SemaDeclCXX.cpp revision 0b0ca4724d1c05dc0dd1d6e5aff4c8a439cbb1a2
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407/// MergeCXXFunctionDecl - Merge two declarations of the same C++
408/// function, once we already know that they have the same
409/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
410/// error, false otherwise.
411bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
412                                Scope *S) {
413  bool Invalid = false;
414
415  // C++ [dcl.fct.default]p4:
416  //   For non-template functions, default arguments can be added in
417  //   later declarations of a function in the same
418  //   scope. Declarations in different scopes have completely
419  //   distinct sets of default arguments. That is, declarations in
420  //   inner scopes do not acquire default arguments from
421  //   declarations in outer scopes, and vice versa. In a given
422  //   function declaration, all parameters subsequent to a
423  //   parameter with a default argument shall have default
424  //   arguments supplied in this or previous declarations. A
425  //   default argument shall not be redefined by a later
426  //   declaration (not even to the same value).
427  //
428  // C++ [dcl.fct.default]p6:
429  //   Except for member functions of class templates, the default arguments
430  //   in a member function definition that appears outside of the class
431  //   definition are added to the set of default arguments provided by the
432  //   member function declaration in the class definition.
433  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
434    ParmVarDecl *OldParam = Old->getParamDecl(p);
435    ParmVarDecl *NewParam = New->getParamDecl(p);
436
437    bool OldParamHasDfl = OldParam->hasDefaultArg();
438    bool NewParamHasDfl = NewParam->hasDefaultArg();
439
440    NamedDecl *ND = Old;
441    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
442      // Ignore default parameters of old decl if they are not in
443      // the same scope.
444      OldParamHasDfl = false;
445
446    if (OldParamHasDfl && NewParamHasDfl) {
447
448      unsigned DiagDefaultParamID =
449        diag::err_param_default_argument_redefinition;
450
451      // MSVC accepts that default parameters be redefined for member functions
452      // of template class. The new default parameter's value is ignored.
453      Invalid = true;
454      if (getLangOpts().MicrosoftExt) {
455        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
456        if (MD && MD->getParent()->getDescribedClassTemplate()) {
457          // Merge the old default argument into the new parameter.
458          NewParam->setHasInheritedDefaultArg();
459          if (OldParam->hasUninstantiatedDefaultArg())
460            NewParam->setUninstantiatedDefaultArg(
461                                      OldParam->getUninstantiatedDefaultArg());
462          else
463            NewParam->setDefaultArg(OldParam->getInit());
464          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
465          Invalid = false;
466        }
467      }
468
469      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
470      // hint here. Alternatively, we could walk the type-source information
471      // for NewParam to find the last source location in the type... but it
472      // isn't worth the effort right now. This is the kind of test case that
473      // is hard to get right:
474      //   int f(int);
475      //   void g(int (*fp)(int) = f);
476      //   void g(int (*fp)(int) = &f);
477      Diag(NewParam->getLocation(), DiagDefaultParamID)
478        << NewParam->getDefaultArgRange();
479
480      // Look for the function declaration where the default argument was
481      // actually written, which may be a declaration prior to Old.
482      for (FunctionDecl *Older = Old->getPreviousDecl();
483           Older; Older = Older->getPreviousDecl()) {
484        if (!Older->getParamDecl(p)->hasDefaultArg())
485          break;
486
487        OldParam = Older->getParamDecl(p);
488      }
489
490      Diag(OldParam->getLocation(), diag::note_previous_definition)
491        << OldParam->getDefaultArgRange();
492    } else if (OldParamHasDfl) {
493      // Merge the old default argument into the new parameter.
494      // It's important to use getInit() here;  getDefaultArg()
495      // strips off any top-level ExprWithCleanups.
496      NewParam->setHasInheritedDefaultArg();
497      if (OldParam->hasUninstantiatedDefaultArg())
498        NewParam->setUninstantiatedDefaultArg(
499                                      OldParam->getUninstantiatedDefaultArg());
500      else
501        NewParam->setDefaultArg(OldParam->getInit());
502    } else if (NewParamHasDfl) {
503      if (New->getDescribedFunctionTemplate()) {
504        // Paragraph 4, quoted above, only applies to non-template functions.
505        Diag(NewParam->getLocation(),
506             diag::err_param_default_argument_template_redecl)
507          << NewParam->getDefaultArgRange();
508        Diag(Old->getLocation(), diag::note_template_prev_declaration)
509          << false;
510      } else if (New->getTemplateSpecializationKind()
511                   != TSK_ImplicitInstantiation &&
512                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
513        // C++ [temp.expr.spec]p21:
514        //   Default function arguments shall not be specified in a declaration
515        //   or a definition for one of the following explicit specializations:
516        //     - the explicit specialization of a function template;
517        //     - the explicit specialization of a member function template;
518        //     - the explicit specialization of a member function of a class
519        //       template where the class template specialization to which the
520        //       member function specialization belongs is implicitly
521        //       instantiated.
522        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
523          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
524          << New->getDeclName()
525          << NewParam->getDefaultArgRange();
526      } else if (New->getDeclContext()->isDependentContext()) {
527        // C++ [dcl.fct.default]p6 (DR217):
528        //   Default arguments for a member function of a class template shall
529        //   be specified on the initial declaration of the member function
530        //   within the class template.
531        //
532        // Reading the tea leaves a bit in DR217 and its reference to DR205
533        // leads me to the conclusion that one cannot add default function
534        // arguments for an out-of-line definition of a member function of a
535        // dependent type.
536        int WhichKind = 2;
537        if (CXXRecordDecl *Record
538              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
539          if (Record->getDescribedClassTemplate())
540            WhichKind = 0;
541          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
542            WhichKind = 1;
543          else
544            WhichKind = 2;
545        }
546
547        Diag(NewParam->getLocation(),
548             diag::err_param_default_argument_member_template_redecl)
549          << WhichKind
550          << NewParam->getDefaultArgRange();
551      }
552    }
553  }
554
555  // DR1344: If a default argument is added outside a class definition and that
556  // default argument makes the function a special member function, the program
557  // is ill-formed. This can only happen for constructors.
558  if (isa<CXXConstructorDecl>(New) &&
559      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
560    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
561                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
562    if (NewSM != OldSM) {
563      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
564      assert(NewParam->hasDefaultArg());
565      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
566        << NewParam->getDefaultArgRange() << NewSM;
567      Diag(Old->getLocation(), diag::note_previous_declaration);
568    }
569  }
570
571  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
572  // template has a constexpr specifier then all its declarations shall
573  // contain the constexpr specifier.
574  if (New->isConstexpr() != Old->isConstexpr()) {
575    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
576      << New << New->isConstexpr();
577    Diag(Old->getLocation(), diag::note_previous_declaration);
578    Invalid = true;
579  }
580
581  if (CheckEquivalentExceptionSpec(Old, New))
582    Invalid = true;
583
584  return Invalid;
585}
586
587/// \brief Merge the exception specifications of two variable declarations.
588///
589/// This is called when there's a redeclaration of a VarDecl. The function
590/// checks if the redeclaration might have an exception specification and
591/// validates compatibility and merges the specs if necessary.
592void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
593  // Shortcut if exceptions are disabled.
594  if (!getLangOpts().CXXExceptions)
595    return;
596
597  assert(Context.hasSameType(New->getType(), Old->getType()) &&
598         "Should only be called if types are otherwise the same.");
599
600  QualType NewType = New->getType();
601  QualType OldType = Old->getType();
602
603  // We're only interested in pointers and references to functions, as well
604  // as pointers to member functions.
605  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
606    NewType = R->getPointeeType();
607    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
608  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
609    NewType = P->getPointeeType();
610    OldType = OldType->getAs<PointerType>()->getPointeeType();
611  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
612    NewType = M->getPointeeType();
613    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
614  }
615
616  if (!NewType->isFunctionProtoType())
617    return;
618
619  // There's lots of special cases for functions. For function pointers, system
620  // libraries are hopefully not as broken so that we don't need these
621  // workarounds.
622  if (CheckEquivalentExceptionSpec(
623        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
624        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
625    New->setInvalidDecl();
626  }
627}
628
629/// CheckCXXDefaultArguments - Verify that the default arguments for a
630/// function declaration are well-formed according to C++
631/// [dcl.fct.default].
632void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
633  unsigned NumParams = FD->getNumParams();
634  unsigned p;
635
636  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
637                  isa<CXXMethodDecl>(FD) &&
638                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
639
640  // Find first parameter with a default argument
641  for (p = 0; p < NumParams; ++p) {
642    ParmVarDecl *Param = FD->getParamDecl(p);
643    if (Param->hasDefaultArg()) {
644      // C++11 [expr.prim.lambda]p5:
645      //   [...] Default arguments (8.3.6) shall not be specified in the
646      //   parameter-declaration-clause of a lambda-declarator.
647      //
648      // FIXME: Core issue 974 strikes this sentence, we only provide an
649      // extension warning.
650      if (IsLambda)
651        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
652          << Param->getDefaultArgRange();
653      break;
654    }
655  }
656
657  // C++ [dcl.fct.default]p4:
658  //   In a given function declaration, all parameters
659  //   subsequent to a parameter with a default argument shall
660  //   have default arguments supplied in this or previous
661  //   declarations. A default argument shall not be redefined
662  //   by a later declaration (not even to the same value).
663  unsigned LastMissingDefaultArg = 0;
664  for (; p < NumParams; ++p) {
665    ParmVarDecl *Param = FD->getParamDecl(p);
666    if (!Param->hasDefaultArg()) {
667      if (Param->isInvalidDecl())
668        /* We already complained about this parameter. */;
669      else if (Param->getIdentifier())
670        Diag(Param->getLocation(),
671             diag::err_param_default_argument_missing_name)
672          << Param->getIdentifier();
673      else
674        Diag(Param->getLocation(),
675             diag::err_param_default_argument_missing);
676
677      LastMissingDefaultArg = p;
678    }
679  }
680
681  if (LastMissingDefaultArg > 0) {
682    // Some default arguments were missing. Clear out all of the
683    // default arguments up to (and including) the last missing
684    // default argument, so that we leave the function parameters
685    // in a semantically valid state.
686    for (p = 0; p <= LastMissingDefaultArg; ++p) {
687      ParmVarDecl *Param = FD->getParamDecl(p);
688      if (Param->hasDefaultArg()) {
689        Param->setDefaultArg(0);
690      }
691    }
692  }
693}
694
695// CheckConstexprParameterTypes - Check whether a function's parameter types
696// are all literal types. If so, return true. If not, produce a suitable
697// diagnostic and return false.
698static bool CheckConstexprParameterTypes(Sema &SemaRef,
699                                         const FunctionDecl *FD) {
700  unsigned ArgIndex = 0;
701  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
702  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
703       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
704    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
705    SourceLocation ParamLoc = PD->getLocation();
706    if (!(*i)->isDependentType() &&
707        SemaRef.RequireLiteralType(ParamLoc, *i,
708                                   diag::err_constexpr_non_literal_param,
709                                   ArgIndex+1, PD->getSourceRange(),
710                                   isa<CXXConstructorDecl>(FD)))
711      return false;
712  }
713  return true;
714}
715
716/// \brief Get diagnostic %select index for tag kind for
717/// record diagnostic message.
718/// WARNING: Indexes apply to particular diagnostics only!
719///
720/// \returns diagnostic %select index.
721static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
722  switch (Tag) {
723  case TTK_Struct: return 0;
724  case TTK_Interface: return 1;
725  case TTK_Class:  return 2;
726  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
727  }
728}
729
730// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
731// the requirements of a constexpr function definition or a constexpr
732// constructor definition. If so, return true. If not, produce appropriate
733// diagnostics and return false.
734//
735// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
736bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
737  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
738  if (MD && MD->isInstance()) {
739    // C++11 [dcl.constexpr]p4:
740    //  The definition of a constexpr constructor shall satisfy the following
741    //  constraints:
742    //  - the class shall not have any virtual base classes;
743    const CXXRecordDecl *RD = MD->getParent();
744    if (RD->getNumVBases()) {
745      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
746        << isa<CXXConstructorDecl>(NewFD)
747        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
748      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
749             E = RD->vbases_end(); I != E; ++I)
750        Diag(I->getLocStart(),
751             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
752      return false;
753    }
754  }
755
756  if (!isa<CXXConstructorDecl>(NewFD)) {
757    // C++11 [dcl.constexpr]p3:
758    //  The definition of a constexpr function shall satisfy the following
759    //  constraints:
760    // - it shall not be virtual;
761    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
762    if (Method && Method->isVirtual()) {
763      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
764
765      // If it's not obvious why this function is virtual, find an overridden
766      // function which uses the 'virtual' keyword.
767      const CXXMethodDecl *WrittenVirtual = Method;
768      while (!WrittenVirtual->isVirtualAsWritten())
769        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
770      if (WrittenVirtual != Method)
771        Diag(WrittenVirtual->getLocation(),
772             diag::note_overridden_virtual_function);
773      return false;
774    }
775
776    // - its return type shall be a literal type;
777    QualType RT = NewFD->getResultType();
778    if (!RT->isDependentType() &&
779        RequireLiteralType(NewFD->getLocation(), RT,
780                           diag::err_constexpr_non_literal_return))
781      return false;
782  }
783
784  // - each of its parameter types shall be a literal type;
785  if (!CheckConstexprParameterTypes(*this, NewFD))
786    return false;
787
788  return true;
789}
790
791/// Check the given declaration statement is legal within a constexpr function
792/// body. C++0x [dcl.constexpr]p3,p4.
793///
794/// \return true if the body is OK, false if we have diagnosed a problem.
795static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
796                                   DeclStmt *DS) {
797  // C++0x [dcl.constexpr]p3 and p4:
798  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
799  //  contain only
800  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
801         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
802    switch ((*DclIt)->getKind()) {
803    case Decl::StaticAssert:
804    case Decl::Using:
805    case Decl::UsingShadow:
806    case Decl::UsingDirective:
807    case Decl::UnresolvedUsingTypename:
808      //   - static_assert-declarations
809      //   - using-declarations,
810      //   - using-directives,
811      continue;
812
813    case Decl::Typedef:
814    case Decl::TypeAlias: {
815      //   - typedef declarations and alias-declarations that do not define
816      //     classes or enumerations,
817      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
818      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
819        // Don't allow variably-modified types in constexpr functions.
820        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
821        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
822          << TL.getSourceRange() << TL.getType()
823          << isa<CXXConstructorDecl>(Dcl);
824        return false;
825      }
826      continue;
827    }
828
829    case Decl::Enum:
830    case Decl::CXXRecord:
831      // As an extension, we allow the declaration (but not the definition) of
832      // classes and enumerations in all declarations, not just in typedef and
833      // alias declarations.
834      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
835        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
836          << isa<CXXConstructorDecl>(Dcl);
837        return false;
838      }
839      continue;
840
841    case Decl::Var:
842      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
843        << isa<CXXConstructorDecl>(Dcl);
844      return false;
845
846    default:
847      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
848        << isa<CXXConstructorDecl>(Dcl);
849      return false;
850    }
851  }
852
853  return true;
854}
855
856/// Check that the given field is initialized within a constexpr constructor.
857///
858/// \param Dcl The constexpr constructor being checked.
859/// \param Field The field being checked. This may be a member of an anonymous
860///        struct or union nested within the class being checked.
861/// \param Inits All declarations, including anonymous struct/union members and
862///        indirect members, for which any initialization was provided.
863/// \param Diagnosed Set to true if an error is produced.
864static void CheckConstexprCtorInitializer(Sema &SemaRef,
865                                          const FunctionDecl *Dcl,
866                                          FieldDecl *Field,
867                                          llvm::SmallSet<Decl*, 16> &Inits,
868                                          bool &Diagnosed) {
869  if (Field->isUnnamedBitfield())
870    return;
871
872  if (Field->isAnonymousStructOrUnion() &&
873      Field->getType()->getAsCXXRecordDecl()->isEmpty())
874    return;
875
876  if (!Inits.count(Field)) {
877    if (!Diagnosed) {
878      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
879      Diagnosed = true;
880    }
881    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
882  } else if (Field->isAnonymousStructOrUnion()) {
883    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
884    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
885         I != E; ++I)
886      // If an anonymous union contains an anonymous struct of which any member
887      // is initialized, all members must be initialized.
888      if (!RD->isUnion() || Inits.count(*I))
889        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
890  }
891}
892
893/// Check the body for the given constexpr function declaration only contains
894/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
895///
896/// \return true if the body is OK, false if we have diagnosed a problem.
897bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
898  if (isa<CXXTryStmt>(Body)) {
899    // C++11 [dcl.constexpr]p3:
900    //  The definition of a constexpr function shall satisfy the following
901    //  constraints: [...]
902    // - its function-body shall be = delete, = default, or a
903    //   compound-statement
904    //
905    // C++11 [dcl.constexpr]p4:
906    //  In the definition of a constexpr constructor, [...]
907    // - its function-body shall not be a function-try-block;
908    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
909      << isa<CXXConstructorDecl>(Dcl);
910    return false;
911  }
912
913  // - its function-body shall be [...] a compound-statement that contains only
914  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
915
916  SmallVector<SourceLocation, 4> ReturnStmts;
917  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
918         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
919    switch ((*BodyIt)->getStmtClass()) {
920    case Stmt::NullStmtClass:
921      //   - null statements,
922      continue;
923
924    case Stmt::DeclStmtClass:
925      //   - static_assert-declarations
926      //   - using-declarations,
927      //   - using-directives,
928      //   - typedef declarations and alias-declarations that do not define
929      //     classes or enumerations,
930      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
931        return false;
932      continue;
933
934    case Stmt::ReturnStmtClass:
935      //   - and exactly one return statement;
936      if (isa<CXXConstructorDecl>(Dcl))
937        break;
938
939      ReturnStmts.push_back((*BodyIt)->getLocStart());
940      continue;
941
942    default:
943      break;
944    }
945
946    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
947      << isa<CXXConstructorDecl>(Dcl);
948    return false;
949  }
950
951  if (const CXXConstructorDecl *Constructor
952        = dyn_cast<CXXConstructorDecl>(Dcl)) {
953    const CXXRecordDecl *RD = Constructor->getParent();
954    // DR1359:
955    // - every non-variant non-static data member and base class sub-object
956    //   shall be initialized;
957    // - if the class is a non-empty union, or for each non-empty anonymous
958    //   union member of a non-union class, exactly one non-static data member
959    //   shall be initialized;
960    if (RD->isUnion()) {
961      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
962        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
963        return false;
964      }
965    } else if (!Constructor->isDependentContext() &&
966               !Constructor->isDelegatingConstructor()) {
967      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
968
969      // Skip detailed checking if we have enough initializers, and we would
970      // allow at most one initializer per member.
971      bool AnyAnonStructUnionMembers = false;
972      unsigned Fields = 0;
973      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
974           E = RD->field_end(); I != E; ++I, ++Fields) {
975        if (I->isAnonymousStructOrUnion()) {
976          AnyAnonStructUnionMembers = true;
977          break;
978        }
979      }
980      if (AnyAnonStructUnionMembers ||
981          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
982        // Check initialization of non-static data members. Base classes are
983        // always initialized so do not need to be checked. Dependent bases
984        // might not have initializers in the member initializer list.
985        llvm::SmallSet<Decl*, 16> Inits;
986        for (CXXConstructorDecl::init_const_iterator
987               I = Constructor->init_begin(), E = Constructor->init_end();
988             I != E; ++I) {
989          if (FieldDecl *FD = (*I)->getMember())
990            Inits.insert(FD);
991          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
992            Inits.insert(ID->chain_begin(), ID->chain_end());
993        }
994
995        bool Diagnosed = false;
996        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
997             E = RD->field_end(); I != E; ++I)
998          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
999        if (Diagnosed)
1000          return false;
1001      }
1002    }
1003  } else {
1004    if (ReturnStmts.empty()) {
1005      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
1006      return false;
1007    }
1008    if (ReturnStmts.size() > 1) {
1009      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
1010      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1011        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1012      return false;
1013    }
1014  }
1015
1016  // C++11 [dcl.constexpr]p5:
1017  //   if no function argument values exist such that the function invocation
1018  //   substitution would produce a constant expression, the program is
1019  //   ill-formed; no diagnostic required.
1020  // C++11 [dcl.constexpr]p3:
1021  //   - every constructor call and implicit conversion used in initializing the
1022  //     return value shall be one of those allowed in a constant expression.
1023  // C++11 [dcl.constexpr]p4:
1024  //   - every constructor involved in initializing non-static data members and
1025  //     base class sub-objects shall be a constexpr constructor.
1026  SmallVector<PartialDiagnosticAt, 8> Diags;
1027  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1028    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1029      << isa<CXXConstructorDecl>(Dcl);
1030    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1031      Diag(Diags[I].first, Diags[I].second);
1032    // Don't return false here: we allow this for compatibility in
1033    // system headers.
1034  }
1035
1036  return true;
1037}
1038
1039/// isCurrentClassName - Determine whether the identifier II is the
1040/// name of the class type currently being defined. In the case of
1041/// nested classes, this will only return true if II is the name of
1042/// the innermost class.
1043bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1044                              const CXXScopeSpec *SS) {
1045  assert(getLangOpts().CPlusPlus && "No class names in C!");
1046
1047  CXXRecordDecl *CurDecl;
1048  if (SS && SS->isSet() && !SS->isInvalid()) {
1049    DeclContext *DC = computeDeclContext(*SS, true);
1050    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1051  } else
1052    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1053
1054  if (CurDecl && CurDecl->getIdentifier())
1055    return &II == CurDecl->getIdentifier();
1056  else
1057    return false;
1058}
1059
1060/// \brief Determine whether the given class is a base class of the given
1061/// class, including looking at dependent bases.
1062static bool findCircularInheritance(const CXXRecordDecl *Class,
1063                                    const CXXRecordDecl *Current) {
1064  SmallVector<const CXXRecordDecl*, 8> Queue;
1065
1066  Class = Class->getCanonicalDecl();
1067  while (true) {
1068    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1069                                                  E = Current->bases_end();
1070         I != E; ++I) {
1071      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1072      if (!Base)
1073        continue;
1074
1075      Base = Base->getDefinition();
1076      if (!Base)
1077        continue;
1078
1079      if (Base->getCanonicalDecl() == Class)
1080        return true;
1081
1082      Queue.push_back(Base);
1083    }
1084
1085    if (Queue.empty())
1086      return false;
1087
1088    Current = Queue.back();
1089    Queue.pop_back();
1090  }
1091
1092  return false;
1093}
1094
1095/// \brief Check the validity of a C++ base class specifier.
1096///
1097/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1098/// and returns NULL otherwise.
1099CXXBaseSpecifier *
1100Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1101                         SourceRange SpecifierRange,
1102                         bool Virtual, AccessSpecifier Access,
1103                         TypeSourceInfo *TInfo,
1104                         SourceLocation EllipsisLoc) {
1105  QualType BaseType = TInfo->getType();
1106
1107  // C++ [class.union]p1:
1108  //   A union shall not have base classes.
1109  if (Class->isUnion()) {
1110    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1111      << SpecifierRange;
1112    return 0;
1113  }
1114
1115  if (EllipsisLoc.isValid() &&
1116      !TInfo->getType()->containsUnexpandedParameterPack()) {
1117    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1118      << TInfo->getTypeLoc().getSourceRange();
1119    EllipsisLoc = SourceLocation();
1120  }
1121
1122  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1123
1124  if (BaseType->isDependentType()) {
1125    // Make sure that we don't have circular inheritance among our dependent
1126    // bases. For non-dependent bases, the check for completeness below handles
1127    // this.
1128    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1129      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1130          ((BaseDecl = BaseDecl->getDefinition()) &&
1131           findCircularInheritance(Class, BaseDecl))) {
1132        Diag(BaseLoc, diag::err_circular_inheritance)
1133          << BaseType << Context.getTypeDeclType(Class);
1134
1135        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1136          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1137            << BaseType;
1138
1139        return 0;
1140      }
1141    }
1142
1143    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1144                                          Class->getTagKind() == TTK_Class,
1145                                          Access, TInfo, EllipsisLoc);
1146  }
1147
1148  // Base specifiers must be record types.
1149  if (!BaseType->isRecordType()) {
1150    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1151    return 0;
1152  }
1153
1154  // C++ [class.union]p1:
1155  //   A union shall not be used as a base class.
1156  if (BaseType->isUnionType()) {
1157    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1158    return 0;
1159  }
1160
1161  // C++ [class.derived]p2:
1162  //   The class-name in a base-specifier shall not be an incompletely
1163  //   defined class.
1164  if (RequireCompleteType(BaseLoc, BaseType,
1165                          diag::err_incomplete_base_class, SpecifierRange)) {
1166    Class->setInvalidDecl();
1167    return 0;
1168  }
1169
1170  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1171  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1172  assert(BaseDecl && "Record type has no declaration");
1173  BaseDecl = BaseDecl->getDefinition();
1174  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1175  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1176  assert(CXXBaseDecl && "Base type is not a C++ type");
1177
1178  // C++ [class]p3:
1179  //   If a class is marked final and it appears as a base-type-specifier in
1180  //   base-clause, the program is ill-formed.
1181  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1182    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1183      << CXXBaseDecl->getDeclName();
1184    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1185      << CXXBaseDecl->getDeclName();
1186    return 0;
1187  }
1188
1189  if (BaseDecl->isInvalidDecl())
1190    Class->setInvalidDecl();
1191
1192  // Create the base specifier.
1193  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1194                                        Class->getTagKind() == TTK_Class,
1195                                        Access, TInfo, EllipsisLoc);
1196}
1197
1198/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1199/// one entry in the base class list of a class specifier, for
1200/// example:
1201///    class foo : public bar, virtual private baz {
1202/// 'public bar' and 'virtual private baz' are each base-specifiers.
1203BaseResult
1204Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1205                         ParsedAttributes &Attributes,
1206                         bool Virtual, AccessSpecifier Access,
1207                         ParsedType basetype, SourceLocation BaseLoc,
1208                         SourceLocation EllipsisLoc) {
1209  if (!classdecl)
1210    return true;
1211
1212  AdjustDeclIfTemplate(classdecl);
1213  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1214  if (!Class)
1215    return true;
1216
1217  // We do not support any C++11 attributes on base-specifiers yet.
1218  // Diagnose any attributes we see.
1219  if (!Attributes.empty()) {
1220    for (AttributeList *Attr = Attributes.getList(); Attr;
1221         Attr = Attr->getNext()) {
1222      if (Attr->isInvalid() ||
1223          Attr->getKind() == AttributeList::IgnoredAttribute)
1224        continue;
1225      Diag(Attr->getLoc(),
1226           Attr->getKind() == AttributeList::UnknownAttribute
1227             ? diag::warn_unknown_attribute_ignored
1228             : diag::err_base_specifier_attribute)
1229        << Attr->getName();
1230    }
1231  }
1232
1233  TypeSourceInfo *TInfo = 0;
1234  GetTypeFromParser(basetype, &TInfo);
1235
1236  if (EllipsisLoc.isInvalid() &&
1237      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1238                                      UPPC_BaseType))
1239    return true;
1240
1241  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1242                                                      Virtual, Access, TInfo,
1243                                                      EllipsisLoc))
1244    return BaseSpec;
1245  else
1246    Class->setInvalidDecl();
1247
1248  return true;
1249}
1250
1251/// \brief Performs the actual work of attaching the given base class
1252/// specifiers to a C++ class.
1253bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1254                                unsigned NumBases) {
1255 if (NumBases == 0)
1256    return false;
1257
1258  // Used to keep track of which base types we have already seen, so
1259  // that we can properly diagnose redundant direct base types. Note
1260  // that the key is always the unqualified canonical type of the base
1261  // class.
1262  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1263
1264  // Copy non-redundant base specifiers into permanent storage.
1265  unsigned NumGoodBases = 0;
1266  bool Invalid = false;
1267  for (unsigned idx = 0; idx < NumBases; ++idx) {
1268    QualType NewBaseType
1269      = Context.getCanonicalType(Bases[idx]->getType());
1270    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1271
1272    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1273    if (KnownBase) {
1274      // C++ [class.mi]p3:
1275      //   A class shall not be specified as a direct base class of a
1276      //   derived class more than once.
1277      Diag(Bases[idx]->getLocStart(),
1278           diag::err_duplicate_base_class)
1279        << KnownBase->getType()
1280        << Bases[idx]->getSourceRange();
1281
1282      // Delete the duplicate base class specifier; we're going to
1283      // overwrite its pointer later.
1284      Context.Deallocate(Bases[idx]);
1285
1286      Invalid = true;
1287    } else {
1288      // Okay, add this new base class.
1289      KnownBase = Bases[idx];
1290      Bases[NumGoodBases++] = Bases[idx];
1291      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1292        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1293        if (Class->isInterface() &&
1294              (!RD->isInterface() ||
1295               KnownBase->getAccessSpecifier() != AS_public)) {
1296          // The Microsoft extension __interface does not permit bases that
1297          // are not themselves public interfaces.
1298          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1299            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1300            << RD->getSourceRange();
1301          Invalid = true;
1302        }
1303        if (RD->hasAttr<WeakAttr>())
1304          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1305      }
1306    }
1307  }
1308
1309  // Attach the remaining base class specifiers to the derived class.
1310  Class->setBases(Bases, NumGoodBases);
1311
1312  // Delete the remaining (good) base class specifiers, since their
1313  // data has been copied into the CXXRecordDecl.
1314  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1315    Context.Deallocate(Bases[idx]);
1316
1317  return Invalid;
1318}
1319
1320/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1321/// class, after checking whether there are any duplicate base
1322/// classes.
1323void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1324                               unsigned NumBases) {
1325  if (!ClassDecl || !Bases || !NumBases)
1326    return;
1327
1328  AdjustDeclIfTemplate(ClassDecl);
1329  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1330                       (CXXBaseSpecifier**)(Bases), NumBases);
1331}
1332
1333/// \brief Determine whether the type \p Derived is a C++ class that is
1334/// derived from the type \p Base.
1335bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1336  if (!getLangOpts().CPlusPlus)
1337    return false;
1338
1339  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1340  if (!DerivedRD)
1341    return false;
1342
1343  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1344  if (!BaseRD)
1345    return false;
1346
1347  // If either the base or the derived type is invalid, don't try to
1348  // check whether one is derived from the other.
1349  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1350    return false;
1351
1352  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1353  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1354}
1355
1356/// \brief Determine whether the type \p Derived is a C++ class that is
1357/// derived from the type \p Base.
1358bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1359  if (!getLangOpts().CPlusPlus)
1360    return false;
1361
1362  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1363  if (!DerivedRD)
1364    return false;
1365
1366  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1367  if (!BaseRD)
1368    return false;
1369
1370  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1371}
1372
1373void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1374                              CXXCastPath &BasePathArray) {
1375  assert(BasePathArray.empty() && "Base path array must be empty!");
1376  assert(Paths.isRecordingPaths() && "Must record paths!");
1377
1378  const CXXBasePath &Path = Paths.front();
1379
1380  // We first go backward and check if we have a virtual base.
1381  // FIXME: It would be better if CXXBasePath had the base specifier for
1382  // the nearest virtual base.
1383  unsigned Start = 0;
1384  for (unsigned I = Path.size(); I != 0; --I) {
1385    if (Path[I - 1].Base->isVirtual()) {
1386      Start = I - 1;
1387      break;
1388    }
1389  }
1390
1391  // Now add all bases.
1392  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1393    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1394}
1395
1396/// \brief Determine whether the given base path includes a virtual
1397/// base class.
1398bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1399  for (CXXCastPath::const_iterator B = BasePath.begin(),
1400                                BEnd = BasePath.end();
1401       B != BEnd; ++B)
1402    if ((*B)->isVirtual())
1403      return true;
1404
1405  return false;
1406}
1407
1408/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1409/// conversion (where Derived and Base are class types) is
1410/// well-formed, meaning that the conversion is unambiguous (and
1411/// that all of the base classes are accessible). Returns true
1412/// and emits a diagnostic if the code is ill-formed, returns false
1413/// otherwise. Loc is the location where this routine should point to
1414/// if there is an error, and Range is the source range to highlight
1415/// if there is an error.
1416bool
1417Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1418                                   unsigned InaccessibleBaseID,
1419                                   unsigned AmbigiousBaseConvID,
1420                                   SourceLocation Loc, SourceRange Range,
1421                                   DeclarationName Name,
1422                                   CXXCastPath *BasePath) {
1423  // First, determine whether the path from Derived to Base is
1424  // ambiguous. This is slightly more expensive than checking whether
1425  // the Derived to Base conversion exists, because here we need to
1426  // explore multiple paths to determine if there is an ambiguity.
1427  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1428                     /*DetectVirtual=*/false);
1429  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1430  assert(DerivationOkay &&
1431         "Can only be used with a derived-to-base conversion");
1432  (void)DerivationOkay;
1433
1434  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1435    if (InaccessibleBaseID) {
1436      // Check that the base class can be accessed.
1437      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1438                                   InaccessibleBaseID)) {
1439        case AR_inaccessible:
1440          return true;
1441        case AR_accessible:
1442        case AR_dependent:
1443        case AR_delayed:
1444          break;
1445      }
1446    }
1447
1448    // Build a base path if necessary.
1449    if (BasePath)
1450      BuildBasePathArray(Paths, *BasePath);
1451    return false;
1452  }
1453
1454  // We know that the derived-to-base conversion is ambiguous, and
1455  // we're going to produce a diagnostic. Perform the derived-to-base
1456  // search just one more time to compute all of the possible paths so
1457  // that we can print them out. This is more expensive than any of
1458  // the previous derived-to-base checks we've done, but at this point
1459  // performance isn't as much of an issue.
1460  Paths.clear();
1461  Paths.setRecordingPaths(true);
1462  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1463  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1464  (void)StillOkay;
1465
1466  // Build up a textual representation of the ambiguous paths, e.g.,
1467  // D -> B -> A, that will be used to illustrate the ambiguous
1468  // conversions in the diagnostic. We only print one of the paths
1469  // to each base class subobject.
1470  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1471
1472  Diag(Loc, AmbigiousBaseConvID)
1473  << Derived << Base << PathDisplayStr << Range << Name;
1474  return true;
1475}
1476
1477bool
1478Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1479                                   SourceLocation Loc, SourceRange Range,
1480                                   CXXCastPath *BasePath,
1481                                   bool IgnoreAccess) {
1482  return CheckDerivedToBaseConversion(Derived, Base,
1483                                      IgnoreAccess ? 0
1484                                       : diag::err_upcast_to_inaccessible_base,
1485                                      diag::err_ambiguous_derived_to_base_conv,
1486                                      Loc, Range, DeclarationName(),
1487                                      BasePath);
1488}
1489
1490
1491/// @brief Builds a string representing ambiguous paths from a
1492/// specific derived class to different subobjects of the same base
1493/// class.
1494///
1495/// This function builds a string that can be used in error messages
1496/// to show the different paths that one can take through the
1497/// inheritance hierarchy to go from the derived class to different
1498/// subobjects of a base class. The result looks something like this:
1499/// @code
1500/// struct D -> struct B -> struct A
1501/// struct D -> struct C -> struct A
1502/// @endcode
1503std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1504  std::string PathDisplayStr;
1505  std::set<unsigned> DisplayedPaths;
1506  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1507       Path != Paths.end(); ++Path) {
1508    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1509      // We haven't displayed a path to this particular base
1510      // class subobject yet.
1511      PathDisplayStr += "\n    ";
1512      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1513      for (CXXBasePath::const_iterator Element = Path->begin();
1514           Element != Path->end(); ++Element)
1515        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1516    }
1517  }
1518
1519  return PathDisplayStr;
1520}
1521
1522//===----------------------------------------------------------------------===//
1523// C++ class member Handling
1524//===----------------------------------------------------------------------===//
1525
1526/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1527bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1528                                SourceLocation ASLoc,
1529                                SourceLocation ColonLoc,
1530                                AttributeList *Attrs) {
1531  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1532  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1533                                                  ASLoc, ColonLoc);
1534  CurContext->addHiddenDecl(ASDecl);
1535  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1536}
1537
1538/// CheckOverrideControl - Check C++11 override control semantics.
1539void Sema::CheckOverrideControl(Decl *D) {
1540  if (D->isInvalidDecl())
1541    return;
1542
1543  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1544
1545  // Do we know which functions this declaration might be overriding?
1546  bool OverridesAreKnown = !MD ||
1547      (!MD->getParent()->hasAnyDependentBases() &&
1548       !MD->getType()->isDependentType());
1549
1550  if (!MD || !MD->isVirtual()) {
1551    if (OverridesAreKnown) {
1552      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1553        Diag(OA->getLocation(),
1554             diag::override_keyword_only_allowed_on_virtual_member_functions)
1555          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1556        D->dropAttr<OverrideAttr>();
1557      }
1558      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1559        Diag(FA->getLocation(),
1560             diag::override_keyword_only_allowed_on_virtual_member_functions)
1561          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1562        D->dropAttr<FinalAttr>();
1563      }
1564    }
1565    return;
1566  }
1567
1568  if (!OverridesAreKnown)
1569    return;
1570
1571  // C++11 [class.virtual]p5:
1572  //   If a virtual function is marked with the virt-specifier override and
1573  //   does not override a member function of a base class, the program is
1574  //   ill-formed.
1575  bool HasOverriddenMethods =
1576    MD->begin_overridden_methods() != MD->end_overridden_methods();
1577  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1578    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1579      << MD->getDeclName();
1580}
1581
1582/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1583/// function overrides a virtual member function marked 'final', according to
1584/// C++11 [class.virtual]p4.
1585bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1586                                                  const CXXMethodDecl *Old) {
1587  if (!Old->hasAttr<FinalAttr>())
1588    return false;
1589
1590  Diag(New->getLocation(), diag::err_final_function_overridden)
1591    << New->getDeclName();
1592  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1593  return true;
1594}
1595
1596static bool InitializationHasSideEffects(const FieldDecl &FD) {
1597  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1598  // FIXME: Destruction of ObjC lifetime types has side-effects.
1599  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1600    return !RD->isCompleteDefinition() ||
1601           !RD->hasTrivialDefaultConstructor() ||
1602           !RD->hasTrivialDestructor();
1603  return false;
1604}
1605
1606/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1607/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1608/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1609/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1610/// present (but parsing it has been deferred).
1611NamedDecl *
1612Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1613                               MultiTemplateParamsArg TemplateParameterLists,
1614                               Expr *BW, const VirtSpecifiers &VS,
1615                               InClassInitStyle InitStyle) {
1616  const DeclSpec &DS = D.getDeclSpec();
1617  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1618  DeclarationName Name = NameInfo.getName();
1619  SourceLocation Loc = NameInfo.getLoc();
1620
1621  // For anonymous bitfields, the location should point to the type.
1622  if (Loc.isInvalid())
1623    Loc = D.getLocStart();
1624
1625  Expr *BitWidth = static_cast<Expr*>(BW);
1626
1627  assert(isa<CXXRecordDecl>(CurContext));
1628  assert(!DS.isFriendSpecified());
1629
1630  bool isFunc = D.isDeclarationOfFunction();
1631
1632  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1633    // The Microsoft extension __interface only permits public member functions
1634    // and prohibits constructors, destructors, operators, non-public member
1635    // functions, static methods and data members.
1636    unsigned InvalidDecl;
1637    bool ShowDeclName = true;
1638    if (!isFunc)
1639      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1640    else if (AS != AS_public)
1641      InvalidDecl = 2;
1642    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1643      InvalidDecl = 3;
1644    else switch (Name.getNameKind()) {
1645      case DeclarationName::CXXConstructorName:
1646        InvalidDecl = 4;
1647        ShowDeclName = false;
1648        break;
1649
1650      case DeclarationName::CXXDestructorName:
1651        InvalidDecl = 5;
1652        ShowDeclName = false;
1653        break;
1654
1655      case DeclarationName::CXXOperatorName:
1656      case DeclarationName::CXXConversionFunctionName:
1657        InvalidDecl = 6;
1658        break;
1659
1660      default:
1661        InvalidDecl = 0;
1662        break;
1663    }
1664
1665    if (InvalidDecl) {
1666      if (ShowDeclName)
1667        Diag(Loc, diag::err_invalid_member_in_interface)
1668          << (InvalidDecl-1) << Name;
1669      else
1670        Diag(Loc, diag::err_invalid_member_in_interface)
1671          << (InvalidDecl-1) << "";
1672      return 0;
1673    }
1674  }
1675
1676  // C++ 9.2p6: A member shall not be declared to have automatic storage
1677  // duration (auto, register) or with the extern storage-class-specifier.
1678  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1679  // data members and cannot be applied to names declared const or static,
1680  // and cannot be applied to reference members.
1681  switch (DS.getStorageClassSpec()) {
1682    case DeclSpec::SCS_unspecified:
1683    case DeclSpec::SCS_typedef:
1684    case DeclSpec::SCS_static:
1685      // FALL THROUGH.
1686      break;
1687    case DeclSpec::SCS_mutable:
1688      if (isFunc) {
1689        if (DS.getStorageClassSpecLoc().isValid())
1690          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1691        else
1692          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1693
1694        // FIXME: It would be nicer if the keyword was ignored only for this
1695        // declarator. Otherwise we could get follow-up errors.
1696        D.getMutableDeclSpec().ClearStorageClassSpecs();
1697      }
1698      break;
1699    default:
1700      if (DS.getStorageClassSpecLoc().isValid())
1701        Diag(DS.getStorageClassSpecLoc(),
1702             diag::err_storageclass_invalid_for_member);
1703      else
1704        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1705      D.getMutableDeclSpec().ClearStorageClassSpecs();
1706  }
1707
1708  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1709                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1710                      !isFunc);
1711
1712  if (DS.isConstexprSpecified() && isInstField) {
1713    SemaDiagnosticBuilder B =
1714        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1715    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1716    if (InitStyle == ICIS_NoInit) {
1717      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1718      D.getMutableDeclSpec().ClearConstexprSpec();
1719      const char *PrevSpec;
1720      unsigned DiagID;
1721      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1722                                         PrevSpec, DiagID, getLangOpts());
1723      (void)Failed;
1724      assert(!Failed && "Making a constexpr member const shouldn't fail");
1725    } else {
1726      B << 1;
1727      const char *PrevSpec;
1728      unsigned DiagID;
1729      if (D.getMutableDeclSpec().SetStorageClassSpec(
1730          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1731        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1732               "This is the only DeclSpec that should fail to be applied");
1733        B << 1;
1734      } else {
1735        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1736        isInstField = false;
1737      }
1738    }
1739  }
1740
1741  NamedDecl *Member;
1742  if (isInstField) {
1743    CXXScopeSpec &SS = D.getCXXScopeSpec();
1744
1745    // Data members must have identifiers for names.
1746    if (!Name.isIdentifier()) {
1747      Diag(Loc, diag::err_bad_variable_name)
1748        << Name;
1749      return 0;
1750    }
1751
1752    IdentifierInfo *II = Name.getAsIdentifierInfo();
1753
1754    // Member field could not be with "template" keyword.
1755    // So TemplateParameterLists should be empty in this case.
1756    if (TemplateParameterLists.size()) {
1757      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1758      if (TemplateParams->size()) {
1759        // There is no such thing as a member field template.
1760        Diag(D.getIdentifierLoc(), diag::err_template_member)
1761            << II
1762            << SourceRange(TemplateParams->getTemplateLoc(),
1763                TemplateParams->getRAngleLoc());
1764      } else {
1765        // There is an extraneous 'template<>' for this member.
1766        Diag(TemplateParams->getTemplateLoc(),
1767            diag::err_template_member_noparams)
1768            << II
1769            << SourceRange(TemplateParams->getTemplateLoc(),
1770                TemplateParams->getRAngleLoc());
1771      }
1772      return 0;
1773    }
1774
1775    if (SS.isSet() && !SS.isInvalid()) {
1776      // The user provided a superfluous scope specifier inside a class
1777      // definition:
1778      //
1779      // class X {
1780      //   int X::member;
1781      // };
1782      if (DeclContext *DC = computeDeclContext(SS, false))
1783        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1784      else
1785        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1786          << Name << SS.getRange();
1787
1788      SS.clear();
1789    }
1790
1791    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1792                         InitStyle, AS);
1793    assert(Member && "HandleField never returns null");
1794  } else {
1795    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1796
1797    Member = HandleDeclarator(S, D, TemplateParameterLists);
1798    if (!Member) {
1799      return 0;
1800    }
1801
1802    // Non-instance-fields can't have a bitfield.
1803    if (BitWidth) {
1804      if (Member->isInvalidDecl()) {
1805        // don't emit another diagnostic.
1806      } else if (isa<VarDecl>(Member)) {
1807        // C++ 9.6p3: A bit-field shall not be a static member.
1808        // "static member 'A' cannot be a bit-field"
1809        Diag(Loc, diag::err_static_not_bitfield)
1810          << Name << BitWidth->getSourceRange();
1811      } else if (isa<TypedefDecl>(Member)) {
1812        // "typedef member 'x' cannot be a bit-field"
1813        Diag(Loc, diag::err_typedef_not_bitfield)
1814          << Name << BitWidth->getSourceRange();
1815      } else {
1816        // A function typedef ("typedef int f(); f a;").
1817        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1818        Diag(Loc, diag::err_not_integral_type_bitfield)
1819          << Name << cast<ValueDecl>(Member)->getType()
1820          << BitWidth->getSourceRange();
1821      }
1822
1823      BitWidth = 0;
1824      Member->setInvalidDecl();
1825    }
1826
1827    Member->setAccess(AS);
1828
1829    // If we have declared a member function template, set the access of the
1830    // templated declaration as well.
1831    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1832      FunTmpl->getTemplatedDecl()->setAccess(AS);
1833  }
1834
1835  if (VS.isOverrideSpecified())
1836    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1837  if (VS.isFinalSpecified())
1838    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1839
1840  if (VS.getLastLocation().isValid()) {
1841    // Update the end location of a method that has a virt-specifiers.
1842    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1843      MD->setRangeEnd(VS.getLastLocation());
1844  }
1845
1846  CheckOverrideControl(Member);
1847
1848  assert((Name || isInstField) && "No identifier for non-field ?");
1849
1850  if (isInstField) {
1851    FieldDecl *FD = cast<FieldDecl>(Member);
1852    FieldCollector->Add(FD);
1853
1854    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1855                                 FD->getLocation())
1856          != DiagnosticsEngine::Ignored) {
1857      // Remember all explicit private FieldDecls that have a name, no side
1858      // effects and are not part of a dependent type declaration.
1859      if (!FD->isImplicit() && FD->getDeclName() &&
1860          FD->getAccess() == AS_private &&
1861          !FD->hasAttr<UnusedAttr>() &&
1862          !FD->getParent()->isDependentContext() &&
1863          !InitializationHasSideEffects(*FD))
1864        UnusedPrivateFields.insert(FD);
1865    }
1866  }
1867
1868  return Member;
1869}
1870
1871namespace {
1872  class UninitializedFieldVisitor
1873      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1874    Sema &S;
1875    ValueDecl *VD;
1876  public:
1877    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1878    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1879                                                        S(S) {
1880      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1881        this->VD = IFD->getAnonField();
1882      else
1883        this->VD = VD;
1884    }
1885
1886    void HandleExpr(Expr *E) {
1887      if (!E) return;
1888
1889      // Expressions like x(x) sometimes lack the surrounding expressions
1890      // but need to be checked anyways.
1891      HandleValue(E);
1892      Visit(E);
1893    }
1894
1895    void HandleValue(Expr *E) {
1896      E = E->IgnoreParens();
1897
1898      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1899        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1900          return;
1901
1902        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1903        // or union.
1904        MemberExpr *FieldME = ME;
1905
1906        Expr *Base = E;
1907        while (isa<MemberExpr>(Base)) {
1908          ME = cast<MemberExpr>(Base);
1909
1910          if (isa<VarDecl>(ME->getMemberDecl()))
1911            return;
1912
1913          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1914            if (!FD->isAnonymousStructOrUnion())
1915              FieldME = ME;
1916
1917          Base = ME->getBase();
1918        }
1919
1920        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1921          unsigned diag = VD->getType()->isReferenceType()
1922              ? diag::warn_reference_field_is_uninit
1923              : diag::warn_field_is_uninit;
1924          S.Diag(FieldME->getExprLoc(), diag) << VD;
1925        }
1926        return;
1927      }
1928
1929      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1930        HandleValue(CO->getTrueExpr());
1931        HandleValue(CO->getFalseExpr());
1932        return;
1933      }
1934
1935      if (BinaryConditionalOperator *BCO =
1936              dyn_cast<BinaryConditionalOperator>(E)) {
1937        HandleValue(BCO->getCommon());
1938        HandleValue(BCO->getFalseExpr());
1939        return;
1940      }
1941
1942      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1943        switch (BO->getOpcode()) {
1944        default:
1945          return;
1946        case(BO_PtrMemD):
1947        case(BO_PtrMemI):
1948          HandleValue(BO->getLHS());
1949          return;
1950        case(BO_Comma):
1951          HandleValue(BO->getRHS());
1952          return;
1953        }
1954      }
1955    }
1956
1957    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1958      if (E->getCastKind() == CK_LValueToRValue)
1959        HandleValue(E->getSubExpr());
1960
1961      Inherited::VisitImplicitCastExpr(E);
1962    }
1963
1964    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1965      Expr *Callee = E->getCallee();
1966      if (isa<MemberExpr>(Callee))
1967        HandleValue(Callee);
1968
1969      Inherited::VisitCXXMemberCallExpr(E);
1970    }
1971  };
1972  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1973                                                       ValueDecl *VD) {
1974    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1975  }
1976} // namespace
1977
1978/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1979/// in-class initializer for a non-static C++ class member, and after
1980/// instantiating an in-class initializer in a class template. Such actions
1981/// are deferred until the class is complete.
1982void
1983Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1984                                       Expr *InitExpr) {
1985  FieldDecl *FD = cast<FieldDecl>(D);
1986  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1987         "must set init style when field is created");
1988
1989  if (!InitExpr) {
1990    FD->setInvalidDecl();
1991    FD->removeInClassInitializer();
1992    return;
1993  }
1994
1995  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1996    FD->setInvalidDecl();
1997    FD->removeInClassInitializer();
1998    return;
1999  }
2000
2001  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2002      != DiagnosticsEngine::Ignored) {
2003    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2004  }
2005
2006  ExprResult Init = InitExpr;
2007  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2008    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
2009      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
2010        << /*at end of ctor*/1 << InitExpr->getSourceRange();
2011    }
2012    Expr **Inits = &InitExpr;
2013    unsigned NumInits = 1;
2014    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2015    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2016        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2017        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2018    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
2019    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
2020    if (Init.isInvalid()) {
2021      FD->setInvalidDecl();
2022      return;
2023    }
2024  }
2025
2026  // C++11 [class.base.init]p7:
2027  //   The initialization of each base and member constitutes a
2028  //   full-expression.
2029  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2030  if (Init.isInvalid()) {
2031    FD->setInvalidDecl();
2032    return;
2033  }
2034
2035  InitExpr = Init.release();
2036
2037  FD->setInClassInitializer(InitExpr);
2038}
2039
2040/// \brief Find the direct and/or virtual base specifiers that
2041/// correspond to the given base type, for use in base initialization
2042/// within a constructor.
2043static bool FindBaseInitializer(Sema &SemaRef,
2044                                CXXRecordDecl *ClassDecl,
2045                                QualType BaseType,
2046                                const CXXBaseSpecifier *&DirectBaseSpec,
2047                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2048  // First, check for a direct base class.
2049  DirectBaseSpec = 0;
2050  for (CXXRecordDecl::base_class_const_iterator Base
2051         = ClassDecl->bases_begin();
2052       Base != ClassDecl->bases_end(); ++Base) {
2053    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2054      // We found a direct base of this type. That's what we're
2055      // initializing.
2056      DirectBaseSpec = &*Base;
2057      break;
2058    }
2059  }
2060
2061  // Check for a virtual base class.
2062  // FIXME: We might be able to short-circuit this if we know in advance that
2063  // there are no virtual bases.
2064  VirtualBaseSpec = 0;
2065  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2066    // We haven't found a base yet; search the class hierarchy for a
2067    // virtual base class.
2068    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2069                       /*DetectVirtual=*/false);
2070    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2071                              BaseType, Paths)) {
2072      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2073           Path != Paths.end(); ++Path) {
2074        if (Path->back().Base->isVirtual()) {
2075          VirtualBaseSpec = Path->back().Base;
2076          break;
2077        }
2078      }
2079    }
2080  }
2081
2082  return DirectBaseSpec || VirtualBaseSpec;
2083}
2084
2085/// \brief Handle a C++ member initializer using braced-init-list syntax.
2086MemInitResult
2087Sema::ActOnMemInitializer(Decl *ConstructorD,
2088                          Scope *S,
2089                          CXXScopeSpec &SS,
2090                          IdentifierInfo *MemberOrBase,
2091                          ParsedType TemplateTypeTy,
2092                          const DeclSpec &DS,
2093                          SourceLocation IdLoc,
2094                          Expr *InitList,
2095                          SourceLocation EllipsisLoc) {
2096  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2097                             DS, IdLoc, InitList,
2098                             EllipsisLoc);
2099}
2100
2101/// \brief Handle a C++ member initializer using parentheses syntax.
2102MemInitResult
2103Sema::ActOnMemInitializer(Decl *ConstructorD,
2104                          Scope *S,
2105                          CXXScopeSpec &SS,
2106                          IdentifierInfo *MemberOrBase,
2107                          ParsedType TemplateTypeTy,
2108                          const DeclSpec &DS,
2109                          SourceLocation IdLoc,
2110                          SourceLocation LParenLoc,
2111                          Expr **Args, unsigned NumArgs,
2112                          SourceLocation RParenLoc,
2113                          SourceLocation EllipsisLoc) {
2114  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2115                                           llvm::makeArrayRef(Args, NumArgs),
2116                                           RParenLoc);
2117  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2118                             DS, IdLoc, List, EllipsisLoc);
2119}
2120
2121namespace {
2122
2123// Callback to only accept typo corrections that can be a valid C++ member
2124// intializer: either a non-static field member or a base class.
2125class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2126 public:
2127  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2128      : ClassDecl(ClassDecl) {}
2129
2130  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2131    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2132      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2133        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2134      else
2135        return isa<TypeDecl>(ND);
2136    }
2137    return false;
2138  }
2139
2140 private:
2141  CXXRecordDecl *ClassDecl;
2142};
2143
2144}
2145
2146/// \brief Handle a C++ member initializer.
2147MemInitResult
2148Sema::BuildMemInitializer(Decl *ConstructorD,
2149                          Scope *S,
2150                          CXXScopeSpec &SS,
2151                          IdentifierInfo *MemberOrBase,
2152                          ParsedType TemplateTypeTy,
2153                          const DeclSpec &DS,
2154                          SourceLocation IdLoc,
2155                          Expr *Init,
2156                          SourceLocation EllipsisLoc) {
2157  if (!ConstructorD)
2158    return true;
2159
2160  AdjustDeclIfTemplate(ConstructorD);
2161
2162  CXXConstructorDecl *Constructor
2163    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2164  if (!Constructor) {
2165    // The user wrote a constructor initializer on a function that is
2166    // not a C++ constructor. Ignore the error for now, because we may
2167    // have more member initializers coming; we'll diagnose it just
2168    // once in ActOnMemInitializers.
2169    return true;
2170  }
2171
2172  CXXRecordDecl *ClassDecl = Constructor->getParent();
2173
2174  // C++ [class.base.init]p2:
2175  //   Names in a mem-initializer-id are looked up in the scope of the
2176  //   constructor's class and, if not found in that scope, are looked
2177  //   up in the scope containing the constructor's definition.
2178  //   [Note: if the constructor's class contains a member with the
2179  //   same name as a direct or virtual base class of the class, a
2180  //   mem-initializer-id naming the member or base class and composed
2181  //   of a single identifier refers to the class member. A
2182  //   mem-initializer-id for the hidden base class may be specified
2183  //   using a qualified name. ]
2184  if (!SS.getScopeRep() && !TemplateTypeTy) {
2185    // Look for a member, first.
2186    DeclContext::lookup_result Result
2187      = ClassDecl->lookup(MemberOrBase);
2188    if (!Result.empty()) {
2189      ValueDecl *Member;
2190      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2191          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2192        if (EllipsisLoc.isValid())
2193          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2194            << MemberOrBase
2195            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2196
2197        return BuildMemberInitializer(Member, Init, IdLoc);
2198      }
2199    }
2200  }
2201  // It didn't name a member, so see if it names a class.
2202  QualType BaseType;
2203  TypeSourceInfo *TInfo = 0;
2204
2205  if (TemplateTypeTy) {
2206    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2207  } else if (DS.getTypeSpecType() == TST_decltype) {
2208    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2209  } else {
2210    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2211    LookupParsedName(R, S, &SS);
2212
2213    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2214    if (!TyD) {
2215      if (R.isAmbiguous()) return true;
2216
2217      // We don't want access-control diagnostics here.
2218      R.suppressDiagnostics();
2219
2220      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2221        bool NotUnknownSpecialization = false;
2222        DeclContext *DC = computeDeclContext(SS, false);
2223        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2224          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2225
2226        if (!NotUnknownSpecialization) {
2227          // When the scope specifier can refer to a member of an unknown
2228          // specialization, we take it as a type name.
2229          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2230                                       SS.getWithLocInContext(Context),
2231                                       *MemberOrBase, IdLoc);
2232          if (BaseType.isNull())
2233            return true;
2234
2235          R.clear();
2236          R.setLookupName(MemberOrBase);
2237        }
2238      }
2239
2240      // If no results were found, try to correct typos.
2241      TypoCorrection Corr;
2242      MemInitializerValidatorCCC Validator(ClassDecl);
2243      if (R.empty() && BaseType.isNull() &&
2244          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2245                              Validator, ClassDecl))) {
2246        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2247        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2248        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2249          // We have found a non-static data member with a similar
2250          // name to what was typed; complain and initialize that
2251          // member.
2252          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2253            << MemberOrBase << true << CorrectedQuotedStr
2254            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2255          Diag(Member->getLocation(), diag::note_previous_decl)
2256            << CorrectedQuotedStr;
2257
2258          return BuildMemberInitializer(Member, Init, IdLoc);
2259        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2260          const CXXBaseSpecifier *DirectBaseSpec;
2261          const CXXBaseSpecifier *VirtualBaseSpec;
2262          if (FindBaseInitializer(*this, ClassDecl,
2263                                  Context.getTypeDeclType(Type),
2264                                  DirectBaseSpec, VirtualBaseSpec)) {
2265            // We have found a direct or virtual base class with a
2266            // similar name to what was typed; complain and initialize
2267            // that base class.
2268            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2269              << MemberOrBase << false << CorrectedQuotedStr
2270              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2271
2272            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2273                                                             : VirtualBaseSpec;
2274            Diag(BaseSpec->getLocStart(),
2275                 diag::note_base_class_specified_here)
2276              << BaseSpec->getType()
2277              << BaseSpec->getSourceRange();
2278
2279            TyD = Type;
2280          }
2281        }
2282      }
2283
2284      if (!TyD && BaseType.isNull()) {
2285        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2286          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2287        return true;
2288      }
2289    }
2290
2291    if (BaseType.isNull()) {
2292      BaseType = Context.getTypeDeclType(TyD);
2293      if (SS.isSet()) {
2294        NestedNameSpecifier *Qualifier =
2295          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2296
2297        // FIXME: preserve source range information
2298        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2299      }
2300    }
2301  }
2302
2303  if (!TInfo)
2304    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2305
2306  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2307}
2308
2309/// Checks a member initializer expression for cases where reference (or
2310/// pointer) members are bound to by-value parameters (or their addresses).
2311static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2312                                               Expr *Init,
2313                                               SourceLocation IdLoc) {
2314  QualType MemberTy = Member->getType();
2315
2316  // We only handle pointers and references currently.
2317  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2318  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2319    return;
2320
2321  const bool IsPointer = MemberTy->isPointerType();
2322  if (IsPointer) {
2323    if (const UnaryOperator *Op
2324          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2325      // The only case we're worried about with pointers requires taking the
2326      // address.
2327      if (Op->getOpcode() != UO_AddrOf)
2328        return;
2329
2330      Init = Op->getSubExpr();
2331    } else {
2332      // We only handle address-of expression initializers for pointers.
2333      return;
2334    }
2335  }
2336
2337  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2338    // Taking the address of a temporary will be diagnosed as a hard error.
2339    if (IsPointer)
2340      return;
2341
2342    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2343      << Member << Init->getSourceRange();
2344  } else if (const DeclRefExpr *DRE
2345               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2346    // We only warn when referring to a non-reference parameter declaration.
2347    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2348    if (!Parameter || Parameter->getType()->isReferenceType())
2349      return;
2350
2351    S.Diag(Init->getExprLoc(),
2352           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2353                     : diag::warn_bind_ref_member_to_parameter)
2354      << Member << Parameter << Init->getSourceRange();
2355  } else {
2356    // Other initializers are fine.
2357    return;
2358  }
2359
2360  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2361    << (unsigned)IsPointer;
2362}
2363
2364MemInitResult
2365Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2366                             SourceLocation IdLoc) {
2367  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2368  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2369  assert((DirectMember || IndirectMember) &&
2370         "Member must be a FieldDecl or IndirectFieldDecl");
2371
2372  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2373    return true;
2374
2375  if (Member->isInvalidDecl())
2376    return true;
2377
2378  // Diagnose value-uses of fields to initialize themselves, e.g.
2379  //   foo(foo)
2380  // where foo is not also a parameter to the constructor.
2381  // TODO: implement -Wuninitialized and fold this into that framework.
2382  Expr **Args;
2383  unsigned NumArgs;
2384  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2385    Args = ParenList->getExprs();
2386    NumArgs = ParenList->getNumExprs();
2387  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2388    Args = InitList->getInits();
2389    NumArgs = InitList->getNumInits();
2390  } else {
2391    // Template instantiation doesn't reconstruct ParenListExprs for us.
2392    Args = &Init;
2393    NumArgs = 1;
2394  }
2395
2396  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2397        != DiagnosticsEngine::Ignored)
2398    for (unsigned i = 0; i < NumArgs; ++i)
2399      // FIXME: Warn about the case when other fields are used before being
2400      // initialized. For example, let this field be the i'th field. When
2401      // initializing the i'th field, throw a warning if any of the >= i'th
2402      // fields are used, as they are not yet initialized.
2403      // Right now we are only handling the case where the i'th field uses
2404      // itself in its initializer.
2405      // Also need to take into account that some fields may be initialized by
2406      // in-class initializers, see C++11 [class.base.init]p9.
2407      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2408
2409  SourceRange InitRange = Init->getSourceRange();
2410
2411  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2412    // Can't check initialization for a member of dependent type or when
2413    // any of the arguments are type-dependent expressions.
2414    DiscardCleanupsInEvaluationContext();
2415  } else {
2416    bool InitList = false;
2417    if (isa<InitListExpr>(Init)) {
2418      InitList = true;
2419      Args = &Init;
2420      NumArgs = 1;
2421
2422      if (isStdInitializerList(Member->getType(), 0)) {
2423        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2424            << /*at end of ctor*/1 << InitRange;
2425      }
2426    }
2427
2428    // Initialize the member.
2429    InitializedEntity MemberEntity =
2430      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2431                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2432    InitializationKind Kind =
2433      InitList ? InitializationKind::CreateDirectList(IdLoc)
2434               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2435                                                  InitRange.getEnd());
2436
2437    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2438    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2439                                            MultiExprArg(Args, NumArgs),
2440                                            0);
2441    if (MemberInit.isInvalid())
2442      return true;
2443
2444    // C++11 [class.base.init]p7:
2445    //   The initialization of each base and member constitutes a
2446    //   full-expression.
2447    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2448    if (MemberInit.isInvalid())
2449      return true;
2450
2451    Init = MemberInit.get();
2452    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2453  }
2454
2455  if (DirectMember) {
2456    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2457                                            InitRange.getBegin(), Init,
2458                                            InitRange.getEnd());
2459  } else {
2460    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2461                                            InitRange.getBegin(), Init,
2462                                            InitRange.getEnd());
2463  }
2464}
2465
2466MemInitResult
2467Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2468                                 CXXRecordDecl *ClassDecl) {
2469  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2470  if (!LangOpts.CPlusPlus11)
2471    return Diag(NameLoc, diag::err_delegating_ctor)
2472      << TInfo->getTypeLoc().getLocalSourceRange();
2473  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2474
2475  bool InitList = true;
2476  Expr **Args = &Init;
2477  unsigned NumArgs = 1;
2478  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2479    InitList = false;
2480    Args = ParenList->getExprs();
2481    NumArgs = ParenList->getNumExprs();
2482  }
2483
2484  SourceRange InitRange = Init->getSourceRange();
2485  // Initialize the object.
2486  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2487                                     QualType(ClassDecl->getTypeForDecl(), 0));
2488  InitializationKind Kind =
2489    InitList ? InitializationKind::CreateDirectList(NameLoc)
2490             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2491                                                InitRange.getEnd());
2492  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2493  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2494                                              MultiExprArg(Args, NumArgs),
2495                                              0);
2496  if (DelegationInit.isInvalid())
2497    return true;
2498
2499  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2500         "Delegating constructor with no target?");
2501
2502  // C++11 [class.base.init]p7:
2503  //   The initialization of each base and member constitutes a
2504  //   full-expression.
2505  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2506                                       InitRange.getBegin());
2507  if (DelegationInit.isInvalid())
2508    return true;
2509
2510  // If we are in a dependent context, template instantiation will
2511  // perform this type-checking again. Just save the arguments that we
2512  // received in a ParenListExpr.
2513  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2514  // of the information that we have about the base
2515  // initializer. However, deconstructing the ASTs is a dicey process,
2516  // and this approach is far more likely to get the corner cases right.
2517  if (CurContext->isDependentContext())
2518    DelegationInit = Owned(Init);
2519
2520  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2521                                          DelegationInit.takeAs<Expr>(),
2522                                          InitRange.getEnd());
2523}
2524
2525MemInitResult
2526Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2527                           Expr *Init, CXXRecordDecl *ClassDecl,
2528                           SourceLocation EllipsisLoc) {
2529  SourceLocation BaseLoc
2530    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2531
2532  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2533    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2534             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2535
2536  // C++ [class.base.init]p2:
2537  //   [...] Unless the mem-initializer-id names a nonstatic data
2538  //   member of the constructor's class or a direct or virtual base
2539  //   of that class, the mem-initializer is ill-formed. A
2540  //   mem-initializer-list can initialize a base class using any
2541  //   name that denotes that base class type.
2542  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2543
2544  SourceRange InitRange = Init->getSourceRange();
2545  if (EllipsisLoc.isValid()) {
2546    // This is a pack expansion.
2547    if (!BaseType->containsUnexpandedParameterPack())  {
2548      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2549        << SourceRange(BaseLoc, InitRange.getEnd());
2550
2551      EllipsisLoc = SourceLocation();
2552    }
2553  } else {
2554    // Check for any unexpanded parameter packs.
2555    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2556      return true;
2557
2558    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2559      return true;
2560  }
2561
2562  // Check for direct and virtual base classes.
2563  const CXXBaseSpecifier *DirectBaseSpec = 0;
2564  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2565  if (!Dependent) {
2566    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2567                                       BaseType))
2568      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2569
2570    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2571                        VirtualBaseSpec);
2572
2573    // C++ [base.class.init]p2:
2574    // Unless the mem-initializer-id names a nonstatic data member of the
2575    // constructor's class or a direct or virtual base of that class, the
2576    // mem-initializer is ill-formed.
2577    if (!DirectBaseSpec && !VirtualBaseSpec) {
2578      // If the class has any dependent bases, then it's possible that
2579      // one of those types will resolve to the same type as
2580      // BaseType. Therefore, just treat this as a dependent base
2581      // class initialization.  FIXME: Should we try to check the
2582      // initialization anyway? It seems odd.
2583      if (ClassDecl->hasAnyDependentBases())
2584        Dependent = true;
2585      else
2586        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2587          << BaseType << Context.getTypeDeclType(ClassDecl)
2588          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2589    }
2590  }
2591
2592  if (Dependent) {
2593    DiscardCleanupsInEvaluationContext();
2594
2595    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2596                                            /*IsVirtual=*/false,
2597                                            InitRange.getBegin(), Init,
2598                                            InitRange.getEnd(), EllipsisLoc);
2599  }
2600
2601  // C++ [base.class.init]p2:
2602  //   If a mem-initializer-id is ambiguous because it designates both
2603  //   a direct non-virtual base class and an inherited virtual base
2604  //   class, the mem-initializer is ill-formed.
2605  if (DirectBaseSpec && VirtualBaseSpec)
2606    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2607      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2608
2609  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2610  if (!BaseSpec)
2611    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2612
2613  // Initialize the base.
2614  bool InitList = true;
2615  Expr **Args = &Init;
2616  unsigned NumArgs = 1;
2617  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2618    InitList = false;
2619    Args = ParenList->getExprs();
2620    NumArgs = ParenList->getNumExprs();
2621  }
2622
2623  InitializedEntity BaseEntity =
2624    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2625  InitializationKind Kind =
2626    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2627             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2628                                                InitRange.getEnd());
2629  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2630  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2631                                        MultiExprArg(Args, NumArgs), 0);
2632  if (BaseInit.isInvalid())
2633    return true;
2634
2635  // C++11 [class.base.init]p7:
2636  //   The initialization of each base and member constitutes a
2637  //   full-expression.
2638  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2639  if (BaseInit.isInvalid())
2640    return true;
2641
2642  // If we are in a dependent context, template instantiation will
2643  // perform this type-checking again. Just save the arguments that we
2644  // received in a ParenListExpr.
2645  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2646  // of the information that we have about the base
2647  // initializer. However, deconstructing the ASTs is a dicey process,
2648  // and this approach is far more likely to get the corner cases right.
2649  if (CurContext->isDependentContext())
2650    BaseInit = Owned(Init);
2651
2652  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2653                                          BaseSpec->isVirtual(),
2654                                          InitRange.getBegin(),
2655                                          BaseInit.takeAs<Expr>(),
2656                                          InitRange.getEnd(), EllipsisLoc);
2657}
2658
2659// Create a static_cast\<T&&>(expr).
2660static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2661  if (T.isNull()) T = E->getType();
2662  QualType TargetType = SemaRef.BuildReferenceType(
2663      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2664  SourceLocation ExprLoc = E->getLocStart();
2665  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2666      TargetType, ExprLoc);
2667
2668  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2669                                   SourceRange(ExprLoc, ExprLoc),
2670                                   E->getSourceRange()).take();
2671}
2672
2673/// ImplicitInitializerKind - How an implicit base or member initializer should
2674/// initialize its base or member.
2675enum ImplicitInitializerKind {
2676  IIK_Default,
2677  IIK_Copy,
2678  IIK_Move,
2679  IIK_Inherit
2680};
2681
2682static bool
2683BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2684                             ImplicitInitializerKind ImplicitInitKind,
2685                             CXXBaseSpecifier *BaseSpec,
2686                             bool IsInheritedVirtualBase,
2687                             CXXCtorInitializer *&CXXBaseInit) {
2688  InitializedEntity InitEntity
2689    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2690                                        IsInheritedVirtualBase);
2691
2692  ExprResult BaseInit;
2693
2694  switch (ImplicitInitKind) {
2695  case IIK_Inherit: {
2696    const CXXRecordDecl *Inherited =
2697        Constructor->getInheritedConstructor()->getParent();
2698    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2699    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2700      // C++11 [class.inhctor]p8:
2701      //   Each expression in the expression-list is of the form
2702      //   static_cast<T&&>(p), where p is the name of the corresponding
2703      //   constructor parameter and T is the declared type of p.
2704      SmallVector<Expr*, 16> Args;
2705      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2706        ParmVarDecl *PD = Constructor->getParamDecl(I);
2707        ExprResult ArgExpr =
2708            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2709                                     VK_LValue, SourceLocation());
2710        if (ArgExpr.isInvalid())
2711          return true;
2712        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2713      }
2714
2715      InitializationKind InitKind = InitializationKind::CreateDirect(
2716          Constructor->getLocation(), SourceLocation(), SourceLocation());
2717      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2718                                     Args.data(), Args.size());
2719      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2720      break;
2721    }
2722  }
2723  // Fall through.
2724  case IIK_Default: {
2725    InitializationKind InitKind
2726      = InitializationKind::CreateDefault(Constructor->getLocation());
2727    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2728    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2729    break;
2730  }
2731
2732  case IIK_Move:
2733  case IIK_Copy: {
2734    bool Moving = ImplicitInitKind == IIK_Move;
2735    ParmVarDecl *Param = Constructor->getParamDecl(0);
2736    QualType ParamType = Param->getType().getNonReferenceType();
2737
2738    Expr *CopyCtorArg =
2739      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2740                          SourceLocation(), Param, false,
2741                          Constructor->getLocation(), ParamType,
2742                          VK_LValue, 0);
2743
2744    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2745
2746    // Cast to the base class to avoid ambiguities.
2747    QualType ArgTy =
2748      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2749                                       ParamType.getQualifiers());
2750
2751    if (Moving) {
2752      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2753    }
2754
2755    CXXCastPath BasePath;
2756    BasePath.push_back(BaseSpec);
2757    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2758                                            CK_UncheckedDerivedToBase,
2759                                            Moving ? VK_XValue : VK_LValue,
2760                                            &BasePath).take();
2761
2762    InitializationKind InitKind
2763      = InitializationKind::CreateDirect(Constructor->getLocation(),
2764                                         SourceLocation(), SourceLocation());
2765    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2766                                   &CopyCtorArg, 1);
2767    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2768                               MultiExprArg(&CopyCtorArg, 1));
2769    break;
2770  }
2771  }
2772
2773  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2774  if (BaseInit.isInvalid())
2775    return true;
2776
2777  CXXBaseInit =
2778    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2779               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2780                                                        SourceLocation()),
2781                                             BaseSpec->isVirtual(),
2782                                             SourceLocation(),
2783                                             BaseInit.takeAs<Expr>(),
2784                                             SourceLocation(),
2785                                             SourceLocation());
2786
2787  return false;
2788}
2789
2790static bool RefersToRValueRef(Expr *MemRef) {
2791  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2792  return Referenced->getType()->isRValueReferenceType();
2793}
2794
2795static bool
2796BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2797                               ImplicitInitializerKind ImplicitInitKind,
2798                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2799                               CXXCtorInitializer *&CXXMemberInit) {
2800  if (Field->isInvalidDecl())
2801    return true;
2802
2803  SourceLocation Loc = Constructor->getLocation();
2804
2805  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2806    bool Moving = ImplicitInitKind == IIK_Move;
2807    ParmVarDecl *Param = Constructor->getParamDecl(0);
2808    QualType ParamType = Param->getType().getNonReferenceType();
2809
2810    // Suppress copying zero-width bitfields.
2811    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2812      return false;
2813
2814    Expr *MemberExprBase =
2815      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2816                          SourceLocation(), Param, false,
2817                          Loc, ParamType, VK_LValue, 0);
2818
2819    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2820
2821    if (Moving) {
2822      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2823    }
2824
2825    // Build a reference to this field within the parameter.
2826    CXXScopeSpec SS;
2827    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2828                              Sema::LookupMemberName);
2829    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2830                                  : cast<ValueDecl>(Field), AS_public);
2831    MemberLookup.resolveKind();
2832    ExprResult CtorArg
2833      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2834                                         ParamType, Loc,
2835                                         /*IsArrow=*/false,
2836                                         SS,
2837                                         /*TemplateKWLoc=*/SourceLocation(),
2838                                         /*FirstQualifierInScope=*/0,
2839                                         MemberLookup,
2840                                         /*TemplateArgs=*/0);
2841    if (CtorArg.isInvalid())
2842      return true;
2843
2844    // C++11 [class.copy]p15:
2845    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2846    //     with static_cast<T&&>(x.m);
2847    if (RefersToRValueRef(CtorArg.get())) {
2848      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2849    }
2850
2851    // When the field we are copying is an array, create index variables for
2852    // each dimension of the array. We use these index variables to subscript
2853    // the source array, and other clients (e.g., CodeGen) will perform the
2854    // necessary iteration with these index variables.
2855    SmallVector<VarDecl *, 4> IndexVariables;
2856    QualType BaseType = Field->getType();
2857    QualType SizeType = SemaRef.Context.getSizeType();
2858    bool InitializingArray = false;
2859    while (const ConstantArrayType *Array
2860                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2861      InitializingArray = true;
2862      // Create the iteration variable for this array index.
2863      IdentifierInfo *IterationVarName = 0;
2864      {
2865        SmallString<8> Str;
2866        llvm::raw_svector_ostream OS(Str);
2867        OS << "__i" << IndexVariables.size();
2868        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2869      }
2870      VarDecl *IterationVar
2871        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2872                          IterationVarName, SizeType,
2873                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2874                          SC_None);
2875      IndexVariables.push_back(IterationVar);
2876
2877      // Create a reference to the iteration variable.
2878      ExprResult IterationVarRef
2879        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2880      assert(!IterationVarRef.isInvalid() &&
2881             "Reference to invented variable cannot fail!");
2882      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2883      assert(!IterationVarRef.isInvalid() &&
2884             "Conversion of invented variable cannot fail!");
2885
2886      // Subscript the array with this iteration variable.
2887      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2888                                                        IterationVarRef.take(),
2889                                                        Loc);
2890      if (CtorArg.isInvalid())
2891        return true;
2892
2893      BaseType = Array->getElementType();
2894    }
2895
2896    // The array subscript expression is an lvalue, which is wrong for moving.
2897    if (Moving && InitializingArray)
2898      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2899
2900    // Construct the entity that we will be initializing. For an array, this
2901    // will be first element in the array, which may require several levels
2902    // of array-subscript entities.
2903    SmallVector<InitializedEntity, 4> Entities;
2904    Entities.reserve(1 + IndexVariables.size());
2905    if (Indirect)
2906      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2907    else
2908      Entities.push_back(InitializedEntity::InitializeMember(Field));
2909    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2910      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2911                                                              0,
2912                                                              Entities.back()));
2913
2914    // Direct-initialize to use the copy constructor.
2915    InitializationKind InitKind =
2916      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2917
2918    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2919    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2920                                   &CtorArgE, 1);
2921
2922    ExprResult MemberInit
2923      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2924                        MultiExprArg(&CtorArgE, 1));
2925    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2926    if (MemberInit.isInvalid())
2927      return true;
2928
2929    if (Indirect) {
2930      assert(IndexVariables.size() == 0 &&
2931             "Indirect field improperly initialized");
2932      CXXMemberInit
2933        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2934                                                   Loc, Loc,
2935                                                   MemberInit.takeAs<Expr>(),
2936                                                   Loc);
2937    } else
2938      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2939                                                 Loc, MemberInit.takeAs<Expr>(),
2940                                                 Loc,
2941                                                 IndexVariables.data(),
2942                                                 IndexVariables.size());
2943    return false;
2944  }
2945
2946  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
2947         "Unhandled implicit init kind!");
2948
2949  QualType FieldBaseElementType =
2950    SemaRef.Context.getBaseElementType(Field->getType());
2951
2952  if (FieldBaseElementType->isRecordType()) {
2953    InitializedEntity InitEntity
2954      = Indirect? InitializedEntity::InitializeMember(Indirect)
2955                : InitializedEntity::InitializeMember(Field);
2956    InitializationKind InitKind =
2957      InitializationKind::CreateDefault(Loc);
2958
2959    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2960    ExprResult MemberInit =
2961      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2962
2963    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2964    if (MemberInit.isInvalid())
2965      return true;
2966
2967    if (Indirect)
2968      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2969                                                               Indirect, Loc,
2970                                                               Loc,
2971                                                               MemberInit.get(),
2972                                                               Loc);
2973    else
2974      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2975                                                               Field, Loc, Loc,
2976                                                               MemberInit.get(),
2977                                                               Loc);
2978    return false;
2979  }
2980
2981  if (!Field->getParent()->isUnion()) {
2982    if (FieldBaseElementType->isReferenceType()) {
2983      SemaRef.Diag(Constructor->getLocation(),
2984                   diag::err_uninitialized_member_in_ctor)
2985      << (int)Constructor->isImplicit()
2986      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2987      << 0 << Field->getDeclName();
2988      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2989      return true;
2990    }
2991
2992    if (FieldBaseElementType.isConstQualified()) {
2993      SemaRef.Diag(Constructor->getLocation(),
2994                   diag::err_uninitialized_member_in_ctor)
2995      << (int)Constructor->isImplicit()
2996      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2997      << 1 << Field->getDeclName();
2998      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2999      return true;
3000    }
3001  }
3002
3003  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3004      FieldBaseElementType->isObjCRetainableType() &&
3005      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3006      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3007    // ARC:
3008    //   Default-initialize Objective-C pointers to NULL.
3009    CXXMemberInit
3010      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3011                                                 Loc, Loc,
3012                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3013                                                 Loc);
3014    return false;
3015  }
3016
3017  // Nothing to initialize.
3018  CXXMemberInit = 0;
3019  return false;
3020}
3021
3022namespace {
3023struct BaseAndFieldInfo {
3024  Sema &S;
3025  CXXConstructorDecl *Ctor;
3026  bool AnyErrorsInInits;
3027  ImplicitInitializerKind IIK;
3028  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3029  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3030
3031  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3032    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3033    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3034    if (Generated && Ctor->isCopyConstructor())
3035      IIK = IIK_Copy;
3036    else if (Generated && Ctor->isMoveConstructor())
3037      IIK = IIK_Move;
3038    else if (Ctor->getInheritedConstructor())
3039      IIK = IIK_Inherit;
3040    else
3041      IIK = IIK_Default;
3042  }
3043
3044  bool isImplicitCopyOrMove() const {
3045    switch (IIK) {
3046    case IIK_Copy:
3047    case IIK_Move:
3048      return true;
3049
3050    case IIK_Default:
3051    case IIK_Inherit:
3052      return false;
3053    }
3054
3055    llvm_unreachable("Invalid ImplicitInitializerKind!");
3056  }
3057
3058  bool addFieldInitializer(CXXCtorInitializer *Init) {
3059    AllToInit.push_back(Init);
3060
3061    // Check whether this initializer makes the field "used".
3062    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
3063      S.UnusedPrivateFields.remove(Init->getAnyMember());
3064
3065    return false;
3066  }
3067};
3068}
3069
3070/// \brief Determine whether the given indirect field declaration is somewhere
3071/// within an anonymous union.
3072static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3073  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3074                                      CEnd = F->chain_end();
3075       C != CEnd; ++C)
3076    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3077      if (Record->isUnion())
3078        return true;
3079
3080  return false;
3081}
3082
3083/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3084/// array type.
3085static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3086  if (T->isIncompleteArrayType())
3087    return true;
3088
3089  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3090    if (!ArrayT->getSize())
3091      return true;
3092
3093    T = ArrayT->getElementType();
3094  }
3095
3096  return false;
3097}
3098
3099static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3100                                    FieldDecl *Field,
3101                                    IndirectFieldDecl *Indirect = 0) {
3102
3103  // Overwhelmingly common case: we have a direct initializer for this field.
3104  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3105    return Info.addFieldInitializer(Init);
3106
3107  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3108  // has a brace-or-equal-initializer, the entity is initialized as specified
3109  // in [dcl.init].
3110  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3111    CXXCtorInitializer *Init;
3112    if (Indirect)
3113      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3114                                                      SourceLocation(),
3115                                                      SourceLocation(), 0,
3116                                                      SourceLocation());
3117    else
3118      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3119                                                      SourceLocation(),
3120                                                      SourceLocation(), 0,
3121                                                      SourceLocation());
3122    return Info.addFieldInitializer(Init);
3123  }
3124
3125  // Don't build an implicit initializer for union members if none was
3126  // explicitly specified.
3127  if (Field->getParent()->isUnion() ||
3128      (Indirect && isWithinAnonymousUnion(Indirect)))
3129    return false;
3130
3131  // Don't initialize incomplete or zero-length arrays.
3132  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3133    return false;
3134
3135  // Don't try to build an implicit initializer if there were semantic
3136  // errors in any of the initializers (and therefore we might be
3137  // missing some that the user actually wrote).
3138  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3139    return false;
3140
3141  CXXCtorInitializer *Init = 0;
3142  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3143                                     Indirect, Init))
3144    return true;
3145
3146  if (!Init)
3147    return false;
3148
3149  return Info.addFieldInitializer(Init);
3150}
3151
3152bool
3153Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3154                               CXXCtorInitializer *Initializer) {
3155  assert(Initializer->isDelegatingInitializer());
3156  Constructor->setNumCtorInitializers(1);
3157  CXXCtorInitializer **initializer =
3158    new (Context) CXXCtorInitializer*[1];
3159  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3160  Constructor->setCtorInitializers(initializer);
3161
3162  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3163    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3164    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3165  }
3166
3167  DelegatingCtorDecls.push_back(Constructor);
3168
3169  return false;
3170}
3171
3172bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3173                               ArrayRef<CXXCtorInitializer *> Initializers) {
3174  if (Constructor->isDependentContext()) {
3175    // Just store the initializers as written, they will be checked during
3176    // instantiation.
3177    if (!Initializers.empty()) {
3178      Constructor->setNumCtorInitializers(Initializers.size());
3179      CXXCtorInitializer **baseOrMemberInitializers =
3180        new (Context) CXXCtorInitializer*[Initializers.size()];
3181      memcpy(baseOrMemberInitializers, Initializers.data(),
3182             Initializers.size() * sizeof(CXXCtorInitializer*));
3183      Constructor->setCtorInitializers(baseOrMemberInitializers);
3184    }
3185
3186    // Let template instantiation know whether we had errors.
3187    if (AnyErrors)
3188      Constructor->setInvalidDecl();
3189
3190    return false;
3191  }
3192
3193  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3194
3195  // We need to build the initializer AST according to order of construction
3196  // and not what user specified in the Initializers list.
3197  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3198  if (!ClassDecl)
3199    return true;
3200
3201  bool HadError = false;
3202
3203  for (unsigned i = 0; i < Initializers.size(); i++) {
3204    CXXCtorInitializer *Member = Initializers[i];
3205
3206    if (Member->isBaseInitializer())
3207      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3208    else
3209      Info.AllBaseFields[Member->getAnyMember()] = Member;
3210  }
3211
3212  // Keep track of the direct virtual bases.
3213  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3214  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3215       E = ClassDecl->bases_end(); I != E; ++I) {
3216    if (I->isVirtual())
3217      DirectVBases.insert(I);
3218  }
3219
3220  // Push virtual bases before others.
3221  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3222       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3223
3224    if (CXXCtorInitializer *Value
3225        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3226      Info.AllToInit.push_back(Value);
3227    } else if (!AnyErrors) {
3228      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3229      CXXCtorInitializer *CXXBaseInit;
3230      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3231                                       VBase, IsInheritedVirtualBase,
3232                                       CXXBaseInit)) {
3233        HadError = true;
3234        continue;
3235      }
3236
3237      Info.AllToInit.push_back(CXXBaseInit);
3238    }
3239  }
3240
3241  // Non-virtual bases.
3242  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3243       E = ClassDecl->bases_end(); Base != E; ++Base) {
3244    // Virtuals are in the virtual base list and already constructed.
3245    if (Base->isVirtual())
3246      continue;
3247
3248    if (CXXCtorInitializer *Value
3249          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3250      Info.AllToInit.push_back(Value);
3251    } else if (!AnyErrors) {
3252      CXXCtorInitializer *CXXBaseInit;
3253      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3254                                       Base, /*IsInheritedVirtualBase=*/false,
3255                                       CXXBaseInit)) {
3256        HadError = true;
3257        continue;
3258      }
3259
3260      Info.AllToInit.push_back(CXXBaseInit);
3261    }
3262  }
3263
3264  // Fields.
3265  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3266                               MemEnd = ClassDecl->decls_end();
3267       Mem != MemEnd; ++Mem) {
3268    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3269      // C++ [class.bit]p2:
3270      //   A declaration for a bit-field that omits the identifier declares an
3271      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3272      //   initialized.
3273      if (F->isUnnamedBitfield())
3274        continue;
3275
3276      // If we're not generating the implicit copy/move constructor, then we'll
3277      // handle anonymous struct/union fields based on their individual
3278      // indirect fields.
3279      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3280        continue;
3281
3282      if (CollectFieldInitializer(*this, Info, F))
3283        HadError = true;
3284      continue;
3285    }
3286
3287    // Beyond this point, we only consider default initialization.
3288    if (Info.isImplicitCopyOrMove())
3289      continue;
3290
3291    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3292      if (F->getType()->isIncompleteArrayType()) {
3293        assert(ClassDecl->hasFlexibleArrayMember() &&
3294               "Incomplete array type is not valid");
3295        continue;
3296      }
3297
3298      // Initialize each field of an anonymous struct individually.
3299      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3300        HadError = true;
3301
3302      continue;
3303    }
3304  }
3305
3306  unsigned NumInitializers = Info.AllToInit.size();
3307  if (NumInitializers > 0) {
3308    Constructor->setNumCtorInitializers(NumInitializers);
3309    CXXCtorInitializer **baseOrMemberInitializers =
3310      new (Context) CXXCtorInitializer*[NumInitializers];
3311    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3312           NumInitializers * sizeof(CXXCtorInitializer*));
3313    Constructor->setCtorInitializers(baseOrMemberInitializers);
3314
3315    // Constructors implicitly reference the base and member
3316    // destructors.
3317    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3318                                           Constructor->getParent());
3319  }
3320
3321  return HadError;
3322}
3323
3324static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3325  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3326    const RecordDecl *RD = RT->getDecl();
3327    if (RD->isAnonymousStructOrUnion()) {
3328      for (RecordDecl::field_iterator Field = RD->field_begin(),
3329          E = RD->field_end(); Field != E; ++Field)
3330        PopulateKeysForFields(*Field, IdealInits);
3331      return;
3332    }
3333  }
3334  IdealInits.push_back(Field);
3335}
3336
3337static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3338  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3339}
3340
3341static void *GetKeyForMember(ASTContext &Context,
3342                             CXXCtorInitializer *Member) {
3343  if (!Member->isAnyMemberInitializer())
3344    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3345
3346  return Member->getAnyMember();
3347}
3348
3349static void DiagnoseBaseOrMemInitializerOrder(
3350    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3351    ArrayRef<CXXCtorInitializer *> Inits) {
3352  if (Constructor->getDeclContext()->isDependentContext())
3353    return;
3354
3355  // Don't check initializers order unless the warning is enabled at the
3356  // location of at least one initializer.
3357  bool ShouldCheckOrder = false;
3358  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3359    CXXCtorInitializer *Init = Inits[InitIndex];
3360    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3361                                         Init->getSourceLocation())
3362          != DiagnosticsEngine::Ignored) {
3363      ShouldCheckOrder = true;
3364      break;
3365    }
3366  }
3367  if (!ShouldCheckOrder)
3368    return;
3369
3370  // Build the list of bases and members in the order that they'll
3371  // actually be initialized.  The explicit initializers should be in
3372  // this same order but may be missing things.
3373  SmallVector<const void*, 32> IdealInitKeys;
3374
3375  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3376
3377  // 1. Virtual bases.
3378  for (CXXRecordDecl::base_class_const_iterator VBase =
3379       ClassDecl->vbases_begin(),
3380       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3381    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3382
3383  // 2. Non-virtual bases.
3384  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3385       E = ClassDecl->bases_end(); Base != E; ++Base) {
3386    if (Base->isVirtual())
3387      continue;
3388    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3389  }
3390
3391  // 3. Direct fields.
3392  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3393       E = ClassDecl->field_end(); Field != E; ++Field) {
3394    if (Field->isUnnamedBitfield())
3395      continue;
3396
3397    PopulateKeysForFields(*Field, IdealInitKeys);
3398  }
3399
3400  unsigned NumIdealInits = IdealInitKeys.size();
3401  unsigned IdealIndex = 0;
3402
3403  CXXCtorInitializer *PrevInit = 0;
3404  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3405    CXXCtorInitializer *Init = Inits[InitIndex];
3406    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3407
3408    // Scan forward to try to find this initializer in the idealized
3409    // initializers list.
3410    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3411      if (InitKey == IdealInitKeys[IdealIndex])
3412        break;
3413
3414    // If we didn't find this initializer, it must be because we
3415    // scanned past it on a previous iteration.  That can only
3416    // happen if we're out of order;  emit a warning.
3417    if (IdealIndex == NumIdealInits && PrevInit) {
3418      Sema::SemaDiagnosticBuilder D =
3419        SemaRef.Diag(PrevInit->getSourceLocation(),
3420                     diag::warn_initializer_out_of_order);
3421
3422      if (PrevInit->isAnyMemberInitializer())
3423        D << 0 << PrevInit->getAnyMember()->getDeclName();
3424      else
3425        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3426
3427      if (Init->isAnyMemberInitializer())
3428        D << 0 << Init->getAnyMember()->getDeclName();
3429      else
3430        D << 1 << Init->getTypeSourceInfo()->getType();
3431
3432      // Move back to the initializer's location in the ideal list.
3433      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3434        if (InitKey == IdealInitKeys[IdealIndex])
3435          break;
3436
3437      assert(IdealIndex != NumIdealInits &&
3438             "initializer not found in initializer list");
3439    }
3440
3441    PrevInit = Init;
3442  }
3443}
3444
3445namespace {
3446bool CheckRedundantInit(Sema &S,
3447                        CXXCtorInitializer *Init,
3448                        CXXCtorInitializer *&PrevInit) {
3449  if (!PrevInit) {
3450    PrevInit = Init;
3451    return false;
3452  }
3453
3454  if (FieldDecl *Field = Init->getAnyMember())
3455    S.Diag(Init->getSourceLocation(),
3456           diag::err_multiple_mem_initialization)
3457      << Field->getDeclName()
3458      << Init->getSourceRange();
3459  else {
3460    const Type *BaseClass = Init->getBaseClass();
3461    assert(BaseClass && "neither field nor base");
3462    S.Diag(Init->getSourceLocation(),
3463           diag::err_multiple_base_initialization)
3464      << QualType(BaseClass, 0)
3465      << Init->getSourceRange();
3466  }
3467  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3468    << 0 << PrevInit->getSourceRange();
3469
3470  return true;
3471}
3472
3473typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3474typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3475
3476bool CheckRedundantUnionInit(Sema &S,
3477                             CXXCtorInitializer *Init,
3478                             RedundantUnionMap &Unions) {
3479  FieldDecl *Field = Init->getAnyMember();
3480  RecordDecl *Parent = Field->getParent();
3481  NamedDecl *Child = Field;
3482
3483  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3484    if (Parent->isUnion()) {
3485      UnionEntry &En = Unions[Parent];
3486      if (En.first && En.first != Child) {
3487        S.Diag(Init->getSourceLocation(),
3488               diag::err_multiple_mem_union_initialization)
3489          << Field->getDeclName()
3490          << Init->getSourceRange();
3491        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3492          << 0 << En.second->getSourceRange();
3493        return true;
3494      }
3495      if (!En.first) {
3496        En.first = Child;
3497        En.second = Init;
3498      }
3499      if (!Parent->isAnonymousStructOrUnion())
3500        return false;
3501    }
3502
3503    Child = Parent;
3504    Parent = cast<RecordDecl>(Parent->getDeclContext());
3505  }
3506
3507  return false;
3508}
3509}
3510
3511/// ActOnMemInitializers - Handle the member initializers for a constructor.
3512void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3513                                SourceLocation ColonLoc,
3514                                ArrayRef<CXXCtorInitializer*> MemInits,
3515                                bool AnyErrors) {
3516  if (!ConstructorDecl)
3517    return;
3518
3519  AdjustDeclIfTemplate(ConstructorDecl);
3520
3521  CXXConstructorDecl *Constructor
3522    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3523
3524  if (!Constructor) {
3525    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3526    return;
3527  }
3528
3529  // Mapping for the duplicate initializers check.
3530  // For member initializers, this is keyed with a FieldDecl*.
3531  // For base initializers, this is keyed with a Type*.
3532  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3533
3534  // Mapping for the inconsistent anonymous-union initializers check.
3535  RedundantUnionMap MemberUnions;
3536
3537  bool HadError = false;
3538  for (unsigned i = 0; i < MemInits.size(); i++) {
3539    CXXCtorInitializer *Init = MemInits[i];
3540
3541    // Set the source order index.
3542    Init->setSourceOrder(i);
3543
3544    if (Init->isAnyMemberInitializer()) {
3545      FieldDecl *Field = Init->getAnyMember();
3546      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3547          CheckRedundantUnionInit(*this, Init, MemberUnions))
3548        HadError = true;
3549    } else if (Init->isBaseInitializer()) {
3550      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3551      if (CheckRedundantInit(*this, Init, Members[Key]))
3552        HadError = true;
3553    } else {
3554      assert(Init->isDelegatingInitializer());
3555      // This must be the only initializer
3556      if (MemInits.size() != 1) {
3557        Diag(Init->getSourceLocation(),
3558             diag::err_delegating_initializer_alone)
3559          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3560        // We will treat this as being the only initializer.
3561      }
3562      SetDelegatingInitializer(Constructor, MemInits[i]);
3563      // Return immediately as the initializer is set.
3564      return;
3565    }
3566  }
3567
3568  if (HadError)
3569    return;
3570
3571  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3572
3573  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3574}
3575
3576void
3577Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3578                                             CXXRecordDecl *ClassDecl) {
3579  // Ignore dependent contexts. Also ignore unions, since their members never
3580  // have destructors implicitly called.
3581  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3582    return;
3583
3584  // FIXME: all the access-control diagnostics are positioned on the
3585  // field/base declaration.  That's probably good; that said, the
3586  // user might reasonably want to know why the destructor is being
3587  // emitted, and we currently don't say.
3588
3589  // Non-static data members.
3590  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3591       E = ClassDecl->field_end(); I != E; ++I) {
3592    FieldDecl *Field = *I;
3593    if (Field->isInvalidDecl())
3594      continue;
3595
3596    // Don't destroy incomplete or zero-length arrays.
3597    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3598      continue;
3599
3600    QualType FieldType = Context.getBaseElementType(Field->getType());
3601
3602    const RecordType* RT = FieldType->getAs<RecordType>();
3603    if (!RT)
3604      continue;
3605
3606    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3607    if (FieldClassDecl->isInvalidDecl())
3608      continue;
3609    if (FieldClassDecl->hasIrrelevantDestructor())
3610      continue;
3611    // The destructor for an implicit anonymous union member is never invoked.
3612    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3613      continue;
3614
3615    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3616    assert(Dtor && "No dtor found for FieldClassDecl!");
3617    CheckDestructorAccess(Field->getLocation(), Dtor,
3618                          PDiag(diag::err_access_dtor_field)
3619                            << Field->getDeclName()
3620                            << FieldType);
3621
3622    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3623    DiagnoseUseOfDecl(Dtor, Location);
3624  }
3625
3626  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3627
3628  // Bases.
3629  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3630       E = ClassDecl->bases_end(); Base != E; ++Base) {
3631    // Bases are always records in a well-formed non-dependent class.
3632    const RecordType *RT = Base->getType()->getAs<RecordType>();
3633
3634    // Remember direct virtual bases.
3635    if (Base->isVirtual())
3636      DirectVirtualBases.insert(RT);
3637
3638    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3639    // If our base class is invalid, we probably can't get its dtor anyway.
3640    if (BaseClassDecl->isInvalidDecl())
3641      continue;
3642    if (BaseClassDecl->hasIrrelevantDestructor())
3643      continue;
3644
3645    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3646    assert(Dtor && "No dtor found for BaseClassDecl!");
3647
3648    // FIXME: caret should be on the start of the class name
3649    CheckDestructorAccess(Base->getLocStart(), Dtor,
3650                          PDiag(diag::err_access_dtor_base)
3651                            << Base->getType()
3652                            << Base->getSourceRange(),
3653                          Context.getTypeDeclType(ClassDecl));
3654
3655    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3656    DiagnoseUseOfDecl(Dtor, Location);
3657  }
3658
3659  // Virtual bases.
3660  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3661       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3662
3663    // Bases are always records in a well-formed non-dependent class.
3664    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3665
3666    // Ignore direct virtual bases.
3667    if (DirectVirtualBases.count(RT))
3668      continue;
3669
3670    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3671    // If our base class is invalid, we probably can't get its dtor anyway.
3672    if (BaseClassDecl->isInvalidDecl())
3673      continue;
3674    if (BaseClassDecl->hasIrrelevantDestructor())
3675      continue;
3676
3677    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3678    assert(Dtor && "No dtor found for BaseClassDecl!");
3679    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3680                          PDiag(diag::err_access_dtor_vbase)
3681                            << VBase->getType(),
3682                          Context.getTypeDeclType(ClassDecl));
3683
3684    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3685    DiagnoseUseOfDecl(Dtor, Location);
3686  }
3687}
3688
3689void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3690  if (!CDtorDecl)
3691    return;
3692
3693  if (CXXConstructorDecl *Constructor
3694      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3695    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3696}
3697
3698bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3699                                  unsigned DiagID, AbstractDiagSelID SelID) {
3700  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3701    unsigned DiagID;
3702    AbstractDiagSelID SelID;
3703
3704  public:
3705    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3706      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3707
3708    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3709      if (Suppressed) return;
3710      if (SelID == -1)
3711        S.Diag(Loc, DiagID) << T;
3712      else
3713        S.Diag(Loc, DiagID) << SelID << T;
3714    }
3715  } Diagnoser(DiagID, SelID);
3716
3717  return RequireNonAbstractType(Loc, T, Diagnoser);
3718}
3719
3720bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3721                                  TypeDiagnoser &Diagnoser) {
3722  if (!getLangOpts().CPlusPlus)
3723    return false;
3724
3725  if (const ArrayType *AT = Context.getAsArrayType(T))
3726    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3727
3728  if (const PointerType *PT = T->getAs<PointerType>()) {
3729    // Find the innermost pointer type.
3730    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3731      PT = T;
3732
3733    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3734      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3735  }
3736
3737  const RecordType *RT = T->getAs<RecordType>();
3738  if (!RT)
3739    return false;
3740
3741  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3742
3743  // We can't answer whether something is abstract until it has a
3744  // definition.  If it's currently being defined, we'll walk back
3745  // over all the declarations when we have a full definition.
3746  const CXXRecordDecl *Def = RD->getDefinition();
3747  if (!Def || Def->isBeingDefined())
3748    return false;
3749
3750  if (!RD->isAbstract())
3751    return false;
3752
3753  Diagnoser.diagnose(*this, Loc, T);
3754  DiagnoseAbstractType(RD);
3755
3756  return true;
3757}
3758
3759void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3760  // Check if we've already emitted the list of pure virtual functions
3761  // for this class.
3762  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3763    return;
3764
3765  CXXFinalOverriderMap FinalOverriders;
3766  RD->getFinalOverriders(FinalOverriders);
3767
3768  // Keep a set of seen pure methods so we won't diagnose the same method
3769  // more than once.
3770  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3771
3772  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3773                                   MEnd = FinalOverriders.end();
3774       M != MEnd;
3775       ++M) {
3776    for (OverridingMethods::iterator SO = M->second.begin(),
3777                                  SOEnd = M->second.end();
3778         SO != SOEnd; ++SO) {
3779      // C++ [class.abstract]p4:
3780      //   A class is abstract if it contains or inherits at least one
3781      //   pure virtual function for which the final overrider is pure
3782      //   virtual.
3783
3784      //
3785      if (SO->second.size() != 1)
3786        continue;
3787
3788      if (!SO->second.front().Method->isPure())
3789        continue;
3790
3791      if (!SeenPureMethods.insert(SO->second.front().Method))
3792        continue;
3793
3794      Diag(SO->second.front().Method->getLocation(),
3795           diag::note_pure_virtual_function)
3796        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3797    }
3798  }
3799
3800  if (!PureVirtualClassDiagSet)
3801    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3802  PureVirtualClassDiagSet->insert(RD);
3803}
3804
3805namespace {
3806struct AbstractUsageInfo {
3807  Sema &S;
3808  CXXRecordDecl *Record;
3809  CanQualType AbstractType;
3810  bool Invalid;
3811
3812  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3813    : S(S), Record(Record),
3814      AbstractType(S.Context.getCanonicalType(
3815                   S.Context.getTypeDeclType(Record))),
3816      Invalid(false) {}
3817
3818  void DiagnoseAbstractType() {
3819    if (Invalid) return;
3820    S.DiagnoseAbstractType(Record);
3821    Invalid = true;
3822  }
3823
3824  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3825};
3826
3827struct CheckAbstractUsage {
3828  AbstractUsageInfo &Info;
3829  const NamedDecl *Ctx;
3830
3831  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3832    : Info(Info), Ctx(Ctx) {}
3833
3834  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3835    switch (TL.getTypeLocClass()) {
3836#define ABSTRACT_TYPELOC(CLASS, PARENT)
3837#define TYPELOC(CLASS, PARENT) \
3838    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3839#include "clang/AST/TypeLocNodes.def"
3840    }
3841  }
3842
3843  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3844    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3845    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3846      if (!TL.getArg(I))
3847        continue;
3848
3849      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3850      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3851    }
3852  }
3853
3854  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3855    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3856  }
3857
3858  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3859    // Visit the type parameters from a permissive context.
3860    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3861      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3862      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3863        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3864          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3865      // TODO: other template argument types?
3866    }
3867  }
3868
3869  // Visit pointee types from a permissive context.
3870#define CheckPolymorphic(Type) \
3871  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3872    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3873  }
3874  CheckPolymorphic(PointerTypeLoc)
3875  CheckPolymorphic(ReferenceTypeLoc)
3876  CheckPolymorphic(MemberPointerTypeLoc)
3877  CheckPolymorphic(BlockPointerTypeLoc)
3878  CheckPolymorphic(AtomicTypeLoc)
3879
3880  /// Handle all the types we haven't given a more specific
3881  /// implementation for above.
3882  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3883    // Every other kind of type that we haven't called out already
3884    // that has an inner type is either (1) sugar or (2) contains that
3885    // inner type in some way as a subobject.
3886    if (TypeLoc Next = TL.getNextTypeLoc())
3887      return Visit(Next, Sel);
3888
3889    // If there's no inner type and we're in a permissive context,
3890    // don't diagnose.
3891    if (Sel == Sema::AbstractNone) return;
3892
3893    // Check whether the type matches the abstract type.
3894    QualType T = TL.getType();
3895    if (T->isArrayType()) {
3896      Sel = Sema::AbstractArrayType;
3897      T = Info.S.Context.getBaseElementType(T);
3898    }
3899    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3900    if (CT != Info.AbstractType) return;
3901
3902    // It matched; do some magic.
3903    if (Sel == Sema::AbstractArrayType) {
3904      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3905        << T << TL.getSourceRange();
3906    } else {
3907      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3908        << Sel << T << TL.getSourceRange();
3909    }
3910    Info.DiagnoseAbstractType();
3911  }
3912};
3913
3914void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3915                                  Sema::AbstractDiagSelID Sel) {
3916  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3917}
3918
3919}
3920
3921/// Check for invalid uses of an abstract type in a method declaration.
3922static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3923                                    CXXMethodDecl *MD) {
3924  // No need to do the check on definitions, which require that
3925  // the return/param types be complete.
3926  if (MD->doesThisDeclarationHaveABody())
3927    return;
3928
3929  // For safety's sake, just ignore it if we don't have type source
3930  // information.  This should never happen for non-implicit methods,
3931  // but...
3932  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3933    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3934}
3935
3936/// Check for invalid uses of an abstract type within a class definition.
3937static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3938                                    CXXRecordDecl *RD) {
3939  for (CXXRecordDecl::decl_iterator
3940         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3941    Decl *D = *I;
3942    if (D->isImplicit()) continue;
3943
3944    // Methods and method templates.
3945    if (isa<CXXMethodDecl>(D)) {
3946      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3947    } else if (isa<FunctionTemplateDecl>(D)) {
3948      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3949      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3950
3951    // Fields and static variables.
3952    } else if (isa<FieldDecl>(D)) {
3953      FieldDecl *FD = cast<FieldDecl>(D);
3954      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3955        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3956    } else if (isa<VarDecl>(D)) {
3957      VarDecl *VD = cast<VarDecl>(D);
3958      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3959        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3960
3961    // Nested classes and class templates.
3962    } else if (isa<CXXRecordDecl>(D)) {
3963      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3964    } else if (isa<ClassTemplateDecl>(D)) {
3965      CheckAbstractClassUsage(Info,
3966                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3967    }
3968  }
3969}
3970
3971/// \brief Perform semantic checks on a class definition that has been
3972/// completing, introducing implicitly-declared members, checking for
3973/// abstract types, etc.
3974void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3975  if (!Record)
3976    return;
3977
3978  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3979    AbstractUsageInfo Info(*this, Record);
3980    CheckAbstractClassUsage(Info, Record);
3981  }
3982
3983  // If this is not an aggregate type and has no user-declared constructor,
3984  // complain about any non-static data members of reference or const scalar
3985  // type, since they will never get initializers.
3986  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3987      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3988      !Record->isLambda()) {
3989    bool Complained = false;
3990    for (RecordDecl::field_iterator F = Record->field_begin(),
3991                                 FEnd = Record->field_end();
3992         F != FEnd; ++F) {
3993      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3994        continue;
3995
3996      if (F->getType()->isReferenceType() ||
3997          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3998        if (!Complained) {
3999          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4000            << Record->getTagKind() << Record;
4001          Complained = true;
4002        }
4003
4004        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4005          << F->getType()->isReferenceType()
4006          << F->getDeclName();
4007      }
4008    }
4009  }
4010
4011  if (Record->isDynamicClass() && !Record->isDependentType())
4012    DynamicClasses.push_back(Record);
4013
4014  if (Record->getIdentifier()) {
4015    // C++ [class.mem]p13:
4016    //   If T is the name of a class, then each of the following shall have a
4017    //   name different from T:
4018    //     - every member of every anonymous union that is a member of class T.
4019    //
4020    // C++ [class.mem]p14:
4021    //   In addition, if class T has a user-declared constructor (12.1), every
4022    //   non-static data member of class T shall have a name different from T.
4023    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4024    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4025         ++I) {
4026      NamedDecl *D = *I;
4027      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4028          isa<IndirectFieldDecl>(D)) {
4029        Diag(D->getLocation(), diag::err_member_name_of_class)
4030          << D->getDeclName();
4031        break;
4032      }
4033    }
4034  }
4035
4036  // Warn if the class has virtual methods but non-virtual public destructor.
4037  if (Record->isPolymorphic() && !Record->isDependentType()) {
4038    CXXDestructorDecl *dtor = Record->getDestructor();
4039    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4040      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4041           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4042  }
4043
4044  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4045    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4046    DiagnoseAbstractType(Record);
4047  }
4048
4049  if (!Record->isDependentType()) {
4050    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4051                                     MEnd = Record->method_end();
4052         M != MEnd; ++M) {
4053      // See if a method overloads virtual methods in a base
4054      // class without overriding any.
4055      if (!M->isStatic())
4056        DiagnoseHiddenVirtualMethods(Record, *M);
4057
4058      // Check whether the explicitly-defaulted special members are valid.
4059      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4060        CheckExplicitlyDefaultedSpecialMember(*M);
4061
4062      // For an explicitly defaulted or deleted special member, we defer
4063      // determining triviality until the class is complete. That time is now!
4064      if (!M->isImplicit() && !M->isUserProvided()) {
4065        CXXSpecialMember CSM = getSpecialMember(*M);
4066        if (CSM != CXXInvalid) {
4067          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4068
4069          // Inform the class that we've finished declaring this member.
4070          Record->finishedDefaultedOrDeletedMember(*M);
4071        }
4072      }
4073    }
4074  }
4075
4076  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4077  // function that is not a constructor declares that member function to be
4078  // const. [...] The class of which that function is a member shall be
4079  // a literal type.
4080  //
4081  // If the class has virtual bases, any constexpr members will already have
4082  // been diagnosed by the checks performed on the member declaration, so
4083  // suppress this (less useful) diagnostic.
4084  //
4085  // We delay this until we know whether an explicitly-defaulted (or deleted)
4086  // destructor for the class is trivial.
4087  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4088      !Record->isLiteral() && !Record->getNumVBases()) {
4089    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4090                                     MEnd = Record->method_end();
4091         M != MEnd; ++M) {
4092      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4093        switch (Record->getTemplateSpecializationKind()) {
4094        case TSK_ImplicitInstantiation:
4095        case TSK_ExplicitInstantiationDeclaration:
4096        case TSK_ExplicitInstantiationDefinition:
4097          // If a template instantiates to a non-literal type, but its members
4098          // instantiate to constexpr functions, the template is technically
4099          // ill-formed, but we allow it for sanity.
4100          continue;
4101
4102        case TSK_Undeclared:
4103        case TSK_ExplicitSpecialization:
4104          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4105                             diag::err_constexpr_method_non_literal);
4106          break;
4107        }
4108
4109        // Only produce one error per class.
4110        break;
4111      }
4112    }
4113  }
4114
4115  // Declare inheriting constructors. We do this eagerly here because:
4116  // - The standard requires an eager diagnostic for conflicting inheriting
4117  //   constructors from different classes.
4118  // - The lazy declaration of the other implicit constructors is so as to not
4119  //   waste space and performance on classes that are not meant to be
4120  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4121  //   have inheriting constructors.
4122  DeclareInheritingConstructors(Record);
4123}
4124
4125/// Is the special member function which would be selected to perform the
4126/// specified operation on the specified class type a constexpr constructor?
4127static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4128                                     Sema::CXXSpecialMember CSM,
4129                                     bool ConstArg) {
4130  Sema::SpecialMemberOverloadResult *SMOR =
4131      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4132                            false, false, false, false);
4133  if (!SMOR || !SMOR->getMethod())
4134    // A constructor we wouldn't select can't be "involved in initializing"
4135    // anything.
4136    return true;
4137  return SMOR->getMethod()->isConstexpr();
4138}
4139
4140/// Determine whether the specified special member function would be constexpr
4141/// if it were implicitly defined.
4142static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4143                                              Sema::CXXSpecialMember CSM,
4144                                              bool ConstArg) {
4145  if (!S.getLangOpts().CPlusPlus11)
4146    return false;
4147
4148  // C++11 [dcl.constexpr]p4:
4149  // In the definition of a constexpr constructor [...]
4150  switch (CSM) {
4151  case Sema::CXXDefaultConstructor:
4152    // Since default constructor lookup is essentially trivial (and cannot
4153    // involve, for instance, template instantiation), we compute whether a
4154    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4155    //
4156    // This is important for performance; we need to know whether the default
4157    // constructor is constexpr to determine whether the type is a literal type.
4158    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4159
4160  case Sema::CXXCopyConstructor:
4161  case Sema::CXXMoveConstructor:
4162    // For copy or move constructors, we need to perform overload resolution.
4163    break;
4164
4165  case Sema::CXXCopyAssignment:
4166  case Sema::CXXMoveAssignment:
4167  case Sema::CXXDestructor:
4168  case Sema::CXXInvalid:
4169    return false;
4170  }
4171
4172  //   -- if the class is a non-empty union, or for each non-empty anonymous
4173  //      union member of a non-union class, exactly one non-static data member
4174  //      shall be initialized; [DR1359]
4175  //
4176  // If we squint, this is guaranteed, since exactly one non-static data member
4177  // will be initialized (if the constructor isn't deleted), we just don't know
4178  // which one.
4179  if (ClassDecl->isUnion())
4180    return true;
4181
4182  //   -- the class shall not have any virtual base classes;
4183  if (ClassDecl->getNumVBases())
4184    return false;
4185
4186  //   -- every constructor involved in initializing [...] base class
4187  //      sub-objects shall be a constexpr constructor;
4188  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4189                                       BEnd = ClassDecl->bases_end();
4190       B != BEnd; ++B) {
4191    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4192    if (!BaseType) continue;
4193
4194    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4195    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4196      return false;
4197  }
4198
4199  //   -- every constructor involved in initializing non-static data members
4200  //      [...] shall be a constexpr constructor;
4201  //   -- every non-static data member and base class sub-object shall be
4202  //      initialized
4203  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4204                               FEnd = ClassDecl->field_end();
4205       F != FEnd; ++F) {
4206    if (F->isInvalidDecl())
4207      continue;
4208    if (const RecordType *RecordTy =
4209            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4210      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4211      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4212        return false;
4213    }
4214  }
4215
4216  // All OK, it's constexpr!
4217  return true;
4218}
4219
4220static Sema::ImplicitExceptionSpecification
4221computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4222  switch (S.getSpecialMember(MD)) {
4223  case Sema::CXXDefaultConstructor:
4224    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4225  case Sema::CXXCopyConstructor:
4226    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4227  case Sema::CXXCopyAssignment:
4228    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4229  case Sema::CXXMoveConstructor:
4230    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4231  case Sema::CXXMoveAssignment:
4232    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4233  case Sema::CXXDestructor:
4234    return S.ComputeDefaultedDtorExceptionSpec(MD);
4235  case Sema::CXXInvalid:
4236    break;
4237  }
4238  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4239         "only special members have implicit exception specs");
4240  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4241}
4242
4243static void
4244updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4245                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4246  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4247  ExceptSpec.getEPI(EPI);
4248  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4249                                        FPT->getArgTypes(), EPI));
4250}
4251
4252void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4253  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4254  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4255    return;
4256
4257  // Evaluate the exception specification.
4258  ImplicitExceptionSpecification ExceptSpec =
4259      computeImplicitExceptionSpec(*this, Loc, MD);
4260
4261  // Update the type of the special member to use it.
4262  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4263
4264  // A user-provided destructor can be defined outside the class. When that
4265  // happens, be sure to update the exception specification on both
4266  // declarations.
4267  const FunctionProtoType *CanonicalFPT =
4268    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4269  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4270    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4271                        CanonicalFPT, ExceptSpec);
4272}
4273
4274void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4275  CXXRecordDecl *RD = MD->getParent();
4276  CXXSpecialMember CSM = getSpecialMember(MD);
4277
4278  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4279         "not an explicitly-defaulted special member");
4280
4281  // Whether this was the first-declared instance of the constructor.
4282  // This affects whether we implicitly add an exception spec and constexpr.
4283  bool First = MD == MD->getCanonicalDecl();
4284
4285  bool HadError = false;
4286
4287  // C++11 [dcl.fct.def.default]p1:
4288  //   A function that is explicitly defaulted shall
4289  //     -- be a special member function (checked elsewhere),
4290  //     -- have the same type (except for ref-qualifiers, and except that a
4291  //        copy operation can take a non-const reference) as an implicit
4292  //        declaration, and
4293  //     -- not have default arguments.
4294  unsigned ExpectedParams = 1;
4295  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4296    ExpectedParams = 0;
4297  if (MD->getNumParams() != ExpectedParams) {
4298    // This also checks for default arguments: a copy or move constructor with a
4299    // default argument is classified as a default constructor, and assignment
4300    // operations and destructors can't have default arguments.
4301    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4302      << CSM << MD->getSourceRange();
4303    HadError = true;
4304  } else if (MD->isVariadic()) {
4305    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4306      << CSM << MD->getSourceRange();
4307    HadError = true;
4308  }
4309
4310  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4311
4312  bool CanHaveConstParam = false;
4313  if (CSM == CXXCopyConstructor)
4314    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4315  else if (CSM == CXXCopyAssignment)
4316    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4317
4318  QualType ReturnType = Context.VoidTy;
4319  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4320    // Check for return type matching.
4321    ReturnType = Type->getResultType();
4322    QualType ExpectedReturnType =
4323        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4324    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4325      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4326        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4327      HadError = true;
4328    }
4329
4330    // A defaulted special member cannot have cv-qualifiers.
4331    if (Type->getTypeQuals()) {
4332      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4333        << (CSM == CXXMoveAssignment);
4334      HadError = true;
4335    }
4336  }
4337
4338  // Check for parameter type matching.
4339  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4340  bool HasConstParam = false;
4341  if (ExpectedParams && ArgType->isReferenceType()) {
4342    // Argument must be reference to possibly-const T.
4343    QualType ReferentType = ArgType->getPointeeType();
4344    HasConstParam = ReferentType.isConstQualified();
4345
4346    if (ReferentType.isVolatileQualified()) {
4347      Diag(MD->getLocation(),
4348           diag::err_defaulted_special_member_volatile_param) << CSM;
4349      HadError = true;
4350    }
4351
4352    if (HasConstParam && !CanHaveConstParam) {
4353      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4354        Diag(MD->getLocation(),
4355             diag::err_defaulted_special_member_copy_const_param)
4356          << (CSM == CXXCopyAssignment);
4357        // FIXME: Explain why this special member can't be const.
4358      } else {
4359        Diag(MD->getLocation(),
4360             diag::err_defaulted_special_member_move_const_param)
4361          << (CSM == CXXMoveAssignment);
4362      }
4363      HadError = true;
4364    }
4365  } else if (ExpectedParams) {
4366    // A copy assignment operator can take its argument by value, but a
4367    // defaulted one cannot.
4368    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4369    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4370    HadError = true;
4371  }
4372
4373  // C++11 [dcl.fct.def.default]p2:
4374  //   An explicitly-defaulted function may be declared constexpr only if it
4375  //   would have been implicitly declared as constexpr,
4376  // Do not apply this rule to members of class templates, since core issue 1358
4377  // makes such functions always instantiate to constexpr functions. For
4378  // non-constructors, this is checked elsewhere.
4379  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4380                                                     HasConstParam);
4381  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4382      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4383    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4384    // FIXME: Explain why the constructor can't be constexpr.
4385    HadError = true;
4386  }
4387
4388  //   and may have an explicit exception-specification only if it is compatible
4389  //   with the exception-specification on the implicit declaration.
4390  if (Type->hasExceptionSpec()) {
4391    // Delay the check if this is the first declaration of the special member,
4392    // since we may not have parsed some necessary in-class initializers yet.
4393    if (First) {
4394      // If the exception specification needs to be instantiated, do so now,
4395      // before we clobber it with an EST_Unevaluated specification below.
4396      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4397        InstantiateExceptionSpec(MD->getLocStart(), MD);
4398        Type = MD->getType()->getAs<FunctionProtoType>();
4399      }
4400      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4401    } else
4402      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4403  }
4404
4405  //   If a function is explicitly defaulted on its first declaration,
4406  if (First) {
4407    //  -- it is implicitly considered to be constexpr if the implicit
4408    //     definition would be,
4409    MD->setConstexpr(Constexpr);
4410
4411    //  -- it is implicitly considered to have the same exception-specification
4412    //     as if it had been implicitly declared,
4413    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4414    EPI.ExceptionSpecType = EST_Unevaluated;
4415    EPI.ExceptionSpecDecl = MD;
4416    MD->setType(Context.getFunctionType(ReturnType,
4417                                        ArrayRef<QualType>(&ArgType,
4418                                                           ExpectedParams),
4419                                        EPI));
4420  }
4421
4422  if (ShouldDeleteSpecialMember(MD, CSM)) {
4423    if (First) {
4424      SetDeclDeleted(MD, MD->getLocation());
4425    } else {
4426      // C++11 [dcl.fct.def.default]p4:
4427      //   [For a] user-provided explicitly-defaulted function [...] if such a
4428      //   function is implicitly defined as deleted, the program is ill-formed.
4429      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4430      HadError = true;
4431    }
4432  }
4433
4434  if (HadError)
4435    MD->setInvalidDecl();
4436}
4437
4438/// Check whether the exception specification provided for an
4439/// explicitly-defaulted special member matches the exception specification
4440/// that would have been generated for an implicit special member, per
4441/// C++11 [dcl.fct.def.default]p2.
4442void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4443    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4444  // Compute the implicit exception specification.
4445  FunctionProtoType::ExtProtoInfo EPI;
4446  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4447  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4448    Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
4449
4450  // Ensure that it matches.
4451  CheckEquivalentExceptionSpec(
4452    PDiag(diag::err_incorrect_defaulted_exception_spec)
4453      << getSpecialMember(MD), PDiag(),
4454    ImplicitType, SourceLocation(),
4455    SpecifiedType, MD->getLocation());
4456}
4457
4458void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4459  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4460       I != N; ++I)
4461    CheckExplicitlyDefaultedMemberExceptionSpec(
4462      DelayedDefaultedMemberExceptionSpecs[I].first,
4463      DelayedDefaultedMemberExceptionSpecs[I].second);
4464
4465  DelayedDefaultedMemberExceptionSpecs.clear();
4466}
4467
4468namespace {
4469struct SpecialMemberDeletionInfo {
4470  Sema &S;
4471  CXXMethodDecl *MD;
4472  Sema::CXXSpecialMember CSM;
4473  bool Diagnose;
4474
4475  // Properties of the special member, computed for convenience.
4476  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4477  SourceLocation Loc;
4478
4479  bool AllFieldsAreConst;
4480
4481  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4482                            Sema::CXXSpecialMember CSM, bool Diagnose)
4483    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4484      IsConstructor(false), IsAssignment(false), IsMove(false),
4485      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4486      AllFieldsAreConst(true) {
4487    switch (CSM) {
4488      case Sema::CXXDefaultConstructor:
4489      case Sema::CXXCopyConstructor:
4490        IsConstructor = true;
4491        break;
4492      case Sema::CXXMoveConstructor:
4493        IsConstructor = true;
4494        IsMove = true;
4495        break;
4496      case Sema::CXXCopyAssignment:
4497        IsAssignment = true;
4498        break;
4499      case Sema::CXXMoveAssignment:
4500        IsAssignment = true;
4501        IsMove = true;
4502        break;
4503      case Sema::CXXDestructor:
4504        break;
4505      case Sema::CXXInvalid:
4506        llvm_unreachable("invalid special member kind");
4507    }
4508
4509    if (MD->getNumParams()) {
4510      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4511      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4512    }
4513  }
4514
4515  bool inUnion() const { return MD->getParent()->isUnion(); }
4516
4517  /// Look up the corresponding special member in the given class.
4518  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4519                                              unsigned Quals) {
4520    unsigned TQ = MD->getTypeQualifiers();
4521    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4522    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4523      Quals = 0;
4524    return S.LookupSpecialMember(Class, CSM,
4525                                 ConstArg || (Quals & Qualifiers::Const),
4526                                 VolatileArg || (Quals & Qualifiers::Volatile),
4527                                 MD->getRefQualifier() == RQ_RValue,
4528                                 TQ & Qualifiers::Const,
4529                                 TQ & Qualifiers::Volatile);
4530  }
4531
4532  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4533
4534  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4535  bool shouldDeleteForField(FieldDecl *FD);
4536  bool shouldDeleteForAllConstMembers();
4537
4538  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4539                                     unsigned Quals);
4540  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4541                                    Sema::SpecialMemberOverloadResult *SMOR,
4542                                    bool IsDtorCallInCtor);
4543
4544  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4545};
4546}
4547
4548/// Is the given special member inaccessible when used on the given
4549/// sub-object.
4550bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4551                                             CXXMethodDecl *target) {
4552  /// If we're operating on a base class, the object type is the
4553  /// type of this special member.
4554  QualType objectTy;
4555  AccessSpecifier access = target->getAccess();
4556  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4557    objectTy = S.Context.getTypeDeclType(MD->getParent());
4558    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4559
4560  // If we're operating on a field, the object type is the type of the field.
4561  } else {
4562    objectTy = S.Context.getTypeDeclType(target->getParent());
4563  }
4564
4565  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4566}
4567
4568/// Check whether we should delete a special member due to the implicit
4569/// definition containing a call to a special member of a subobject.
4570bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4571    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4572    bool IsDtorCallInCtor) {
4573  CXXMethodDecl *Decl = SMOR->getMethod();
4574  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4575
4576  int DiagKind = -1;
4577
4578  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4579    DiagKind = !Decl ? 0 : 1;
4580  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4581    DiagKind = 2;
4582  else if (!isAccessible(Subobj, Decl))
4583    DiagKind = 3;
4584  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4585           !Decl->isTrivial()) {
4586    // A member of a union must have a trivial corresponding special member.
4587    // As a weird special case, a destructor call from a union's constructor
4588    // must be accessible and non-deleted, but need not be trivial. Such a
4589    // destructor is never actually called, but is semantically checked as
4590    // if it were.
4591    DiagKind = 4;
4592  }
4593
4594  if (DiagKind == -1)
4595    return false;
4596
4597  if (Diagnose) {
4598    if (Field) {
4599      S.Diag(Field->getLocation(),
4600             diag::note_deleted_special_member_class_subobject)
4601        << CSM << MD->getParent() << /*IsField*/true
4602        << Field << DiagKind << IsDtorCallInCtor;
4603    } else {
4604      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4605      S.Diag(Base->getLocStart(),
4606             diag::note_deleted_special_member_class_subobject)
4607        << CSM << MD->getParent() << /*IsField*/false
4608        << Base->getType() << DiagKind << IsDtorCallInCtor;
4609    }
4610
4611    if (DiagKind == 1)
4612      S.NoteDeletedFunction(Decl);
4613    // FIXME: Explain inaccessibility if DiagKind == 3.
4614  }
4615
4616  return true;
4617}
4618
4619/// Check whether we should delete a special member function due to having a
4620/// direct or virtual base class or non-static data member of class type M.
4621bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4622    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4623  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4624
4625  // C++11 [class.ctor]p5:
4626  // -- any direct or virtual base class, or non-static data member with no
4627  //    brace-or-equal-initializer, has class type M (or array thereof) and
4628  //    either M has no default constructor or overload resolution as applied
4629  //    to M's default constructor results in an ambiguity or in a function
4630  //    that is deleted or inaccessible
4631  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4632  // -- a direct or virtual base class B that cannot be copied/moved because
4633  //    overload resolution, as applied to B's corresponding special member,
4634  //    results in an ambiguity or a function that is deleted or inaccessible
4635  //    from the defaulted special member
4636  // C++11 [class.dtor]p5:
4637  // -- any direct or virtual base class [...] has a type with a destructor
4638  //    that is deleted or inaccessible
4639  if (!(CSM == Sema::CXXDefaultConstructor &&
4640        Field && Field->hasInClassInitializer()) &&
4641      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4642    return true;
4643
4644  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4645  // -- any direct or virtual base class or non-static data member has a
4646  //    type with a destructor that is deleted or inaccessible
4647  if (IsConstructor) {
4648    Sema::SpecialMemberOverloadResult *SMOR =
4649        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4650                              false, false, false, false, false);
4651    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4652      return true;
4653  }
4654
4655  return false;
4656}
4657
4658/// Check whether we should delete a special member function due to the class
4659/// having a particular direct or virtual base class.
4660bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4661  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4662  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4663}
4664
4665/// Check whether we should delete a special member function due to the class
4666/// having a particular non-static data member.
4667bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4668  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4669  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4670
4671  if (CSM == Sema::CXXDefaultConstructor) {
4672    // For a default constructor, all references must be initialized in-class
4673    // and, if a union, it must have a non-const member.
4674    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4675      if (Diagnose)
4676        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4677          << MD->getParent() << FD << FieldType << /*Reference*/0;
4678      return true;
4679    }
4680    // C++11 [class.ctor]p5: any non-variant non-static data member of
4681    // const-qualified type (or array thereof) with no
4682    // brace-or-equal-initializer does not have a user-provided default
4683    // constructor.
4684    if (!inUnion() && FieldType.isConstQualified() &&
4685        !FD->hasInClassInitializer() &&
4686        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4687      if (Diagnose)
4688        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4689          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4690      return true;
4691    }
4692
4693    if (inUnion() && !FieldType.isConstQualified())
4694      AllFieldsAreConst = false;
4695  } else if (CSM == Sema::CXXCopyConstructor) {
4696    // For a copy constructor, data members must not be of rvalue reference
4697    // type.
4698    if (FieldType->isRValueReferenceType()) {
4699      if (Diagnose)
4700        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4701          << MD->getParent() << FD << FieldType;
4702      return true;
4703    }
4704  } else if (IsAssignment) {
4705    // For an assignment operator, data members must not be of reference type.
4706    if (FieldType->isReferenceType()) {
4707      if (Diagnose)
4708        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4709          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4710      return true;
4711    }
4712    if (!FieldRecord && FieldType.isConstQualified()) {
4713      // C++11 [class.copy]p23:
4714      // -- a non-static data member of const non-class type (or array thereof)
4715      if (Diagnose)
4716        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4717          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4718      return true;
4719    }
4720  }
4721
4722  if (FieldRecord) {
4723    // Some additional restrictions exist on the variant members.
4724    if (!inUnion() && FieldRecord->isUnion() &&
4725        FieldRecord->isAnonymousStructOrUnion()) {
4726      bool AllVariantFieldsAreConst = true;
4727
4728      // FIXME: Handle anonymous unions declared within anonymous unions.
4729      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4730                                         UE = FieldRecord->field_end();
4731           UI != UE; ++UI) {
4732        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4733
4734        if (!UnionFieldType.isConstQualified())
4735          AllVariantFieldsAreConst = false;
4736
4737        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4738        if (UnionFieldRecord &&
4739            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4740                                          UnionFieldType.getCVRQualifiers()))
4741          return true;
4742      }
4743
4744      // At least one member in each anonymous union must be non-const
4745      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4746          FieldRecord->field_begin() != FieldRecord->field_end()) {
4747        if (Diagnose)
4748          S.Diag(FieldRecord->getLocation(),
4749                 diag::note_deleted_default_ctor_all_const)
4750            << MD->getParent() << /*anonymous union*/1;
4751        return true;
4752      }
4753
4754      // Don't check the implicit member of the anonymous union type.
4755      // This is technically non-conformant, but sanity demands it.
4756      return false;
4757    }
4758
4759    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4760                                      FieldType.getCVRQualifiers()))
4761      return true;
4762  }
4763
4764  return false;
4765}
4766
4767/// C++11 [class.ctor] p5:
4768///   A defaulted default constructor for a class X is defined as deleted if
4769/// X is a union and all of its variant members are of const-qualified type.
4770bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4771  // This is a silly definition, because it gives an empty union a deleted
4772  // default constructor. Don't do that.
4773  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4774      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4775    if (Diagnose)
4776      S.Diag(MD->getParent()->getLocation(),
4777             diag::note_deleted_default_ctor_all_const)
4778        << MD->getParent() << /*not anonymous union*/0;
4779    return true;
4780  }
4781  return false;
4782}
4783
4784/// Determine whether a defaulted special member function should be defined as
4785/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4786/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4787bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4788                                     bool Diagnose) {
4789  if (MD->isInvalidDecl())
4790    return false;
4791  CXXRecordDecl *RD = MD->getParent();
4792  assert(!RD->isDependentType() && "do deletion after instantiation");
4793  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4794    return false;
4795
4796  // C++11 [expr.lambda.prim]p19:
4797  //   The closure type associated with a lambda-expression has a
4798  //   deleted (8.4.3) default constructor and a deleted copy
4799  //   assignment operator.
4800  if (RD->isLambda() &&
4801      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4802    if (Diagnose)
4803      Diag(RD->getLocation(), diag::note_lambda_decl);
4804    return true;
4805  }
4806
4807  // For an anonymous struct or union, the copy and assignment special members
4808  // will never be used, so skip the check. For an anonymous union declared at
4809  // namespace scope, the constructor and destructor are used.
4810  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4811      RD->isAnonymousStructOrUnion())
4812    return false;
4813
4814  // C++11 [class.copy]p7, p18:
4815  //   If the class definition declares a move constructor or move assignment
4816  //   operator, an implicitly declared copy constructor or copy assignment
4817  //   operator is defined as deleted.
4818  if (MD->isImplicit() &&
4819      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4820    CXXMethodDecl *UserDeclaredMove = 0;
4821
4822    // In Microsoft mode, a user-declared move only causes the deletion of the
4823    // corresponding copy operation, not both copy operations.
4824    if (RD->hasUserDeclaredMoveConstructor() &&
4825        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4826      if (!Diagnose) return true;
4827
4828      // Find any user-declared move constructor.
4829      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4830                                        E = RD->ctor_end(); I != E; ++I) {
4831        if (I->isMoveConstructor()) {
4832          UserDeclaredMove = *I;
4833          break;
4834        }
4835      }
4836      assert(UserDeclaredMove);
4837    } else if (RD->hasUserDeclaredMoveAssignment() &&
4838               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4839      if (!Diagnose) return true;
4840
4841      // Find any user-declared move assignment operator.
4842      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4843                                          E = RD->method_end(); I != E; ++I) {
4844        if (I->isMoveAssignmentOperator()) {
4845          UserDeclaredMove = *I;
4846          break;
4847        }
4848      }
4849      assert(UserDeclaredMove);
4850    }
4851
4852    if (UserDeclaredMove) {
4853      Diag(UserDeclaredMove->getLocation(),
4854           diag::note_deleted_copy_user_declared_move)
4855        << (CSM == CXXCopyAssignment) << RD
4856        << UserDeclaredMove->isMoveAssignmentOperator();
4857      return true;
4858    }
4859  }
4860
4861  // Do access control from the special member function
4862  ContextRAII MethodContext(*this, MD);
4863
4864  // C++11 [class.dtor]p5:
4865  // -- for a virtual destructor, lookup of the non-array deallocation function
4866  //    results in an ambiguity or in a function that is deleted or inaccessible
4867  if (CSM == CXXDestructor && MD->isVirtual()) {
4868    FunctionDecl *OperatorDelete = 0;
4869    DeclarationName Name =
4870      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4871    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4872                                 OperatorDelete, false)) {
4873      if (Diagnose)
4874        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4875      return true;
4876    }
4877  }
4878
4879  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4880
4881  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4882                                          BE = RD->bases_end(); BI != BE; ++BI)
4883    if (!BI->isVirtual() &&
4884        SMI.shouldDeleteForBase(BI))
4885      return true;
4886
4887  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4888                                          BE = RD->vbases_end(); BI != BE; ++BI)
4889    if (SMI.shouldDeleteForBase(BI))
4890      return true;
4891
4892  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4893                                     FE = RD->field_end(); FI != FE; ++FI)
4894    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4895        SMI.shouldDeleteForField(*FI))
4896      return true;
4897
4898  if (SMI.shouldDeleteForAllConstMembers())
4899    return true;
4900
4901  return false;
4902}
4903
4904/// Perform lookup for a special member of the specified kind, and determine
4905/// whether it is trivial. If the triviality can be determined without the
4906/// lookup, skip it. This is intended for use when determining whether a
4907/// special member of a containing object is trivial, and thus does not ever
4908/// perform overload resolution for default constructors.
4909///
4910/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4911/// member that was most likely to be intended to be trivial, if any.
4912static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4913                                     Sema::CXXSpecialMember CSM, unsigned Quals,
4914                                     CXXMethodDecl **Selected) {
4915  if (Selected)
4916    *Selected = 0;
4917
4918  switch (CSM) {
4919  case Sema::CXXInvalid:
4920    llvm_unreachable("not a special member");
4921
4922  case Sema::CXXDefaultConstructor:
4923    // C++11 [class.ctor]p5:
4924    //   A default constructor is trivial if:
4925    //    - all the [direct subobjects] have trivial default constructors
4926    //
4927    // Note, no overload resolution is performed in this case.
4928    if (RD->hasTrivialDefaultConstructor())
4929      return true;
4930
4931    if (Selected) {
4932      // If there's a default constructor which could have been trivial, dig it
4933      // out. Otherwise, if there's any user-provided default constructor, point
4934      // to that as an example of why there's not a trivial one.
4935      CXXConstructorDecl *DefCtor = 0;
4936      if (RD->needsImplicitDefaultConstructor())
4937        S.DeclareImplicitDefaultConstructor(RD);
4938      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4939                                        CE = RD->ctor_end(); CI != CE; ++CI) {
4940        if (!CI->isDefaultConstructor())
4941          continue;
4942        DefCtor = *CI;
4943        if (!DefCtor->isUserProvided())
4944          break;
4945      }
4946
4947      *Selected = DefCtor;
4948    }
4949
4950    return false;
4951
4952  case Sema::CXXDestructor:
4953    // C++11 [class.dtor]p5:
4954    //   A destructor is trivial if:
4955    //    - all the direct [subobjects] have trivial destructors
4956    if (RD->hasTrivialDestructor())
4957      return true;
4958
4959    if (Selected) {
4960      if (RD->needsImplicitDestructor())
4961        S.DeclareImplicitDestructor(RD);
4962      *Selected = RD->getDestructor();
4963    }
4964
4965    return false;
4966
4967  case Sema::CXXCopyConstructor:
4968    // C++11 [class.copy]p12:
4969    //   A copy constructor is trivial if:
4970    //    - the constructor selected to copy each direct [subobject] is trivial
4971    if (RD->hasTrivialCopyConstructor()) {
4972      if (Quals == Qualifiers::Const)
4973        // We must either select the trivial copy constructor or reach an
4974        // ambiguity; no need to actually perform overload resolution.
4975        return true;
4976    } else if (!Selected) {
4977      return false;
4978    }
4979    // In C++98, we are not supposed to perform overload resolution here, but we
4980    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4981    // cases like B as having a non-trivial copy constructor:
4982    //   struct A { template<typename T> A(T&); };
4983    //   struct B { mutable A a; };
4984    goto NeedOverloadResolution;
4985
4986  case Sema::CXXCopyAssignment:
4987    // C++11 [class.copy]p25:
4988    //   A copy assignment operator is trivial if:
4989    //    - the assignment operator selected to copy each direct [subobject] is
4990    //      trivial
4991    if (RD->hasTrivialCopyAssignment()) {
4992      if (Quals == Qualifiers::Const)
4993        return true;
4994    } else if (!Selected) {
4995      return false;
4996    }
4997    // In C++98, we are not supposed to perform overload resolution here, but we
4998    // treat that as a language defect.
4999    goto NeedOverloadResolution;
5000
5001  case Sema::CXXMoveConstructor:
5002  case Sema::CXXMoveAssignment:
5003  NeedOverloadResolution:
5004    Sema::SpecialMemberOverloadResult *SMOR =
5005      S.LookupSpecialMember(RD, CSM,
5006                            Quals & Qualifiers::Const,
5007                            Quals & Qualifiers::Volatile,
5008                            /*RValueThis*/false, /*ConstThis*/false,
5009                            /*VolatileThis*/false);
5010
5011    // The standard doesn't describe how to behave if the lookup is ambiguous.
5012    // We treat it as not making the member non-trivial, just like the standard
5013    // mandates for the default constructor. This should rarely matter, because
5014    // the member will also be deleted.
5015    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5016      return true;
5017
5018    if (!SMOR->getMethod()) {
5019      assert(SMOR->getKind() ==
5020             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5021      return false;
5022    }
5023
5024    // We deliberately don't check if we found a deleted special member. We're
5025    // not supposed to!
5026    if (Selected)
5027      *Selected = SMOR->getMethod();
5028    return SMOR->getMethod()->isTrivial();
5029  }
5030
5031  llvm_unreachable("unknown special method kind");
5032}
5033
5034static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5035  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5036       CI != CE; ++CI)
5037    if (!CI->isImplicit())
5038      return *CI;
5039
5040  // Look for constructor templates.
5041  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5042  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5043    if (CXXConstructorDecl *CD =
5044          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5045      return CD;
5046  }
5047
5048  return 0;
5049}
5050
5051/// The kind of subobject we are checking for triviality. The values of this
5052/// enumeration are used in diagnostics.
5053enum TrivialSubobjectKind {
5054  /// The subobject is a base class.
5055  TSK_BaseClass,
5056  /// The subobject is a non-static data member.
5057  TSK_Field,
5058  /// The object is actually the complete object.
5059  TSK_CompleteObject
5060};
5061
5062/// Check whether the special member selected for a given type would be trivial.
5063static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5064                                      QualType SubType,
5065                                      Sema::CXXSpecialMember CSM,
5066                                      TrivialSubobjectKind Kind,
5067                                      bool Diagnose) {
5068  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5069  if (!SubRD)
5070    return true;
5071
5072  CXXMethodDecl *Selected;
5073  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5074                               Diagnose ? &Selected : 0))
5075    return true;
5076
5077  if (Diagnose) {
5078    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5079      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5080        << Kind << SubType.getUnqualifiedType();
5081      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5082        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5083    } else if (!Selected)
5084      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5085        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5086    else if (Selected->isUserProvided()) {
5087      if (Kind == TSK_CompleteObject)
5088        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5089          << Kind << SubType.getUnqualifiedType() << CSM;
5090      else {
5091        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5092          << Kind << SubType.getUnqualifiedType() << CSM;
5093        S.Diag(Selected->getLocation(), diag::note_declared_at);
5094      }
5095    } else {
5096      if (Kind != TSK_CompleteObject)
5097        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5098          << Kind << SubType.getUnqualifiedType() << CSM;
5099
5100      // Explain why the defaulted or deleted special member isn't trivial.
5101      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5102    }
5103  }
5104
5105  return false;
5106}
5107
5108/// Check whether the members of a class type allow a special member to be
5109/// trivial.
5110static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5111                                     Sema::CXXSpecialMember CSM,
5112                                     bool ConstArg, bool Diagnose) {
5113  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5114                                     FE = RD->field_end(); FI != FE; ++FI) {
5115    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5116      continue;
5117
5118    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5119
5120    // Pretend anonymous struct or union members are members of this class.
5121    if (FI->isAnonymousStructOrUnion()) {
5122      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5123                                    CSM, ConstArg, Diagnose))
5124        return false;
5125      continue;
5126    }
5127
5128    // C++11 [class.ctor]p5:
5129    //   A default constructor is trivial if [...]
5130    //    -- no non-static data member of its class has a
5131    //       brace-or-equal-initializer
5132    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5133      if (Diagnose)
5134        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5135      return false;
5136    }
5137
5138    // Objective C ARC 4.3.5:
5139    //   [...] nontrivally ownership-qualified types are [...] not trivially
5140    //   default constructible, copy constructible, move constructible, copy
5141    //   assignable, move assignable, or destructible [...]
5142    if (S.getLangOpts().ObjCAutoRefCount &&
5143        FieldType.hasNonTrivialObjCLifetime()) {
5144      if (Diagnose)
5145        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5146          << RD << FieldType.getObjCLifetime();
5147      return false;
5148    }
5149
5150    if (ConstArg && !FI->isMutable())
5151      FieldType.addConst();
5152    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5153                                   TSK_Field, Diagnose))
5154      return false;
5155  }
5156
5157  return true;
5158}
5159
5160/// Diagnose why the specified class does not have a trivial special member of
5161/// the given kind.
5162void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5163  QualType Ty = Context.getRecordType(RD);
5164  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5165    Ty.addConst();
5166
5167  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5168                            TSK_CompleteObject, /*Diagnose*/true);
5169}
5170
5171/// Determine whether a defaulted or deleted special member function is trivial,
5172/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5173/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5174bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5175                                  bool Diagnose) {
5176  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5177
5178  CXXRecordDecl *RD = MD->getParent();
5179
5180  bool ConstArg = false;
5181
5182  // C++11 [class.copy]p12, p25:
5183  //   A [special member] is trivial if its declared parameter type is the same
5184  //   as if it had been implicitly declared [...]
5185  switch (CSM) {
5186  case CXXDefaultConstructor:
5187  case CXXDestructor:
5188    // Trivial default constructors and destructors cannot have parameters.
5189    break;
5190
5191  case CXXCopyConstructor:
5192  case CXXCopyAssignment: {
5193    // Trivial copy operations always have const, non-volatile parameter types.
5194    ConstArg = true;
5195    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5196    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5197    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5198      if (Diagnose)
5199        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5200          << Param0->getSourceRange() << Param0->getType()
5201          << Context.getLValueReferenceType(
5202               Context.getRecordType(RD).withConst());
5203      return false;
5204    }
5205    break;
5206  }
5207
5208  case CXXMoveConstructor:
5209  case CXXMoveAssignment: {
5210    // Trivial move operations always have non-cv-qualified parameters.
5211    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5212    const RValueReferenceType *RT =
5213      Param0->getType()->getAs<RValueReferenceType>();
5214    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5215      if (Diagnose)
5216        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5217          << Param0->getSourceRange() << Param0->getType()
5218          << Context.getRValueReferenceType(Context.getRecordType(RD));
5219      return false;
5220    }
5221    break;
5222  }
5223
5224  case CXXInvalid:
5225    llvm_unreachable("not a special member");
5226  }
5227
5228  // FIXME: We require that the parameter-declaration-clause is equivalent to
5229  // that of an implicit declaration, not just that the declared parameter type
5230  // matches, in order to prevent absuridities like a function simultaneously
5231  // being a trivial copy constructor and a non-trivial default constructor.
5232  // This issue has not yet been assigned a core issue number.
5233  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5234    if (Diagnose)
5235      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5236           diag::note_nontrivial_default_arg)
5237        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5238    return false;
5239  }
5240  if (MD->isVariadic()) {
5241    if (Diagnose)
5242      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5243    return false;
5244  }
5245
5246  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5247  //   A copy/move [constructor or assignment operator] is trivial if
5248  //    -- the [member] selected to copy/move each direct base class subobject
5249  //       is trivial
5250  //
5251  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5252  //   A [default constructor or destructor] is trivial if
5253  //    -- all the direct base classes have trivial [default constructors or
5254  //       destructors]
5255  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5256                                          BE = RD->bases_end(); BI != BE; ++BI)
5257    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5258                                   ConstArg ? BI->getType().withConst()
5259                                            : BI->getType(),
5260                                   CSM, TSK_BaseClass, Diagnose))
5261      return false;
5262
5263  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5264  //   A copy/move [constructor or assignment operator] for a class X is
5265  //   trivial if
5266  //    -- for each non-static data member of X that is of class type (or array
5267  //       thereof), the constructor selected to copy/move that member is
5268  //       trivial
5269  //
5270  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5271  //   A [default constructor or destructor] is trivial if
5272  //    -- for all of the non-static data members of its class that are of class
5273  //       type (or array thereof), each such class has a trivial [default
5274  //       constructor or destructor]
5275  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5276    return false;
5277
5278  // C++11 [class.dtor]p5:
5279  //   A destructor is trivial if [...]
5280  //    -- the destructor is not virtual
5281  if (CSM == CXXDestructor && MD->isVirtual()) {
5282    if (Diagnose)
5283      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5284    return false;
5285  }
5286
5287  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5288  //   A [special member] for class X is trivial if [...]
5289  //    -- class X has no virtual functions and no virtual base classes
5290  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5291    if (!Diagnose)
5292      return false;
5293
5294    if (RD->getNumVBases()) {
5295      // Check for virtual bases. We already know that the corresponding
5296      // member in all bases is trivial, so vbases must all be direct.
5297      CXXBaseSpecifier &BS = *RD->vbases_begin();
5298      assert(BS.isVirtual());
5299      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5300      return false;
5301    }
5302
5303    // Must have a virtual method.
5304    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5305                                        ME = RD->method_end(); MI != ME; ++MI) {
5306      if (MI->isVirtual()) {
5307        SourceLocation MLoc = MI->getLocStart();
5308        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5309        return false;
5310      }
5311    }
5312
5313    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5314  }
5315
5316  // Looks like it's trivial!
5317  return true;
5318}
5319
5320/// \brief Data used with FindHiddenVirtualMethod
5321namespace {
5322  struct FindHiddenVirtualMethodData {
5323    Sema *S;
5324    CXXMethodDecl *Method;
5325    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5326    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5327  };
5328}
5329
5330/// \brief Check whether any most overriden method from MD in Methods
5331static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5332                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5333  if (MD->size_overridden_methods() == 0)
5334    return Methods.count(MD->getCanonicalDecl());
5335  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5336                                      E = MD->end_overridden_methods();
5337       I != E; ++I)
5338    if (CheckMostOverridenMethods(*I, Methods))
5339      return true;
5340  return false;
5341}
5342
5343/// \brief Member lookup function that determines whether a given C++
5344/// method overloads virtual methods in a base class without overriding any,
5345/// to be used with CXXRecordDecl::lookupInBases().
5346static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5347                                    CXXBasePath &Path,
5348                                    void *UserData) {
5349  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5350
5351  FindHiddenVirtualMethodData &Data
5352    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5353
5354  DeclarationName Name = Data.Method->getDeclName();
5355  assert(Name.getNameKind() == DeclarationName::Identifier);
5356
5357  bool foundSameNameMethod = false;
5358  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5359  for (Path.Decls = BaseRecord->lookup(Name);
5360       !Path.Decls.empty();
5361       Path.Decls = Path.Decls.slice(1)) {
5362    NamedDecl *D = Path.Decls.front();
5363    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5364      MD = MD->getCanonicalDecl();
5365      foundSameNameMethod = true;
5366      // Interested only in hidden virtual methods.
5367      if (!MD->isVirtual())
5368        continue;
5369      // If the method we are checking overrides a method from its base
5370      // don't warn about the other overloaded methods.
5371      if (!Data.S->IsOverload(Data.Method, MD, false))
5372        return true;
5373      // Collect the overload only if its hidden.
5374      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5375        overloadedMethods.push_back(MD);
5376    }
5377  }
5378
5379  if (foundSameNameMethod)
5380    Data.OverloadedMethods.append(overloadedMethods.begin(),
5381                                   overloadedMethods.end());
5382  return foundSameNameMethod;
5383}
5384
5385/// \brief Add the most overriden methods from MD to Methods
5386static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5387                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5388  if (MD->size_overridden_methods() == 0)
5389    Methods.insert(MD->getCanonicalDecl());
5390  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5391                                      E = MD->end_overridden_methods();
5392       I != E; ++I)
5393    AddMostOverridenMethods(*I, Methods);
5394}
5395
5396/// \brief See if a method overloads virtual methods in a base class without
5397/// overriding any.
5398void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5399  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5400                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5401    return;
5402  if (!MD->getDeclName().isIdentifier())
5403    return;
5404
5405  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5406                     /*bool RecordPaths=*/false,
5407                     /*bool DetectVirtual=*/false);
5408  FindHiddenVirtualMethodData Data;
5409  Data.Method = MD;
5410  Data.S = this;
5411
5412  // Keep the base methods that were overriden or introduced in the subclass
5413  // by 'using' in a set. A base method not in this set is hidden.
5414  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5415  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5416    NamedDecl *ND = *I;
5417    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5418      ND = shad->getTargetDecl();
5419    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5420      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5421  }
5422
5423  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5424      !Data.OverloadedMethods.empty()) {
5425    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5426      << MD << (Data.OverloadedMethods.size() > 1);
5427
5428    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5429      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5430      PartialDiagnostic PD = PDiag(
5431           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5432      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5433      Diag(overloadedMD->getLocation(), PD);
5434    }
5435  }
5436}
5437
5438void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5439                                             Decl *TagDecl,
5440                                             SourceLocation LBrac,
5441                                             SourceLocation RBrac,
5442                                             AttributeList *AttrList) {
5443  if (!TagDecl)
5444    return;
5445
5446  AdjustDeclIfTemplate(TagDecl);
5447
5448  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5449    if (l->getKind() != AttributeList::AT_Visibility)
5450      continue;
5451    l->setInvalid();
5452    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5453      l->getName();
5454  }
5455
5456  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5457              // strict aliasing violation!
5458              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5459              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5460
5461  CheckCompletedCXXClass(
5462                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5463}
5464
5465/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5466/// special functions, such as the default constructor, copy
5467/// constructor, or destructor, to the given C++ class (C++
5468/// [special]p1).  This routine can only be executed just before the
5469/// definition of the class is complete.
5470void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5471  if (!ClassDecl->hasUserDeclaredConstructor())
5472    ++ASTContext::NumImplicitDefaultConstructors;
5473
5474  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5475    ++ASTContext::NumImplicitCopyConstructors;
5476
5477    // If the properties or semantics of the copy constructor couldn't be
5478    // determined while the class was being declared, force a declaration
5479    // of it now.
5480    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5481      DeclareImplicitCopyConstructor(ClassDecl);
5482  }
5483
5484  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5485    ++ASTContext::NumImplicitMoveConstructors;
5486
5487    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5488      DeclareImplicitMoveConstructor(ClassDecl);
5489  }
5490
5491  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5492    ++ASTContext::NumImplicitCopyAssignmentOperators;
5493
5494    // If we have a dynamic class, then the copy assignment operator may be
5495    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5496    // it shows up in the right place in the vtable and that we diagnose
5497    // problems with the implicit exception specification.
5498    if (ClassDecl->isDynamicClass() ||
5499        ClassDecl->needsOverloadResolutionForCopyAssignment())
5500      DeclareImplicitCopyAssignment(ClassDecl);
5501  }
5502
5503  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5504    ++ASTContext::NumImplicitMoveAssignmentOperators;
5505
5506    // Likewise for the move assignment operator.
5507    if (ClassDecl->isDynamicClass() ||
5508        ClassDecl->needsOverloadResolutionForMoveAssignment())
5509      DeclareImplicitMoveAssignment(ClassDecl);
5510  }
5511
5512  if (!ClassDecl->hasUserDeclaredDestructor()) {
5513    ++ASTContext::NumImplicitDestructors;
5514
5515    // If we have a dynamic class, then the destructor may be virtual, so we
5516    // have to declare the destructor immediately. This ensures that, e.g., it
5517    // shows up in the right place in the vtable and that we diagnose problems
5518    // with the implicit exception specification.
5519    if (ClassDecl->isDynamicClass() ||
5520        ClassDecl->needsOverloadResolutionForDestructor())
5521      DeclareImplicitDestructor(ClassDecl);
5522  }
5523}
5524
5525void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5526  if (!D)
5527    return;
5528
5529  int NumParamList = D->getNumTemplateParameterLists();
5530  for (int i = 0; i < NumParamList; i++) {
5531    TemplateParameterList* Params = D->getTemplateParameterList(i);
5532    for (TemplateParameterList::iterator Param = Params->begin(),
5533                                      ParamEnd = Params->end();
5534          Param != ParamEnd; ++Param) {
5535      NamedDecl *Named = cast<NamedDecl>(*Param);
5536      if (Named->getDeclName()) {
5537        S->AddDecl(Named);
5538        IdResolver.AddDecl(Named);
5539      }
5540    }
5541  }
5542}
5543
5544void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5545  if (!D)
5546    return;
5547
5548  TemplateParameterList *Params = 0;
5549  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5550    Params = Template->getTemplateParameters();
5551  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5552           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5553    Params = PartialSpec->getTemplateParameters();
5554  else
5555    return;
5556
5557  for (TemplateParameterList::iterator Param = Params->begin(),
5558                                    ParamEnd = Params->end();
5559       Param != ParamEnd; ++Param) {
5560    NamedDecl *Named = cast<NamedDecl>(*Param);
5561    if (Named->getDeclName()) {
5562      S->AddDecl(Named);
5563      IdResolver.AddDecl(Named);
5564    }
5565  }
5566}
5567
5568void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5569  if (!RecordD) return;
5570  AdjustDeclIfTemplate(RecordD);
5571  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5572  PushDeclContext(S, Record);
5573}
5574
5575void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5576  if (!RecordD) return;
5577  PopDeclContext();
5578}
5579
5580/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5581/// parsing a top-level (non-nested) C++ class, and we are now
5582/// parsing those parts of the given Method declaration that could
5583/// not be parsed earlier (C++ [class.mem]p2), such as default
5584/// arguments. This action should enter the scope of the given
5585/// Method declaration as if we had just parsed the qualified method
5586/// name. However, it should not bring the parameters into scope;
5587/// that will be performed by ActOnDelayedCXXMethodParameter.
5588void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5589}
5590
5591/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5592/// C++ method declaration. We're (re-)introducing the given
5593/// function parameter into scope for use in parsing later parts of
5594/// the method declaration. For example, we could see an
5595/// ActOnParamDefaultArgument event for this parameter.
5596void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5597  if (!ParamD)
5598    return;
5599
5600  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5601
5602  // If this parameter has an unparsed default argument, clear it out
5603  // to make way for the parsed default argument.
5604  if (Param->hasUnparsedDefaultArg())
5605    Param->setDefaultArg(0);
5606
5607  S->AddDecl(Param);
5608  if (Param->getDeclName())
5609    IdResolver.AddDecl(Param);
5610}
5611
5612/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5613/// processing the delayed method declaration for Method. The method
5614/// declaration is now considered finished. There may be a separate
5615/// ActOnStartOfFunctionDef action later (not necessarily
5616/// immediately!) for this method, if it was also defined inside the
5617/// class body.
5618void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5619  if (!MethodD)
5620    return;
5621
5622  AdjustDeclIfTemplate(MethodD);
5623
5624  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5625
5626  // Now that we have our default arguments, check the constructor
5627  // again. It could produce additional diagnostics or affect whether
5628  // the class has implicitly-declared destructors, among other
5629  // things.
5630  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5631    CheckConstructor(Constructor);
5632
5633  // Check the default arguments, which we may have added.
5634  if (!Method->isInvalidDecl())
5635    CheckCXXDefaultArguments(Method);
5636}
5637
5638/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5639/// the well-formedness of the constructor declarator @p D with type @p
5640/// R. If there are any errors in the declarator, this routine will
5641/// emit diagnostics and set the invalid bit to true.  In any case, the type
5642/// will be updated to reflect a well-formed type for the constructor and
5643/// returned.
5644QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5645                                          StorageClass &SC) {
5646  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5647
5648  // C++ [class.ctor]p3:
5649  //   A constructor shall not be virtual (10.3) or static (9.4). A
5650  //   constructor can be invoked for a const, volatile or const
5651  //   volatile object. A constructor shall not be declared const,
5652  //   volatile, or const volatile (9.3.2).
5653  if (isVirtual) {
5654    if (!D.isInvalidType())
5655      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5656        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5657        << SourceRange(D.getIdentifierLoc());
5658    D.setInvalidType();
5659  }
5660  if (SC == SC_Static) {
5661    if (!D.isInvalidType())
5662      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5663        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5664        << SourceRange(D.getIdentifierLoc());
5665    D.setInvalidType();
5666    SC = SC_None;
5667  }
5668
5669  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5670  if (FTI.TypeQuals != 0) {
5671    if (FTI.TypeQuals & Qualifiers::Const)
5672      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5673        << "const" << SourceRange(D.getIdentifierLoc());
5674    if (FTI.TypeQuals & Qualifiers::Volatile)
5675      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5676        << "volatile" << SourceRange(D.getIdentifierLoc());
5677    if (FTI.TypeQuals & Qualifiers::Restrict)
5678      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5679        << "restrict" << SourceRange(D.getIdentifierLoc());
5680    D.setInvalidType();
5681  }
5682
5683  // C++0x [class.ctor]p4:
5684  //   A constructor shall not be declared with a ref-qualifier.
5685  if (FTI.hasRefQualifier()) {
5686    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5687      << FTI.RefQualifierIsLValueRef
5688      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5689    D.setInvalidType();
5690  }
5691
5692  // Rebuild the function type "R" without any type qualifiers (in
5693  // case any of the errors above fired) and with "void" as the
5694  // return type, since constructors don't have return types.
5695  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5696  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5697    return R;
5698
5699  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5700  EPI.TypeQuals = 0;
5701  EPI.RefQualifier = RQ_None;
5702
5703  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5704}
5705
5706/// CheckConstructor - Checks a fully-formed constructor for
5707/// well-formedness, issuing any diagnostics required. Returns true if
5708/// the constructor declarator is invalid.
5709void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5710  CXXRecordDecl *ClassDecl
5711    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5712  if (!ClassDecl)
5713    return Constructor->setInvalidDecl();
5714
5715  // C++ [class.copy]p3:
5716  //   A declaration of a constructor for a class X is ill-formed if
5717  //   its first parameter is of type (optionally cv-qualified) X and
5718  //   either there are no other parameters or else all other
5719  //   parameters have default arguments.
5720  if (!Constructor->isInvalidDecl() &&
5721      ((Constructor->getNumParams() == 1) ||
5722       (Constructor->getNumParams() > 1 &&
5723        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5724      Constructor->getTemplateSpecializationKind()
5725                                              != TSK_ImplicitInstantiation) {
5726    QualType ParamType = Constructor->getParamDecl(0)->getType();
5727    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5728    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5729      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5730      const char *ConstRef
5731        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5732                                                        : " const &";
5733      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5734        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5735
5736      // FIXME: Rather that making the constructor invalid, we should endeavor
5737      // to fix the type.
5738      Constructor->setInvalidDecl();
5739    }
5740  }
5741}
5742
5743/// CheckDestructor - Checks a fully-formed destructor definition for
5744/// well-formedness, issuing any diagnostics required.  Returns true
5745/// on error.
5746bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5747  CXXRecordDecl *RD = Destructor->getParent();
5748
5749  if (Destructor->isVirtual()) {
5750    SourceLocation Loc;
5751
5752    if (!Destructor->isImplicit())
5753      Loc = Destructor->getLocation();
5754    else
5755      Loc = RD->getLocation();
5756
5757    // If we have a virtual destructor, look up the deallocation function
5758    FunctionDecl *OperatorDelete = 0;
5759    DeclarationName Name =
5760    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5761    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5762      return true;
5763
5764    MarkFunctionReferenced(Loc, OperatorDelete);
5765
5766    Destructor->setOperatorDelete(OperatorDelete);
5767  }
5768
5769  return false;
5770}
5771
5772static inline bool
5773FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5774  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5775          FTI.ArgInfo[0].Param &&
5776          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5777}
5778
5779/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5780/// the well-formednes of the destructor declarator @p D with type @p
5781/// R. If there are any errors in the declarator, this routine will
5782/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5783/// will be updated to reflect a well-formed type for the destructor and
5784/// returned.
5785QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5786                                         StorageClass& SC) {
5787  // C++ [class.dtor]p1:
5788  //   [...] A typedef-name that names a class is a class-name
5789  //   (7.1.3); however, a typedef-name that names a class shall not
5790  //   be used as the identifier in the declarator for a destructor
5791  //   declaration.
5792  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5793  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5794    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5795      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5796  else if (const TemplateSpecializationType *TST =
5797             DeclaratorType->getAs<TemplateSpecializationType>())
5798    if (TST->isTypeAlias())
5799      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5800        << DeclaratorType << 1;
5801
5802  // C++ [class.dtor]p2:
5803  //   A destructor is used to destroy objects of its class type. A
5804  //   destructor takes no parameters, and no return type can be
5805  //   specified for it (not even void). The address of a destructor
5806  //   shall not be taken. A destructor shall not be static. A
5807  //   destructor can be invoked for a const, volatile or const
5808  //   volatile object. A destructor shall not be declared const,
5809  //   volatile or const volatile (9.3.2).
5810  if (SC == SC_Static) {
5811    if (!D.isInvalidType())
5812      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5813        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5814        << SourceRange(D.getIdentifierLoc())
5815        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5816
5817    SC = SC_None;
5818  }
5819  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5820    // Destructors don't have return types, but the parser will
5821    // happily parse something like:
5822    //
5823    //   class X {
5824    //     float ~X();
5825    //   };
5826    //
5827    // The return type will be eliminated later.
5828    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5829      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5830      << SourceRange(D.getIdentifierLoc());
5831  }
5832
5833  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5834  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5835    if (FTI.TypeQuals & Qualifiers::Const)
5836      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5837        << "const" << SourceRange(D.getIdentifierLoc());
5838    if (FTI.TypeQuals & Qualifiers::Volatile)
5839      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5840        << "volatile" << SourceRange(D.getIdentifierLoc());
5841    if (FTI.TypeQuals & Qualifiers::Restrict)
5842      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5843        << "restrict" << SourceRange(D.getIdentifierLoc());
5844    D.setInvalidType();
5845  }
5846
5847  // C++0x [class.dtor]p2:
5848  //   A destructor shall not be declared with a ref-qualifier.
5849  if (FTI.hasRefQualifier()) {
5850    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5851      << FTI.RefQualifierIsLValueRef
5852      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5853    D.setInvalidType();
5854  }
5855
5856  // Make sure we don't have any parameters.
5857  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5858    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5859
5860    // Delete the parameters.
5861    FTI.freeArgs();
5862    D.setInvalidType();
5863  }
5864
5865  // Make sure the destructor isn't variadic.
5866  if (FTI.isVariadic) {
5867    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5868    D.setInvalidType();
5869  }
5870
5871  // Rebuild the function type "R" without any type qualifiers or
5872  // parameters (in case any of the errors above fired) and with
5873  // "void" as the return type, since destructors don't have return
5874  // types.
5875  if (!D.isInvalidType())
5876    return R;
5877
5878  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5879  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5880  EPI.Variadic = false;
5881  EPI.TypeQuals = 0;
5882  EPI.RefQualifier = RQ_None;
5883  return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
5884}
5885
5886/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5887/// well-formednes of the conversion function declarator @p D with
5888/// type @p R. If there are any errors in the declarator, this routine
5889/// will emit diagnostics and return true. Otherwise, it will return
5890/// false. Either way, the type @p R will be updated to reflect a
5891/// well-formed type for the conversion operator.
5892void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5893                                     StorageClass& SC) {
5894  // C++ [class.conv.fct]p1:
5895  //   Neither parameter types nor return type can be specified. The
5896  //   type of a conversion function (8.3.5) is "function taking no
5897  //   parameter returning conversion-type-id."
5898  if (SC == SC_Static) {
5899    if (!D.isInvalidType())
5900      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5901        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5902        << SourceRange(D.getIdentifierLoc());
5903    D.setInvalidType();
5904    SC = SC_None;
5905  }
5906
5907  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5908
5909  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5910    // Conversion functions don't have return types, but the parser will
5911    // happily parse something like:
5912    //
5913    //   class X {
5914    //     float operator bool();
5915    //   };
5916    //
5917    // The return type will be changed later anyway.
5918    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5919      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5920      << SourceRange(D.getIdentifierLoc());
5921    D.setInvalidType();
5922  }
5923
5924  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5925
5926  // Make sure we don't have any parameters.
5927  if (Proto->getNumArgs() > 0) {
5928    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5929
5930    // Delete the parameters.
5931    D.getFunctionTypeInfo().freeArgs();
5932    D.setInvalidType();
5933  } else if (Proto->isVariadic()) {
5934    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5935    D.setInvalidType();
5936  }
5937
5938  // Diagnose "&operator bool()" and other such nonsense.  This
5939  // is actually a gcc extension which we don't support.
5940  if (Proto->getResultType() != ConvType) {
5941    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5942      << Proto->getResultType();
5943    D.setInvalidType();
5944    ConvType = Proto->getResultType();
5945  }
5946
5947  // C++ [class.conv.fct]p4:
5948  //   The conversion-type-id shall not represent a function type nor
5949  //   an array type.
5950  if (ConvType->isArrayType()) {
5951    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5952    ConvType = Context.getPointerType(ConvType);
5953    D.setInvalidType();
5954  } else if (ConvType->isFunctionType()) {
5955    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5956    ConvType = Context.getPointerType(ConvType);
5957    D.setInvalidType();
5958  }
5959
5960  // Rebuild the function type "R" without any parameters (in case any
5961  // of the errors above fired) and with the conversion type as the
5962  // return type.
5963  if (D.isInvalidType())
5964    R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
5965                                Proto->getExtProtoInfo());
5966
5967  // C++0x explicit conversion operators.
5968  if (D.getDeclSpec().isExplicitSpecified())
5969    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5970         getLangOpts().CPlusPlus11 ?
5971           diag::warn_cxx98_compat_explicit_conversion_functions :
5972           diag::ext_explicit_conversion_functions)
5973      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5974}
5975
5976/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5977/// the declaration of the given C++ conversion function. This routine
5978/// is responsible for recording the conversion function in the C++
5979/// class, if possible.
5980Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5981  assert(Conversion && "Expected to receive a conversion function declaration");
5982
5983  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5984
5985  // Make sure we aren't redeclaring the conversion function.
5986  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5987
5988  // C++ [class.conv.fct]p1:
5989  //   [...] A conversion function is never used to convert a
5990  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5991  //   same object type (or a reference to it), to a (possibly
5992  //   cv-qualified) base class of that type (or a reference to it),
5993  //   or to (possibly cv-qualified) void.
5994  // FIXME: Suppress this warning if the conversion function ends up being a
5995  // virtual function that overrides a virtual function in a base class.
5996  QualType ClassType
5997    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5998  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5999    ConvType = ConvTypeRef->getPointeeType();
6000  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6001      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6002    /* Suppress diagnostics for instantiations. */;
6003  else if (ConvType->isRecordType()) {
6004    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6005    if (ConvType == ClassType)
6006      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6007        << ClassType;
6008    else if (IsDerivedFrom(ClassType, ConvType))
6009      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6010        <<  ClassType << ConvType;
6011  } else if (ConvType->isVoidType()) {
6012    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6013      << ClassType << ConvType;
6014  }
6015
6016  if (FunctionTemplateDecl *ConversionTemplate
6017                                = Conversion->getDescribedFunctionTemplate())
6018    return ConversionTemplate;
6019
6020  return Conversion;
6021}
6022
6023//===----------------------------------------------------------------------===//
6024// Namespace Handling
6025//===----------------------------------------------------------------------===//
6026
6027/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6028/// reopened.
6029static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6030                                            SourceLocation Loc,
6031                                            IdentifierInfo *II, bool *IsInline,
6032                                            NamespaceDecl *PrevNS) {
6033  assert(*IsInline != PrevNS->isInline());
6034
6035  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6036  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6037  // inline namespaces, with the intention of bringing names into namespace std.
6038  //
6039  // We support this just well enough to get that case working; this is not
6040  // sufficient to support reopening namespaces as inline in general.
6041  if (*IsInline && II && II->getName().startswith("__atomic") &&
6042      S.getSourceManager().isInSystemHeader(Loc)) {
6043    // Mark all prior declarations of the namespace as inline.
6044    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6045         NS = NS->getPreviousDecl())
6046      NS->setInline(*IsInline);
6047    // Patch up the lookup table for the containing namespace. This isn't really
6048    // correct, but it's good enough for this particular case.
6049    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6050                                    E = PrevNS->decls_end(); I != E; ++I)
6051      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6052        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6053    return;
6054  }
6055
6056  if (PrevNS->isInline())
6057    // The user probably just forgot the 'inline', so suggest that it
6058    // be added back.
6059    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6060      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6061  else
6062    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6063      << IsInline;
6064
6065  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6066  *IsInline = PrevNS->isInline();
6067}
6068
6069/// ActOnStartNamespaceDef - This is called at the start of a namespace
6070/// definition.
6071Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6072                                   SourceLocation InlineLoc,
6073                                   SourceLocation NamespaceLoc,
6074                                   SourceLocation IdentLoc,
6075                                   IdentifierInfo *II,
6076                                   SourceLocation LBrace,
6077                                   AttributeList *AttrList) {
6078  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6079  // For anonymous namespace, take the location of the left brace.
6080  SourceLocation Loc = II ? IdentLoc : LBrace;
6081  bool IsInline = InlineLoc.isValid();
6082  bool IsInvalid = false;
6083  bool IsStd = false;
6084  bool AddToKnown = false;
6085  Scope *DeclRegionScope = NamespcScope->getParent();
6086
6087  NamespaceDecl *PrevNS = 0;
6088  if (II) {
6089    // C++ [namespace.def]p2:
6090    //   The identifier in an original-namespace-definition shall not
6091    //   have been previously defined in the declarative region in
6092    //   which the original-namespace-definition appears. The
6093    //   identifier in an original-namespace-definition is the name of
6094    //   the namespace. Subsequently in that declarative region, it is
6095    //   treated as an original-namespace-name.
6096    //
6097    // Since namespace names are unique in their scope, and we don't
6098    // look through using directives, just look for any ordinary names.
6099
6100    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6101    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6102    Decl::IDNS_Namespace;
6103    NamedDecl *PrevDecl = 0;
6104    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6105    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6106         ++I) {
6107      if ((*I)->getIdentifierNamespace() & IDNS) {
6108        PrevDecl = *I;
6109        break;
6110      }
6111    }
6112
6113    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6114
6115    if (PrevNS) {
6116      // This is an extended namespace definition.
6117      if (IsInline != PrevNS->isInline())
6118        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6119                                        &IsInline, PrevNS);
6120    } else if (PrevDecl) {
6121      // This is an invalid name redefinition.
6122      Diag(Loc, diag::err_redefinition_different_kind)
6123        << II;
6124      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6125      IsInvalid = true;
6126      // Continue on to push Namespc as current DeclContext and return it.
6127    } else if (II->isStr("std") &&
6128               CurContext->getRedeclContext()->isTranslationUnit()) {
6129      // This is the first "real" definition of the namespace "std", so update
6130      // our cache of the "std" namespace to point at this definition.
6131      PrevNS = getStdNamespace();
6132      IsStd = true;
6133      AddToKnown = !IsInline;
6134    } else {
6135      // We've seen this namespace for the first time.
6136      AddToKnown = !IsInline;
6137    }
6138  } else {
6139    // Anonymous namespaces.
6140
6141    // Determine whether the parent already has an anonymous namespace.
6142    DeclContext *Parent = CurContext->getRedeclContext();
6143    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6144      PrevNS = TU->getAnonymousNamespace();
6145    } else {
6146      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6147      PrevNS = ND->getAnonymousNamespace();
6148    }
6149
6150    if (PrevNS && IsInline != PrevNS->isInline())
6151      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6152                                      &IsInline, PrevNS);
6153  }
6154
6155  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6156                                                 StartLoc, Loc, II, PrevNS);
6157  if (IsInvalid)
6158    Namespc->setInvalidDecl();
6159
6160  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6161
6162  // FIXME: Should we be merging attributes?
6163  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6164    PushNamespaceVisibilityAttr(Attr, Loc);
6165
6166  if (IsStd)
6167    StdNamespace = Namespc;
6168  if (AddToKnown)
6169    KnownNamespaces[Namespc] = false;
6170
6171  if (II) {
6172    PushOnScopeChains(Namespc, DeclRegionScope);
6173  } else {
6174    // Link the anonymous namespace into its parent.
6175    DeclContext *Parent = CurContext->getRedeclContext();
6176    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6177      TU->setAnonymousNamespace(Namespc);
6178    } else {
6179      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6180    }
6181
6182    CurContext->addDecl(Namespc);
6183
6184    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6185    //   behaves as if it were replaced by
6186    //     namespace unique { /* empty body */ }
6187    //     using namespace unique;
6188    //     namespace unique { namespace-body }
6189    //   where all occurrences of 'unique' in a translation unit are
6190    //   replaced by the same identifier and this identifier differs
6191    //   from all other identifiers in the entire program.
6192
6193    // We just create the namespace with an empty name and then add an
6194    // implicit using declaration, just like the standard suggests.
6195    //
6196    // CodeGen enforces the "universally unique" aspect by giving all
6197    // declarations semantically contained within an anonymous
6198    // namespace internal linkage.
6199
6200    if (!PrevNS) {
6201      UsingDirectiveDecl* UD
6202        = UsingDirectiveDecl::Create(Context, Parent,
6203                                     /* 'using' */ LBrace,
6204                                     /* 'namespace' */ SourceLocation(),
6205                                     /* qualifier */ NestedNameSpecifierLoc(),
6206                                     /* identifier */ SourceLocation(),
6207                                     Namespc,
6208                                     /* Ancestor */ Parent);
6209      UD->setImplicit();
6210      Parent->addDecl(UD);
6211    }
6212  }
6213
6214  ActOnDocumentableDecl(Namespc);
6215
6216  // Although we could have an invalid decl (i.e. the namespace name is a
6217  // redefinition), push it as current DeclContext and try to continue parsing.
6218  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6219  // for the namespace has the declarations that showed up in that particular
6220  // namespace definition.
6221  PushDeclContext(NamespcScope, Namespc);
6222  return Namespc;
6223}
6224
6225/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6226/// is a namespace alias, returns the namespace it points to.
6227static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6228  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6229    return AD->getNamespace();
6230  return dyn_cast_or_null<NamespaceDecl>(D);
6231}
6232
6233/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6234/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6235void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6236  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6237  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6238  Namespc->setRBraceLoc(RBrace);
6239  PopDeclContext();
6240  if (Namespc->hasAttr<VisibilityAttr>())
6241    PopPragmaVisibility(true, RBrace);
6242}
6243
6244CXXRecordDecl *Sema::getStdBadAlloc() const {
6245  return cast_or_null<CXXRecordDecl>(
6246                                  StdBadAlloc.get(Context.getExternalSource()));
6247}
6248
6249NamespaceDecl *Sema::getStdNamespace() const {
6250  return cast_or_null<NamespaceDecl>(
6251                                 StdNamespace.get(Context.getExternalSource()));
6252}
6253
6254/// \brief Retrieve the special "std" namespace, which may require us to
6255/// implicitly define the namespace.
6256NamespaceDecl *Sema::getOrCreateStdNamespace() {
6257  if (!StdNamespace) {
6258    // The "std" namespace has not yet been defined, so build one implicitly.
6259    StdNamespace = NamespaceDecl::Create(Context,
6260                                         Context.getTranslationUnitDecl(),
6261                                         /*Inline=*/false,
6262                                         SourceLocation(), SourceLocation(),
6263                                         &PP.getIdentifierTable().get("std"),
6264                                         /*PrevDecl=*/0);
6265    getStdNamespace()->setImplicit(true);
6266  }
6267
6268  return getStdNamespace();
6269}
6270
6271bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6272  assert(getLangOpts().CPlusPlus &&
6273         "Looking for std::initializer_list outside of C++.");
6274
6275  // We're looking for implicit instantiations of
6276  // template <typename E> class std::initializer_list.
6277
6278  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6279    return false;
6280
6281  ClassTemplateDecl *Template = 0;
6282  const TemplateArgument *Arguments = 0;
6283
6284  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6285
6286    ClassTemplateSpecializationDecl *Specialization =
6287        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6288    if (!Specialization)
6289      return false;
6290
6291    Template = Specialization->getSpecializedTemplate();
6292    Arguments = Specialization->getTemplateArgs().data();
6293  } else if (const TemplateSpecializationType *TST =
6294                 Ty->getAs<TemplateSpecializationType>()) {
6295    Template = dyn_cast_or_null<ClassTemplateDecl>(
6296        TST->getTemplateName().getAsTemplateDecl());
6297    Arguments = TST->getArgs();
6298  }
6299  if (!Template)
6300    return false;
6301
6302  if (!StdInitializerList) {
6303    // Haven't recognized std::initializer_list yet, maybe this is it.
6304    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6305    if (TemplateClass->getIdentifier() !=
6306            &PP.getIdentifierTable().get("initializer_list") ||
6307        !getStdNamespace()->InEnclosingNamespaceSetOf(
6308            TemplateClass->getDeclContext()))
6309      return false;
6310    // This is a template called std::initializer_list, but is it the right
6311    // template?
6312    TemplateParameterList *Params = Template->getTemplateParameters();
6313    if (Params->getMinRequiredArguments() != 1)
6314      return false;
6315    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6316      return false;
6317
6318    // It's the right template.
6319    StdInitializerList = Template;
6320  }
6321
6322  if (Template != StdInitializerList)
6323    return false;
6324
6325  // This is an instance of std::initializer_list. Find the argument type.
6326  if (Element)
6327    *Element = Arguments[0].getAsType();
6328  return true;
6329}
6330
6331static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6332  NamespaceDecl *Std = S.getStdNamespace();
6333  if (!Std) {
6334    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6335    return 0;
6336  }
6337
6338  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6339                      Loc, Sema::LookupOrdinaryName);
6340  if (!S.LookupQualifiedName(Result, Std)) {
6341    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6342    return 0;
6343  }
6344  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6345  if (!Template) {
6346    Result.suppressDiagnostics();
6347    // We found something weird. Complain about the first thing we found.
6348    NamedDecl *Found = *Result.begin();
6349    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6350    return 0;
6351  }
6352
6353  // We found some template called std::initializer_list. Now verify that it's
6354  // correct.
6355  TemplateParameterList *Params = Template->getTemplateParameters();
6356  if (Params->getMinRequiredArguments() != 1 ||
6357      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6358    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6359    return 0;
6360  }
6361
6362  return Template;
6363}
6364
6365QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6366  if (!StdInitializerList) {
6367    StdInitializerList = LookupStdInitializerList(*this, Loc);
6368    if (!StdInitializerList)
6369      return QualType();
6370  }
6371
6372  TemplateArgumentListInfo Args(Loc, Loc);
6373  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6374                                       Context.getTrivialTypeSourceInfo(Element,
6375                                                                        Loc)));
6376  return Context.getCanonicalType(
6377      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6378}
6379
6380bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6381  // C++ [dcl.init.list]p2:
6382  //   A constructor is an initializer-list constructor if its first parameter
6383  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6384  //   std::initializer_list<E> for some type E, and either there are no other
6385  //   parameters or else all other parameters have default arguments.
6386  if (Ctor->getNumParams() < 1 ||
6387      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6388    return false;
6389
6390  QualType ArgType = Ctor->getParamDecl(0)->getType();
6391  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6392    ArgType = RT->getPointeeType().getUnqualifiedType();
6393
6394  return isStdInitializerList(ArgType, 0);
6395}
6396
6397/// \brief Determine whether a using statement is in a context where it will be
6398/// apply in all contexts.
6399static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6400  switch (CurContext->getDeclKind()) {
6401    case Decl::TranslationUnit:
6402      return true;
6403    case Decl::LinkageSpec:
6404      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6405    default:
6406      return false;
6407  }
6408}
6409
6410namespace {
6411
6412// Callback to only accept typo corrections that are namespaces.
6413class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6414 public:
6415  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6416    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6417      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6418    }
6419    return false;
6420  }
6421};
6422
6423}
6424
6425static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6426                                       CXXScopeSpec &SS,
6427                                       SourceLocation IdentLoc,
6428                                       IdentifierInfo *Ident) {
6429  NamespaceValidatorCCC Validator;
6430  R.clear();
6431  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6432                                               R.getLookupKind(), Sc, &SS,
6433                                               Validator)) {
6434    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6435    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6436    if (DeclContext *DC = S.computeDeclContext(SS, false))
6437      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6438        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6439        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6440                                        CorrectedStr);
6441    else
6442      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6443        << Ident << CorrectedQuotedStr
6444        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6445
6446    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6447         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6448
6449    R.addDecl(Corrected.getCorrectionDecl());
6450    return true;
6451  }
6452  return false;
6453}
6454
6455Decl *Sema::ActOnUsingDirective(Scope *S,
6456                                          SourceLocation UsingLoc,
6457                                          SourceLocation NamespcLoc,
6458                                          CXXScopeSpec &SS,
6459                                          SourceLocation IdentLoc,
6460                                          IdentifierInfo *NamespcName,
6461                                          AttributeList *AttrList) {
6462  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6463  assert(NamespcName && "Invalid NamespcName.");
6464  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6465
6466  // This can only happen along a recovery path.
6467  while (S->getFlags() & Scope::TemplateParamScope)
6468    S = S->getParent();
6469  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6470
6471  UsingDirectiveDecl *UDir = 0;
6472  NestedNameSpecifier *Qualifier = 0;
6473  if (SS.isSet())
6474    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6475
6476  // Lookup namespace name.
6477  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6478  LookupParsedName(R, S, &SS);
6479  if (R.isAmbiguous())
6480    return 0;
6481
6482  if (R.empty()) {
6483    R.clear();
6484    // Allow "using namespace std;" or "using namespace ::std;" even if
6485    // "std" hasn't been defined yet, for GCC compatibility.
6486    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6487        NamespcName->isStr("std")) {
6488      Diag(IdentLoc, diag::ext_using_undefined_std);
6489      R.addDecl(getOrCreateStdNamespace());
6490      R.resolveKind();
6491    }
6492    // Otherwise, attempt typo correction.
6493    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6494  }
6495
6496  if (!R.empty()) {
6497    NamedDecl *Named = R.getFoundDecl();
6498    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6499        && "expected namespace decl");
6500    // C++ [namespace.udir]p1:
6501    //   A using-directive specifies that the names in the nominated
6502    //   namespace can be used in the scope in which the
6503    //   using-directive appears after the using-directive. During
6504    //   unqualified name lookup (3.4.1), the names appear as if they
6505    //   were declared in the nearest enclosing namespace which
6506    //   contains both the using-directive and the nominated
6507    //   namespace. [Note: in this context, "contains" means "contains
6508    //   directly or indirectly". ]
6509
6510    // Find enclosing context containing both using-directive and
6511    // nominated namespace.
6512    NamespaceDecl *NS = getNamespaceDecl(Named);
6513    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6514    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6515      CommonAncestor = CommonAncestor->getParent();
6516
6517    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6518                                      SS.getWithLocInContext(Context),
6519                                      IdentLoc, Named, CommonAncestor);
6520
6521    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6522        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6523      Diag(IdentLoc, diag::warn_using_directive_in_header);
6524    }
6525
6526    PushUsingDirective(S, UDir);
6527  } else {
6528    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6529  }
6530
6531  if (UDir)
6532    ProcessDeclAttributeList(S, UDir, AttrList);
6533
6534  return UDir;
6535}
6536
6537void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6538  // If the scope has an associated entity and the using directive is at
6539  // namespace or translation unit scope, add the UsingDirectiveDecl into
6540  // its lookup structure so qualified name lookup can find it.
6541  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6542  if (Ctx && !Ctx->isFunctionOrMethod())
6543    Ctx->addDecl(UDir);
6544  else
6545    // Otherwise, it is at block sope. The using-directives will affect lookup
6546    // only to the end of the scope.
6547    S->PushUsingDirective(UDir);
6548}
6549
6550
6551Decl *Sema::ActOnUsingDeclaration(Scope *S,
6552                                  AccessSpecifier AS,
6553                                  bool HasUsingKeyword,
6554                                  SourceLocation UsingLoc,
6555                                  CXXScopeSpec &SS,
6556                                  UnqualifiedId &Name,
6557                                  AttributeList *AttrList,
6558                                  bool IsTypeName,
6559                                  SourceLocation TypenameLoc) {
6560  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6561
6562  switch (Name.getKind()) {
6563  case UnqualifiedId::IK_ImplicitSelfParam:
6564  case UnqualifiedId::IK_Identifier:
6565  case UnqualifiedId::IK_OperatorFunctionId:
6566  case UnqualifiedId::IK_LiteralOperatorId:
6567  case UnqualifiedId::IK_ConversionFunctionId:
6568    break;
6569
6570  case UnqualifiedId::IK_ConstructorName:
6571  case UnqualifiedId::IK_ConstructorTemplateId:
6572    // C++11 inheriting constructors.
6573    Diag(Name.getLocStart(),
6574         getLangOpts().CPlusPlus11 ?
6575           diag::warn_cxx98_compat_using_decl_constructor :
6576           diag::err_using_decl_constructor)
6577      << SS.getRange();
6578
6579    if (getLangOpts().CPlusPlus11) break;
6580
6581    return 0;
6582
6583  case UnqualifiedId::IK_DestructorName:
6584    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6585      << SS.getRange();
6586    return 0;
6587
6588  case UnqualifiedId::IK_TemplateId:
6589    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6590      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6591    return 0;
6592  }
6593
6594  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6595  DeclarationName TargetName = TargetNameInfo.getName();
6596  if (!TargetName)
6597    return 0;
6598
6599  // Warn about access declarations.
6600  // TODO: store that the declaration was written without 'using' and
6601  // talk about access decls instead of using decls in the
6602  // diagnostics.
6603  if (!HasUsingKeyword) {
6604    UsingLoc = Name.getLocStart();
6605
6606    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6607      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6608  }
6609
6610  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6611      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6612    return 0;
6613
6614  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6615                                        TargetNameInfo, AttrList,
6616                                        /* IsInstantiation */ false,
6617                                        IsTypeName, TypenameLoc);
6618  if (UD)
6619    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6620
6621  return UD;
6622}
6623
6624/// \brief Determine whether a using declaration considers the given
6625/// declarations as "equivalent", e.g., if they are redeclarations of
6626/// the same entity or are both typedefs of the same type.
6627static bool
6628IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6629                         bool &SuppressRedeclaration) {
6630  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6631    SuppressRedeclaration = false;
6632    return true;
6633  }
6634
6635  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6636    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6637      SuppressRedeclaration = true;
6638      return Context.hasSameType(TD1->getUnderlyingType(),
6639                                 TD2->getUnderlyingType());
6640    }
6641
6642  return false;
6643}
6644
6645
6646/// Determines whether to create a using shadow decl for a particular
6647/// decl, given the set of decls existing prior to this using lookup.
6648bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6649                                const LookupResult &Previous) {
6650  // Diagnose finding a decl which is not from a base class of the
6651  // current class.  We do this now because there are cases where this
6652  // function will silently decide not to build a shadow decl, which
6653  // will pre-empt further diagnostics.
6654  //
6655  // We don't need to do this in C++0x because we do the check once on
6656  // the qualifier.
6657  //
6658  // FIXME: diagnose the following if we care enough:
6659  //   struct A { int foo; };
6660  //   struct B : A { using A::foo; };
6661  //   template <class T> struct C : A {};
6662  //   template <class T> struct D : C<T> { using B::foo; } // <---
6663  // This is invalid (during instantiation) in C++03 because B::foo
6664  // resolves to the using decl in B, which is not a base class of D<T>.
6665  // We can't diagnose it immediately because C<T> is an unknown
6666  // specialization.  The UsingShadowDecl in D<T> then points directly
6667  // to A::foo, which will look well-formed when we instantiate.
6668  // The right solution is to not collapse the shadow-decl chain.
6669  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6670    DeclContext *OrigDC = Orig->getDeclContext();
6671
6672    // Handle enums and anonymous structs.
6673    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6674    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6675    while (OrigRec->isAnonymousStructOrUnion())
6676      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6677
6678    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6679      if (OrigDC == CurContext) {
6680        Diag(Using->getLocation(),
6681             diag::err_using_decl_nested_name_specifier_is_current_class)
6682          << Using->getQualifierLoc().getSourceRange();
6683        Diag(Orig->getLocation(), diag::note_using_decl_target);
6684        return true;
6685      }
6686
6687      Diag(Using->getQualifierLoc().getBeginLoc(),
6688           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6689        << Using->getQualifier()
6690        << cast<CXXRecordDecl>(CurContext)
6691        << Using->getQualifierLoc().getSourceRange();
6692      Diag(Orig->getLocation(), diag::note_using_decl_target);
6693      return true;
6694    }
6695  }
6696
6697  if (Previous.empty()) return false;
6698
6699  NamedDecl *Target = Orig;
6700  if (isa<UsingShadowDecl>(Target))
6701    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6702
6703  // If the target happens to be one of the previous declarations, we
6704  // don't have a conflict.
6705  //
6706  // FIXME: but we might be increasing its access, in which case we
6707  // should redeclare it.
6708  NamedDecl *NonTag = 0, *Tag = 0;
6709  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6710         I != E; ++I) {
6711    NamedDecl *D = (*I)->getUnderlyingDecl();
6712    bool Result;
6713    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6714      return Result;
6715
6716    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6717  }
6718
6719  if (Target->isFunctionOrFunctionTemplate()) {
6720    FunctionDecl *FD;
6721    if (isa<FunctionTemplateDecl>(Target))
6722      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6723    else
6724      FD = cast<FunctionDecl>(Target);
6725
6726    NamedDecl *OldDecl = 0;
6727    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6728    case Ovl_Overload:
6729      return false;
6730
6731    case Ovl_NonFunction:
6732      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6733      break;
6734
6735    // We found a decl with the exact signature.
6736    case Ovl_Match:
6737      // If we're in a record, we want to hide the target, so we
6738      // return true (without a diagnostic) to tell the caller not to
6739      // build a shadow decl.
6740      if (CurContext->isRecord())
6741        return true;
6742
6743      // If we're not in a record, this is an error.
6744      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6745      break;
6746    }
6747
6748    Diag(Target->getLocation(), diag::note_using_decl_target);
6749    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6750    return true;
6751  }
6752
6753  // Target is not a function.
6754
6755  if (isa<TagDecl>(Target)) {
6756    // No conflict between a tag and a non-tag.
6757    if (!Tag) return false;
6758
6759    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6760    Diag(Target->getLocation(), diag::note_using_decl_target);
6761    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6762    return true;
6763  }
6764
6765  // No conflict between a tag and a non-tag.
6766  if (!NonTag) return false;
6767
6768  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6769  Diag(Target->getLocation(), diag::note_using_decl_target);
6770  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6771  return true;
6772}
6773
6774/// Builds a shadow declaration corresponding to a 'using' declaration.
6775UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6776                                            UsingDecl *UD,
6777                                            NamedDecl *Orig) {
6778
6779  // If we resolved to another shadow declaration, just coalesce them.
6780  NamedDecl *Target = Orig;
6781  if (isa<UsingShadowDecl>(Target)) {
6782    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6783    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6784  }
6785
6786  UsingShadowDecl *Shadow
6787    = UsingShadowDecl::Create(Context, CurContext,
6788                              UD->getLocation(), UD, Target);
6789  UD->addShadowDecl(Shadow);
6790
6791  Shadow->setAccess(UD->getAccess());
6792  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6793    Shadow->setInvalidDecl();
6794
6795  if (S)
6796    PushOnScopeChains(Shadow, S);
6797  else
6798    CurContext->addDecl(Shadow);
6799
6800
6801  return Shadow;
6802}
6803
6804/// Hides a using shadow declaration.  This is required by the current
6805/// using-decl implementation when a resolvable using declaration in a
6806/// class is followed by a declaration which would hide or override
6807/// one or more of the using decl's targets; for example:
6808///
6809///   struct Base { void foo(int); };
6810///   struct Derived : Base {
6811///     using Base::foo;
6812///     void foo(int);
6813///   };
6814///
6815/// The governing language is C++03 [namespace.udecl]p12:
6816///
6817///   When a using-declaration brings names from a base class into a
6818///   derived class scope, member functions in the derived class
6819///   override and/or hide member functions with the same name and
6820///   parameter types in a base class (rather than conflicting).
6821///
6822/// There are two ways to implement this:
6823///   (1) optimistically create shadow decls when they're not hidden
6824///       by existing declarations, or
6825///   (2) don't create any shadow decls (or at least don't make them
6826///       visible) until we've fully parsed/instantiated the class.
6827/// The problem with (1) is that we might have to retroactively remove
6828/// a shadow decl, which requires several O(n) operations because the
6829/// decl structures are (very reasonably) not designed for removal.
6830/// (2) avoids this but is very fiddly and phase-dependent.
6831void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6832  if (Shadow->getDeclName().getNameKind() ==
6833        DeclarationName::CXXConversionFunctionName)
6834    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6835
6836  // Remove it from the DeclContext...
6837  Shadow->getDeclContext()->removeDecl(Shadow);
6838
6839  // ...and the scope, if applicable...
6840  if (S) {
6841    S->RemoveDecl(Shadow);
6842    IdResolver.RemoveDecl(Shadow);
6843  }
6844
6845  // ...and the using decl.
6846  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6847
6848  // TODO: complain somehow if Shadow was used.  It shouldn't
6849  // be possible for this to happen, because...?
6850}
6851
6852/// Builds a using declaration.
6853///
6854/// \param IsInstantiation - Whether this call arises from an
6855///   instantiation of an unresolved using declaration.  We treat
6856///   the lookup differently for these declarations.
6857NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6858                                       SourceLocation UsingLoc,
6859                                       CXXScopeSpec &SS,
6860                                       const DeclarationNameInfo &NameInfo,
6861                                       AttributeList *AttrList,
6862                                       bool IsInstantiation,
6863                                       bool IsTypeName,
6864                                       SourceLocation TypenameLoc) {
6865  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6866  SourceLocation IdentLoc = NameInfo.getLoc();
6867  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6868
6869  // FIXME: We ignore attributes for now.
6870
6871  if (SS.isEmpty()) {
6872    Diag(IdentLoc, diag::err_using_requires_qualname);
6873    return 0;
6874  }
6875
6876  // Do the redeclaration lookup in the current scope.
6877  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6878                        ForRedeclaration);
6879  Previous.setHideTags(false);
6880  if (S) {
6881    LookupName(Previous, S);
6882
6883    // It is really dumb that we have to do this.
6884    LookupResult::Filter F = Previous.makeFilter();
6885    while (F.hasNext()) {
6886      NamedDecl *D = F.next();
6887      if (!isDeclInScope(D, CurContext, S))
6888        F.erase();
6889    }
6890    F.done();
6891  } else {
6892    assert(IsInstantiation && "no scope in non-instantiation");
6893    assert(CurContext->isRecord() && "scope not record in instantiation");
6894    LookupQualifiedName(Previous, CurContext);
6895  }
6896
6897  // Check for invalid redeclarations.
6898  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6899    return 0;
6900
6901  // Check for bad qualifiers.
6902  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6903    return 0;
6904
6905  DeclContext *LookupContext = computeDeclContext(SS);
6906  NamedDecl *D;
6907  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6908  if (!LookupContext) {
6909    if (IsTypeName) {
6910      // FIXME: not all declaration name kinds are legal here
6911      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6912                                              UsingLoc, TypenameLoc,
6913                                              QualifierLoc,
6914                                              IdentLoc, NameInfo.getName());
6915    } else {
6916      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6917                                           QualifierLoc, NameInfo);
6918    }
6919  } else {
6920    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6921                          NameInfo, IsTypeName);
6922  }
6923  D->setAccess(AS);
6924  CurContext->addDecl(D);
6925
6926  if (!LookupContext) return D;
6927  UsingDecl *UD = cast<UsingDecl>(D);
6928
6929  if (RequireCompleteDeclContext(SS, LookupContext)) {
6930    UD->setInvalidDecl();
6931    return UD;
6932  }
6933
6934  // The normal rules do not apply to inheriting constructor declarations.
6935  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6936    if (CheckInheritingConstructorUsingDecl(UD))
6937      UD->setInvalidDecl();
6938    return UD;
6939  }
6940
6941  // Otherwise, look up the target name.
6942
6943  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6944
6945  // Unlike most lookups, we don't always want to hide tag
6946  // declarations: tag names are visible through the using declaration
6947  // even if hidden by ordinary names, *except* in a dependent context
6948  // where it's important for the sanity of two-phase lookup.
6949  if (!IsInstantiation)
6950    R.setHideTags(false);
6951
6952  // For the purposes of this lookup, we have a base object type
6953  // equal to that of the current context.
6954  if (CurContext->isRecord()) {
6955    R.setBaseObjectType(
6956                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6957  }
6958
6959  LookupQualifiedName(R, LookupContext);
6960
6961  if (R.empty()) {
6962    Diag(IdentLoc, diag::err_no_member)
6963      << NameInfo.getName() << LookupContext << SS.getRange();
6964    UD->setInvalidDecl();
6965    return UD;
6966  }
6967
6968  if (R.isAmbiguous()) {
6969    UD->setInvalidDecl();
6970    return UD;
6971  }
6972
6973  if (IsTypeName) {
6974    // If we asked for a typename and got a non-type decl, error out.
6975    if (!R.getAsSingle<TypeDecl>()) {
6976      Diag(IdentLoc, diag::err_using_typename_non_type);
6977      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6978        Diag((*I)->getUnderlyingDecl()->getLocation(),
6979             diag::note_using_decl_target);
6980      UD->setInvalidDecl();
6981      return UD;
6982    }
6983  } else {
6984    // If we asked for a non-typename and we got a type, error out,
6985    // but only if this is an instantiation of an unresolved using
6986    // decl.  Otherwise just silently find the type name.
6987    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6988      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6989      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6990      UD->setInvalidDecl();
6991      return UD;
6992    }
6993  }
6994
6995  // C++0x N2914 [namespace.udecl]p6:
6996  // A using-declaration shall not name a namespace.
6997  if (R.getAsSingle<NamespaceDecl>()) {
6998    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6999      << SS.getRange();
7000    UD->setInvalidDecl();
7001    return UD;
7002  }
7003
7004  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7005    if (!CheckUsingShadowDecl(UD, *I, Previous))
7006      BuildUsingShadowDecl(S, UD, *I);
7007  }
7008
7009  return UD;
7010}
7011
7012/// Additional checks for a using declaration referring to a constructor name.
7013bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7014  assert(!UD->isTypeName() && "expecting a constructor name");
7015
7016  const Type *SourceType = UD->getQualifier()->getAsType();
7017  assert(SourceType &&
7018         "Using decl naming constructor doesn't have type in scope spec.");
7019  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7020
7021  // Check whether the named type is a direct base class.
7022  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7023  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7024  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7025       BaseIt != BaseE; ++BaseIt) {
7026    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7027    if (CanonicalSourceType == BaseType)
7028      break;
7029    if (BaseIt->getType()->isDependentType())
7030      break;
7031  }
7032
7033  if (BaseIt == BaseE) {
7034    // Did not find SourceType in the bases.
7035    Diag(UD->getUsingLocation(),
7036         diag::err_using_decl_constructor_not_in_direct_base)
7037      << UD->getNameInfo().getSourceRange()
7038      << QualType(SourceType, 0) << TargetClass;
7039    return true;
7040  }
7041
7042  if (!CurContext->isDependentContext())
7043    BaseIt->setInheritConstructors();
7044
7045  return false;
7046}
7047
7048/// Checks that the given using declaration is not an invalid
7049/// redeclaration.  Note that this is checking only for the using decl
7050/// itself, not for any ill-formedness among the UsingShadowDecls.
7051bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7052                                       bool isTypeName,
7053                                       const CXXScopeSpec &SS,
7054                                       SourceLocation NameLoc,
7055                                       const LookupResult &Prev) {
7056  // C++03 [namespace.udecl]p8:
7057  // C++0x [namespace.udecl]p10:
7058  //   A using-declaration is a declaration and can therefore be used
7059  //   repeatedly where (and only where) multiple declarations are
7060  //   allowed.
7061  //
7062  // That's in non-member contexts.
7063  if (!CurContext->getRedeclContext()->isRecord())
7064    return false;
7065
7066  NestedNameSpecifier *Qual
7067    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7068
7069  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7070    NamedDecl *D = *I;
7071
7072    bool DTypename;
7073    NestedNameSpecifier *DQual;
7074    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7075      DTypename = UD->isTypeName();
7076      DQual = UD->getQualifier();
7077    } else if (UnresolvedUsingValueDecl *UD
7078                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7079      DTypename = false;
7080      DQual = UD->getQualifier();
7081    } else if (UnresolvedUsingTypenameDecl *UD
7082                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7083      DTypename = true;
7084      DQual = UD->getQualifier();
7085    } else continue;
7086
7087    // using decls differ if one says 'typename' and the other doesn't.
7088    // FIXME: non-dependent using decls?
7089    if (isTypeName != DTypename) continue;
7090
7091    // using decls differ if they name different scopes (but note that
7092    // template instantiation can cause this check to trigger when it
7093    // didn't before instantiation).
7094    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7095        Context.getCanonicalNestedNameSpecifier(DQual))
7096      continue;
7097
7098    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7099    Diag(D->getLocation(), diag::note_using_decl) << 1;
7100    return true;
7101  }
7102
7103  return false;
7104}
7105
7106
7107/// Checks that the given nested-name qualifier used in a using decl
7108/// in the current context is appropriately related to the current
7109/// scope.  If an error is found, diagnoses it and returns true.
7110bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7111                                   const CXXScopeSpec &SS,
7112                                   SourceLocation NameLoc) {
7113  DeclContext *NamedContext = computeDeclContext(SS);
7114
7115  if (!CurContext->isRecord()) {
7116    // C++03 [namespace.udecl]p3:
7117    // C++0x [namespace.udecl]p8:
7118    //   A using-declaration for a class member shall be a member-declaration.
7119
7120    // If we weren't able to compute a valid scope, it must be a
7121    // dependent class scope.
7122    if (!NamedContext || NamedContext->isRecord()) {
7123      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7124        << SS.getRange();
7125      return true;
7126    }
7127
7128    // Otherwise, everything is known to be fine.
7129    return false;
7130  }
7131
7132  // The current scope is a record.
7133
7134  // If the named context is dependent, we can't decide much.
7135  if (!NamedContext) {
7136    // FIXME: in C++0x, we can diagnose if we can prove that the
7137    // nested-name-specifier does not refer to a base class, which is
7138    // still possible in some cases.
7139
7140    // Otherwise we have to conservatively report that things might be
7141    // okay.
7142    return false;
7143  }
7144
7145  if (!NamedContext->isRecord()) {
7146    // Ideally this would point at the last name in the specifier,
7147    // but we don't have that level of source info.
7148    Diag(SS.getRange().getBegin(),
7149         diag::err_using_decl_nested_name_specifier_is_not_class)
7150      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7151    return true;
7152  }
7153
7154  if (!NamedContext->isDependentContext() &&
7155      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7156    return true;
7157
7158  if (getLangOpts().CPlusPlus11) {
7159    // C++0x [namespace.udecl]p3:
7160    //   In a using-declaration used as a member-declaration, the
7161    //   nested-name-specifier shall name a base class of the class
7162    //   being defined.
7163
7164    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7165                                 cast<CXXRecordDecl>(NamedContext))) {
7166      if (CurContext == NamedContext) {
7167        Diag(NameLoc,
7168             diag::err_using_decl_nested_name_specifier_is_current_class)
7169          << SS.getRange();
7170        return true;
7171      }
7172
7173      Diag(SS.getRange().getBegin(),
7174           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7175        << (NestedNameSpecifier*) SS.getScopeRep()
7176        << cast<CXXRecordDecl>(CurContext)
7177        << SS.getRange();
7178      return true;
7179    }
7180
7181    return false;
7182  }
7183
7184  // C++03 [namespace.udecl]p4:
7185  //   A using-declaration used as a member-declaration shall refer
7186  //   to a member of a base class of the class being defined [etc.].
7187
7188  // Salient point: SS doesn't have to name a base class as long as
7189  // lookup only finds members from base classes.  Therefore we can
7190  // diagnose here only if we can prove that that can't happen,
7191  // i.e. if the class hierarchies provably don't intersect.
7192
7193  // TODO: it would be nice if "definitely valid" results were cached
7194  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7195  // need to be repeated.
7196
7197  struct UserData {
7198    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7199
7200    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7201      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7202      Data->Bases.insert(Base);
7203      return true;
7204    }
7205
7206    bool hasDependentBases(const CXXRecordDecl *Class) {
7207      return !Class->forallBases(collect, this);
7208    }
7209
7210    /// Returns true if the base is dependent or is one of the
7211    /// accumulated base classes.
7212    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7213      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7214      return !Data->Bases.count(Base);
7215    }
7216
7217    bool mightShareBases(const CXXRecordDecl *Class) {
7218      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7219    }
7220  };
7221
7222  UserData Data;
7223
7224  // Returns false if we find a dependent base.
7225  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7226    return false;
7227
7228  // Returns false if the class has a dependent base or if it or one
7229  // of its bases is present in the base set of the current context.
7230  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7231    return false;
7232
7233  Diag(SS.getRange().getBegin(),
7234       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7235    << (NestedNameSpecifier*) SS.getScopeRep()
7236    << cast<CXXRecordDecl>(CurContext)
7237    << SS.getRange();
7238
7239  return true;
7240}
7241
7242Decl *Sema::ActOnAliasDeclaration(Scope *S,
7243                                  AccessSpecifier AS,
7244                                  MultiTemplateParamsArg TemplateParamLists,
7245                                  SourceLocation UsingLoc,
7246                                  UnqualifiedId &Name,
7247                                  AttributeList *AttrList,
7248                                  TypeResult Type) {
7249  // Skip up to the relevant declaration scope.
7250  while (S->getFlags() & Scope::TemplateParamScope)
7251    S = S->getParent();
7252  assert((S->getFlags() & Scope::DeclScope) &&
7253         "got alias-declaration outside of declaration scope");
7254
7255  if (Type.isInvalid())
7256    return 0;
7257
7258  bool Invalid = false;
7259  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7260  TypeSourceInfo *TInfo = 0;
7261  GetTypeFromParser(Type.get(), &TInfo);
7262
7263  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7264    return 0;
7265
7266  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7267                                      UPPC_DeclarationType)) {
7268    Invalid = true;
7269    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7270                                             TInfo->getTypeLoc().getBeginLoc());
7271  }
7272
7273  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7274  LookupName(Previous, S);
7275
7276  // Warn about shadowing the name of a template parameter.
7277  if (Previous.isSingleResult() &&
7278      Previous.getFoundDecl()->isTemplateParameter()) {
7279    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7280    Previous.clear();
7281  }
7282
7283  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7284         "name in alias declaration must be an identifier");
7285  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7286                                               Name.StartLocation,
7287                                               Name.Identifier, TInfo);
7288
7289  NewTD->setAccess(AS);
7290
7291  if (Invalid)
7292    NewTD->setInvalidDecl();
7293
7294  ProcessDeclAttributeList(S, NewTD, AttrList);
7295
7296  CheckTypedefForVariablyModifiedType(S, NewTD);
7297  Invalid |= NewTD->isInvalidDecl();
7298
7299  bool Redeclaration = false;
7300
7301  NamedDecl *NewND;
7302  if (TemplateParamLists.size()) {
7303    TypeAliasTemplateDecl *OldDecl = 0;
7304    TemplateParameterList *OldTemplateParams = 0;
7305
7306    if (TemplateParamLists.size() != 1) {
7307      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7308        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7309         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7310    }
7311    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7312
7313    // Only consider previous declarations in the same scope.
7314    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7315                         /*ExplicitInstantiationOrSpecialization*/false);
7316    if (!Previous.empty()) {
7317      Redeclaration = true;
7318
7319      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7320      if (!OldDecl && !Invalid) {
7321        Diag(UsingLoc, diag::err_redefinition_different_kind)
7322          << Name.Identifier;
7323
7324        NamedDecl *OldD = Previous.getRepresentativeDecl();
7325        if (OldD->getLocation().isValid())
7326          Diag(OldD->getLocation(), diag::note_previous_definition);
7327
7328        Invalid = true;
7329      }
7330
7331      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7332        if (TemplateParameterListsAreEqual(TemplateParams,
7333                                           OldDecl->getTemplateParameters(),
7334                                           /*Complain=*/true,
7335                                           TPL_TemplateMatch))
7336          OldTemplateParams = OldDecl->getTemplateParameters();
7337        else
7338          Invalid = true;
7339
7340        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7341        if (!Invalid &&
7342            !Context.hasSameType(OldTD->getUnderlyingType(),
7343                                 NewTD->getUnderlyingType())) {
7344          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7345          // but we can't reasonably accept it.
7346          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7347            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7348          if (OldTD->getLocation().isValid())
7349            Diag(OldTD->getLocation(), diag::note_previous_definition);
7350          Invalid = true;
7351        }
7352      }
7353    }
7354
7355    // Merge any previous default template arguments into our parameters,
7356    // and check the parameter list.
7357    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7358                                   TPC_TypeAliasTemplate))
7359      return 0;
7360
7361    TypeAliasTemplateDecl *NewDecl =
7362      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7363                                    Name.Identifier, TemplateParams,
7364                                    NewTD);
7365
7366    NewDecl->setAccess(AS);
7367
7368    if (Invalid)
7369      NewDecl->setInvalidDecl();
7370    else if (OldDecl)
7371      NewDecl->setPreviousDeclaration(OldDecl);
7372
7373    NewND = NewDecl;
7374  } else {
7375    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7376    NewND = NewTD;
7377  }
7378
7379  if (!Redeclaration)
7380    PushOnScopeChains(NewND, S);
7381
7382  ActOnDocumentableDecl(NewND);
7383  return NewND;
7384}
7385
7386Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7387                                             SourceLocation NamespaceLoc,
7388                                             SourceLocation AliasLoc,
7389                                             IdentifierInfo *Alias,
7390                                             CXXScopeSpec &SS,
7391                                             SourceLocation IdentLoc,
7392                                             IdentifierInfo *Ident) {
7393
7394  // Lookup the namespace name.
7395  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7396  LookupParsedName(R, S, &SS);
7397
7398  // Check if we have a previous declaration with the same name.
7399  NamedDecl *PrevDecl
7400    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7401                       ForRedeclaration);
7402  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7403    PrevDecl = 0;
7404
7405  if (PrevDecl) {
7406    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7407      // We already have an alias with the same name that points to the same
7408      // namespace, so don't create a new one.
7409      // FIXME: At some point, we'll want to create the (redundant)
7410      // declaration to maintain better source information.
7411      if (!R.isAmbiguous() && !R.empty() &&
7412          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7413        return 0;
7414    }
7415
7416    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7417      diag::err_redefinition_different_kind;
7418    Diag(AliasLoc, DiagID) << Alias;
7419    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7420    return 0;
7421  }
7422
7423  if (R.isAmbiguous())
7424    return 0;
7425
7426  if (R.empty()) {
7427    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7428      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7429      return 0;
7430    }
7431  }
7432
7433  NamespaceAliasDecl *AliasDecl =
7434    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7435                               Alias, SS.getWithLocInContext(Context),
7436                               IdentLoc, R.getFoundDecl());
7437
7438  PushOnScopeChains(AliasDecl, S);
7439  return AliasDecl;
7440}
7441
7442Sema::ImplicitExceptionSpecification
7443Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7444                                               CXXMethodDecl *MD) {
7445  CXXRecordDecl *ClassDecl = MD->getParent();
7446
7447  // C++ [except.spec]p14:
7448  //   An implicitly declared special member function (Clause 12) shall have an
7449  //   exception-specification. [...]
7450  ImplicitExceptionSpecification ExceptSpec(*this);
7451  if (ClassDecl->isInvalidDecl())
7452    return ExceptSpec;
7453
7454  // Direct base-class constructors.
7455  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7456                                       BEnd = ClassDecl->bases_end();
7457       B != BEnd; ++B) {
7458    if (B->isVirtual()) // Handled below.
7459      continue;
7460
7461    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7462      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7463      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7464      // If this is a deleted function, add it anyway. This might be conformant
7465      // with the standard. This might not. I'm not sure. It might not matter.
7466      if (Constructor)
7467        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7468    }
7469  }
7470
7471  // Virtual base-class constructors.
7472  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7473                                       BEnd = ClassDecl->vbases_end();
7474       B != BEnd; ++B) {
7475    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7476      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7477      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7478      // If this is a deleted function, add it anyway. This might be conformant
7479      // with the standard. This might not. I'm not sure. It might not matter.
7480      if (Constructor)
7481        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7482    }
7483  }
7484
7485  // Field constructors.
7486  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7487                               FEnd = ClassDecl->field_end();
7488       F != FEnd; ++F) {
7489    if (F->hasInClassInitializer()) {
7490      if (Expr *E = F->getInClassInitializer())
7491        ExceptSpec.CalledExpr(E);
7492      else if (!F->isInvalidDecl())
7493        // DR1351:
7494        //   If the brace-or-equal-initializer of a non-static data member
7495        //   invokes a defaulted default constructor of its class or of an
7496        //   enclosing class in a potentially evaluated subexpression, the
7497        //   program is ill-formed.
7498        //
7499        // This resolution is unworkable: the exception specification of the
7500        // default constructor can be needed in an unevaluated context, in
7501        // particular, in the operand of a noexcept-expression, and we can be
7502        // unable to compute an exception specification for an enclosed class.
7503        //
7504        // We do not allow an in-class initializer to require the evaluation
7505        // of the exception specification for any in-class initializer whose
7506        // definition is not lexically complete.
7507        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7508    } else if (const RecordType *RecordTy
7509              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7510      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7511      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7512      // If this is a deleted function, add it anyway. This might be conformant
7513      // with the standard. This might not. I'm not sure. It might not matter.
7514      // In particular, the problem is that this function never gets called. It
7515      // might just be ill-formed because this function attempts to refer to
7516      // a deleted function here.
7517      if (Constructor)
7518        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7519    }
7520  }
7521
7522  return ExceptSpec;
7523}
7524
7525Sema::ImplicitExceptionSpecification
7526Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7527  CXXRecordDecl *ClassDecl = CD->getParent();
7528
7529  // C++ [except.spec]p14:
7530  //   An inheriting constructor [...] shall have an exception-specification. [...]
7531  ImplicitExceptionSpecification ExceptSpec(*this);
7532  if (ClassDecl->isInvalidDecl())
7533    return ExceptSpec;
7534
7535  // Inherited constructor.
7536  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7537  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7538  // FIXME: Copying or moving the parameters could add extra exceptions to the
7539  // set, as could the default arguments for the inherited constructor. This
7540  // will be addressed when we implement the resolution of core issue 1351.
7541  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7542
7543  // Direct base-class constructors.
7544  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7545                                       BEnd = ClassDecl->bases_end();
7546       B != BEnd; ++B) {
7547    if (B->isVirtual()) // Handled below.
7548      continue;
7549
7550    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7551      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7552      if (BaseClassDecl == InheritedDecl)
7553        continue;
7554      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7555      if (Constructor)
7556        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7557    }
7558  }
7559
7560  // Virtual base-class constructors.
7561  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7562                                       BEnd = ClassDecl->vbases_end();
7563       B != BEnd; ++B) {
7564    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7565      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7566      if (BaseClassDecl == InheritedDecl)
7567        continue;
7568      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7569      if (Constructor)
7570        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7571    }
7572  }
7573
7574  // Field constructors.
7575  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7576                               FEnd = ClassDecl->field_end();
7577       F != FEnd; ++F) {
7578    if (F->hasInClassInitializer()) {
7579      if (Expr *E = F->getInClassInitializer())
7580        ExceptSpec.CalledExpr(E);
7581      else if (!F->isInvalidDecl())
7582        Diag(CD->getLocation(),
7583             diag::err_in_class_initializer_references_def_ctor) << CD;
7584    } else if (const RecordType *RecordTy
7585              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7586      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7587      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7588      if (Constructor)
7589        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7590    }
7591  }
7592
7593  return ExceptSpec;
7594}
7595
7596namespace {
7597/// RAII object to register a special member as being currently declared.
7598struct DeclaringSpecialMember {
7599  Sema &S;
7600  Sema::SpecialMemberDecl D;
7601  bool WasAlreadyBeingDeclared;
7602
7603  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7604    : S(S), D(RD, CSM) {
7605    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7606    if (WasAlreadyBeingDeclared)
7607      // This almost never happens, but if it does, ensure that our cache
7608      // doesn't contain a stale result.
7609      S.SpecialMemberCache.clear();
7610
7611    // FIXME: Register a note to be produced if we encounter an error while
7612    // declaring the special member.
7613  }
7614  ~DeclaringSpecialMember() {
7615    if (!WasAlreadyBeingDeclared)
7616      S.SpecialMembersBeingDeclared.erase(D);
7617  }
7618
7619  /// \brief Are we already trying to declare this special member?
7620  bool isAlreadyBeingDeclared() const {
7621    return WasAlreadyBeingDeclared;
7622  }
7623};
7624}
7625
7626CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7627                                                     CXXRecordDecl *ClassDecl) {
7628  // C++ [class.ctor]p5:
7629  //   A default constructor for a class X is a constructor of class X
7630  //   that can be called without an argument. If there is no
7631  //   user-declared constructor for class X, a default constructor is
7632  //   implicitly declared. An implicitly-declared default constructor
7633  //   is an inline public member of its class.
7634  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7635         "Should not build implicit default constructor!");
7636
7637  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7638  if (DSM.isAlreadyBeingDeclared())
7639    return 0;
7640
7641  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7642                                                     CXXDefaultConstructor,
7643                                                     false);
7644
7645  // Create the actual constructor declaration.
7646  CanQualType ClassType
7647    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7648  SourceLocation ClassLoc = ClassDecl->getLocation();
7649  DeclarationName Name
7650    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7651  DeclarationNameInfo NameInfo(Name, ClassLoc);
7652  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7653      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7654      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7655      Constexpr);
7656  DefaultCon->setAccess(AS_public);
7657  DefaultCon->setDefaulted();
7658  DefaultCon->setImplicit();
7659
7660  // Build an exception specification pointing back at this constructor.
7661  FunctionProtoType::ExtProtoInfo EPI;
7662  EPI.ExceptionSpecType = EST_Unevaluated;
7663  EPI.ExceptionSpecDecl = DefaultCon;
7664  DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
7665                                              ArrayRef<QualType>(),
7666                                              EPI));
7667
7668  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7669  // constructors is easy to compute.
7670  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7671
7672  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7673    SetDeclDeleted(DefaultCon, ClassLoc);
7674
7675  // Note that we have declared this constructor.
7676  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7677
7678  if (Scope *S = getScopeForContext(ClassDecl))
7679    PushOnScopeChains(DefaultCon, S, false);
7680  ClassDecl->addDecl(DefaultCon);
7681
7682  return DefaultCon;
7683}
7684
7685void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7686                                            CXXConstructorDecl *Constructor) {
7687  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7688          !Constructor->doesThisDeclarationHaveABody() &&
7689          !Constructor->isDeleted()) &&
7690    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7691
7692  CXXRecordDecl *ClassDecl = Constructor->getParent();
7693  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7694
7695  SynthesizedFunctionScope Scope(*this, Constructor);
7696  DiagnosticErrorTrap Trap(Diags);
7697  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7698      Trap.hasErrorOccurred()) {
7699    Diag(CurrentLocation, diag::note_member_synthesized_at)
7700      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7701    Constructor->setInvalidDecl();
7702    return;
7703  }
7704
7705  SourceLocation Loc = Constructor->getLocation();
7706  Constructor->setBody(new (Context) CompoundStmt(Loc));
7707
7708  Constructor->setUsed();
7709  MarkVTableUsed(CurrentLocation, ClassDecl);
7710
7711  if (ASTMutationListener *L = getASTMutationListener()) {
7712    L->CompletedImplicitDefinition(Constructor);
7713  }
7714}
7715
7716void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7717  // Check that any explicitly-defaulted methods have exception specifications
7718  // compatible with their implicit exception specifications.
7719  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7720}
7721
7722namespace {
7723/// Information on inheriting constructors to declare.
7724class InheritingConstructorInfo {
7725public:
7726  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7727      : SemaRef(SemaRef), Derived(Derived) {
7728    // Mark the constructors that we already have in the derived class.
7729    //
7730    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7731    //   unless there is a user-declared constructor with the same signature in
7732    //   the class where the using-declaration appears.
7733    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7734  }
7735
7736  void inheritAll(CXXRecordDecl *RD) {
7737    visitAll(RD, &InheritingConstructorInfo::inherit);
7738  }
7739
7740private:
7741  /// Information about an inheriting constructor.
7742  struct InheritingConstructor {
7743    InheritingConstructor()
7744      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7745
7746    /// If \c true, a constructor with this signature is already declared
7747    /// in the derived class.
7748    bool DeclaredInDerived;
7749
7750    /// The constructor which is inherited.
7751    const CXXConstructorDecl *BaseCtor;
7752
7753    /// The derived constructor we declared.
7754    CXXConstructorDecl *DerivedCtor;
7755  };
7756
7757  /// Inheriting constructors with a given canonical type. There can be at
7758  /// most one such non-template constructor, and any number of templated
7759  /// constructors.
7760  struct InheritingConstructorsForType {
7761    InheritingConstructor NonTemplate;
7762    llvm::SmallVector<
7763      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
7764
7765    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7766      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7767        TemplateParameterList *ParamList = FTD->getTemplateParameters();
7768        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
7769          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
7770                                               false, S.TPL_TemplateMatch))
7771            return Templates[I].second;
7772        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
7773        return Templates.back().second;
7774      }
7775
7776      return NonTemplate;
7777    }
7778  };
7779
7780  /// Get or create the inheriting constructor record for a constructor.
7781  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
7782                                  QualType CtorType) {
7783    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
7784        .getEntry(SemaRef, Ctor);
7785  }
7786
7787  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
7788
7789  /// Process all constructors for a class.
7790  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
7791    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
7792                                      CtorE = RD->ctor_end();
7793         CtorIt != CtorE; ++CtorIt)
7794      (this->*Callback)(*CtorIt);
7795    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
7796             I(RD->decls_begin()), E(RD->decls_end());
7797         I != E; ++I) {
7798      const FunctionDecl *FD = (*I)->getTemplatedDecl();
7799      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
7800        (this->*Callback)(CD);
7801    }
7802  }
7803
7804  /// Note that a constructor (or constructor template) was declared in Derived.
7805  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
7806    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
7807  }
7808
7809  /// Inherit a single constructor.
7810  void inherit(const CXXConstructorDecl *Ctor) {
7811    const FunctionProtoType *CtorType =
7812        Ctor->getType()->castAs<FunctionProtoType>();
7813    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
7814    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
7815
7816    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
7817
7818    // Core issue (no number yet): the ellipsis is always discarded.
7819    if (EPI.Variadic) {
7820      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7821      SemaRef.Diag(Ctor->getLocation(),
7822                   diag::note_using_decl_constructor_ellipsis);
7823      EPI.Variadic = false;
7824    }
7825
7826    // Declare a constructor for each number of parameters.
7827    //
7828    // C++11 [class.inhctor]p1:
7829    //   The candidate set of inherited constructors from the class X named in
7830    //   the using-declaration consists of [... modulo defects ...] for each
7831    //   constructor or constructor template of X, the set of constructors or
7832    //   constructor templates that results from omitting any ellipsis parameter
7833    //   specification and successively omitting parameters with a default
7834    //   argument from the end of the parameter-type-list
7835    for (unsigned Params = std::max(minParamsToInherit(Ctor),
7836                                    Ctor->getMinRequiredArguments()),
7837                  MaxParams = Ctor->getNumParams();
7838         Params <= MaxParams; ++Params)
7839      declareCtor(UsingLoc, Ctor,
7840                  SemaRef.Context.getFunctionType(
7841                      Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
7842  }
7843
7844  /// Find the using-declaration which specified that we should inherit the
7845  /// constructors of \p Base.
7846  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
7847    // No fancy lookup required; just look for the base constructor name
7848    // directly within the derived class.
7849    ASTContext &Context = SemaRef.Context;
7850    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
7851        Context.getCanonicalType(Context.getRecordType(Base)));
7852    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
7853    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
7854  }
7855
7856  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
7857    // C++11 [class.inhctor]p3:
7858    //   [F]or each constructor template in the candidate set of inherited
7859    //   constructors, a constructor template is implicitly declared
7860    if (Ctor->getDescribedFunctionTemplate())
7861      return 0;
7862
7863    //   For each non-template constructor in the candidate set of inherited
7864    //   constructors other than a constructor having no parameters or a
7865    //   copy/move constructor having a single parameter, a constructor is
7866    //   implicitly declared [...]
7867    if (Ctor->getNumParams() == 0)
7868      return 1;
7869    if (Ctor->isCopyOrMoveConstructor())
7870      return 2;
7871
7872    // Per discussion on core reflector, never inherit a constructor which
7873    // would become a default, copy, or move constructor of Derived either.
7874    const ParmVarDecl *PD = Ctor->getParamDecl(0);
7875    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
7876    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
7877  }
7878
7879  /// Declare a single inheriting constructor, inheriting the specified
7880  /// constructor, with the given type.
7881  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
7882                   QualType DerivedType) {
7883    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
7884
7885    // C++11 [class.inhctor]p3:
7886    //   ... a constructor is implicitly declared with the same constructor
7887    //   characteristics unless there is a user-declared constructor with
7888    //   the same signature in the class where the using-declaration appears
7889    if (Entry.DeclaredInDerived)
7890      return;
7891
7892    // C++11 [class.inhctor]p7:
7893    //   If two using-declarations declare inheriting constructors with the
7894    //   same signature, the program is ill-formed
7895    if (Entry.DerivedCtor) {
7896      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
7897        // Only diagnose this once per constructor.
7898        if (Entry.DerivedCtor->isInvalidDecl())
7899          return;
7900        Entry.DerivedCtor->setInvalidDecl();
7901
7902        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7903        SemaRef.Diag(BaseCtor->getLocation(),
7904                     diag::note_using_decl_constructor_conflict_current_ctor);
7905        SemaRef.Diag(Entry.BaseCtor->getLocation(),
7906                     diag::note_using_decl_constructor_conflict_previous_ctor);
7907        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
7908                     diag::note_using_decl_constructor_conflict_previous_using);
7909      } else {
7910        // Core issue (no number): if the same inheriting constructor is
7911        // produced by multiple base class constructors from the same base
7912        // class, the inheriting constructor is defined as deleted.
7913        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
7914      }
7915
7916      return;
7917    }
7918
7919    ASTContext &Context = SemaRef.Context;
7920    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
7921        Context.getCanonicalType(Context.getRecordType(Derived)));
7922    DeclarationNameInfo NameInfo(Name, UsingLoc);
7923
7924    TemplateParameterList *TemplateParams = 0;
7925    if (const FunctionTemplateDecl *FTD =
7926            BaseCtor->getDescribedFunctionTemplate()) {
7927      TemplateParams = FTD->getTemplateParameters();
7928      // We're reusing template parameters from a different DeclContext. This
7929      // is questionable at best, but works out because the template depth in
7930      // both places is guaranteed to be 0.
7931      // FIXME: Rebuild the template parameters in the new context, and
7932      // transform the function type to refer to them.
7933    }
7934
7935    // Build type source info pointing at the using-declaration. This is
7936    // required by template instantiation.
7937    TypeSourceInfo *TInfo =
7938        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
7939    FunctionProtoTypeLoc ProtoLoc =
7940        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
7941
7942    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
7943        Context, Derived, UsingLoc, NameInfo, DerivedType,
7944        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
7945        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
7946
7947    // Build an unevaluated exception specification for this constructor.
7948    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
7949    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7950    EPI.ExceptionSpecType = EST_Unevaluated;
7951    EPI.ExceptionSpecDecl = DerivedCtor;
7952    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
7953                                                 FPT->getArgTypes(), EPI));
7954
7955    // Build the parameter declarations.
7956    SmallVector<ParmVarDecl *, 16> ParamDecls;
7957    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
7958      TypeSourceInfo *TInfo =
7959          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
7960      ParmVarDecl *PD = ParmVarDecl::Create(
7961          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
7962          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
7963      PD->setScopeInfo(0, I);
7964      PD->setImplicit();
7965      ParamDecls.push_back(PD);
7966      ProtoLoc.setArg(I, PD);
7967    }
7968
7969    // Set up the new constructor.
7970    DerivedCtor->setAccess(BaseCtor->getAccess());
7971    DerivedCtor->setParams(ParamDecls);
7972    DerivedCtor->setInheritedConstructor(BaseCtor);
7973    if (BaseCtor->isDeleted())
7974      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
7975
7976    // If this is a constructor template, build the template declaration.
7977    if (TemplateParams) {
7978      FunctionTemplateDecl *DerivedTemplate =
7979          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
7980                                       TemplateParams, DerivedCtor);
7981      DerivedTemplate->setAccess(BaseCtor->getAccess());
7982      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
7983      Derived->addDecl(DerivedTemplate);
7984    } else {
7985      Derived->addDecl(DerivedCtor);
7986    }
7987
7988    Entry.BaseCtor = BaseCtor;
7989    Entry.DerivedCtor = DerivedCtor;
7990  }
7991
7992  Sema &SemaRef;
7993  CXXRecordDecl *Derived;
7994  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
7995  MapType Map;
7996};
7997}
7998
7999void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8000  // Defer declaring the inheriting constructors until the class is
8001  // instantiated.
8002  if (ClassDecl->isDependentContext())
8003    return;
8004
8005  // Find base classes from which we might inherit constructors.
8006  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8007  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8008                                          BaseE = ClassDecl->bases_end();
8009       BaseIt != BaseE; ++BaseIt)
8010    if (BaseIt->getInheritConstructors())
8011      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8012
8013  // Go no further if we're not inheriting any constructors.
8014  if (InheritedBases.empty())
8015    return;
8016
8017  // Declare the inherited constructors.
8018  InheritingConstructorInfo ICI(*this, ClassDecl);
8019  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8020    ICI.inheritAll(InheritedBases[I]);
8021}
8022
8023void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8024                                       CXXConstructorDecl *Constructor) {
8025  CXXRecordDecl *ClassDecl = Constructor->getParent();
8026  assert(Constructor->getInheritedConstructor() &&
8027         !Constructor->doesThisDeclarationHaveABody() &&
8028         !Constructor->isDeleted());
8029
8030  SynthesizedFunctionScope Scope(*this, Constructor);
8031  DiagnosticErrorTrap Trap(Diags);
8032  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8033      Trap.hasErrorOccurred()) {
8034    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8035      << Context.getTagDeclType(ClassDecl);
8036    Constructor->setInvalidDecl();
8037    return;
8038  }
8039
8040  SourceLocation Loc = Constructor->getLocation();
8041  Constructor->setBody(new (Context) CompoundStmt(Loc));
8042
8043  Constructor->setUsed();
8044  MarkVTableUsed(CurrentLocation, ClassDecl);
8045
8046  if (ASTMutationListener *L = getASTMutationListener()) {
8047    L->CompletedImplicitDefinition(Constructor);
8048  }
8049}
8050
8051
8052Sema::ImplicitExceptionSpecification
8053Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8054  CXXRecordDecl *ClassDecl = MD->getParent();
8055
8056  // C++ [except.spec]p14:
8057  //   An implicitly declared special member function (Clause 12) shall have
8058  //   an exception-specification.
8059  ImplicitExceptionSpecification ExceptSpec(*this);
8060  if (ClassDecl->isInvalidDecl())
8061    return ExceptSpec;
8062
8063  // Direct base-class destructors.
8064  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8065                                       BEnd = ClassDecl->bases_end();
8066       B != BEnd; ++B) {
8067    if (B->isVirtual()) // Handled below.
8068      continue;
8069
8070    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8071      ExceptSpec.CalledDecl(B->getLocStart(),
8072                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8073  }
8074
8075  // Virtual base-class destructors.
8076  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8077                                       BEnd = ClassDecl->vbases_end();
8078       B != BEnd; ++B) {
8079    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8080      ExceptSpec.CalledDecl(B->getLocStart(),
8081                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8082  }
8083
8084  // Field destructors.
8085  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8086                               FEnd = ClassDecl->field_end();
8087       F != FEnd; ++F) {
8088    if (const RecordType *RecordTy
8089        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8090      ExceptSpec.CalledDecl(F->getLocation(),
8091                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8092  }
8093
8094  return ExceptSpec;
8095}
8096
8097CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8098  // C++ [class.dtor]p2:
8099  //   If a class has no user-declared destructor, a destructor is
8100  //   declared implicitly. An implicitly-declared destructor is an
8101  //   inline public member of its class.
8102  assert(ClassDecl->needsImplicitDestructor());
8103
8104  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8105  if (DSM.isAlreadyBeingDeclared())
8106    return 0;
8107
8108  // Create the actual destructor declaration.
8109  CanQualType ClassType
8110    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8111  SourceLocation ClassLoc = ClassDecl->getLocation();
8112  DeclarationName Name
8113    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8114  DeclarationNameInfo NameInfo(Name, ClassLoc);
8115  CXXDestructorDecl *Destructor
8116      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8117                                  QualType(), 0, /*isInline=*/true,
8118                                  /*isImplicitlyDeclared=*/true);
8119  Destructor->setAccess(AS_public);
8120  Destructor->setDefaulted();
8121  Destructor->setImplicit();
8122
8123  // Build an exception specification pointing back at this destructor.
8124  FunctionProtoType::ExtProtoInfo EPI;
8125  EPI.ExceptionSpecType = EST_Unevaluated;
8126  EPI.ExceptionSpecDecl = Destructor;
8127  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8128                                              ArrayRef<QualType>(),
8129                                              EPI));
8130
8131  AddOverriddenMethods(ClassDecl, Destructor);
8132
8133  // We don't need to use SpecialMemberIsTrivial here; triviality for
8134  // destructors is easy to compute.
8135  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8136
8137  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8138    SetDeclDeleted(Destructor, ClassLoc);
8139
8140  // Note that we have declared this destructor.
8141  ++ASTContext::NumImplicitDestructorsDeclared;
8142
8143  // Introduce this destructor into its scope.
8144  if (Scope *S = getScopeForContext(ClassDecl))
8145    PushOnScopeChains(Destructor, S, false);
8146  ClassDecl->addDecl(Destructor);
8147
8148  return Destructor;
8149}
8150
8151void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8152                                    CXXDestructorDecl *Destructor) {
8153  assert((Destructor->isDefaulted() &&
8154          !Destructor->doesThisDeclarationHaveABody() &&
8155          !Destructor->isDeleted()) &&
8156         "DefineImplicitDestructor - call it for implicit default dtor");
8157  CXXRecordDecl *ClassDecl = Destructor->getParent();
8158  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8159
8160  if (Destructor->isInvalidDecl())
8161    return;
8162
8163  SynthesizedFunctionScope Scope(*this, Destructor);
8164
8165  DiagnosticErrorTrap Trap(Diags);
8166  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8167                                         Destructor->getParent());
8168
8169  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8170    Diag(CurrentLocation, diag::note_member_synthesized_at)
8171      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8172
8173    Destructor->setInvalidDecl();
8174    return;
8175  }
8176
8177  SourceLocation Loc = Destructor->getLocation();
8178  Destructor->setBody(new (Context) CompoundStmt(Loc));
8179  Destructor->setImplicitlyDefined(true);
8180  Destructor->setUsed();
8181  MarkVTableUsed(CurrentLocation, ClassDecl);
8182
8183  if (ASTMutationListener *L = getASTMutationListener()) {
8184    L->CompletedImplicitDefinition(Destructor);
8185  }
8186}
8187
8188/// \brief Perform any semantic analysis which needs to be delayed until all
8189/// pending class member declarations have been parsed.
8190void Sema::ActOnFinishCXXMemberDecls() {
8191  // If the context is an invalid C++ class, just suppress these checks.
8192  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8193    if (Record->isInvalidDecl()) {
8194      DelayedDestructorExceptionSpecChecks.clear();
8195      return;
8196    }
8197  }
8198
8199  // Perform any deferred checking of exception specifications for virtual
8200  // destructors.
8201  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8202       i != e; ++i) {
8203    const CXXDestructorDecl *Dtor =
8204        DelayedDestructorExceptionSpecChecks[i].first;
8205    assert(!Dtor->getParent()->isDependentType() &&
8206           "Should not ever add destructors of templates into the list.");
8207    CheckOverridingFunctionExceptionSpec(Dtor,
8208        DelayedDestructorExceptionSpecChecks[i].second);
8209  }
8210  DelayedDestructorExceptionSpecChecks.clear();
8211}
8212
8213void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8214                                         CXXDestructorDecl *Destructor) {
8215  assert(getLangOpts().CPlusPlus11 &&
8216         "adjusting dtor exception specs was introduced in c++11");
8217
8218  // C++11 [class.dtor]p3:
8219  //   A declaration of a destructor that does not have an exception-
8220  //   specification is implicitly considered to have the same exception-
8221  //   specification as an implicit declaration.
8222  const FunctionProtoType *DtorType = Destructor->getType()->
8223                                        getAs<FunctionProtoType>();
8224  if (DtorType->hasExceptionSpec())
8225    return;
8226
8227  // Replace the destructor's type, building off the existing one. Fortunately,
8228  // the only thing of interest in the destructor type is its extended info.
8229  // The return and arguments are fixed.
8230  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8231  EPI.ExceptionSpecType = EST_Unevaluated;
8232  EPI.ExceptionSpecDecl = Destructor;
8233  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8234                                              ArrayRef<QualType>(),
8235                                              EPI));
8236
8237  // FIXME: If the destructor has a body that could throw, and the newly created
8238  // spec doesn't allow exceptions, we should emit a warning, because this
8239  // change in behavior can break conforming C++03 programs at runtime.
8240  // However, we don't have a body or an exception specification yet, so it
8241  // needs to be done somewhere else.
8242}
8243
8244/// When generating a defaulted copy or move assignment operator, if a field
8245/// should be copied with __builtin_memcpy rather than via explicit assignments,
8246/// do so. This optimization only applies for arrays of scalars, and for arrays
8247/// of class type where the selected copy/move-assignment operator is trivial.
8248static StmtResult
8249buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8250                           Expr *To, Expr *From) {
8251  // Compute the size of the memory buffer to be copied.
8252  QualType SizeType = S.Context.getSizeType();
8253  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8254                   S.Context.getTypeSizeInChars(T).getQuantity());
8255
8256  // Take the address of the field references for "from" and "to". We
8257  // directly construct UnaryOperators here because semantic analysis
8258  // does not permit us to take the address of an xvalue.
8259  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8260                         S.Context.getPointerType(From->getType()),
8261                         VK_RValue, OK_Ordinary, Loc);
8262  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8263                       S.Context.getPointerType(To->getType()),
8264                       VK_RValue, OK_Ordinary, Loc);
8265
8266  const Type *E = T->getBaseElementTypeUnsafe();
8267  bool NeedsCollectableMemCpy =
8268    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8269
8270  // Create a reference to the __builtin_objc_memmove_collectable function
8271  StringRef MemCpyName = NeedsCollectableMemCpy ?
8272    "__builtin_objc_memmove_collectable" :
8273    "__builtin_memcpy";
8274  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8275                 Sema::LookupOrdinaryName);
8276  S.LookupName(R, S.TUScope, true);
8277
8278  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8279  if (!MemCpy)
8280    // Something went horribly wrong earlier, and we will have complained
8281    // about it.
8282    return StmtError();
8283
8284  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8285                                            VK_RValue, Loc, 0);
8286  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8287
8288  Expr *CallArgs[] = {
8289    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8290  };
8291  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8292                                    Loc, CallArgs, Loc);
8293
8294  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8295  return S.Owned(Call.takeAs<Stmt>());
8296}
8297
8298/// \brief Builds a statement that copies/moves the given entity from \p From to
8299/// \c To.
8300///
8301/// This routine is used to copy/move the members of a class with an
8302/// implicitly-declared copy/move assignment operator. When the entities being
8303/// copied are arrays, this routine builds for loops to copy them.
8304///
8305/// \param S The Sema object used for type-checking.
8306///
8307/// \param Loc The location where the implicit copy/move is being generated.
8308///
8309/// \param T The type of the expressions being copied/moved. Both expressions
8310/// must have this type.
8311///
8312/// \param To The expression we are copying/moving to.
8313///
8314/// \param From The expression we are copying/moving from.
8315///
8316/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8317/// Otherwise, it's a non-static member subobject.
8318///
8319/// \param Copying Whether we're copying or moving.
8320///
8321/// \param Depth Internal parameter recording the depth of the recursion.
8322///
8323/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8324/// if a memcpy should be used instead.
8325static StmtResult
8326buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8327                                 Expr *To, Expr *From,
8328                                 bool CopyingBaseSubobject, bool Copying,
8329                                 unsigned Depth = 0) {
8330  // C++11 [class.copy]p28:
8331  //   Each subobject is assigned in the manner appropriate to its type:
8332  //
8333  //     - if the subobject is of class type, as if by a call to operator= with
8334  //       the subobject as the object expression and the corresponding
8335  //       subobject of x as a single function argument (as if by explicit
8336  //       qualification; that is, ignoring any possible virtual overriding
8337  //       functions in more derived classes);
8338  //
8339  // C++03 [class.copy]p13:
8340  //     - if the subobject is of class type, the copy assignment operator for
8341  //       the class is used (as if by explicit qualification; that is,
8342  //       ignoring any possible virtual overriding functions in more derived
8343  //       classes);
8344  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8345    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8346
8347    // Look for operator=.
8348    DeclarationName Name
8349      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8350    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8351    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8352
8353    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8354    // operator.
8355    if (!S.getLangOpts().CPlusPlus11) {
8356      LookupResult::Filter F = OpLookup.makeFilter();
8357      while (F.hasNext()) {
8358        NamedDecl *D = F.next();
8359        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8360          if (Method->isCopyAssignmentOperator() ||
8361              (!Copying && Method->isMoveAssignmentOperator()))
8362            continue;
8363
8364        F.erase();
8365      }
8366      F.done();
8367    }
8368
8369    // Suppress the protected check (C++ [class.protected]) for each of the
8370    // assignment operators we found. This strange dance is required when
8371    // we're assigning via a base classes's copy-assignment operator. To
8372    // ensure that we're getting the right base class subobject (without
8373    // ambiguities), we need to cast "this" to that subobject type; to
8374    // ensure that we don't go through the virtual call mechanism, we need
8375    // to qualify the operator= name with the base class (see below). However,
8376    // this means that if the base class has a protected copy assignment
8377    // operator, the protected member access check will fail. So, we
8378    // rewrite "protected" access to "public" access in this case, since we
8379    // know by construction that we're calling from a derived class.
8380    if (CopyingBaseSubobject) {
8381      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8382           L != LEnd; ++L) {
8383        if (L.getAccess() == AS_protected)
8384          L.setAccess(AS_public);
8385      }
8386    }
8387
8388    // Create the nested-name-specifier that will be used to qualify the
8389    // reference to operator=; this is required to suppress the virtual
8390    // call mechanism.
8391    CXXScopeSpec SS;
8392    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8393    SS.MakeTrivial(S.Context,
8394                   NestedNameSpecifier::Create(S.Context, 0, false,
8395                                               CanonicalT),
8396                   Loc);
8397
8398    // Create the reference to operator=.
8399    ExprResult OpEqualRef
8400      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8401                                   /*TemplateKWLoc=*/SourceLocation(),
8402                                   /*FirstQualifierInScope=*/0,
8403                                   OpLookup,
8404                                   /*TemplateArgs=*/0,
8405                                   /*SuppressQualifierCheck=*/true);
8406    if (OpEqualRef.isInvalid())
8407      return StmtError();
8408
8409    // Build the call to the assignment operator.
8410
8411    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8412                                                  OpEqualRef.takeAs<Expr>(),
8413                                                  Loc, &From, 1, Loc);
8414    if (Call.isInvalid())
8415      return StmtError();
8416
8417    // If we built a call to a trivial 'operator=' while copying an array,
8418    // bail out. We'll replace the whole shebang with a memcpy.
8419    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8420    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8421      return StmtResult((Stmt*)0);
8422
8423    // Convert to an expression-statement, and clean up any produced
8424    // temporaries.
8425    return S.ActOnExprStmt(Call);
8426  }
8427
8428  //     - if the subobject is of scalar type, the built-in assignment
8429  //       operator is used.
8430  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8431  if (!ArrayTy) {
8432    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8433    if (Assignment.isInvalid())
8434      return StmtError();
8435    return S.ActOnExprStmt(Assignment);
8436  }
8437
8438  //     - if the subobject is an array, each element is assigned, in the
8439  //       manner appropriate to the element type;
8440
8441  // Construct a loop over the array bounds, e.g.,
8442  //
8443  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8444  //
8445  // that will copy each of the array elements.
8446  QualType SizeType = S.Context.getSizeType();
8447
8448  // Create the iteration variable.
8449  IdentifierInfo *IterationVarName = 0;
8450  {
8451    SmallString<8> Str;
8452    llvm::raw_svector_ostream OS(Str);
8453    OS << "__i" << Depth;
8454    IterationVarName = &S.Context.Idents.get(OS.str());
8455  }
8456  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8457                                          IterationVarName, SizeType,
8458                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8459                                          SC_None);
8460
8461  // Initialize the iteration variable to zero.
8462  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8463  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8464
8465  // Create a reference to the iteration variable; we'll use this several
8466  // times throughout.
8467  Expr *IterationVarRef
8468    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8469  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8470  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8471  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8472
8473  // Create the DeclStmt that holds the iteration variable.
8474  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8475
8476  // Subscript the "from" and "to" expressions with the iteration variable.
8477  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8478                                                         IterationVarRefRVal,
8479                                                         Loc));
8480  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8481                                                       IterationVarRefRVal,
8482                                                       Loc));
8483  if (!Copying) // Cast to rvalue
8484    From = CastForMoving(S, From);
8485
8486  // Build the copy/move for an individual element of the array.
8487  StmtResult Copy =
8488    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8489                                     To, From, CopyingBaseSubobject,
8490                                     Copying, Depth + 1);
8491  // Bail out if copying fails or if we determined that we should use memcpy.
8492  if (Copy.isInvalid() || !Copy.get())
8493    return Copy;
8494
8495  // Create the comparison against the array bound.
8496  llvm::APInt Upper
8497    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8498  Expr *Comparison
8499    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8500                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8501                                     BO_NE, S.Context.BoolTy,
8502                                     VK_RValue, OK_Ordinary, Loc, false);
8503
8504  // Create the pre-increment of the iteration variable.
8505  Expr *Increment
8506    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8507                                    VK_LValue, OK_Ordinary, Loc);
8508
8509  // Construct the loop that copies all elements of this array.
8510  return S.ActOnForStmt(Loc, Loc, InitStmt,
8511                        S.MakeFullExpr(Comparison),
8512                        0, S.MakeFullDiscardedValueExpr(Increment),
8513                        Loc, Copy.take());
8514}
8515
8516static StmtResult
8517buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8518                      Expr *To, Expr *From,
8519                      bool CopyingBaseSubobject, bool Copying) {
8520  // Maybe we should use a memcpy?
8521  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8522      T.isTriviallyCopyableType(S.Context))
8523    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8524
8525  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8526                                                     CopyingBaseSubobject,
8527                                                     Copying, 0));
8528
8529  // If we ended up picking a trivial assignment operator for an array of a
8530  // non-trivially-copyable class type, just emit a memcpy.
8531  if (!Result.isInvalid() && !Result.get())
8532    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8533
8534  return Result;
8535}
8536
8537Sema::ImplicitExceptionSpecification
8538Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8539  CXXRecordDecl *ClassDecl = MD->getParent();
8540
8541  ImplicitExceptionSpecification ExceptSpec(*this);
8542  if (ClassDecl->isInvalidDecl())
8543    return ExceptSpec;
8544
8545  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8546  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8547  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8548
8549  // C++ [except.spec]p14:
8550  //   An implicitly declared special member function (Clause 12) shall have an
8551  //   exception-specification. [...]
8552
8553  // It is unspecified whether or not an implicit copy assignment operator
8554  // attempts to deduplicate calls to assignment operators of virtual bases are
8555  // made. As such, this exception specification is effectively unspecified.
8556  // Based on a similar decision made for constness in C++0x, we're erring on
8557  // the side of assuming such calls to be made regardless of whether they
8558  // actually happen.
8559  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8560                                       BaseEnd = ClassDecl->bases_end();
8561       Base != BaseEnd; ++Base) {
8562    if (Base->isVirtual())
8563      continue;
8564
8565    CXXRecordDecl *BaseClassDecl
8566      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8567    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8568                                                            ArgQuals, false, 0))
8569      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8570  }
8571
8572  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8573                                       BaseEnd = ClassDecl->vbases_end();
8574       Base != BaseEnd; ++Base) {
8575    CXXRecordDecl *BaseClassDecl
8576      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8577    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8578                                                            ArgQuals, false, 0))
8579      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8580  }
8581
8582  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8583                                  FieldEnd = ClassDecl->field_end();
8584       Field != FieldEnd;
8585       ++Field) {
8586    QualType FieldType = Context.getBaseElementType(Field->getType());
8587    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8588      if (CXXMethodDecl *CopyAssign =
8589          LookupCopyingAssignment(FieldClassDecl,
8590                                  ArgQuals | FieldType.getCVRQualifiers(),
8591                                  false, 0))
8592        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8593    }
8594  }
8595
8596  return ExceptSpec;
8597}
8598
8599CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8600  // Note: The following rules are largely analoguous to the copy
8601  // constructor rules. Note that virtual bases are not taken into account
8602  // for determining the argument type of the operator. Note also that
8603  // operators taking an object instead of a reference are allowed.
8604  assert(ClassDecl->needsImplicitCopyAssignment());
8605
8606  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8607  if (DSM.isAlreadyBeingDeclared())
8608    return 0;
8609
8610  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8611  QualType RetType = Context.getLValueReferenceType(ArgType);
8612  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8613    ArgType = ArgType.withConst();
8614  ArgType = Context.getLValueReferenceType(ArgType);
8615
8616  //   An implicitly-declared copy assignment operator is an inline public
8617  //   member of its class.
8618  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8619  SourceLocation ClassLoc = ClassDecl->getLocation();
8620  DeclarationNameInfo NameInfo(Name, ClassLoc);
8621  CXXMethodDecl *CopyAssignment
8622    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8623                            /*TInfo=*/0,
8624                            /*StorageClass=*/SC_None,
8625                            /*isInline=*/true, /*isConstexpr=*/false,
8626                            SourceLocation());
8627  CopyAssignment->setAccess(AS_public);
8628  CopyAssignment->setDefaulted();
8629  CopyAssignment->setImplicit();
8630
8631  // Build an exception specification pointing back at this member.
8632  FunctionProtoType::ExtProtoInfo EPI;
8633  EPI.ExceptionSpecType = EST_Unevaluated;
8634  EPI.ExceptionSpecDecl = CopyAssignment;
8635  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8636
8637  // Add the parameter to the operator.
8638  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8639                                               ClassLoc, ClassLoc, /*Id=*/0,
8640                                               ArgType, /*TInfo=*/0,
8641                                               SC_None, 0);
8642  CopyAssignment->setParams(FromParam);
8643
8644  AddOverriddenMethods(ClassDecl, CopyAssignment);
8645
8646  CopyAssignment->setTrivial(
8647    ClassDecl->needsOverloadResolutionForCopyAssignment()
8648      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8649      : ClassDecl->hasTrivialCopyAssignment());
8650
8651  // C++0x [class.copy]p19:
8652  //   ....  If the class definition does not explicitly declare a copy
8653  //   assignment operator, there is no user-declared move constructor, and
8654  //   there is no user-declared move assignment operator, a copy assignment
8655  //   operator is implicitly declared as defaulted.
8656  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8657    SetDeclDeleted(CopyAssignment, ClassLoc);
8658
8659  // Note that we have added this copy-assignment operator.
8660  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8661
8662  if (Scope *S = getScopeForContext(ClassDecl))
8663    PushOnScopeChains(CopyAssignment, S, false);
8664  ClassDecl->addDecl(CopyAssignment);
8665
8666  return CopyAssignment;
8667}
8668
8669void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8670                                        CXXMethodDecl *CopyAssignOperator) {
8671  assert((CopyAssignOperator->isDefaulted() &&
8672          CopyAssignOperator->isOverloadedOperator() &&
8673          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8674          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8675          !CopyAssignOperator->isDeleted()) &&
8676         "DefineImplicitCopyAssignment called for wrong function");
8677
8678  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8679
8680  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8681    CopyAssignOperator->setInvalidDecl();
8682    return;
8683  }
8684
8685  CopyAssignOperator->setUsed();
8686
8687  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8688  DiagnosticErrorTrap Trap(Diags);
8689
8690  // C++0x [class.copy]p30:
8691  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8692  //   for a non-union class X performs memberwise copy assignment of its
8693  //   subobjects. The direct base classes of X are assigned first, in the
8694  //   order of their declaration in the base-specifier-list, and then the
8695  //   immediate non-static data members of X are assigned, in the order in
8696  //   which they were declared in the class definition.
8697
8698  // The statements that form the synthesized function body.
8699  SmallVector<Stmt*, 8> Statements;
8700
8701  // The parameter for the "other" object, which we are copying from.
8702  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8703  Qualifiers OtherQuals = Other->getType().getQualifiers();
8704  QualType OtherRefType = Other->getType();
8705  if (const LValueReferenceType *OtherRef
8706                                = OtherRefType->getAs<LValueReferenceType>()) {
8707    OtherRefType = OtherRef->getPointeeType();
8708    OtherQuals = OtherRefType.getQualifiers();
8709  }
8710
8711  // Our location for everything implicitly-generated.
8712  SourceLocation Loc = CopyAssignOperator->getLocation();
8713
8714  // Construct a reference to the "other" object. We'll be using this
8715  // throughout the generated ASTs.
8716  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8717  assert(OtherRef && "Reference to parameter cannot fail!");
8718
8719  // Construct the "this" pointer. We'll be using this throughout the generated
8720  // ASTs.
8721  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8722  assert(This && "Reference to this cannot fail!");
8723
8724  // Assign base classes.
8725  bool Invalid = false;
8726  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8727       E = ClassDecl->bases_end(); Base != E; ++Base) {
8728    // Form the assignment:
8729    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8730    QualType BaseType = Base->getType().getUnqualifiedType();
8731    if (!BaseType->isRecordType()) {
8732      Invalid = true;
8733      continue;
8734    }
8735
8736    CXXCastPath BasePath;
8737    BasePath.push_back(Base);
8738
8739    // Construct the "from" expression, which is an implicit cast to the
8740    // appropriately-qualified base type.
8741    Expr *From = OtherRef;
8742    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8743                             CK_UncheckedDerivedToBase,
8744                             VK_LValue, &BasePath).take();
8745
8746    // Dereference "this".
8747    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8748
8749    // Implicitly cast "this" to the appropriately-qualified base type.
8750    To = ImpCastExprToType(To.take(),
8751                           Context.getCVRQualifiedType(BaseType,
8752                                     CopyAssignOperator->getTypeQualifiers()),
8753                           CK_UncheckedDerivedToBase,
8754                           VK_LValue, &BasePath);
8755
8756    // Build the copy.
8757    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8758                                            To.get(), From,
8759                                            /*CopyingBaseSubobject=*/true,
8760                                            /*Copying=*/true);
8761    if (Copy.isInvalid()) {
8762      Diag(CurrentLocation, diag::note_member_synthesized_at)
8763        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8764      CopyAssignOperator->setInvalidDecl();
8765      return;
8766    }
8767
8768    // Success! Record the copy.
8769    Statements.push_back(Copy.takeAs<Expr>());
8770  }
8771
8772  // Assign non-static members.
8773  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8774                                  FieldEnd = ClassDecl->field_end();
8775       Field != FieldEnd; ++Field) {
8776    if (Field->isUnnamedBitfield())
8777      continue;
8778
8779    // Check for members of reference type; we can't copy those.
8780    if (Field->getType()->isReferenceType()) {
8781      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8782        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8783      Diag(Field->getLocation(), diag::note_declared_at);
8784      Diag(CurrentLocation, diag::note_member_synthesized_at)
8785        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8786      Invalid = true;
8787      continue;
8788    }
8789
8790    // Check for members of const-qualified, non-class type.
8791    QualType BaseType = Context.getBaseElementType(Field->getType());
8792    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8793      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8794        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8795      Diag(Field->getLocation(), diag::note_declared_at);
8796      Diag(CurrentLocation, diag::note_member_synthesized_at)
8797        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8798      Invalid = true;
8799      continue;
8800    }
8801
8802    // Suppress assigning zero-width bitfields.
8803    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8804      continue;
8805
8806    QualType FieldType = Field->getType().getNonReferenceType();
8807    if (FieldType->isIncompleteArrayType()) {
8808      assert(ClassDecl->hasFlexibleArrayMember() &&
8809             "Incomplete array type is not valid");
8810      continue;
8811    }
8812
8813    // Build references to the field in the object we're copying from and to.
8814    CXXScopeSpec SS; // Intentionally empty
8815    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8816                              LookupMemberName);
8817    MemberLookup.addDecl(*Field);
8818    MemberLookup.resolveKind();
8819    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8820                                               Loc, /*IsArrow=*/false,
8821                                               SS, SourceLocation(), 0,
8822                                               MemberLookup, 0);
8823    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8824                                             Loc, /*IsArrow=*/true,
8825                                             SS, SourceLocation(), 0,
8826                                             MemberLookup, 0);
8827    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8828    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8829
8830    // Build the copy of this field.
8831    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8832                                            To.get(), From.get(),
8833                                            /*CopyingBaseSubobject=*/false,
8834                                            /*Copying=*/true);
8835    if (Copy.isInvalid()) {
8836      Diag(CurrentLocation, diag::note_member_synthesized_at)
8837        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8838      CopyAssignOperator->setInvalidDecl();
8839      return;
8840    }
8841
8842    // Success! Record the copy.
8843    Statements.push_back(Copy.takeAs<Stmt>());
8844  }
8845
8846  if (!Invalid) {
8847    // Add a "return *this;"
8848    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8849
8850    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8851    if (Return.isInvalid())
8852      Invalid = true;
8853    else {
8854      Statements.push_back(Return.takeAs<Stmt>());
8855
8856      if (Trap.hasErrorOccurred()) {
8857        Diag(CurrentLocation, diag::note_member_synthesized_at)
8858          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8859        Invalid = true;
8860      }
8861    }
8862  }
8863
8864  if (Invalid) {
8865    CopyAssignOperator->setInvalidDecl();
8866    return;
8867  }
8868
8869  StmtResult Body;
8870  {
8871    CompoundScopeRAII CompoundScope(*this);
8872    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8873                             /*isStmtExpr=*/false);
8874    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8875  }
8876  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8877
8878  if (ASTMutationListener *L = getASTMutationListener()) {
8879    L->CompletedImplicitDefinition(CopyAssignOperator);
8880  }
8881}
8882
8883Sema::ImplicitExceptionSpecification
8884Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8885  CXXRecordDecl *ClassDecl = MD->getParent();
8886
8887  ImplicitExceptionSpecification ExceptSpec(*this);
8888  if (ClassDecl->isInvalidDecl())
8889    return ExceptSpec;
8890
8891  // C++0x [except.spec]p14:
8892  //   An implicitly declared special member function (Clause 12) shall have an
8893  //   exception-specification. [...]
8894
8895  // It is unspecified whether or not an implicit move assignment operator
8896  // attempts to deduplicate calls to assignment operators of virtual bases are
8897  // made. As such, this exception specification is effectively unspecified.
8898  // Based on a similar decision made for constness in C++0x, we're erring on
8899  // the side of assuming such calls to be made regardless of whether they
8900  // actually happen.
8901  // Note that a move constructor is not implicitly declared when there are
8902  // virtual bases, but it can still be user-declared and explicitly defaulted.
8903  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8904                                       BaseEnd = ClassDecl->bases_end();
8905       Base != BaseEnd; ++Base) {
8906    if (Base->isVirtual())
8907      continue;
8908
8909    CXXRecordDecl *BaseClassDecl
8910      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8911    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8912                                                           0, false, 0))
8913      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8914  }
8915
8916  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8917                                       BaseEnd = ClassDecl->vbases_end();
8918       Base != BaseEnd; ++Base) {
8919    CXXRecordDecl *BaseClassDecl
8920      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8921    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8922                                                           0, false, 0))
8923      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8924  }
8925
8926  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8927                                  FieldEnd = ClassDecl->field_end();
8928       Field != FieldEnd;
8929       ++Field) {
8930    QualType FieldType = Context.getBaseElementType(Field->getType());
8931    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8932      if (CXXMethodDecl *MoveAssign =
8933              LookupMovingAssignment(FieldClassDecl,
8934                                     FieldType.getCVRQualifiers(),
8935                                     false, 0))
8936        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8937    }
8938  }
8939
8940  return ExceptSpec;
8941}
8942
8943/// Determine whether the class type has any direct or indirect virtual base
8944/// classes which have a non-trivial move assignment operator.
8945static bool
8946hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8947  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8948                                          BaseEnd = ClassDecl->vbases_end();
8949       Base != BaseEnd; ++Base) {
8950    CXXRecordDecl *BaseClass =
8951        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8952
8953    // Try to declare the move assignment. If it would be deleted, then the
8954    // class does not have a non-trivial move assignment.
8955    if (BaseClass->needsImplicitMoveAssignment())
8956      S.DeclareImplicitMoveAssignment(BaseClass);
8957
8958    if (BaseClass->hasNonTrivialMoveAssignment())
8959      return true;
8960  }
8961
8962  return false;
8963}
8964
8965/// Determine whether the given type either has a move constructor or is
8966/// trivially copyable.
8967static bool
8968hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8969  Type = S.Context.getBaseElementType(Type);
8970
8971  // FIXME: Technically, non-trivially-copyable non-class types, such as
8972  // reference types, are supposed to return false here, but that appears
8973  // to be a standard defect.
8974  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8975  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8976    return true;
8977
8978  if (Type.isTriviallyCopyableType(S.Context))
8979    return true;
8980
8981  if (IsConstructor) {
8982    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8983    // give the right answer.
8984    if (ClassDecl->needsImplicitMoveConstructor())
8985      S.DeclareImplicitMoveConstructor(ClassDecl);
8986    return ClassDecl->hasMoveConstructor();
8987  }
8988
8989  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8990  // give the right answer.
8991  if (ClassDecl->needsImplicitMoveAssignment())
8992    S.DeclareImplicitMoveAssignment(ClassDecl);
8993  return ClassDecl->hasMoveAssignment();
8994}
8995
8996/// Determine whether all non-static data members and direct or virtual bases
8997/// of class \p ClassDecl have either a move operation, or are trivially
8998/// copyable.
8999static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9000                                            bool IsConstructor) {
9001  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9002                                          BaseEnd = ClassDecl->bases_end();
9003       Base != BaseEnd; ++Base) {
9004    if (Base->isVirtual())
9005      continue;
9006
9007    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9008      return false;
9009  }
9010
9011  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9012                                          BaseEnd = ClassDecl->vbases_end();
9013       Base != BaseEnd; ++Base) {
9014    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9015      return false;
9016  }
9017
9018  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9019                                     FieldEnd = ClassDecl->field_end();
9020       Field != FieldEnd; ++Field) {
9021    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9022      return false;
9023  }
9024
9025  return true;
9026}
9027
9028CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9029  // C++11 [class.copy]p20:
9030  //   If the definition of a class X does not explicitly declare a move
9031  //   assignment operator, one will be implicitly declared as defaulted
9032  //   if and only if:
9033  //
9034  //   - [first 4 bullets]
9035  assert(ClassDecl->needsImplicitMoveAssignment());
9036
9037  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9038  if (DSM.isAlreadyBeingDeclared())
9039    return 0;
9040
9041  // [Checked after we build the declaration]
9042  //   - the move assignment operator would not be implicitly defined as
9043  //     deleted,
9044
9045  // [DR1402]:
9046  //   - X has no direct or indirect virtual base class with a non-trivial
9047  //     move assignment operator, and
9048  //   - each of X's non-static data members and direct or virtual base classes
9049  //     has a type that either has a move assignment operator or is trivially
9050  //     copyable.
9051  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9052      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9053    ClassDecl->setFailedImplicitMoveAssignment();
9054    return 0;
9055  }
9056
9057  // Note: The following rules are largely analoguous to the move
9058  // constructor rules.
9059
9060  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9061  QualType RetType = Context.getLValueReferenceType(ArgType);
9062  ArgType = Context.getRValueReferenceType(ArgType);
9063
9064  //   An implicitly-declared move assignment operator is an inline public
9065  //   member of its class.
9066  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9067  SourceLocation ClassLoc = ClassDecl->getLocation();
9068  DeclarationNameInfo NameInfo(Name, ClassLoc);
9069  CXXMethodDecl *MoveAssignment
9070    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9071                            /*TInfo=*/0,
9072                            /*StorageClass=*/SC_None,
9073                            /*isInline=*/true,
9074                            /*isConstexpr=*/false,
9075                            SourceLocation());
9076  MoveAssignment->setAccess(AS_public);
9077  MoveAssignment->setDefaulted();
9078  MoveAssignment->setImplicit();
9079
9080  // Build an exception specification pointing back at this member.
9081  FunctionProtoType::ExtProtoInfo EPI;
9082  EPI.ExceptionSpecType = EST_Unevaluated;
9083  EPI.ExceptionSpecDecl = MoveAssignment;
9084  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9085
9086  // Add the parameter to the operator.
9087  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9088                                               ClassLoc, ClassLoc, /*Id=*/0,
9089                                               ArgType, /*TInfo=*/0,
9090                                               SC_None, 0);
9091  MoveAssignment->setParams(FromParam);
9092
9093  AddOverriddenMethods(ClassDecl, MoveAssignment);
9094
9095  MoveAssignment->setTrivial(
9096    ClassDecl->needsOverloadResolutionForMoveAssignment()
9097      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9098      : ClassDecl->hasTrivialMoveAssignment());
9099
9100  // C++0x [class.copy]p9:
9101  //   If the definition of a class X does not explicitly declare a move
9102  //   assignment operator, one will be implicitly declared as defaulted if and
9103  //   only if:
9104  //   [...]
9105  //   - the move assignment operator would not be implicitly defined as
9106  //     deleted.
9107  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9108    // Cache this result so that we don't try to generate this over and over
9109    // on every lookup, leaking memory and wasting time.
9110    ClassDecl->setFailedImplicitMoveAssignment();
9111    return 0;
9112  }
9113
9114  // Note that we have added this copy-assignment operator.
9115  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9116
9117  if (Scope *S = getScopeForContext(ClassDecl))
9118    PushOnScopeChains(MoveAssignment, S, false);
9119  ClassDecl->addDecl(MoveAssignment);
9120
9121  return MoveAssignment;
9122}
9123
9124void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9125                                        CXXMethodDecl *MoveAssignOperator) {
9126  assert((MoveAssignOperator->isDefaulted() &&
9127          MoveAssignOperator->isOverloadedOperator() &&
9128          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9129          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9130          !MoveAssignOperator->isDeleted()) &&
9131         "DefineImplicitMoveAssignment called for wrong function");
9132
9133  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9134
9135  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9136    MoveAssignOperator->setInvalidDecl();
9137    return;
9138  }
9139
9140  MoveAssignOperator->setUsed();
9141
9142  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9143  DiagnosticErrorTrap Trap(Diags);
9144
9145  // C++0x [class.copy]p28:
9146  //   The implicitly-defined or move assignment operator for a non-union class
9147  //   X performs memberwise move assignment of its subobjects. The direct base
9148  //   classes of X are assigned first, in the order of their declaration in the
9149  //   base-specifier-list, and then the immediate non-static data members of X
9150  //   are assigned, in the order in which they were declared in the class
9151  //   definition.
9152
9153  // The statements that form the synthesized function body.
9154  SmallVector<Stmt*, 8> Statements;
9155
9156  // The parameter for the "other" object, which we are move from.
9157  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9158  QualType OtherRefType = Other->getType()->
9159      getAs<RValueReferenceType>()->getPointeeType();
9160  assert(OtherRefType.getQualifiers() == 0 &&
9161         "Bad argument type of defaulted move assignment");
9162
9163  // Our location for everything implicitly-generated.
9164  SourceLocation Loc = MoveAssignOperator->getLocation();
9165
9166  // Construct a reference to the "other" object. We'll be using this
9167  // throughout the generated ASTs.
9168  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9169  assert(OtherRef && "Reference to parameter cannot fail!");
9170  // Cast to rvalue.
9171  OtherRef = CastForMoving(*this, OtherRef);
9172
9173  // Construct the "this" pointer. We'll be using this throughout the generated
9174  // ASTs.
9175  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9176  assert(This && "Reference to this cannot fail!");
9177
9178  // Assign base classes.
9179  bool Invalid = false;
9180  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9181       E = ClassDecl->bases_end(); Base != E; ++Base) {
9182    // Form the assignment:
9183    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9184    QualType BaseType = Base->getType().getUnqualifiedType();
9185    if (!BaseType->isRecordType()) {
9186      Invalid = true;
9187      continue;
9188    }
9189
9190    CXXCastPath BasePath;
9191    BasePath.push_back(Base);
9192
9193    // Construct the "from" expression, which is an implicit cast to the
9194    // appropriately-qualified base type.
9195    Expr *From = OtherRef;
9196    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9197                             VK_XValue, &BasePath).take();
9198
9199    // Dereference "this".
9200    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9201
9202    // Implicitly cast "this" to the appropriately-qualified base type.
9203    To = ImpCastExprToType(To.take(),
9204                           Context.getCVRQualifiedType(BaseType,
9205                                     MoveAssignOperator->getTypeQualifiers()),
9206                           CK_UncheckedDerivedToBase,
9207                           VK_LValue, &BasePath);
9208
9209    // Build the move.
9210    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9211                                            To.get(), From,
9212                                            /*CopyingBaseSubobject=*/true,
9213                                            /*Copying=*/false);
9214    if (Move.isInvalid()) {
9215      Diag(CurrentLocation, diag::note_member_synthesized_at)
9216        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9217      MoveAssignOperator->setInvalidDecl();
9218      return;
9219    }
9220
9221    // Success! Record the move.
9222    Statements.push_back(Move.takeAs<Expr>());
9223  }
9224
9225  // Assign non-static members.
9226  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9227                                  FieldEnd = ClassDecl->field_end();
9228       Field != FieldEnd; ++Field) {
9229    if (Field->isUnnamedBitfield())
9230      continue;
9231
9232    // Check for members of reference type; we can't move those.
9233    if (Field->getType()->isReferenceType()) {
9234      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9235        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9236      Diag(Field->getLocation(), diag::note_declared_at);
9237      Diag(CurrentLocation, diag::note_member_synthesized_at)
9238        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9239      Invalid = true;
9240      continue;
9241    }
9242
9243    // Check for members of const-qualified, non-class type.
9244    QualType BaseType = Context.getBaseElementType(Field->getType());
9245    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9246      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9247        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9248      Diag(Field->getLocation(), diag::note_declared_at);
9249      Diag(CurrentLocation, diag::note_member_synthesized_at)
9250        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9251      Invalid = true;
9252      continue;
9253    }
9254
9255    // Suppress assigning zero-width bitfields.
9256    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9257      continue;
9258
9259    QualType FieldType = Field->getType().getNonReferenceType();
9260    if (FieldType->isIncompleteArrayType()) {
9261      assert(ClassDecl->hasFlexibleArrayMember() &&
9262             "Incomplete array type is not valid");
9263      continue;
9264    }
9265
9266    // Build references to the field in the object we're copying from and to.
9267    CXXScopeSpec SS; // Intentionally empty
9268    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9269                              LookupMemberName);
9270    MemberLookup.addDecl(*Field);
9271    MemberLookup.resolveKind();
9272    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9273                                               Loc, /*IsArrow=*/false,
9274                                               SS, SourceLocation(), 0,
9275                                               MemberLookup, 0);
9276    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9277                                             Loc, /*IsArrow=*/true,
9278                                             SS, SourceLocation(), 0,
9279                                             MemberLookup, 0);
9280    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9281    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9282
9283    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9284        "Member reference with rvalue base must be rvalue except for reference "
9285        "members, which aren't allowed for move assignment.");
9286
9287    // Build the move of this field.
9288    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9289                                            To.get(), From.get(),
9290                                            /*CopyingBaseSubobject=*/false,
9291                                            /*Copying=*/false);
9292    if (Move.isInvalid()) {
9293      Diag(CurrentLocation, diag::note_member_synthesized_at)
9294        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9295      MoveAssignOperator->setInvalidDecl();
9296      return;
9297    }
9298
9299    // Success! Record the copy.
9300    Statements.push_back(Move.takeAs<Stmt>());
9301  }
9302
9303  if (!Invalid) {
9304    // Add a "return *this;"
9305    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9306
9307    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9308    if (Return.isInvalid())
9309      Invalid = true;
9310    else {
9311      Statements.push_back(Return.takeAs<Stmt>());
9312
9313      if (Trap.hasErrorOccurred()) {
9314        Diag(CurrentLocation, diag::note_member_synthesized_at)
9315          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9316        Invalid = true;
9317      }
9318    }
9319  }
9320
9321  if (Invalid) {
9322    MoveAssignOperator->setInvalidDecl();
9323    return;
9324  }
9325
9326  StmtResult Body;
9327  {
9328    CompoundScopeRAII CompoundScope(*this);
9329    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9330                             /*isStmtExpr=*/false);
9331    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9332  }
9333  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9334
9335  if (ASTMutationListener *L = getASTMutationListener()) {
9336    L->CompletedImplicitDefinition(MoveAssignOperator);
9337  }
9338}
9339
9340Sema::ImplicitExceptionSpecification
9341Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9342  CXXRecordDecl *ClassDecl = MD->getParent();
9343
9344  ImplicitExceptionSpecification ExceptSpec(*this);
9345  if (ClassDecl->isInvalidDecl())
9346    return ExceptSpec;
9347
9348  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9349  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9350  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9351
9352  // C++ [except.spec]p14:
9353  //   An implicitly declared special member function (Clause 12) shall have an
9354  //   exception-specification. [...]
9355  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9356                                       BaseEnd = ClassDecl->bases_end();
9357       Base != BaseEnd;
9358       ++Base) {
9359    // Virtual bases are handled below.
9360    if (Base->isVirtual())
9361      continue;
9362
9363    CXXRecordDecl *BaseClassDecl
9364      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9365    if (CXXConstructorDecl *CopyConstructor =
9366          LookupCopyingConstructor(BaseClassDecl, Quals))
9367      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9368  }
9369  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9370                                       BaseEnd = ClassDecl->vbases_end();
9371       Base != BaseEnd;
9372       ++Base) {
9373    CXXRecordDecl *BaseClassDecl
9374      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9375    if (CXXConstructorDecl *CopyConstructor =
9376          LookupCopyingConstructor(BaseClassDecl, Quals))
9377      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9378  }
9379  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9380                                  FieldEnd = ClassDecl->field_end();
9381       Field != FieldEnd;
9382       ++Field) {
9383    QualType FieldType = Context.getBaseElementType(Field->getType());
9384    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9385      if (CXXConstructorDecl *CopyConstructor =
9386              LookupCopyingConstructor(FieldClassDecl,
9387                                       Quals | FieldType.getCVRQualifiers()))
9388      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9389    }
9390  }
9391
9392  return ExceptSpec;
9393}
9394
9395CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9396                                                    CXXRecordDecl *ClassDecl) {
9397  // C++ [class.copy]p4:
9398  //   If the class definition does not explicitly declare a copy
9399  //   constructor, one is declared implicitly.
9400  assert(ClassDecl->needsImplicitCopyConstructor());
9401
9402  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9403  if (DSM.isAlreadyBeingDeclared())
9404    return 0;
9405
9406  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9407  QualType ArgType = ClassType;
9408  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9409  if (Const)
9410    ArgType = ArgType.withConst();
9411  ArgType = Context.getLValueReferenceType(ArgType);
9412
9413  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9414                                                     CXXCopyConstructor,
9415                                                     Const);
9416
9417  DeclarationName Name
9418    = Context.DeclarationNames.getCXXConstructorName(
9419                                           Context.getCanonicalType(ClassType));
9420  SourceLocation ClassLoc = ClassDecl->getLocation();
9421  DeclarationNameInfo NameInfo(Name, ClassLoc);
9422
9423  //   An implicitly-declared copy constructor is an inline public
9424  //   member of its class.
9425  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9426      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9427      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9428      Constexpr);
9429  CopyConstructor->setAccess(AS_public);
9430  CopyConstructor->setDefaulted();
9431
9432  // Build an exception specification pointing back at this member.
9433  FunctionProtoType::ExtProtoInfo EPI;
9434  EPI.ExceptionSpecType = EST_Unevaluated;
9435  EPI.ExceptionSpecDecl = CopyConstructor;
9436  CopyConstructor->setType(
9437      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9438
9439  // Add the parameter to the constructor.
9440  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9441                                               ClassLoc, ClassLoc,
9442                                               /*IdentifierInfo=*/0,
9443                                               ArgType, /*TInfo=*/0,
9444                                               SC_None, 0);
9445  CopyConstructor->setParams(FromParam);
9446
9447  CopyConstructor->setTrivial(
9448    ClassDecl->needsOverloadResolutionForCopyConstructor()
9449      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9450      : ClassDecl->hasTrivialCopyConstructor());
9451
9452  // C++11 [class.copy]p8:
9453  //   ... If the class definition does not explicitly declare a copy
9454  //   constructor, there is no user-declared move constructor, and there is no
9455  //   user-declared move assignment operator, a copy constructor is implicitly
9456  //   declared as defaulted.
9457  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9458    SetDeclDeleted(CopyConstructor, ClassLoc);
9459
9460  // Note that we have declared this constructor.
9461  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9462
9463  if (Scope *S = getScopeForContext(ClassDecl))
9464    PushOnScopeChains(CopyConstructor, S, false);
9465  ClassDecl->addDecl(CopyConstructor);
9466
9467  return CopyConstructor;
9468}
9469
9470void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9471                                   CXXConstructorDecl *CopyConstructor) {
9472  assert((CopyConstructor->isDefaulted() &&
9473          CopyConstructor->isCopyConstructor() &&
9474          !CopyConstructor->doesThisDeclarationHaveABody() &&
9475          !CopyConstructor->isDeleted()) &&
9476         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9477
9478  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9479  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9480
9481  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9482  DiagnosticErrorTrap Trap(Diags);
9483
9484  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9485      Trap.hasErrorOccurred()) {
9486    Diag(CurrentLocation, diag::note_member_synthesized_at)
9487      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9488    CopyConstructor->setInvalidDecl();
9489  }  else {
9490    Sema::CompoundScopeRAII CompoundScope(*this);
9491    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9492                                               CopyConstructor->getLocation(),
9493                                               MultiStmtArg(),
9494                                               /*isStmtExpr=*/false)
9495                                                              .takeAs<Stmt>());
9496    CopyConstructor->setImplicitlyDefined(true);
9497  }
9498
9499  CopyConstructor->setUsed();
9500  if (ASTMutationListener *L = getASTMutationListener()) {
9501    L->CompletedImplicitDefinition(CopyConstructor);
9502  }
9503}
9504
9505Sema::ImplicitExceptionSpecification
9506Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9507  CXXRecordDecl *ClassDecl = MD->getParent();
9508
9509  // C++ [except.spec]p14:
9510  //   An implicitly declared special member function (Clause 12) shall have an
9511  //   exception-specification. [...]
9512  ImplicitExceptionSpecification ExceptSpec(*this);
9513  if (ClassDecl->isInvalidDecl())
9514    return ExceptSpec;
9515
9516  // Direct base-class constructors.
9517  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9518                                       BEnd = ClassDecl->bases_end();
9519       B != BEnd; ++B) {
9520    if (B->isVirtual()) // Handled below.
9521      continue;
9522
9523    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9524      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9525      CXXConstructorDecl *Constructor =
9526          LookupMovingConstructor(BaseClassDecl, 0);
9527      // If this is a deleted function, add it anyway. This might be conformant
9528      // with the standard. This might not. I'm not sure. It might not matter.
9529      if (Constructor)
9530        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9531    }
9532  }
9533
9534  // Virtual base-class constructors.
9535  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9536                                       BEnd = ClassDecl->vbases_end();
9537       B != BEnd; ++B) {
9538    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9539      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9540      CXXConstructorDecl *Constructor =
9541          LookupMovingConstructor(BaseClassDecl, 0);
9542      // If this is a deleted function, add it anyway. This might be conformant
9543      // with the standard. This might not. I'm not sure. It might not matter.
9544      if (Constructor)
9545        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9546    }
9547  }
9548
9549  // Field constructors.
9550  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9551                               FEnd = ClassDecl->field_end();
9552       F != FEnd; ++F) {
9553    QualType FieldType = Context.getBaseElementType(F->getType());
9554    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9555      CXXConstructorDecl *Constructor =
9556          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9557      // If this is a deleted function, add it anyway. This might be conformant
9558      // with the standard. This might not. I'm not sure. It might not matter.
9559      // In particular, the problem is that this function never gets called. It
9560      // might just be ill-formed because this function attempts to refer to
9561      // a deleted function here.
9562      if (Constructor)
9563        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9564    }
9565  }
9566
9567  return ExceptSpec;
9568}
9569
9570CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9571                                                    CXXRecordDecl *ClassDecl) {
9572  // C++11 [class.copy]p9:
9573  //   If the definition of a class X does not explicitly declare a move
9574  //   constructor, one will be implicitly declared as defaulted if and only if:
9575  //
9576  //   - [first 4 bullets]
9577  assert(ClassDecl->needsImplicitMoveConstructor());
9578
9579  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9580  if (DSM.isAlreadyBeingDeclared())
9581    return 0;
9582
9583  // [Checked after we build the declaration]
9584  //   - the move assignment operator would not be implicitly defined as
9585  //     deleted,
9586
9587  // [DR1402]:
9588  //   - each of X's non-static data members and direct or virtual base classes
9589  //     has a type that either has a move constructor or is trivially copyable.
9590  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9591    ClassDecl->setFailedImplicitMoveConstructor();
9592    return 0;
9593  }
9594
9595  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9596  QualType ArgType = Context.getRValueReferenceType(ClassType);
9597
9598  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9599                                                     CXXMoveConstructor,
9600                                                     false);
9601
9602  DeclarationName Name
9603    = Context.DeclarationNames.getCXXConstructorName(
9604                                           Context.getCanonicalType(ClassType));
9605  SourceLocation ClassLoc = ClassDecl->getLocation();
9606  DeclarationNameInfo NameInfo(Name, ClassLoc);
9607
9608  // C++0x [class.copy]p11:
9609  //   An implicitly-declared copy/move constructor is an inline public
9610  //   member of its class.
9611  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9612      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9613      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9614      Constexpr);
9615  MoveConstructor->setAccess(AS_public);
9616  MoveConstructor->setDefaulted();
9617
9618  // Build an exception specification pointing back at this member.
9619  FunctionProtoType::ExtProtoInfo EPI;
9620  EPI.ExceptionSpecType = EST_Unevaluated;
9621  EPI.ExceptionSpecDecl = MoveConstructor;
9622  MoveConstructor->setType(
9623      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9624
9625  // Add the parameter to the constructor.
9626  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9627                                               ClassLoc, ClassLoc,
9628                                               /*IdentifierInfo=*/0,
9629                                               ArgType, /*TInfo=*/0,
9630                                               SC_None, 0);
9631  MoveConstructor->setParams(FromParam);
9632
9633  MoveConstructor->setTrivial(
9634    ClassDecl->needsOverloadResolutionForMoveConstructor()
9635      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9636      : ClassDecl->hasTrivialMoveConstructor());
9637
9638  // C++0x [class.copy]p9:
9639  //   If the definition of a class X does not explicitly declare a move
9640  //   constructor, one will be implicitly declared as defaulted if and only if:
9641  //   [...]
9642  //   - the move constructor would not be implicitly defined as deleted.
9643  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9644    // Cache this result so that we don't try to generate this over and over
9645    // on every lookup, leaking memory and wasting time.
9646    ClassDecl->setFailedImplicitMoveConstructor();
9647    return 0;
9648  }
9649
9650  // Note that we have declared this constructor.
9651  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9652
9653  if (Scope *S = getScopeForContext(ClassDecl))
9654    PushOnScopeChains(MoveConstructor, S, false);
9655  ClassDecl->addDecl(MoveConstructor);
9656
9657  return MoveConstructor;
9658}
9659
9660void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9661                                   CXXConstructorDecl *MoveConstructor) {
9662  assert((MoveConstructor->isDefaulted() &&
9663          MoveConstructor->isMoveConstructor() &&
9664          !MoveConstructor->doesThisDeclarationHaveABody() &&
9665          !MoveConstructor->isDeleted()) &&
9666         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9667
9668  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9669  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9670
9671  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9672  DiagnosticErrorTrap Trap(Diags);
9673
9674  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9675      Trap.hasErrorOccurred()) {
9676    Diag(CurrentLocation, diag::note_member_synthesized_at)
9677      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9678    MoveConstructor->setInvalidDecl();
9679  }  else {
9680    Sema::CompoundScopeRAII CompoundScope(*this);
9681    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9682                                               MoveConstructor->getLocation(),
9683                                               MultiStmtArg(),
9684                                               /*isStmtExpr=*/false)
9685                                                              .takeAs<Stmt>());
9686    MoveConstructor->setImplicitlyDefined(true);
9687  }
9688
9689  MoveConstructor->setUsed();
9690
9691  if (ASTMutationListener *L = getASTMutationListener()) {
9692    L->CompletedImplicitDefinition(MoveConstructor);
9693  }
9694}
9695
9696bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9697  return FD->isDeleted() &&
9698         (FD->isDefaulted() || FD->isImplicit()) &&
9699         isa<CXXMethodDecl>(FD);
9700}
9701
9702/// \brief Mark the call operator of the given lambda closure type as "used".
9703static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9704  CXXMethodDecl *CallOperator
9705    = cast<CXXMethodDecl>(
9706        Lambda->lookup(
9707          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9708  CallOperator->setReferenced();
9709  CallOperator->setUsed();
9710}
9711
9712void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9713       SourceLocation CurrentLocation,
9714       CXXConversionDecl *Conv)
9715{
9716  CXXRecordDecl *Lambda = Conv->getParent();
9717
9718  // Make sure that the lambda call operator is marked used.
9719  markLambdaCallOperatorUsed(*this, Lambda);
9720
9721  Conv->setUsed();
9722
9723  SynthesizedFunctionScope Scope(*this, Conv);
9724  DiagnosticErrorTrap Trap(Diags);
9725
9726  // Return the address of the __invoke function.
9727  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9728  CXXMethodDecl *Invoke
9729    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9730  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9731                                       VK_LValue, Conv->getLocation()).take();
9732  assert(FunctionRef && "Can't refer to __invoke function?");
9733  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9734  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9735                                           Conv->getLocation(),
9736                                           Conv->getLocation()));
9737
9738  // Fill in the __invoke function with a dummy implementation. IR generation
9739  // will fill in the actual details.
9740  Invoke->setUsed();
9741  Invoke->setReferenced();
9742  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9743
9744  if (ASTMutationListener *L = getASTMutationListener()) {
9745    L->CompletedImplicitDefinition(Conv);
9746    L->CompletedImplicitDefinition(Invoke);
9747  }
9748}
9749
9750void Sema::DefineImplicitLambdaToBlockPointerConversion(
9751       SourceLocation CurrentLocation,
9752       CXXConversionDecl *Conv)
9753{
9754  Conv->setUsed();
9755
9756  SynthesizedFunctionScope Scope(*this, Conv);
9757  DiagnosticErrorTrap Trap(Diags);
9758
9759  // Copy-initialize the lambda object as needed to capture it.
9760  Expr *This = ActOnCXXThis(CurrentLocation).take();
9761  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9762
9763  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9764                                                        Conv->getLocation(),
9765                                                        Conv, DerefThis);
9766
9767  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9768  // behavior.  Note that only the general conversion function does this
9769  // (since it's unusable otherwise); in the case where we inline the
9770  // block literal, it has block literal lifetime semantics.
9771  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9772    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9773                                          CK_CopyAndAutoreleaseBlockObject,
9774                                          BuildBlock.get(), 0, VK_RValue);
9775
9776  if (BuildBlock.isInvalid()) {
9777    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9778    Conv->setInvalidDecl();
9779    return;
9780  }
9781
9782  // Create the return statement that returns the block from the conversion
9783  // function.
9784  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9785  if (Return.isInvalid()) {
9786    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9787    Conv->setInvalidDecl();
9788    return;
9789  }
9790
9791  // Set the body of the conversion function.
9792  Stmt *ReturnS = Return.take();
9793  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9794                                           Conv->getLocation(),
9795                                           Conv->getLocation()));
9796
9797  // We're done; notify the mutation listener, if any.
9798  if (ASTMutationListener *L = getASTMutationListener()) {
9799    L->CompletedImplicitDefinition(Conv);
9800  }
9801}
9802
9803/// \brief Determine whether the given list arguments contains exactly one
9804/// "real" (non-default) argument.
9805static bool hasOneRealArgument(MultiExprArg Args) {
9806  switch (Args.size()) {
9807  case 0:
9808    return false;
9809
9810  default:
9811    if (!Args[1]->isDefaultArgument())
9812      return false;
9813
9814    // fall through
9815  case 1:
9816    return !Args[0]->isDefaultArgument();
9817  }
9818
9819  return false;
9820}
9821
9822ExprResult
9823Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9824                            CXXConstructorDecl *Constructor,
9825                            MultiExprArg ExprArgs,
9826                            bool HadMultipleCandidates,
9827                            bool IsListInitialization,
9828                            bool RequiresZeroInit,
9829                            unsigned ConstructKind,
9830                            SourceRange ParenRange) {
9831  bool Elidable = false;
9832
9833  // C++0x [class.copy]p34:
9834  //   When certain criteria are met, an implementation is allowed to
9835  //   omit the copy/move construction of a class object, even if the
9836  //   copy/move constructor and/or destructor for the object have
9837  //   side effects. [...]
9838  //     - when a temporary class object that has not been bound to a
9839  //       reference (12.2) would be copied/moved to a class object
9840  //       with the same cv-unqualified type, the copy/move operation
9841  //       can be omitted by constructing the temporary object
9842  //       directly into the target of the omitted copy/move
9843  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9844      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9845    Expr *SubExpr = ExprArgs[0];
9846    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9847  }
9848
9849  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9850                               Elidable, ExprArgs, HadMultipleCandidates,
9851                               IsListInitialization, RequiresZeroInit,
9852                               ConstructKind, ParenRange);
9853}
9854
9855/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9856/// including handling of its default argument expressions.
9857ExprResult
9858Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9859                            CXXConstructorDecl *Constructor, bool Elidable,
9860                            MultiExprArg ExprArgs,
9861                            bool HadMultipleCandidates,
9862                            bool IsListInitialization,
9863                            bool RequiresZeroInit,
9864                            unsigned ConstructKind,
9865                            SourceRange ParenRange) {
9866  MarkFunctionReferenced(ConstructLoc, Constructor);
9867  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9868                                        Constructor, Elidable, ExprArgs,
9869                                        HadMultipleCandidates,
9870                                        IsListInitialization, RequiresZeroInit,
9871              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9872                                        ParenRange));
9873}
9874
9875void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9876  if (VD->isInvalidDecl()) return;
9877
9878  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9879  if (ClassDecl->isInvalidDecl()) return;
9880  if (ClassDecl->hasIrrelevantDestructor()) return;
9881  if (ClassDecl->isDependentContext()) return;
9882
9883  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9884  MarkFunctionReferenced(VD->getLocation(), Destructor);
9885  CheckDestructorAccess(VD->getLocation(), Destructor,
9886                        PDiag(diag::err_access_dtor_var)
9887                        << VD->getDeclName()
9888                        << VD->getType());
9889  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9890
9891  if (!VD->hasGlobalStorage()) return;
9892
9893  // Emit warning for non-trivial dtor in global scope (a real global,
9894  // class-static, function-static).
9895  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9896
9897  // TODO: this should be re-enabled for static locals by !CXAAtExit
9898  if (!VD->isStaticLocal())
9899    Diag(VD->getLocation(), diag::warn_global_destructor);
9900}
9901
9902/// \brief Given a constructor and the set of arguments provided for the
9903/// constructor, convert the arguments and add any required default arguments
9904/// to form a proper call to this constructor.
9905///
9906/// \returns true if an error occurred, false otherwise.
9907bool
9908Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9909                              MultiExprArg ArgsPtr,
9910                              SourceLocation Loc,
9911                              SmallVectorImpl<Expr*> &ConvertedArgs,
9912                              bool AllowExplicit,
9913                              bool IsListInitialization) {
9914  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9915  unsigned NumArgs = ArgsPtr.size();
9916  Expr **Args = ArgsPtr.data();
9917
9918  const FunctionProtoType *Proto
9919    = Constructor->getType()->getAs<FunctionProtoType>();
9920  assert(Proto && "Constructor without a prototype?");
9921  unsigned NumArgsInProto = Proto->getNumArgs();
9922
9923  // If too few arguments are available, we'll fill in the rest with defaults.
9924  if (NumArgs < NumArgsInProto)
9925    ConvertedArgs.reserve(NumArgsInProto);
9926  else
9927    ConvertedArgs.reserve(NumArgs);
9928
9929  VariadicCallType CallType =
9930    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9931  SmallVector<Expr *, 8> AllArgs;
9932  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9933                                        Proto, 0, Args, NumArgs, AllArgs,
9934                                        CallType, AllowExplicit,
9935                                        IsListInitialization);
9936  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9937
9938  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9939
9940  CheckConstructorCall(Constructor,
9941                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
9942                                                        AllArgs.size()),
9943                       Proto, Loc);
9944
9945  return Invalid;
9946}
9947
9948static inline bool
9949CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9950                                       const FunctionDecl *FnDecl) {
9951  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9952  if (isa<NamespaceDecl>(DC)) {
9953    return SemaRef.Diag(FnDecl->getLocation(),
9954                        diag::err_operator_new_delete_declared_in_namespace)
9955      << FnDecl->getDeclName();
9956  }
9957
9958  if (isa<TranslationUnitDecl>(DC) &&
9959      FnDecl->getStorageClass() == SC_Static) {
9960    return SemaRef.Diag(FnDecl->getLocation(),
9961                        diag::err_operator_new_delete_declared_static)
9962      << FnDecl->getDeclName();
9963  }
9964
9965  return false;
9966}
9967
9968static inline bool
9969CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9970                            CanQualType ExpectedResultType,
9971                            CanQualType ExpectedFirstParamType,
9972                            unsigned DependentParamTypeDiag,
9973                            unsigned InvalidParamTypeDiag) {
9974  QualType ResultType =
9975    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9976
9977  // Check that the result type is not dependent.
9978  if (ResultType->isDependentType())
9979    return SemaRef.Diag(FnDecl->getLocation(),
9980                        diag::err_operator_new_delete_dependent_result_type)
9981    << FnDecl->getDeclName() << ExpectedResultType;
9982
9983  // Check that the result type is what we expect.
9984  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9985    return SemaRef.Diag(FnDecl->getLocation(),
9986                        diag::err_operator_new_delete_invalid_result_type)
9987    << FnDecl->getDeclName() << ExpectedResultType;
9988
9989  // A function template must have at least 2 parameters.
9990  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9991    return SemaRef.Diag(FnDecl->getLocation(),
9992                      diag::err_operator_new_delete_template_too_few_parameters)
9993        << FnDecl->getDeclName();
9994
9995  // The function decl must have at least 1 parameter.
9996  if (FnDecl->getNumParams() == 0)
9997    return SemaRef.Diag(FnDecl->getLocation(),
9998                        diag::err_operator_new_delete_too_few_parameters)
9999      << FnDecl->getDeclName();
10000
10001  // Check the first parameter type is not dependent.
10002  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10003  if (FirstParamType->isDependentType())
10004    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10005      << FnDecl->getDeclName() << ExpectedFirstParamType;
10006
10007  // Check that the first parameter type is what we expect.
10008  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10009      ExpectedFirstParamType)
10010    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10011    << FnDecl->getDeclName() << ExpectedFirstParamType;
10012
10013  return false;
10014}
10015
10016static bool
10017CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10018  // C++ [basic.stc.dynamic.allocation]p1:
10019  //   A program is ill-formed if an allocation function is declared in a
10020  //   namespace scope other than global scope or declared static in global
10021  //   scope.
10022  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10023    return true;
10024
10025  CanQualType SizeTy =
10026    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10027
10028  // C++ [basic.stc.dynamic.allocation]p1:
10029  //  The return type shall be void*. The first parameter shall have type
10030  //  std::size_t.
10031  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10032                                  SizeTy,
10033                                  diag::err_operator_new_dependent_param_type,
10034                                  diag::err_operator_new_param_type))
10035    return true;
10036
10037  // C++ [basic.stc.dynamic.allocation]p1:
10038  //  The first parameter shall not have an associated default argument.
10039  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10040    return SemaRef.Diag(FnDecl->getLocation(),
10041                        diag::err_operator_new_default_arg)
10042      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10043
10044  return false;
10045}
10046
10047static bool
10048CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10049  // C++ [basic.stc.dynamic.deallocation]p1:
10050  //   A program is ill-formed if deallocation functions are declared in a
10051  //   namespace scope other than global scope or declared static in global
10052  //   scope.
10053  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10054    return true;
10055
10056  // C++ [basic.stc.dynamic.deallocation]p2:
10057  //   Each deallocation function shall return void and its first parameter
10058  //   shall be void*.
10059  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10060                                  SemaRef.Context.VoidPtrTy,
10061                                 diag::err_operator_delete_dependent_param_type,
10062                                 diag::err_operator_delete_param_type))
10063    return true;
10064
10065  return false;
10066}
10067
10068/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10069/// of this overloaded operator is well-formed. If so, returns false;
10070/// otherwise, emits appropriate diagnostics and returns true.
10071bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10072  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10073         "Expected an overloaded operator declaration");
10074
10075  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10076
10077  // C++ [over.oper]p5:
10078  //   The allocation and deallocation functions, operator new,
10079  //   operator new[], operator delete and operator delete[], are
10080  //   described completely in 3.7.3. The attributes and restrictions
10081  //   found in the rest of this subclause do not apply to them unless
10082  //   explicitly stated in 3.7.3.
10083  if (Op == OO_Delete || Op == OO_Array_Delete)
10084    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10085
10086  if (Op == OO_New || Op == OO_Array_New)
10087    return CheckOperatorNewDeclaration(*this, FnDecl);
10088
10089  // C++ [over.oper]p6:
10090  //   An operator function shall either be a non-static member
10091  //   function or be a non-member function and have at least one
10092  //   parameter whose type is a class, a reference to a class, an
10093  //   enumeration, or a reference to an enumeration.
10094  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10095    if (MethodDecl->isStatic())
10096      return Diag(FnDecl->getLocation(),
10097                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10098  } else {
10099    bool ClassOrEnumParam = false;
10100    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10101                                   ParamEnd = FnDecl->param_end();
10102         Param != ParamEnd; ++Param) {
10103      QualType ParamType = (*Param)->getType().getNonReferenceType();
10104      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10105          ParamType->isEnumeralType()) {
10106        ClassOrEnumParam = true;
10107        break;
10108      }
10109    }
10110
10111    if (!ClassOrEnumParam)
10112      return Diag(FnDecl->getLocation(),
10113                  diag::err_operator_overload_needs_class_or_enum)
10114        << FnDecl->getDeclName();
10115  }
10116
10117  // C++ [over.oper]p8:
10118  //   An operator function cannot have default arguments (8.3.6),
10119  //   except where explicitly stated below.
10120  //
10121  // Only the function-call operator allows default arguments
10122  // (C++ [over.call]p1).
10123  if (Op != OO_Call) {
10124    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10125         Param != FnDecl->param_end(); ++Param) {
10126      if ((*Param)->hasDefaultArg())
10127        return Diag((*Param)->getLocation(),
10128                    diag::err_operator_overload_default_arg)
10129          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10130    }
10131  }
10132
10133  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10134    { false, false, false }
10135#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10136    , { Unary, Binary, MemberOnly }
10137#include "clang/Basic/OperatorKinds.def"
10138  };
10139
10140  bool CanBeUnaryOperator = OperatorUses[Op][0];
10141  bool CanBeBinaryOperator = OperatorUses[Op][1];
10142  bool MustBeMemberOperator = OperatorUses[Op][2];
10143
10144  // C++ [over.oper]p8:
10145  //   [...] Operator functions cannot have more or fewer parameters
10146  //   than the number required for the corresponding operator, as
10147  //   described in the rest of this subclause.
10148  unsigned NumParams = FnDecl->getNumParams()
10149                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10150  if (Op != OO_Call &&
10151      ((NumParams == 1 && !CanBeUnaryOperator) ||
10152       (NumParams == 2 && !CanBeBinaryOperator) ||
10153       (NumParams < 1) || (NumParams > 2))) {
10154    // We have the wrong number of parameters.
10155    unsigned ErrorKind;
10156    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10157      ErrorKind = 2;  // 2 -> unary or binary.
10158    } else if (CanBeUnaryOperator) {
10159      ErrorKind = 0;  // 0 -> unary
10160    } else {
10161      assert(CanBeBinaryOperator &&
10162             "All non-call overloaded operators are unary or binary!");
10163      ErrorKind = 1;  // 1 -> binary
10164    }
10165
10166    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10167      << FnDecl->getDeclName() << NumParams << ErrorKind;
10168  }
10169
10170  // Overloaded operators other than operator() cannot be variadic.
10171  if (Op != OO_Call &&
10172      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10173    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10174      << FnDecl->getDeclName();
10175  }
10176
10177  // Some operators must be non-static member functions.
10178  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10179    return Diag(FnDecl->getLocation(),
10180                diag::err_operator_overload_must_be_member)
10181      << FnDecl->getDeclName();
10182  }
10183
10184  // C++ [over.inc]p1:
10185  //   The user-defined function called operator++ implements the
10186  //   prefix and postfix ++ operator. If this function is a member
10187  //   function with no parameters, or a non-member function with one
10188  //   parameter of class or enumeration type, it defines the prefix
10189  //   increment operator ++ for objects of that type. If the function
10190  //   is a member function with one parameter (which shall be of type
10191  //   int) or a non-member function with two parameters (the second
10192  //   of which shall be of type int), it defines the postfix
10193  //   increment operator ++ for objects of that type.
10194  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10195    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10196    bool ParamIsInt = false;
10197    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10198      ParamIsInt = BT->getKind() == BuiltinType::Int;
10199
10200    if (!ParamIsInt)
10201      return Diag(LastParam->getLocation(),
10202                  diag::err_operator_overload_post_incdec_must_be_int)
10203        << LastParam->getType() << (Op == OO_MinusMinus);
10204  }
10205
10206  return false;
10207}
10208
10209/// CheckLiteralOperatorDeclaration - Check whether the declaration
10210/// of this literal operator function is well-formed. If so, returns
10211/// false; otherwise, emits appropriate diagnostics and returns true.
10212bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10213  if (isa<CXXMethodDecl>(FnDecl)) {
10214    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10215      << FnDecl->getDeclName();
10216    return true;
10217  }
10218
10219  if (FnDecl->isExternC()) {
10220    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10221    return true;
10222  }
10223
10224  bool Valid = false;
10225
10226  // This might be the definition of a literal operator template.
10227  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10228  // This might be a specialization of a literal operator template.
10229  if (!TpDecl)
10230    TpDecl = FnDecl->getPrimaryTemplate();
10231
10232  // template <char...> type operator "" name() is the only valid template
10233  // signature, and the only valid signature with no parameters.
10234  if (TpDecl) {
10235    if (FnDecl->param_size() == 0) {
10236      // Must have only one template parameter
10237      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10238      if (Params->size() == 1) {
10239        NonTypeTemplateParmDecl *PmDecl =
10240          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10241
10242        // The template parameter must be a char parameter pack.
10243        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10244            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10245          Valid = true;
10246      }
10247    }
10248  } else if (FnDecl->param_size()) {
10249    // Check the first parameter
10250    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10251
10252    QualType T = (*Param)->getType().getUnqualifiedType();
10253
10254    // unsigned long long int, long double, and any character type are allowed
10255    // as the only parameters.
10256    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10257        Context.hasSameType(T, Context.LongDoubleTy) ||
10258        Context.hasSameType(T, Context.CharTy) ||
10259        Context.hasSameType(T, Context.WCharTy) ||
10260        Context.hasSameType(T, Context.Char16Ty) ||
10261        Context.hasSameType(T, Context.Char32Ty)) {
10262      if (++Param == FnDecl->param_end())
10263        Valid = true;
10264      goto FinishedParams;
10265    }
10266
10267    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10268    const PointerType *PT = T->getAs<PointerType>();
10269    if (!PT)
10270      goto FinishedParams;
10271    T = PT->getPointeeType();
10272    if (!T.isConstQualified() || T.isVolatileQualified())
10273      goto FinishedParams;
10274    T = T.getUnqualifiedType();
10275
10276    // Move on to the second parameter;
10277    ++Param;
10278
10279    // If there is no second parameter, the first must be a const char *
10280    if (Param == FnDecl->param_end()) {
10281      if (Context.hasSameType(T, Context.CharTy))
10282        Valid = true;
10283      goto FinishedParams;
10284    }
10285
10286    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10287    // are allowed as the first parameter to a two-parameter function
10288    if (!(Context.hasSameType(T, Context.CharTy) ||
10289          Context.hasSameType(T, Context.WCharTy) ||
10290          Context.hasSameType(T, Context.Char16Ty) ||
10291          Context.hasSameType(T, Context.Char32Ty)))
10292      goto FinishedParams;
10293
10294    // The second and final parameter must be an std::size_t
10295    T = (*Param)->getType().getUnqualifiedType();
10296    if (Context.hasSameType(T, Context.getSizeType()) &&
10297        ++Param == FnDecl->param_end())
10298      Valid = true;
10299  }
10300
10301  // FIXME: This diagnostic is absolutely terrible.
10302FinishedParams:
10303  if (!Valid) {
10304    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10305      << FnDecl->getDeclName();
10306    return true;
10307  }
10308
10309  // A parameter-declaration-clause containing a default argument is not
10310  // equivalent to any of the permitted forms.
10311  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10312                                    ParamEnd = FnDecl->param_end();
10313       Param != ParamEnd; ++Param) {
10314    if ((*Param)->hasDefaultArg()) {
10315      Diag((*Param)->getDefaultArgRange().getBegin(),
10316           diag::err_literal_operator_default_argument)
10317        << (*Param)->getDefaultArgRange();
10318      break;
10319    }
10320  }
10321
10322  StringRef LiteralName
10323    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10324  if (LiteralName[0] != '_') {
10325    // C++11 [usrlit.suffix]p1:
10326    //   Literal suffix identifiers that do not start with an underscore
10327    //   are reserved for future standardization.
10328    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10329  }
10330
10331  return false;
10332}
10333
10334/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10335/// linkage specification, including the language and (if present)
10336/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10337/// the location of the language string literal, which is provided
10338/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10339/// the '{' brace. Otherwise, this linkage specification does not
10340/// have any braces.
10341Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10342                                           SourceLocation LangLoc,
10343                                           StringRef Lang,
10344                                           SourceLocation LBraceLoc) {
10345  LinkageSpecDecl::LanguageIDs Language;
10346  if (Lang == "\"C\"")
10347    Language = LinkageSpecDecl::lang_c;
10348  else if (Lang == "\"C++\"")
10349    Language = LinkageSpecDecl::lang_cxx;
10350  else {
10351    Diag(LangLoc, diag::err_bad_language);
10352    return 0;
10353  }
10354
10355  // FIXME: Add all the various semantics of linkage specifications
10356
10357  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10358                                               ExternLoc, LangLoc, Language);
10359  CurContext->addDecl(D);
10360  PushDeclContext(S, D);
10361  return D;
10362}
10363
10364/// ActOnFinishLinkageSpecification - Complete the definition of
10365/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10366/// valid, it's the position of the closing '}' brace in a linkage
10367/// specification that uses braces.
10368Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10369                                            Decl *LinkageSpec,
10370                                            SourceLocation RBraceLoc) {
10371  if (LinkageSpec) {
10372    if (RBraceLoc.isValid()) {
10373      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10374      LSDecl->setRBraceLoc(RBraceLoc);
10375    }
10376    PopDeclContext();
10377  }
10378  return LinkageSpec;
10379}
10380
10381Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10382                                  AttributeList *AttrList,
10383                                  SourceLocation SemiLoc) {
10384  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10385  // Attribute declarations appertain to empty declaration so we handle
10386  // them here.
10387  if (AttrList)
10388    ProcessDeclAttributeList(S, ED, AttrList);
10389
10390  CurContext->addDecl(ED);
10391  return ED;
10392}
10393
10394/// \brief Perform semantic analysis for the variable declaration that
10395/// occurs within a C++ catch clause, returning the newly-created
10396/// variable.
10397VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10398                                         TypeSourceInfo *TInfo,
10399                                         SourceLocation StartLoc,
10400                                         SourceLocation Loc,
10401                                         IdentifierInfo *Name) {
10402  bool Invalid = false;
10403  QualType ExDeclType = TInfo->getType();
10404
10405  // Arrays and functions decay.
10406  if (ExDeclType->isArrayType())
10407    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10408  else if (ExDeclType->isFunctionType())
10409    ExDeclType = Context.getPointerType(ExDeclType);
10410
10411  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10412  // The exception-declaration shall not denote a pointer or reference to an
10413  // incomplete type, other than [cv] void*.
10414  // N2844 forbids rvalue references.
10415  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10416    Diag(Loc, diag::err_catch_rvalue_ref);
10417    Invalid = true;
10418  }
10419
10420  QualType BaseType = ExDeclType;
10421  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10422  unsigned DK = diag::err_catch_incomplete;
10423  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10424    BaseType = Ptr->getPointeeType();
10425    Mode = 1;
10426    DK = diag::err_catch_incomplete_ptr;
10427  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10428    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10429    BaseType = Ref->getPointeeType();
10430    Mode = 2;
10431    DK = diag::err_catch_incomplete_ref;
10432  }
10433  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10434      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10435    Invalid = true;
10436
10437  if (!Invalid && !ExDeclType->isDependentType() &&
10438      RequireNonAbstractType(Loc, ExDeclType,
10439                             diag::err_abstract_type_in_decl,
10440                             AbstractVariableType))
10441    Invalid = true;
10442
10443  // Only the non-fragile NeXT runtime currently supports C++ catches
10444  // of ObjC types, and no runtime supports catching ObjC types by value.
10445  if (!Invalid && getLangOpts().ObjC1) {
10446    QualType T = ExDeclType;
10447    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10448      T = RT->getPointeeType();
10449
10450    if (T->isObjCObjectType()) {
10451      Diag(Loc, diag::err_objc_object_catch);
10452      Invalid = true;
10453    } else if (T->isObjCObjectPointerType()) {
10454      // FIXME: should this be a test for macosx-fragile specifically?
10455      if (getLangOpts().ObjCRuntime.isFragile())
10456        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10457    }
10458  }
10459
10460  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10461                                    ExDeclType, TInfo, SC_None);
10462  ExDecl->setExceptionVariable(true);
10463
10464  // In ARC, infer 'retaining' for variables of retainable type.
10465  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10466    Invalid = true;
10467
10468  if (!Invalid && !ExDeclType->isDependentType()) {
10469    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10470      // Insulate this from anything else we might currently be parsing.
10471      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10472
10473      // C++ [except.handle]p16:
10474      //   The object declared in an exception-declaration or, if the
10475      //   exception-declaration does not specify a name, a temporary (12.2) is
10476      //   copy-initialized (8.5) from the exception object. [...]
10477      //   The object is destroyed when the handler exits, after the destruction
10478      //   of any automatic objects initialized within the handler.
10479      //
10480      // We just pretend to initialize the object with itself, then make sure
10481      // it can be destroyed later.
10482      QualType initType = ExDeclType;
10483
10484      InitializedEntity entity =
10485        InitializedEntity::InitializeVariable(ExDecl);
10486      InitializationKind initKind =
10487        InitializationKind::CreateCopy(Loc, SourceLocation());
10488
10489      Expr *opaqueValue =
10490        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10491      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10492      ExprResult result = sequence.Perform(*this, entity, initKind,
10493                                           MultiExprArg(&opaqueValue, 1));
10494      if (result.isInvalid())
10495        Invalid = true;
10496      else {
10497        // If the constructor used was non-trivial, set this as the
10498        // "initializer".
10499        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10500        if (!construct->getConstructor()->isTrivial()) {
10501          Expr *init = MaybeCreateExprWithCleanups(construct);
10502          ExDecl->setInit(init);
10503        }
10504
10505        // And make sure it's destructable.
10506        FinalizeVarWithDestructor(ExDecl, recordType);
10507      }
10508    }
10509  }
10510
10511  if (Invalid)
10512    ExDecl->setInvalidDecl();
10513
10514  return ExDecl;
10515}
10516
10517/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10518/// handler.
10519Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10520  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10521  bool Invalid = D.isInvalidType();
10522
10523  // Check for unexpanded parameter packs.
10524  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10525                                      UPPC_ExceptionType)) {
10526    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10527                                             D.getIdentifierLoc());
10528    Invalid = true;
10529  }
10530
10531  IdentifierInfo *II = D.getIdentifier();
10532  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10533                                             LookupOrdinaryName,
10534                                             ForRedeclaration)) {
10535    // The scope should be freshly made just for us. There is just no way
10536    // it contains any previous declaration.
10537    assert(!S->isDeclScope(PrevDecl));
10538    if (PrevDecl->isTemplateParameter()) {
10539      // Maybe we will complain about the shadowed template parameter.
10540      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10541      PrevDecl = 0;
10542    }
10543  }
10544
10545  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10546    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10547      << D.getCXXScopeSpec().getRange();
10548    Invalid = true;
10549  }
10550
10551  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10552                                              D.getLocStart(),
10553                                              D.getIdentifierLoc(),
10554                                              D.getIdentifier());
10555  if (Invalid)
10556    ExDecl->setInvalidDecl();
10557
10558  // Add the exception declaration into this scope.
10559  if (II)
10560    PushOnScopeChains(ExDecl, S);
10561  else
10562    CurContext->addDecl(ExDecl);
10563
10564  ProcessDeclAttributes(S, ExDecl, D);
10565  return ExDecl;
10566}
10567
10568Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10569                                         Expr *AssertExpr,
10570                                         Expr *AssertMessageExpr,
10571                                         SourceLocation RParenLoc) {
10572  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10573
10574  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10575    return 0;
10576
10577  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10578                                      AssertMessage, RParenLoc, false);
10579}
10580
10581Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10582                                         Expr *AssertExpr,
10583                                         StringLiteral *AssertMessage,
10584                                         SourceLocation RParenLoc,
10585                                         bool Failed) {
10586  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10587      !Failed) {
10588    // In a static_assert-declaration, the constant-expression shall be a
10589    // constant expression that can be contextually converted to bool.
10590    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10591    if (Converted.isInvalid())
10592      Failed = true;
10593
10594    llvm::APSInt Cond;
10595    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10596          diag::err_static_assert_expression_is_not_constant,
10597          /*AllowFold=*/false).isInvalid())
10598      Failed = true;
10599
10600    if (!Failed && !Cond) {
10601      SmallString<256> MsgBuffer;
10602      llvm::raw_svector_ostream Msg(MsgBuffer);
10603      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10604      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10605        << Msg.str() << AssertExpr->getSourceRange();
10606      Failed = true;
10607    }
10608  }
10609
10610  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10611                                        AssertExpr, AssertMessage, RParenLoc,
10612                                        Failed);
10613
10614  CurContext->addDecl(Decl);
10615  return Decl;
10616}
10617
10618/// \brief Perform semantic analysis of the given friend type declaration.
10619///
10620/// \returns A friend declaration that.
10621FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10622                                      SourceLocation FriendLoc,
10623                                      TypeSourceInfo *TSInfo) {
10624  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10625
10626  QualType T = TSInfo->getType();
10627  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10628
10629  // C++03 [class.friend]p2:
10630  //   An elaborated-type-specifier shall be used in a friend declaration
10631  //   for a class.*
10632  //
10633  //   * The class-key of the elaborated-type-specifier is required.
10634  if (!ActiveTemplateInstantiations.empty()) {
10635    // Do not complain about the form of friend template types during
10636    // template instantiation; we will already have complained when the
10637    // template was declared.
10638  } else {
10639    if (!T->isElaboratedTypeSpecifier()) {
10640      // If we evaluated the type to a record type, suggest putting
10641      // a tag in front.
10642      if (const RecordType *RT = T->getAs<RecordType>()) {
10643        RecordDecl *RD = RT->getDecl();
10644
10645        std::string InsertionText = std::string(" ") + RD->getKindName();
10646
10647        Diag(TypeRange.getBegin(),
10648             getLangOpts().CPlusPlus11 ?
10649               diag::warn_cxx98_compat_unelaborated_friend_type :
10650               diag::ext_unelaborated_friend_type)
10651          << (unsigned) RD->getTagKind()
10652          << T
10653          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10654                                        InsertionText);
10655      } else {
10656        Diag(FriendLoc,
10657             getLangOpts().CPlusPlus11 ?
10658               diag::warn_cxx98_compat_nonclass_type_friend :
10659               diag::ext_nonclass_type_friend)
10660          << T
10661          << TypeRange;
10662      }
10663    } else if (T->getAs<EnumType>()) {
10664      Diag(FriendLoc,
10665           getLangOpts().CPlusPlus11 ?
10666             diag::warn_cxx98_compat_enum_friend :
10667             diag::ext_enum_friend)
10668        << T
10669        << TypeRange;
10670    }
10671
10672    // C++11 [class.friend]p3:
10673    //   A friend declaration that does not declare a function shall have one
10674    //   of the following forms:
10675    //     friend elaborated-type-specifier ;
10676    //     friend simple-type-specifier ;
10677    //     friend typename-specifier ;
10678    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10679      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10680  }
10681
10682  //   If the type specifier in a friend declaration designates a (possibly
10683  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10684  //   the friend declaration is ignored.
10685  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10686}
10687
10688/// Handle a friend tag declaration where the scope specifier was
10689/// templated.
10690Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10691                                    unsigned TagSpec, SourceLocation TagLoc,
10692                                    CXXScopeSpec &SS,
10693                                    IdentifierInfo *Name,
10694                                    SourceLocation NameLoc,
10695                                    AttributeList *Attr,
10696                                    MultiTemplateParamsArg TempParamLists) {
10697  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10698
10699  bool isExplicitSpecialization = false;
10700  bool Invalid = false;
10701
10702  if (TemplateParameterList *TemplateParams
10703        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10704                                                  TempParamLists.data(),
10705                                                  TempParamLists.size(),
10706                                                  /*friend*/ true,
10707                                                  isExplicitSpecialization,
10708                                                  Invalid)) {
10709    if (TemplateParams->size() > 0) {
10710      // This is a declaration of a class template.
10711      if (Invalid)
10712        return 0;
10713
10714      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10715                                SS, Name, NameLoc, Attr,
10716                                TemplateParams, AS_public,
10717                                /*ModulePrivateLoc=*/SourceLocation(),
10718                                TempParamLists.size() - 1,
10719                                TempParamLists.data()).take();
10720    } else {
10721      // The "template<>" header is extraneous.
10722      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10723        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10724      isExplicitSpecialization = true;
10725    }
10726  }
10727
10728  if (Invalid) return 0;
10729
10730  bool isAllExplicitSpecializations = true;
10731  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10732    if (TempParamLists[I]->size()) {
10733      isAllExplicitSpecializations = false;
10734      break;
10735    }
10736  }
10737
10738  // FIXME: don't ignore attributes.
10739
10740  // If it's explicit specializations all the way down, just forget
10741  // about the template header and build an appropriate non-templated
10742  // friend.  TODO: for source fidelity, remember the headers.
10743  if (isAllExplicitSpecializations) {
10744    if (SS.isEmpty()) {
10745      bool Owned = false;
10746      bool IsDependent = false;
10747      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10748                      Attr, AS_public,
10749                      /*ModulePrivateLoc=*/SourceLocation(),
10750                      MultiTemplateParamsArg(), Owned, IsDependent,
10751                      /*ScopedEnumKWLoc=*/SourceLocation(),
10752                      /*ScopedEnumUsesClassTag=*/false,
10753                      /*UnderlyingType=*/TypeResult());
10754    }
10755
10756    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10757    ElaboratedTypeKeyword Keyword
10758      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10759    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10760                                   *Name, NameLoc);
10761    if (T.isNull())
10762      return 0;
10763
10764    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10765    if (isa<DependentNameType>(T)) {
10766      DependentNameTypeLoc TL =
10767          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10768      TL.setElaboratedKeywordLoc(TagLoc);
10769      TL.setQualifierLoc(QualifierLoc);
10770      TL.setNameLoc(NameLoc);
10771    } else {
10772      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10773      TL.setElaboratedKeywordLoc(TagLoc);
10774      TL.setQualifierLoc(QualifierLoc);
10775      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10776    }
10777
10778    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10779                                            TSI, FriendLoc, TempParamLists);
10780    Friend->setAccess(AS_public);
10781    CurContext->addDecl(Friend);
10782    return Friend;
10783  }
10784
10785  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10786
10787
10788
10789  // Handle the case of a templated-scope friend class.  e.g.
10790  //   template <class T> class A<T>::B;
10791  // FIXME: we don't support these right now.
10792  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10793  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10794  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10795  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10796  TL.setElaboratedKeywordLoc(TagLoc);
10797  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10798  TL.setNameLoc(NameLoc);
10799
10800  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10801                                          TSI, FriendLoc, TempParamLists);
10802  Friend->setAccess(AS_public);
10803  Friend->setUnsupportedFriend(true);
10804  CurContext->addDecl(Friend);
10805  return Friend;
10806}
10807
10808
10809/// Handle a friend type declaration.  This works in tandem with
10810/// ActOnTag.
10811///
10812/// Notes on friend class templates:
10813///
10814/// We generally treat friend class declarations as if they were
10815/// declaring a class.  So, for example, the elaborated type specifier
10816/// in a friend declaration is required to obey the restrictions of a
10817/// class-head (i.e. no typedefs in the scope chain), template
10818/// parameters are required to match up with simple template-ids, &c.
10819/// However, unlike when declaring a template specialization, it's
10820/// okay to refer to a template specialization without an empty
10821/// template parameter declaration, e.g.
10822///   friend class A<T>::B<unsigned>;
10823/// We permit this as a special case; if there are any template
10824/// parameters present at all, require proper matching, i.e.
10825///   template <> template \<class T> friend class A<int>::B;
10826Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10827                                MultiTemplateParamsArg TempParams) {
10828  SourceLocation Loc = DS.getLocStart();
10829
10830  assert(DS.isFriendSpecified());
10831  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10832
10833  // Try to convert the decl specifier to a type.  This works for
10834  // friend templates because ActOnTag never produces a ClassTemplateDecl
10835  // for a TUK_Friend.
10836  Declarator TheDeclarator(DS, Declarator::MemberContext);
10837  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10838  QualType T = TSI->getType();
10839  if (TheDeclarator.isInvalidType())
10840    return 0;
10841
10842  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10843    return 0;
10844
10845  // This is definitely an error in C++98.  It's probably meant to
10846  // be forbidden in C++0x, too, but the specification is just
10847  // poorly written.
10848  //
10849  // The problem is with declarations like the following:
10850  //   template <T> friend A<T>::foo;
10851  // where deciding whether a class C is a friend or not now hinges
10852  // on whether there exists an instantiation of A that causes
10853  // 'foo' to equal C.  There are restrictions on class-heads
10854  // (which we declare (by fiat) elaborated friend declarations to
10855  // be) that makes this tractable.
10856  //
10857  // FIXME: handle "template <> friend class A<T>;", which
10858  // is possibly well-formed?  Who even knows?
10859  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10860    Diag(Loc, diag::err_tagless_friend_type_template)
10861      << DS.getSourceRange();
10862    return 0;
10863  }
10864
10865  // C++98 [class.friend]p1: A friend of a class is a function
10866  //   or class that is not a member of the class . . .
10867  // This is fixed in DR77, which just barely didn't make the C++03
10868  // deadline.  It's also a very silly restriction that seriously
10869  // affects inner classes and which nobody else seems to implement;
10870  // thus we never diagnose it, not even in -pedantic.
10871  //
10872  // But note that we could warn about it: it's always useless to
10873  // friend one of your own members (it's not, however, worthless to
10874  // friend a member of an arbitrary specialization of your template).
10875
10876  Decl *D;
10877  if (unsigned NumTempParamLists = TempParams.size())
10878    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10879                                   NumTempParamLists,
10880                                   TempParams.data(),
10881                                   TSI,
10882                                   DS.getFriendSpecLoc());
10883  else
10884    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10885
10886  if (!D)
10887    return 0;
10888
10889  D->setAccess(AS_public);
10890  CurContext->addDecl(D);
10891
10892  return D;
10893}
10894
10895NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10896                                        MultiTemplateParamsArg TemplateParams) {
10897  const DeclSpec &DS = D.getDeclSpec();
10898
10899  assert(DS.isFriendSpecified());
10900  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10901
10902  SourceLocation Loc = D.getIdentifierLoc();
10903  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10904
10905  // C++ [class.friend]p1
10906  //   A friend of a class is a function or class....
10907  // Note that this sees through typedefs, which is intended.
10908  // It *doesn't* see through dependent types, which is correct
10909  // according to [temp.arg.type]p3:
10910  //   If a declaration acquires a function type through a
10911  //   type dependent on a template-parameter and this causes
10912  //   a declaration that does not use the syntactic form of a
10913  //   function declarator to have a function type, the program
10914  //   is ill-formed.
10915  if (!TInfo->getType()->isFunctionType()) {
10916    Diag(Loc, diag::err_unexpected_friend);
10917
10918    // It might be worthwhile to try to recover by creating an
10919    // appropriate declaration.
10920    return 0;
10921  }
10922
10923  // C++ [namespace.memdef]p3
10924  //  - If a friend declaration in a non-local class first declares a
10925  //    class or function, the friend class or function is a member
10926  //    of the innermost enclosing namespace.
10927  //  - The name of the friend is not found by simple name lookup
10928  //    until a matching declaration is provided in that namespace
10929  //    scope (either before or after the class declaration granting
10930  //    friendship).
10931  //  - If a friend function is called, its name may be found by the
10932  //    name lookup that considers functions from namespaces and
10933  //    classes associated with the types of the function arguments.
10934  //  - When looking for a prior declaration of a class or a function
10935  //    declared as a friend, scopes outside the innermost enclosing
10936  //    namespace scope are not considered.
10937
10938  CXXScopeSpec &SS = D.getCXXScopeSpec();
10939  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10940  DeclarationName Name = NameInfo.getName();
10941  assert(Name);
10942
10943  // Check for unexpanded parameter packs.
10944  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10945      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10946      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10947    return 0;
10948
10949  // The context we found the declaration in, or in which we should
10950  // create the declaration.
10951  DeclContext *DC;
10952  Scope *DCScope = S;
10953  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10954                        ForRedeclaration);
10955
10956  // FIXME: there are different rules in local classes
10957
10958  // There are four cases here.
10959  //   - There's no scope specifier, in which case we just go to the
10960  //     appropriate scope and look for a function or function template
10961  //     there as appropriate.
10962  // Recover from invalid scope qualifiers as if they just weren't there.
10963  if (SS.isInvalid() || !SS.isSet()) {
10964    // C++0x [namespace.memdef]p3:
10965    //   If the name in a friend declaration is neither qualified nor
10966    //   a template-id and the declaration is a function or an
10967    //   elaborated-type-specifier, the lookup to determine whether
10968    //   the entity has been previously declared shall not consider
10969    //   any scopes outside the innermost enclosing namespace.
10970    // C++0x [class.friend]p11:
10971    //   If a friend declaration appears in a local class and the name
10972    //   specified is an unqualified name, a prior declaration is
10973    //   looked up without considering scopes that are outside the
10974    //   innermost enclosing non-class scope. For a friend function
10975    //   declaration, if there is no prior declaration, the program is
10976    //   ill-formed.
10977    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10978    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10979
10980    // Find the appropriate context according to the above.
10981    DC = CurContext;
10982    while (true) {
10983      // Skip class contexts.  If someone can cite chapter and verse
10984      // for this behavior, that would be nice --- it's what GCC and
10985      // EDG do, and it seems like a reasonable intent, but the spec
10986      // really only says that checks for unqualified existing
10987      // declarations should stop at the nearest enclosing namespace,
10988      // not that they should only consider the nearest enclosing
10989      // namespace.
10990      while (DC->isRecord() || DC->isTransparentContext())
10991        DC = DC->getParent();
10992
10993      LookupQualifiedName(Previous, DC);
10994
10995      // TODO: decide what we think about using declarations.
10996      if (isLocal || !Previous.empty())
10997        break;
10998
10999      if (isTemplateId) {
11000        if (isa<TranslationUnitDecl>(DC)) break;
11001      } else {
11002        if (DC->isFileContext()) break;
11003      }
11004      DC = DC->getParent();
11005    }
11006
11007    DCScope = getScopeForDeclContext(S, DC);
11008
11009    // C++ [class.friend]p6:
11010    //   A function can be defined in a friend declaration of a class if and
11011    //   only if the class is a non-local class (9.8), the function name is
11012    //   unqualified, and the function has namespace scope.
11013    if (isLocal && D.isFunctionDefinition()) {
11014      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11015    }
11016
11017  //   - There's a non-dependent scope specifier, in which case we
11018  //     compute it and do a previous lookup there for a function
11019  //     or function template.
11020  } else if (!SS.getScopeRep()->isDependent()) {
11021    DC = computeDeclContext(SS);
11022    if (!DC) return 0;
11023
11024    if (RequireCompleteDeclContext(SS, DC)) return 0;
11025
11026    LookupQualifiedName(Previous, DC);
11027
11028    // Ignore things found implicitly in the wrong scope.
11029    // TODO: better diagnostics for this case.  Suggesting the right
11030    // qualified scope would be nice...
11031    LookupResult::Filter F = Previous.makeFilter();
11032    while (F.hasNext()) {
11033      NamedDecl *D = F.next();
11034      if (!DC->InEnclosingNamespaceSetOf(
11035              D->getDeclContext()->getRedeclContext()))
11036        F.erase();
11037    }
11038    F.done();
11039
11040    if (Previous.empty()) {
11041      D.setInvalidType();
11042      Diag(Loc, diag::err_qualified_friend_not_found)
11043          << Name << TInfo->getType();
11044      return 0;
11045    }
11046
11047    // C++ [class.friend]p1: A friend of a class is a function or
11048    //   class that is not a member of the class . . .
11049    if (DC->Equals(CurContext))
11050      Diag(DS.getFriendSpecLoc(),
11051           getLangOpts().CPlusPlus11 ?
11052             diag::warn_cxx98_compat_friend_is_member :
11053             diag::err_friend_is_member);
11054
11055    if (D.isFunctionDefinition()) {
11056      // C++ [class.friend]p6:
11057      //   A function can be defined in a friend declaration of a class if and
11058      //   only if the class is a non-local class (9.8), the function name is
11059      //   unqualified, and the function has namespace scope.
11060      SemaDiagnosticBuilder DB
11061        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11062
11063      DB << SS.getScopeRep();
11064      if (DC->isFileContext())
11065        DB << FixItHint::CreateRemoval(SS.getRange());
11066      SS.clear();
11067    }
11068
11069  //   - There's a scope specifier that does not match any template
11070  //     parameter lists, in which case we use some arbitrary context,
11071  //     create a method or method template, and wait for instantiation.
11072  //   - There's a scope specifier that does match some template
11073  //     parameter lists, which we don't handle right now.
11074  } else {
11075    if (D.isFunctionDefinition()) {
11076      // C++ [class.friend]p6:
11077      //   A function can be defined in a friend declaration of a class if and
11078      //   only if the class is a non-local class (9.8), the function name is
11079      //   unqualified, and the function has namespace scope.
11080      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11081        << SS.getScopeRep();
11082    }
11083
11084    DC = CurContext;
11085    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11086  }
11087
11088  if (!DC->isRecord()) {
11089    // This implies that it has to be an operator or function.
11090    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11091        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11092        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11093      Diag(Loc, diag::err_introducing_special_friend) <<
11094        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11095         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11096      return 0;
11097    }
11098  }
11099
11100  // FIXME: This is an egregious hack to cope with cases where the scope stack
11101  // does not contain the declaration context, i.e., in an out-of-line
11102  // definition of a class.
11103  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11104  if (!DCScope) {
11105    FakeDCScope.setEntity(DC);
11106    DCScope = &FakeDCScope;
11107  }
11108
11109  bool AddToScope = true;
11110  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11111                                          TemplateParams, AddToScope);
11112  if (!ND) return 0;
11113
11114  assert(ND->getDeclContext() == DC);
11115  assert(ND->getLexicalDeclContext() == CurContext);
11116
11117  // Add the function declaration to the appropriate lookup tables,
11118  // adjusting the redeclarations list as necessary.  We don't
11119  // want to do this yet if the friending class is dependent.
11120  //
11121  // Also update the scope-based lookup if the target context's
11122  // lookup context is in lexical scope.
11123  if (!CurContext->isDependentContext()) {
11124    DC = DC->getRedeclContext();
11125    DC->makeDeclVisibleInContext(ND);
11126    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11127      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11128  }
11129
11130  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11131                                       D.getIdentifierLoc(), ND,
11132                                       DS.getFriendSpecLoc());
11133  FrD->setAccess(AS_public);
11134  CurContext->addDecl(FrD);
11135
11136  if (ND->isInvalidDecl()) {
11137    FrD->setInvalidDecl();
11138  } else {
11139    if (DC->isRecord()) CheckFriendAccess(ND);
11140
11141    FunctionDecl *FD;
11142    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11143      FD = FTD->getTemplatedDecl();
11144    else
11145      FD = cast<FunctionDecl>(ND);
11146
11147    // Mark templated-scope function declarations as unsupported.
11148    if (FD->getNumTemplateParameterLists())
11149      FrD->setUnsupportedFriend(true);
11150  }
11151
11152  return ND;
11153}
11154
11155void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11156  AdjustDeclIfTemplate(Dcl);
11157
11158  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11159  if (!Fn) {
11160    Diag(DelLoc, diag::err_deleted_non_function);
11161    return;
11162  }
11163
11164  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11165    // Don't consider the implicit declaration we generate for explicit
11166    // specializations. FIXME: Do not generate these implicit declarations.
11167    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11168        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11169      Diag(DelLoc, diag::err_deleted_decl_not_first);
11170      Diag(Prev->getLocation(), diag::note_previous_declaration);
11171    }
11172    // If the declaration wasn't the first, we delete the function anyway for
11173    // recovery.
11174    Fn = Fn->getCanonicalDecl();
11175  }
11176
11177  if (Fn->isDeleted())
11178    return;
11179
11180  // See if we're deleting a function which is already known to override a
11181  // non-deleted virtual function.
11182  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11183    bool IssuedDiagnostic = false;
11184    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11185                                        E = MD->end_overridden_methods();
11186         I != E; ++I) {
11187      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11188        if (!IssuedDiagnostic) {
11189          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11190          IssuedDiagnostic = true;
11191        }
11192        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11193      }
11194    }
11195  }
11196
11197  Fn->setDeletedAsWritten();
11198}
11199
11200void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11201  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11202
11203  if (MD) {
11204    if (MD->getParent()->isDependentType()) {
11205      MD->setDefaulted();
11206      MD->setExplicitlyDefaulted();
11207      return;
11208    }
11209
11210    CXXSpecialMember Member = getSpecialMember(MD);
11211    if (Member == CXXInvalid) {
11212      Diag(DefaultLoc, diag::err_default_special_members);
11213      return;
11214    }
11215
11216    MD->setDefaulted();
11217    MD->setExplicitlyDefaulted();
11218
11219    // If this definition appears within the record, do the checking when
11220    // the record is complete.
11221    const FunctionDecl *Primary = MD;
11222    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11223      // Find the uninstantiated declaration that actually had the '= default'
11224      // on it.
11225      Pattern->isDefined(Primary);
11226
11227    // If the method was defaulted on its first declaration, we will have
11228    // already performed the checking in CheckCompletedCXXClass. Such a
11229    // declaration doesn't trigger an implicit definition.
11230    if (Primary == Primary->getCanonicalDecl())
11231      return;
11232
11233    CheckExplicitlyDefaultedSpecialMember(MD);
11234
11235    // The exception specification is needed because we are defining the
11236    // function.
11237    ResolveExceptionSpec(DefaultLoc,
11238                         MD->getType()->castAs<FunctionProtoType>());
11239
11240    switch (Member) {
11241    case CXXDefaultConstructor: {
11242      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11243      if (!CD->isInvalidDecl())
11244        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11245      break;
11246    }
11247
11248    case CXXCopyConstructor: {
11249      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11250      if (!CD->isInvalidDecl())
11251        DefineImplicitCopyConstructor(DefaultLoc, CD);
11252      break;
11253    }
11254
11255    case CXXCopyAssignment: {
11256      if (!MD->isInvalidDecl())
11257        DefineImplicitCopyAssignment(DefaultLoc, MD);
11258      break;
11259    }
11260
11261    case CXXDestructor: {
11262      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11263      if (!DD->isInvalidDecl())
11264        DefineImplicitDestructor(DefaultLoc, DD);
11265      break;
11266    }
11267
11268    case CXXMoveConstructor: {
11269      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11270      if (!CD->isInvalidDecl())
11271        DefineImplicitMoveConstructor(DefaultLoc, CD);
11272      break;
11273    }
11274
11275    case CXXMoveAssignment: {
11276      if (!MD->isInvalidDecl())
11277        DefineImplicitMoveAssignment(DefaultLoc, MD);
11278      break;
11279    }
11280
11281    case CXXInvalid:
11282      llvm_unreachable("Invalid special member.");
11283    }
11284  } else {
11285    Diag(DefaultLoc, diag::err_default_special_members);
11286  }
11287}
11288
11289static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11290  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11291    Stmt *SubStmt = *CI;
11292    if (!SubStmt)
11293      continue;
11294    if (isa<ReturnStmt>(SubStmt))
11295      Self.Diag(SubStmt->getLocStart(),
11296           diag::err_return_in_constructor_handler);
11297    if (!isa<Expr>(SubStmt))
11298      SearchForReturnInStmt(Self, SubStmt);
11299  }
11300}
11301
11302void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11303  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11304    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11305    SearchForReturnInStmt(*this, Handler);
11306  }
11307}
11308
11309bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11310                                             const CXXMethodDecl *Old) {
11311  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11312  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11313
11314  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11315
11316  // If the calling conventions match, everything is fine
11317  if (NewCC == OldCC)
11318    return false;
11319
11320  // If either of the calling conventions are set to "default", we need to pick
11321  // something more sensible based on the target. This supports code where the
11322  // one method explicitly sets thiscall, and another has no explicit calling
11323  // convention.
11324  CallingConv Default =
11325    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11326  if (NewCC == CC_Default)
11327    NewCC = Default;
11328  if (OldCC == CC_Default)
11329    OldCC = Default;
11330
11331  // If the calling conventions still don't match, then report the error
11332  if (NewCC != OldCC) {
11333    Diag(New->getLocation(),
11334         diag::err_conflicting_overriding_cc_attributes)
11335      << New->getDeclName() << New->getType() << Old->getType();
11336    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11337    return true;
11338  }
11339
11340  return false;
11341}
11342
11343bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11344                                             const CXXMethodDecl *Old) {
11345  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11346  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11347
11348  if (Context.hasSameType(NewTy, OldTy) ||
11349      NewTy->isDependentType() || OldTy->isDependentType())
11350    return false;
11351
11352  // Check if the return types are covariant
11353  QualType NewClassTy, OldClassTy;
11354
11355  /// Both types must be pointers or references to classes.
11356  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11357    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11358      NewClassTy = NewPT->getPointeeType();
11359      OldClassTy = OldPT->getPointeeType();
11360    }
11361  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11362    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11363      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11364        NewClassTy = NewRT->getPointeeType();
11365        OldClassTy = OldRT->getPointeeType();
11366      }
11367    }
11368  }
11369
11370  // The return types aren't either both pointers or references to a class type.
11371  if (NewClassTy.isNull()) {
11372    Diag(New->getLocation(),
11373         diag::err_different_return_type_for_overriding_virtual_function)
11374      << New->getDeclName() << NewTy << OldTy;
11375    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11376
11377    return true;
11378  }
11379
11380  // C++ [class.virtual]p6:
11381  //   If the return type of D::f differs from the return type of B::f, the
11382  //   class type in the return type of D::f shall be complete at the point of
11383  //   declaration of D::f or shall be the class type D.
11384  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11385    if (!RT->isBeingDefined() &&
11386        RequireCompleteType(New->getLocation(), NewClassTy,
11387                            diag::err_covariant_return_incomplete,
11388                            New->getDeclName()))
11389    return true;
11390  }
11391
11392  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11393    // Check if the new class derives from the old class.
11394    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11395      Diag(New->getLocation(),
11396           diag::err_covariant_return_not_derived)
11397      << New->getDeclName() << NewTy << OldTy;
11398      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11399      return true;
11400    }
11401
11402    // Check if we the conversion from derived to base is valid.
11403    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11404                    diag::err_covariant_return_inaccessible_base,
11405                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11406                    // FIXME: Should this point to the return type?
11407                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11408      // FIXME: this note won't trigger for delayed access control
11409      // diagnostics, and it's impossible to get an undelayed error
11410      // here from access control during the original parse because
11411      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11412      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11413      return true;
11414    }
11415  }
11416
11417  // The qualifiers of the return types must be the same.
11418  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11419    Diag(New->getLocation(),
11420         diag::err_covariant_return_type_different_qualifications)
11421    << New->getDeclName() << NewTy << OldTy;
11422    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11423    return true;
11424  };
11425
11426
11427  // The new class type must have the same or less qualifiers as the old type.
11428  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11429    Diag(New->getLocation(),
11430         diag::err_covariant_return_type_class_type_more_qualified)
11431    << New->getDeclName() << NewTy << OldTy;
11432    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11433    return true;
11434  };
11435
11436  return false;
11437}
11438
11439/// \brief Mark the given method pure.
11440///
11441/// \param Method the method to be marked pure.
11442///
11443/// \param InitRange the source range that covers the "0" initializer.
11444bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11445  SourceLocation EndLoc = InitRange.getEnd();
11446  if (EndLoc.isValid())
11447    Method->setRangeEnd(EndLoc);
11448
11449  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11450    Method->setPure();
11451    return false;
11452  }
11453
11454  if (!Method->isInvalidDecl())
11455    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11456      << Method->getDeclName() << InitRange;
11457  return true;
11458}
11459
11460/// \brief Determine whether the given declaration is a static data member.
11461static bool isStaticDataMember(Decl *D) {
11462  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11463  if (!Var)
11464    return false;
11465
11466  return Var->isStaticDataMember();
11467}
11468/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11469/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11470/// is a fresh scope pushed for just this purpose.
11471///
11472/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11473/// static data member of class X, names should be looked up in the scope of
11474/// class X.
11475void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11476  // If there is no declaration, there was an error parsing it.
11477  if (D == 0 || D->isInvalidDecl()) return;
11478
11479  // We should only get called for declarations with scope specifiers, like:
11480  //   int foo::bar;
11481  assert(D->isOutOfLine());
11482  EnterDeclaratorContext(S, D->getDeclContext());
11483
11484  // If we are parsing the initializer for a static data member, push a
11485  // new expression evaluation context that is associated with this static
11486  // data member.
11487  if (isStaticDataMember(D))
11488    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11489}
11490
11491/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11492/// initializer for the out-of-line declaration 'D'.
11493void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11494  // If there is no declaration, there was an error parsing it.
11495  if (D == 0 || D->isInvalidDecl()) return;
11496
11497  if (isStaticDataMember(D))
11498    PopExpressionEvaluationContext();
11499
11500  assert(D->isOutOfLine());
11501  ExitDeclaratorContext(S);
11502}
11503
11504/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11505/// C++ if/switch/while/for statement.
11506/// e.g: "if (int x = f()) {...}"
11507DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11508  // C++ 6.4p2:
11509  // The declarator shall not specify a function or an array.
11510  // The type-specifier-seq shall not contain typedef and shall not declare a
11511  // new class or enumeration.
11512  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11513         "Parser allowed 'typedef' as storage class of condition decl.");
11514
11515  Decl *Dcl = ActOnDeclarator(S, D);
11516  if (!Dcl)
11517    return true;
11518
11519  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11520    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11521      << D.getSourceRange();
11522    return true;
11523  }
11524
11525  return Dcl;
11526}
11527
11528void Sema::LoadExternalVTableUses() {
11529  if (!ExternalSource)
11530    return;
11531
11532  SmallVector<ExternalVTableUse, 4> VTables;
11533  ExternalSource->ReadUsedVTables(VTables);
11534  SmallVector<VTableUse, 4> NewUses;
11535  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11536    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11537      = VTablesUsed.find(VTables[I].Record);
11538    // Even if a definition wasn't required before, it may be required now.
11539    if (Pos != VTablesUsed.end()) {
11540      if (!Pos->second && VTables[I].DefinitionRequired)
11541        Pos->second = true;
11542      continue;
11543    }
11544
11545    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11546    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11547  }
11548
11549  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11550}
11551
11552void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11553                          bool DefinitionRequired) {
11554  // Ignore any vtable uses in unevaluated operands or for classes that do
11555  // not have a vtable.
11556  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11557      CurContext->isDependentContext() ||
11558      ExprEvalContexts.back().Context == Unevaluated)
11559    return;
11560
11561  // Try to insert this class into the map.
11562  LoadExternalVTableUses();
11563  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11564  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11565    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11566  if (!Pos.second) {
11567    // If we already had an entry, check to see if we are promoting this vtable
11568    // to required a definition. If so, we need to reappend to the VTableUses
11569    // list, since we may have already processed the first entry.
11570    if (DefinitionRequired && !Pos.first->second) {
11571      Pos.first->second = true;
11572    } else {
11573      // Otherwise, we can early exit.
11574      return;
11575    }
11576  }
11577
11578  // Local classes need to have their virtual members marked
11579  // immediately. For all other classes, we mark their virtual members
11580  // at the end of the translation unit.
11581  if (Class->isLocalClass())
11582    MarkVirtualMembersReferenced(Loc, Class);
11583  else
11584    VTableUses.push_back(std::make_pair(Class, Loc));
11585}
11586
11587bool Sema::DefineUsedVTables() {
11588  LoadExternalVTableUses();
11589  if (VTableUses.empty())
11590    return false;
11591
11592  // Note: The VTableUses vector could grow as a result of marking
11593  // the members of a class as "used", so we check the size each
11594  // time through the loop and prefer indices (which are stable) to
11595  // iterators (which are not).
11596  bool DefinedAnything = false;
11597  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11598    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11599    if (!Class)
11600      continue;
11601
11602    SourceLocation Loc = VTableUses[I].second;
11603
11604    bool DefineVTable = true;
11605
11606    // If this class has a key function, but that key function is
11607    // defined in another translation unit, we don't need to emit the
11608    // vtable even though we're using it.
11609    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11610    if (KeyFunction && !KeyFunction->hasBody()) {
11611      switch (KeyFunction->getTemplateSpecializationKind()) {
11612      case TSK_Undeclared:
11613      case TSK_ExplicitSpecialization:
11614      case TSK_ExplicitInstantiationDeclaration:
11615        // The key function is in another translation unit.
11616        DefineVTable = false;
11617        break;
11618
11619      case TSK_ExplicitInstantiationDefinition:
11620      case TSK_ImplicitInstantiation:
11621        // We will be instantiating the key function.
11622        break;
11623      }
11624    } else if (!KeyFunction) {
11625      // If we have a class with no key function that is the subject
11626      // of an explicit instantiation declaration, suppress the
11627      // vtable; it will live with the explicit instantiation
11628      // definition.
11629      bool IsExplicitInstantiationDeclaration
11630        = Class->getTemplateSpecializationKind()
11631                                      == TSK_ExplicitInstantiationDeclaration;
11632      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11633                                 REnd = Class->redecls_end();
11634           R != REnd; ++R) {
11635        TemplateSpecializationKind TSK
11636          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11637        if (TSK == TSK_ExplicitInstantiationDeclaration)
11638          IsExplicitInstantiationDeclaration = true;
11639        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11640          IsExplicitInstantiationDeclaration = false;
11641          break;
11642        }
11643      }
11644
11645      if (IsExplicitInstantiationDeclaration)
11646        DefineVTable = false;
11647    }
11648
11649    // The exception specifications for all virtual members may be needed even
11650    // if we are not providing an authoritative form of the vtable in this TU.
11651    // We may choose to emit it available_externally anyway.
11652    if (!DefineVTable) {
11653      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11654      continue;
11655    }
11656
11657    // Mark all of the virtual members of this class as referenced, so
11658    // that we can build a vtable. Then, tell the AST consumer that a
11659    // vtable for this class is required.
11660    DefinedAnything = true;
11661    MarkVirtualMembersReferenced(Loc, Class);
11662    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11663    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11664
11665    // Optionally warn if we're emitting a weak vtable.
11666    if (Class->hasExternalLinkage() &&
11667        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11668      const FunctionDecl *KeyFunctionDef = 0;
11669      if (!KeyFunction ||
11670          (KeyFunction->hasBody(KeyFunctionDef) &&
11671           KeyFunctionDef->isInlined()))
11672        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11673             TSK_ExplicitInstantiationDefinition
11674             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11675          << Class;
11676    }
11677  }
11678  VTableUses.clear();
11679
11680  return DefinedAnything;
11681}
11682
11683void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11684                                                 const CXXRecordDecl *RD) {
11685  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11686                                      E = RD->method_end(); I != E; ++I)
11687    if ((*I)->isVirtual() && !(*I)->isPure())
11688      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11689}
11690
11691void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11692                                        const CXXRecordDecl *RD) {
11693  // Mark all functions which will appear in RD's vtable as used.
11694  CXXFinalOverriderMap FinalOverriders;
11695  RD->getFinalOverriders(FinalOverriders);
11696  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11697                                            E = FinalOverriders.end();
11698       I != E; ++I) {
11699    for (OverridingMethods::const_iterator OI = I->second.begin(),
11700                                           OE = I->second.end();
11701         OI != OE; ++OI) {
11702      assert(OI->second.size() > 0 && "no final overrider");
11703      CXXMethodDecl *Overrider = OI->second.front().Method;
11704
11705      // C++ [basic.def.odr]p2:
11706      //   [...] A virtual member function is used if it is not pure. [...]
11707      if (!Overrider->isPure())
11708        MarkFunctionReferenced(Loc, Overrider);
11709    }
11710  }
11711
11712  // Only classes that have virtual bases need a VTT.
11713  if (RD->getNumVBases() == 0)
11714    return;
11715
11716  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11717           e = RD->bases_end(); i != e; ++i) {
11718    const CXXRecordDecl *Base =
11719        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11720    if (Base->getNumVBases() == 0)
11721      continue;
11722    MarkVirtualMembersReferenced(Loc, Base);
11723  }
11724}
11725
11726/// SetIvarInitializers - This routine builds initialization ASTs for the
11727/// Objective-C implementation whose ivars need be initialized.
11728void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11729  if (!getLangOpts().CPlusPlus)
11730    return;
11731  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11732    SmallVector<ObjCIvarDecl*, 8> ivars;
11733    CollectIvarsToConstructOrDestruct(OID, ivars);
11734    if (ivars.empty())
11735      return;
11736    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11737    for (unsigned i = 0; i < ivars.size(); i++) {
11738      FieldDecl *Field = ivars[i];
11739      if (Field->isInvalidDecl())
11740        continue;
11741
11742      CXXCtorInitializer *Member;
11743      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11744      InitializationKind InitKind =
11745        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11746
11747      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11748      ExprResult MemberInit =
11749        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11750      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11751      // Note, MemberInit could actually come back empty if no initialization
11752      // is required (e.g., because it would call a trivial default constructor)
11753      if (!MemberInit.get() || MemberInit.isInvalid())
11754        continue;
11755
11756      Member =
11757        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11758                                         SourceLocation(),
11759                                         MemberInit.takeAs<Expr>(),
11760                                         SourceLocation());
11761      AllToInit.push_back(Member);
11762
11763      // Be sure that the destructor is accessible and is marked as referenced.
11764      if (const RecordType *RecordTy
11765                  = Context.getBaseElementType(Field->getType())
11766                                                        ->getAs<RecordType>()) {
11767                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11768        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11769          MarkFunctionReferenced(Field->getLocation(), Destructor);
11770          CheckDestructorAccess(Field->getLocation(), Destructor,
11771                            PDiag(diag::err_access_dtor_ivar)
11772                              << Context.getBaseElementType(Field->getType()));
11773        }
11774      }
11775    }
11776    ObjCImplementation->setIvarInitializers(Context,
11777                                            AllToInit.data(), AllToInit.size());
11778  }
11779}
11780
11781static
11782void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11783                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11784                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11785                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11786                           Sema &S) {
11787  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11788                                                   CE = Current.end();
11789  if (Ctor->isInvalidDecl())
11790    return;
11791
11792  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11793
11794  // Target may not be determinable yet, for instance if this is a dependent
11795  // call in an uninstantiated template.
11796  if (Target) {
11797    const FunctionDecl *FNTarget = 0;
11798    (void)Target->hasBody(FNTarget);
11799    Target = const_cast<CXXConstructorDecl*>(
11800      cast_or_null<CXXConstructorDecl>(FNTarget));
11801  }
11802
11803  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11804                     // Avoid dereferencing a null pointer here.
11805                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11806
11807  if (!Current.insert(Canonical))
11808    return;
11809
11810  // We know that beyond here, we aren't chaining into a cycle.
11811  if (!Target || !Target->isDelegatingConstructor() ||
11812      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11813    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11814      Valid.insert(*CI);
11815    Current.clear();
11816  // We've hit a cycle.
11817  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11818             Current.count(TCanonical)) {
11819    // If we haven't diagnosed this cycle yet, do so now.
11820    if (!Invalid.count(TCanonical)) {
11821      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11822             diag::warn_delegating_ctor_cycle)
11823        << Ctor;
11824
11825      // Don't add a note for a function delegating directly to itself.
11826      if (TCanonical != Canonical)
11827        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11828
11829      CXXConstructorDecl *C = Target;
11830      while (C->getCanonicalDecl() != Canonical) {
11831        const FunctionDecl *FNTarget = 0;
11832        (void)C->getTargetConstructor()->hasBody(FNTarget);
11833        assert(FNTarget && "Ctor cycle through bodiless function");
11834
11835        C = const_cast<CXXConstructorDecl*>(
11836          cast<CXXConstructorDecl>(FNTarget));
11837        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11838      }
11839    }
11840
11841    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11842      Invalid.insert(*CI);
11843    Current.clear();
11844  } else {
11845    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11846  }
11847}
11848
11849
11850void Sema::CheckDelegatingCtorCycles() {
11851  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11852
11853  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11854                                                   CE = Current.end();
11855
11856  for (DelegatingCtorDeclsType::iterator
11857         I = DelegatingCtorDecls.begin(ExternalSource),
11858         E = DelegatingCtorDecls.end();
11859       I != E; ++I)
11860    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11861
11862  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11863    (*CI)->setInvalidDecl();
11864}
11865
11866namespace {
11867  /// \brief AST visitor that finds references to the 'this' expression.
11868  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11869    Sema &S;
11870
11871  public:
11872    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11873
11874    bool VisitCXXThisExpr(CXXThisExpr *E) {
11875      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11876        << E->isImplicit();
11877      return false;
11878    }
11879  };
11880}
11881
11882bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11883  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11884  if (!TSInfo)
11885    return false;
11886
11887  TypeLoc TL = TSInfo->getTypeLoc();
11888  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11889  if (!ProtoTL)
11890    return false;
11891
11892  // C++11 [expr.prim.general]p3:
11893  //   [The expression this] shall not appear before the optional
11894  //   cv-qualifier-seq and it shall not appear within the declaration of a
11895  //   static member function (although its type and value category are defined
11896  //   within a static member function as they are within a non-static member
11897  //   function). [ Note: this is because declaration matching does not occur
11898  //  until the complete declarator is known. - end note ]
11899  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11900  FindCXXThisExpr Finder(*this);
11901
11902  // If the return type came after the cv-qualifier-seq, check it now.
11903  if (Proto->hasTrailingReturn() &&
11904      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
11905    return true;
11906
11907  // Check the exception specification.
11908  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11909    return true;
11910
11911  return checkThisInStaticMemberFunctionAttributes(Method);
11912}
11913
11914bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11915  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11916  if (!TSInfo)
11917    return false;
11918
11919  TypeLoc TL = TSInfo->getTypeLoc();
11920  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11921  if (!ProtoTL)
11922    return false;
11923
11924  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11925  FindCXXThisExpr Finder(*this);
11926
11927  switch (Proto->getExceptionSpecType()) {
11928  case EST_Uninstantiated:
11929  case EST_Unevaluated:
11930  case EST_BasicNoexcept:
11931  case EST_DynamicNone:
11932  case EST_MSAny:
11933  case EST_None:
11934    break;
11935
11936  case EST_ComputedNoexcept:
11937    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11938      return true;
11939
11940  case EST_Dynamic:
11941    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11942         EEnd = Proto->exception_end();
11943         E != EEnd; ++E) {
11944      if (!Finder.TraverseType(*E))
11945        return true;
11946    }
11947    break;
11948  }
11949
11950  return false;
11951}
11952
11953bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11954  FindCXXThisExpr Finder(*this);
11955
11956  // Check attributes.
11957  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11958       A != AEnd; ++A) {
11959    // FIXME: This should be emitted by tblgen.
11960    Expr *Arg = 0;
11961    ArrayRef<Expr *> Args;
11962    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11963      Arg = G->getArg();
11964    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11965      Arg = G->getArg();
11966    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11967      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11968    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11969      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11970    else if (ExclusiveLockFunctionAttr *ELF
11971               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11972      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11973    else if (SharedLockFunctionAttr *SLF
11974               = dyn_cast<SharedLockFunctionAttr>(*A))
11975      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11976    else if (ExclusiveTrylockFunctionAttr *ETLF
11977               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11978      Arg = ETLF->getSuccessValue();
11979      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11980    } else if (SharedTrylockFunctionAttr *STLF
11981                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11982      Arg = STLF->getSuccessValue();
11983      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11984    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11985      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11986    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11987      Arg = LR->getArg();
11988    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11989      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11990    else if (ExclusiveLocksRequiredAttr *ELR
11991               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11992      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11993    else if (SharedLocksRequiredAttr *SLR
11994               = dyn_cast<SharedLocksRequiredAttr>(*A))
11995      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11996
11997    if (Arg && !Finder.TraverseStmt(Arg))
11998      return true;
11999
12000    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12001      if (!Finder.TraverseStmt(Args[I]))
12002        return true;
12003    }
12004  }
12005
12006  return false;
12007}
12008
12009void
12010Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12011                                  ArrayRef<ParsedType> DynamicExceptions,
12012                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12013                                  Expr *NoexceptExpr,
12014                                  SmallVectorImpl<QualType> &Exceptions,
12015                                  FunctionProtoType::ExtProtoInfo &EPI) {
12016  Exceptions.clear();
12017  EPI.ExceptionSpecType = EST;
12018  if (EST == EST_Dynamic) {
12019    Exceptions.reserve(DynamicExceptions.size());
12020    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12021      // FIXME: Preserve type source info.
12022      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12023
12024      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12025      collectUnexpandedParameterPacks(ET, Unexpanded);
12026      if (!Unexpanded.empty()) {
12027        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12028                                         UPPC_ExceptionType,
12029                                         Unexpanded);
12030        continue;
12031      }
12032
12033      // Check that the type is valid for an exception spec, and
12034      // drop it if not.
12035      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12036        Exceptions.push_back(ET);
12037    }
12038    EPI.NumExceptions = Exceptions.size();
12039    EPI.Exceptions = Exceptions.data();
12040    return;
12041  }
12042
12043  if (EST == EST_ComputedNoexcept) {
12044    // If an error occurred, there's no expression here.
12045    if (NoexceptExpr) {
12046      assert((NoexceptExpr->isTypeDependent() ||
12047              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12048              Context.BoolTy) &&
12049             "Parser should have made sure that the expression is boolean");
12050      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12051        EPI.ExceptionSpecType = EST_BasicNoexcept;
12052        return;
12053      }
12054
12055      if (!NoexceptExpr->isValueDependent())
12056        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12057                         diag::err_noexcept_needs_constant_expression,
12058                         /*AllowFold*/ false).take();
12059      EPI.NoexceptExpr = NoexceptExpr;
12060    }
12061    return;
12062  }
12063}
12064
12065/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12066Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12067  // Implicitly declared functions (e.g. copy constructors) are
12068  // __host__ __device__
12069  if (D->isImplicit())
12070    return CFT_HostDevice;
12071
12072  if (D->hasAttr<CUDAGlobalAttr>())
12073    return CFT_Global;
12074
12075  if (D->hasAttr<CUDADeviceAttr>()) {
12076    if (D->hasAttr<CUDAHostAttr>())
12077      return CFT_HostDevice;
12078    else
12079      return CFT_Device;
12080  }
12081
12082  return CFT_Host;
12083}
12084
12085bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12086                           CUDAFunctionTarget CalleeTarget) {
12087  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12088  // Callable from the device only."
12089  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12090    return true;
12091
12092  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12093  // Callable from the host only."
12094  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12095  // Callable from the host only."
12096  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12097      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12098    return true;
12099
12100  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12101    return true;
12102
12103  return false;
12104}
12105