget));
12557  }
12558
12559  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12560                     // Avoid dereferencing a null pointer here.
12561                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12562
12563  if (!Current.insert(Canonical))
12564    return;
12565
12566  // We know that beyond here, we aren't chaining into a cycle.
12567  if (!Target || !Target->isDelegatingConstructor() ||
12568      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12569    Valid.insert(Current.begin(), Current.end());
12570    Current.clear();
12571  // We've hit a cycle.
12572  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12573             Current.count(TCanonical)) {
12574    // If we haven't diagnosed this cycle yet, do so now.
12575    if (!Invalid.count(TCanonical)) {
12576      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12577             diag::warn_delegating_ctor_cycle)
12578        << Ctor;
12579
12580      // Don't add a note for a function delegating directly to itself.
12581      if (TCanonical != Canonical)
12582        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12583
12584      CXXConstructorDecl *C = Target;
12585      while (C->getCanonicalDecl() != Canonical) {
12586        const FunctionDecl *FNTarget = 0;
12587        (void)C->getTargetConstructor()->hasBody(FNTarget);
12588        assert(FNTarget && "Ctor cycle through bodiless function");
12589
12590        C = const_cast<CXXConstructorDecl*>(
12591          cast<CXXConstructorDecl>(FNTarget));
12592        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12593      }
12594    }
12595
12596    Invalid.insert(Current.begin(), Current.end());
12597    Current.clear();
12598  } else {
12599    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12600  }
12601}
12602
12603
12604void Sema::CheckDelegatingCtorCycles() {
12605  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12606
12607  for (DelegatingCtorDeclsType::iterator
12608         I = DelegatingCtorDecls.begin(ExternalSource),
12609         E = DelegatingCtorDecls.end();
12610       I != E; ++I)
12611    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12612
12613  for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12614                                                         CE = Invalid.end();
12615       CI != CE; ++CI)
12616    (*CI)->setInvalidDecl();
12617}
12618
12619namespace {
12620  /// \brief AST visitor that finds references to the 'this' expression.
12621  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12622    Sema &S;
12623
12624  public:
12625    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12626
12627    bool VisitCXXThisExpr(CXXThisExpr *E) {
12628      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12629        << E->isImplicit();
12630      return false;
12631    }
12632  };
12633}
12634
12635bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12636  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12637  if (!TSInfo)
12638    return false;
12639
12640  TypeLoc TL = TSInfo->getTypeLoc();
12641  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12642  if (!ProtoTL)
12643    return false;
12644
12645  // C++11 [expr.prim.general]p3:
12646  //   [The expression this] shall not appear before the optional
12647  //   cv-qualifier-seq and it shall not appear within the declaration of a
12648  //   static member function (although its type and value category are defined
12649  //   within a static member function as they are within a non-static member
12650  //   function). [ Note: this is because declaration matching does not occur
12651  //  until the complete declarator is known. - end note ]
12652  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12653  FindCXXThisExpr Finder(*this);
12654
12655  // If the return type came after the cv-qualifier-seq, check it now.
12656  if (Proto->hasTrailingReturn() &&
12657      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12658    return true;
12659
12660  // Check the exception specification.
12661  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12662    return true;
12663
12664  return checkThisInStaticMemberFunctionAttributes(Method);
12665}
12666
12667bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12668  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12669  if (!TSInfo)
12670    return false;
12671
12672  TypeLoc TL = TSInfo->getTypeLoc();
12673  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12674  if (!ProtoTL)
12675    return false;
12676
12677  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12678  FindCXXThisExpr Finder(*this);
12679
12680  switch (Proto->getExceptionSpecType()) {
12681  case EST_Uninstantiated:
12682  case EST_Unevaluated:
12683  case EST_BasicNoexcept:
12684  case EST_DynamicNone:
12685  case EST_MSAny:
12686  case EST_None:
12687    break;
12688
12689  case EST_ComputedNoexcept:
12690    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12691      return true;
12692
12693  case EST_Dynamic:
12694    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12695         EEnd = Proto->exception_end();
12696         E != EEnd; ++E) {
12697      if (!Finder.TraverseType(*E))
12698        return true;
12699    }
12700    break;
12701  }
12702
12703  return false;
12704}
12705
12706bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12707  FindCXXThisExpr Finder(*this);
12708
12709  // Check attributes.
12710  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12711       A != AEnd; ++A) {
12712    // FIXME: This should be emitted by tblgen.
12713    Expr *Arg = 0;
12714    ArrayRef<Expr *> Args;
12715    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12716      Arg = G->getArg();
12717    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12718      Arg = G->getArg();
12719    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12720      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12721    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12722      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12723    else if (ExclusiveLockFunctionAttr *ELF
12724               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12725      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12726    else if (SharedLockFunctionAttr *SLF
12727               = dyn_cast<SharedLockFunctionAttr>(*A))
12728      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12729    else if (ExclusiveTrylockFunctionAttr *ETLF
12730               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12731      Arg = ETLF->getSuccessValue();
12732      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12733    } else if (SharedTrylockFunctionAttr *STLF
12734                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12735      Arg = STLF->getSuccessValue();
12736      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12737    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12738      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12739    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12740      Arg = LR->getArg();
12741    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12742      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12743    else if (ExclusiveLocksRequiredAttr *ELR
12744               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12745      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12746    else if (SharedLocksRequiredAttr *SLR
12747               = dyn_cast<SharedLocksRequiredAttr>(*A))
12748      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12749
12750    if (Arg && !Finder.TraverseStmt(Arg))
12751      return true;
12752
12753    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12754      if (!Finder.TraverseStmt(Args[I]))
12755        return true;
12756    }
12757  }
12758
12759  return false;
12760}
12761
12762void
12763Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12764                                  ArrayRef<ParsedType> DynamicExceptions,
12765                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12766                                  Expr *NoexceptExpr,
12767                                  SmallVectorImpl<QualType> &Exceptions,
12768                                  FunctionProtoType::ExtProtoInfo &EPI) {
12769  Exceptions.clear();
12770  EPI.ExceptionSpecType = EST;
12771  if (EST == EST_Dynamic) {
12772    Exceptions.reserve(DynamicExceptions.size());
12773    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12774      // FIXME: Preserve type source info.
12775      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12776
12777      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12778      collectUnexpandedParameterPacks(ET, Unexpanded);
12779      if (!Unexpanded.empty()) {
12780        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12781                                         UPPC_ExceptionType,
12782                                         Unexpanded);
12783        continue;
12784      }
12785
12786      // Check that the type is valid for an exception spec, and
12787      // drop it if not.
12788      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12789        Exceptions.push_back(ET);
12790    }
12791    EPI.NumExceptions = Exceptions.size();
12792    EPI.Exceptions = Exceptions.data();
12793    return;
12794  }
12795
12796  if (EST == EST_ComputedNoexcept) {
12797    // If an error occurred, there's no expression here.
12798    if (NoexceptExpr) {
12799      assert((NoexceptExpr->isTypeDependent() ||
12800              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12801              Context.BoolTy) &&
12802             "Parser should have made sure that the expression is boolean");
12803      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12804        EPI.ExceptionSpecType = EST_BasicNoexcept;
12805        return;
12806      }
12807
12808      if (!NoexceptExpr->isValueDependent())
12809        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12810                         diag::err_noexcept_needs_constant_expression,
12811                         /*AllowFold*/ false).take();
12812      EPI.NoexceptExpr = NoexceptExpr;
12813    }
12814    return;
12815  }
12816}
12817
12818/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12819Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12820  // Implicitly declared functions (e.g. copy constructors) are
12821  // __host__ __device__
12822  if (D->isImplicit())
12823    return CFT_HostDevice;
12824
12825  if (D->hasAttr<CUDAGlobalAttr>())
12826    return CFT_Global;
12827
12828  if (D->hasAttr<CUDADeviceAttr>()) {
12829    if (D->hasAttr<CUDAHostAttr>())
12830      return CFT_HostDevice;
12831    return CFT_Device;
12832  }
12833
12834  return CFT_Host;
12835}
12836
12837bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12838                           CUDAFunctionTarget CalleeTarget) {
12839  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12840  // Callable from the device only."
12841  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12842    return true;
12843
12844  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12845  // Callable from the host only."
12846  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12847  // Callable from the host only."
12848  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12849      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12850    return true;
12851
12852  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12853    return true;
12854
12855  return false;
12856}
12857
12858/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12859///
12860MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12861                                       SourceLocation DeclStart,
12862                                       Declarator &D, Expr *BitWidth,
12863                                       InClassInitStyle InitStyle,
12864                                       AccessSpecifier AS,
12865                                       AttributeList *MSPropertyAttr) {
12866  IdentifierInfo *II = D.getIdentifier();
12867  if (!II) {
12868    Diag(DeclStart, diag::err_anonymous_property);
12869    return NULL;
12870  }
12871  SourceLocation Loc = D.getIdentifierLoc();
12872
12873  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12874  QualType T = TInfo->getType();
12875  if (getLangOpts().CPlusPlus) {
12876    CheckExtraCXXDefaultArguments(D);
12877
12878    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12879                                        UPPC_DataMemberType)) {
12880      D.setInvalidType();
12881      T = Context.IntTy;
12882      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12883    }
12884  }
12885
12886  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12887
12888  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12889    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12890         diag::err_invalid_thread)
12891      << DeclSpec::getSpecifierName(TSCS);
12892
12893  // Check to see if this name was declared as a member previously
12894  NamedDecl *PrevDecl = 0;
12895  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12896  LookupName(Previous, S);
12897  switch (Previous.getResultKind()) {
12898  case LookupResult::Found:
12899  case LookupResult::FoundUnresolvedValue:
12900    PrevDecl = Previous.getAsSingle<NamedDecl>();
12901    break;
12902
12903  case LookupResult::FoundOverloaded:
12904    PrevDecl = Previous.getRepresentativeDecl();
12905    break;
12906
12907  case LookupResult::NotFound:
12908  case LookupResult::NotFoundInCurrentInstantiation:
12909  case LookupResult::Ambiguous:
12910    break;
12911  }
12912
12913  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12914    // Maybe we will complain about the shadowed template parameter.
12915    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12916    // Just pretend that we didn't see the previous declaration.
12917    PrevDecl = 0;
12918  }
12919
12920  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12921    PrevDecl = 0;
12922
12923  SourceLocation TSSL = D.getLocStart();
12924  MSPropertyDecl *NewPD;
12925  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12926  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12927                                       II, T, TInfo, TSSL,
12928                                       Data.GetterId, Data.SetterId);
12929  ProcessDeclAttributes(TUScope, NewPD, D);
12930  NewPD->setAccess(AS);
12931
12932  if (NewPD->isInvalidDecl())
12933    Record->setInvalidDecl();
12934
12935  if (D.getDeclSpec().isModulePrivateSpecified())
12936    NewPD->setModulePrivate();
12937
12938  if (NewPD->isInvalidDecl() && PrevDecl) {
12939    // Don't introduce NewFD into scope; there's already something
12940    // with the same name in the same scope.
12941  } else if (II) {
12942    PushOnScopeChains(NewPD, S);
12943  } else
12944    Record->addDecl(NewPD);
12945
12946  return NewPD;
12947}
12948