SemaDeclCXX.cpp revision 0d9106fc97cde979a995e26b18bcd2643f8afb55
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (KnownBaseTypes[NewBaseType]) {
766      // C++ [class.mi]p3:
767      //   A class shall not be specified as a direct base class of a
768      //   derived class more than once.
769      Diag(Bases[idx]->getSourceRange().getBegin(),
770           diag::err_duplicate_base_class)
771        << KnownBaseTypes[NewBaseType]->getType()
772        << Bases[idx]->getSourceRange();
773
774      // Delete the duplicate base class specifier; we're going to
775      // overwrite its pointer later.
776      Context.Deallocate(Bases[idx]);
777
778      Invalid = true;
779    } else {
780      // Okay, add this new base class.
781      KnownBaseTypes[NewBaseType] = Bases[idx];
782      Bases[NumGoodBases++] = Bases[idx];
783    }
784  }
785
786  // Attach the remaining base class specifiers to the derived class.
787  Class->setBases(Bases, NumGoodBases);
788
789  // Delete the remaining (good) base class specifiers, since their
790  // data has been copied into the CXXRecordDecl.
791  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792    Context.Deallocate(Bases[idx]);
793
794  return Invalid;
795}
796
797/// ActOnBaseSpecifiers - Attach the given base specifiers to the
798/// class, after checking whether there are any duplicate base
799/// classes.
800void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                               unsigned NumBases) {
802  if (!ClassDecl || !Bases || !NumBases)
803    return;
804
805  AdjustDeclIfTemplate(ClassDecl);
806  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                       (CXXBaseSpecifier**)(Bases), NumBases);
808}
809
810static CXXRecordDecl *GetClassForType(QualType T) {
811  if (const RecordType *RT = T->getAs<RecordType>())
812    return cast<CXXRecordDecl>(RT->getDecl());
813  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814    return ICT->getDecl();
815  else
816    return 0;
817}
818
819/// \brief Determine whether the type \p Derived is a C++ class that is
820/// derived from the type \p Base.
821bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822  if (!getLangOptions().CPlusPlus)
823    return false;
824
825  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826  if (!DerivedRD)
827    return false;
828
829  CXXRecordDecl *BaseRD = GetClassForType(Base);
830  if (!BaseRD)
831    return false;
832
833  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835}
836
837/// \brief Determine whether the type \p Derived is a C++ class that is
838/// derived from the type \p Base.
839bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844  if (!DerivedRD)
845    return false;
846
847  CXXRecordDecl *BaseRD = GetClassForType(Base);
848  if (!BaseRD)
849    return false;
850
851  return DerivedRD->isDerivedFrom(BaseRD, Paths);
852}
853
854void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                              CXXCastPath &BasePathArray) {
856  assert(BasePathArray.empty() && "Base path array must be empty!");
857  assert(Paths.isRecordingPaths() && "Must record paths!");
858
859  const CXXBasePath &Path = Paths.front();
860
861  // We first go backward and check if we have a virtual base.
862  // FIXME: It would be better if CXXBasePath had the base specifier for
863  // the nearest virtual base.
864  unsigned Start = 0;
865  for (unsigned I = Path.size(); I != 0; --I) {
866    if (Path[I - 1].Base->isVirtual()) {
867      Start = I - 1;
868      break;
869    }
870  }
871
872  // Now add all bases.
873  for (unsigned I = Start, E = Path.size(); I != E; ++I)
874    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875}
876
877/// \brief Determine whether the given base path includes a virtual
878/// base class.
879bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880  for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                BEnd = BasePath.end();
882       B != BEnd; ++B)
883    if ((*B)->isVirtual())
884      return true;
885
886  return false;
887}
888
889/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890/// conversion (where Derived and Base are class types) is
891/// well-formed, meaning that the conversion is unambiguous (and
892/// that all of the base classes are accessible). Returns true
893/// and emits a diagnostic if the code is ill-formed, returns false
894/// otherwise. Loc is the location where this routine should point to
895/// if there is an error, and Range is the source range to highlight
896/// if there is an error.
897bool
898Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                   unsigned InaccessibleBaseID,
900                                   unsigned AmbigiousBaseConvID,
901                                   SourceLocation Loc, SourceRange Range,
902                                   DeclarationName Name,
903                                   CXXCastPath *BasePath) {
904  // First, determine whether the path from Derived to Base is
905  // ambiguous. This is slightly more expensive than checking whether
906  // the Derived to Base conversion exists, because here we need to
907  // explore multiple paths to determine if there is an ambiguity.
908  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                     /*DetectVirtual=*/false);
910  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911  assert(DerivationOkay &&
912         "Can only be used with a derived-to-base conversion");
913  (void)DerivationOkay;
914
915  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916    if (InaccessibleBaseID) {
917      // Check that the base class can be accessed.
918      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                   InaccessibleBaseID)) {
920        case AR_inaccessible:
921          return true;
922        case AR_accessible:
923        case AR_dependent:
924        case AR_delayed:
925          break;
926      }
927    }
928
929    // Build a base path if necessary.
930    if (BasePath)
931      BuildBasePathArray(Paths, *BasePath);
932    return false;
933  }
934
935  // We know that the derived-to-base conversion is ambiguous, and
936  // we're going to produce a diagnostic. Perform the derived-to-base
937  // search just one more time to compute all of the possible paths so
938  // that we can print them out. This is more expensive than any of
939  // the previous derived-to-base checks we've done, but at this point
940  // performance isn't as much of an issue.
941  Paths.clear();
942  Paths.setRecordingPaths(true);
943  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944  assert(StillOkay && "Can only be used with a derived-to-base conversion");
945  (void)StillOkay;
946
947  // Build up a textual representation of the ambiguous paths, e.g.,
948  // D -> B -> A, that will be used to illustrate the ambiguous
949  // conversions in the diagnostic. We only print one of the paths
950  // to each base class subobject.
951  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952
953  Diag(Loc, AmbigiousBaseConvID)
954  << Derived << Base << PathDisplayStr << Range << Name;
955  return true;
956}
957
958bool
959Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                   SourceLocation Loc, SourceRange Range,
961                                   CXXCastPath *BasePath,
962                                   bool IgnoreAccess) {
963  return CheckDerivedToBaseConversion(Derived, Base,
964                                      IgnoreAccess ? 0
965                                       : diag::err_upcast_to_inaccessible_base,
966                                      diag::err_ambiguous_derived_to_base_conv,
967                                      Loc, Range, DeclarationName(),
968                                      BasePath);
969}
970
971
972/// @brief Builds a string representing ambiguous paths from a
973/// specific derived class to different subobjects of the same base
974/// class.
975///
976/// This function builds a string that can be used in error messages
977/// to show the different paths that one can take through the
978/// inheritance hierarchy to go from the derived class to different
979/// subobjects of a base class. The result looks something like this:
980/// @code
981/// struct D -> struct B -> struct A
982/// struct D -> struct C -> struct A
983/// @endcode
984std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985  std::string PathDisplayStr;
986  std::set<unsigned> DisplayedPaths;
987  for (CXXBasePaths::paths_iterator Path = Paths.begin();
988       Path != Paths.end(); ++Path) {
989    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990      // We haven't displayed a path to this particular base
991      // class subobject yet.
992      PathDisplayStr += "\n    ";
993      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994      for (CXXBasePath::const_iterator Element = Path->begin();
995           Element != Path->end(); ++Element)
996        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997    }
998  }
999
1000  return PathDisplayStr;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// C++ class member Handling
1005//===----------------------------------------------------------------------===//
1006
1007/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1008Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                 SourceLocation ASLoc,
1010                                 SourceLocation ColonLoc) {
1011  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                  ASLoc, ColonLoc);
1014  CurContext->addHiddenDecl(ASDecl);
1015  return ASDecl;
1016}
1017
1018/// CheckOverrideControl - Check C++0x override control semantics.
1019void Sema::CheckOverrideControl(const Decl *D) {
1020  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
1021  if (!MD || !MD->isVirtual())
1022    return;
1023
1024  if (MD->isDependentContext())
1025    return;
1026
1027  // C++0x [class.virtual]p3:
1028  //   If a virtual function is marked with the virt-specifier override and does
1029  //   not override a member function of a base class,
1030  //   the program is ill-formed.
1031  bool HasOverriddenMethods =
1032    MD->begin_overridden_methods() != MD->end_overridden_methods();
1033  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034    Diag(MD->getLocation(),
1035                 diag::err_function_marked_override_not_overriding)
1036      << MD->getDeclName();
1037    return;
1038  }
1039}
1040
1041/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042/// function overrides a virtual member function marked 'final', according to
1043/// C++0x [class.virtual]p3.
1044bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                  const CXXMethodDecl *Old) {
1046  if (!Old->hasAttr<FinalAttr>())
1047    return false;
1048
1049  Diag(New->getLocation(), diag::err_final_function_overridden)
1050    << New->getDeclName();
1051  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052  return true;
1053}
1054
1055/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059/// present but parsing it has been deferred.
1060Decl *
1061Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                               MultiTemplateParamsArg TemplateParameterLists,
1063                               ExprTy *BW, const VirtSpecifiers &VS,
1064                               ExprTy *InitExpr, bool HasDeferredInit,
1065                               bool IsDefinition) {
1066  const DeclSpec &DS = D.getDeclSpec();
1067  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068  DeclarationName Name = NameInfo.getName();
1069  SourceLocation Loc = NameInfo.getLoc();
1070
1071  // For anonymous bitfields, the location should point to the type.
1072  if (Loc.isInvalid())
1073    Loc = D.getSourceRange().getBegin();
1074
1075  Expr *BitWidth = static_cast<Expr*>(BW);
1076  Expr *Init = static_cast<Expr*>(InitExpr);
1077
1078  assert(isa<CXXRecordDecl>(CurContext));
1079  assert(!DS.isFriendSpecified());
1080  assert(!Init || !HasDeferredInit);
1081
1082  bool isFunc = false;
1083  if (D.isFunctionDeclarator())
1084    isFunc = true;
1085  else if (D.getNumTypeObjects() == 0 &&
1086           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1087    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1088    isFunc = TDType->isFunctionType();
1089  }
1090
1091  // C++ 9.2p6: A member shall not be declared to have automatic storage
1092  // duration (auto, register) or with the extern storage-class-specifier.
1093  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1094  // data members and cannot be applied to names declared const or static,
1095  // and cannot be applied to reference members.
1096  switch (DS.getStorageClassSpec()) {
1097    case DeclSpec::SCS_unspecified:
1098    case DeclSpec::SCS_typedef:
1099    case DeclSpec::SCS_static:
1100      // FALL THROUGH.
1101      break;
1102    case DeclSpec::SCS_mutable:
1103      if (isFunc) {
1104        if (DS.getStorageClassSpecLoc().isValid())
1105          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1106        else
1107          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1108
1109        // FIXME: It would be nicer if the keyword was ignored only for this
1110        // declarator. Otherwise we could get follow-up errors.
1111        D.getMutableDeclSpec().ClearStorageClassSpecs();
1112      }
1113      break;
1114    default:
1115      if (DS.getStorageClassSpecLoc().isValid())
1116        Diag(DS.getStorageClassSpecLoc(),
1117             diag::err_storageclass_invalid_for_member);
1118      else
1119        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1120      D.getMutableDeclSpec().ClearStorageClassSpecs();
1121  }
1122
1123  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1124                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1125                      !isFunc);
1126
1127  Decl *Member;
1128  if (isInstField) {
1129    CXXScopeSpec &SS = D.getCXXScopeSpec();
1130
1131    if (SS.isSet() && !SS.isInvalid()) {
1132      // The user provided a superfluous scope specifier inside a class
1133      // definition:
1134      //
1135      // class X {
1136      //   int X::member;
1137      // };
1138      DeclContext *DC = 0;
1139      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1140        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1141        << Name << FixItHint::CreateRemoval(SS.getRange());
1142      else
1143        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1144          << Name << SS.getRange();
1145
1146      SS.clear();
1147    }
1148
1149    // FIXME: Check for template parameters!
1150    // FIXME: Check that the name is an identifier!
1151    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1152                         HasDeferredInit, AS);
1153    assert(Member && "HandleField never returns null");
1154  } else {
1155    assert(!HasDeferredInit);
1156
1157    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1158    if (!Member) {
1159      return 0;
1160    }
1161
1162    // Non-instance-fields can't have a bitfield.
1163    if (BitWidth) {
1164      if (Member->isInvalidDecl()) {
1165        // don't emit another diagnostic.
1166      } else if (isa<VarDecl>(Member)) {
1167        // C++ 9.6p3: A bit-field shall not be a static member.
1168        // "static member 'A' cannot be a bit-field"
1169        Diag(Loc, diag::err_static_not_bitfield)
1170          << Name << BitWidth->getSourceRange();
1171      } else if (isa<TypedefDecl>(Member)) {
1172        // "typedef member 'x' cannot be a bit-field"
1173        Diag(Loc, diag::err_typedef_not_bitfield)
1174          << Name << BitWidth->getSourceRange();
1175      } else {
1176        // A function typedef ("typedef int f(); f a;").
1177        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1178        Diag(Loc, diag::err_not_integral_type_bitfield)
1179          << Name << cast<ValueDecl>(Member)->getType()
1180          << BitWidth->getSourceRange();
1181      }
1182
1183      BitWidth = 0;
1184      Member->setInvalidDecl();
1185    }
1186
1187    Member->setAccess(AS);
1188
1189    // If we have declared a member function template, set the access of the
1190    // templated declaration as well.
1191    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1192      FunTmpl->getTemplatedDecl()->setAccess(AS);
1193  }
1194
1195  if (VS.isOverrideSpecified()) {
1196    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1197    if (!MD || !MD->isVirtual()) {
1198      Diag(Member->getLocStart(),
1199           diag::override_keyword_only_allowed_on_virtual_member_functions)
1200        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1201    } else
1202      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1203  }
1204  if (VS.isFinalSpecified()) {
1205    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1206    if (!MD || !MD->isVirtual()) {
1207      Diag(Member->getLocStart(),
1208           diag::override_keyword_only_allowed_on_virtual_member_functions)
1209      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1210    } else
1211      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1212  }
1213
1214  if (VS.getLastLocation().isValid()) {
1215    // Update the end location of a method that has a virt-specifiers.
1216    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1217      MD->setRangeEnd(VS.getLastLocation());
1218  }
1219
1220  CheckOverrideControl(Member);
1221
1222  assert((Name || isInstField) && "No identifier for non-field ?");
1223
1224  if (Init)
1225    AddInitializerToDecl(Member, Init, false,
1226                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1227  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1228           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1229    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1230    // data member if a brace-or-equal-initializer is provided.
1231    Diag(Loc, diag::err_auto_var_requires_init)
1232      << Name << cast<ValueDecl>(Member)->getType();
1233    Member->setInvalidDecl();
1234  }
1235
1236  FinalizeDeclaration(Member);
1237
1238  if (isInstField)
1239    FieldCollector->Add(cast<FieldDecl>(Member));
1240  return Member;
1241}
1242
1243/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1244/// in-class initializer for a non-static C++ class member. Such parsing
1245/// is deferred until the class is complete.
1246void
1247Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1248                                       Expr *InitExpr) {
1249  FieldDecl *FD = cast<FieldDecl>(D);
1250
1251  if (!InitExpr) {
1252    FD->setInvalidDecl();
1253    FD->removeInClassInitializer();
1254    return;
1255  }
1256
1257  ExprResult Init = InitExpr;
1258  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1259    // FIXME: if there is no EqualLoc, this is list-initialization.
1260    Init = PerformCopyInitialization(
1261      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1262    if (Init.isInvalid()) {
1263      FD->setInvalidDecl();
1264      return;
1265    }
1266
1267    CheckImplicitConversions(Init.get(), EqualLoc);
1268  }
1269
1270  // C++0x [class.base.init]p7:
1271  //   The initialization of each base and member constitutes a
1272  //   full-expression.
1273  Init = MaybeCreateExprWithCleanups(Init);
1274  if (Init.isInvalid()) {
1275    FD->setInvalidDecl();
1276    return;
1277  }
1278
1279  InitExpr = Init.release();
1280
1281  FD->setInClassInitializer(InitExpr);
1282}
1283
1284/// \brief Find the direct and/or virtual base specifiers that
1285/// correspond to the given base type, for use in base initialization
1286/// within a constructor.
1287static bool FindBaseInitializer(Sema &SemaRef,
1288                                CXXRecordDecl *ClassDecl,
1289                                QualType BaseType,
1290                                const CXXBaseSpecifier *&DirectBaseSpec,
1291                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1292  // First, check for a direct base class.
1293  DirectBaseSpec = 0;
1294  for (CXXRecordDecl::base_class_const_iterator Base
1295         = ClassDecl->bases_begin();
1296       Base != ClassDecl->bases_end(); ++Base) {
1297    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1298      // We found a direct base of this type. That's what we're
1299      // initializing.
1300      DirectBaseSpec = &*Base;
1301      break;
1302    }
1303  }
1304
1305  // Check for a virtual base class.
1306  // FIXME: We might be able to short-circuit this if we know in advance that
1307  // there are no virtual bases.
1308  VirtualBaseSpec = 0;
1309  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1310    // We haven't found a base yet; search the class hierarchy for a
1311    // virtual base class.
1312    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1313                       /*DetectVirtual=*/false);
1314    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1315                              BaseType, Paths)) {
1316      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1317           Path != Paths.end(); ++Path) {
1318        if (Path->back().Base->isVirtual()) {
1319          VirtualBaseSpec = Path->back().Base;
1320          break;
1321        }
1322      }
1323    }
1324  }
1325
1326  return DirectBaseSpec || VirtualBaseSpec;
1327}
1328
1329/// ActOnMemInitializer - Handle a C++ member initializer.
1330MemInitResult
1331Sema::ActOnMemInitializer(Decl *ConstructorD,
1332                          Scope *S,
1333                          CXXScopeSpec &SS,
1334                          IdentifierInfo *MemberOrBase,
1335                          ParsedType TemplateTypeTy,
1336                          SourceLocation IdLoc,
1337                          SourceLocation LParenLoc,
1338                          ExprTy **Args, unsigned NumArgs,
1339                          SourceLocation RParenLoc,
1340                          SourceLocation EllipsisLoc) {
1341  if (!ConstructorD)
1342    return true;
1343
1344  AdjustDeclIfTemplate(ConstructorD);
1345
1346  CXXConstructorDecl *Constructor
1347    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1348  if (!Constructor) {
1349    // The user wrote a constructor initializer on a function that is
1350    // not a C++ constructor. Ignore the error for now, because we may
1351    // have more member initializers coming; we'll diagnose it just
1352    // once in ActOnMemInitializers.
1353    return true;
1354  }
1355
1356  CXXRecordDecl *ClassDecl = Constructor->getParent();
1357
1358  // C++ [class.base.init]p2:
1359  //   Names in a mem-initializer-id are looked up in the scope of the
1360  //   constructor's class and, if not found in that scope, are looked
1361  //   up in the scope containing the constructor's definition.
1362  //   [Note: if the constructor's class contains a member with the
1363  //   same name as a direct or virtual base class of the class, a
1364  //   mem-initializer-id naming the member or base class and composed
1365  //   of a single identifier refers to the class member. A
1366  //   mem-initializer-id for the hidden base class may be specified
1367  //   using a qualified name. ]
1368  if (!SS.getScopeRep() && !TemplateTypeTy) {
1369    // Look for a member, first.
1370    FieldDecl *Member = 0;
1371    DeclContext::lookup_result Result
1372      = ClassDecl->lookup(MemberOrBase);
1373    if (Result.first != Result.second) {
1374      Member = dyn_cast<FieldDecl>(*Result.first);
1375
1376      if (Member) {
1377        if (EllipsisLoc.isValid())
1378          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1379            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1380
1381        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1382                                    LParenLoc, RParenLoc);
1383      }
1384
1385      // Handle anonymous union case.
1386      if (IndirectFieldDecl* IndirectField
1387            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1388        if (EllipsisLoc.isValid())
1389          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1390            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1391
1392         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1393                                       NumArgs, IdLoc,
1394                                       LParenLoc, RParenLoc);
1395      }
1396    }
1397  }
1398  // It didn't name a member, so see if it names a class.
1399  QualType BaseType;
1400  TypeSourceInfo *TInfo = 0;
1401
1402  if (TemplateTypeTy) {
1403    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1404  } else {
1405    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1406    LookupParsedName(R, S, &SS);
1407
1408    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1409    if (!TyD) {
1410      if (R.isAmbiguous()) return true;
1411
1412      // We don't want access-control diagnostics here.
1413      R.suppressDiagnostics();
1414
1415      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1416        bool NotUnknownSpecialization = false;
1417        DeclContext *DC = computeDeclContext(SS, false);
1418        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1419          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1420
1421        if (!NotUnknownSpecialization) {
1422          // When the scope specifier can refer to a member of an unknown
1423          // specialization, we take it as a type name.
1424          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1425                                       SS.getWithLocInContext(Context),
1426                                       *MemberOrBase, IdLoc);
1427          if (BaseType.isNull())
1428            return true;
1429
1430          R.clear();
1431          R.setLookupName(MemberOrBase);
1432        }
1433      }
1434
1435      // If no results were found, try to correct typos.
1436      if (R.empty() && BaseType.isNull() &&
1437          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1438          R.isSingleResult()) {
1439        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1440          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1441            // We have found a non-static data member with a similar
1442            // name to what was typed; complain and initialize that
1443            // member.
1444            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1445              << MemberOrBase << true << R.getLookupName()
1446              << FixItHint::CreateReplacement(R.getNameLoc(),
1447                                              R.getLookupName().getAsString());
1448            Diag(Member->getLocation(), diag::note_previous_decl)
1449              << Member->getDeclName();
1450
1451            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1452                                          LParenLoc, RParenLoc);
1453          }
1454        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1455          const CXXBaseSpecifier *DirectBaseSpec;
1456          const CXXBaseSpecifier *VirtualBaseSpec;
1457          if (FindBaseInitializer(*this, ClassDecl,
1458                                  Context.getTypeDeclType(Type),
1459                                  DirectBaseSpec, VirtualBaseSpec)) {
1460            // We have found a direct or virtual base class with a
1461            // similar name to what was typed; complain and initialize
1462            // that base class.
1463            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1464              << MemberOrBase << false << R.getLookupName()
1465              << FixItHint::CreateReplacement(R.getNameLoc(),
1466                                              R.getLookupName().getAsString());
1467
1468            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1469                                                             : VirtualBaseSpec;
1470            Diag(BaseSpec->getSourceRange().getBegin(),
1471                 diag::note_base_class_specified_here)
1472              << BaseSpec->getType()
1473              << BaseSpec->getSourceRange();
1474
1475            TyD = Type;
1476          }
1477        }
1478      }
1479
1480      if (!TyD && BaseType.isNull()) {
1481        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1482          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1483        return true;
1484      }
1485    }
1486
1487    if (BaseType.isNull()) {
1488      BaseType = Context.getTypeDeclType(TyD);
1489      if (SS.isSet()) {
1490        NestedNameSpecifier *Qualifier =
1491          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1492
1493        // FIXME: preserve source range information
1494        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1495      }
1496    }
1497  }
1498
1499  if (!TInfo)
1500    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1501
1502  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1503                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1504}
1505
1506/// Checks an initializer expression for use of uninitialized fields, such as
1507/// containing the field that is being initialized. Returns true if there is an
1508/// uninitialized field was used an updates the SourceLocation parameter; false
1509/// otherwise.
1510static bool InitExprContainsUninitializedFields(const Stmt *S,
1511                                                const ValueDecl *LhsField,
1512                                                SourceLocation *L) {
1513  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1514
1515  if (isa<CallExpr>(S)) {
1516    // Do not descend into function calls or constructors, as the use
1517    // of an uninitialized field may be valid. One would have to inspect
1518    // the contents of the function/ctor to determine if it is safe or not.
1519    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1520    // may be safe, depending on what the function/ctor does.
1521    return false;
1522  }
1523  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1524    const NamedDecl *RhsField = ME->getMemberDecl();
1525
1526    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1527      // The member expression points to a static data member.
1528      assert(VD->isStaticDataMember() &&
1529             "Member points to non-static data member!");
1530      (void)VD;
1531      return false;
1532    }
1533
1534    if (isa<EnumConstantDecl>(RhsField)) {
1535      // The member expression points to an enum.
1536      return false;
1537    }
1538
1539    if (RhsField == LhsField) {
1540      // Initializing a field with itself. Throw a warning.
1541      // But wait; there are exceptions!
1542      // Exception #1:  The field may not belong to this record.
1543      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1544      const Expr *base = ME->getBase();
1545      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1546        // Even though the field matches, it does not belong to this record.
1547        return false;
1548      }
1549      // None of the exceptions triggered; return true to indicate an
1550      // uninitialized field was used.
1551      *L = ME->getMemberLoc();
1552      return true;
1553    }
1554  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1555    // sizeof/alignof doesn't reference contents, do not warn.
1556    return false;
1557  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1558    // address-of doesn't reference contents (the pointer may be dereferenced
1559    // in the same expression but it would be rare; and weird).
1560    if (UOE->getOpcode() == UO_AddrOf)
1561      return false;
1562  }
1563  for (Stmt::const_child_range it = S->children(); it; ++it) {
1564    if (!*it) {
1565      // An expression such as 'member(arg ?: "")' may trigger this.
1566      continue;
1567    }
1568    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1569      return true;
1570  }
1571  return false;
1572}
1573
1574MemInitResult
1575Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1576                             unsigned NumArgs, SourceLocation IdLoc,
1577                             SourceLocation LParenLoc,
1578                             SourceLocation RParenLoc) {
1579  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1580  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1581  assert((DirectMember || IndirectMember) &&
1582         "Member must be a FieldDecl or IndirectFieldDecl");
1583
1584  if (Member->isInvalidDecl())
1585    return true;
1586
1587  // Diagnose value-uses of fields to initialize themselves, e.g.
1588  //   foo(foo)
1589  // where foo is not also a parameter to the constructor.
1590  // TODO: implement -Wuninitialized and fold this into that framework.
1591  for (unsigned i = 0; i < NumArgs; ++i) {
1592    SourceLocation L;
1593    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1594      // FIXME: Return true in the case when other fields are used before being
1595      // uninitialized. For example, let this field be the i'th field. When
1596      // initializing the i'th field, throw a warning if any of the >= i'th
1597      // fields are used, as they are not yet initialized.
1598      // Right now we are only handling the case where the i'th field uses
1599      // itself in its initializer.
1600      Diag(L, diag::warn_field_is_uninit);
1601    }
1602  }
1603
1604  bool HasDependentArg = false;
1605  for (unsigned i = 0; i < NumArgs; i++)
1606    HasDependentArg |= Args[i]->isTypeDependent();
1607
1608  Expr *Init;
1609  if (Member->getType()->isDependentType() || HasDependentArg) {
1610    // Can't check initialization for a member of dependent type or when
1611    // any of the arguments are type-dependent expressions.
1612    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1613                                       RParenLoc,
1614                                       Member->getType().getNonReferenceType());
1615
1616    DiscardCleanupsInEvaluationContext();
1617  } else {
1618    // Initialize the member.
1619    InitializedEntity MemberEntity =
1620      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1621                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1622    InitializationKind Kind =
1623      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1624
1625    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1626
1627    ExprResult MemberInit =
1628      InitSeq.Perform(*this, MemberEntity, Kind,
1629                      MultiExprArg(*this, Args, NumArgs), 0);
1630    if (MemberInit.isInvalid())
1631      return true;
1632
1633    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1634
1635    // C++0x [class.base.init]p7:
1636    //   The initialization of each base and member constitutes a
1637    //   full-expression.
1638    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1639    if (MemberInit.isInvalid())
1640      return true;
1641
1642    // If we are in a dependent context, template instantiation will
1643    // perform this type-checking again. Just save the arguments that we
1644    // received in a ParenListExpr.
1645    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1646    // of the information that we have about the member
1647    // initializer. However, deconstructing the ASTs is a dicey process,
1648    // and this approach is far more likely to get the corner cases right.
1649    if (CurContext->isDependentContext())
1650      Init = new (Context) ParenListExpr(
1651          Context, LParenLoc, Args, NumArgs, RParenLoc,
1652          Member->getType().getNonReferenceType());
1653    else
1654      Init = MemberInit.get();
1655  }
1656
1657  if (DirectMember) {
1658    return new (Context) CXXCtorInitializer(Context, DirectMember,
1659                                                    IdLoc, LParenLoc, Init,
1660                                                    RParenLoc);
1661  } else {
1662    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1663                                                    IdLoc, LParenLoc, Init,
1664                                                    RParenLoc);
1665  }
1666}
1667
1668MemInitResult
1669Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1670                                 Expr **Args, unsigned NumArgs,
1671                                 SourceLocation NameLoc,
1672                                 SourceLocation LParenLoc,
1673                                 SourceLocation RParenLoc,
1674                                 CXXRecordDecl *ClassDecl) {
1675  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1676  if (!LangOpts.CPlusPlus0x)
1677    return Diag(Loc, diag::err_delegation_0x_only)
1678      << TInfo->getTypeLoc().getLocalSourceRange();
1679
1680  // Initialize the object.
1681  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1682                                     QualType(ClassDecl->getTypeForDecl(), 0));
1683  InitializationKind Kind =
1684    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1685
1686  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1687
1688  ExprResult DelegationInit =
1689    InitSeq.Perform(*this, DelegationEntity, Kind,
1690                    MultiExprArg(*this, Args, NumArgs), 0);
1691  if (DelegationInit.isInvalid())
1692    return true;
1693
1694  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1695  CXXConstructorDecl *Constructor
1696    = ConExpr->getConstructor();
1697  assert(Constructor && "Delegating constructor with no target?");
1698
1699  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1700
1701  // C++0x [class.base.init]p7:
1702  //   The initialization of each base and member constitutes a
1703  //   full-expression.
1704  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1705  if (DelegationInit.isInvalid())
1706    return true;
1707
1708  assert(!CurContext->isDependentContext());
1709  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1710                                          DelegationInit.takeAs<Expr>(),
1711                                          RParenLoc);
1712}
1713
1714MemInitResult
1715Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1716                           Expr **Args, unsigned NumArgs,
1717                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1718                           CXXRecordDecl *ClassDecl,
1719                           SourceLocation EllipsisLoc) {
1720  bool HasDependentArg = false;
1721  for (unsigned i = 0; i < NumArgs; i++)
1722    HasDependentArg |= Args[i]->isTypeDependent();
1723
1724  SourceLocation BaseLoc
1725    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1726
1727  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1728    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1729             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1730
1731  // C++ [class.base.init]p2:
1732  //   [...] Unless the mem-initializer-id names a nonstatic data
1733  //   member of the constructor's class or a direct or virtual base
1734  //   of that class, the mem-initializer is ill-formed. A
1735  //   mem-initializer-list can initialize a base class using any
1736  //   name that denotes that base class type.
1737  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1738
1739  if (EllipsisLoc.isValid()) {
1740    // This is a pack expansion.
1741    if (!BaseType->containsUnexpandedParameterPack())  {
1742      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1743        << SourceRange(BaseLoc, RParenLoc);
1744
1745      EllipsisLoc = SourceLocation();
1746    }
1747  } else {
1748    // Check for any unexpanded parameter packs.
1749    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1750      return true;
1751
1752    for (unsigned I = 0; I != NumArgs; ++I)
1753      if (DiagnoseUnexpandedParameterPack(Args[I]))
1754        return true;
1755  }
1756
1757  // Check for direct and virtual base classes.
1758  const CXXBaseSpecifier *DirectBaseSpec = 0;
1759  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1760  if (!Dependent) {
1761    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1762                                       BaseType))
1763      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1764                                        LParenLoc, RParenLoc, ClassDecl);
1765
1766    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1767                        VirtualBaseSpec);
1768
1769    // C++ [base.class.init]p2:
1770    // Unless the mem-initializer-id names a nonstatic data member of the
1771    // constructor's class or a direct or virtual base of that class, the
1772    // mem-initializer is ill-formed.
1773    if (!DirectBaseSpec && !VirtualBaseSpec) {
1774      // If the class has any dependent bases, then it's possible that
1775      // one of those types will resolve to the same type as
1776      // BaseType. Therefore, just treat this as a dependent base
1777      // class initialization.  FIXME: Should we try to check the
1778      // initialization anyway? It seems odd.
1779      if (ClassDecl->hasAnyDependentBases())
1780        Dependent = true;
1781      else
1782        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1783          << BaseType << Context.getTypeDeclType(ClassDecl)
1784          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1785    }
1786  }
1787
1788  if (Dependent) {
1789    // Can't check initialization for a base of dependent type or when
1790    // any of the arguments are type-dependent expressions.
1791    ExprResult BaseInit
1792      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1793                                          RParenLoc, BaseType));
1794
1795    DiscardCleanupsInEvaluationContext();
1796
1797    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1798                                                    /*IsVirtual=*/false,
1799                                                    LParenLoc,
1800                                                    BaseInit.takeAs<Expr>(),
1801                                                    RParenLoc,
1802                                                    EllipsisLoc);
1803  }
1804
1805  // C++ [base.class.init]p2:
1806  //   If a mem-initializer-id is ambiguous because it designates both
1807  //   a direct non-virtual base class and an inherited virtual base
1808  //   class, the mem-initializer is ill-formed.
1809  if (DirectBaseSpec && VirtualBaseSpec)
1810    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1811      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1812
1813  CXXBaseSpecifier *BaseSpec
1814    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1815  if (!BaseSpec)
1816    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1817
1818  // Initialize the base.
1819  InitializedEntity BaseEntity =
1820    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1821  InitializationKind Kind =
1822    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1823
1824  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1825
1826  ExprResult BaseInit =
1827    InitSeq.Perform(*this, BaseEntity, Kind,
1828                    MultiExprArg(*this, Args, NumArgs), 0);
1829  if (BaseInit.isInvalid())
1830    return true;
1831
1832  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1833
1834  // C++0x [class.base.init]p7:
1835  //   The initialization of each base and member constitutes a
1836  //   full-expression.
1837  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1838  if (BaseInit.isInvalid())
1839    return true;
1840
1841  // If we are in a dependent context, template instantiation will
1842  // perform this type-checking again. Just save the arguments that we
1843  // received in a ParenListExpr.
1844  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1845  // of the information that we have about the base
1846  // initializer. However, deconstructing the ASTs is a dicey process,
1847  // and this approach is far more likely to get the corner cases right.
1848  if (CurContext->isDependentContext()) {
1849    ExprResult Init
1850      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1851                                          RParenLoc, BaseType));
1852    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1853                                                    BaseSpec->isVirtual(),
1854                                                    LParenLoc,
1855                                                    Init.takeAs<Expr>(),
1856                                                    RParenLoc,
1857                                                    EllipsisLoc);
1858  }
1859
1860  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1861                                                  BaseSpec->isVirtual(),
1862                                                  LParenLoc,
1863                                                  BaseInit.takeAs<Expr>(),
1864                                                  RParenLoc,
1865                                                  EllipsisLoc);
1866}
1867
1868/// ImplicitInitializerKind - How an implicit base or member initializer should
1869/// initialize its base or member.
1870enum ImplicitInitializerKind {
1871  IIK_Default,
1872  IIK_Copy,
1873  IIK_Move
1874};
1875
1876static bool
1877BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1878                             ImplicitInitializerKind ImplicitInitKind,
1879                             CXXBaseSpecifier *BaseSpec,
1880                             bool IsInheritedVirtualBase,
1881                             CXXCtorInitializer *&CXXBaseInit) {
1882  InitializedEntity InitEntity
1883    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1884                                        IsInheritedVirtualBase);
1885
1886  ExprResult BaseInit;
1887
1888  switch (ImplicitInitKind) {
1889  case IIK_Default: {
1890    InitializationKind InitKind
1891      = InitializationKind::CreateDefault(Constructor->getLocation());
1892    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1893    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1894                               MultiExprArg(SemaRef, 0, 0));
1895    break;
1896  }
1897
1898  case IIK_Copy: {
1899    ParmVarDecl *Param = Constructor->getParamDecl(0);
1900    QualType ParamType = Param->getType().getNonReferenceType();
1901
1902    Expr *CopyCtorArg =
1903      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1904                          Constructor->getLocation(), ParamType,
1905                          VK_LValue, 0);
1906
1907    // Cast to the base class to avoid ambiguities.
1908    QualType ArgTy =
1909      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1910                                       ParamType.getQualifiers());
1911
1912    CXXCastPath BasePath;
1913    BasePath.push_back(BaseSpec);
1914    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1915                                            CK_UncheckedDerivedToBase,
1916                                            VK_LValue, &BasePath).take();
1917
1918    InitializationKind InitKind
1919      = InitializationKind::CreateDirect(Constructor->getLocation(),
1920                                         SourceLocation(), SourceLocation());
1921    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1922                                   &CopyCtorArg, 1);
1923    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1924                               MultiExprArg(&CopyCtorArg, 1));
1925    break;
1926  }
1927
1928  case IIK_Move:
1929    assert(false && "Unhandled initializer kind!");
1930  }
1931
1932  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1933  if (BaseInit.isInvalid())
1934    return true;
1935
1936  CXXBaseInit =
1937    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1938               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1939                                                        SourceLocation()),
1940                                             BaseSpec->isVirtual(),
1941                                             SourceLocation(),
1942                                             BaseInit.takeAs<Expr>(),
1943                                             SourceLocation(),
1944                                             SourceLocation());
1945
1946  return false;
1947}
1948
1949static bool
1950BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1951                               ImplicitInitializerKind ImplicitInitKind,
1952                               FieldDecl *Field,
1953                               CXXCtorInitializer *&CXXMemberInit) {
1954  if (Field->isInvalidDecl())
1955    return true;
1956
1957  SourceLocation Loc = Constructor->getLocation();
1958
1959  if (ImplicitInitKind == IIK_Copy) {
1960    ParmVarDecl *Param = Constructor->getParamDecl(0);
1961    QualType ParamType = Param->getType().getNonReferenceType();
1962
1963    // Suppress copying zero-width bitfields.
1964    if (const Expr *Width = Field->getBitWidth())
1965      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
1966        return false;
1967
1968    Expr *MemberExprBase =
1969      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1970                          Loc, ParamType, VK_LValue, 0);
1971
1972    // Build a reference to this field within the parameter.
1973    CXXScopeSpec SS;
1974    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1975                              Sema::LookupMemberName);
1976    MemberLookup.addDecl(Field, AS_public);
1977    MemberLookup.resolveKind();
1978    ExprResult CopyCtorArg
1979      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1980                                         ParamType, Loc,
1981                                         /*IsArrow=*/false,
1982                                         SS,
1983                                         /*FirstQualifierInScope=*/0,
1984                                         MemberLookup,
1985                                         /*TemplateArgs=*/0);
1986    if (CopyCtorArg.isInvalid())
1987      return true;
1988
1989    // When the field we are copying is an array, create index variables for
1990    // each dimension of the array. We use these index variables to subscript
1991    // the source array, and other clients (e.g., CodeGen) will perform the
1992    // necessary iteration with these index variables.
1993    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1994    QualType BaseType = Field->getType();
1995    QualType SizeType = SemaRef.Context.getSizeType();
1996    while (const ConstantArrayType *Array
1997                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1998      // Create the iteration variable for this array index.
1999      IdentifierInfo *IterationVarName = 0;
2000      {
2001        llvm::SmallString<8> Str;
2002        llvm::raw_svector_ostream OS(Str);
2003        OS << "__i" << IndexVariables.size();
2004        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2005      }
2006      VarDecl *IterationVar
2007        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2008                          IterationVarName, SizeType,
2009                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2010                          SC_None, SC_None);
2011      IndexVariables.push_back(IterationVar);
2012
2013      // Create a reference to the iteration variable.
2014      ExprResult IterationVarRef
2015        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2016      assert(!IterationVarRef.isInvalid() &&
2017             "Reference to invented variable cannot fail!");
2018
2019      // Subscript the array with this iteration variable.
2020      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2021                                                            Loc,
2022                                                        IterationVarRef.take(),
2023                                                            Loc);
2024      if (CopyCtorArg.isInvalid())
2025        return true;
2026
2027      BaseType = Array->getElementType();
2028    }
2029
2030    // Construct the entity that we will be initializing. For an array, this
2031    // will be first element in the array, which may require several levels
2032    // of array-subscript entities.
2033    llvm::SmallVector<InitializedEntity, 4> Entities;
2034    Entities.reserve(1 + IndexVariables.size());
2035    Entities.push_back(InitializedEntity::InitializeMember(Field));
2036    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2037      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2038                                                              0,
2039                                                              Entities.back()));
2040
2041    // Direct-initialize to use the copy constructor.
2042    InitializationKind InitKind =
2043      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2044
2045    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2046    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2047                                   &CopyCtorArgE, 1);
2048
2049    ExprResult MemberInit
2050      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2051                        MultiExprArg(&CopyCtorArgE, 1));
2052    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2053    if (MemberInit.isInvalid())
2054      return true;
2055
2056    CXXMemberInit
2057      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
2058                                           MemberInit.takeAs<Expr>(), Loc,
2059                                           IndexVariables.data(),
2060                                           IndexVariables.size());
2061    return false;
2062  }
2063
2064  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2065
2066  QualType FieldBaseElementType =
2067    SemaRef.Context.getBaseElementType(Field->getType());
2068
2069  if (FieldBaseElementType->isRecordType()) {
2070    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2071    InitializationKind InitKind =
2072      InitializationKind::CreateDefault(Loc);
2073
2074    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2075    ExprResult MemberInit =
2076      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2077
2078    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2079    if (MemberInit.isInvalid())
2080      return true;
2081
2082    CXXMemberInit =
2083      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2084                                                       Field, Loc, Loc,
2085                                                       MemberInit.get(),
2086                                                       Loc);
2087    return false;
2088  }
2089
2090  if (!Field->getParent()->isUnion()) {
2091    if (FieldBaseElementType->isReferenceType()) {
2092      SemaRef.Diag(Constructor->getLocation(),
2093                   diag::err_uninitialized_member_in_ctor)
2094      << (int)Constructor->isImplicit()
2095      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2096      << 0 << Field->getDeclName();
2097      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2098      return true;
2099    }
2100
2101    if (FieldBaseElementType.isConstQualified()) {
2102      SemaRef.Diag(Constructor->getLocation(),
2103                   diag::err_uninitialized_member_in_ctor)
2104      << (int)Constructor->isImplicit()
2105      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2106      << 1 << Field->getDeclName();
2107      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2108      return true;
2109    }
2110  }
2111
2112  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2113      FieldBaseElementType->isObjCRetainableType() &&
2114      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2115      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2116    // Instant objects:
2117    //   Default-initialize Objective-C pointers to NULL.
2118    CXXMemberInit
2119      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2120                                                 Loc, Loc,
2121                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2122                                                 Loc);
2123    return false;
2124  }
2125
2126  // Nothing to initialize.
2127  CXXMemberInit = 0;
2128  return false;
2129}
2130
2131namespace {
2132struct BaseAndFieldInfo {
2133  Sema &S;
2134  CXXConstructorDecl *Ctor;
2135  bool AnyErrorsInInits;
2136  ImplicitInitializerKind IIK;
2137  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2138  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2139
2140  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2141    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2142    // FIXME: Handle implicit move constructors.
2143    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2144      IIK = IIK_Copy;
2145    else
2146      IIK = IIK_Default;
2147  }
2148};
2149}
2150
2151static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2152                                    FieldDecl *Top, FieldDecl *Field) {
2153
2154  // Overwhelmingly common case: we have a direct initializer for this field.
2155  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2156    Info.AllToInit.push_back(Init);
2157    return false;
2158  }
2159
2160  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2161  // has a brace-or-equal-initializer, the entity is initialized as specified
2162  // in [dcl.init].
2163  if (Field->hasInClassInitializer()) {
2164    Info.AllToInit.push_back(
2165      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2166                                               SourceLocation(),
2167                                               SourceLocation(), 0,
2168                                               SourceLocation()));
2169    return false;
2170  }
2171
2172  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2173    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2174    assert(FieldClassType && "anonymous struct/union without record type");
2175    CXXRecordDecl *FieldClassDecl
2176      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2177
2178    // Even though union members never have non-trivial default
2179    // constructions in C++03, we still build member initializers for aggregate
2180    // record types which can be union members, and C++0x allows non-trivial
2181    // default constructors for union members, so we ensure that only one
2182    // member is initialized for these.
2183    if (FieldClassDecl->isUnion()) {
2184      // First check for an explicit initializer for one field.
2185      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2186           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2187        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2188          Info.AllToInit.push_back(Init);
2189
2190          // Once we've initialized a field of an anonymous union, the union
2191          // field in the class is also initialized, so exit immediately.
2192          return false;
2193        } else if ((*FA)->isAnonymousStructOrUnion()) {
2194          if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2195            return true;
2196        }
2197      }
2198
2199      // Fallthrough and construct a default initializer for the union as
2200      // a whole, which can call its default constructor if such a thing exists
2201      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2202      // behavior going forward with C++0x, when anonymous unions there are
2203      // finalized, we should revisit this.
2204    } else {
2205      // For structs, we simply descend through to initialize all members where
2206      // necessary.
2207      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2208           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2209        if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2210          return true;
2211      }
2212    }
2213  }
2214
2215  // Don't try to build an implicit initializer if there were semantic
2216  // errors in any of the initializers (and therefore we might be
2217  // missing some that the user actually wrote).
2218  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2219    return false;
2220
2221  CXXCtorInitializer *Init = 0;
2222  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2223    return true;
2224
2225  if (Init)
2226    Info.AllToInit.push_back(Init);
2227
2228  return false;
2229}
2230
2231bool
2232Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2233                               CXXCtorInitializer *Initializer) {
2234  assert(Initializer->isDelegatingInitializer());
2235  Constructor->setNumCtorInitializers(1);
2236  CXXCtorInitializer **initializer =
2237    new (Context) CXXCtorInitializer*[1];
2238  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2239  Constructor->setCtorInitializers(initializer);
2240
2241  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2242    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2243    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2244  }
2245
2246  DelegatingCtorDecls.push_back(Constructor);
2247
2248  return false;
2249}
2250
2251bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2252                               CXXCtorInitializer **Initializers,
2253                               unsigned NumInitializers,
2254                               bool AnyErrors) {
2255  if (Constructor->getDeclContext()->isDependentContext()) {
2256    // Just store the initializers as written, they will be checked during
2257    // instantiation.
2258    if (NumInitializers > 0) {
2259      Constructor->setNumCtorInitializers(NumInitializers);
2260      CXXCtorInitializer **baseOrMemberInitializers =
2261        new (Context) CXXCtorInitializer*[NumInitializers];
2262      memcpy(baseOrMemberInitializers, Initializers,
2263             NumInitializers * sizeof(CXXCtorInitializer*));
2264      Constructor->setCtorInitializers(baseOrMemberInitializers);
2265    }
2266
2267    return false;
2268  }
2269
2270  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2271
2272  // We need to build the initializer AST according to order of construction
2273  // and not what user specified in the Initializers list.
2274  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2275  if (!ClassDecl)
2276    return true;
2277
2278  bool HadError = false;
2279
2280  for (unsigned i = 0; i < NumInitializers; i++) {
2281    CXXCtorInitializer *Member = Initializers[i];
2282
2283    if (Member->isBaseInitializer())
2284      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2285    else
2286      Info.AllBaseFields[Member->getAnyMember()] = Member;
2287  }
2288
2289  // Keep track of the direct virtual bases.
2290  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2291  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2292       E = ClassDecl->bases_end(); I != E; ++I) {
2293    if (I->isVirtual())
2294      DirectVBases.insert(I);
2295  }
2296
2297  // Push virtual bases before others.
2298  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2299       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2300
2301    if (CXXCtorInitializer *Value
2302        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2303      Info.AllToInit.push_back(Value);
2304    } else if (!AnyErrors) {
2305      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2306      CXXCtorInitializer *CXXBaseInit;
2307      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2308                                       VBase, IsInheritedVirtualBase,
2309                                       CXXBaseInit)) {
2310        HadError = true;
2311        continue;
2312      }
2313
2314      Info.AllToInit.push_back(CXXBaseInit);
2315    }
2316  }
2317
2318  // Non-virtual bases.
2319  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2320       E = ClassDecl->bases_end(); Base != E; ++Base) {
2321    // Virtuals are in the virtual base list and already constructed.
2322    if (Base->isVirtual())
2323      continue;
2324
2325    if (CXXCtorInitializer *Value
2326          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2327      Info.AllToInit.push_back(Value);
2328    } else if (!AnyErrors) {
2329      CXXCtorInitializer *CXXBaseInit;
2330      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2331                                       Base, /*IsInheritedVirtualBase=*/false,
2332                                       CXXBaseInit)) {
2333        HadError = true;
2334        continue;
2335      }
2336
2337      Info.AllToInit.push_back(CXXBaseInit);
2338    }
2339  }
2340
2341  // Fields.
2342  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2343       E = ClassDecl->field_end(); Field != E; ++Field) {
2344    if ((*Field)->getType()->isIncompleteArrayType()) {
2345      assert(ClassDecl->hasFlexibleArrayMember() &&
2346             "Incomplete array type is not valid");
2347      continue;
2348    }
2349    if (CollectFieldInitializer(*this, Info, *Field, *Field))
2350      HadError = true;
2351  }
2352
2353  NumInitializers = Info.AllToInit.size();
2354  if (NumInitializers > 0) {
2355    Constructor->setNumCtorInitializers(NumInitializers);
2356    CXXCtorInitializer **baseOrMemberInitializers =
2357      new (Context) CXXCtorInitializer*[NumInitializers];
2358    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2359           NumInitializers * sizeof(CXXCtorInitializer*));
2360    Constructor->setCtorInitializers(baseOrMemberInitializers);
2361
2362    // Constructors implicitly reference the base and member
2363    // destructors.
2364    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2365                                           Constructor->getParent());
2366  }
2367
2368  return HadError;
2369}
2370
2371static void *GetKeyForTopLevelField(FieldDecl *Field) {
2372  // For anonymous unions, use the class declaration as the key.
2373  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2374    if (RT->getDecl()->isAnonymousStructOrUnion())
2375      return static_cast<void *>(RT->getDecl());
2376  }
2377  return static_cast<void *>(Field);
2378}
2379
2380static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2381  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2382}
2383
2384static void *GetKeyForMember(ASTContext &Context,
2385                             CXXCtorInitializer *Member) {
2386  if (!Member->isAnyMemberInitializer())
2387    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2388
2389  // For fields injected into the class via declaration of an anonymous union,
2390  // use its anonymous union class declaration as the unique key.
2391  FieldDecl *Field = Member->getAnyMember();
2392
2393  // If the field is a member of an anonymous struct or union, our key
2394  // is the anonymous record decl that's a direct child of the class.
2395  RecordDecl *RD = Field->getParent();
2396  if (RD->isAnonymousStructOrUnion()) {
2397    while (true) {
2398      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2399      if (Parent->isAnonymousStructOrUnion())
2400        RD = Parent;
2401      else
2402        break;
2403    }
2404
2405    return static_cast<void *>(RD);
2406  }
2407
2408  return static_cast<void *>(Field);
2409}
2410
2411static void
2412DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2413                                  const CXXConstructorDecl *Constructor,
2414                                  CXXCtorInitializer **Inits,
2415                                  unsigned NumInits) {
2416  if (Constructor->getDeclContext()->isDependentContext())
2417    return;
2418
2419  // Don't check initializers order unless the warning is enabled at the
2420  // location of at least one initializer.
2421  bool ShouldCheckOrder = false;
2422  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2423    CXXCtorInitializer *Init = Inits[InitIndex];
2424    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2425                                         Init->getSourceLocation())
2426          != Diagnostic::Ignored) {
2427      ShouldCheckOrder = true;
2428      break;
2429    }
2430  }
2431  if (!ShouldCheckOrder)
2432    return;
2433
2434  // Build the list of bases and members in the order that they'll
2435  // actually be initialized.  The explicit initializers should be in
2436  // this same order but may be missing things.
2437  llvm::SmallVector<const void*, 32> IdealInitKeys;
2438
2439  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2440
2441  // 1. Virtual bases.
2442  for (CXXRecordDecl::base_class_const_iterator VBase =
2443       ClassDecl->vbases_begin(),
2444       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2445    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2446
2447  // 2. Non-virtual bases.
2448  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2449       E = ClassDecl->bases_end(); Base != E; ++Base) {
2450    if (Base->isVirtual())
2451      continue;
2452    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2453  }
2454
2455  // 3. Direct fields.
2456  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2457       E = ClassDecl->field_end(); Field != E; ++Field)
2458    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2459
2460  unsigned NumIdealInits = IdealInitKeys.size();
2461  unsigned IdealIndex = 0;
2462
2463  CXXCtorInitializer *PrevInit = 0;
2464  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2465    CXXCtorInitializer *Init = Inits[InitIndex];
2466    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2467
2468    // Scan forward to try to find this initializer in the idealized
2469    // initializers list.
2470    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2471      if (InitKey == IdealInitKeys[IdealIndex])
2472        break;
2473
2474    // If we didn't find this initializer, it must be because we
2475    // scanned past it on a previous iteration.  That can only
2476    // happen if we're out of order;  emit a warning.
2477    if (IdealIndex == NumIdealInits && PrevInit) {
2478      Sema::SemaDiagnosticBuilder D =
2479        SemaRef.Diag(PrevInit->getSourceLocation(),
2480                     diag::warn_initializer_out_of_order);
2481
2482      if (PrevInit->isAnyMemberInitializer())
2483        D << 0 << PrevInit->getAnyMember()->getDeclName();
2484      else
2485        D << 1 << PrevInit->getBaseClassInfo()->getType();
2486
2487      if (Init->isAnyMemberInitializer())
2488        D << 0 << Init->getAnyMember()->getDeclName();
2489      else
2490        D << 1 << Init->getBaseClassInfo()->getType();
2491
2492      // Move back to the initializer's location in the ideal list.
2493      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2494        if (InitKey == IdealInitKeys[IdealIndex])
2495          break;
2496
2497      assert(IdealIndex != NumIdealInits &&
2498             "initializer not found in initializer list");
2499    }
2500
2501    PrevInit = Init;
2502  }
2503}
2504
2505namespace {
2506bool CheckRedundantInit(Sema &S,
2507                        CXXCtorInitializer *Init,
2508                        CXXCtorInitializer *&PrevInit) {
2509  if (!PrevInit) {
2510    PrevInit = Init;
2511    return false;
2512  }
2513
2514  if (FieldDecl *Field = Init->getMember())
2515    S.Diag(Init->getSourceLocation(),
2516           diag::err_multiple_mem_initialization)
2517      << Field->getDeclName()
2518      << Init->getSourceRange();
2519  else {
2520    const Type *BaseClass = Init->getBaseClass();
2521    assert(BaseClass && "neither field nor base");
2522    S.Diag(Init->getSourceLocation(),
2523           diag::err_multiple_base_initialization)
2524      << QualType(BaseClass, 0)
2525      << Init->getSourceRange();
2526  }
2527  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2528    << 0 << PrevInit->getSourceRange();
2529
2530  return true;
2531}
2532
2533typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2534typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2535
2536bool CheckRedundantUnionInit(Sema &S,
2537                             CXXCtorInitializer *Init,
2538                             RedundantUnionMap &Unions) {
2539  FieldDecl *Field = Init->getAnyMember();
2540  RecordDecl *Parent = Field->getParent();
2541  if (!Parent->isAnonymousStructOrUnion())
2542    return false;
2543
2544  NamedDecl *Child = Field;
2545  do {
2546    if (Parent->isUnion()) {
2547      UnionEntry &En = Unions[Parent];
2548      if (En.first && En.first != Child) {
2549        S.Diag(Init->getSourceLocation(),
2550               diag::err_multiple_mem_union_initialization)
2551          << Field->getDeclName()
2552          << Init->getSourceRange();
2553        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2554          << 0 << En.second->getSourceRange();
2555        return true;
2556      } else if (!En.first) {
2557        En.first = Child;
2558        En.second = Init;
2559      }
2560    }
2561
2562    Child = Parent;
2563    Parent = cast<RecordDecl>(Parent->getDeclContext());
2564  } while (Parent->isAnonymousStructOrUnion());
2565
2566  return false;
2567}
2568}
2569
2570/// ActOnMemInitializers - Handle the member initializers for a constructor.
2571void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2572                                SourceLocation ColonLoc,
2573                                MemInitTy **meminits, unsigned NumMemInits,
2574                                bool AnyErrors) {
2575  if (!ConstructorDecl)
2576    return;
2577
2578  AdjustDeclIfTemplate(ConstructorDecl);
2579
2580  CXXConstructorDecl *Constructor
2581    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2582
2583  if (!Constructor) {
2584    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2585    return;
2586  }
2587
2588  CXXCtorInitializer **MemInits =
2589    reinterpret_cast<CXXCtorInitializer **>(meminits);
2590
2591  // Mapping for the duplicate initializers check.
2592  // For member initializers, this is keyed with a FieldDecl*.
2593  // For base initializers, this is keyed with a Type*.
2594  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2595
2596  // Mapping for the inconsistent anonymous-union initializers check.
2597  RedundantUnionMap MemberUnions;
2598
2599  bool HadError = false;
2600  for (unsigned i = 0; i < NumMemInits; i++) {
2601    CXXCtorInitializer *Init = MemInits[i];
2602
2603    // Set the source order index.
2604    Init->setSourceOrder(i);
2605
2606    if (Init->isAnyMemberInitializer()) {
2607      FieldDecl *Field = Init->getAnyMember();
2608      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2609          CheckRedundantUnionInit(*this, Init, MemberUnions))
2610        HadError = true;
2611    } else if (Init->isBaseInitializer()) {
2612      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2613      if (CheckRedundantInit(*this, Init, Members[Key]))
2614        HadError = true;
2615    } else {
2616      assert(Init->isDelegatingInitializer());
2617      // This must be the only initializer
2618      if (i != 0 || NumMemInits > 1) {
2619        Diag(MemInits[0]->getSourceLocation(),
2620             diag::err_delegating_initializer_alone)
2621          << MemInits[0]->getSourceRange();
2622        HadError = true;
2623        // We will treat this as being the only initializer.
2624      }
2625      SetDelegatingInitializer(Constructor, MemInits[i]);
2626      // Return immediately as the initializer is set.
2627      return;
2628    }
2629  }
2630
2631  if (HadError)
2632    return;
2633
2634  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2635
2636  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2637}
2638
2639void
2640Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2641                                             CXXRecordDecl *ClassDecl) {
2642  // Ignore dependent contexts.
2643  if (ClassDecl->isDependentContext())
2644    return;
2645
2646  // FIXME: all the access-control diagnostics are positioned on the
2647  // field/base declaration.  That's probably good; that said, the
2648  // user might reasonably want to know why the destructor is being
2649  // emitted, and we currently don't say.
2650
2651  // Non-static data members.
2652  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2653       E = ClassDecl->field_end(); I != E; ++I) {
2654    FieldDecl *Field = *I;
2655    if (Field->isInvalidDecl())
2656      continue;
2657    QualType FieldType = Context.getBaseElementType(Field->getType());
2658
2659    const RecordType* RT = FieldType->getAs<RecordType>();
2660    if (!RT)
2661      continue;
2662
2663    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2664    if (FieldClassDecl->isInvalidDecl())
2665      continue;
2666    if (FieldClassDecl->hasTrivialDestructor())
2667      continue;
2668
2669    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2670    assert(Dtor && "No dtor found for FieldClassDecl!");
2671    CheckDestructorAccess(Field->getLocation(), Dtor,
2672                          PDiag(diag::err_access_dtor_field)
2673                            << Field->getDeclName()
2674                            << FieldType);
2675
2676    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2677  }
2678
2679  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2680
2681  // Bases.
2682  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2683       E = ClassDecl->bases_end(); Base != E; ++Base) {
2684    // Bases are always records in a well-formed non-dependent class.
2685    const RecordType *RT = Base->getType()->getAs<RecordType>();
2686
2687    // Remember direct virtual bases.
2688    if (Base->isVirtual())
2689      DirectVirtualBases.insert(RT);
2690
2691    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2692    // If our base class is invalid, we probably can't get its dtor anyway.
2693    if (BaseClassDecl->isInvalidDecl())
2694      continue;
2695    // Ignore trivial destructors.
2696    if (BaseClassDecl->hasTrivialDestructor())
2697      continue;
2698
2699    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2700    assert(Dtor && "No dtor found for BaseClassDecl!");
2701
2702    // FIXME: caret should be on the start of the class name
2703    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2704                          PDiag(diag::err_access_dtor_base)
2705                            << Base->getType()
2706                            << Base->getSourceRange());
2707
2708    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2709  }
2710
2711  // Virtual bases.
2712  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2713       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2714
2715    // Bases are always records in a well-formed non-dependent class.
2716    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2717
2718    // Ignore direct virtual bases.
2719    if (DirectVirtualBases.count(RT))
2720      continue;
2721
2722    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2723    // If our base class is invalid, we probably can't get its dtor anyway.
2724    if (BaseClassDecl->isInvalidDecl())
2725      continue;
2726    // Ignore trivial destructors.
2727    if (BaseClassDecl->hasTrivialDestructor())
2728      continue;
2729
2730    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2731    assert(Dtor && "No dtor found for BaseClassDecl!");
2732    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2733                          PDiag(diag::err_access_dtor_vbase)
2734                            << VBase->getType());
2735
2736    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2737  }
2738}
2739
2740void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2741  if (!CDtorDecl)
2742    return;
2743
2744  if (CXXConstructorDecl *Constructor
2745      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2746    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2747}
2748
2749bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2750                                  unsigned DiagID, AbstractDiagSelID SelID) {
2751  if (SelID == -1)
2752    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2753  else
2754    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2755}
2756
2757bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2758                                  const PartialDiagnostic &PD) {
2759  if (!getLangOptions().CPlusPlus)
2760    return false;
2761
2762  if (const ArrayType *AT = Context.getAsArrayType(T))
2763    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2764
2765  if (const PointerType *PT = T->getAs<PointerType>()) {
2766    // Find the innermost pointer type.
2767    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2768      PT = T;
2769
2770    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2771      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2772  }
2773
2774  const RecordType *RT = T->getAs<RecordType>();
2775  if (!RT)
2776    return false;
2777
2778  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2779
2780  // We can't answer whether something is abstract until it has a
2781  // definition.  If it's currently being defined, we'll walk back
2782  // over all the declarations when we have a full definition.
2783  const CXXRecordDecl *Def = RD->getDefinition();
2784  if (!Def || Def->isBeingDefined())
2785    return false;
2786
2787  if (!RD->isAbstract())
2788    return false;
2789
2790  Diag(Loc, PD) << RD->getDeclName();
2791  DiagnoseAbstractType(RD);
2792
2793  return true;
2794}
2795
2796void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2797  // Check if we've already emitted the list of pure virtual functions
2798  // for this class.
2799  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2800    return;
2801
2802  CXXFinalOverriderMap FinalOverriders;
2803  RD->getFinalOverriders(FinalOverriders);
2804
2805  // Keep a set of seen pure methods so we won't diagnose the same method
2806  // more than once.
2807  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2808
2809  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2810                                   MEnd = FinalOverriders.end();
2811       M != MEnd;
2812       ++M) {
2813    for (OverridingMethods::iterator SO = M->second.begin(),
2814                                  SOEnd = M->second.end();
2815         SO != SOEnd; ++SO) {
2816      // C++ [class.abstract]p4:
2817      //   A class is abstract if it contains or inherits at least one
2818      //   pure virtual function for which the final overrider is pure
2819      //   virtual.
2820
2821      //
2822      if (SO->second.size() != 1)
2823        continue;
2824
2825      if (!SO->second.front().Method->isPure())
2826        continue;
2827
2828      if (!SeenPureMethods.insert(SO->second.front().Method))
2829        continue;
2830
2831      Diag(SO->second.front().Method->getLocation(),
2832           diag::note_pure_virtual_function)
2833        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2834    }
2835  }
2836
2837  if (!PureVirtualClassDiagSet)
2838    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2839  PureVirtualClassDiagSet->insert(RD);
2840}
2841
2842namespace {
2843struct AbstractUsageInfo {
2844  Sema &S;
2845  CXXRecordDecl *Record;
2846  CanQualType AbstractType;
2847  bool Invalid;
2848
2849  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2850    : S(S), Record(Record),
2851      AbstractType(S.Context.getCanonicalType(
2852                   S.Context.getTypeDeclType(Record))),
2853      Invalid(false) {}
2854
2855  void DiagnoseAbstractType() {
2856    if (Invalid) return;
2857    S.DiagnoseAbstractType(Record);
2858    Invalid = true;
2859  }
2860
2861  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2862};
2863
2864struct CheckAbstractUsage {
2865  AbstractUsageInfo &Info;
2866  const NamedDecl *Ctx;
2867
2868  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2869    : Info(Info), Ctx(Ctx) {}
2870
2871  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2872    switch (TL.getTypeLocClass()) {
2873#define ABSTRACT_TYPELOC(CLASS, PARENT)
2874#define TYPELOC(CLASS, PARENT) \
2875    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2876#include "clang/AST/TypeLocNodes.def"
2877    }
2878  }
2879
2880  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2881    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2882    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2883      if (!TL.getArg(I))
2884        continue;
2885
2886      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2887      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2888    }
2889  }
2890
2891  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2892    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2893  }
2894
2895  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2896    // Visit the type parameters from a permissive context.
2897    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2898      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2899      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2900        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2901          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2902      // TODO: other template argument types?
2903    }
2904  }
2905
2906  // Visit pointee types from a permissive context.
2907#define CheckPolymorphic(Type) \
2908  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2909    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2910  }
2911  CheckPolymorphic(PointerTypeLoc)
2912  CheckPolymorphic(ReferenceTypeLoc)
2913  CheckPolymorphic(MemberPointerTypeLoc)
2914  CheckPolymorphic(BlockPointerTypeLoc)
2915
2916  /// Handle all the types we haven't given a more specific
2917  /// implementation for above.
2918  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2919    // Every other kind of type that we haven't called out already
2920    // that has an inner type is either (1) sugar or (2) contains that
2921    // inner type in some way as a subobject.
2922    if (TypeLoc Next = TL.getNextTypeLoc())
2923      return Visit(Next, Sel);
2924
2925    // If there's no inner type and we're in a permissive context,
2926    // don't diagnose.
2927    if (Sel == Sema::AbstractNone) return;
2928
2929    // Check whether the type matches the abstract type.
2930    QualType T = TL.getType();
2931    if (T->isArrayType()) {
2932      Sel = Sema::AbstractArrayType;
2933      T = Info.S.Context.getBaseElementType(T);
2934    }
2935    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2936    if (CT != Info.AbstractType) return;
2937
2938    // It matched; do some magic.
2939    if (Sel == Sema::AbstractArrayType) {
2940      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2941        << T << TL.getSourceRange();
2942    } else {
2943      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2944        << Sel << T << TL.getSourceRange();
2945    }
2946    Info.DiagnoseAbstractType();
2947  }
2948};
2949
2950void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2951                                  Sema::AbstractDiagSelID Sel) {
2952  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2953}
2954
2955}
2956
2957/// Check for invalid uses of an abstract type in a method declaration.
2958static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2959                                    CXXMethodDecl *MD) {
2960  // No need to do the check on definitions, which require that
2961  // the return/param types be complete.
2962  if (MD->doesThisDeclarationHaveABody())
2963    return;
2964
2965  // For safety's sake, just ignore it if we don't have type source
2966  // information.  This should never happen for non-implicit methods,
2967  // but...
2968  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2969    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2970}
2971
2972/// Check for invalid uses of an abstract type within a class definition.
2973static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2974                                    CXXRecordDecl *RD) {
2975  for (CXXRecordDecl::decl_iterator
2976         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2977    Decl *D = *I;
2978    if (D->isImplicit()) continue;
2979
2980    // Methods and method templates.
2981    if (isa<CXXMethodDecl>(D)) {
2982      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2983    } else if (isa<FunctionTemplateDecl>(D)) {
2984      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2985      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2986
2987    // Fields and static variables.
2988    } else if (isa<FieldDecl>(D)) {
2989      FieldDecl *FD = cast<FieldDecl>(D);
2990      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2991        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2992    } else if (isa<VarDecl>(D)) {
2993      VarDecl *VD = cast<VarDecl>(D);
2994      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2995        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2996
2997    // Nested classes and class templates.
2998    } else if (isa<CXXRecordDecl>(D)) {
2999      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3000    } else if (isa<ClassTemplateDecl>(D)) {
3001      CheckAbstractClassUsage(Info,
3002                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3003    }
3004  }
3005}
3006
3007/// \brief Perform semantic checks on a class definition that has been
3008/// completing, introducing implicitly-declared members, checking for
3009/// abstract types, etc.
3010void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3011  if (!Record)
3012    return;
3013
3014  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3015    AbstractUsageInfo Info(*this, Record);
3016    CheckAbstractClassUsage(Info, Record);
3017  }
3018
3019  // If this is not an aggregate type and has no user-declared constructor,
3020  // complain about any non-static data members of reference or const scalar
3021  // type, since they will never get initializers.
3022  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3023      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3024    bool Complained = false;
3025    for (RecordDecl::field_iterator F = Record->field_begin(),
3026                                 FEnd = Record->field_end();
3027         F != FEnd; ++F) {
3028      if (F->hasInClassInitializer())
3029        continue;
3030
3031      if (F->getType()->isReferenceType() ||
3032          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3033        if (!Complained) {
3034          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3035            << Record->getTagKind() << Record;
3036          Complained = true;
3037        }
3038
3039        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3040          << F->getType()->isReferenceType()
3041          << F->getDeclName();
3042      }
3043    }
3044  }
3045
3046  if (Record->isDynamicClass() && !Record->isDependentType())
3047    DynamicClasses.push_back(Record);
3048
3049  if (Record->getIdentifier()) {
3050    // C++ [class.mem]p13:
3051    //   If T is the name of a class, then each of the following shall have a
3052    //   name different from T:
3053    //     - every member of every anonymous union that is a member of class T.
3054    //
3055    // C++ [class.mem]p14:
3056    //   In addition, if class T has a user-declared constructor (12.1), every
3057    //   non-static data member of class T shall have a name different from T.
3058    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3059         R.first != R.second; ++R.first) {
3060      NamedDecl *D = *R.first;
3061      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3062          isa<IndirectFieldDecl>(D)) {
3063        Diag(D->getLocation(), diag::err_member_name_of_class)
3064          << D->getDeclName();
3065        break;
3066      }
3067    }
3068  }
3069
3070  // Warn if the class has virtual methods but non-virtual public destructor.
3071  if (Record->isPolymorphic() && !Record->isDependentType()) {
3072    CXXDestructorDecl *dtor = Record->getDestructor();
3073    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3074      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3075           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3076  }
3077
3078  // See if a method overloads virtual methods in a base
3079  /// class without overriding any.
3080  if (!Record->isDependentType()) {
3081    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3082                                     MEnd = Record->method_end();
3083         M != MEnd; ++M) {
3084      if (!(*M)->isStatic())
3085        DiagnoseHiddenVirtualMethods(Record, *M);
3086    }
3087  }
3088
3089  // Declare inherited constructors. We do this eagerly here because:
3090  // - The standard requires an eager diagnostic for conflicting inherited
3091  //   constructors from different classes.
3092  // - The lazy declaration of the other implicit constructors is so as to not
3093  //   waste space and performance on classes that are not meant to be
3094  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3095  //   have inherited constructors.
3096  DeclareInheritedConstructors(Record);
3097
3098  if (!Record->isDependentType())
3099    CheckExplicitlyDefaultedMethods(Record);
3100}
3101
3102void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3103  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3104                                      ME = Record->method_end();
3105       MI != ME; ++MI) {
3106    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3107      switch (getSpecialMember(*MI)) {
3108      case CXXDefaultConstructor:
3109        CheckExplicitlyDefaultedDefaultConstructor(
3110                                                  cast<CXXConstructorDecl>(*MI));
3111        break;
3112
3113      case CXXDestructor:
3114        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3115        break;
3116
3117      case CXXCopyConstructor:
3118        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3119        break;
3120
3121      case CXXCopyAssignment:
3122        CheckExplicitlyDefaultedCopyAssignment(*MI);
3123        break;
3124
3125      case CXXMoveConstructor:
3126      case CXXMoveAssignment:
3127        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3128        break;
3129
3130      default:
3131        // FIXME: Do moves once they exist
3132        llvm_unreachable("non-special member explicitly defaulted!");
3133      }
3134    }
3135  }
3136
3137}
3138
3139void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3140  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3141
3142  // Whether this was the first-declared instance of the constructor.
3143  // This affects whether we implicitly add an exception spec (and, eventually,
3144  // constexpr). It is also ill-formed to explicitly default a constructor such
3145  // that it would be deleted. (C++0x [decl.fct.def.default])
3146  bool First = CD == CD->getCanonicalDecl();
3147
3148  bool HadError = false;
3149  if (CD->getNumParams() != 0) {
3150    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3151      << CD->getSourceRange();
3152    HadError = true;
3153  }
3154
3155  ImplicitExceptionSpecification Spec
3156    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3157  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3158  if (EPI.ExceptionSpecType == EST_Delayed) {
3159    // Exception specification depends on some deferred part of the class. We'll
3160    // try again when the class's definition has been fully processed.
3161    return;
3162  }
3163  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3164                          *ExceptionType = Context.getFunctionType(
3165                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3166
3167  if (CtorType->hasExceptionSpec()) {
3168    if (CheckEquivalentExceptionSpec(
3169          PDiag(diag::err_incorrect_defaulted_exception_spec)
3170            << CXXDefaultConstructor,
3171          PDiag(),
3172          ExceptionType, SourceLocation(),
3173          CtorType, CD->getLocation())) {
3174      HadError = true;
3175    }
3176  } else if (First) {
3177    // We set the declaration to have the computed exception spec here.
3178    // We know there are no parameters.
3179    EPI.ExtInfo = CtorType->getExtInfo();
3180    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3181  }
3182
3183  if (HadError) {
3184    CD->setInvalidDecl();
3185    return;
3186  }
3187
3188  if (ShouldDeleteDefaultConstructor(CD)) {
3189    if (First) {
3190      CD->setDeletedAsWritten();
3191    } else {
3192      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3193        << CXXDefaultConstructor;
3194      CD->setInvalidDecl();
3195    }
3196  }
3197}
3198
3199void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3200  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3201
3202  // Whether this was the first-declared instance of the constructor.
3203  bool First = CD == CD->getCanonicalDecl();
3204
3205  bool HadError = false;
3206  if (CD->getNumParams() != 1) {
3207    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3208      << CD->getSourceRange();
3209    HadError = true;
3210  }
3211
3212  ImplicitExceptionSpecification Spec(Context);
3213  bool Const;
3214  llvm::tie(Spec, Const) =
3215    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3216
3217  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3218  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3219                          *ExceptionType = Context.getFunctionType(
3220                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3221
3222  // Check for parameter type matching.
3223  // This is a copy ctor so we know it's a cv-qualified reference to T.
3224  QualType ArgType = CtorType->getArgType(0);
3225  if (ArgType->getPointeeType().isVolatileQualified()) {
3226    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3227    HadError = true;
3228  }
3229  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3230    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3231    HadError = true;
3232  }
3233
3234  if (CtorType->hasExceptionSpec()) {
3235    if (CheckEquivalentExceptionSpec(
3236          PDiag(diag::err_incorrect_defaulted_exception_spec)
3237            << CXXCopyConstructor,
3238          PDiag(),
3239          ExceptionType, SourceLocation(),
3240          CtorType, CD->getLocation())) {
3241      HadError = true;
3242    }
3243  } else if (First) {
3244    // We set the declaration to have the computed exception spec here.
3245    // We duplicate the one parameter type.
3246    EPI.ExtInfo = CtorType->getExtInfo();
3247    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3248  }
3249
3250  if (HadError) {
3251    CD->setInvalidDecl();
3252    return;
3253  }
3254
3255  if (ShouldDeleteCopyConstructor(CD)) {
3256    if (First) {
3257      CD->setDeletedAsWritten();
3258    } else {
3259      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3260        << CXXCopyConstructor;
3261      CD->setInvalidDecl();
3262    }
3263  }
3264}
3265
3266void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3267  assert(MD->isExplicitlyDefaulted());
3268
3269  // Whether this was the first-declared instance of the operator
3270  bool First = MD == MD->getCanonicalDecl();
3271
3272  bool HadError = false;
3273  if (MD->getNumParams() != 1) {
3274    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3275      << MD->getSourceRange();
3276    HadError = true;
3277  }
3278
3279  QualType ReturnType =
3280    MD->getType()->getAs<FunctionType>()->getResultType();
3281  if (!ReturnType->isLValueReferenceType() ||
3282      !Context.hasSameType(
3283        Context.getCanonicalType(ReturnType->getPointeeType()),
3284        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3285    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3286    HadError = true;
3287  }
3288
3289  ImplicitExceptionSpecification Spec(Context);
3290  bool Const;
3291  llvm::tie(Spec, Const) =
3292    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3293
3294  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3295  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3296                          *ExceptionType = Context.getFunctionType(
3297                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3298
3299  QualType ArgType = OperType->getArgType(0);
3300  if (!ArgType->isReferenceType()) {
3301    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3302    HadError = true;
3303  } else {
3304    if (ArgType->getPointeeType().isVolatileQualified()) {
3305      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3306      HadError = true;
3307    }
3308    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3309      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3310      HadError = true;
3311    }
3312  }
3313
3314  if (OperType->getTypeQuals()) {
3315    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3316    HadError = true;
3317  }
3318
3319  if (OperType->hasExceptionSpec()) {
3320    if (CheckEquivalentExceptionSpec(
3321          PDiag(diag::err_incorrect_defaulted_exception_spec)
3322            << CXXCopyAssignment,
3323          PDiag(),
3324          ExceptionType, SourceLocation(),
3325          OperType, MD->getLocation())) {
3326      HadError = true;
3327    }
3328  } else if (First) {
3329    // We set the declaration to have the computed exception spec here.
3330    // We duplicate the one parameter type.
3331    EPI.RefQualifier = OperType->getRefQualifier();
3332    EPI.ExtInfo = OperType->getExtInfo();
3333    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3334  }
3335
3336  if (HadError) {
3337    MD->setInvalidDecl();
3338    return;
3339  }
3340
3341  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3342    if (First) {
3343      MD->setDeletedAsWritten();
3344    } else {
3345      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3346        << CXXCopyAssignment;
3347      MD->setInvalidDecl();
3348    }
3349  }
3350}
3351
3352void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3353  assert(DD->isExplicitlyDefaulted());
3354
3355  // Whether this was the first-declared instance of the destructor.
3356  bool First = DD == DD->getCanonicalDecl();
3357
3358  ImplicitExceptionSpecification Spec
3359    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3360  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3361  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3362                          *ExceptionType = Context.getFunctionType(
3363                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3364
3365  if (DtorType->hasExceptionSpec()) {
3366    if (CheckEquivalentExceptionSpec(
3367          PDiag(diag::err_incorrect_defaulted_exception_spec)
3368            << CXXDestructor,
3369          PDiag(),
3370          ExceptionType, SourceLocation(),
3371          DtorType, DD->getLocation())) {
3372      DD->setInvalidDecl();
3373      return;
3374    }
3375  } else if (First) {
3376    // We set the declaration to have the computed exception spec here.
3377    // There are no parameters.
3378    EPI.ExtInfo = DtorType->getExtInfo();
3379    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3380  }
3381
3382  if (ShouldDeleteDestructor(DD)) {
3383    if (First) {
3384      DD->setDeletedAsWritten();
3385    } else {
3386      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3387        << CXXDestructor;
3388      DD->setInvalidDecl();
3389    }
3390  }
3391}
3392
3393bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3394  CXXRecordDecl *RD = CD->getParent();
3395  assert(!RD->isDependentType() && "do deletion after instantiation");
3396  if (!LangOpts.CPlusPlus0x)
3397    return false;
3398
3399  SourceLocation Loc = CD->getLocation();
3400
3401  // Do access control from the constructor
3402  ContextRAII CtorContext(*this, CD);
3403
3404  bool Union = RD->isUnion();
3405  bool AllConst = true;
3406
3407  // We do this because we should never actually use an anonymous
3408  // union's constructor.
3409  if (Union && RD->isAnonymousStructOrUnion())
3410    return false;
3411
3412  // FIXME: We should put some diagnostic logic right into this function.
3413
3414  // C++0x [class.ctor]/5
3415  //    A defaulted default constructor for class X is defined as deleted if:
3416
3417  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3418                                          BE = RD->bases_end();
3419       BI != BE; ++BI) {
3420    // We'll handle this one later
3421    if (BI->isVirtual())
3422      continue;
3423
3424    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3425    assert(BaseDecl && "base isn't a CXXRecordDecl");
3426
3427    // -- any [direct base class] has a type with a destructor that is
3428    //    deleted or inaccessible from the defaulted default constructor
3429    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3430    if (BaseDtor->isDeleted())
3431      return true;
3432    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3433        AR_accessible)
3434      return true;
3435
3436    // -- any [direct base class either] has no default constructor or
3437    //    overload resolution as applied to [its] default constructor
3438    //    results in an ambiguity or in a function that is deleted or
3439    //    inaccessible from the defaulted default constructor
3440    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3441    if (!BaseDefault || BaseDefault->isDeleted())
3442      return true;
3443
3444    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3445                               PDiag()) != AR_accessible)
3446      return true;
3447  }
3448
3449  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3450                                          BE = RD->vbases_end();
3451       BI != BE; ++BI) {
3452    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3453    assert(BaseDecl && "base isn't a CXXRecordDecl");
3454
3455    // -- any [virtual base class] has a type with a destructor that is
3456    //    delete or inaccessible from the defaulted default constructor
3457    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3458    if (BaseDtor->isDeleted())
3459      return true;
3460    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3461        AR_accessible)
3462      return true;
3463
3464    // -- any [virtual base class either] has no default constructor or
3465    //    overload resolution as applied to [its] default constructor
3466    //    results in an ambiguity or in a function that is deleted or
3467    //    inaccessible from the defaulted default constructor
3468    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3469    if (!BaseDefault || BaseDefault->isDeleted())
3470      return true;
3471
3472    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3473                               PDiag()) != AR_accessible)
3474      return true;
3475  }
3476
3477  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3478                                     FE = RD->field_end();
3479       FI != FE; ++FI) {
3480    if (FI->isInvalidDecl())
3481      continue;
3482
3483    QualType FieldType = Context.getBaseElementType(FI->getType());
3484    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3485
3486    // -- any non-static data member with no brace-or-equal-initializer is of
3487    //    reference type
3488    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3489      return true;
3490
3491    // -- X is a union and all its variant members are of const-qualified type
3492    //    (or array thereof)
3493    if (Union && !FieldType.isConstQualified())
3494      AllConst = false;
3495
3496    if (FieldRecord) {
3497      // -- X is a union-like class that has a variant member with a non-trivial
3498      //    default constructor
3499      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3500        return true;
3501
3502      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3503      if (FieldDtor->isDeleted())
3504        return true;
3505      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3506          AR_accessible)
3507        return true;
3508
3509      // -- any non-variant non-static data member of const-qualified type (or
3510      //    array thereof) with no brace-or-equal-initializer does not have a
3511      //    user-provided default constructor
3512      if (FieldType.isConstQualified() &&
3513          !FI->hasInClassInitializer() &&
3514          !FieldRecord->hasUserProvidedDefaultConstructor())
3515        return true;
3516
3517      if (!Union && FieldRecord->isUnion() &&
3518          FieldRecord->isAnonymousStructOrUnion()) {
3519        // We're okay to reuse AllConst here since we only care about the
3520        // value otherwise if we're in a union.
3521        AllConst = true;
3522
3523        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3524                                           UE = FieldRecord->field_end();
3525             UI != UE; ++UI) {
3526          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3527          CXXRecordDecl *UnionFieldRecord =
3528            UnionFieldType->getAsCXXRecordDecl();
3529
3530          if (!UnionFieldType.isConstQualified())
3531            AllConst = false;
3532
3533          if (UnionFieldRecord &&
3534              !UnionFieldRecord->hasTrivialDefaultConstructor())
3535            return true;
3536        }
3537
3538        if (AllConst)
3539          return true;
3540
3541        // Don't try to initialize the anonymous union
3542        // This is technically non-conformant, but sanity demands it.
3543        continue;
3544      }
3545
3546      // -- any non-static data member with no brace-or-equal-initializer has
3547      //    class type M (or array thereof) and either M has no default
3548      //    constructor or overload resolution as applied to M's default
3549      //    constructor results in an ambiguity or in a function that is deleted
3550      //    or inaccessible from the defaulted default constructor.
3551      if (!FI->hasInClassInitializer()) {
3552        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3553        if (!FieldDefault || FieldDefault->isDeleted())
3554          return true;
3555        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3556                                   PDiag()) != AR_accessible)
3557          return true;
3558      }
3559    } else if (!Union && FieldType.isConstQualified() &&
3560               !FI->hasInClassInitializer()) {
3561      // -- any non-variant non-static data member of const-qualified type (or
3562      //    array thereof) with no brace-or-equal-initializer does not have a
3563      //    user-provided default constructor
3564      return true;
3565    }
3566  }
3567
3568  if (Union && AllConst)
3569    return true;
3570
3571  return false;
3572}
3573
3574bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3575  CXXRecordDecl *RD = CD->getParent();
3576  assert(!RD->isDependentType() && "do deletion after instantiation");
3577  if (!LangOpts.CPlusPlus0x)
3578    return false;
3579
3580  SourceLocation Loc = CD->getLocation();
3581
3582  // Do access control from the constructor
3583  ContextRAII CtorContext(*this, CD);
3584
3585  bool Union = RD->isUnion();
3586
3587  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3588         "copy assignment arg has no pointee type");
3589  unsigned ArgQuals =
3590    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3591      Qualifiers::Const : 0;
3592
3593  // We do this because we should never actually use an anonymous
3594  // union's constructor.
3595  if (Union && RD->isAnonymousStructOrUnion())
3596    return false;
3597
3598  // FIXME: We should put some diagnostic logic right into this function.
3599
3600  // C++0x [class.copy]/11
3601  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3602
3603  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3604                                          BE = RD->bases_end();
3605       BI != BE; ++BI) {
3606    // We'll handle this one later
3607    if (BI->isVirtual())
3608      continue;
3609
3610    QualType BaseType = BI->getType();
3611    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3612    assert(BaseDecl && "base isn't a CXXRecordDecl");
3613
3614    // -- any [direct base class] of a type with a destructor that is deleted or
3615    //    inaccessible from the defaulted constructor
3616    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3617    if (BaseDtor->isDeleted())
3618      return true;
3619    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3620        AR_accessible)
3621      return true;
3622
3623    // -- a [direct base class] B that cannot be [copied] because overload
3624    //    resolution, as applied to B's [copy] constructor, results in an
3625    //    ambiguity or a function that is deleted or inaccessible from the
3626    //    defaulted constructor
3627    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3628    if (!BaseCtor || BaseCtor->isDeleted())
3629      return true;
3630    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3631        AR_accessible)
3632      return true;
3633  }
3634
3635  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3636                                          BE = RD->vbases_end();
3637       BI != BE; ++BI) {
3638    QualType BaseType = BI->getType();
3639    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3640    assert(BaseDecl && "base isn't a CXXRecordDecl");
3641
3642    // -- any [virtual base class] of a type with a destructor that is deleted or
3643    //    inaccessible from the defaulted constructor
3644    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3645    if (BaseDtor->isDeleted())
3646      return true;
3647    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3648        AR_accessible)
3649      return true;
3650
3651    // -- a [virtual base class] B that cannot be [copied] because overload
3652    //    resolution, as applied to B's [copy] constructor, results in an
3653    //    ambiguity or a function that is deleted or inaccessible from the
3654    //    defaulted constructor
3655    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3656    if (!BaseCtor || BaseCtor->isDeleted())
3657      return true;
3658    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3659        AR_accessible)
3660      return true;
3661  }
3662
3663  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3664                                     FE = RD->field_end();
3665       FI != FE; ++FI) {
3666    QualType FieldType = Context.getBaseElementType(FI->getType());
3667
3668    // -- for a copy constructor, a non-static data member of rvalue reference
3669    //    type
3670    if (FieldType->isRValueReferenceType())
3671      return true;
3672
3673    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3674
3675    if (FieldRecord) {
3676      // This is an anonymous union
3677      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3678        // Anonymous unions inside unions do not variant members create
3679        if (!Union) {
3680          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3681                                             UE = FieldRecord->field_end();
3682               UI != UE; ++UI) {
3683            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3684            CXXRecordDecl *UnionFieldRecord =
3685              UnionFieldType->getAsCXXRecordDecl();
3686
3687            // -- a variant member with a non-trivial [copy] constructor and X
3688            //    is a union-like class
3689            if (UnionFieldRecord &&
3690                !UnionFieldRecord->hasTrivialCopyConstructor())
3691              return true;
3692          }
3693        }
3694
3695        // Don't try to initalize an anonymous union
3696        continue;
3697      } else {
3698         // -- a variant member with a non-trivial [copy] constructor and X is a
3699         //    union-like class
3700        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3701          return true;
3702
3703        // -- any [non-static data member] of a type with a destructor that is
3704        //    deleted or inaccessible from the defaulted constructor
3705        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3706        if (FieldDtor->isDeleted())
3707          return true;
3708        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3709            AR_accessible)
3710          return true;
3711      }
3712
3713    // -- a [non-static data member of class type (or array thereof)] B that
3714    //    cannot be [copied] because overload resolution, as applied to B's
3715    //    [copy] constructor, results in an ambiguity or a function that is
3716    //    deleted or inaccessible from the defaulted constructor
3717      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
3718                                                               ArgQuals);
3719      if (!FieldCtor || FieldCtor->isDeleted())
3720        return true;
3721      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3722                                 PDiag()) != AR_accessible)
3723        return true;
3724    }
3725  }
3726
3727  return false;
3728}
3729
3730bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3731  CXXRecordDecl *RD = MD->getParent();
3732  assert(!RD->isDependentType() && "do deletion after instantiation");
3733  if (!LangOpts.CPlusPlus0x)
3734    return false;
3735
3736  SourceLocation Loc = MD->getLocation();
3737
3738  // Do access control from the constructor
3739  ContextRAII MethodContext(*this, MD);
3740
3741  bool Union = RD->isUnion();
3742
3743  unsigned ArgQuals =
3744    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3745      Qualifiers::Const : 0;
3746
3747  // We do this because we should never actually use an anonymous
3748  // union's constructor.
3749  if (Union && RD->isAnonymousStructOrUnion())
3750    return false;
3751
3752  // FIXME: We should put some diagnostic logic right into this function.
3753
3754  // C++0x [class.copy]/11
3755  //    A defaulted [copy] assignment operator for class X is defined as deleted
3756  //    if X has:
3757
3758  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3759                                          BE = RD->bases_end();
3760       BI != BE; ++BI) {
3761    // We'll handle this one later
3762    if (BI->isVirtual())
3763      continue;
3764
3765    QualType BaseType = BI->getType();
3766    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3767    assert(BaseDecl && "base isn't a CXXRecordDecl");
3768
3769    // -- a [direct base class] B that cannot be [copied] because overload
3770    //    resolution, as applied to B's [copy] assignment operator, results in
3771    //    an ambiguity or a function that is deleted or inaccessible from the
3772    //    assignment operator
3773    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3774                                                      0);
3775    if (!CopyOper || CopyOper->isDeleted())
3776      return true;
3777    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3778      return true;
3779  }
3780
3781  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3782                                          BE = RD->vbases_end();
3783       BI != BE; ++BI) {
3784    QualType BaseType = BI->getType();
3785    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3786    assert(BaseDecl && "base isn't a CXXRecordDecl");
3787
3788    // -- a [virtual base class] B that cannot be [copied] because overload
3789    //    resolution, as applied to B's [copy] assignment operator, results in
3790    //    an ambiguity or a function that is deleted or inaccessible from the
3791    //    assignment operator
3792    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3793                                                      0);
3794    if (!CopyOper || CopyOper->isDeleted())
3795      return true;
3796    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3797      return true;
3798  }
3799
3800  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3801                                     FE = RD->field_end();
3802       FI != FE; ++FI) {
3803    QualType FieldType = Context.getBaseElementType(FI->getType());
3804
3805    // -- a non-static data member of reference type
3806    if (FieldType->isReferenceType())
3807      return true;
3808
3809    // -- a non-static data member of const non-class type (or array thereof)
3810    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3811      return true;
3812
3813    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3814
3815    if (FieldRecord) {
3816      // This is an anonymous union
3817      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3818        // Anonymous unions inside unions do not variant members create
3819        if (!Union) {
3820          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3821                                             UE = FieldRecord->field_end();
3822               UI != UE; ++UI) {
3823            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3824            CXXRecordDecl *UnionFieldRecord =
3825              UnionFieldType->getAsCXXRecordDecl();
3826
3827            // -- a variant member with a non-trivial [copy] assignment operator
3828            //    and X is a union-like class
3829            if (UnionFieldRecord &&
3830                !UnionFieldRecord->hasTrivialCopyAssignment())
3831              return true;
3832          }
3833        }
3834
3835        // Don't try to initalize an anonymous union
3836        continue;
3837      // -- a variant member with a non-trivial [copy] assignment operator
3838      //    and X is a union-like class
3839      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3840          return true;
3841      }
3842
3843      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
3844                                                        false, 0);
3845      if (!CopyOper || CopyOper->isDeleted())
3846        return false;
3847      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3848        return false;
3849    }
3850  }
3851
3852  return false;
3853}
3854
3855bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3856  CXXRecordDecl *RD = DD->getParent();
3857  assert(!RD->isDependentType() && "do deletion after instantiation");
3858  if (!LangOpts.CPlusPlus0x)
3859    return false;
3860
3861  SourceLocation Loc = DD->getLocation();
3862
3863  // Do access control from the destructor
3864  ContextRAII CtorContext(*this, DD);
3865
3866  bool Union = RD->isUnion();
3867
3868  // We do this because we should never actually use an anonymous
3869  // union's destructor.
3870  if (Union && RD->isAnonymousStructOrUnion())
3871    return false;
3872
3873  // C++0x [class.dtor]p5
3874  //    A defaulted destructor for a class X is defined as deleted if:
3875  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3876                                          BE = RD->bases_end();
3877       BI != BE; ++BI) {
3878    // We'll handle this one later
3879    if (BI->isVirtual())
3880      continue;
3881
3882    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3883    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3884    assert(BaseDtor && "base has no destructor");
3885
3886    // -- any direct or virtual base class has a deleted destructor or
3887    //    a destructor that is inaccessible from the defaulted destructor
3888    if (BaseDtor->isDeleted())
3889      return true;
3890    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3891        AR_accessible)
3892      return true;
3893  }
3894
3895  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3896                                          BE = RD->vbases_end();
3897       BI != BE; ++BI) {
3898    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3899    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3900    assert(BaseDtor && "base has no destructor");
3901
3902    // -- any direct or virtual base class has a deleted destructor or
3903    //    a destructor that is inaccessible from the defaulted destructor
3904    if (BaseDtor->isDeleted())
3905      return true;
3906    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3907        AR_accessible)
3908      return true;
3909  }
3910
3911  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3912                                     FE = RD->field_end();
3913       FI != FE; ++FI) {
3914    QualType FieldType = Context.getBaseElementType(FI->getType());
3915    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3916    if (FieldRecord) {
3917      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3918         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3919                                            UE = FieldRecord->field_end();
3920              UI != UE; ++UI) {
3921           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3922           CXXRecordDecl *UnionFieldRecord =
3923             UnionFieldType->getAsCXXRecordDecl();
3924
3925           // -- X is a union-like class that has a variant member with a non-
3926           //    trivial destructor.
3927           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3928             return true;
3929         }
3930      // Technically we are supposed to do this next check unconditionally.
3931      // But that makes absolutely no sense.
3932      } else {
3933        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3934
3935        // -- any of the non-static data members has class type M (or array
3936        //    thereof) and M has a deleted destructor or a destructor that is
3937        //    inaccessible from the defaulted destructor
3938        if (FieldDtor->isDeleted())
3939          return true;
3940        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3941          AR_accessible)
3942        return true;
3943
3944        // -- X is a union-like class that has a variant member with a non-
3945        //    trivial destructor.
3946        if (Union && !FieldDtor->isTrivial())
3947          return true;
3948      }
3949    }
3950  }
3951
3952  if (DD->isVirtual()) {
3953    FunctionDecl *OperatorDelete = 0;
3954    DeclarationName Name =
3955      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3956    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3957          false))
3958      return true;
3959  }
3960
3961
3962  return false;
3963}
3964
3965/// \brief Data used with FindHiddenVirtualMethod
3966namespace {
3967  struct FindHiddenVirtualMethodData {
3968    Sema *S;
3969    CXXMethodDecl *Method;
3970    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3971    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3972  };
3973}
3974
3975/// \brief Member lookup function that determines whether a given C++
3976/// method overloads virtual methods in a base class without overriding any,
3977/// to be used with CXXRecordDecl::lookupInBases().
3978static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3979                                    CXXBasePath &Path,
3980                                    void *UserData) {
3981  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3982
3983  FindHiddenVirtualMethodData &Data
3984    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3985
3986  DeclarationName Name = Data.Method->getDeclName();
3987  assert(Name.getNameKind() == DeclarationName::Identifier);
3988
3989  bool foundSameNameMethod = false;
3990  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3991  for (Path.Decls = BaseRecord->lookup(Name);
3992       Path.Decls.first != Path.Decls.second;
3993       ++Path.Decls.first) {
3994    NamedDecl *D = *Path.Decls.first;
3995    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3996      MD = MD->getCanonicalDecl();
3997      foundSameNameMethod = true;
3998      // Interested only in hidden virtual methods.
3999      if (!MD->isVirtual())
4000        continue;
4001      // If the method we are checking overrides a method from its base
4002      // don't warn about the other overloaded methods.
4003      if (!Data.S->IsOverload(Data.Method, MD, false))
4004        return true;
4005      // Collect the overload only if its hidden.
4006      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4007        overloadedMethods.push_back(MD);
4008    }
4009  }
4010
4011  if (foundSameNameMethod)
4012    Data.OverloadedMethods.append(overloadedMethods.begin(),
4013                                   overloadedMethods.end());
4014  return foundSameNameMethod;
4015}
4016
4017/// \brief See if a method overloads virtual methods in a base class without
4018/// overriding any.
4019void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4020  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4021                               MD->getLocation()) == Diagnostic::Ignored)
4022    return;
4023  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4024    return;
4025
4026  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4027                     /*bool RecordPaths=*/false,
4028                     /*bool DetectVirtual=*/false);
4029  FindHiddenVirtualMethodData Data;
4030  Data.Method = MD;
4031  Data.S = this;
4032
4033  // Keep the base methods that were overriden or introduced in the subclass
4034  // by 'using' in a set. A base method not in this set is hidden.
4035  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4036       res.first != res.second; ++res.first) {
4037    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4038      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4039                                          E = MD->end_overridden_methods();
4040           I != E; ++I)
4041        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4042    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4043      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4044        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4045  }
4046
4047  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4048      !Data.OverloadedMethods.empty()) {
4049    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4050      << MD << (Data.OverloadedMethods.size() > 1);
4051
4052    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4053      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4054      Diag(overloadedMD->getLocation(),
4055           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4056    }
4057  }
4058}
4059
4060void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4061                                             Decl *TagDecl,
4062                                             SourceLocation LBrac,
4063                                             SourceLocation RBrac,
4064                                             AttributeList *AttrList) {
4065  if (!TagDecl)
4066    return;
4067
4068  AdjustDeclIfTemplate(TagDecl);
4069
4070  ActOnFields(S, RLoc, TagDecl,
4071              // strict aliasing violation!
4072              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4073              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4074
4075  CheckCompletedCXXClass(
4076                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4077}
4078
4079/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4080/// special functions, such as the default constructor, copy
4081/// constructor, or destructor, to the given C++ class (C++
4082/// [special]p1).  This routine can only be executed just before the
4083/// definition of the class is complete.
4084void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4085  if (!ClassDecl->hasUserDeclaredConstructor())
4086    ++ASTContext::NumImplicitDefaultConstructors;
4087
4088  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4089    ++ASTContext::NumImplicitCopyConstructors;
4090
4091  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4092    ++ASTContext::NumImplicitCopyAssignmentOperators;
4093
4094    // If we have a dynamic class, then the copy assignment operator may be
4095    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4096    // it shows up in the right place in the vtable and that we diagnose
4097    // problems with the implicit exception specification.
4098    if (ClassDecl->isDynamicClass())
4099      DeclareImplicitCopyAssignment(ClassDecl);
4100  }
4101
4102  if (!ClassDecl->hasUserDeclaredDestructor()) {
4103    ++ASTContext::NumImplicitDestructors;
4104
4105    // If we have a dynamic class, then the destructor may be virtual, so we
4106    // have to declare the destructor immediately. This ensures that, e.g., it
4107    // shows up in the right place in the vtable and that we diagnose problems
4108    // with the implicit exception specification.
4109    if (ClassDecl->isDynamicClass())
4110      DeclareImplicitDestructor(ClassDecl);
4111  }
4112}
4113
4114void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4115  if (!D)
4116    return;
4117
4118  int NumParamList = D->getNumTemplateParameterLists();
4119  for (int i = 0; i < NumParamList; i++) {
4120    TemplateParameterList* Params = D->getTemplateParameterList(i);
4121    for (TemplateParameterList::iterator Param = Params->begin(),
4122                                      ParamEnd = Params->end();
4123          Param != ParamEnd; ++Param) {
4124      NamedDecl *Named = cast<NamedDecl>(*Param);
4125      if (Named->getDeclName()) {
4126        S->AddDecl(Named);
4127        IdResolver.AddDecl(Named);
4128      }
4129    }
4130  }
4131}
4132
4133void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4134  if (!D)
4135    return;
4136
4137  TemplateParameterList *Params = 0;
4138  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4139    Params = Template->getTemplateParameters();
4140  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4141           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4142    Params = PartialSpec->getTemplateParameters();
4143  else
4144    return;
4145
4146  for (TemplateParameterList::iterator Param = Params->begin(),
4147                                    ParamEnd = Params->end();
4148       Param != ParamEnd; ++Param) {
4149    NamedDecl *Named = cast<NamedDecl>(*Param);
4150    if (Named->getDeclName()) {
4151      S->AddDecl(Named);
4152      IdResolver.AddDecl(Named);
4153    }
4154  }
4155}
4156
4157void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4158  if (!RecordD) return;
4159  AdjustDeclIfTemplate(RecordD);
4160  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4161  PushDeclContext(S, Record);
4162}
4163
4164void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4165  if (!RecordD) return;
4166  PopDeclContext();
4167}
4168
4169/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4170/// parsing a top-level (non-nested) C++ class, and we are now
4171/// parsing those parts of the given Method declaration that could
4172/// not be parsed earlier (C++ [class.mem]p2), such as default
4173/// arguments. This action should enter the scope of the given
4174/// Method declaration as if we had just parsed the qualified method
4175/// name. However, it should not bring the parameters into scope;
4176/// that will be performed by ActOnDelayedCXXMethodParameter.
4177void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4178}
4179
4180/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4181/// C++ method declaration. We're (re-)introducing the given
4182/// function parameter into scope for use in parsing later parts of
4183/// the method declaration. For example, we could see an
4184/// ActOnParamDefaultArgument event for this parameter.
4185void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4186  if (!ParamD)
4187    return;
4188
4189  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4190
4191  // If this parameter has an unparsed default argument, clear it out
4192  // to make way for the parsed default argument.
4193  if (Param->hasUnparsedDefaultArg())
4194    Param->setDefaultArg(0);
4195
4196  S->AddDecl(Param);
4197  if (Param->getDeclName())
4198    IdResolver.AddDecl(Param);
4199}
4200
4201/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4202/// processing the delayed method declaration for Method. The method
4203/// declaration is now considered finished. There may be a separate
4204/// ActOnStartOfFunctionDef action later (not necessarily
4205/// immediately!) for this method, if it was also defined inside the
4206/// class body.
4207void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4208  if (!MethodD)
4209    return;
4210
4211  AdjustDeclIfTemplate(MethodD);
4212
4213  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4214
4215  // Now that we have our default arguments, check the constructor
4216  // again. It could produce additional diagnostics or affect whether
4217  // the class has implicitly-declared destructors, among other
4218  // things.
4219  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4220    CheckConstructor(Constructor);
4221
4222  // Check the default arguments, which we may have added.
4223  if (!Method->isInvalidDecl())
4224    CheckCXXDefaultArguments(Method);
4225}
4226
4227/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4228/// the well-formedness of the constructor declarator @p D with type @p
4229/// R. If there are any errors in the declarator, this routine will
4230/// emit diagnostics and set the invalid bit to true.  In any case, the type
4231/// will be updated to reflect a well-formed type for the constructor and
4232/// returned.
4233QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4234                                          StorageClass &SC) {
4235  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4236
4237  // C++ [class.ctor]p3:
4238  //   A constructor shall not be virtual (10.3) or static (9.4). A
4239  //   constructor can be invoked for a const, volatile or const
4240  //   volatile object. A constructor shall not be declared const,
4241  //   volatile, or const volatile (9.3.2).
4242  if (isVirtual) {
4243    if (!D.isInvalidType())
4244      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4245        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4246        << SourceRange(D.getIdentifierLoc());
4247    D.setInvalidType();
4248  }
4249  if (SC == SC_Static) {
4250    if (!D.isInvalidType())
4251      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4252        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4253        << SourceRange(D.getIdentifierLoc());
4254    D.setInvalidType();
4255    SC = SC_None;
4256  }
4257
4258  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4259  if (FTI.TypeQuals != 0) {
4260    if (FTI.TypeQuals & Qualifiers::Const)
4261      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4262        << "const" << SourceRange(D.getIdentifierLoc());
4263    if (FTI.TypeQuals & Qualifiers::Volatile)
4264      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4265        << "volatile" << SourceRange(D.getIdentifierLoc());
4266    if (FTI.TypeQuals & Qualifiers::Restrict)
4267      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4268        << "restrict" << SourceRange(D.getIdentifierLoc());
4269    D.setInvalidType();
4270  }
4271
4272  // C++0x [class.ctor]p4:
4273  //   A constructor shall not be declared with a ref-qualifier.
4274  if (FTI.hasRefQualifier()) {
4275    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4276      << FTI.RefQualifierIsLValueRef
4277      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4278    D.setInvalidType();
4279  }
4280
4281  // Rebuild the function type "R" without any type qualifiers (in
4282  // case any of the errors above fired) and with "void" as the
4283  // return type, since constructors don't have return types.
4284  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4285  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4286    return R;
4287
4288  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4289  EPI.TypeQuals = 0;
4290  EPI.RefQualifier = RQ_None;
4291
4292  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4293                                 Proto->getNumArgs(), EPI);
4294}
4295
4296/// CheckConstructor - Checks a fully-formed constructor for
4297/// well-formedness, issuing any diagnostics required. Returns true if
4298/// the constructor declarator is invalid.
4299void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4300  CXXRecordDecl *ClassDecl
4301    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4302  if (!ClassDecl)
4303    return Constructor->setInvalidDecl();
4304
4305  // C++ [class.copy]p3:
4306  //   A declaration of a constructor for a class X is ill-formed if
4307  //   its first parameter is of type (optionally cv-qualified) X and
4308  //   either there are no other parameters or else all other
4309  //   parameters have default arguments.
4310  if (!Constructor->isInvalidDecl() &&
4311      ((Constructor->getNumParams() == 1) ||
4312       (Constructor->getNumParams() > 1 &&
4313        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4314      Constructor->getTemplateSpecializationKind()
4315                                              != TSK_ImplicitInstantiation) {
4316    QualType ParamType = Constructor->getParamDecl(0)->getType();
4317    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4318    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4319      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4320      const char *ConstRef
4321        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4322                                                        : " const &";
4323      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4324        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4325
4326      // FIXME: Rather that making the constructor invalid, we should endeavor
4327      // to fix the type.
4328      Constructor->setInvalidDecl();
4329    }
4330  }
4331}
4332
4333/// CheckDestructor - Checks a fully-formed destructor definition for
4334/// well-formedness, issuing any diagnostics required.  Returns true
4335/// on error.
4336bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4337  CXXRecordDecl *RD = Destructor->getParent();
4338
4339  if (Destructor->isVirtual()) {
4340    SourceLocation Loc;
4341
4342    if (!Destructor->isImplicit())
4343      Loc = Destructor->getLocation();
4344    else
4345      Loc = RD->getLocation();
4346
4347    // If we have a virtual destructor, look up the deallocation function
4348    FunctionDecl *OperatorDelete = 0;
4349    DeclarationName Name =
4350    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4351    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4352      return true;
4353
4354    MarkDeclarationReferenced(Loc, OperatorDelete);
4355
4356    Destructor->setOperatorDelete(OperatorDelete);
4357  }
4358
4359  return false;
4360}
4361
4362static inline bool
4363FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4364  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4365          FTI.ArgInfo[0].Param &&
4366          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4367}
4368
4369/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4370/// the well-formednes of the destructor declarator @p D with type @p
4371/// R. If there are any errors in the declarator, this routine will
4372/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4373/// will be updated to reflect a well-formed type for the destructor and
4374/// returned.
4375QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4376                                         StorageClass& SC) {
4377  // C++ [class.dtor]p1:
4378  //   [...] A typedef-name that names a class is a class-name
4379  //   (7.1.3); however, a typedef-name that names a class shall not
4380  //   be used as the identifier in the declarator for a destructor
4381  //   declaration.
4382  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4383  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4384    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4385      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4386  else if (const TemplateSpecializationType *TST =
4387             DeclaratorType->getAs<TemplateSpecializationType>())
4388    if (TST->isTypeAlias())
4389      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4390        << DeclaratorType << 1;
4391
4392  // C++ [class.dtor]p2:
4393  //   A destructor is used to destroy objects of its class type. A
4394  //   destructor takes no parameters, and no return type can be
4395  //   specified for it (not even void). The address of a destructor
4396  //   shall not be taken. A destructor shall not be static. A
4397  //   destructor can be invoked for a const, volatile or const
4398  //   volatile object. A destructor shall not be declared const,
4399  //   volatile or const volatile (9.3.2).
4400  if (SC == SC_Static) {
4401    if (!D.isInvalidType())
4402      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4403        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4404        << SourceRange(D.getIdentifierLoc())
4405        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4406
4407    SC = SC_None;
4408  }
4409  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4410    // Destructors don't have return types, but the parser will
4411    // happily parse something like:
4412    //
4413    //   class X {
4414    //     float ~X();
4415    //   };
4416    //
4417    // The return type will be eliminated later.
4418    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4419      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4420      << SourceRange(D.getIdentifierLoc());
4421  }
4422
4423  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4424  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4425    if (FTI.TypeQuals & Qualifiers::Const)
4426      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4427        << "const" << SourceRange(D.getIdentifierLoc());
4428    if (FTI.TypeQuals & Qualifiers::Volatile)
4429      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4430        << "volatile" << SourceRange(D.getIdentifierLoc());
4431    if (FTI.TypeQuals & Qualifiers::Restrict)
4432      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4433        << "restrict" << SourceRange(D.getIdentifierLoc());
4434    D.setInvalidType();
4435  }
4436
4437  // C++0x [class.dtor]p2:
4438  //   A destructor shall not be declared with a ref-qualifier.
4439  if (FTI.hasRefQualifier()) {
4440    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4441      << FTI.RefQualifierIsLValueRef
4442      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4443    D.setInvalidType();
4444  }
4445
4446  // Make sure we don't have any parameters.
4447  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4448    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4449
4450    // Delete the parameters.
4451    FTI.freeArgs();
4452    D.setInvalidType();
4453  }
4454
4455  // Make sure the destructor isn't variadic.
4456  if (FTI.isVariadic) {
4457    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4458    D.setInvalidType();
4459  }
4460
4461  // Rebuild the function type "R" without any type qualifiers or
4462  // parameters (in case any of the errors above fired) and with
4463  // "void" as the return type, since destructors don't have return
4464  // types.
4465  if (!D.isInvalidType())
4466    return R;
4467
4468  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4469  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4470  EPI.Variadic = false;
4471  EPI.TypeQuals = 0;
4472  EPI.RefQualifier = RQ_None;
4473  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4474}
4475
4476/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4477/// well-formednes of the conversion function declarator @p D with
4478/// type @p R. If there are any errors in the declarator, this routine
4479/// will emit diagnostics and return true. Otherwise, it will return
4480/// false. Either way, the type @p R will be updated to reflect a
4481/// well-formed type for the conversion operator.
4482void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4483                                     StorageClass& SC) {
4484  // C++ [class.conv.fct]p1:
4485  //   Neither parameter types nor return type can be specified. The
4486  //   type of a conversion function (8.3.5) is "function taking no
4487  //   parameter returning conversion-type-id."
4488  if (SC == SC_Static) {
4489    if (!D.isInvalidType())
4490      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4491        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4492        << SourceRange(D.getIdentifierLoc());
4493    D.setInvalidType();
4494    SC = SC_None;
4495  }
4496
4497  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4498
4499  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4500    // Conversion functions don't have return types, but the parser will
4501    // happily parse something like:
4502    //
4503    //   class X {
4504    //     float operator bool();
4505    //   };
4506    //
4507    // The return type will be changed later anyway.
4508    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4509      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4510      << SourceRange(D.getIdentifierLoc());
4511    D.setInvalidType();
4512  }
4513
4514  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4515
4516  // Make sure we don't have any parameters.
4517  if (Proto->getNumArgs() > 0) {
4518    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4519
4520    // Delete the parameters.
4521    D.getFunctionTypeInfo().freeArgs();
4522    D.setInvalidType();
4523  } else if (Proto->isVariadic()) {
4524    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4525    D.setInvalidType();
4526  }
4527
4528  // Diagnose "&operator bool()" and other such nonsense.  This
4529  // is actually a gcc extension which we don't support.
4530  if (Proto->getResultType() != ConvType) {
4531    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4532      << Proto->getResultType();
4533    D.setInvalidType();
4534    ConvType = Proto->getResultType();
4535  }
4536
4537  // C++ [class.conv.fct]p4:
4538  //   The conversion-type-id shall not represent a function type nor
4539  //   an array type.
4540  if (ConvType->isArrayType()) {
4541    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4542    ConvType = Context.getPointerType(ConvType);
4543    D.setInvalidType();
4544  } else if (ConvType->isFunctionType()) {
4545    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4546    ConvType = Context.getPointerType(ConvType);
4547    D.setInvalidType();
4548  }
4549
4550  // Rebuild the function type "R" without any parameters (in case any
4551  // of the errors above fired) and with the conversion type as the
4552  // return type.
4553  if (D.isInvalidType())
4554    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4555
4556  // C++0x explicit conversion operators.
4557  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4558    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4559         diag::warn_explicit_conversion_functions)
4560      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4561}
4562
4563/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4564/// the declaration of the given C++ conversion function. This routine
4565/// is responsible for recording the conversion function in the C++
4566/// class, if possible.
4567Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4568  assert(Conversion && "Expected to receive a conversion function declaration");
4569
4570  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4571
4572  // Make sure we aren't redeclaring the conversion function.
4573  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4574
4575  // C++ [class.conv.fct]p1:
4576  //   [...] A conversion function is never used to convert a
4577  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4578  //   same object type (or a reference to it), to a (possibly
4579  //   cv-qualified) base class of that type (or a reference to it),
4580  //   or to (possibly cv-qualified) void.
4581  // FIXME: Suppress this warning if the conversion function ends up being a
4582  // virtual function that overrides a virtual function in a base class.
4583  QualType ClassType
4584    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4585  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4586    ConvType = ConvTypeRef->getPointeeType();
4587  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4588      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4589    /* Suppress diagnostics for instantiations. */;
4590  else if (ConvType->isRecordType()) {
4591    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4592    if (ConvType == ClassType)
4593      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4594        << ClassType;
4595    else if (IsDerivedFrom(ClassType, ConvType))
4596      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4597        <<  ClassType << ConvType;
4598  } else if (ConvType->isVoidType()) {
4599    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4600      << ClassType << ConvType;
4601  }
4602
4603  if (FunctionTemplateDecl *ConversionTemplate
4604                                = Conversion->getDescribedFunctionTemplate())
4605    return ConversionTemplate;
4606
4607  return Conversion;
4608}
4609
4610//===----------------------------------------------------------------------===//
4611// Namespace Handling
4612//===----------------------------------------------------------------------===//
4613
4614
4615
4616/// ActOnStartNamespaceDef - This is called at the start of a namespace
4617/// definition.
4618Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4619                                   SourceLocation InlineLoc,
4620                                   SourceLocation NamespaceLoc,
4621                                   SourceLocation IdentLoc,
4622                                   IdentifierInfo *II,
4623                                   SourceLocation LBrace,
4624                                   AttributeList *AttrList) {
4625  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4626  // For anonymous namespace, take the location of the left brace.
4627  SourceLocation Loc = II ? IdentLoc : LBrace;
4628  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4629                                                 StartLoc, Loc, II);
4630  Namespc->setInline(InlineLoc.isValid());
4631
4632  Scope *DeclRegionScope = NamespcScope->getParent();
4633
4634  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4635
4636  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4637    PushNamespaceVisibilityAttr(Attr);
4638
4639  if (II) {
4640    // C++ [namespace.def]p2:
4641    //   The identifier in an original-namespace-definition shall not
4642    //   have been previously defined in the declarative region in
4643    //   which the original-namespace-definition appears. The
4644    //   identifier in an original-namespace-definition is the name of
4645    //   the namespace. Subsequently in that declarative region, it is
4646    //   treated as an original-namespace-name.
4647    //
4648    // Since namespace names are unique in their scope, and we don't
4649    // look through using directives, just look for any ordinary names.
4650
4651    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4652      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4653      Decl::IDNS_Namespace;
4654    NamedDecl *PrevDecl = 0;
4655    for (DeclContext::lookup_result R
4656            = CurContext->getRedeclContext()->lookup(II);
4657         R.first != R.second; ++R.first) {
4658      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4659        PrevDecl = *R.first;
4660        break;
4661      }
4662    }
4663
4664    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4665      // This is an extended namespace definition.
4666      if (Namespc->isInline() != OrigNS->isInline()) {
4667        // inline-ness must match
4668        if (OrigNS->isInline()) {
4669          // The user probably just forgot the 'inline', so suggest that it
4670          // be added back.
4671          Diag(Namespc->getLocation(),
4672               diag::warn_inline_namespace_reopened_noninline)
4673            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4674        } else {
4675          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4676            << Namespc->isInline();
4677        }
4678        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4679
4680        // Recover by ignoring the new namespace's inline status.
4681        Namespc->setInline(OrigNS->isInline());
4682      }
4683
4684      // Attach this namespace decl to the chain of extended namespace
4685      // definitions.
4686      OrigNS->setNextNamespace(Namespc);
4687      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4688
4689      // Remove the previous declaration from the scope.
4690      if (DeclRegionScope->isDeclScope(OrigNS)) {
4691        IdResolver.RemoveDecl(OrigNS);
4692        DeclRegionScope->RemoveDecl(OrigNS);
4693      }
4694    } else if (PrevDecl) {
4695      // This is an invalid name redefinition.
4696      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4697       << Namespc->getDeclName();
4698      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4699      Namespc->setInvalidDecl();
4700      // Continue on to push Namespc as current DeclContext and return it.
4701    } else if (II->isStr("std") &&
4702               CurContext->getRedeclContext()->isTranslationUnit()) {
4703      // This is the first "real" definition of the namespace "std", so update
4704      // our cache of the "std" namespace to point at this definition.
4705      if (NamespaceDecl *StdNS = getStdNamespace()) {
4706        // We had already defined a dummy namespace "std". Link this new
4707        // namespace definition to the dummy namespace "std".
4708        StdNS->setNextNamespace(Namespc);
4709        StdNS->setLocation(IdentLoc);
4710        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4711      }
4712
4713      // Make our StdNamespace cache point at the first real definition of the
4714      // "std" namespace.
4715      StdNamespace = Namespc;
4716    }
4717
4718    PushOnScopeChains(Namespc, DeclRegionScope);
4719  } else {
4720    // Anonymous namespaces.
4721    assert(Namespc->isAnonymousNamespace());
4722
4723    // Link the anonymous namespace into its parent.
4724    NamespaceDecl *PrevDecl;
4725    DeclContext *Parent = CurContext->getRedeclContext();
4726    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4727      PrevDecl = TU->getAnonymousNamespace();
4728      TU->setAnonymousNamespace(Namespc);
4729    } else {
4730      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4731      PrevDecl = ND->getAnonymousNamespace();
4732      ND->setAnonymousNamespace(Namespc);
4733    }
4734
4735    // Link the anonymous namespace with its previous declaration.
4736    if (PrevDecl) {
4737      assert(PrevDecl->isAnonymousNamespace());
4738      assert(!PrevDecl->getNextNamespace());
4739      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4740      PrevDecl->setNextNamespace(Namespc);
4741
4742      if (Namespc->isInline() != PrevDecl->isInline()) {
4743        // inline-ness must match
4744        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4745          << Namespc->isInline();
4746        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4747        Namespc->setInvalidDecl();
4748        // Recover by ignoring the new namespace's inline status.
4749        Namespc->setInline(PrevDecl->isInline());
4750      }
4751    }
4752
4753    CurContext->addDecl(Namespc);
4754
4755    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4756    //   behaves as if it were replaced by
4757    //     namespace unique { /* empty body */ }
4758    //     using namespace unique;
4759    //     namespace unique { namespace-body }
4760    //   where all occurrences of 'unique' in a translation unit are
4761    //   replaced by the same identifier and this identifier differs
4762    //   from all other identifiers in the entire program.
4763
4764    // We just create the namespace with an empty name and then add an
4765    // implicit using declaration, just like the standard suggests.
4766    //
4767    // CodeGen enforces the "universally unique" aspect by giving all
4768    // declarations semantically contained within an anonymous
4769    // namespace internal linkage.
4770
4771    if (!PrevDecl) {
4772      UsingDirectiveDecl* UD
4773        = UsingDirectiveDecl::Create(Context, CurContext,
4774                                     /* 'using' */ LBrace,
4775                                     /* 'namespace' */ SourceLocation(),
4776                                     /* qualifier */ NestedNameSpecifierLoc(),
4777                                     /* identifier */ SourceLocation(),
4778                                     Namespc,
4779                                     /* Ancestor */ CurContext);
4780      UD->setImplicit();
4781      CurContext->addDecl(UD);
4782    }
4783  }
4784
4785  // Although we could have an invalid decl (i.e. the namespace name is a
4786  // redefinition), push it as current DeclContext and try to continue parsing.
4787  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4788  // for the namespace has the declarations that showed up in that particular
4789  // namespace definition.
4790  PushDeclContext(NamespcScope, Namespc);
4791  return Namespc;
4792}
4793
4794/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4795/// is a namespace alias, returns the namespace it points to.
4796static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4797  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4798    return AD->getNamespace();
4799  return dyn_cast_or_null<NamespaceDecl>(D);
4800}
4801
4802/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4803/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4804void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4805  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4806  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4807  Namespc->setRBraceLoc(RBrace);
4808  PopDeclContext();
4809  if (Namespc->hasAttr<VisibilityAttr>())
4810    PopPragmaVisibility();
4811}
4812
4813CXXRecordDecl *Sema::getStdBadAlloc() const {
4814  return cast_or_null<CXXRecordDecl>(
4815                                  StdBadAlloc.get(Context.getExternalSource()));
4816}
4817
4818NamespaceDecl *Sema::getStdNamespace() const {
4819  return cast_or_null<NamespaceDecl>(
4820                                 StdNamespace.get(Context.getExternalSource()));
4821}
4822
4823/// \brief Retrieve the special "std" namespace, which may require us to
4824/// implicitly define the namespace.
4825NamespaceDecl *Sema::getOrCreateStdNamespace() {
4826  if (!StdNamespace) {
4827    // The "std" namespace has not yet been defined, so build one implicitly.
4828    StdNamespace = NamespaceDecl::Create(Context,
4829                                         Context.getTranslationUnitDecl(),
4830                                         SourceLocation(), SourceLocation(),
4831                                         &PP.getIdentifierTable().get("std"));
4832    getStdNamespace()->setImplicit(true);
4833  }
4834
4835  return getStdNamespace();
4836}
4837
4838/// \brief Determine whether a using statement is in a context where it will be
4839/// apply in all contexts.
4840static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4841  switch (CurContext->getDeclKind()) {
4842    case Decl::TranslationUnit:
4843      return true;
4844    case Decl::LinkageSpec:
4845      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4846    default:
4847      return false;
4848  }
4849}
4850
4851Decl *Sema::ActOnUsingDirective(Scope *S,
4852                                          SourceLocation UsingLoc,
4853                                          SourceLocation NamespcLoc,
4854                                          CXXScopeSpec &SS,
4855                                          SourceLocation IdentLoc,
4856                                          IdentifierInfo *NamespcName,
4857                                          AttributeList *AttrList) {
4858  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4859  assert(NamespcName && "Invalid NamespcName.");
4860  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4861
4862  // This can only happen along a recovery path.
4863  while (S->getFlags() & Scope::TemplateParamScope)
4864    S = S->getParent();
4865  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4866
4867  UsingDirectiveDecl *UDir = 0;
4868  NestedNameSpecifier *Qualifier = 0;
4869  if (SS.isSet())
4870    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4871
4872  // Lookup namespace name.
4873  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4874  LookupParsedName(R, S, &SS);
4875  if (R.isAmbiguous())
4876    return 0;
4877
4878  if (R.empty()) {
4879    // Allow "using namespace std;" or "using namespace ::std;" even if
4880    // "std" hasn't been defined yet, for GCC compatibility.
4881    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4882        NamespcName->isStr("std")) {
4883      Diag(IdentLoc, diag::ext_using_undefined_std);
4884      R.addDecl(getOrCreateStdNamespace());
4885      R.resolveKind();
4886    }
4887    // Otherwise, attempt typo correction.
4888    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4889                                                       CTC_NoKeywords, 0)) {
4890      if (R.getAsSingle<NamespaceDecl>() ||
4891          R.getAsSingle<NamespaceAliasDecl>()) {
4892        if (DeclContext *DC = computeDeclContext(SS, false))
4893          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4894            << NamespcName << DC << Corrected << SS.getRange()
4895            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4896        else
4897          Diag(IdentLoc, diag::err_using_directive_suggest)
4898            << NamespcName << Corrected
4899            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4900        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4901          << Corrected;
4902
4903        NamespcName = Corrected.getAsIdentifierInfo();
4904      } else {
4905        R.clear();
4906        R.setLookupName(NamespcName);
4907      }
4908    }
4909  }
4910
4911  if (!R.empty()) {
4912    NamedDecl *Named = R.getFoundDecl();
4913    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4914        && "expected namespace decl");
4915    // C++ [namespace.udir]p1:
4916    //   A using-directive specifies that the names in the nominated
4917    //   namespace can be used in the scope in which the
4918    //   using-directive appears after the using-directive. During
4919    //   unqualified name lookup (3.4.1), the names appear as if they
4920    //   were declared in the nearest enclosing namespace which
4921    //   contains both the using-directive and the nominated
4922    //   namespace. [Note: in this context, "contains" means "contains
4923    //   directly or indirectly". ]
4924
4925    // Find enclosing context containing both using-directive and
4926    // nominated namespace.
4927    NamespaceDecl *NS = getNamespaceDecl(Named);
4928    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4929    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4930      CommonAncestor = CommonAncestor->getParent();
4931
4932    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4933                                      SS.getWithLocInContext(Context),
4934                                      IdentLoc, Named, CommonAncestor);
4935
4936    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4937        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4938      Diag(IdentLoc, diag::warn_using_directive_in_header);
4939    }
4940
4941    PushUsingDirective(S, UDir);
4942  } else {
4943    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4944  }
4945
4946  // FIXME: We ignore attributes for now.
4947  return UDir;
4948}
4949
4950void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4951  // If scope has associated entity, then using directive is at namespace
4952  // or translation unit scope. We add UsingDirectiveDecls, into
4953  // it's lookup structure.
4954  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4955    Ctx->addDecl(UDir);
4956  else
4957    // Otherwise it is block-sope. using-directives will affect lookup
4958    // only to the end of scope.
4959    S->PushUsingDirective(UDir);
4960}
4961
4962
4963Decl *Sema::ActOnUsingDeclaration(Scope *S,
4964                                  AccessSpecifier AS,
4965                                  bool HasUsingKeyword,
4966                                  SourceLocation UsingLoc,
4967                                  CXXScopeSpec &SS,
4968                                  UnqualifiedId &Name,
4969                                  AttributeList *AttrList,
4970                                  bool IsTypeName,
4971                                  SourceLocation TypenameLoc) {
4972  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4973
4974  switch (Name.getKind()) {
4975  case UnqualifiedId::IK_Identifier:
4976  case UnqualifiedId::IK_OperatorFunctionId:
4977  case UnqualifiedId::IK_LiteralOperatorId:
4978  case UnqualifiedId::IK_ConversionFunctionId:
4979    break;
4980
4981  case UnqualifiedId::IK_ConstructorName:
4982  case UnqualifiedId::IK_ConstructorTemplateId:
4983    // C++0x inherited constructors.
4984    if (getLangOptions().CPlusPlus0x) break;
4985
4986    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4987      << SS.getRange();
4988    return 0;
4989
4990  case UnqualifiedId::IK_DestructorName:
4991    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
4992      << SS.getRange();
4993    return 0;
4994
4995  case UnqualifiedId::IK_TemplateId:
4996    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
4997      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
4998    return 0;
4999  }
5000
5001  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5002  DeclarationName TargetName = TargetNameInfo.getName();
5003  if (!TargetName)
5004    return 0;
5005
5006  // Warn about using declarations.
5007  // TODO: store that the declaration was written without 'using' and
5008  // talk about access decls instead of using decls in the
5009  // diagnostics.
5010  if (!HasUsingKeyword) {
5011    UsingLoc = Name.getSourceRange().getBegin();
5012
5013    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5014      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5015  }
5016
5017  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5018      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5019    return 0;
5020
5021  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5022                                        TargetNameInfo, AttrList,
5023                                        /* IsInstantiation */ false,
5024                                        IsTypeName, TypenameLoc);
5025  if (UD)
5026    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5027
5028  return UD;
5029}
5030
5031/// \brief Determine whether a using declaration considers the given
5032/// declarations as "equivalent", e.g., if they are redeclarations of
5033/// the same entity or are both typedefs of the same type.
5034static bool
5035IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5036                         bool &SuppressRedeclaration) {
5037  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5038    SuppressRedeclaration = false;
5039    return true;
5040  }
5041
5042  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5043    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5044      SuppressRedeclaration = true;
5045      return Context.hasSameType(TD1->getUnderlyingType(),
5046                                 TD2->getUnderlyingType());
5047    }
5048
5049  return false;
5050}
5051
5052
5053/// Determines whether to create a using shadow decl for a particular
5054/// decl, given the set of decls existing prior to this using lookup.
5055bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5056                                const LookupResult &Previous) {
5057  // Diagnose finding a decl which is not from a base class of the
5058  // current class.  We do this now because there are cases where this
5059  // function will silently decide not to build a shadow decl, which
5060  // will pre-empt further diagnostics.
5061  //
5062  // We don't need to do this in C++0x because we do the check once on
5063  // the qualifier.
5064  //
5065  // FIXME: diagnose the following if we care enough:
5066  //   struct A { int foo; };
5067  //   struct B : A { using A::foo; };
5068  //   template <class T> struct C : A {};
5069  //   template <class T> struct D : C<T> { using B::foo; } // <---
5070  // This is invalid (during instantiation) in C++03 because B::foo
5071  // resolves to the using decl in B, which is not a base class of D<T>.
5072  // We can't diagnose it immediately because C<T> is an unknown
5073  // specialization.  The UsingShadowDecl in D<T> then points directly
5074  // to A::foo, which will look well-formed when we instantiate.
5075  // The right solution is to not collapse the shadow-decl chain.
5076  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5077    DeclContext *OrigDC = Orig->getDeclContext();
5078
5079    // Handle enums and anonymous structs.
5080    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5081    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5082    while (OrigRec->isAnonymousStructOrUnion())
5083      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5084
5085    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5086      if (OrigDC == CurContext) {
5087        Diag(Using->getLocation(),
5088             diag::err_using_decl_nested_name_specifier_is_current_class)
5089          << Using->getQualifierLoc().getSourceRange();
5090        Diag(Orig->getLocation(), diag::note_using_decl_target);
5091        return true;
5092      }
5093
5094      Diag(Using->getQualifierLoc().getBeginLoc(),
5095           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5096        << Using->getQualifier()
5097        << cast<CXXRecordDecl>(CurContext)
5098        << Using->getQualifierLoc().getSourceRange();
5099      Diag(Orig->getLocation(), diag::note_using_decl_target);
5100      return true;
5101    }
5102  }
5103
5104  if (Previous.empty()) return false;
5105
5106  NamedDecl *Target = Orig;
5107  if (isa<UsingShadowDecl>(Target))
5108    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5109
5110  // If the target happens to be one of the previous declarations, we
5111  // don't have a conflict.
5112  //
5113  // FIXME: but we might be increasing its access, in which case we
5114  // should redeclare it.
5115  NamedDecl *NonTag = 0, *Tag = 0;
5116  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5117         I != E; ++I) {
5118    NamedDecl *D = (*I)->getUnderlyingDecl();
5119    bool Result;
5120    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5121      return Result;
5122
5123    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5124  }
5125
5126  if (Target->isFunctionOrFunctionTemplate()) {
5127    FunctionDecl *FD;
5128    if (isa<FunctionTemplateDecl>(Target))
5129      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5130    else
5131      FD = cast<FunctionDecl>(Target);
5132
5133    NamedDecl *OldDecl = 0;
5134    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5135    case Ovl_Overload:
5136      return false;
5137
5138    case Ovl_NonFunction:
5139      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5140      break;
5141
5142    // We found a decl with the exact signature.
5143    case Ovl_Match:
5144      // If we're in a record, we want to hide the target, so we
5145      // return true (without a diagnostic) to tell the caller not to
5146      // build a shadow decl.
5147      if (CurContext->isRecord())
5148        return true;
5149
5150      // If we're not in a record, this is an error.
5151      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5152      break;
5153    }
5154
5155    Diag(Target->getLocation(), diag::note_using_decl_target);
5156    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5157    return true;
5158  }
5159
5160  // Target is not a function.
5161
5162  if (isa<TagDecl>(Target)) {
5163    // No conflict between a tag and a non-tag.
5164    if (!Tag) return false;
5165
5166    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5167    Diag(Target->getLocation(), diag::note_using_decl_target);
5168    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5169    return true;
5170  }
5171
5172  // No conflict between a tag and a non-tag.
5173  if (!NonTag) return false;
5174
5175  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5176  Diag(Target->getLocation(), diag::note_using_decl_target);
5177  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5178  return true;
5179}
5180
5181/// Builds a shadow declaration corresponding to a 'using' declaration.
5182UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5183                                            UsingDecl *UD,
5184                                            NamedDecl *Orig) {
5185
5186  // If we resolved to another shadow declaration, just coalesce them.
5187  NamedDecl *Target = Orig;
5188  if (isa<UsingShadowDecl>(Target)) {
5189    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5190    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5191  }
5192
5193  UsingShadowDecl *Shadow
5194    = UsingShadowDecl::Create(Context, CurContext,
5195                              UD->getLocation(), UD, Target);
5196  UD->addShadowDecl(Shadow);
5197
5198  Shadow->setAccess(UD->getAccess());
5199  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5200    Shadow->setInvalidDecl();
5201
5202  if (S)
5203    PushOnScopeChains(Shadow, S);
5204  else
5205    CurContext->addDecl(Shadow);
5206
5207
5208  return Shadow;
5209}
5210
5211/// Hides a using shadow declaration.  This is required by the current
5212/// using-decl implementation when a resolvable using declaration in a
5213/// class is followed by a declaration which would hide or override
5214/// one or more of the using decl's targets; for example:
5215///
5216///   struct Base { void foo(int); };
5217///   struct Derived : Base {
5218///     using Base::foo;
5219///     void foo(int);
5220///   };
5221///
5222/// The governing language is C++03 [namespace.udecl]p12:
5223///
5224///   When a using-declaration brings names from a base class into a
5225///   derived class scope, member functions in the derived class
5226///   override and/or hide member functions with the same name and
5227///   parameter types in a base class (rather than conflicting).
5228///
5229/// There are two ways to implement this:
5230///   (1) optimistically create shadow decls when they're not hidden
5231///       by existing declarations, or
5232///   (2) don't create any shadow decls (or at least don't make them
5233///       visible) until we've fully parsed/instantiated the class.
5234/// The problem with (1) is that we might have to retroactively remove
5235/// a shadow decl, which requires several O(n) operations because the
5236/// decl structures are (very reasonably) not designed for removal.
5237/// (2) avoids this but is very fiddly and phase-dependent.
5238void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5239  if (Shadow->getDeclName().getNameKind() ==
5240        DeclarationName::CXXConversionFunctionName)
5241    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5242
5243  // Remove it from the DeclContext...
5244  Shadow->getDeclContext()->removeDecl(Shadow);
5245
5246  // ...and the scope, if applicable...
5247  if (S) {
5248    S->RemoveDecl(Shadow);
5249    IdResolver.RemoveDecl(Shadow);
5250  }
5251
5252  // ...and the using decl.
5253  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5254
5255  // TODO: complain somehow if Shadow was used.  It shouldn't
5256  // be possible for this to happen, because...?
5257}
5258
5259/// Builds a using declaration.
5260///
5261/// \param IsInstantiation - Whether this call arises from an
5262///   instantiation of an unresolved using declaration.  We treat
5263///   the lookup differently for these declarations.
5264NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5265                                       SourceLocation UsingLoc,
5266                                       CXXScopeSpec &SS,
5267                                       const DeclarationNameInfo &NameInfo,
5268                                       AttributeList *AttrList,
5269                                       bool IsInstantiation,
5270                                       bool IsTypeName,
5271                                       SourceLocation TypenameLoc) {
5272  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5273  SourceLocation IdentLoc = NameInfo.getLoc();
5274  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5275
5276  // FIXME: We ignore attributes for now.
5277
5278  if (SS.isEmpty()) {
5279    Diag(IdentLoc, diag::err_using_requires_qualname);
5280    return 0;
5281  }
5282
5283  // Do the redeclaration lookup in the current scope.
5284  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5285                        ForRedeclaration);
5286  Previous.setHideTags(false);
5287  if (S) {
5288    LookupName(Previous, S);
5289
5290    // It is really dumb that we have to do this.
5291    LookupResult::Filter F = Previous.makeFilter();
5292    while (F.hasNext()) {
5293      NamedDecl *D = F.next();
5294      if (!isDeclInScope(D, CurContext, S))
5295        F.erase();
5296    }
5297    F.done();
5298  } else {
5299    assert(IsInstantiation && "no scope in non-instantiation");
5300    assert(CurContext->isRecord() && "scope not record in instantiation");
5301    LookupQualifiedName(Previous, CurContext);
5302  }
5303
5304  // Check for invalid redeclarations.
5305  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5306    return 0;
5307
5308  // Check for bad qualifiers.
5309  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5310    return 0;
5311
5312  DeclContext *LookupContext = computeDeclContext(SS);
5313  NamedDecl *D;
5314  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5315  if (!LookupContext) {
5316    if (IsTypeName) {
5317      // FIXME: not all declaration name kinds are legal here
5318      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5319                                              UsingLoc, TypenameLoc,
5320                                              QualifierLoc,
5321                                              IdentLoc, NameInfo.getName());
5322    } else {
5323      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5324                                           QualifierLoc, NameInfo);
5325    }
5326  } else {
5327    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5328                          NameInfo, IsTypeName);
5329  }
5330  D->setAccess(AS);
5331  CurContext->addDecl(D);
5332
5333  if (!LookupContext) return D;
5334  UsingDecl *UD = cast<UsingDecl>(D);
5335
5336  if (RequireCompleteDeclContext(SS, LookupContext)) {
5337    UD->setInvalidDecl();
5338    return UD;
5339  }
5340
5341  // Constructor inheriting using decls get special treatment.
5342  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5343    if (CheckInheritedConstructorUsingDecl(UD))
5344      UD->setInvalidDecl();
5345    return UD;
5346  }
5347
5348  // Otherwise, look up the target name.
5349
5350  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5351  R.setUsingDeclaration(true);
5352
5353  // Unlike most lookups, we don't always want to hide tag
5354  // declarations: tag names are visible through the using declaration
5355  // even if hidden by ordinary names, *except* in a dependent context
5356  // where it's important for the sanity of two-phase lookup.
5357  if (!IsInstantiation)
5358    R.setHideTags(false);
5359
5360  LookupQualifiedName(R, LookupContext);
5361
5362  if (R.empty()) {
5363    Diag(IdentLoc, diag::err_no_member)
5364      << NameInfo.getName() << LookupContext << SS.getRange();
5365    UD->setInvalidDecl();
5366    return UD;
5367  }
5368
5369  if (R.isAmbiguous()) {
5370    UD->setInvalidDecl();
5371    return UD;
5372  }
5373
5374  if (IsTypeName) {
5375    // If we asked for a typename and got a non-type decl, error out.
5376    if (!R.getAsSingle<TypeDecl>()) {
5377      Diag(IdentLoc, diag::err_using_typename_non_type);
5378      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5379        Diag((*I)->getUnderlyingDecl()->getLocation(),
5380             diag::note_using_decl_target);
5381      UD->setInvalidDecl();
5382      return UD;
5383    }
5384  } else {
5385    // If we asked for a non-typename and we got a type, error out,
5386    // but only if this is an instantiation of an unresolved using
5387    // decl.  Otherwise just silently find the type name.
5388    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5389      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5390      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5391      UD->setInvalidDecl();
5392      return UD;
5393    }
5394  }
5395
5396  // C++0x N2914 [namespace.udecl]p6:
5397  // A using-declaration shall not name a namespace.
5398  if (R.getAsSingle<NamespaceDecl>()) {
5399    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5400      << SS.getRange();
5401    UD->setInvalidDecl();
5402    return UD;
5403  }
5404
5405  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5406    if (!CheckUsingShadowDecl(UD, *I, Previous))
5407      BuildUsingShadowDecl(S, UD, *I);
5408  }
5409
5410  return UD;
5411}
5412
5413/// Additional checks for a using declaration referring to a constructor name.
5414bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5415  if (UD->isTypeName()) {
5416    // FIXME: Cannot specify typename when specifying constructor
5417    return true;
5418  }
5419
5420  const Type *SourceType = UD->getQualifier()->getAsType();
5421  assert(SourceType &&
5422         "Using decl naming constructor doesn't have type in scope spec.");
5423  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5424
5425  // Check whether the named type is a direct base class.
5426  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5427  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5428  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5429       BaseIt != BaseE; ++BaseIt) {
5430    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5431    if (CanonicalSourceType == BaseType)
5432      break;
5433  }
5434
5435  if (BaseIt == BaseE) {
5436    // Did not find SourceType in the bases.
5437    Diag(UD->getUsingLocation(),
5438         diag::err_using_decl_constructor_not_in_direct_base)
5439      << UD->getNameInfo().getSourceRange()
5440      << QualType(SourceType, 0) << TargetClass;
5441    return true;
5442  }
5443
5444  BaseIt->setInheritConstructors();
5445
5446  return false;
5447}
5448
5449/// Checks that the given using declaration is not an invalid
5450/// redeclaration.  Note that this is checking only for the using decl
5451/// itself, not for any ill-formedness among the UsingShadowDecls.
5452bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5453                                       bool isTypeName,
5454                                       const CXXScopeSpec &SS,
5455                                       SourceLocation NameLoc,
5456                                       const LookupResult &Prev) {
5457  // C++03 [namespace.udecl]p8:
5458  // C++0x [namespace.udecl]p10:
5459  //   A using-declaration is a declaration and can therefore be used
5460  //   repeatedly where (and only where) multiple declarations are
5461  //   allowed.
5462  //
5463  // That's in non-member contexts.
5464  if (!CurContext->getRedeclContext()->isRecord())
5465    return false;
5466
5467  NestedNameSpecifier *Qual
5468    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5469
5470  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5471    NamedDecl *D = *I;
5472
5473    bool DTypename;
5474    NestedNameSpecifier *DQual;
5475    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5476      DTypename = UD->isTypeName();
5477      DQual = UD->getQualifier();
5478    } else if (UnresolvedUsingValueDecl *UD
5479                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5480      DTypename = false;
5481      DQual = UD->getQualifier();
5482    } else if (UnresolvedUsingTypenameDecl *UD
5483                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5484      DTypename = true;
5485      DQual = UD->getQualifier();
5486    } else continue;
5487
5488    // using decls differ if one says 'typename' and the other doesn't.
5489    // FIXME: non-dependent using decls?
5490    if (isTypeName != DTypename) continue;
5491
5492    // using decls differ if they name different scopes (but note that
5493    // template instantiation can cause this check to trigger when it
5494    // didn't before instantiation).
5495    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5496        Context.getCanonicalNestedNameSpecifier(DQual))
5497      continue;
5498
5499    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5500    Diag(D->getLocation(), diag::note_using_decl) << 1;
5501    return true;
5502  }
5503
5504  return false;
5505}
5506
5507
5508/// Checks that the given nested-name qualifier used in a using decl
5509/// in the current context is appropriately related to the current
5510/// scope.  If an error is found, diagnoses it and returns true.
5511bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5512                                   const CXXScopeSpec &SS,
5513                                   SourceLocation NameLoc) {
5514  DeclContext *NamedContext = computeDeclContext(SS);
5515
5516  if (!CurContext->isRecord()) {
5517    // C++03 [namespace.udecl]p3:
5518    // C++0x [namespace.udecl]p8:
5519    //   A using-declaration for a class member shall be a member-declaration.
5520
5521    // If we weren't able to compute a valid scope, it must be a
5522    // dependent class scope.
5523    if (!NamedContext || NamedContext->isRecord()) {
5524      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5525        << SS.getRange();
5526      return true;
5527    }
5528
5529    // Otherwise, everything is known to be fine.
5530    return false;
5531  }
5532
5533  // The current scope is a record.
5534
5535  // If the named context is dependent, we can't decide much.
5536  if (!NamedContext) {
5537    // FIXME: in C++0x, we can diagnose if we can prove that the
5538    // nested-name-specifier does not refer to a base class, which is
5539    // still possible in some cases.
5540
5541    // Otherwise we have to conservatively report that things might be
5542    // okay.
5543    return false;
5544  }
5545
5546  if (!NamedContext->isRecord()) {
5547    // Ideally this would point at the last name in the specifier,
5548    // but we don't have that level of source info.
5549    Diag(SS.getRange().getBegin(),
5550         diag::err_using_decl_nested_name_specifier_is_not_class)
5551      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5552    return true;
5553  }
5554
5555  if (!NamedContext->isDependentContext() &&
5556      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5557    return true;
5558
5559  if (getLangOptions().CPlusPlus0x) {
5560    // C++0x [namespace.udecl]p3:
5561    //   In a using-declaration used as a member-declaration, the
5562    //   nested-name-specifier shall name a base class of the class
5563    //   being defined.
5564
5565    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5566                                 cast<CXXRecordDecl>(NamedContext))) {
5567      if (CurContext == NamedContext) {
5568        Diag(NameLoc,
5569             diag::err_using_decl_nested_name_specifier_is_current_class)
5570          << SS.getRange();
5571        return true;
5572      }
5573
5574      Diag(SS.getRange().getBegin(),
5575           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5576        << (NestedNameSpecifier*) SS.getScopeRep()
5577        << cast<CXXRecordDecl>(CurContext)
5578        << SS.getRange();
5579      return true;
5580    }
5581
5582    return false;
5583  }
5584
5585  // C++03 [namespace.udecl]p4:
5586  //   A using-declaration used as a member-declaration shall refer
5587  //   to a member of a base class of the class being defined [etc.].
5588
5589  // Salient point: SS doesn't have to name a base class as long as
5590  // lookup only finds members from base classes.  Therefore we can
5591  // diagnose here only if we can prove that that can't happen,
5592  // i.e. if the class hierarchies provably don't intersect.
5593
5594  // TODO: it would be nice if "definitely valid" results were cached
5595  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5596  // need to be repeated.
5597
5598  struct UserData {
5599    llvm::DenseSet<const CXXRecordDecl*> Bases;
5600
5601    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5602      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5603      Data->Bases.insert(Base);
5604      return true;
5605    }
5606
5607    bool hasDependentBases(const CXXRecordDecl *Class) {
5608      return !Class->forallBases(collect, this);
5609    }
5610
5611    /// Returns true if the base is dependent or is one of the
5612    /// accumulated base classes.
5613    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5614      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5615      return !Data->Bases.count(Base);
5616    }
5617
5618    bool mightShareBases(const CXXRecordDecl *Class) {
5619      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5620    }
5621  };
5622
5623  UserData Data;
5624
5625  // Returns false if we find a dependent base.
5626  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5627    return false;
5628
5629  // Returns false if the class has a dependent base or if it or one
5630  // of its bases is present in the base set of the current context.
5631  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5632    return false;
5633
5634  Diag(SS.getRange().getBegin(),
5635       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5636    << (NestedNameSpecifier*) SS.getScopeRep()
5637    << cast<CXXRecordDecl>(CurContext)
5638    << SS.getRange();
5639
5640  return true;
5641}
5642
5643Decl *Sema::ActOnAliasDeclaration(Scope *S,
5644                                  AccessSpecifier AS,
5645                                  MultiTemplateParamsArg TemplateParamLists,
5646                                  SourceLocation UsingLoc,
5647                                  UnqualifiedId &Name,
5648                                  TypeResult Type) {
5649  // Skip up to the relevant declaration scope.
5650  while (S->getFlags() & Scope::TemplateParamScope)
5651    S = S->getParent();
5652  assert((S->getFlags() & Scope::DeclScope) &&
5653         "got alias-declaration outside of declaration scope");
5654
5655  if (Type.isInvalid())
5656    return 0;
5657
5658  bool Invalid = false;
5659  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5660  TypeSourceInfo *TInfo = 0;
5661  GetTypeFromParser(Type.get(), &TInfo);
5662
5663  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5664    return 0;
5665
5666  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5667                                      UPPC_DeclarationType)) {
5668    Invalid = true;
5669    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5670                                             TInfo->getTypeLoc().getBeginLoc());
5671  }
5672
5673  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5674  LookupName(Previous, S);
5675
5676  // Warn about shadowing the name of a template parameter.
5677  if (Previous.isSingleResult() &&
5678      Previous.getFoundDecl()->isTemplateParameter()) {
5679    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5680                                        Previous.getFoundDecl()))
5681      Invalid = true;
5682    Previous.clear();
5683  }
5684
5685  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5686         "name in alias declaration must be an identifier");
5687  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5688                                               Name.StartLocation,
5689                                               Name.Identifier, TInfo);
5690
5691  NewTD->setAccess(AS);
5692
5693  if (Invalid)
5694    NewTD->setInvalidDecl();
5695
5696  CheckTypedefForVariablyModifiedType(S, NewTD);
5697  Invalid |= NewTD->isInvalidDecl();
5698
5699  bool Redeclaration = false;
5700
5701  NamedDecl *NewND;
5702  if (TemplateParamLists.size()) {
5703    TypeAliasTemplateDecl *OldDecl = 0;
5704    TemplateParameterList *OldTemplateParams = 0;
5705
5706    if (TemplateParamLists.size() != 1) {
5707      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5708        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5709         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5710    }
5711    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5712
5713    // Only consider previous declarations in the same scope.
5714    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5715                         /*ExplicitInstantiationOrSpecialization*/false);
5716    if (!Previous.empty()) {
5717      Redeclaration = true;
5718
5719      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5720      if (!OldDecl && !Invalid) {
5721        Diag(UsingLoc, diag::err_redefinition_different_kind)
5722          << Name.Identifier;
5723
5724        NamedDecl *OldD = Previous.getRepresentativeDecl();
5725        if (OldD->getLocation().isValid())
5726          Diag(OldD->getLocation(), diag::note_previous_definition);
5727
5728        Invalid = true;
5729      }
5730
5731      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5732        if (TemplateParameterListsAreEqual(TemplateParams,
5733                                           OldDecl->getTemplateParameters(),
5734                                           /*Complain=*/true,
5735                                           TPL_TemplateMatch))
5736          OldTemplateParams = OldDecl->getTemplateParameters();
5737        else
5738          Invalid = true;
5739
5740        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5741        if (!Invalid &&
5742            !Context.hasSameType(OldTD->getUnderlyingType(),
5743                                 NewTD->getUnderlyingType())) {
5744          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5745          // but we can't reasonably accept it.
5746          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5747            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5748          if (OldTD->getLocation().isValid())
5749            Diag(OldTD->getLocation(), diag::note_previous_definition);
5750          Invalid = true;
5751        }
5752      }
5753    }
5754
5755    // Merge any previous default template arguments into our parameters,
5756    // and check the parameter list.
5757    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5758                                   TPC_TypeAliasTemplate))
5759      return 0;
5760
5761    TypeAliasTemplateDecl *NewDecl =
5762      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5763                                    Name.Identifier, TemplateParams,
5764                                    NewTD);
5765
5766    NewDecl->setAccess(AS);
5767
5768    if (Invalid)
5769      NewDecl->setInvalidDecl();
5770    else if (OldDecl)
5771      NewDecl->setPreviousDeclaration(OldDecl);
5772
5773    NewND = NewDecl;
5774  } else {
5775    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5776    NewND = NewTD;
5777  }
5778
5779  if (!Redeclaration)
5780    PushOnScopeChains(NewND, S);
5781
5782  return NewND;
5783}
5784
5785Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5786                                             SourceLocation NamespaceLoc,
5787                                             SourceLocation AliasLoc,
5788                                             IdentifierInfo *Alias,
5789                                             CXXScopeSpec &SS,
5790                                             SourceLocation IdentLoc,
5791                                             IdentifierInfo *Ident) {
5792
5793  // Lookup the namespace name.
5794  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5795  LookupParsedName(R, S, &SS);
5796
5797  // Check if we have a previous declaration with the same name.
5798  NamedDecl *PrevDecl
5799    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5800                       ForRedeclaration);
5801  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5802    PrevDecl = 0;
5803
5804  if (PrevDecl) {
5805    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5806      // We already have an alias with the same name that points to the same
5807      // namespace, so don't create a new one.
5808      // FIXME: At some point, we'll want to create the (redundant)
5809      // declaration to maintain better source information.
5810      if (!R.isAmbiguous() && !R.empty() &&
5811          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5812        return 0;
5813    }
5814
5815    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5816      diag::err_redefinition_different_kind;
5817    Diag(AliasLoc, DiagID) << Alias;
5818    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5819    return 0;
5820  }
5821
5822  if (R.isAmbiguous())
5823    return 0;
5824
5825  if (R.empty()) {
5826    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5827                                                CTC_NoKeywords, 0)) {
5828      if (R.getAsSingle<NamespaceDecl>() ||
5829          R.getAsSingle<NamespaceAliasDecl>()) {
5830        if (DeclContext *DC = computeDeclContext(SS, false))
5831          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5832            << Ident << DC << Corrected << SS.getRange()
5833            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5834        else
5835          Diag(IdentLoc, diag::err_using_directive_suggest)
5836            << Ident << Corrected
5837            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5838
5839        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5840          << Corrected;
5841
5842        Ident = Corrected.getAsIdentifierInfo();
5843      } else {
5844        R.clear();
5845        R.setLookupName(Ident);
5846      }
5847    }
5848
5849    if (R.empty()) {
5850      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5851      return 0;
5852    }
5853  }
5854
5855  NamespaceAliasDecl *AliasDecl =
5856    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5857                               Alias, SS.getWithLocInContext(Context),
5858                               IdentLoc, R.getFoundDecl());
5859
5860  PushOnScopeChains(AliasDecl, S);
5861  return AliasDecl;
5862}
5863
5864namespace {
5865  /// \brief Scoped object used to handle the state changes required in Sema
5866  /// to implicitly define the body of a C++ member function;
5867  class ImplicitlyDefinedFunctionScope {
5868    Sema &S;
5869    Sema::ContextRAII SavedContext;
5870
5871  public:
5872    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5873      : S(S), SavedContext(S, Method)
5874    {
5875      S.PushFunctionScope();
5876      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5877    }
5878
5879    ~ImplicitlyDefinedFunctionScope() {
5880      S.PopExpressionEvaluationContext();
5881      S.PopFunctionOrBlockScope();
5882    }
5883  };
5884}
5885
5886Sema::ImplicitExceptionSpecification
5887Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5888  // C++ [except.spec]p14:
5889  //   An implicitly declared special member function (Clause 12) shall have an
5890  //   exception-specification. [...]
5891  ImplicitExceptionSpecification ExceptSpec(Context);
5892
5893  // Direct base-class constructors.
5894  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5895                                       BEnd = ClassDecl->bases_end();
5896       B != BEnd; ++B) {
5897    if (B->isVirtual()) // Handled below.
5898      continue;
5899
5900    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5901      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5902      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5903      // If this is a deleted function, add it anyway. This might be conformant
5904      // with the standard. This might not. I'm not sure. It might not matter.
5905      if (Constructor)
5906        ExceptSpec.CalledDecl(Constructor);
5907    }
5908  }
5909
5910  // Virtual base-class constructors.
5911  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5912                                       BEnd = ClassDecl->vbases_end();
5913       B != BEnd; ++B) {
5914    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5915      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5916      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5917      // If this is a deleted function, add it anyway. This might be conformant
5918      // with the standard. This might not. I'm not sure. It might not matter.
5919      if (Constructor)
5920        ExceptSpec.CalledDecl(Constructor);
5921    }
5922  }
5923
5924  // Field constructors.
5925  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5926                               FEnd = ClassDecl->field_end();
5927       F != FEnd; ++F) {
5928    if (F->hasInClassInitializer()) {
5929      if (Expr *E = F->getInClassInitializer())
5930        ExceptSpec.CalledExpr(E);
5931      else if (!F->isInvalidDecl())
5932        ExceptSpec.SetDelayed();
5933    } else if (const RecordType *RecordTy
5934              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5935      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5936      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
5937      // If this is a deleted function, add it anyway. This might be conformant
5938      // with the standard. This might not. I'm not sure. It might not matter.
5939      // In particular, the problem is that this function never gets called. It
5940      // might just be ill-formed because this function attempts to refer to
5941      // a deleted function here.
5942      if (Constructor)
5943        ExceptSpec.CalledDecl(Constructor);
5944    }
5945  }
5946
5947  return ExceptSpec;
5948}
5949
5950CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5951                                                     CXXRecordDecl *ClassDecl) {
5952  // C++ [class.ctor]p5:
5953  //   A default constructor for a class X is a constructor of class X
5954  //   that can be called without an argument. If there is no
5955  //   user-declared constructor for class X, a default constructor is
5956  //   implicitly declared. An implicitly-declared default constructor
5957  //   is an inline public member of its class.
5958  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5959         "Should not build implicit default constructor!");
5960
5961  ImplicitExceptionSpecification Spec =
5962    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5963  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5964
5965  // Create the actual constructor declaration.
5966  CanQualType ClassType
5967    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5968  SourceLocation ClassLoc = ClassDecl->getLocation();
5969  DeclarationName Name
5970    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5971  DeclarationNameInfo NameInfo(Name, ClassLoc);
5972  CXXConstructorDecl *DefaultCon
5973    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5974                                 Context.getFunctionType(Context.VoidTy,
5975                                                         0, 0, EPI),
5976                                 /*TInfo=*/0,
5977                                 /*isExplicit=*/false,
5978                                 /*isInline=*/true,
5979                                 /*isImplicitlyDeclared=*/true);
5980  DefaultCon->setAccess(AS_public);
5981  DefaultCon->setDefaulted();
5982  DefaultCon->setImplicit();
5983  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5984
5985  // Note that we have declared this constructor.
5986  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5987
5988  if (Scope *S = getScopeForContext(ClassDecl))
5989    PushOnScopeChains(DefaultCon, S, false);
5990  ClassDecl->addDecl(DefaultCon);
5991
5992  if (ShouldDeleteDefaultConstructor(DefaultCon))
5993    DefaultCon->setDeletedAsWritten();
5994
5995  return DefaultCon;
5996}
5997
5998void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5999                                            CXXConstructorDecl *Constructor) {
6000  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6001          !Constructor->doesThisDeclarationHaveABody() &&
6002          !Constructor->isDeleted()) &&
6003    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6004
6005  CXXRecordDecl *ClassDecl = Constructor->getParent();
6006  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6007
6008  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6009  DiagnosticErrorTrap Trap(Diags);
6010  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6011      Trap.hasErrorOccurred()) {
6012    Diag(CurrentLocation, diag::note_member_synthesized_at)
6013      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6014    Constructor->setInvalidDecl();
6015    return;
6016  }
6017
6018  SourceLocation Loc = Constructor->getLocation();
6019  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6020
6021  Constructor->setUsed();
6022  MarkVTableUsed(CurrentLocation, ClassDecl);
6023
6024  if (ASTMutationListener *L = getASTMutationListener()) {
6025    L->CompletedImplicitDefinition(Constructor);
6026  }
6027}
6028
6029/// Get any existing defaulted default constructor for the given class. Do not
6030/// implicitly define one if it does not exist.
6031static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6032                                                             CXXRecordDecl *D) {
6033  ASTContext &Context = Self.Context;
6034  QualType ClassType = Context.getTypeDeclType(D);
6035  DeclarationName ConstructorName
6036    = Context.DeclarationNames.getCXXConstructorName(
6037                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6038
6039  DeclContext::lookup_const_iterator Con, ConEnd;
6040  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6041       Con != ConEnd; ++Con) {
6042    // A function template cannot be defaulted.
6043    if (isa<FunctionTemplateDecl>(*Con))
6044      continue;
6045
6046    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6047    if (Constructor->isDefaultConstructor())
6048      return Constructor->isDefaulted() ? Constructor : 0;
6049  }
6050  return 0;
6051}
6052
6053void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6054  if (!D) return;
6055  AdjustDeclIfTemplate(D);
6056
6057  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6058  CXXConstructorDecl *CtorDecl
6059    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6060
6061  if (!CtorDecl) return;
6062
6063  // Compute the exception specification for the default constructor.
6064  const FunctionProtoType *CtorTy =
6065    CtorDecl->getType()->castAs<FunctionProtoType>();
6066  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6067    ImplicitExceptionSpecification Spec =
6068      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6069    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6070    assert(EPI.ExceptionSpecType != EST_Delayed);
6071
6072    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6073  }
6074
6075  // If the default constructor is explicitly defaulted, checking the exception
6076  // specification is deferred until now.
6077  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6078      !ClassDecl->isDependentType())
6079    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6080}
6081
6082void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6083  // We start with an initial pass over the base classes to collect those that
6084  // inherit constructors from. If there are none, we can forgo all further
6085  // processing.
6086  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6087  BasesVector BasesToInheritFrom;
6088  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6089                                          BaseE = ClassDecl->bases_end();
6090         BaseIt != BaseE; ++BaseIt) {
6091    if (BaseIt->getInheritConstructors()) {
6092      QualType Base = BaseIt->getType();
6093      if (Base->isDependentType()) {
6094        // If we inherit constructors from anything that is dependent, just
6095        // abort processing altogether. We'll get another chance for the
6096        // instantiations.
6097        return;
6098      }
6099      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6100    }
6101  }
6102  if (BasesToInheritFrom.empty())
6103    return;
6104
6105  // Now collect the constructors that we already have in the current class.
6106  // Those take precedence over inherited constructors.
6107  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6108  //   unless there is a user-declared constructor with the same signature in
6109  //   the class where the using-declaration appears.
6110  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6111  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6112                                    CtorE = ClassDecl->ctor_end();
6113       CtorIt != CtorE; ++CtorIt) {
6114    ExistingConstructors.insert(
6115        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6116  }
6117
6118  Scope *S = getScopeForContext(ClassDecl);
6119  DeclarationName CreatedCtorName =
6120      Context.DeclarationNames.getCXXConstructorName(
6121          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6122
6123  // Now comes the true work.
6124  // First, we keep a map from constructor types to the base that introduced
6125  // them. Needed for finding conflicting constructors. We also keep the
6126  // actually inserted declarations in there, for pretty diagnostics.
6127  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6128  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6129  ConstructorToSourceMap InheritedConstructors;
6130  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6131                             BaseE = BasesToInheritFrom.end();
6132       BaseIt != BaseE; ++BaseIt) {
6133    const RecordType *Base = *BaseIt;
6134    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6135    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6136    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6137                                      CtorE = BaseDecl->ctor_end();
6138         CtorIt != CtorE; ++CtorIt) {
6139      // Find the using declaration for inheriting this base's constructors.
6140      DeclarationName Name =
6141          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6142      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6143          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6144      SourceLocation UsingLoc = UD ? UD->getLocation() :
6145                                     ClassDecl->getLocation();
6146
6147      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6148      //   from the class X named in the using-declaration consists of actual
6149      //   constructors and notional constructors that result from the
6150      //   transformation of defaulted parameters as follows:
6151      //   - all non-template default constructors of X, and
6152      //   - for each non-template constructor of X that has at least one
6153      //     parameter with a default argument, the set of constructors that
6154      //     results from omitting any ellipsis parameter specification and
6155      //     successively omitting parameters with a default argument from the
6156      //     end of the parameter-type-list.
6157      CXXConstructorDecl *BaseCtor = *CtorIt;
6158      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6159      const FunctionProtoType *BaseCtorType =
6160          BaseCtor->getType()->getAs<FunctionProtoType>();
6161
6162      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6163                    maxParams = BaseCtor->getNumParams();
6164           params <= maxParams; ++params) {
6165        // Skip default constructors. They're never inherited.
6166        if (params == 0)
6167          continue;
6168        // Skip copy and move constructors for the same reason.
6169        if (CanBeCopyOrMove && params == 1)
6170          continue;
6171
6172        // Build up a function type for this particular constructor.
6173        // FIXME: The working paper does not consider that the exception spec
6174        // for the inheriting constructor might be larger than that of the
6175        // source. This code doesn't yet, either. When it does, this code will
6176        // need to be delayed until after exception specifications and in-class
6177        // member initializers are attached.
6178        const Type *NewCtorType;
6179        if (params == maxParams)
6180          NewCtorType = BaseCtorType;
6181        else {
6182          llvm::SmallVector<QualType, 16> Args;
6183          for (unsigned i = 0; i < params; ++i) {
6184            Args.push_back(BaseCtorType->getArgType(i));
6185          }
6186          FunctionProtoType::ExtProtoInfo ExtInfo =
6187              BaseCtorType->getExtProtoInfo();
6188          ExtInfo.Variadic = false;
6189          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6190                                                Args.data(), params, ExtInfo)
6191                       .getTypePtr();
6192        }
6193        const Type *CanonicalNewCtorType =
6194            Context.getCanonicalType(NewCtorType);
6195
6196        // Now that we have the type, first check if the class already has a
6197        // constructor with this signature.
6198        if (ExistingConstructors.count(CanonicalNewCtorType))
6199          continue;
6200
6201        // Then we check if we have already declared an inherited constructor
6202        // with this signature.
6203        std::pair<ConstructorToSourceMap::iterator, bool> result =
6204            InheritedConstructors.insert(std::make_pair(
6205                CanonicalNewCtorType,
6206                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6207        if (!result.second) {
6208          // Already in the map. If it came from a different class, that's an
6209          // error. Not if it's from the same.
6210          CanQualType PreviousBase = result.first->second.first;
6211          if (CanonicalBase != PreviousBase) {
6212            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6213            const CXXConstructorDecl *PrevBaseCtor =
6214                PrevCtor->getInheritedConstructor();
6215            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6216
6217            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6218            Diag(BaseCtor->getLocation(),
6219                 diag::note_using_decl_constructor_conflict_current_ctor);
6220            Diag(PrevBaseCtor->getLocation(),
6221                 diag::note_using_decl_constructor_conflict_previous_ctor);
6222            Diag(PrevCtor->getLocation(),
6223                 diag::note_using_decl_constructor_conflict_previous_using);
6224          }
6225          continue;
6226        }
6227
6228        // OK, we're there, now add the constructor.
6229        // C++0x [class.inhctor]p8: [...] that would be performed by a
6230        //   user-writtern inline constructor [...]
6231        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6232        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6233            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6234            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6235            /*ImplicitlyDeclared=*/true);
6236        NewCtor->setAccess(BaseCtor->getAccess());
6237
6238        // Build up the parameter decls and add them.
6239        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6240        for (unsigned i = 0; i < params; ++i) {
6241          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6242                                                   UsingLoc, UsingLoc,
6243                                                   /*IdentifierInfo=*/0,
6244                                                   BaseCtorType->getArgType(i),
6245                                                   /*TInfo=*/0, SC_None,
6246                                                   SC_None, /*DefaultArg=*/0));
6247        }
6248        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6249        NewCtor->setInheritedConstructor(BaseCtor);
6250
6251        PushOnScopeChains(NewCtor, S, false);
6252        ClassDecl->addDecl(NewCtor);
6253        result.first->second.second = NewCtor;
6254      }
6255    }
6256  }
6257}
6258
6259Sema::ImplicitExceptionSpecification
6260Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6261  // C++ [except.spec]p14:
6262  //   An implicitly declared special member function (Clause 12) shall have
6263  //   an exception-specification.
6264  ImplicitExceptionSpecification ExceptSpec(Context);
6265
6266  // Direct base-class destructors.
6267  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6268                                       BEnd = ClassDecl->bases_end();
6269       B != BEnd; ++B) {
6270    if (B->isVirtual()) // Handled below.
6271      continue;
6272
6273    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6274      ExceptSpec.CalledDecl(
6275                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6276  }
6277
6278  // Virtual base-class destructors.
6279  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6280                                       BEnd = ClassDecl->vbases_end();
6281       B != BEnd; ++B) {
6282    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6283      ExceptSpec.CalledDecl(
6284                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6285  }
6286
6287  // Field destructors.
6288  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6289                               FEnd = ClassDecl->field_end();
6290       F != FEnd; ++F) {
6291    if (const RecordType *RecordTy
6292        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6293      ExceptSpec.CalledDecl(
6294                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6295  }
6296
6297  return ExceptSpec;
6298}
6299
6300CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6301  // C++ [class.dtor]p2:
6302  //   If a class has no user-declared destructor, a destructor is
6303  //   declared implicitly. An implicitly-declared destructor is an
6304  //   inline public member of its class.
6305
6306  ImplicitExceptionSpecification Spec =
6307      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6308  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6309
6310  // Create the actual destructor declaration.
6311  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6312
6313  CanQualType ClassType
6314    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6315  SourceLocation ClassLoc = ClassDecl->getLocation();
6316  DeclarationName Name
6317    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6318  DeclarationNameInfo NameInfo(Name, ClassLoc);
6319  CXXDestructorDecl *Destructor
6320      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6321                                  /*isInline=*/true,
6322                                  /*isImplicitlyDeclared=*/true);
6323  Destructor->setAccess(AS_public);
6324  Destructor->setDefaulted();
6325  Destructor->setImplicit();
6326  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6327
6328  // Note that we have declared this destructor.
6329  ++ASTContext::NumImplicitDestructorsDeclared;
6330
6331  // Introduce this destructor into its scope.
6332  if (Scope *S = getScopeForContext(ClassDecl))
6333    PushOnScopeChains(Destructor, S, false);
6334  ClassDecl->addDecl(Destructor);
6335
6336  // This could be uniqued if it ever proves significant.
6337  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6338
6339  if (ShouldDeleteDestructor(Destructor))
6340    Destructor->setDeletedAsWritten();
6341
6342  AddOverriddenMethods(ClassDecl, Destructor);
6343
6344  return Destructor;
6345}
6346
6347void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6348                                    CXXDestructorDecl *Destructor) {
6349  assert((Destructor->isDefaulted() &&
6350          !Destructor->doesThisDeclarationHaveABody()) &&
6351         "DefineImplicitDestructor - call it for implicit default dtor");
6352  CXXRecordDecl *ClassDecl = Destructor->getParent();
6353  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6354
6355  if (Destructor->isInvalidDecl())
6356    return;
6357
6358  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6359
6360  DiagnosticErrorTrap Trap(Diags);
6361  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6362                                         Destructor->getParent());
6363
6364  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6365    Diag(CurrentLocation, diag::note_member_synthesized_at)
6366      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6367
6368    Destructor->setInvalidDecl();
6369    return;
6370  }
6371
6372  SourceLocation Loc = Destructor->getLocation();
6373  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6374
6375  Destructor->setUsed();
6376  MarkVTableUsed(CurrentLocation, ClassDecl);
6377
6378  if (ASTMutationListener *L = getASTMutationListener()) {
6379    L->CompletedImplicitDefinition(Destructor);
6380  }
6381}
6382
6383void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6384                                         CXXDestructorDecl *destructor) {
6385  // C++11 [class.dtor]p3:
6386  //   A declaration of a destructor that does not have an exception-
6387  //   specification is implicitly considered to have the same exception-
6388  //   specification as an implicit declaration.
6389  const FunctionProtoType *dtorType = destructor->getType()->
6390                                        getAs<FunctionProtoType>();
6391  if (dtorType->hasExceptionSpec())
6392    return;
6393
6394  ImplicitExceptionSpecification exceptSpec =
6395      ComputeDefaultedDtorExceptionSpec(classDecl);
6396
6397  // Replace the destructor's type.
6398  FunctionProtoType::ExtProtoInfo epi;
6399  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6400  epi.NumExceptions = exceptSpec.size();
6401  epi.Exceptions = exceptSpec.data();
6402  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6403
6404  destructor->setType(ty);
6405
6406  // FIXME: If the destructor has a body that could throw, and the newly created
6407  // spec doesn't allow exceptions, we should emit a warning, because this
6408  // change in behavior can break conforming C++03 programs at runtime.
6409  // However, we don't have a body yet, so it needs to be done somewhere else.
6410}
6411
6412/// \brief Builds a statement that copies the given entity from \p From to
6413/// \c To.
6414///
6415/// This routine is used to copy the members of a class with an
6416/// implicitly-declared copy assignment operator. When the entities being
6417/// copied are arrays, this routine builds for loops to copy them.
6418///
6419/// \param S The Sema object used for type-checking.
6420///
6421/// \param Loc The location where the implicit copy is being generated.
6422///
6423/// \param T The type of the expressions being copied. Both expressions must
6424/// have this type.
6425///
6426/// \param To The expression we are copying to.
6427///
6428/// \param From The expression we are copying from.
6429///
6430/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6431/// Otherwise, it's a non-static member subobject.
6432///
6433/// \param Depth Internal parameter recording the depth of the recursion.
6434///
6435/// \returns A statement or a loop that copies the expressions.
6436static StmtResult
6437BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6438                      Expr *To, Expr *From,
6439                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6440  // C++0x [class.copy]p30:
6441  //   Each subobject is assigned in the manner appropriate to its type:
6442  //
6443  //     - if the subobject is of class type, the copy assignment operator
6444  //       for the class is used (as if by explicit qualification; that is,
6445  //       ignoring any possible virtual overriding functions in more derived
6446  //       classes);
6447  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6448    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6449
6450    // Look for operator=.
6451    DeclarationName Name
6452      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6453    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6454    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6455
6456    // Filter out any result that isn't a copy-assignment operator.
6457    LookupResult::Filter F = OpLookup.makeFilter();
6458    while (F.hasNext()) {
6459      NamedDecl *D = F.next();
6460      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6461        if (Method->isCopyAssignmentOperator())
6462          continue;
6463
6464      F.erase();
6465    }
6466    F.done();
6467
6468    // Suppress the protected check (C++ [class.protected]) for each of the
6469    // assignment operators we found. This strange dance is required when
6470    // we're assigning via a base classes's copy-assignment operator. To
6471    // ensure that we're getting the right base class subobject (without
6472    // ambiguities), we need to cast "this" to that subobject type; to
6473    // ensure that we don't go through the virtual call mechanism, we need
6474    // to qualify the operator= name with the base class (see below). However,
6475    // this means that if the base class has a protected copy assignment
6476    // operator, the protected member access check will fail. So, we
6477    // rewrite "protected" access to "public" access in this case, since we
6478    // know by construction that we're calling from a derived class.
6479    if (CopyingBaseSubobject) {
6480      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6481           L != LEnd; ++L) {
6482        if (L.getAccess() == AS_protected)
6483          L.setAccess(AS_public);
6484      }
6485    }
6486
6487    // Create the nested-name-specifier that will be used to qualify the
6488    // reference to operator=; this is required to suppress the virtual
6489    // call mechanism.
6490    CXXScopeSpec SS;
6491    SS.MakeTrivial(S.Context,
6492                   NestedNameSpecifier::Create(S.Context, 0, false,
6493                                               T.getTypePtr()),
6494                   Loc);
6495
6496    // Create the reference to operator=.
6497    ExprResult OpEqualRef
6498      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6499                                   /*FirstQualifierInScope=*/0, OpLookup,
6500                                   /*TemplateArgs=*/0,
6501                                   /*SuppressQualifierCheck=*/true);
6502    if (OpEqualRef.isInvalid())
6503      return StmtError();
6504
6505    // Build the call to the assignment operator.
6506
6507    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6508                                                  OpEqualRef.takeAs<Expr>(),
6509                                                  Loc, &From, 1, Loc);
6510    if (Call.isInvalid())
6511      return StmtError();
6512
6513    return S.Owned(Call.takeAs<Stmt>());
6514  }
6515
6516  //     - if the subobject is of scalar type, the built-in assignment
6517  //       operator is used.
6518  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6519  if (!ArrayTy) {
6520    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6521    if (Assignment.isInvalid())
6522      return StmtError();
6523
6524    return S.Owned(Assignment.takeAs<Stmt>());
6525  }
6526
6527  //     - if the subobject is an array, each element is assigned, in the
6528  //       manner appropriate to the element type;
6529
6530  // Construct a loop over the array bounds, e.g.,
6531  //
6532  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6533  //
6534  // that will copy each of the array elements.
6535  QualType SizeType = S.Context.getSizeType();
6536
6537  // Create the iteration variable.
6538  IdentifierInfo *IterationVarName = 0;
6539  {
6540    llvm::SmallString<8> Str;
6541    llvm::raw_svector_ostream OS(Str);
6542    OS << "__i" << Depth;
6543    IterationVarName = &S.Context.Idents.get(OS.str());
6544  }
6545  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6546                                          IterationVarName, SizeType,
6547                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6548                                          SC_None, SC_None);
6549
6550  // Initialize the iteration variable to zero.
6551  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6552  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6553
6554  // Create a reference to the iteration variable; we'll use this several
6555  // times throughout.
6556  Expr *IterationVarRef
6557    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6558  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6559
6560  // Create the DeclStmt that holds the iteration variable.
6561  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6562
6563  // Create the comparison against the array bound.
6564  llvm::APInt Upper
6565    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6566  Expr *Comparison
6567    = new (S.Context) BinaryOperator(IterationVarRef,
6568                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6569                                     BO_NE, S.Context.BoolTy,
6570                                     VK_RValue, OK_Ordinary, Loc);
6571
6572  // Create the pre-increment of the iteration variable.
6573  Expr *Increment
6574    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6575                                    VK_LValue, OK_Ordinary, Loc);
6576
6577  // Subscript the "from" and "to" expressions with the iteration variable.
6578  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6579                                                         IterationVarRef, Loc));
6580  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6581                                                       IterationVarRef, Loc));
6582
6583  // Build the copy for an individual element of the array.
6584  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6585                                          To, From, CopyingBaseSubobject,
6586                                          Depth + 1);
6587  if (Copy.isInvalid())
6588    return StmtError();
6589
6590  // Construct the loop that copies all elements of this array.
6591  return S.ActOnForStmt(Loc, Loc, InitStmt,
6592                        S.MakeFullExpr(Comparison),
6593                        0, S.MakeFullExpr(Increment),
6594                        Loc, Copy.take());
6595}
6596
6597std::pair<Sema::ImplicitExceptionSpecification, bool>
6598Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6599                                                   CXXRecordDecl *ClassDecl) {
6600  // C++ [class.copy]p10:
6601  //   If the class definition does not explicitly declare a copy
6602  //   assignment operator, one is declared implicitly.
6603  //   The implicitly-defined copy assignment operator for a class X
6604  //   will have the form
6605  //
6606  //       X& X::operator=(const X&)
6607  //
6608  //   if
6609  bool HasConstCopyAssignment = true;
6610
6611  //       -- each direct base class B of X has a copy assignment operator
6612  //          whose parameter is of type const B&, const volatile B& or B,
6613  //          and
6614  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6615                                       BaseEnd = ClassDecl->bases_end();
6616       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6617    // We'll handle this below
6618    if (LangOpts.CPlusPlus0x && Base->isVirtual())
6619      continue;
6620
6621    assert(!Base->getType()->isDependentType() &&
6622           "Cannot generate implicit members for class with dependent bases.");
6623    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6624    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6625                            &HasConstCopyAssignment);
6626  }
6627
6628  // In C++0x, the above citation has "or virtual added"
6629  if (LangOpts.CPlusPlus0x) {
6630    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6631                                         BaseEnd = ClassDecl->vbases_end();
6632         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6633      assert(!Base->getType()->isDependentType() &&
6634             "Cannot generate implicit members for class with dependent bases.");
6635      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6636      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6637                              &HasConstCopyAssignment);
6638    }
6639  }
6640
6641  //       -- for all the nonstatic data members of X that are of a class
6642  //          type M (or array thereof), each such class type has a copy
6643  //          assignment operator whose parameter is of type const M&,
6644  //          const volatile M& or M.
6645  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6646                                  FieldEnd = ClassDecl->field_end();
6647       HasConstCopyAssignment && Field != FieldEnd;
6648       ++Field) {
6649    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6650    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6651      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
6652                              &HasConstCopyAssignment);
6653    }
6654  }
6655
6656  //   Otherwise, the implicitly declared copy assignment operator will
6657  //   have the form
6658  //
6659  //       X& X::operator=(X&)
6660
6661  // C++ [except.spec]p14:
6662  //   An implicitly declared special member function (Clause 12) shall have an
6663  //   exception-specification. [...]
6664
6665  // It is unspecified whether or not an implicit copy assignment operator
6666  // attempts to deduplicate calls to assignment operators of virtual bases are
6667  // made. As such, this exception specification is effectively unspecified.
6668  // Based on a similar decision made for constness in C++0x, we're erring on
6669  // the side of assuming such calls to be made regardless of whether they
6670  // actually happen.
6671  ImplicitExceptionSpecification ExceptSpec(Context);
6672  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
6673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6674                                       BaseEnd = ClassDecl->bases_end();
6675       Base != BaseEnd; ++Base) {
6676    if (Base->isVirtual())
6677      continue;
6678
6679    CXXRecordDecl *BaseClassDecl
6680      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6681    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6682                                                            ArgQuals, false, 0))
6683      ExceptSpec.CalledDecl(CopyAssign);
6684  }
6685
6686  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6687                                       BaseEnd = ClassDecl->vbases_end();
6688       Base != BaseEnd; ++Base) {
6689    CXXRecordDecl *BaseClassDecl
6690      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6691    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6692                                                            ArgQuals, false, 0))
6693      ExceptSpec.CalledDecl(CopyAssign);
6694  }
6695
6696  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6697                                  FieldEnd = ClassDecl->field_end();
6698       Field != FieldEnd;
6699       ++Field) {
6700    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6701    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6702      if (CXXMethodDecl *CopyAssign =
6703          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
6704        ExceptSpec.CalledDecl(CopyAssign);
6705    }
6706  }
6707
6708  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6709}
6710
6711CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6712  // Note: The following rules are largely analoguous to the copy
6713  // constructor rules. Note that virtual bases are not taken into account
6714  // for determining the argument type of the operator. Note also that
6715  // operators taking an object instead of a reference are allowed.
6716
6717  ImplicitExceptionSpecification Spec(Context);
6718  bool Const;
6719  llvm::tie(Spec, Const) =
6720    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6721
6722  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6723  QualType RetType = Context.getLValueReferenceType(ArgType);
6724  if (Const)
6725    ArgType = ArgType.withConst();
6726  ArgType = Context.getLValueReferenceType(ArgType);
6727
6728  //   An implicitly-declared copy assignment operator is an inline public
6729  //   member of its class.
6730  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6731  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6732  SourceLocation ClassLoc = ClassDecl->getLocation();
6733  DeclarationNameInfo NameInfo(Name, ClassLoc);
6734  CXXMethodDecl *CopyAssignment
6735    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6736                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6737                            /*TInfo=*/0, /*isStatic=*/false,
6738                            /*StorageClassAsWritten=*/SC_None,
6739                            /*isInline=*/true,
6740                            SourceLocation());
6741  CopyAssignment->setAccess(AS_public);
6742  CopyAssignment->setDefaulted();
6743  CopyAssignment->setImplicit();
6744  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6745
6746  // Add the parameter to the operator.
6747  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6748                                               ClassLoc, ClassLoc, /*Id=*/0,
6749                                               ArgType, /*TInfo=*/0,
6750                                               SC_None,
6751                                               SC_None, 0);
6752  CopyAssignment->setParams(&FromParam, 1);
6753
6754  // Note that we have added this copy-assignment operator.
6755  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6756
6757  if (Scope *S = getScopeForContext(ClassDecl))
6758    PushOnScopeChains(CopyAssignment, S, false);
6759  ClassDecl->addDecl(CopyAssignment);
6760
6761  // C++0x [class.copy]p18:
6762  //   ... If the class definition declares a move constructor or move
6763  //   assignment operator, the implicitly declared copy assignment operator is
6764  //   defined as deleted; ...
6765  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
6766      ClassDecl->hasUserDeclaredMoveAssignment() ||
6767      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6768    CopyAssignment->setDeletedAsWritten();
6769
6770  AddOverriddenMethods(ClassDecl, CopyAssignment);
6771  return CopyAssignment;
6772}
6773
6774void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6775                                        CXXMethodDecl *CopyAssignOperator) {
6776  assert((CopyAssignOperator->isDefaulted() &&
6777          CopyAssignOperator->isOverloadedOperator() &&
6778          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6779          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6780         "DefineImplicitCopyAssignment called for wrong function");
6781
6782  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6783
6784  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6785    CopyAssignOperator->setInvalidDecl();
6786    return;
6787  }
6788
6789  CopyAssignOperator->setUsed();
6790
6791  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6792  DiagnosticErrorTrap Trap(Diags);
6793
6794  // C++0x [class.copy]p30:
6795  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6796  //   for a non-union class X performs memberwise copy assignment of its
6797  //   subobjects. The direct base classes of X are assigned first, in the
6798  //   order of their declaration in the base-specifier-list, and then the
6799  //   immediate non-static data members of X are assigned, in the order in
6800  //   which they were declared in the class definition.
6801
6802  // The statements that form the synthesized function body.
6803  ASTOwningVector<Stmt*> Statements(*this);
6804
6805  // The parameter for the "other" object, which we are copying from.
6806  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6807  Qualifiers OtherQuals = Other->getType().getQualifiers();
6808  QualType OtherRefType = Other->getType();
6809  if (const LValueReferenceType *OtherRef
6810                                = OtherRefType->getAs<LValueReferenceType>()) {
6811    OtherRefType = OtherRef->getPointeeType();
6812    OtherQuals = OtherRefType.getQualifiers();
6813  }
6814
6815  // Our location for everything implicitly-generated.
6816  SourceLocation Loc = CopyAssignOperator->getLocation();
6817
6818  // Construct a reference to the "other" object. We'll be using this
6819  // throughout the generated ASTs.
6820  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6821  assert(OtherRef && "Reference to parameter cannot fail!");
6822
6823  // Construct the "this" pointer. We'll be using this throughout the generated
6824  // ASTs.
6825  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6826  assert(This && "Reference to this cannot fail!");
6827
6828  // Assign base classes.
6829  bool Invalid = false;
6830  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6831       E = ClassDecl->bases_end(); Base != E; ++Base) {
6832    // Form the assignment:
6833    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6834    QualType BaseType = Base->getType().getUnqualifiedType();
6835    if (!BaseType->isRecordType()) {
6836      Invalid = true;
6837      continue;
6838    }
6839
6840    CXXCastPath BasePath;
6841    BasePath.push_back(Base);
6842
6843    // Construct the "from" expression, which is an implicit cast to the
6844    // appropriately-qualified base type.
6845    Expr *From = OtherRef;
6846    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6847                             CK_UncheckedDerivedToBase,
6848                             VK_LValue, &BasePath).take();
6849
6850    // Dereference "this".
6851    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6852
6853    // Implicitly cast "this" to the appropriately-qualified base type.
6854    To = ImpCastExprToType(To.take(),
6855                           Context.getCVRQualifiedType(BaseType,
6856                                     CopyAssignOperator->getTypeQualifiers()),
6857                           CK_UncheckedDerivedToBase,
6858                           VK_LValue, &BasePath);
6859
6860    // Build the copy.
6861    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6862                                            To.get(), From,
6863                                            /*CopyingBaseSubobject=*/true);
6864    if (Copy.isInvalid()) {
6865      Diag(CurrentLocation, diag::note_member_synthesized_at)
6866        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6867      CopyAssignOperator->setInvalidDecl();
6868      return;
6869    }
6870
6871    // Success! Record the copy.
6872    Statements.push_back(Copy.takeAs<Expr>());
6873  }
6874
6875  // \brief Reference to the __builtin_memcpy function.
6876  Expr *BuiltinMemCpyRef = 0;
6877  // \brief Reference to the __builtin_objc_memmove_collectable function.
6878  Expr *CollectableMemCpyRef = 0;
6879
6880  // Assign non-static members.
6881  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6882                                  FieldEnd = ClassDecl->field_end();
6883       Field != FieldEnd; ++Field) {
6884    // Check for members of reference type; we can't copy those.
6885    if (Field->getType()->isReferenceType()) {
6886      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6887        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6888      Diag(Field->getLocation(), diag::note_declared_at);
6889      Diag(CurrentLocation, diag::note_member_synthesized_at)
6890        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6891      Invalid = true;
6892      continue;
6893    }
6894
6895    // Check for members of const-qualified, non-class type.
6896    QualType BaseType = Context.getBaseElementType(Field->getType());
6897    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6898      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6899        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6900      Diag(Field->getLocation(), diag::note_declared_at);
6901      Diag(CurrentLocation, diag::note_member_synthesized_at)
6902        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6903      Invalid = true;
6904      continue;
6905    }
6906
6907    // Suppress assigning zero-width bitfields.
6908    if (const Expr *Width = Field->getBitWidth())
6909      if (Width->EvaluateAsInt(Context) == 0)
6910        continue;
6911
6912    QualType FieldType = Field->getType().getNonReferenceType();
6913    if (FieldType->isIncompleteArrayType()) {
6914      assert(ClassDecl->hasFlexibleArrayMember() &&
6915             "Incomplete array type is not valid");
6916      continue;
6917    }
6918
6919    // Build references to the field in the object we're copying from and to.
6920    CXXScopeSpec SS; // Intentionally empty
6921    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6922                              LookupMemberName);
6923    MemberLookup.addDecl(*Field);
6924    MemberLookup.resolveKind();
6925    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6926                                               Loc, /*IsArrow=*/false,
6927                                               SS, 0, MemberLookup, 0);
6928    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6929                                             Loc, /*IsArrow=*/true,
6930                                             SS, 0, MemberLookup, 0);
6931    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6932    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6933
6934    // If the field should be copied with __builtin_memcpy rather than via
6935    // explicit assignments, do so. This optimization only applies for arrays
6936    // of scalars and arrays of class type with trivial copy-assignment
6937    // operators.
6938    if (FieldType->isArrayType() &&
6939        BaseType.hasTrivialCopyAssignment(Context)) {
6940      // Compute the size of the memory buffer to be copied.
6941      QualType SizeType = Context.getSizeType();
6942      llvm::APInt Size(Context.getTypeSize(SizeType),
6943                       Context.getTypeSizeInChars(BaseType).getQuantity());
6944      for (const ConstantArrayType *Array
6945              = Context.getAsConstantArrayType(FieldType);
6946           Array;
6947           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6948        llvm::APInt ArraySize
6949          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6950        Size *= ArraySize;
6951      }
6952
6953      // Take the address of the field references for "from" and "to".
6954      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6955      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6956
6957      bool NeedsCollectableMemCpy =
6958          (BaseType->isRecordType() &&
6959           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6960
6961      if (NeedsCollectableMemCpy) {
6962        if (!CollectableMemCpyRef) {
6963          // Create a reference to the __builtin_objc_memmove_collectable function.
6964          LookupResult R(*this,
6965                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6966                         Loc, LookupOrdinaryName);
6967          LookupName(R, TUScope, true);
6968
6969          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6970          if (!CollectableMemCpy) {
6971            // Something went horribly wrong earlier, and we will have
6972            // complained about it.
6973            Invalid = true;
6974            continue;
6975          }
6976
6977          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6978                                                  CollectableMemCpy->getType(),
6979                                                  VK_LValue, Loc, 0).take();
6980          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6981        }
6982      }
6983      // Create a reference to the __builtin_memcpy builtin function.
6984      else if (!BuiltinMemCpyRef) {
6985        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6986                       LookupOrdinaryName);
6987        LookupName(R, TUScope, true);
6988
6989        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6990        if (!BuiltinMemCpy) {
6991          // Something went horribly wrong earlier, and we will have complained
6992          // about it.
6993          Invalid = true;
6994          continue;
6995        }
6996
6997        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6998                                            BuiltinMemCpy->getType(),
6999                                            VK_LValue, Loc, 0).take();
7000        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7001      }
7002
7003      ASTOwningVector<Expr*> CallArgs(*this);
7004      CallArgs.push_back(To.takeAs<Expr>());
7005      CallArgs.push_back(From.takeAs<Expr>());
7006      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7007      ExprResult Call = ExprError();
7008      if (NeedsCollectableMemCpy)
7009        Call = ActOnCallExpr(/*Scope=*/0,
7010                             CollectableMemCpyRef,
7011                             Loc, move_arg(CallArgs),
7012                             Loc);
7013      else
7014        Call = ActOnCallExpr(/*Scope=*/0,
7015                             BuiltinMemCpyRef,
7016                             Loc, move_arg(CallArgs),
7017                             Loc);
7018
7019      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7020      Statements.push_back(Call.takeAs<Expr>());
7021      continue;
7022    }
7023
7024    // Build the copy of this field.
7025    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7026                                                  To.get(), From.get(),
7027                                              /*CopyingBaseSubobject=*/false);
7028    if (Copy.isInvalid()) {
7029      Diag(CurrentLocation, diag::note_member_synthesized_at)
7030        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7031      CopyAssignOperator->setInvalidDecl();
7032      return;
7033    }
7034
7035    // Success! Record the copy.
7036    Statements.push_back(Copy.takeAs<Stmt>());
7037  }
7038
7039  if (!Invalid) {
7040    // Add a "return *this;"
7041    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7042
7043    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7044    if (Return.isInvalid())
7045      Invalid = true;
7046    else {
7047      Statements.push_back(Return.takeAs<Stmt>());
7048
7049      if (Trap.hasErrorOccurred()) {
7050        Diag(CurrentLocation, diag::note_member_synthesized_at)
7051          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7052        Invalid = true;
7053      }
7054    }
7055  }
7056
7057  if (Invalid) {
7058    CopyAssignOperator->setInvalidDecl();
7059    return;
7060  }
7061
7062  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7063                                            /*isStmtExpr=*/false);
7064  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7065  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7066
7067  if (ASTMutationListener *L = getASTMutationListener()) {
7068    L->CompletedImplicitDefinition(CopyAssignOperator);
7069  }
7070}
7071
7072std::pair<Sema::ImplicitExceptionSpecification, bool>
7073Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7074  // C++ [class.copy]p5:
7075  //   The implicitly-declared copy constructor for a class X will
7076  //   have the form
7077  //
7078  //       X::X(const X&)
7079  //
7080  //   if
7081  // FIXME: It ought to be possible to store this on the record.
7082  bool HasConstCopyConstructor = true;
7083
7084  //     -- each direct or virtual base class B of X has a copy
7085  //        constructor whose first parameter is of type const B& or
7086  //        const volatile B&, and
7087  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7088                                       BaseEnd = ClassDecl->bases_end();
7089       HasConstCopyConstructor && Base != BaseEnd;
7090       ++Base) {
7091    // Virtual bases are handled below.
7092    if (Base->isVirtual())
7093      continue;
7094
7095    CXXRecordDecl *BaseClassDecl
7096      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7097    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7098                             &HasConstCopyConstructor);
7099  }
7100
7101  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7102                                       BaseEnd = ClassDecl->vbases_end();
7103       HasConstCopyConstructor && Base != BaseEnd;
7104       ++Base) {
7105    CXXRecordDecl *BaseClassDecl
7106      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7107    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7108                             &HasConstCopyConstructor);
7109  }
7110
7111  //     -- for all the nonstatic data members of X that are of a
7112  //        class type M (or array thereof), each such class type
7113  //        has a copy constructor whose first parameter is of type
7114  //        const M& or const volatile M&.
7115  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7116                                  FieldEnd = ClassDecl->field_end();
7117       HasConstCopyConstructor && Field != FieldEnd;
7118       ++Field) {
7119    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7120    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7121      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
7122                               &HasConstCopyConstructor);
7123    }
7124  }
7125  //   Otherwise, the implicitly declared copy constructor will have
7126  //   the form
7127  //
7128  //       X::X(X&)
7129
7130  // C++ [except.spec]p14:
7131  //   An implicitly declared special member function (Clause 12) shall have an
7132  //   exception-specification. [...]
7133  ImplicitExceptionSpecification ExceptSpec(Context);
7134  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7135  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7136                                       BaseEnd = ClassDecl->bases_end();
7137       Base != BaseEnd;
7138       ++Base) {
7139    // Virtual bases are handled below.
7140    if (Base->isVirtual())
7141      continue;
7142
7143    CXXRecordDecl *BaseClassDecl
7144      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7145    if (CXXConstructorDecl *CopyConstructor =
7146          LookupCopyingConstructor(BaseClassDecl, Quals))
7147      ExceptSpec.CalledDecl(CopyConstructor);
7148  }
7149  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7150                                       BaseEnd = ClassDecl->vbases_end();
7151       Base != BaseEnd;
7152       ++Base) {
7153    CXXRecordDecl *BaseClassDecl
7154      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7155    if (CXXConstructorDecl *CopyConstructor =
7156          LookupCopyingConstructor(BaseClassDecl, Quals))
7157      ExceptSpec.CalledDecl(CopyConstructor);
7158  }
7159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7160                                  FieldEnd = ClassDecl->field_end();
7161       Field != FieldEnd;
7162       ++Field) {
7163    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7164    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7165      if (CXXConstructorDecl *CopyConstructor =
7166        LookupCopyingConstructor(FieldClassDecl, Quals))
7167      ExceptSpec.CalledDecl(CopyConstructor);
7168    }
7169  }
7170
7171  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7172}
7173
7174CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7175                                                    CXXRecordDecl *ClassDecl) {
7176  // C++ [class.copy]p4:
7177  //   If the class definition does not explicitly declare a copy
7178  //   constructor, one is declared implicitly.
7179
7180  ImplicitExceptionSpecification Spec(Context);
7181  bool Const;
7182  llvm::tie(Spec, Const) =
7183    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7184
7185  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7186  QualType ArgType = ClassType;
7187  if (Const)
7188    ArgType = ArgType.withConst();
7189  ArgType = Context.getLValueReferenceType(ArgType);
7190
7191  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7192
7193  DeclarationName Name
7194    = Context.DeclarationNames.getCXXConstructorName(
7195                                           Context.getCanonicalType(ClassType));
7196  SourceLocation ClassLoc = ClassDecl->getLocation();
7197  DeclarationNameInfo NameInfo(Name, ClassLoc);
7198
7199  //   An implicitly-declared copy constructor is an inline public
7200  //   member of its class.
7201  CXXConstructorDecl *CopyConstructor
7202    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7203                                 Context.getFunctionType(Context.VoidTy,
7204                                                         &ArgType, 1, EPI),
7205                                 /*TInfo=*/0,
7206                                 /*isExplicit=*/false,
7207                                 /*isInline=*/true,
7208                                 /*isImplicitlyDeclared=*/true);
7209  CopyConstructor->setAccess(AS_public);
7210  CopyConstructor->setDefaulted();
7211  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7212
7213  // Note that we have declared this constructor.
7214  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7215
7216  // Add the parameter to the constructor.
7217  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7218                                               ClassLoc, ClassLoc,
7219                                               /*IdentifierInfo=*/0,
7220                                               ArgType, /*TInfo=*/0,
7221                                               SC_None,
7222                                               SC_None, 0);
7223  CopyConstructor->setParams(&FromParam, 1);
7224
7225  if (Scope *S = getScopeForContext(ClassDecl))
7226    PushOnScopeChains(CopyConstructor, S, false);
7227  ClassDecl->addDecl(CopyConstructor);
7228
7229  // C++0x [class.copy]p7:
7230  //   ... If the class definition declares a move constructor or move
7231  //   assignment operator, the implicitly declared constructor is defined as
7232  //   deleted; ...
7233  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7234      ClassDecl->hasUserDeclaredMoveAssignment() ||
7235      ShouldDeleteCopyConstructor(CopyConstructor))
7236    CopyConstructor->setDeletedAsWritten();
7237
7238  return CopyConstructor;
7239}
7240
7241void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7242                                   CXXConstructorDecl *CopyConstructor) {
7243  assert((CopyConstructor->isDefaulted() &&
7244          CopyConstructor->isCopyConstructor() &&
7245          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7246         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7247
7248  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7249  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7250
7251  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7252  DiagnosticErrorTrap Trap(Diags);
7253
7254  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7255      Trap.hasErrorOccurred()) {
7256    Diag(CurrentLocation, diag::note_member_synthesized_at)
7257      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7258    CopyConstructor->setInvalidDecl();
7259  }  else {
7260    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7261                                               CopyConstructor->getLocation(),
7262                                               MultiStmtArg(*this, 0, 0),
7263                                               /*isStmtExpr=*/false)
7264                                                              .takeAs<Stmt>());
7265  }
7266
7267  CopyConstructor->setUsed();
7268
7269  if (ASTMutationListener *L = getASTMutationListener()) {
7270    L->CompletedImplicitDefinition(CopyConstructor);
7271  }
7272}
7273
7274ExprResult
7275Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7276                            CXXConstructorDecl *Constructor,
7277                            MultiExprArg ExprArgs,
7278                            bool RequiresZeroInit,
7279                            unsigned ConstructKind,
7280                            SourceRange ParenRange) {
7281  bool Elidable = false;
7282
7283  // C++0x [class.copy]p34:
7284  //   When certain criteria are met, an implementation is allowed to
7285  //   omit the copy/move construction of a class object, even if the
7286  //   copy/move constructor and/or destructor for the object have
7287  //   side effects. [...]
7288  //     - when a temporary class object that has not been bound to a
7289  //       reference (12.2) would be copied/moved to a class object
7290  //       with the same cv-unqualified type, the copy/move operation
7291  //       can be omitted by constructing the temporary object
7292  //       directly into the target of the omitted copy/move
7293  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7294      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7295    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7296    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7297  }
7298
7299  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7300                               Elidable, move(ExprArgs), RequiresZeroInit,
7301                               ConstructKind, ParenRange);
7302}
7303
7304/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7305/// including handling of its default argument expressions.
7306ExprResult
7307Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7308                            CXXConstructorDecl *Constructor, bool Elidable,
7309                            MultiExprArg ExprArgs,
7310                            bool RequiresZeroInit,
7311                            unsigned ConstructKind,
7312                            SourceRange ParenRange) {
7313  unsigned NumExprs = ExprArgs.size();
7314  Expr **Exprs = (Expr **)ExprArgs.release();
7315
7316  for (specific_attr_iterator<NonNullAttr>
7317           i = Constructor->specific_attr_begin<NonNullAttr>(),
7318           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7319    const NonNullAttr *NonNull = *i;
7320    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7321  }
7322
7323  MarkDeclarationReferenced(ConstructLoc, Constructor);
7324  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7325                                        Constructor, Elidable, Exprs, NumExprs,
7326                                        RequiresZeroInit,
7327              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7328                                        ParenRange));
7329}
7330
7331bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7332                                        CXXConstructorDecl *Constructor,
7333                                        MultiExprArg Exprs) {
7334  // FIXME: Provide the correct paren SourceRange when available.
7335  ExprResult TempResult =
7336    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7337                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7338                          SourceRange());
7339  if (TempResult.isInvalid())
7340    return true;
7341
7342  Expr *Temp = TempResult.takeAs<Expr>();
7343  CheckImplicitConversions(Temp, VD->getLocation());
7344  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7345  Temp = MaybeCreateExprWithCleanups(Temp);
7346  VD->setInit(Temp);
7347
7348  return false;
7349}
7350
7351void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7352  if (VD->isInvalidDecl()) return;
7353
7354  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7355  if (ClassDecl->isInvalidDecl()) return;
7356  if (ClassDecl->hasTrivialDestructor()) return;
7357  if (ClassDecl->isDependentContext()) return;
7358
7359  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7360  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7361  CheckDestructorAccess(VD->getLocation(), Destructor,
7362                        PDiag(diag::err_access_dtor_var)
7363                        << VD->getDeclName()
7364                        << VD->getType());
7365
7366  if (!VD->hasGlobalStorage()) return;
7367
7368  // Emit warning for non-trivial dtor in global scope (a real global,
7369  // class-static, function-static).
7370  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7371
7372  // TODO: this should be re-enabled for static locals by !CXAAtExit
7373  if (!VD->isStaticLocal())
7374    Diag(VD->getLocation(), diag::warn_global_destructor);
7375}
7376
7377/// AddCXXDirectInitializerToDecl - This action is called immediately after
7378/// ActOnDeclarator, when a C++ direct initializer is present.
7379/// e.g: "int x(1);"
7380void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7381                                         SourceLocation LParenLoc,
7382                                         MultiExprArg Exprs,
7383                                         SourceLocation RParenLoc,
7384                                         bool TypeMayContainAuto) {
7385  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7386
7387  // If there is no declaration, there was an error parsing it.  Just ignore
7388  // the initializer.
7389  if (RealDecl == 0)
7390    return;
7391
7392  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7393  if (!VDecl) {
7394    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7395    RealDecl->setInvalidDecl();
7396    return;
7397  }
7398
7399  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7400  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7401    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7402    if (Exprs.size() > 1) {
7403      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7404           diag::err_auto_var_init_multiple_expressions)
7405        << VDecl->getDeclName() << VDecl->getType()
7406        << VDecl->getSourceRange();
7407      RealDecl->setInvalidDecl();
7408      return;
7409    }
7410
7411    Expr *Init = Exprs.get()[0];
7412    TypeSourceInfo *DeducedType = 0;
7413    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7414      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7415        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7416        << Init->getSourceRange();
7417    if (!DeducedType) {
7418      RealDecl->setInvalidDecl();
7419      return;
7420    }
7421    VDecl->setTypeSourceInfo(DeducedType);
7422    VDecl->setType(DeducedType->getType());
7423
7424    // In ARC, infer lifetime.
7425    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7426      VDecl->setInvalidDecl();
7427
7428    // If this is a redeclaration, check that the type we just deduced matches
7429    // the previously declared type.
7430    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7431      MergeVarDeclTypes(VDecl, Old);
7432  }
7433
7434  // We will represent direct-initialization similarly to copy-initialization:
7435  //    int x(1);  -as-> int x = 1;
7436  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7437  //
7438  // Clients that want to distinguish between the two forms, can check for
7439  // direct initializer using VarDecl::hasCXXDirectInitializer().
7440  // A major benefit is that clients that don't particularly care about which
7441  // exactly form was it (like the CodeGen) can handle both cases without
7442  // special case code.
7443
7444  // C++ 8.5p11:
7445  // The form of initialization (using parentheses or '=') is generally
7446  // insignificant, but does matter when the entity being initialized has a
7447  // class type.
7448
7449  if (!VDecl->getType()->isDependentType() &&
7450      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7451                          diag::err_typecheck_decl_incomplete_type)) {
7452    VDecl->setInvalidDecl();
7453    return;
7454  }
7455
7456  // The variable can not have an abstract class type.
7457  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7458                             diag::err_abstract_type_in_decl,
7459                             AbstractVariableType))
7460    VDecl->setInvalidDecl();
7461
7462  const VarDecl *Def;
7463  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7464    Diag(VDecl->getLocation(), diag::err_redefinition)
7465    << VDecl->getDeclName();
7466    Diag(Def->getLocation(), diag::note_previous_definition);
7467    VDecl->setInvalidDecl();
7468    return;
7469  }
7470
7471  // C++ [class.static.data]p4
7472  //   If a static data member is of const integral or const
7473  //   enumeration type, its declaration in the class definition can
7474  //   specify a constant-initializer which shall be an integral
7475  //   constant expression (5.19). In that case, the member can appear
7476  //   in integral constant expressions. The member shall still be
7477  //   defined in a namespace scope if it is used in the program and the
7478  //   namespace scope definition shall not contain an initializer.
7479  //
7480  // We already performed a redefinition check above, but for static
7481  // data members we also need to check whether there was an in-class
7482  // declaration with an initializer.
7483  const VarDecl* PrevInit = 0;
7484  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7485    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7486    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7487    return;
7488  }
7489
7490  bool IsDependent = false;
7491  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7492    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7493      VDecl->setInvalidDecl();
7494      return;
7495    }
7496
7497    if (Exprs.get()[I]->isTypeDependent())
7498      IsDependent = true;
7499  }
7500
7501  // If either the declaration has a dependent type or if any of the
7502  // expressions is type-dependent, we represent the initialization
7503  // via a ParenListExpr for later use during template instantiation.
7504  if (VDecl->getType()->isDependentType() || IsDependent) {
7505    // Let clients know that initialization was done with a direct initializer.
7506    VDecl->setCXXDirectInitializer(true);
7507
7508    // Store the initialization expressions as a ParenListExpr.
7509    unsigned NumExprs = Exprs.size();
7510    VDecl->setInit(new (Context) ParenListExpr(
7511        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
7512        VDecl->getType().getNonReferenceType()));
7513    return;
7514  }
7515
7516  // Capture the variable that is being initialized and the style of
7517  // initialization.
7518  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7519
7520  // FIXME: Poor source location information.
7521  InitializationKind Kind
7522    = InitializationKind::CreateDirect(VDecl->getLocation(),
7523                                       LParenLoc, RParenLoc);
7524
7525  InitializationSequence InitSeq(*this, Entity, Kind,
7526                                 Exprs.get(), Exprs.size());
7527  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7528  if (Result.isInvalid()) {
7529    VDecl->setInvalidDecl();
7530    return;
7531  }
7532
7533  CheckImplicitConversions(Result.get(), LParenLoc);
7534
7535  Result = MaybeCreateExprWithCleanups(Result);
7536  VDecl->setInit(Result.takeAs<Expr>());
7537  VDecl->setCXXDirectInitializer(true);
7538
7539  CheckCompleteVariableDeclaration(VDecl);
7540}
7541
7542/// \brief Given a constructor and the set of arguments provided for the
7543/// constructor, convert the arguments and add any required default arguments
7544/// to form a proper call to this constructor.
7545///
7546/// \returns true if an error occurred, false otherwise.
7547bool
7548Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7549                              MultiExprArg ArgsPtr,
7550                              SourceLocation Loc,
7551                              ASTOwningVector<Expr*> &ConvertedArgs) {
7552  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7553  unsigned NumArgs = ArgsPtr.size();
7554  Expr **Args = (Expr **)ArgsPtr.get();
7555
7556  const FunctionProtoType *Proto
7557    = Constructor->getType()->getAs<FunctionProtoType>();
7558  assert(Proto && "Constructor without a prototype?");
7559  unsigned NumArgsInProto = Proto->getNumArgs();
7560
7561  // If too few arguments are available, we'll fill in the rest with defaults.
7562  if (NumArgs < NumArgsInProto)
7563    ConvertedArgs.reserve(NumArgsInProto);
7564  else
7565    ConvertedArgs.reserve(NumArgs);
7566
7567  VariadicCallType CallType =
7568    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7569  llvm::SmallVector<Expr *, 8> AllArgs;
7570  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7571                                        Proto, 0, Args, NumArgs, AllArgs,
7572                                        CallType);
7573  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7574    ConvertedArgs.push_back(AllArgs[i]);
7575  return Invalid;
7576}
7577
7578static inline bool
7579CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7580                                       const FunctionDecl *FnDecl) {
7581  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7582  if (isa<NamespaceDecl>(DC)) {
7583    return SemaRef.Diag(FnDecl->getLocation(),
7584                        diag::err_operator_new_delete_declared_in_namespace)
7585      << FnDecl->getDeclName();
7586  }
7587
7588  if (isa<TranslationUnitDecl>(DC) &&
7589      FnDecl->getStorageClass() == SC_Static) {
7590    return SemaRef.Diag(FnDecl->getLocation(),
7591                        diag::err_operator_new_delete_declared_static)
7592      << FnDecl->getDeclName();
7593  }
7594
7595  return false;
7596}
7597
7598static inline bool
7599CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7600                            CanQualType ExpectedResultType,
7601                            CanQualType ExpectedFirstParamType,
7602                            unsigned DependentParamTypeDiag,
7603                            unsigned InvalidParamTypeDiag) {
7604  QualType ResultType =
7605    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7606
7607  // Check that the result type is not dependent.
7608  if (ResultType->isDependentType())
7609    return SemaRef.Diag(FnDecl->getLocation(),
7610                        diag::err_operator_new_delete_dependent_result_type)
7611    << FnDecl->getDeclName() << ExpectedResultType;
7612
7613  // Check that the result type is what we expect.
7614  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7615    return SemaRef.Diag(FnDecl->getLocation(),
7616                        diag::err_operator_new_delete_invalid_result_type)
7617    << FnDecl->getDeclName() << ExpectedResultType;
7618
7619  // A function template must have at least 2 parameters.
7620  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7621    return SemaRef.Diag(FnDecl->getLocation(),
7622                      diag::err_operator_new_delete_template_too_few_parameters)
7623        << FnDecl->getDeclName();
7624
7625  // The function decl must have at least 1 parameter.
7626  if (FnDecl->getNumParams() == 0)
7627    return SemaRef.Diag(FnDecl->getLocation(),
7628                        diag::err_operator_new_delete_too_few_parameters)
7629      << FnDecl->getDeclName();
7630
7631  // Check the the first parameter type is not dependent.
7632  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7633  if (FirstParamType->isDependentType())
7634    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7635      << FnDecl->getDeclName() << ExpectedFirstParamType;
7636
7637  // Check that the first parameter type is what we expect.
7638  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7639      ExpectedFirstParamType)
7640    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7641    << FnDecl->getDeclName() << ExpectedFirstParamType;
7642
7643  return false;
7644}
7645
7646static bool
7647CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7648  // C++ [basic.stc.dynamic.allocation]p1:
7649  //   A program is ill-formed if an allocation function is declared in a
7650  //   namespace scope other than global scope or declared static in global
7651  //   scope.
7652  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7653    return true;
7654
7655  CanQualType SizeTy =
7656    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7657
7658  // C++ [basic.stc.dynamic.allocation]p1:
7659  //  The return type shall be void*. The first parameter shall have type
7660  //  std::size_t.
7661  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7662                                  SizeTy,
7663                                  diag::err_operator_new_dependent_param_type,
7664                                  diag::err_operator_new_param_type))
7665    return true;
7666
7667  // C++ [basic.stc.dynamic.allocation]p1:
7668  //  The first parameter shall not have an associated default argument.
7669  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7670    return SemaRef.Diag(FnDecl->getLocation(),
7671                        diag::err_operator_new_default_arg)
7672      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7673
7674  return false;
7675}
7676
7677static bool
7678CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7679  // C++ [basic.stc.dynamic.deallocation]p1:
7680  //   A program is ill-formed if deallocation functions are declared in a
7681  //   namespace scope other than global scope or declared static in global
7682  //   scope.
7683  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7684    return true;
7685
7686  // C++ [basic.stc.dynamic.deallocation]p2:
7687  //   Each deallocation function shall return void and its first parameter
7688  //   shall be void*.
7689  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7690                                  SemaRef.Context.VoidPtrTy,
7691                                 diag::err_operator_delete_dependent_param_type,
7692                                 diag::err_operator_delete_param_type))
7693    return true;
7694
7695  return false;
7696}
7697
7698/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7699/// of this overloaded operator is well-formed. If so, returns false;
7700/// otherwise, emits appropriate diagnostics and returns true.
7701bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7702  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7703         "Expected an overloaded operator declaration");
7704
7705  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7706
7707  // C++ [over.oper]p5:
7708  //   The allocation and deallocation functions, operator new,
7709  //   operator new[], operator delete and operator delete[], are
7710  //   described completely in 3.7.3. The attributes and restrictions
7711  //   found in the rest of this subclause do not apply to them unless
7712  //   explicitly stated in 3.7.3.
7713  if (Op == OO_Delete || Op == OO_Array_Delete)
7714    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7715
7716  if (Op == OO_New || Op == OO_Array_New)
7717    return CheckOperatorNewDeclaration(*this, FnDecl);
7718
7719  // C++ [over.oper]p6:
7720  //   An operator function shall either be a non-static member
7721  //   function or be a non-member function and have at least one
7722  //   parameter whose type is a class, a reference to a class, an
7723  //   enumeration, or a reference to an enumeration.
7724  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7725    if (MethodDecl->isStatic())
7726      return Diag(FnDecl->getLocation(),
7727                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7728  } else {
7729    bool ClassOrEnumParam = false;
7730    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7731                                   ParamEnd = FnDecl->param_end();
7732         Param != ParamEnd; ++Param) {
7733      QualType ParamType = (*Param)->getType().getNonReferenceType();
7734      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7735          ParamType->isEnumeralType()) {
7736        ClassOrEnumParam = true;
7737        break;
7738      }
7739    }
7740
7741    if (!ClassOrEnumParam)
7742      return Diag(FnDecl->getLocation(),
7743                  diag::err_operator_overload_needs_class_or_enum)
7744        << FnDecl->getDeclName();
7745  }
7746
7747  // C++ [over.oper]p8:
7748  //   An operator function cannot have default arguments (8.3.6),
7749  //   except where explicitly stated below.
7750  //
7751  // Only the function-call operator allows default arguments
7752  // (C++ [over.call]p1).
7753  if (Op != OO_Call) {
7754    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7755         Param != FnDecl->param_end(); ++Param) {
7756      if ((*Param)->hasDefaultArg())
7757        return Diag((*Param)->getLocation(),
7758                    diag::err_operator_overload_default_arg)
7759          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7760    }
7761  }
7762
7763  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7764    { false, false, false }
7765#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7766    , { Unary, Binary, MemberOnly }
7767#include "clang/Basic/OperatorKinds.def"
7768  };
7769
7770  bool CanBeUnaryOperator = OperatorUses[Op][0];
7771  bool CanBeBinaryOperator = OperatorUses[Op][1];
7772  bool MustBeMemberOperator = OperatorUses[Op][2];
7773
7774  // C++ [over.oper]p8:
7775  //   [...] Operator functions cannot have more or fewer parameters
7776  //   than the number required for the corresponding operator, as
7777  //   described in the rest of this subclause.
7778  unsigned NumParams = FnDecl->getNumParams()
7779                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7780  if (Op != OO_Call &&
7781      ((NumParams == 1 && !CanBeUnaryOperator) ||
7782       (NumParams == 2 && !CanBeBinaryOperator) ||
7783       (NumParams < 1) || (NumParams > 2))) {
7784    // We have the wrong number of parameters.
7785    unsigned ErrorKind;
7786    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7787      ErrorKind = 2;  // 2 -> unary or binary.
7788    } else if (CanBeUnaryOperator) {
7789      ErrorKind = 0;  // 0 -> unary
7790    } else {
7791      assert(CanBeBinaryOperator &&
7792             "All non-call overloaded operators are unary or binary!");
7793      ErrorKind = 1;  // 1 -> binary
7794    }
7795
7796    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7797      << FnDecl->getDeclName() << NumParams << ErrorKind;
7798  }
7799
7800  // Overloaded operators other than operator() cannot be variadic.
7801  if (Op != OO_Call &&
7802      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7803    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7804      << FnDecl->getDeclName();
7805  }
7806
7807  // Some operators must be non-static member functions.
7808  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7809    return Diag(FnDecl->getLocation(),
7810                diag::err_operator_overload_must_be_member)
7811      << FnDecl->getDeclName();
7812  }
7813
7814  // C++ [over.inc]p1:
7815  //   The user-defined function called operator++ implements the
7816  //   prefix and postfix ++ operator. If this function is a member
7817  //   function with no parameters, or a non-member function with one
7818  //   parameter of class or enumeration type, it defines the prefix
7819  //   increment operator ++ for objects of that type. If the function
7820  //   is a member function with one parameter (which shall be of type
7821  //   int) or a non-member function with two parameters (the second
7822  //   of which shall be of type int), it defines the postfix
7823  //   increment operator ++ for objects of that type.
7824  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7825    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7826    bool ParamIsInt = false;
7827    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7828      ParamIsInt = BT->getKind() == BuiltinType::Int;
7829
7830    if (!ParamIsInt)
7831      return Diag(LastParam->getLocation(),
7832                  diag::err_operator_overload_post_incdec_must_be_int)
7833        << LastParam->getType() << (Op == OO_MinusMinus);
7834  }
7835
7836  return false;
7837}
7838
7839/// CheckLiteralOperatorDeclaration - Check whether the declaration
7840/// of this literal operator function is well-formed. If so, returns
7841/// false; otherwise, emits appropriate diagnostics and returns true.
7842bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7843  DeclContext *DC = FnDecl->getDeclContext();
7844  Decl::Kind Kind = DC->getDeclKind();
7845  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7846      Kind != Decl::LinkageSpec) {
7847    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7848      << FnDecl->getDeclName();
7849    return true;
7850  }
7851
7852  bool Valid = false;
7853
7854  // template <char...> type operator "" name() is the only valid template
7855  // signature, and the only valid signature with no parameters.
7856  if (FnDecl->param_size() == 0) {
7857    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7858      // Must have only one template parameter
7859      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7860      if (Params->size() == 1) {
7861        NonTypeTemplateParmDecl *PmDecl =
7862          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7863
7864        // The template parameter must be a char parameter pack.
7865        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7866            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7867          Valid = true;
7868      }
7869    }
7870  } else {
7871    // Check the first parameter
7872    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7873
7874    QualType T = (*Param)->getType();
7875
7876    // unsigned long long int, long double, and any character type are allowed
7877    // as the only parameters.
7878    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7879        Context.hasSameType(T, Context.LongDoubleTy) ||
7880        Context.hasSameType(T, Context.CharTy) ||
7881        Context.hasSameType(T, Context.WCharTy) ||
7882        Context.hasSameType(T, Context.Char16Ty) ||
7883        Context.hasSameType(T, Context.Char32Ty)) {
7884      if (++Param == FnDecl->param_end())
7885        Valid = true;
7886      goto FinishedParams;
7887    }
7888
7889    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7890    const PointerType *PT = T->getAs<PointerType>();
7891    if (!PT)
7892      goto FinishedParams;
7893    T = PT->getPointeeType();
7894    if (!T.isConstQualified())
7895      goto FinishedParams;
7896    T = T.getUnqualifiedType();
7897
7898    // Move on to the second parameter;
7899    ++Param;
7900
7901    // If there is no second parameter, the first must be a const char *
7902    if (Param == FnDecl->param_end()) {
7903      if (Context.hasSameType(T, Context.CharTy))
7904        Valid = true;
7905      goto FinishedParams;
7906    }
7907
7908    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7909    // are allowed as the first parameter to a two-parameter function
7910    if (!(Context.hasSameType(T, Context.CharTy) ||
7911          Context.hasSameType(T, Context.WCharTy) ||
7912          Context.hasSameType(T, Context.Char16Ty) ||
7913          Context.hasSameType(T, Context.Char32Ty)))
7914      goto FinishedParams;
7915
7916    // The second and final parameter must be an std::size_t
7917    T = (*Param)->getType().getUnqualifiedType();
7918    if (Context.hasSameType(T, Context.getSizeType()) &&
7919        ++Param == FnDecl->param_end())
7920      Valid = true;
7921  }
7922
7923  // FIXME: This diagnostic is absolutely terrible.
7924FinishedParams:
7925  if (!Valid) {
7926    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7927      << FnDecl->getDeclName();
7928    return true;
7929  }
7930
7931  return false;
7932}
7933
7934/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7935/// linkage specification, including the language and (if present)
7936/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7937/// the location of the language string literal, which is provided
7938/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7939/// the '{' brace. Otherwise, this linkage specification does not
7940/// have any braces.
7941Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7942                                           SourceLocation LangLoc,
7943                                           llvm::StringRef Lang,
7944                                           SourceLocation LBraceLoc) {
7945  LinkageSpecDecl::LanguageIDs Language;
7946  if (Lang == "\"C\"")
7947    Language = LinkageSpecDecl::lang_c;
7948  else if (Lang == "\"C++\"")
7949    Language = LinkageSpecDecl::lang_cxx;
7950  else {
7951    Diag(LangLoc, diag::err_bad_language);
7952    return 0;
7953  }
7954
7955  // FIXME: Add all the various semantics of linkage specifications
7956
7957  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7958                                               ExternLoc, LangLoc, Language);
7959  CurContext->addDecl(D);
7960  PushDeclContext(S, D);
7961  return D;
7962}
7963
7964/// ActOnFinishLinkageSpecification - Complete the definition of
7965/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7966/// valid, it's the position of the closing '}' brace in a linkage
7967/// specification that uses braces.
7968Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7969                                            Decl *LinkageSpec,
7970                                            SourceLocation RBraceLoc) {
7971  if (LinkageSpec) {
7972    if (RBraceLoc.isValid()) {
7973      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7974      LSDecl->setRBraceLoc(RBraceLoc);
7975    }
7976    PopDeclContext();
7977  }
7978  return LinkageSpec;
7979}
7980
7981/// \brief Perform semantic analysis for the variable declaration that
7982/// occurs within a C++ catch clause, returning the newly-created
7983/// variable.
7984VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7985                                         TypeSourceInfo *TInfo,
7986                                         SourceLocation StartLoc,
7987                                         SourceLocation Loc,
7988                                         IdentifierInfo *Name) {
7989  bool Invalid = false;
7990  QualType ExDeclType = TInfo->getType();
7991
7992  // Arrays and functions decay.
7993  if (ExDeclType->isArrayType())
7994    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7995  else if (ExDeclType->isFunctionType())
7996    ExDeclType = Context.getPointerType(ExDeclType);
7997
7998  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7999  // The exception-declaration shall not denote a pointer or reference to an
8000  // incomplete type, other than [cv] void*.
8001  // N2844 forbids rvalue references.
8002  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8003    Diag(Loc, diag::err_catch_rvalue_ref);
8004    Invalid = true;
8005  }
8006
8007  // GCC allows catching pointers and references to incomplete types
8008  // as an extension; so do we, but we warn by default.
8009
8010  QualType BaseType = ExDeclType;
8011  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8012  unsigned DK = diag::err_catch_incomplete;
8013  bool IncompleteCatchIsInvalid = true;
8014  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8015    BaseType = Ptr->getPointeeType();
8016    Mode = 1;
8017    DK = diag::ext_catch_incomplete_ptr;
8018    IncompleteCatchIsInvalid = false;
8019  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8020    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8021    BaseType = Ref->getPointeeType();
8022    Mode = 2;
8023    DK = diag::ext_catch_incomplete_ref;
8024    IncompleteCatchIsInvalid = false;
8025  }
8026  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8027      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8028      IncompleteCatchIsInvalid)
8029    Invalid = true;
8030
8031  if (!Invalid && !ExDeclType->isDependentType() &&
8032      RequireNonAbstractType(Loc, ExDeclType,
8033                             diag::err_abstract_type_in_decl,
8034                             AbstractVariableType))
8035    Invalid = true;
8036
8037  // Only the non-fragile NeXT runtime currently supports C++ catches
8038  // of ObjC types, and no runtime supports catching ObjC types by value.
8039  if (!Invalid && getLangOptions().ObjC1) {
8040    QualType T = ExDeclType;
8041    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8042      T = RT->getPointeeType();
8043
8044    if (T->isObjCObjectType()) {
8045      Diag(Loc, diag::err_objc_object_catch);
8046      Invalid = true;
8047    } else if (T->isObjCObjectPointerType()) {
8048      if (!getLangOptions().ObjCNonFragileABI) {
8049        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8050        Invalid = true;
8051      }
8052    }
8053  }
8054
8055  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8056                                    ExDeclType, TInfo, SC_None, SC_None);
8057  ExDecl->setExceptionVariable(true);
8058
8059  if (!Invalid) {
8060    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8061      // C++ [except.handle]p16:
8062      //   The object declared in an exception-declaration or, if the
8063      //   exception-declaration does not specify a name, a temporary (12.2) is
8064      //   copy-initialized (8.5) from the exception object. [...]
8065      //   The object is destroyed when the handler exits, after the destruction
8066      //   of any automatic objects initialized within the handler.
8067      //
8068      // We just pretend to initialize the object with itself, then make sure
8069      // it can be destroyed later.
8070      QualType initType = ExDeclType;
8071
8072      InitializedEntity entity =
8073        InitializedEntity::InitializeVariable(ExDecl);
8074      InitializationKind initKind =
8075        InitializationKind::CreateCopy(Loc, SourceLocation());
8076
8077      Expr *opaqueValue =
8078        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8079      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8080      ExprResult result = sequence.Perform(*this, entity, initKind,
8081                                           MultiExprArg(&opaqueValue, 1));
8082      if (result.isInvalid())
8083        Invalid = true;
8084      else {
8085        // If the constructor used was non-trivial, set this as the
8086        // "initializer".
8087        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8088        if (!construct->getConstructor()->isTrivial()) {
8089          Expr *init = MaybeCreateExprWithCleanups(construct);
8090          ExDecl->setInit(init);
8091        }
8092
8093        // And make sure it's destructable.
8094        FinalizeVarWithDestructor(ExDecl, recordType);
8095      }
8096    }
8097  }
8098
8099  if (Invalid)
8100    ExDecl->setInvalidDecl();
8101
8102  return ExDecl;
8103}
8104
8105/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8106/// handler.
8107Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8108  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8109  bool Invalid = D.isInvalidType();
8110
8111  // Check for unexpanded parameter packs.
8112  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8113                                               UPPC_ExceptionType)) {
8114    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8115                                             D.getIdentifierLoc());
8116    Invalid = true;
8117  }
8118
8119  IdentifierInfo *II = D.getIdentifier();
8120  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8121                                             LookupOrdinaryName,
8122                                             ForRedeclaration)) {
8123    // The scope should be freshly made just for us. There is just no way
8124    // it contains any previous declaration.
8125    assert(!S->isDeclScope(PrevDecl));
8126    if (PrevDecl->isTemplateParameter()) {
8127      // Maybe we will complain about the shadowed template parameter.
8128      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8129    }
8130  }
8131
8132  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8133    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8134      << D.getCXXScopeSpec().getRange();
8135    Invalid = true;
8136  }
8137
8138  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8139                                              D.getSourceRange().getBegin(),
8140                                              D.getIdentifierLoc(),
8141                                              D.getIdentifier());
8142  if (Invalid)
8143    ExDecl->setInvalidDecl();
8144
8145  // Add the exception declaration into this scope.
8146  if (II)
8147    PushOnScopeChains(ExDecl, S);
8148  else
8149    CurContext->addDecl(ExDecl);
8150
8151  ProcessDeclAttributes(S, ExDecl, D);
8152  return ExDecl;
8153}
8154
8155Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8156                                         Expr *AssertExpr,
8157                                         Expr *AssertMessageExpr_,
8158                                         SourceLocation RParenLoc) {
8159  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8160
8161  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8162    llvm::APSInt Value(32);
8163    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8164      Diag(StaticAssertLoc,
8165           diag::err_static_assert_expression_is_not_constant) <<
8166        AssertExpr->getSourceRange();
8167      return 0;
8168    }
8169
8170    if (Value == 0) {
8171      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8172        << AssertMessage->getString() << AssertExpr->getSourceRange();
8173    }
8174  }
8175
8176  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8177    return 0;
8178
8179  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8180                                        AssertExpr, AssertMessage, RParenLoc);
8181
8182  CurContext->addDecl(Decl);
8183  return Decl;
8184}
8185
8186/// \brief Perform semantic analysis of the given friend type declaration.
8187///
8188/// \returns A friend declaration that.
8189FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8190                                      TypeSourceInfo *TSInfo) {
8191  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8192
8193  QualType T = TSInfo->getType();
8194  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8195
8196  if (!getLangOptions().CPlusPlus0x) {
8197    // C++03 [class.friend]p2:
8198    //   An elaborated-type-specifier shall be used in a friend declaration
8199    //   for a class.*
8200    //
8201    //   * The class-key of the elaborated-type-specifier is required.
8202    if (!ActiveTemplateInstantiations.empty()) {
8203      // Do not complain about the form of friend template types during
8204      // template instantiation; we will already have complained when the
8205      // template was declared.
8206    } else if (!T->isElaboratedTypeSpecifier()) {
8207      // If we evaluated the type to a record type, suggest putting
8208      // a tag in front.
8209      if (const RecordType *RT = T->getAs<RecordType>()) {
8210        RecordDecl *RD = RT->getDecl();
8211
8212        std::string InsertionText = std::string(" ") + RD->getKindName();
8213
8214        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8215          << (unsigned) RD->getTagKind()
8216          << T
8217          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8218                                        InsertionText);
8219      } else {
8220        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8221          << T
8222          << SourceRange(FriendLoc, TypeRange.getEnd());
8223      }
8224    } else if (T->getAs<EnumType>()) {
8225      Diag(FriendLoc, diag::ext_enum_friend)
8226        << T
8227        << SourceRange(FriendLoc, TypeRange.getEnd());
8228    }
8229  }
8230
8231  // C++0x [class.friend]p3:
8232  //   If the type specifier in a friend declaration designates a (possibly
8233  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8234  //   the friend declaration is ignored.
8235
8236  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8237  // in [class.friend]p3 that we do not implement.
8238
8239  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8240}
8241
8242/// Handle a friend tag declaration where the scope specifier was
8243/// templated.
8244Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8245                                    unsigned TagSpec, SourceLocation TagLoc,
8246                                    CXXScopeSpec &SS,
8247                                    IdentifierInfo *Name, SourceLocation NameLoc,
8248                                    AttributeList *Attr,
8249                                    MultiTemplateParamsArg TempParamLists) {
8250  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8251
8252  bool isExplicitSpecialization = false;
8253  bool Invalid = false;
8254
8255  if (TemplateParameterList *TemplateParams
8256        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8257                                                  TempParamLists.get(),
8258                                                  TempParamLists.size(),
8259                                                  /*friend*/ true,
8260                                                  isExplicitSpecialization,
8261                                                  Invalid)) {
8262    if (TemplateParams->size() > 0) {
8263      // This is a declaration of a class template.
8264      if (Invalid)
8265        return 0;
8266
8267      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8268                                SS, Name, NameLoc, Attr,
8269                                TemplateParams, AS_public,
8270                                TempParamLists.size() - 1,
8271                   (TemplateParameterList**) TempParamLists.release()).take();
8272    } else {
8273      // The "template<>" header is extraneous.
8274      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8275        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8276      isExplicitSpecialization = true;
8277    }
8278  }
8279
8280  if (Invalid) return 0;
8281
8282  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8283
8284  bool isAllExplicitSpecializations = true;
8285  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8286    if (TempParamLists.get()[I]->size()) {
8287      isAllExplicitSpecializations = false;
8288      break;
8289    }
8290  }
8291
8292  // FIXME: don't ignore attributes.
8293
8294  // If it's explicit specializations all the way down, just forget
8295  // about the template header and build an appropriate non-templated
8296  // friend.  TODO: for source fidelity, remember the headers.
8297  if (isAllExplicitSpecializations) {
8298    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8299    ElaboratedTypeKeyword Keyword
8300      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8301    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8302                                   *Name, NameLoc);
8303    if (T.isNull())
8304      return 0;
8305
8306    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8307    if (isa<DependentNameType>(T)) {
8308      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8309      TL.setKeywordLoc(TagLoc);
8310      TL.setQualifierLoc(QualifierLoc);
8311      TL.setNameLoc(NameLoc);
8312    } else {
8313      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8314      TL.setKeywordLoc(TagLoc);
8315      TL.setQualifierLoc(QualifierLoc);
8316      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8317    }
8318
8319    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8320                                            TSI, FriendLoc);
8321    Friend->setAccess(AS_public);
8322    CurContext->addDecl(Friend);
8323    return Friend;
8324  }
8325
8326  // Handle the case of a templated-scope friend class.  e.g.
8327  //   template <class T> class A<T>::B;
8328  // FIXME: we don't support these right now.
8329  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8330  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8331  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8332  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8333  TL.setKeywordLoc(TagLoc);
8334  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8335  TL.setNameLoc(NameLoc);
8336
8337  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8338                                          TSI, FriendLoc);
8339  Friend->setAccess(AS_public);
8340  Friend->setUnsupportedFriend(true);
8341  CurContext->addDecl(Friend);
8342  return Friend;
8343}
8344
8345
8346/// Handle a friend type declaration.  This works in tandem with
8347/// ActOnTag.
8348///
8349/// Notes on friend class templates:
8350///
8351/// We generally treat friend class declarations as if they were
8352/// declaring a class.  So, for example, the elaborated type specifier
8353/// in a friend declaration is required to obey the restrictions of a
8354/// class-head (i.e. no typedefs in the scope chain), template
8355/// parameters are required to match up with simple template-ids, &c.
8356/// However, unlike when declaring a template specialization, it's
8357/// okay to refer to a template specialization without an empty
8358/// template parameter declaration, e.g.
8359///   friend class A<T>::B<unsigned>;
8360/// We permit this as a special case; if there are any template
8361/// parameters present at all, require proper matching, i.e.
8362///   template <> template <class T> friend class A<int>::B;
8363Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8364                                MultiTemplateParamsArg TempParams) {
8365  SourceLocation Loc = DS.getSourceRange().getBegin();
8366
8367  assert(DS.isFriendSpecified());
8368  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8369
8370  // Try to convert the decl specifier to a type.  This works for
8371  // friend templates because ActOnTag never produces a ClassTemplateDecl
8372  // for a TUK_Friend.
8373  Declarator TheDeclarator(DS, Declarator::MemberContext);
8374  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8375  QualType T = TSI->getType();
8376  if (TheDeclarator.isInvalidType())
8377    return 0;
8378
8379  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8380    return 0;
8381
8382  // This is definitely an error in C++98.  It's probably meant to
8383  // be forbidden in C++0x, too, but the specification is just
8384  // poorly written.
8385  //
8386  // The problem is with declarations like the following:
8387  //   template <T> friend A<T>::foo;
8388  // where deciding whether a class C is a friend or not now hinges
8389  // on whether there exists an instantiation of A that causes
8390  // 'foo' to equal C.  There are restrictions on class-heads
8391  // (which we declare (by fiat) elaborated friend declarations to
8392  // be) that makes this tractable.
8393  //
8394  // FIXME: handle "template <> friend class A<T>;", which
8395  // is possibly well-formed?  Who even knows?
8396  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8397    Diag(Loc, diag::err_tagless_friend_type_template)
8398      << DS.getSourceRange();
8399    return 0;
8400  }
8401
8402  // C++98 [class.friend]p1: A friend of a class is a function
8403  //   or class that is not a member of the class . . .
8404  // This is fixed in DR77, which just barely didn't make the C++03
8405  // deadline.  It's also a very silly restriction that seriously
8406  // affects inner classes and which nobody else seems to implement;
8407  // thus we never diagnose it, not even in -pedantic.
8408  //
8409  // But note that we could warn about it: it's always useless to
8410  // friend one of your own members (it's not, however, worthless to
8411  // friend a member of an arbitrary specialization of your template).
8412
8413  Decl *D;
8414  if (unsigned NumTempParamLists = TempParams.size())
8415    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8416                                   NumTempParamLists,
8417                                   TempParams.release(),
8418                                   TSI,
8419                                   DS.getFriendSpecLoc());
8420  else
8421    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8422
8423  if (!D)
8424    return 0;
8425
8426  D->setAccess(AS_public);
8427  CurContext->addDecl(D);
8428
8429  return D;
8430}
8431
8432Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8433                                    MultiTemplateParamsArg TemplateParams) {
8434  const DeclSpec &DS = D.getDeclSpec();
8435
8436  assert(DS.isFriendSpecified());
8437  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8438
8439  SourceLocation Loc = D.getIdentifierLoc();
8440  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8441  QualType T = TInfo->getType();
8442
8443  // C++ [class.friend]p1
8444  //   A friend of a class is a function or class....
8445  // Note that this sees through typedefs, which is intended.
8446  // It *doesn't* see through dependent types, which is correct
8447  // according to [temp.arg.type]p3:
8448  //   If a declaration acquires a function type through a
8449  //   type dependent on a template-parameter and this causes
8450  //   a declaration that does not use the syntactic form of a
8451  //   function declarator to have a function type, the program
8452  //   is ill-formed.
8453  if (!T->isFunctionType()) {
8454    Diag(Loc, diag::err_unexpected_friend);
8455
8456    // It might be worthwhile to try to recover by creating an
8457    // appropriate declaration.
8458    return 0;
8459  }
8460
8461  // C++ [namespace.memdef]p3
8462  //  - If a friend declaration in a non-local class first declares a
8463  //    class or function, the friend class or function is a member
8464  //    of the innermost enclosing namespace.
8465  //  - The name of the friend is not found by simple name lookup
8466  //    until a matching declaration is provided in that namespace
8467  //    scope (either before or after the class declaration granting
8468  //    friendship).
8469  //  - If a friend function is called, its name may be found by the
8470  //    name lookup that considers functions from namespaces and
8471  //    classes associated with the types of the function arguments.
8472  //  - When looking for a prior declaration of a class or a function
8473  //    declared as a friend, scopes outside the innermost enclosing
8474  //    namespace scope are not considered.
8475
8476  CXXScopeSpec &SS = D.getCXXScopeSpec();
8477  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8478  DeclarationName Name = NameInfo.getName();
8479  assert(Name);
8480
8481  // Check for unexpanded parameter packs.
8482  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8483      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8484      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8485    return 0;
8486
8487  // The context we found the declaration in, or in which we should
8488  // create the declaration.
8489  DeclContext *DC;
8490  Scope *DCScope = S;
8491  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8492                        ForRedeclaration);
8493
8494  // FIXME: there are different rules in local classes
8495
8496  // There are four cases here.
8497  //   - There's no scope specifier, in which case we just go to the
8498  //     appropriate scope and look for a function or function template
8499  //     there as appropriate.
8500  // Recover from invalid scope qualifiers as if they just weren't there.
8501  if (SS.isInvalid() || !SS.isSet()) {
8502    // C++0x [namespace.memdef]p3:
8503    //   If the name in a friend declaration is neither qualified nor
8504    //   a template-id and the declaration is a function or an
8505    //   elaborated-type-specifier, the lookup to determine whether
8506    //   the entity has been previously declared shall not consider
8507    //   any scopes outside the innermost enclosing namespace.
8508    // C++0x [class.friend]p11:
8509    //   If a friend declaration appears in a local class and the name
8510    //   specified is an unqualified name, a prior declaration is
8511    //   looked up without considering scopes that are outside the
8512    //   innermost enclosing non-class scope. For a friend function
8513    //   declaration, if there is no prior declaration, the program is
8514    //   ill-formed.
8515    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8516    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8517
8518    // Find the appropriate context according to the above.
8519    DC = CurContext;
8520    while (true) {
8521      // Skip class contexts.  If someone can cite chapter and verse
8522      // for this behavior, that would be nice --- it's what GCC and
8523      // EDG do, and it seems like a reasonable intent, but the spec
8524      // really only says that checks for unqualified existing
8525      // declarations should stop at the nearest enclosing namespace,
8526      // not that they should only consider the nearest enclosing
8527      // namespace.
8528      while (DC->isRecord())
8529        DC = DC->getParent();
8530
8531      LookupQualifiedName(Previous, DC);
8532
8533      // TODO: decide what we think about using declarations.
8534      if (isLocal || !Previous.empty())
8535        break;
8536
8537      if (isTemplateId) {
8538        if (isa<TranslationUnitDecl>(DC)) break;
8539      } else {
8540        if (DC->isFileContext()) break;
8541      }
8542      DC = DC->getParent();
8543    }
8544
8545    // C++ [class.friend]p1: A friend of a class is a function or
8546    //   class that is not a member of the class . . .
8547    // C++0x changes this for both friend types and functions.
8548    // Most C++ 98 compilers do seem to give an error here, so
8549    // we do, too.
8550    if (!Previous.empty() && DC->Equals(CurContext)
8551        && !getLangOptions().CPlusPlus0x)
8552      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8553
8554    DCScope = getScopeForDeclContext(S, DC);
8555
8556  //   - There's a non-dependent scope specifier, in which case we
8557  //     compute it and do a previous lookup there for a function
8558  //     or function template.
8559  } else if (!SS.getScopeRep()->isDependent()) {
8560    DC = computeDeclContext(SS);
8561    if (!DC) return 0;
8562
8563    if (RequireCompleteDeclContext(SS, DC)) return 0;
8564
8565    LookupQualifiedName(Previous, DC);
8566
8567    // Ignore things found implicitly in the wrong scope.
8568    // TODO: better diagnostics for this case.  Suggesting the right
8569    // qualified scope would be nice...
8570    LookupResult::Filter F = Previous.makeFilter();
8571    while (F.hasNext()) {
8572      NamedDecl *D = F.next();
8573      if (!DC->InEnclosingNamespaceSetOf(
8574              D->getDeclContext()->getRedeclContext()))
8575        F.erase();
8576    }
8577    F.done();
8578
8579    if (Previous.empty()) {
8580      D.setInvalidType();
8581      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8582      return 0;
8583    }
8584
8585    // C++ [class.friend]p1: A friend of a class is a function or
8586    //   class that is not a member of the class . . .
8587    if (DC->Equals(CurContext))
8588      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8589
8590  //   - There's a scope specifier that does not match any template
8591  //     parameter lists, in which case we use some arbitrary context,
8592  //     create a method or method template, and wait for instantiation.
8593  //   - There's a scope specifier that does match some template
8594  //     parameter lists, which we don't handle right now.
8595  } else {
8596    DC = CurContext;
8597    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8598  }
8599
8600  if (!DC->isRecord()) {
8601    // This implies that it has to be an operator or function.
8602    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8603        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8604        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8605      Diag(Loc, diag::err_introducing_special_friend) <<
8606        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8607         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8608      return 0;
8609    }
8610  }
8611
8612  bool Redeclaration = false;
8613  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8614                                          move(TemplateParams),
8615                                          IsDefinition,
8616                                          Redeclaration);
8617  if (!ND) return 0;
8618
8619  assert(ND->getDeclContext() == DC);
8620  assert(ND->getLexicalDeclContext() == CurContext);
8621
8622  // Add the function declaration to the appropriate lookup tables,
8623  // adjusting the redeclarations list as necessary.  We don't
8624  // want to do this yet if the friending class is dependent.
8625  //
8626  // Also update the scope-based lookup if the target context's
8627  // lookup context is in lexical scope.
8628  if (!CurContext->isDependentContext()) {
8629    DC = DC->getRedeclContext();
8630    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8631    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8632      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8633  }
8634
8635  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8636                                       D.getIdentifierLoc(), ND,
8637                                       DS.getFriendSpecLoc());
8638  FrD->setAccess(AS_public);
8639  CurContext->addDecl(FrD);
8640
8641  if (ND->isInvalidDecl())
8642    FrD->setInvalidDecl();
8643  else {
8644    FunctionDecl *FD;
8645    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8646      FD = FTD->getTemplatedDecl();
8647    else
8648      FD = cast<FunctionDecl>(ND);
8649
8650    // Mark templated-scope function declarations as unsupported.
8651    if (FD->getNumTemplateParameterLists())
8652      FrD->setUnsupportedFriend(true);
8653  }
8654
8655  return ND;
8656}
8657
8658void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8659  AdjustDeclIfTemplate(Dcl);
8660
8661  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8662  if (!Fn) {
8663    Diag(DelLoc, diag::err_deleted_non_function);
8664    return;
8665  }
8666  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8667    Diag(DelLoc, diag::err_deleted_decl_not_first);
8668    Diag(Prev->getLocation(), diag::note_previous_declaration);
8669    // If the declaration wasn't the first, we delete the function anyway for
8670    // recovery.
8671  }
8672  Fn->setDeletedAsWritten();
8673}
8674
8675void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8676  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8677
8678  if (MD) {
8679    if (MD->getParent()->isDependentType()) {
8680      MD->setDefaulted();
8681      MD->setExplicitlyDefaulted();
8682      return;
8683    }
8684
8685    CXXSpecialMember Member = getSpecialMember(MD);
8686    if (Member == CXXInvalid) {
8687      Diag(DefaultLoc, diag::err_default_special_members);
8688      return;
8689    }
8690
8691    MD->setDefaulted();
8692    MD->setExplicitlyDefaulted();
8693
8694    // If this definition appears within the record, do the checking when
8695    // the record is complete.
8696    const FunctionDecl *Primary = MD;
8697    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8698      // Find the uninstantiated declaration that actually had the '= default'
8699      // on it.
8700      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8701
8702    if (Primary == Primary->getCanonicalDecl())
8703      return;
8704
8705    switch (Member) {
8706    case CXXDefaultConstructor: {
8707      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8708      CheckExplicitlyDefaultedDefaultConstructor(CD);
8709      if (!CD->isInvalidDecl())
8710        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8711      break;
8712    }
8713
8714    case CXXCopyConstructor: {
8715      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8716      CheckExplicitlyDefaultedCopyConstructor(CD);
8717      if (!CD->isInvalidDecl())
8718        DefineImplicitCopyConstructor(DefaultLoc, CD);
8719      break;
8720    }
8721
8722    case CXXCopyAssignment: {
8723      CheckExplicitlyDefaultedCopyAssignment(MD);
8724      if (!MD->isInvalidDecl())
8725        DefineImplicitCopyAssignment(DefaultLoc, MD);
8726      break;
8727    }
8728
8729    case CXXDestructor: {
8730      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8731      CheckExplicitlyDefaultedDestructor(DD);
8732      if (!DD->isInvalidDecl())
8733        DefineImplicitDestructor(DefaultLoc, DD);
8734      break;
8735    }
8736
8737    case CXXMoveConstructor:
8738    case CXXMoveAssignment:
8739      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8740      break;
8741
8742    default:
8743      // FIXME: Do the rest once we have move functions
8744      break;
8745    }
8746  } else {
8747    Diag(DefaultLoc, diag::err_default_special_members);
8748  }
8749}
8750
8751static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8752  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8753    Stmt *SubStmt = *CI;
8754    if (!SubStmt)
8755      continue;
8756    if (isa<ReturnStmt>(SubStmt))
8757      Self.Diag(SubStmt->getSourceRange().getBegin(),
8758           diag::err_return_in_constructor_handler);
8759    if (!isa<Expr>(SubStmt))
8760      SearchForReturnInStmt(Self, SubStmt);
8761  }
8762}
8763
8764void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8765  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8766    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8767    SearchForReturnInStmt(*this, Handler);
8768  }
8769}
8770
8771bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8772                                             const CXXMethodDecl *Old) {
8773  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8774  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8775
8776  if (Context.hasSameType(NewTy, OldTy) ||
8777      NewTy->isDependentType() || OldTy->isDependentType())
8778    return false;
8779
8780  // Check if the return types are covariant
8781  QualType NewClassTy, OldClassTy;
8782
8783  /// Both types must be pointers or references to classes.
8784  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8785    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8786      NewClassTy = NewPT->getPointeeType();
8787      OldClassTy = OldPT->getPointeeType();
8788    }
8789  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8790    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8791      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8792        NewClassTy = NewRT->getPointeeType();
8793        OldClassTy = OldRT->getPointeeType();
8794      }
8795    }
8796  }
8797
8798  // The return types aren't either both pointers or references to a class type.
8799  if (NewClassTy.isNull()) {
8800    Diag(New->getLocation(),
8801         diag::err_different_return_type_for_overriding_virtual_function)
8802      << New->getDeclName() << NewTy << OldTy;
8803    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8804
8805    return true;
8806  }
8807
8808  // C++ [class.virtual]p6:
8809  //   If the return type of D::f differs from the return type of B::f, the
8810  //   class type in the return type of D::f shall be complete at the point of
8811  //   declaration of D::f or shall be the class type D.
8812  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8813    if (!RT->isBeingDefined() &&
8814        RequireCompleteType(New->getLocation(), NewClassTy,
8815                            PDiag(diag::err_covariant_return_incomplete)
8816                              << New->getDeclName()))
8817    return true;
8818  }
8819
8820  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8821    // Check if the new class derives from the old class.
8822    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8823      Diag(New->getLocation(),
8824           diag::err_covariant_return_not_derived)
8825      << New->getDeclName() << NewTy << OldTy;
8826      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8827      return true;
8828    }
8829
8830    // Check if we the conversion from derived to base is valid.
8831    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8832                    diag::err_covariant_return_inaccessible_base,
8833                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8834                    // FIXME: Should this point to the return type?
8835                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8836      // FIXME: this note won't trigger for delayed access control
8837      // diagnostics, and it's impossible to get an undelayed error
8838      // here from access control during the original parse because
8839      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8840      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8841      return true;
8842    }
8843  }
8844
8845  // The qualifiers of the return types must be the same.
8846  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8847    Diag(New->getLocation(),
8848         diag::err_covariant_return_type_different_qualifications)
8849    << New->getDeclName() << NewTy << OldTy;
8850    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8851    return true;
8852  };
8853
8854
8855  // The new class type must have the same or less qualifiers as the old type.
8856  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8857    Diag(New->getLocation(),
8858         diag::err_covariant_return_type_class_type_more_qualified)
8859    << New->getDeclName() << NewTy << OldTy;
8860    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8861    return true;
8862  };
8863
8864  return false;
8865}
8866
8867/// \brief Mark the given method pure.
8868///
8869/// \param Method the method to be marked pure.
8870///
8871/// \param InitRange the source range that covers the "0" initializer.
8872bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8873  SourceLocation EndLoc = InitRange.getEnd();
8874  if (EndLoc.isValid())
8875    Method->setRangeEnd(EndLoc);
8876
8877  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8878    Method->setPure();
8879    return false;
8880  }
8881
8882  if (!Method->isInvalidDecl())
8883    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8884      << Method->getDeclName() << InitRange;
8885  return true;
8886}
8887
8888/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8889/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8890/// is a fresh scope pushed for just this purpose.
8891///
8892/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8893/// static data member of class X, names should be looked up in the scope of
8894/// class X.
8895void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8896  // If there is no declaration, there was an error parsing it.
8897  if (D == 0 || D->isInvalidDecl()) return;
8898
8899  // We should only get called for declarations with scope specifiers, like:
8900  //   int foo::bar;
8901  assert(D->isOutOfLine());
8902  EnterDeclaratorContext(S, D->getDeclContext());
8903}
8904
8905/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8906/// initializer for the out-of-line declaration 'D'.
8907void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8908  // If there is no declaration, there was an error parsing it.
8909  if (D == 0 || D->isInvalidDecl()) return;
8910
8911  assert(D->isOutOfLine());
8912  ExitDeclaratorContext(S);
8913}
8914
8915/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8916/// C++ if/switch/while/for statement.
8917/// e.g: "if (int x = f()) {...}"
8918DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8919  // C++ 6.4p2:
8920  // The declarator shall not specify a function or an array.
8921  // The type-specifier-seq shall not contain typedef and shall not declare a
8922  // new class or enumeration.
8923  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8924         "Parser allowed 'typedef' as storage class of condition decl.");
8925
8926  TagDecl *OwnedTag = 0;
8927  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
8928  QualType Ty = TInfo->getType();
8929
8930  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
8931                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
8932                              // would be created and CXXConditionDeclExpr wants a VarDecl.
8933    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
8934      << D.getSourceRange();
8935    return DeclResult();
8936  } else if (OwnedTag && OwnedTag->isDefinition()) {
8937    // The type-specifier-seq shall not declare a new class or enumeration.
8938    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
8939  }
8940
8941  Decl *Dcl = ActOnDeclarator(S, D);
8942  if (!Dcl)
8943    return DeclResult();
8944
8945  return Dcl;
8946}
8947
8948void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8949                          bool DefinitionRequired) {
8950  // Ignore any vtable uses in unevaluated operands or for classes that do
8951  // not have a vtable.
8952  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8953      CurContext->isDependentContext() ||
8954      ExprEvalContexts.back().Context == Unevaluated)
8955    return;
8956
8957  // Try to insert this class into the map.
8958  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8959  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8960    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8961  if (!Pos.second) {
8962    // If we already had an entry, check to see if we are promoting this vtable
8963    // to required a definition. If so, we need to reappend to the VTableUses
8964    // list, since we may have already processed the first entry.
8965    if (DefinitionRequired && !Pos.first->second) {
8966      Pos.first->second = true;
8967    } else {
8968      // Otherwise, we can early exit.
8969      return;
8970    }
8971  }
8972
8973  // Local classes need to have their virtual members marked
8974  // immediately. For all other classes, we mark their virtual members
8975  // at the end of the translation unit.
8976  if (Class->isLocalClass())
8977    MarkVirtualMembersReferenced(Loc, Class);
8978  else
8979    VTableUses.push_back(std::make_pair(Class, Loc));
8980}
8981
8982bool Sema::DefineUsedVTables() {
8983  if (VTableUses.empty())
8984    return false;
8985
8986  // Note: The VTableUses vector could grow as a result of marking
8987  // the members of a class as "used", so we check the size each
8988  // time through the loop and prefer indices (with are stable) to
8989  // iterators (which are not).
8990  bool DefinedAnything = false;
8991  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8992    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8993    if (!Class)
8994      continue;
8995
8996    SourceLocation Loc = VTableUses[I].second;
8997
8998    // If this class has a key function, but that key function is
8999    // defined in another translation unit, we don't need to emit the
9000    // vtable even though we're using it.
9001    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
9002    if (KeyFunction && !KeyFunction->hasBody()) {
9003      switch (KeyFunction->getTemplateSpecializationKind()) {
9004      case TSK_Undeclared:
9005      case TSK_ExplicitSpecialization:
9006      case TSK_ExplicitInstantiationDeclaration:
9007        // The key function is in another translation unit.
9008        continue;
9009
9010      case TSK_ExplicitInstantiationDefinition:
9011      case TSK_ImplicitInstantiation:
9012        // We will be instantiating the key function.
9013        break;
9014      }
9015    } else if (!KeyFunction) {
9016      // If we have a class with no key function that is the subject
9017      // of an explicit instantiation declaration, suppress the
9018      // vtable; it will live with the explicit instantiation
9019      // definition.
9020      bool IsExplicitInstantiationDeclaration
9021        = Class->getTemplateSpecializationKind()
9022                                      == TSK_ExplicitInstantiationDeclaration;
9023      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9024                                 REnd = Class->redecls_end();
9025           R != REnd; ++R) {
9026        TemplateSpecializationKind TSK
9027          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9028        if (TSK == TSK_ExplicitInstantiationDeclaration)
9029          IsExplicitInstantiationDeclaration = true;
9030        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9031          IsExplicitInstantiationDeclaration = false;
9032          break;
9033        }
9034      }
9035
9036      if (IsExplicitInstantiationDeclaration)
9037        continue;
9038    }
9039
9040    // Mark all of the virtual members of this class as referenced, so
9041    // that we can build a vtable. Then, tell the AST consumer that a
9042    // vtable for this class is required.
9043    DefinedAnything = true;
9044    MarkVirtualMembersReferenced(Loc, Class);
9045    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9046    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9047
9048    // Optionally warn if we're emitting a weak vtable.
9049    if (Class->getLinkage() == ExternalLinkage &&
9050        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9051      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9052        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9053    }
9054  }
9055  VTableUses.clear();
9056
9057  return DefinedAnything;
9058}
9059
9060void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9061                                        const CXXRecordDecl *RD) {
9062  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9063       e = RD->method_end(); i != e; ++i) {
9064    CXXMethodDecl *MD = *i;
9065
9066    // C++ [basic.def.odr]p2:
9067    //   [...] A virtual member function is used if it is not pure. [...]
9068    if (MD->isVirtual() && !MD->isPure())
9069      MarkDeclarationReferenced(Loc, MD);
9070  }
9071
9072  // Only classes that have virtual bases need a VTT.
9073  if (RD->getNumVBases() == 0)
9074    return;
9075
9076  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9077           e = RD->bases_end(); i != e; ++i) {
9078    const CXXRecordDecl *Base =
9079        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9080    if (Base->getNumVBases() == 0)
9081      continue;
9082    MarkVirtualMembersReferenced(Loc, Base);
9083  }
9084}
9085
9086/// SetIvarInitializers - This routine builds initialization ASTs for the
9087/// Objective-C implementation whose ivars need be initialized.
9088void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9089  if (!getLangOptions().CPlusPlus)
9090    return;
9091  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9092    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9093    CollectIvarsToConstructOrDestruct(OID, ivars);
9094    if (ivars.empty())
9095      return;
9096    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9097    for (unsigned i = 0; i < ivars.size(); i++) {
9098      FieldDecl *Field = ivars[i];
9099      if (Field->isInvalidDecl())
9100        continue;
9101
9102      CXXCtorInitializer *Member;
9103      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9104      InitializationKind InitKind =
9105        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9106
9107      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9108      ExprResult MemberInit =
9109        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9110      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9111      // Note, MemberInit could actually come back empty if no initialization
9112      // is required (e.g., because it would call a trivial default constructor)
9113      if (!MemberInit.get() || MemberInit.isInvalid())
9114        continue;
9115
9116      Member =
9117        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9118                                         SourceLocation(),
9119                                         MemberInit.takeAs<Expr>(),
9120                                         SourceLocation());
9121      AllToInit.push_back(Member);
9122
9123      // Be sure that the destructor is accessible and is marked as referenced.
9124      if (const RecordType *RecordTy
9125                  = Context.getBaseElementType(Field->getType())
9126                                                        ->getAs<RecordType>()) {
9127                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9128        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9129          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9130          CheckDestructorAccess(Field->getLocation(), Destructor,
9131                            PDiag(diag::err_access_dtor_ivar)
9132                              << Context.getBaseElementType(Field->getType()));
9133        }
9134      }
9135    }
9136    ObjCImplementation->setIvarInitializers(Context,
9137                                            AllToInit.data(), AllToInit.size());
9138  }
9139}
9140
9141static
9142void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9143                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9144                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9145                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9146                           Sema &S) {
9147  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9148                                                   CE = Current.end();
9149  if (Ctor->isInvalidDecl())
9150    return;
9151
9152  const FunctionDecl *FNTarget = 0;
9153  CXXConstructorDecl *Target;
9154
9155  // We ignore the result here since if we don't have a body, Target will be
9156  // null below.
9157  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9158  Target
9159= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9160
9161  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9162                     // Avoid dereferencing a null pointer here.
9163                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9164
9165  if (!Current.insert(Canonical))
9166    return;
9167
9168  // We know that beyond here, we aren't chaining into a cycle.
9169  if (!Target || !Target->isDelegatingConstructor() ||
9170      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9171    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9172      Valid.insert(*CI);
9173    Current.clear();
9174  // We've hit a cycle.
9175  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9176             Current.count(TCanonical)) {
9177    // If we haven't diagnosed this cycle yet, do so now.
9178    if (!Invalid.count(TCanonical)) {
9179      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9180             diag::warn_delegating_ctor_cycle)
9181        << Ctor;
9182
9183      // Don't add a note for a function delegating directo to itself.
9184      if (TCanonical != Canonical)
9185        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9186
9187      CXXConstructorDecl *C = Target;
9188      while (C->getCanonicalDecl() != Canonical) {
9189        (void)C->getTargetConstructor()->hasBody(FNTarget);
9190        assert(FNTarget && "Ctor cycle through bodiless function");
9191
9192        C
9193       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9194        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9195      }
9196    }
9197
9198    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9199      Invalid.insert(*CI);
9200    Current.clear();
9201  } else {
9202    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9203  }
9204}
9205
9206
9207void Sema::CheckDelegatingCtorCycles() {
9208  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9209
9210  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9211                                                   CE = Current.end();
9212
9213  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9214         I = DelegatingCtorDecls.begin(),
9215         E = DelegatingCtorDecls.end();
9216       I != E; ++I) {
9217   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9218  }
9219
9220  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9221    (*CI)->setInvalidDecl();
9222}
9223