SemaDeclCXX.cpp revision 0ffd9ffb633ca4886c7db4dd12dc36bdad3d797c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  UnparsedDefaultArgLocs.erase(Param);
112
113  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
114  QualType ParamType = Param->getType();
115
116  // Default arguments are only permitted in C++
117  if (!getLangOptions().CPlusPlus) {
118    Diag(EqualLoc, diag::err_param_default_argument)
119      << DefaultArg->getSourceRange();
120    Param->setInvalidDecl();
121    return;
122  }
123
124  // C++ [dcl.fct.default]p5
125  //   A default argument expression is implicitly converted (clause
126  //   4) to the parameter type. The default argument expression has
127  //   the same semantic constraints as the initializer expression in
128  //   a declaration of a variable of the parameter type, using the
129  //   copy-initialization semantics (8.5).
130  Expr *DefaultArgPtr = DefaultArg.get();
131  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
132                                                 EqualLoc,
133                                                 Param->getDeclName(),
134                                                 /*DirectInit=*/false);
135  if (DefaultArgPtr != DefaultArg.get()) {
136    DefaultArg.take();
137    DefaultArg.reset(DefaultArgPtr);
138  }
139  if (DefaultInitFailed) {
140    return;
141  }
142
143  // Check that the default argument is well-formed
144  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
145  if (DefaultArgChecker.Visit(DefaultArg.get())) {
146    Param->setInvalidDecl();
147    return;
148  }
149
150  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
151                                                    /*DestroyTemps=*/false);
152
153  // Okay: add the default argument to the parameter
154  Param->setDefaultArg(DefaultArgPtr);
155}
156
157/// ActOnParamUnparsedDefaultArgument - We've seen a default
158/// argument for a function parameter, but we can't parse it yet
159/// because we're inside a class definition. Note that this default
160/// argument will be parsed later.
161void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
162                                             SourceLocation EqualLoc,
163                                             SourceLocation ArgLoc) {
164  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
165  if (Param)
166    Param->setUnparsedDefaultArg();
167
168  UnparsedDefaultArgLocs[Param] = ArgLoc;
169}
170
171/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
172/// the default argument for the parameter param failed.
173void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
174  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
175
176  Param->setInvalidDecl();
177
178  UnparsedDefaultArgLocs.erase(Param);
179}
180
181/// CheckExtraCXXDefaultArguments - Check for any extra default
182/// arguments in the declarator, which is not a function declaration
183/// or definition and therefore is not permitted to have default
184/// arguments. This routine should be invoked for every declarator
185/// that is not a function declaration or definition.
186void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
187  // C++ [dcl.fct.default]p3
188  //   A default argument expression shall be specified only in the
189  //   parameter-declaration-clause of a function declaration or in a
190  //   template-parameter (14.1). It shall not be specified for a
191  //   parameter pack. If it is specified in a
192  //   parameter-declaration-clause, it shall not occur within a
193  //   declarator or abstract-declarator of a parameter-declaration.
194  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
195    DeclaratorChunk &chunk = D.getTypeObject(i);
196    if (chunk.Kind == DeclaratorChunk::Function) {
197      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
198        ParmVarDecl *Param =
199          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
200        if (Param->hasUnparsedDefaultArg()) {
201          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
202          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
203            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
204          delete Toks;
205          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
206        } else if (Param->getDefaultArg()) {
207          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
208            << Param->getDefaultArg()->getSourceRange();
209          Param->setDefaultArg(0);
210        }
211      }
212    }
213  }
214}
215
216// MergeCXXFunctionDecl - Merge two declarations of the same C++
217// function, once we already know that they have the same
218// type. Subroutine of MergeFunctionDecl. Returns true if there was an
219// error, false otherwise.
220bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
221  bool Invalid = false;
222
223  // C++ [dcl.fct.default]p4:
224  //
225  //   For non-template functions, default arguments can be added in
226  //   later declarations of a function in the same
227  //   scope. Declarations in different scopes have completely
228  //   distinct sets of default arguments. That is, declarations in
229  //   inner scopes do not acquire default arguments from
230  //   declarations in outer scopes, and vice versa. In a given
231  //   function declaration, all parameters subsequent to a
232  //   parameter with a default argument shall have default
233  //   arguments supplied in this or previous declarations. A
234  //   default argument shall not be redefined by a later
235  //   declaration (not even to the same value).
236  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
237    ParmVarDecl *OldParam = Old->getParamDecl(p);
238    ParmVarDecl *NewParam = New->getParamDecl(p);
239
240    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
241      Diag(NewParam->getLocation(),
242           diag::err_param_default_argument_redefinition)
243        << NewParam->getDefaultArg()->getSourceRange();
244      Diag(OldParam->getLocation(), diag::note_previous_definition);
245      Invalid = true;
246    } else if (OldParam->getDefaultArg()) {
247      // Merge the old default argument into the new parameter
248      NewParam->setDefaultArg(OldParam->getDefaultArg());
249    }
250  }
251
252  return Invalid;
253}
254
255/// CheckCXXDefaultArguments - Verify that the default arguments for a
256/// function declaration are well-formed according to C++
257/// [dcl.fct.default].
258void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
259  unsigned NumParams = FD->getNumParams();
260  unsigned p;
261
262  // Find first parameter with a default argument
263  for (p = 0; p < NumParams; ++p) {
264    ParmVarDecl *Param = FD->getParamDecl(p);
265    if (Param->getDefaultArg())
266      break;
267  }
268
269  // C++ [dcl.fct.default]p4:
270  //   In a given function declaration, all parameters
271  //   subsequent to a parameter with a default argument shall
272  //   have default arguments supplied in this or previous
273  //   declarations. A default argument shall not be redefined
274  //   by a later declaration (not even to the same value).
275  unsigned LastMissingDefaultArg = 0;
276  for(; p < NumParams; ++p) {
277    ParmVarDecl *Param = FD->getParamDecl(p);
278    if (!Param->getDefaultArg()) {
279      if (Param->isInvalidDecl())
280        /* We already complained about this parameter. */;
281      else if (Param->getIdentifier())
282        Diag(Param->getLocation(),
283             diag::err_param_default_argument_missing_name)
284          << Param->getIdentifier();
285      else
286        Diag(Param->getLocation(),
287             diag::err_param_default_argument_missing);
288
289      LastMissingDefaultArg = p;
290    }
291  }
292
293  if (LastMissingDefaultArg > 0) {
294    // Some default arguments were missing. Clear out all of the
295    // default arguments up to (and including) the last missing
296    // default argument, so that we leave the function parameters
297    // in a semantically valid state.
298    for (p = 0; p <= LastMissingDefaultArg; ++p) {
299      ParmVarDecl *Param = FD->getParamDecl(p);
300      if (Param->hasDefaultArg()) {
301        if (!Param->hasUnparsedDefaultArg())
302          Param->getDefaultArg()->Destroy(Context);
303        Param->setDefaultArg(0);
304      }
305    }
306  }
307}
308
309/// isCurrentClassName - Determine whether the identifier II is the
310/// name of the class type currently being defined. In the case of
311/// nested classes, this will only return true if II is the name of
312/// the innermost class.
313bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
314                              const CXXScopeSpec *SS) {
315  CXXRecordDecl *CurDecl;
316  if (SS && SS->isSet() && !SS->isInvalid()) {
317    DeclContext *DC = computeDeclContext(*SS);
318    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
319  } else
320    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
321
322  if (CurDecl)
323    return &II == CurDecl->getIdentifier();
324  else
325    return false;
326}
327
328/// \brief Check the validity of a C++ base class specifier.
329///
330/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
331/// and returns NULL otherwise.
332CXXBaseSpecifier *
333Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
334                         SourceRange SpecifierRange,
335                         bool Virtual, AccessSpecifier Access,
336                         QualType BaseType,
337                         SourceLocation BaseLoc) {
338  // C++ [class.union]p1:
339  //   A union shall not have base classes.
340  if (Class->isUnion()) {
341    Diag(Class->getLocation(), diag::err_base_clause_on_union)
342      << SpecifierRange;
343    return 0;
344  }
345
346  if (BaseType->isDependentType())
347    return new CXXBaseSpecifier(SpecifierRange, Virtual,
348                                Class->getTagKind() == RecordDecl::TK_class,
349                                Access, BaseType);
350
351  // Base specifiers must be record types.
352  if (!BaseType->isRecordType()) {
353    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
354    return 0;
355  }
356
357  // C++ [class.union]p1:
358  //   A union shall not be used as a base class.
359  if (BaseType->isUnionType()) {
360    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
361    return 0;
362  }
363
364  // C++ [class.derived]p2:
365  //   The class-name in a base-specifier shall not be an incompletely
366  //   defined class.
367  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
368                          SpecifierRange))
369    return 0;
370
371  // If the base class is polymorphic, the new one is, too.
372  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
373  assert(BaseDecl && "Record type has no declaration");
374  BaseDecl = BaseDecl->getDefinition(Context);
375  assert(BaseDecl && "Base type is not incomplete, but has no definition");
376  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
377    Class->setPolymorphic(true);
378
379  // C++ [dcl.init.aggr]p1:
380  //   An aggregate is [...] a class with [...] no base classes [...].
381  Class->setAggregate(false);
382  Class->setPOD(false);
383
384  if (Virtual) {
385    // C++ [class.ctor]p5:
386    //   A constructor is trivial if its class has no virtual base classes.
387    Class->setHasTrivialConstructor(false);
388  } else {
389    // C++ [class.ctor]p5:
390    //   A constructor is trivial if all the direct base classes of its
391    //   class have trivial constructors.
392    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
393                                    hasTrivialConstructor());
394  }
395
396  // C++ [class.ctor]p3:
397  //   A destructor is trivial if all the direct base classes of its class
398  //   have trivial destructors.
399  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
400                                 hasTrivialDestructor());
401
402  // Create the base specifier.
403  // FIXME: Allocate via ASTContext?
404  return new CXXBaseSpecifier(SpecifierRange, Virtual,
405                              Class->getTagKind() == RecordDecl::TK_class,
406                              Access, BaseType);
407}
408
409/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
410/// one entry in the base class list of a class specifier, for
411/// example:
412///    class foo : public bar, virtual private baz {
413/// 'public bar' and 'virtual private baz' are each base-specifiers.
414Sema::BaseResult
415Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
416                         bool Virtual, AccessSpecifier Access,
417                         TypeTy *basetype, SourceLocation BaseLoc) {
418  AdjustDeclIfTemplate(classdecl);
419  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
420  QualType BaseType = QualType::getFromOpaquePtr(basetype);
421  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
422                                                      Virtual, Access,
423                                                      BaseType, BaseLoc))
424    return BaseSpec;
425
426  return true;
427}
428
429/// \brief Performs the actual work of attaching the given base class
430/// specifiers to a C++ class.
431bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
432                                unsigned NumBases) {
433 if (NumBases == 0)
434    return false;
435
436  // Used to keep track of which base types we have already seen, so
437  // that we can properly diagnose redundant direct base types. Note
438  // that the key is always the unqualified canonical type of the base
439  // class.
440  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
441
442  // Copy non-redundant base specifiers into permanent storage.
443  unsigned NumGoodBases = 0;
444  bool Invalid = false;
445  for (unsigned idx = 0; idx < NumBases; ++idx) {
446    QualType NewBaseType
447      = Context.getCanonicalType(Bases[idx]->getType());
448    NewBaseType = NewBaseType.getUnqualifiedType();
449
450    if (KnownBaseTypes[NewBaseType]) {
451      // C++ [class.mi]p3:
452      //   A class shall not be specified as a direct base class of a
453      //   derived class more than once.
454      Diag(Bases[idx]->getSourceRange().getBegin(),
455           diag::err_duplicate_base_class)
456        << KnownBaseTypes[NewBaseType]->getType()
457        << Bases[idx]->getSourceRange();
458
459      // Delete the duplicate base class specifier; we're going to
460      // overwrite its pointer later.
461      delete Bases[idx];
462
463      Invalid = true;
464    } else {
465      // Okay, add this new base class.
466      KnownBaseTypes[NewBaseType] = Bases[idx];
467      Bases[NumGoodBases++] = Bases[idx];
468    }
469  }
470
471  // Attach the remaining base class specifiers to the derived class.
472  Class->setBases(Bases, NumGoodBases);
473
474  // Delete the remaining (good) base class specifiers, since their
475  // data has been copied into the CXXRecordDecl.
476  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
477    delete Bases[idx];
478
479  return Invalid;
480}
481
482/// ActOnBaseSpecifiers - Attach the given base specifiers to the
483/// class, after checking whether there are any duplicate base
484/// classes.
485void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
486                               unsigned NumBases) {
487  if (!ClassDecl || !Bases || !NumBases)
488    return;
489
490  AdjustDeclIfTemplate(ClassDecl);
491  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
492                       (CXXBaseSpecifier**)(Bases), NumBases);
493}
494
495//===----------------------------------------------------------------------===//
496// C++ class member Handling
497//===----------------------------------------------------------------------===//
498
499/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
500/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
501/// bitfield width if there is one and 'InitExpr' specifies the initializer if
502/// any.
503Sema::DeclPtrTy
504Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
505                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
506  const DeclSpec &DS = D.getDeclSpec();
507  DeclarationName Name = GetNameForDeclarator(D);
508  Expr *BitWidth = static_cast<Expr*>(BW);
509  Expr *Init = static_cast<Expr*>(InitExpr);
510  SourceLocation Loc = D.getIdentifierLoc();
511
512  bool isFunc = D.isFunctionDeclarator();
513
514  // C++ 9.2p6: A member shall not be declared to have automatic storage
515  // duration (auto, register) or with the extern storage-class-specifier.
516  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
517  // data members and cannot be applied to names declared const or static,
518  // and cannot be applied to reference members.
519  switch (DS.getStorageClassSpec()) {
520    case DeclSpec::SCS_unspecified:
521    case DeclSpec::SCS_typedef:
522    case DeclSpec::SCS_static:
523      // FALL THROUGH.
524      break;
525    case DeclSpec::SCS_mutable:
526      if (isFunc) {
527        if (DS.getStorageClassSpecLoc().isValid())
528          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
529        else
530          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
531
532        // FIXME: It would be nicer if the keyword was ignored only for this
533        // declarator. Otherwise we could get follow-up errors.
534        D.getMutableDeclSpec().ClearStorageClassSpecs();
535      } else {
536        QualType T = GetTypeForDeclarator(D, S);
537        diag::kind err = static_cast<diag::kind>(0);
538        if (T->isReferenceType())
539          err = diag::err_mutable_reference;
540        else if (T.isConstQualified())
541          err = diag::err_mutable_const;
542        if (err != 0) {
543          if (DS.getStorageClassSpecLoc().isValid())
544            Diag(DS.getStorageClassSpecLoc(), err);
545          else
546            Diag(DS.getThreadSpecLoc(), err);
547          // FIXME: It would be nicer if the keyword was ignored only for this
548          // declarator. Otherwise we could get follow-up errors.
549          D.getMutableDeclSpec().ClearStorageClassSpecs();
550        }
551      }
552      break;
553    default:
554      if (DS.getStorageClassSpecLoc().isValid())
555        Diag(DS.getStorageClassSpecLoc(),
556             diag::err_storageclass_invalid_for_member);
557      else
558        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
559      D.getMutableDeclSpec().ClearStorageClassSpecs();
560  }
561
562  if (!isFunc &&
563      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
564      D.getNumTypeObjects() == 0) {
565    // Check also for this case:
566    //
567    // typedef int f();
568    // f a;
569    //
570    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
571    isFunc = TDType->isFunctionType();
572  }
573
574  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
575                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
576                      !isFunc);
577
578  Decl *Member;
579  if (isInstField) {
580    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
581                         AS);
582    assert(Member && "HandleField never returns null");
583  } else {
584    Member = ActOnDeclarator(S, D).getAs<Decl>();
585    if (!Member) {
586      if (BitWidth) DeleteExpr(BitWidth);
587      return DeclPtrTy();
588    }
589
590    // Non-instance-fields can't have a bitfield.
591    if (BitWidth) {
592      if (Member->isInvalidDecl()) {
593        // don't emit another diagnostic.
594      } else if (isa<VarDecl>(Member)) {
595        // C++ 9.6p3: A bit-field shall not be a static member.
596        // "static member 'A' cannot be a bit-field"
597        Diag(Loc, diag::err_static_not_bitfield)
598          << Name << BitWidth->getSourceRange();
599      } else if (isa<TypedefDecl>(Member)) {
600        // "typedef member 'x' cannot be a bit-field"
601        Diag(Loc, diag::err_typedef_not_bitfield)
602          << Name << BitWidth->getSourceRange();
603      } else {
604        // A function typedef ("typedef int f(); f a;").
605        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
606        Diag(Loc, diag::err_not_integral_type_bitfield)
607          << Name << cast<ValueDecl>(Member)->getType()
608          << BitWidth->getSourceRange();
609      }
610
611      DeleteExpr(BitWidth);
612      BitWidth = 0;
613      Member->setInvalidDecl();
614    }
615
616    Member->setAccess(AS);
617  }
618
619  assert((Name || isInstField) && "No identifier for non-field ?");
620
621  if (Init)
622    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
623  if (Deleted) // FIXME: Source location is not very good.
624    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
625
626  if (isInstField) {
627    FieldCollector->Add(cast<FieldDecl>(Member));
628    return DeclPtrTy();
629  }
630  return DeclPtrTy::make(Member);
631}
632
633/// ActOnMemInitializer - Handle a C++ member initializer.
634Sema::MemInitResult
635Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
636                          Scope *S,
637                          IdentifierInfo *MemberOrBase,
638                          SourceLocation IdLoc,
639                          SourceLocation LParenLoc,
640                          ExprTy **Args, unsigned NumArgs,
641                          SourceLocation *CommaLocs,
642                          SourceLocation RParenLoc) {
643  CXXConstructorDecl *Constructor
644    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
645  if (!Constructor) {
646    // The user wrote a constructor initializer on a function that is
647    // not a C++ constructor. Ignore the error for now, because we may
648    // have more member initializers coming; we'll diagnose it just
649    // once in ActOnMemInitializers.
650    return true;
651  }
652
653  CXXRecordDecl *ClassDecl = Constructor->getParent();
654
655  // C++ [class.base.init]p2:
656  //   Names in a mem-initializer-id are looked up in the scope of the
657  //   constructor’s class and, if not found in that scope, are looked
658  //   up in the scope containing the constructor’s
659  //   definition. [Note: if the constructor’s class contains a member
660  //   with the same name as a direct or virtual base class of the
661  //   class, a mem-initializer-id naming the member or base class and
662  //   composed of a single identifier refers to the class member. A
663  //   mem-initializer-id for the hidden base class may be specified
664  //   using a qualified name. ]
665  // Look for a member, first.
666  FieldDecl *Member = 0;
667  DeclContext::lookup_result Result
668    = ClassDecl->lookup(Context, MemberOrBase);
669  if (Result.first != Result.second)
670    Member = dyn_cast<FieldDecl>(*Result.first);
671
672  // FIXME: Handle members of an anonymous union.
673
674  if (Member) {
675    // FIXME: Perform direct initialization of the member.
676    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
677  }
678
679  // It didn't name a member, so see if it names a class.
680  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
681  if (!BaseTy)
682    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
683      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
684
685  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
686  if (!BaseType->isRecordType())
687    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
688      << BaseType << SourceRange(IdLoc, RParenLoc);
689
690  // C++ [class.base.init]p2:
691  //   [...] Unless the mem-initializer-id names a nonstatic data
692  //   member of the constructor’s class or a direct or virtual base
693  //   of that class, the mem-initializer is ill-formed. A
694  //   mem-initializer-list can initialize a base class using any
695  //   name that denotes that base class type.
696
697  // First, check for a direct base class.
698  const CXXBaseSpecifier *DirectBaseSpec = 0;
699  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
700       Base != ClassDecl->bases_end(); ++Base) {
701    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
702        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
703      // We found a direct base of this type. That's what we're
704      // initializing.
705      DirectBaseSpec = &*Base;
706      break;
707    }
708  }
709
710  // Check for a virtual base class.
711  // FIXME: We might be able to short-circuit this if we know in advance that
712  // there are no virtual bases.
713  const CXXBaseSpecifier *VirtualBaseSpec = 0;
714  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
715    // We haven't found a base yet; search the class hierarchy for a
716    // virtual base class.
717    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
718                    /*DetectVirtual=*/false);
719    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
720      for (BasePaths::paths_iterator Path = Paths.begin();
721           Path != Paths.end(); ++Path) {
722        if (Path->back().Base->isVirtual()) {
723          VirtualBaseSpec = Path->back().Base;
724          break;
725        }
726      }
727    }
728  }
729
730  // C++ [base.class.init]p2:
731  //   If a mem-initializer-id is ambiguous because it designates both
732  //   a direct non-virtual base class and an inherited virtual base
733  //   class, the mem-initializer is ill-formed.
734  if (DirectBaseSpec && VirtualBaseSpec)
735    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
736      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
737
738  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
739}
740
741void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
742                                SourceLocation ColonLoc,
743                                MemInitTy **MemInits, unsigned NumMemInits) {
744  CXXConstructorDecl *Constructor =
745  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
746
747  if (!Constructor) {
748    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
749    return;
750  }
751}
752
753namespace {
754  /// PureVirtualMethodCollector - traverses a class and its superclasses
755  /// and determines if it has any pure virtual methods.
756  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
757    ASTContext &Context;
758
759  public:
760    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
761
762  private:
763    MethodList Methods;
764
765    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
766
767  public:
768    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
769      : Context(Ctx) {
770
771      MethodList List;
772      Collect(RD, List);
773
774      // Copy the temporary list to methods, and make sure to ignore any
775      // null entries.
776      for (size_t i = 0, e = List.size(); i != e; ++i) {
777        if (List[i])
778          Methods.push_back(List[i]);
779      }
780    }
781
782    bool empty() const { return Methods.empty(); }
783
784    MethodList::const_iterator methods_begin() { return Methods.begin(); }
785    MethodList::const_iterator methods_end() { return Methods.end(); }
786  };
787
788  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
789                                           MethodList& Methods) {
790    // First, collect the pure virtual methods for the base classes.
791    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
792         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
793      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
794        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
795        if (BaseDecl && BaseDecl->isAbstract())
796          Collect(BaseDecl, Methods);
797      }
798    }
799
800    // Next, zero out any pure virtual methods that this class overrides.
801    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
802
803    MethodSetTy OverriddenMethods;
804    size_t MethodsSize = Methods.size();
805
806    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
807         e = RD->decls_end(Context);
808         i != e; ++i) {
809      // Traverse the record, looking for methods.
810      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
811        // If the method is pre virtual, add it to the methods vector.
812        if (MD->isPure()) {
813          Methods.push_back(MD);
814          continue;
815        }
816
817        // Otherwise, record all the overridden methods in our set.
818        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
819             E = MD->end_overridden_methods(); I != E; ++I) {
820          // Keep track of the overridden methods.
821          OverriddenMethods.insert(*I);
822        }
823      }
824    }
825
826    // Now go through the methods and zero out all the ones we know are
827    // overridden.
828    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
829      if (OverriddenMethods.count(Methods[i]))
830        Methods[i] = 0;
831    }
832
833  }
834}
835
836bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
837                                  unsigned DiagID, AbstractDiagSelID SelID,
838                                  const CXXRecordDecl *CurrentRD) {
839
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  if (const ArrayType *AT = Context.getAsArrayType(T))
844    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
845                                  CurrentRD);
846
847  if (const PointerType *PT = T->getAsPointerType()) {
848    // Find the innermost pointer type.
849    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
850      PT = T;
851
852    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
853      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
854                                    CurrentRD);
855  }
856
857  const RecordType *RT = T->getAsRecordType();
858  if (!RT)
859    return false;
860
861  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
862  if (!RD)
863    return false;
864
865  if (CurrentRD && CurrentRD != RD)
866    return false;
867
868  if (!RD->isAbstract())
869    return false;
870
871  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
872
873  // Check if we've already emitted the list of pure virtual functions for this
874  // class.
875  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
876    return true;
877
878  PureVirtualMethodCollector Collector(Context, RD);
879
880  for (PureVirtualMethodCollector::MethodList::const_iterator I =
881       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
882    const CXXMethodDecl *MD = *I;
883
884    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
885      MD->getDeclName();
886  }
887
888  if (!PureVirtualClassDiagSet)
889    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
890  PureVirtualClassDiagSet->insert(RD);
891
892  return true;
893}
894
895namespace {
896  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
897    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
898    Sema &SemaRef;
899    CXXRecordDecl *AbstractClass;
900
901    bool VisitDeclContext(const DeclContext *DC) {
902      bool Invalid = false;
903
904      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
905           E = DC->decls_end(SemaRef.Context); I != E; ++I)
906        Invalid |= Visit(*I);
907
908      return Invalid;
909    }
910
911  public:
912    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
913      : SemaRef(SemaRef), AbstractClass(ac) {
914        Visit(SemaRef.Context.getTranslationUnitDecl());
915    }
916
917    bool VisitFunctionDecl(const FunctionDecl *FD) {
918      if (FD->isThisDeclarationADefinition()) {
919        // No need to do the check if we're in a definition, because it requires
920        // that the return/param types are complete.
921        // because that requires
922        return VisitDeclContext(FD);
923      }
924
925      // Check the return type.
926      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
927      bool Invalid =
928        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
929                                       diag::err_abstract_type_in_decl,
930                                       Sema::AbstractReturnType,
931                                       AbstractClass);
932
933      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
934           E = FD->param_end(); I != E; ++I) {
935        const ParmVarDecl *VD = *I;
936        Invalid |=
937          SemaRef.RequireNonAbstractType(VD->getLocation(),
938                                         VD->getOriginalType(),
939                                         diag::err_abstract_type_in_decl,
940                                         Sema::AbstractParamType,
941                                         AbstractClass);
942      }
943
944      return Invalid;
945    }
946
947    bool VisitDecl(const Decl* D) {
948      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
949        return VisitDeclContext(DC);
950
951      return false;
952    }
953  };
954}
955
956void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
957                                             DeclPtrTy TagDecl,
958                                             SourceLocation LBrac,
959                                             SourceLocation RBrac) {
960  AdjustDeclIfTemplate(TagDecl);
961  ActOnFields(S, RLoc, TagDecl,
962              (DeclPtrTy*)FieldCollector->getCurFields(),
963              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
964
965  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
966  if (!RD->isAbstract()) {
967    // Collect all the pure virtual methods and see if this is an abstract
968    // class after all.
969    PureVirtualMethodCollector Collector(Context, RD);
970    if (!Collector.empty())
971      RD->setAbstract(true);
972  }
973
974  if (RD->isAbstract())
975    AbstractClassUsageDiagnoser(*this, RD);
976
977  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
978    for (RecordDecl::field_iterator i = RD->field_begin(Context),
979         e = RD->field_end(Context); i != e; ++i) {
980      // All the nonstatic data members must have trivial constructors.
981      QualType FTy = i->getType();
982      while (const ArrayType *AT = Context.getAsArrayType(FTy))
983        FTy = AT->getElementType();
984
985      if (const RecordType *RT = FTy->getAsRecordType()) {
986        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
987
988        if (!FieldRD->hasTrivialConstructor())
989          RD->setHasTrivialConstructor(false);
990        if (!FieldRD->hasTrivialDestructor())
991          RD->setHasTrivialDestructor(false);
992
993        // If RD has neither a trivial constructor nor a trivial destructor
994        // we don't need to continue checking.
995        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
996          break;
997      }
998    }
999  }
1000
1001  if (!RD->isDependentType())
1002    AddImplicitlyDeclaredMembersToClass(RD);
1003}
1004
1005/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1006/// special functions, such as the default constructor, copy
1007/// constructor, or destructor, to the given C++ class (C++
1008/// [special]p1).  This routine can only be executed just before the
1009/// definition of the class is complete.
1010void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1011  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1012  ClassType = Context.getCanonicalType(ClassType);
1013
1014  // FIXME: Implicit declarations have exception specifications, which are
1015  // the union of the specifications of the implicitly called functions.
1016
1017  if (!ClassDecl->hasUserDeclaredConstructor()) {
1018    // C++ [class.ctor]p5:
1019    //   A default constructor for a class X is a constructor of class X
1020    //   that can be called without an argument. If there is no
1021    //   user-declared constructor for class X, a default constructor is
1022    //   implicitly declared. An implicitly-declared default constructor
1023    //   is an inline public member of its class.
1024    DeclarationName Name
1025      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1026    CXXConstructorDecl *DefaultCon =
1027      CXXConstructorDecl::Create(Context, ClassDecl,
1028                                 ClassDecl->getLocation(), Name,
1029                                 Context.getFunctionType(Context.VoidTy,
1030                                                         0, 0, false, 0),
1031                                 /*isExplicit=*/false,
1032                                 /*isInline=*/true,
1033                                 /*isImplicitlyDeclared=*/true);
1034    DefaultCon->setAccess(AS_public);
1035    DefaultCon->setImplicit();
1036    ClassDecl->addDecl(Context, DefaultCon);
1037  }
1038
1039  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1040    // C++ [class.copy]p4:
1041    //   If the class definition does not explicitly declare a copy
1042    //   constructor, one is declared implicitly.
1043
1044    // C++ [class.copy]p5:
1045    //   The implicitly-declared copy constructor for a class X will
1046    //   have the form
1047    //
1048    //       X::X(const X&)
1049    //
1050    //   if
1051    bool HasConstCopyConstructor = true;
1052
1053    //     -- each direct or virtual base class B of X has a copy
1054    //        constructor whose first parameter is of type const B& or
1055    //        const volatile B&, and
1056    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1057         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1058      const CXXRecordDecl *BaseClassDecl
1059        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1060      HasConstCopyConstructor
1061        = BaseClassDecl->hasConstCopyConstructor(Context);
1062    }
1063
1064    //     -- for all the nonstatic data members of X that are of a
1065    //        class type M (or array thereof), each such class type
1066    //        has a copy constructor whose first parameter is of type
1067    //        const M& or const volatile M&.
1068    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1069         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1070         ++Field) {
1071      QualType FieldType = (*Field)->getType();
1072      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1073        FieldType = Array->getElementType();
1074      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1075        const CXXRecordDecl *FieldClassDecl
1076          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1077        HasConstCopyConstructor
1078          = FieldClassDecl->hasConstCopyConstructor(Context);
1079      }
1080    }
1081
1082    //   Otherwise, the implicitly declared copy constructor will have
1083    //   the form
1084    //
1085    //       X::X(X&)
1086    QualType ArgType = ClassType;
1087    if (HasConstCopyConstructor)
1088      ArgType = ArgType.withConst();
1089    ArgType = Context.getLValueReferenceType(ArgType);
1090
1091    //   An implicitly-declared copy constructor is an inline public
1092    //   member of its class.
1093    DeclarationName Name
1094      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1095    CXXConstructorDecl *CopyConstructor
1096      = CXXConstructorDecl::Create(Context, ClassDecl,
1097                                   ClassDecl->getLocation(), Name,
1098                                   Context.getFunctionType(Context.VoidTy,
1099                                                           &ArgType, 1,
1100                                                           false, 0),
1101                                   /*isExplicit=*/false,
1102                                   /*isInline=*/true,
1103                                   /*isImplicitlyDeclared=*/true);
1104    CopyConstructor->setAccess(AS_public);
1105    CopyConstructor->setImplicit();
1106
1107    // Add the parameter to the constructor.
1108    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1109                                                 ClassDecl->getLocation(),
1110                                                 /*IdentifierInfo=*/0,
1111                                                 ArgType, VarDecl::None, 0);
1112    CopyConstructor->setParams(Context, &FromParam, 1);
1113    ClassDecl->addDecl(Context, CopyConstructor);
1114  }
1115
1116  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1117    // Note: The following rules are largely analoguous to the copy
1118    // constructor rules. Note that virtual bases are not taken into account
1119    // for determining the argument type of the operator. Note also that
1120    // operators taking an object instead of a reference are allowed.
1121    //
1122    // C++ [class.copy]p10:
1123    //   If the class definition does not explicitly declare a copy
1124    //   assignment operator, one is declared implicitly.
1125    //   The implicitly-defined copy assignment operator for a class X
1126    //   will have the form
1127    //
1128    //       X& X::operator=(const X&)
1129    //
1130    //   if
1131    bool HasConstCopyAssignment = true;
1132
1133    //       -- each direct base class B of X has a copy assignment operator
1134    //          whose parameter is of type const B&, const volatile B& or B,
1135    //          and
1136    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1137         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1138      const CXXRecordDecl *BaseClassDecl
1139        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1140      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1141    }
1142
1143    //       -- for all the nonstatic data members of X that are of a class
1144    //          type M (or array thereof), each such class type has a copy
1145    //          assignment operator whose parameter is of type const M&,
1146    //          const volatile M& or M.
1147    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1148         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1149         ++Field) {
1150      QualType FieldType = (*Field)->getType();
1151      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1152        FieldType = Array->getElementType();
1153      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1154        const CXXRecordDecl *FieldClassDecl
1155          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1156        HasConstCopyAssignment
1157          = FieldClassDecl->hasConstCopyAssignment(Context);
1158      }
1159    }
1160
1161    //   Otherwise, the implicitly declared copy assignment operator will
1162    //   have the form
1163    //
1164    //       X& X::operator=(X&)
1165    QualType ArgType = ClassType;
1166    QualType RetType = Context.getLValueReferenceType(ArgType);
1167    if (HasConstCopyAssignment)
1168      ArgType = ArgType.withConst();
1169    ArgType = Context.getLValueReferenceType(ArgType);
1170
1171    //   An implicitly-declared copy assignment operator is an inline public
1172    //   member of its class.
1173    DeclarationName Name =
1174      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1175    CXXMethodDecl *CopyAssignment =
1176      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1177                            Context.getFunctionType(RetType, &ArgType, 1,
1178                                                    false, 0),
1179                            /*isStatic=*/false, /*isInline=*/true);
1180    CopyAssignment->setAccess(AS_public);
1181    CopyAssignment->setImplicit();
1182
1183    // Add the parameter to the operator.
1184    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1185                                                 ClassDecl->getLocation(),
1186                                                 /*IdentifierInfo=*/0,
1187                                                 ArgType, VarDecl::None, 0);
1188    CopyAssignment->setParams(Context, &FromParam, 1);
1189
1190    // Don't call addedAssignmentOperator. There is no way to distinguish an
1191    // implicit from an explicit assignment operator.
1192    ClassDecl->addDecl(Context, CopyAssignment);
1193  }
1194
1195  if (!ClassDecl->hasUserDeclaredDestructor()) {
1196    // C++ [class.dtor]p2:
1197    //   If a class has no user-declared destructor, a destructor is
1198    //   declared implicitly. An implicitly-declared destructor is an
1199    //   inline public member of its class.
1200    DeclarationName Name
1201      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1202    CXXDestructorDecl *Destructor
1203      = CXXDestructorDecl::Create(Context, ClassDecl,
1204                                  ClassDecl->getLocation(), Name,
1205                                  Context.getFunctionType(Context.VoidTy,
1206                                                          0, 0, false, 0),
1207                                  /*isInline=*/true,
1208                                  /*isImplicitlyDeclared=*/true);
1209    Destructor->setAccess(AS_public);
1210    Destructor->setImplicit();
1211    ClassDecl->addDecl(Context, Destructor);
1212  }
1213}
1214
1215void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1216  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1217  if (!Template)
1218    return;
1219
1220  TemplateParameterList *Params = Template->getTemplateParameters();
1221  for (TemplateParameterList::iterator Param = Params->begin(),
1222                                    ParamEnd = Params->end();
1223       Param != ParamEnd; ++Param) {
1224    NamedDecl *Named = cast<NamedDecl>(*Param);
1225    if (Named->getDeclName()) {
1226      S->AddDecl(DeclPtrTy::make(Named));
1227      IdResolver.AddDecl(Named);
1228    }
1229  }
1230}
1231
1232/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1233/// parsing a top-level (non-nested) C++ class, and we are now
1234/// parsing those parts of the given Method declaration that could
1235/// not be parsed earlier (C++ [class.mem]p2), such as default
1236/// arguments. This action should enter the scope of the given
1237/// Method declaration as if we had just parsed the qualified method
1238/// name. However, it should not bring the parameters into scope;
1239/// that will be performed by ActOnDelayedCXXMethodParameter.
1240void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1241  CXXScopeSpec SS;
1242  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1243  QualType ClassTy
1244    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1245  SS.setScopeRep(
1246    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1247  ActOnCXXEnterDeclaratorScope(S, SS);
1248}
1249
1250/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1251/// C++ method declaration. We're (re-)introducing the given
1252/// function parameter into scope for use in parsing later parts of
1253/// the method declaration. For example, we could see an
1254/// ActOnParamDefaultArgument event for this parameter.
1255void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1256  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1257
1258  // If this parameter has an unparsed default argument, clear it out
1259  // to make way for the parsed default argument.
1260  if (Param->hasUnparsedDefaultArg())
1261    Param->setDefaultArg(0);
1262
1263  S->AddDecl(DeclPtrTy::make(Param));
1264  if (Param->getDeclName())
1265    IdResolver.AddDecl(Param);
1266}
1267
1268/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1269/// processing the delayed method declaration for Method. The method
1270/// declaration is now considered finished. There may be a separate
1271/// ActOnStartOfFunctionDef action later (not necessarily
1272/// immediately!) for this method, if it was also defined inside the
1273/// class body.
1274void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1275  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1276  CXXScopeSpec SS;
1277  QualType ClassTy
1278    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1279  SS.setScopeRep(
1280    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1281  ActOnCXXExitDeclaratorScope(S, SS);
1282
1283  // Now that we have our default arguments, check the constructor
1284  // again. It could produce additional diagnostics or affect whether
1285  // the class has implicitly-declared destructors, among other
1286  // things.
1287  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1288    CheckConstructor(Constructor);
1289
1290  // Check the default arguments, which we may have added.
1291  if (!Method->isInvalidDecl())
1292    CheckCXXDefaultArguments(Method);
1293}
1294
1295/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1296/// the well-formedness of the constructor declarator @p D with type @p
1297/// R. If there are any errors in the declarator, this routine will
1298/// emit diagnostics and set the invalid bit to true.  In any case, the type
1299/// will be updated to reflect a well-formed type for the constructor and
1300/// returned.
1301QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1302                                          FunctionDecl::StorageClass &SC) {
1303  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1304
1305  // C++ [class.ctor]p3:
1306  //   A constructor shall not be virtual (10.3) or static (9.4). A
1307  //   constructor can be invoked for a const, volatile or const
1308  //   volatile object. A constructor shall not be declared const,
1309  //   volatile, or const volatile (9.3.2).
1310  if (isVirtual) {
1311    if (!D.isInvalidType())
1312      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1313        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1314        << SourceRange(D.getIdentifierLoc());
1315    D.setInvalidType();
1316  }
1317  if (SC == FunctionDecl::Static) {
1318    if (!D.isInvalidType())
1319      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1320        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1321        << SourceRange(D.getIdentifierLoc());
1322    D.setInvalidType();
1323    SC = FunctionDecl::None;
1324  }
1325
1326  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1327  if (FTI.TypeQuals != 0) {
1328    if (FTI.TypeQuals & QualType::Const)
1329      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1330        << "const" << SourceRange(D.getIdentifierLoc());
1331    if (FTI.TypeQuals & QualType::Volatile)
1332      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1333        << "volatile" << SourceRange(D.getIdentifierLoc());
1334    if (FTI.TypeQuals & QualType::Restrict)
1335      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1336        << "restrict" << SourceRange(D.getIdentifierLoc());
1337  }
1338
1339  // Rebuild the function type "R" without any type qualifiers (in
1340  // case any of the errors above fired) and with "void" as the
1341  // return type, since constructors don't have return types. We
1342  // *always* have to do this, because GetTypeForDeclarator will
1343  // put in a result type of "int" when none was specified.
1344  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1345  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1346                                 Proto->getNumArgs(),
1347                                 Proto->isVariadic(), 0);
1348}
1349
1350/// CheckConstructor - Checks a fully-formed constructor for
1351/// well-formedness, issuing any diagnostics required. Returns true if
1352/// the constructor declarator is invalid.
1353void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1354  CXXRecordDecl *ClassDecl
1355    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1356  if (!ClassDecl)
1357    return Constructor->setInvalidDecl();
1358
1359  // C++ [class.copy]p3:
1360  //   A declaration of a constructor for a class X is ill-formed if
1361  //   its first parameter is of type (optionally cv-qualified) X and
1362  //   either there are no other parameters or else all other
1363  //   parameters have default arguments.
1364  if (!Constructor->isInvalidDecl() &&
1365      ((Constructor->getNumParams() == 1) ||
1366       (Constructor->getNumParams() > 1 &&
1367        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1368    QualType ParamType = Constructor->getParamDecl(0)->getType();
1369    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1370    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1371      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1372      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1373        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1374      Constructor->setInvalidDecl();
1375    }
1376  }
1377
1378  // Notify the class that we've added a constructor.
1379  ClassDecl->addedConstructor(Context, Constructor);
1380}
1381
1382static inline bool
1383FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1384  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1385          FTI.ArgInfo[0].Param &&
1386          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1387}
1388
1389/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1390/// the well-formednes of the destructor declarator @p D with type @p
1391/// R. If there are any errors in the declarator, this routine will
1392/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1393/// will be updated to reflect a well-formed type for the destructor and
1394/// returned.
1395QualType Sema::CheckDestructorDeclarator(Declarator &D,
1396                                         FunctionDecl::StorageClass& SC) {
1397  // C++ [class.dtor]p1:
1398  //   [...] A typedef-name that names a class is a class-name
1399  //   (7.1.3); however, a typedef-name that names a class shall not
1400  //   be used as the identifier in the declarator for a destructor
1401  //   declaration.
1402  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1403  if (isa<TypedefType>(DeclaratorType)) {
1404    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1405      << DeclaratorType;
1406    D.setInvalidType();
1407  }
1408
1409  // C++ [class.dtor]p2:
1410  //   A destructor is used to destroy objects of its class type. A
1411  //   destructor takes no parameters, and no return type can be
1412  //   specified for it (not even void). The address of a destructor
1413  //   shall not be taken. A destructor shall not be static. A
1414  //   destructor can be invoked for a const, volatile or const
1415  //   volatile object. A destructor shall not be declared const,
1416  //   volatile or const volatile (9.3.2).
1417  if (SC == FunctionDecl::Static) {
1418    if (!D.isInvalidType())
1419      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1420        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1421        << SourceRange(D.getIdentifierLoc());
1422    SC = FunctionDecl::None;
1423    D.setInvalidType();
1424  }
1425  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1426    // Destructors don't have return types, but the parser will
1427    // happily parse something like:
1428    //
1429    //   class X {
1430    //     float ~X();
1431    //   };
1432    //
1433    // The return type will be eliminated later.
1434    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1435      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1436      << SourceRange(D.getIdentifierLoc());
1437  }
1438
1439  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1440  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1441    if (FTI.TypeQuals & QualType::Const)
1442      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1443        << "const" << SourceRange(D.getIdentifierLoc());
1444    if (FTI.TypeQuals & QualType::Volatile)
1445      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1446        << "volatile" << SourceRange(D.getIdentifierLoc());
1447    if (FTI.TypeQuals & QualType::Restrict)
1448      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1449        << "restrict" << SourceRange(D.getIdentifierLoc());
1450    D.setInvalidType();
1451  }
1452
1453  // Make sure we don't have any parameters.
1454  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1455    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1456
1457    // Delete the parameters.
1458    FTI.freeArgs();
1459    D.setInvalidType();
1460  }
1461
1462  // Make sure the destructor isn't variadic.
1463  if (FTI.isVariadic) {
1464    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1465    D.setInvalidType();
1466  }
1467
1468  // Rebuild the function type "R" without any type qualifiers or
1469  // parameters (in case any of the errors above fired) and with
1470  // "void" as the return type, since destructors don't have return
1471  // types. We *always* have to do this, because GetTypeForDeclarator
1472  // will put in a result type of "int" when none was specified.
1473  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1474}
1475
1476/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1477/// well-formednes of the conversion function declarator @p D with
1478/// type @p R. If there are any errors in the declarator, this routine
1479/// will emit diagnostics and return true. Otherwise, it will return
1480/// false. Either way, the type @p R will be updated to reflect a
1481/// well-formed type for the conversion operator.
1482void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1483                                     FunctionDecl::StorageClass& SC) {
1484  // C++ [class.conv.fct]p1:
1485  //   Neither parameter types nor return type can be specified. The
1486  //   type of a conversion function (8.3.5) is “function taking no
1487  //   parameter returning conversion-type-id.”
1488  if (SC == FunctionDecl::Static) {
1489    if (!D.isInvalidType())
1490      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1491        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1492        << SourceRange(D.getIdentifierLoc());
1493    D.setInvalidType();
1494    SC = FunctionDecl::None;
1495  }
1496  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1497    // Conversion functions don't have return types, but the parser will
1498    // happily parse something like:
1499    //
1500    //   class X {
1501    //     float operator bool();
1502    //   };
1503    //
1504    // The return type will be changed later anyway.
1505    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1506      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1507      << SourceRange(D.getIdentifierLoc());
1508  }
1509
1510  // Make sure we don't have any parameters.
1511  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1512    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1513
1514    // Delete the parameters.
1515    D.getTypeObject(0).Fun.freeArgs();
1516    D.setInvalidType();
1517  }
1518
1519  // Make sure the conversion function isn't variadic.
1520  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1521    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1522    D.setInvalidType();
1523  }
1524
1525  // C++ [class.conv.fct]p4:
1526  //   The conversion-type-id shall not represent a function type nor
1527  //   an array type.
1528  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1529  if (ConvType->isArrayType()) {
1530    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1531    ConvType = Context.getPointerType(ConvType);
1532    D.setInvalidType();
1533  } else if (ConvType->isFunctionType()) {
1534    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1535    ConvType = Context.getPointerType(ConvType);
1536    D.setInvalidType();
1537  }
1538
1539  // Rebuild the function type "R" without any parameters (in case any
1540  // of the errors above fired) and with the conversion type as the
1541  // return type.
1542  R = Context.getFunctionType(ConvType, 0, 0, false,
1543                              R->getAsFunctionProtoType()->getTypeQuals());
1544
1545  // C++0x explicit conversion operators.
1546  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1547    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1548         diag::warn_explicit_conversion_functions)
1549      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1550}
1551
1552/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1553/// the declaration of the given C++ conversion function. This routine
1554/// is responsible for recording the conversion function in the C++
1555/// class, if possible.
1556Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1557  assert(Conversion && "Expected to receive a conversion function declaration");
1558
1559  // Set the lexical context of this conversion function
1560  Conversion->setLexicalDeclContext(CurContext);
1561
1562  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1563
1564  // Make sure we aren't redeclaring the conversion function.
1565  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1566
1567  // C++ [class.conv.fct]p1:
1568  //   [...] A conversion function is never used to convert a
1569  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1570  //   same object type (or a reference to it), to a (possibly
1571  //   cv-qualified) base class of that type (or a reference to it),
1572  //   or to (possibly cv-qualified) void.
1573  // FIXME: Suppress this warning if the conversion function ends up being a
1574  // virtual function that overrides a virtual function in a base class.
1575  QualType ClassType
1576    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1577  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1578    ConvType = ConvTypeRef->getPointeeType();
1579  if (ConvType->isRecordType()) {
1580    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1581    if (ConvType == ClassType)
1582      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1583        << ClassType;
1584    else if (IsDerivedFrom(ClassType, ConvType))
1585      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1586        <<  ClassType << ConvType;
1587  } else if (ConvType->isVoidType()) {
1588    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1589      << ClassType << ConvType;
1590  }
1591
1592  if (Conversion->getPreviousDeclaration()) {
1593    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1594    for (OverloadedFunctionDecl::function_iterator
1595           Conv = Conversions->function_begin(),
1596           ConvEnd = Conversions->function_end();
1597         Conv != ConvEnd; ++Conv) {
1598      if (*Conv == Conversion->getPreviousDeclaration()) {
1599        *Conv = Conversion;
1600        return DeclPtrTy::make(Conversion);
1601      }
1602    }
1603    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1604  } else
1605    ClassDecl->addConversionFunction(Context, Conversion);
1606
1607  return DeclPtrTy::make(Conversion);
1608}
1609
1610//===----------------------------------------------------------------------===//
1611// Namespace Handling
1612//===----------------------------------------------------------------------===//
1613
1614/// ActOnStartNamespaceDef - This is called at the start of a namespace
1615/// definition.
1616Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1617                                             SourceLocation IdentLoc,
1618                                             IdentifierInfo *II,
1619                                             SourceLocation LBrace) {
1620  NamespaceDecl *Namespc =
1621      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1622  Namespc->setLBracLoc(LBrace);
1623
1624  Scope *DeclRegionScope = NamespcScope->getParent();
1625
1626  if (II) {
1627    // C++ [namespace.def]p2:
1628    // The identifier in an original-namespace-definition shall not have been
1629    // previously defined in the declarative region in which the
1630    // original-namespace-definition appears. The identifier in an
1631    // original-namespace-definition is the name of the namespace. Subsequently
1632    // in that declarative region, it is treated as an original-namespace-name.
1633
1634    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1635                                     true);
1636
1637    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1638      // This is an extended namespace definition.
1639      // Attach this namespace decl to the chain of extended namespace
1640      // definitions.
1641      OrigNS->setNextNamespace(Namespc);
1642      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1643
1644      // Remove the previous declaration from the scope.
1645      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1646        IdResolver.RemoveDecl(OrigNS);
1647        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1648      }
1649    } else if (PrevDecl) {
1650      // This is an invalid name redefinition.
1651      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1652       << Namespc->getDeclName();
1653      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1654      Namespc->setInvalidDecl();
1655      // Continue on to push Namespc as current DeclContext and return it.
1656    }
1657
1658    PushOnScopeChains(Namespc, DeclRegionScope);
1659  } else {
1660    // FIXME: Handle anonymous namespaces
1661  }
1662
1663  // Although we could have an invalid decl (i.e. the namespace name is a
1664  // redefinition), push it as current DeclContext and try to continue parsing.
1665  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1666  // for the namespace has the declarations that showed up in that particular
1667  // namespace definition.
1668  PushDeclContext(NamespcScope, Namespc);
1669  return DeclPtrTy::make(Namespc);
1670}
1671
1672/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1673/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1674void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1675  Decl *Dcl = D.getAs<Decl>();
1676  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1677  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1678  Namespc->setRBracLoc(RBrace);
1679  PopDeclContext();
1680}
1681
1682Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1683                                          SourceLocation UsingLoc,
1684                                          SourceLocation NamespcLoc,
1685                                          const CXXScopeSpec &SS,
1686                                          SourceLocation IdentLoc,
1687                                          IdentifierInfo *NamespcName,
1688                                          AttributeList *AttrList) {
1689  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1690  assert(NamespcName && "Invalid NamespcName.");
1691  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1692  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1693
1694  UsingDirectiveDecl *UDir = 0;
1695
1696  // Lookup namespace name.
1697  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1698                                    LookupNamespaceName, false);
1699  if (R.isAmbiguous()) {
1700    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1701    return DeclPtrTy();
1702  }
1703  if (NamedDecl *NS = R) {
1704    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1705    // C++ [namespace.udir]p1:
1706    //   A using-directive specifies that the names in the nominated
1707    //   namespace can be used in the scope in which the
1708    //   using-directive appears after the using-directive. During
1709    //   unqualified name lookup (3.4.1), the names appear as if they
1710    //   were declared in the nearest enclosing namespace which
1711    //   contains both the using-directive and the nominated
1712    //   namespace. [Note: in this context, “contains” means “contains
1713    //   directly or indirectly”. ]
1714
1715    // Find enclosing context containing both using-directive and
1716    // nominated namespace.
1717    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1718    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1719      CommonAncestor = CommonAncestor->getParent();
1720
1721    UDir = UsingDirectiveDecl::Create(Context,
1722                                      CurContext, UsingLoc,
1723                                      NamespcLoc,
1724                                      SS.getRange(),
1725                                      (NestedNameSpecifier *)SS.getScopeRep(),
1726                                      IdentLoc,
1727                                      cast<NamespaceDecl>(NS),
1728                                      CommonAncestor);
1729    PushUsingDirective(S, UDir);
1730  } else {
1731    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1732  }
1733
1734  // FIXME: We ignore attributes for now.
1735  delete AttrList;
1736  return DeclPtrTy::make(UDir);
1737}
1738
1739void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1740  // If scope has associated entity, then using directive is at namespace
1741  // or translation unit scope. We add UsingDirectiveDecls, into
1742  // it's lookup structure.
1743  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1744    Ctx->addDecl(Context, UDir);
1745  else
1746    // Otherwise it is block-sope. using-directives will affect lookup
1747    // only to the end of scope.
1748    S->PushUsingDirective(DeclPtrTy::make(UDir));
1749}
1750
1751/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1752/// is a namespace alias, returns the namespace it points to.
1753static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1754  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1755    return AD->getNamespace();
1756  return dyn_cast_or_null<NamespaceDecl>(D);
1757}
1758
1759Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1760                                             SourceLocation NamespaceLoc,
1761                                             SourceLocation AliasLoc,
1762                                             IdentifierInfo *Alias,
1763                                             const CXXScopeSpec &SS,
1764                                             SourceLocation IdentLoc,
1765                                             IdentifierInfo *Ident) {
1766
1767  // Lookup the namespace name.
1768  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1769
1770  // Check if we have a previous declaration with the same name.
1771  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1772    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1773      // We already have an alias with the same name that points to the same
1774      // namespace, so don't create a new one.
1775      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1776        return DeclPtrTy();
1777    }
1778
1779    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1780      diag::err_redefinition_different_kind;
1781    Diag(AliasLoc, DiagID) << Alias;
1782    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1783    return DeclPtrTy();
1784  }
1785
1786  if (R.isAmbiguous()) {
1787    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1788    return DeclPtrTy();
1789  }
1790
1791  if (!R) {
1792    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1793    return DeclPtrTy();
1794  }
1795
1796  NamespaceAliasDecl *AliasDecl =
1797    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1798                               Alias, SS.getRange(),
1799                               (NestedNameSpecifier *)SS.getScopeRep(),
1800                               IdentLoc, R);
1801
1802  CurContext->addDecl(Context, AliasDecl);
1803  return DeclPtrTy::make(AliasDecl);
1804}
1805
1806void Sema::InitializeVarWithConstructor(VarDecl *VD,
1807                                        CXXConstructorDecl *Constructor,
1808                                        QualType DeclInitType,
1809                                        Expr **Exprs, unsigned NumExprs) {
1810  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
1811                                        false, Exprs, NumExprs);
1812  VD->setInit(Context, Temp);
1813}
1814
1815/// AddCXXDirectInitializerToDecl - This action is called immediately after
1816/// ActOnDeclarator, when a C++ direct initializer is present.
1817/// e.g: "int x(1);"
1818void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1819                                         SourceLocation LParenLoc,
1820                                         MultiExprArg Exprs,
1821                                         SourceLocation *CommaLocs,
1822                                         SourceLocation RParenLoc) {
1823  unsigned NumExprs = Exprs.size();
1824  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1825  Decl *RealDecl = Dcl.getAs<Decl>();
1826
1827  // If there is no declaration, there was an error parsing it.  Just ignore
1828  // the initializer.
1829  if (RealDecl == 0)
1830    return;
1831
1832  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1833  if (!VDecl) {
1834    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1835    RealDecl->setInvalidDecl();
1836    return;
1837  }
1838
1839  // FIXME: Need to handle dependent types and expressions here.
1840
1841  // We will treat direct-initialization as a copy-initialization:
1842  //    int x(1);  -as-> int x = 1;
1843  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1844  //
1845  // Clients that want to distinguish between the two forms, can check for
1846  // direct initializer using VarDecl::hasCXXDirectInitializer().
1847  // A major benefit is that clients that don't particularly care about which
1848  // exactly form was it (like the CodeGen) can handle both cases without
1849  // special case code.
1850
1851  // C++ 8.5p11:
1852  // The form of initialization (using parentheses or '=') is generally
1853  // insignificant, but does matter when the entity being initialized has a
1854  // class type.
1855  QualType DeclInitType = VDecl->getType();
1856  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1857    DeclInitType = Array->getElementType();
1858
1859  // FIXME: This isn't the right place to complete the type.
1860  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1861                          diag::err_typecheck_decl_incomplete_type)) {
1862    VDecl->setInvalidDecl();
1863    return;
1864  }
1865
1866  if (VDecl->getType()->isRecordType()) {
1867    CXXConstructorDecl *Constructor
1868      = PerformInitializationByConstructor(DeclInitType,
1869                                           (Expr **)Exprs.get(), NumExprs,
1870                                           VDecl->getLocation(),
1871                                           SourceRange(VDecl->getLocation(),
1872                                                       RParenLoc),
1873                                           VDecl->getDeclName(),
1874                                           IK_Direct);
1875    if (!Constructor)
1876      RealDecl->setInvalidDecl();
1877    else {
1878      VDecl->setCXXDirectInitializer(true);
1879      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
1880                                   (Expr**)Exprs.release(), NumExprs);
1881    }
1882    return;
1883  }
1884
1885  if (NumExprs > 1) {
1886    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1887      << SourceRange(VDecl->getLocation(), RParenLoc);
1888    RealDecl->setInvalidDecl();
1889    return;
1890  }
1891
1892  // Let clients know that initialization was done with a direct initializer.
1893  VDecl->setCXXDirectInitializer(true);
1894
1895  assert(NumExprs == 1 && "Expected 1 expression");
1896  // Set the init expression, handles conversions.
1897  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1898                       /*DirectInit=*/true);
1899}
1900
1901/// PerformInitializationByConstructor - Perform initialization by
1902/// constructor (C++ [dcl.init]p14), which may occur as part of
1903/// direct-initialization or copy-initialization. We are initializing
1904/// an object of type @p ClassType with the given arguments @p
1905/// Args. @p Loc is the location in the source code where the
1906/// initializer occurs (e.g., a declaration, member initializer,
1907/// functional cast, etc.) while @p Range covers the whole
1908/// initialization. @p InitEntity is the entity being initialized,
1909/// which may by the name of a declaration or a type. @p Kind is the
1910/// kind of initialization we're performing, which affects whether
1911/// explicit constructors will be considered. When successful, returns
1912/// the constructor that will be used to perform the initialization;
1913/// when the initialization fails, emits a diagnostic and returns
1914/// null.
1915CXXConstructorDecl *
1916Sema::PerformInitializationByConstructor(QualType ClassType,
1917                                         Expr **Args, unsigned NumArgs,
1918                                         SourceLocation Loc, SourceRange Range,
1919                                         DeclarationName InitEntity,
1920                                         InitializationKind Kind) {
1921  const RecordType *ClassRec = ClassType->getAsRecordType();
1922  assert(ClassRec && "Can only initialize a class type here");
1923
1924  // C++ [dcl.init]p14:
1925  //
1926  //   If the initialization is direct-initialization, or if it is
1927  //   copy-initialization where the cv-unqualified version of the
1928  //   source type is the same class as, or a derived class of, the
1929  //   class of the destination, constructors are considered. The
1930  //   applicable constructors are enumerated (13.3.1.3), and the
1931  //   best one is chosen through overload resolution (13.3). The
1932  //   constructor so selected is called to initialize the object,
1933  //   with the initializer expression(s) as its argument(s). If no
1934  //   constructor applies, or the overload resolution is ambiguous,
1935  //   the initialization is ill-formed.
1936  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1937  OverloadCandidateSet CandidateSet;
1938
1939  // Add constructors to the overload set.
1940  DeclarationName ConstructorName
1941    = Context.DeclarationNames.getCXXConstructorName(
1942                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1943  DeclContext::lookup_const_iterator Con, ConEnd;
1944  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
1945       Con != ConEnd; ++Con) {
1946    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1947    if ((Kind == IK_Direct) ||
1948        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1949        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1950      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1951  }
1952
1953  // FIXME: When we decide not to synthesize the implicitly-declared
1954  // constructors, we'll need to make them appear here.
1955
1956  OverloadCandidateSet::iterator Best;
1957  switch (BestViableFunction(CandidateSet, Best)) {
1958  case OR_Success:
1959    // We found a constructor. Return it.
1960    return cast<CXXConstructorDecl>(Best->Function);
1961
1962  case OR_No_Viable_Function:
1963    if (InitEntity)
1964      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1965        << InitEntity << Range;
1966    else
1967      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1968        << ClassType << Range;
1969    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1970    return 0;
1971
1972  case OR_Ambiguous:
1973    if (InitEntity)
1974      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1975    else
1976      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1977    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1978    return 0;
1979
1980  case OR_Deleted:
1981    if (InitEntity)
1982      Diag(Loc, diag::err_ovl_deleted_init)
1983        << Best->Function->isDeleted()
1984        << InitEntity << Range;
1985    else
1986      Diag(Loc, diag::err_ovl_deleted_init)
1987        << Best->Function->isDeleted()
1988        << InitEntity << Range;
1989    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1990    return 0;
1991  }
1992
1993  return 0;
1994}
1995
1996/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1997/// determine whether they are reference-related,
1998/// reference-compatible, reference-compatible with added
1999/// qualification, or incompatible, for use in C++ initialization by
2000/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2001/// type, and the first type (T1) is the pointee type of the reference
2002/// type being initialized.
2003Sema::ReferenceCompareResult
2004Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2005                                   bool& DerivedToBase) {
2006  assert(!T1->isReferenceType() &&
2007    "T1 must be the pointee type of the reference type");
2008  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2009
2010  T1 = Context.getCanonicalType(T1);
2011  T2 = Context.getCanonicalType(T2);
2012  QualType UnqualT1 = T1.getUnqualifiedType();
2013  QualType UnqualT2 = T2.getUnqualifiedType();
2014
2015  // C++ [dcl.init.ref]p4:
2016  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2017  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2018  //   T1 is a base class of T2.
2019  if (UnqualT1 == UnqualT2)
2020    DerivedToBase = false;
2021  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2022    DerivedToBase = true;
2023  else
2024    return Ref_Incompatible;
2025
2026  // At this point, we know that T1 and T2 are reference-related (at
2027  // least).
2028
2029  // C++ [dcl.init.ref]p4:
2030  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2031  //   reference-related to T2 and cv1 is the same cv-qualification
2032  //   as, or greater cv-qualification than, cv2. For purposes of
2033  //   overload resolution, cases for which cv1 is greater
2034  //   cv-qualification than cv2 are identified as
2035  //   reference-compatible with added qualification (see 13.3.3.2).
2036  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2037    return Ref_Compatible;
2038  else if (T1.isMoreQualifiedThan(T2))
2039    return Ref_Compatible_With_Added_Qualification;
2040  else
2041    return Ref_Related;
2042}
2043
2044/// CheckReferenceInit - Check the initialization of a reference
2045/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2046/// the initializer (either a simple initializer or an initializer
2047/// list), and DeclType is the type of the declaration. When ICS is
2048/// non-null, this routine will compute the implicit conversion
2049/// sequence according to C++ [over.ics.ref] and will not produce any
2050/// diagnostics; when ICS is null, it will emit diagnostics when any
2051/// errors are found. Either way, a return value of true indicates
2052/// that there was a failure, a return value of false indicates that
2053/// the reference initialization succeeded.
2054///
2055/// When @p SuppressUserConversions, user-defined conversions are
2056/// suppressed.
2057/// When @p AllowExplicit, we also permit explicit user-defined
2058/// conversion functions.
2059/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2060bool
2061Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2062                         ImplicitConversionSequence *ICS,
2063                         bool SuppressUserConversions,
2064                         bool AllowExplicit, bool ForceRValue) {
2065  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2066
2067  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2068  QualType T2 = Init->getType();
2069
2070  // If the initializer is the address of an overloaded function, try
2071  // to resolve the overloaded function. If all goes well, T2 is the
2072  // type of the resulting function.
2073  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2074    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2075                                                          ICS != 0);
2076    if (Fn) {
2077      // Since we're performing this reference-initialization for
2078      // real, update the initializer with the resulting function.
2079      if (!ICS) {
2080        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2081          return true;
2082
2083        FixOverloadedFunctionReference(Init, Fn);
2084      }
2085
2086      T2 = Fn->getType();
2087    }
2088  }
2089
2090  // Compute some basic properties of the types and the initializer.
2091  bool isRValRef = DeclType->isRValueReferenceType();
2092  bool DerivedToBase = false;
2093  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2094                                                  Init->isLvalue(Context);
2095  ReferenceCompareResult RefRelationship
2096    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2097
2098  // Most paths end in a failed conversion.
2099  if (ICS)
2100    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2101
2102  // C++ [dcl.init.ref]p5:
2103  //   A reference to type “cv1 T1” is initialized by an expression
2104  //   of type “cv2 T2” as follows:
2105
2106  //     -- If the initializer expression
2107
2108  // Rvalue references cannot bind to lvalues (N2812).
2109  // There is absolutely no situation where they can. In particular, note that
2110  // this is ill-formed, even if B has a user-defined conversion to A&&:
2111  //   B b;
2112  //   A&& r = b;
2113  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2114    if (!ICS)
2115      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2116        << Init->getSourceRange();
2117    return true;
2118  }
2119
2120  bool BindsDirectly = false;
2121  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2122  //          reference-compatible with “cv2 T2,” or
2123  //
2124  // Note that the bit-field check is skipped if we are just computing
2125  // the implicit conversion sequence (C++ [over.best.ics]p2).
2126  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2127      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2128    BindsDirectly = true;
2129
2130    if (ICS) {
2131      // C++ [over.ics.ref]p1:
2132      //   When a parameter of reference type binds directly (8.5.3)
2133      //   to an argument expression, the implicit conversion sequence
2134      //   is the identity conversion, unless the argument expression
2135      //   has a type that is a derived class of the parameter type,
2136      //   in which case the implicit conversion sequence is a
2137      //   derived-to-base Conversion (13.3.3.1).
2138      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2139      ICS->Standard.First = ICK_Identity;
2140      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2141      ICS->Standard.Third = ICK_Identity;
2142      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2143      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2144      ICS->Standard.ReferenceBinding = true;
2145      ICS->Standard.DirectBinding = true;
2146      ICS->Standard.RRefBinding = false;
2147      ICS->Standard.CopyConstructor = 0;
2148
2149      // Nothing more to do: the inaccessibility/ambiguity check for
2150      // derived-to-base conversions is suppressed when we're
2151      // computing the implicit conversion sequence (C++
2152      // [over.best.ics]p2).
2153      return false;
2154    } else {
2155      // Perform the conversion.
2156      // FIXME: Binding to a subobject of the lvalue is going to require more
2157      // AST annotation than this.
2158      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2159    }
2160  }
2161
2162  //       -- has a class type (i.e., T2 is a class type) and can be
2163  //          implicitly converted to an lvalue of type “cv3 T3,”
2164  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2165  //          92) (this conversion is selected by enumerating the
2166  //          applicable conversion functions (13.3.1.6) and choosing
2167  //          the best one through overload resolution (13.3)),
2168  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2169    // FIXME: Look for conversions in base classes!
2170    CXXRecordDecl *T2RecordDecl
2171      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2172
2173    OverloadCandidateSet CandidateSet;
2174    OverloadedFunctionDecl *Conversions
2175      = T2RecordDecl->getConversionFunctions();
2176    for (OverloadedFunctionDecl::function_iterator Func
2177           = Conversions->function_begin();
2178         Func != Conversions->function_end(); ++Func) {
2179      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2180
2181      // If the conversion function doesn't return a reference type,
2182      // it can't be considered for this conversion.
2183      if (Conv->getConversionType()->isLValueReferenceType() &&
2184          (AllowExplicit || !Conv->isExplicit()))
2185        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2186    }
2187
2188    OverloadCandidateSet::iterator Best;
2189    switch (BestViableFunction(CandidateSet, Best)) {
2190    case OR_Success:
2191      // This is a direct binding.
2192      BindsDirectly = true;
2193
2194      if (ICS) {
2195        // C++ [over.ics.ref]p1:
2196        //
2197        //   [...] If the parameter binds directly to the result of
2198        //   applying a conversion function to the argument
2199        //   expression, the implicit conversion sequence is a
2200        //   user-defined conversion sequence (13.3.3.1.2), with the
2201        //   second standard conversion sequence either an identity
2202        //   conversion or, if the conversion function returns an
2203        //   entity of a type that is a derived class of the parameter
2204        //   type, a derived-to-base Conversion.
2205        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2206        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2207        ICS->UserDefined.After = Best->FinalConversion;
2208        ICS->UserDefined.ConversionFunction = Best->Function;
2209        assert(ICS->UserDefined.After.ReferenceBinding &&
2210               ICS->UserDefined.After.DirectBinding &&
2211               "Expected a direct reference binding!");
2212        return false;
2213      } else {
2214        // Perform the conversion.
2215        // FIXME: Binding to a subobject of the lvalue is going to require more
2216        // AST annotation than this.
2217        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2218      }
2219      break;
2220
2221    case OR_Ambiguous:
2222      assert(false && "Ambiguous reference binding conversions not implemented.");
2223      return true;
2224
2225    case OR_No_Viable_Function:
2226    case OR_Deleted:
2227      // There was no suitable conversion, or we found a deleted
2228      // conversion; continue with other checks.
2229      break;
2230    }
2231  }
2232
2233  if (BindsDirectly) {
2234    // C++ [dcl.init.ref]p4:
2235    //   [...] In all cases where the reference-related or
2236    //   reference-compatible relationship of two types is used to
2237    //   establish the validity of a reference binding, and T1 is a
2238    //   base class of T2, a program that necessitates such a binding
2239    //   is ill-formed if T1 is an inaccessible (clause 11) or
2240    //   ambiguous (10.2) base class of T2.
2241    //
2242    // Note that we only check this condition when we're allowed to
2243    // complain about errors, because we should not be checking for
2244    // ambiguity (or inaccessibility) unless the reference binding
2245    // actually happens.
2246    if (DerivedToBase)
2247      return CheckDerivedToBaseConversion(T2, T1,
2248                                          Init->getSourceRange().getBegin(),
2249                                          Init->getSourceRange());
2250    else
2251      return false;
2252  }
2253
2254  //     -- Otherwise, the reference shall be to a non-volatile const
2255  //        type (i.e., cv1 shall be const), or the reference shall be an
2256  //        rvalue reference and the initializer expression shall be an rvalue.
2257  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2258    if (!ICS)
2259      Diag(Init->getSourceRange().getBegin(),
2260           diag::err_not_reference_to_const_init)
2261        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2262        << T2 << Init->getSourceRange();
2263    return true;
2264  }
2265
2266  //       -- If the initializer expression is an rvalue, with T2 a
2267  //          class type, and “cv1 T1” is reference-compatible with
2268  //          “cv2 T2,” the reference is bound in one of the
2269  //          following ways (the choice is implementation-defined):
2270  //
2271  //          -- The reference is bound to the object represented by
2272  //             the rvalue (see 3.10) or to a sub-object within that
2273  //             object.
2274  //
2275  //          -- A temporary of type “cv1 T2” [sic] is created, and
2276  //             a constructor is called to copy the entire rvalue
2277  //             object into the temporary. The reference is bound to
2278  //             the temporary or to a sub-object within the
2279  //             temporary.
2280  //
2281  //          The constructor that would be used to make the copy
2282  //          shall be callable whether or not the copy is actually
2283  //          done.
2284  //
2285  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2286  // freedom, so we will always take the first option and never build
2287  // a temporary in this case. FIXME: We will, however, have to check
2288  // for the presence of a copy constructor in C++98/03 mode.
2289  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2290      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2291    if (ICS) {
2292      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2293      ICS->Standard.First = ICK_Identity;
2294      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2295      ICS->Standard.Third = ICK_Identity;
2296      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2297      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2298      ICS->Standard.ReferenceBinding = true;
2299      ICS->Standard.DirectBinding = false;
2300      ICS->Standard.RRefBinding = isRValRef;
2301      ICS->Standard.CopyConstructor = 0;
2302    } else {
2303      // FIXME: Binding to a subobject of the rvalue is going to require more
2304      // AST annotation than this.
2305      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2306    }
2307    return false;
2308  }
2309
2310  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2311  //          initialized from the initializer expression using the
2312  //          rules for a non-reference copy initialization (8.5). The
2313  //          reference is then bound to the temporary. If T1 is
2314  //          reference-related to T2, cv1 must be the same
2315  //          cv-qualification as, or greater cv-qualification than,
2316  //          cv2; otherwise, the program is ill-formed.
2317  if (RefRelationship == Ref_Related) {
2318    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2319    // we would be reference-compatible or reference-compatible with
2320    // added qualification. But that wasn't the case, so the reference
2321    // initialization fails.
2322    if (!ICS)
2323      Diag(Init->getSourceRange().getBegin(),
2324           diag::err_reference_init_drops_quals)
2325        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2326        << T2 << Init->getSourceRange();
2327    return true;
2328  }
2329
2330  // If at least one of the types is a class type, the types are not
2331  // related, and we aren't allowed any user conversions, the
2332  // reference binding fails. This case is important for breaking
2333  // recursion, since TryImplicitConversion below will attempt to
2334  // create a temporary through the use of a copy constructor.
2335  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2336      (T1->isRecordType() || T2->isRecordType())) {
2337    if (!ICS)
2338      Diag(Init->getSourceRange().getBegin(),
2339           diag::err_typecheck_convert_incompatible)
2340        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2341    return true;
2342  }
2343
2344  // Actually try to convert the initializer to T1.
2345  if (ICS) {
2346    // C++ [over.ics.ref]p2:
2347    //
2348    //   When a parameter of reference type is not bound directly to
2349    //   an argument expression, the conversion sequence is the one
2350    //   required to convert the argument expression to the
2351    //   underlying type of the reference according to
2352    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2353    //   to copy-initializing a temporary of the underlying type with
2354    //   the argument expression. Any difference in top-level
2355    //   cv-qualification is subsumed by the initialization itself
2356    //   and does not constitute a conversion.
2357    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2358    // Of course, that's still a reference binding.
2359    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2360      ICS->Standard.ReferenceBinding = true;
2361      ICS->Standard.RRefBinding = isRValRef;
2362    } else if(ICS->ConversionKind ==
2363              ImplicitConversionSequence::UserDefinedConversion) {
2364      ICS->UserDefined.After.ReferenceBinding = true;
2365      ICS->UserDefined.After.RRefBinding = isRValRef;
2366    }
2367    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2368  } else {
2369    return PerformImplicitConversion(Init, T1, "initializing");
2370  }
2371}
2372
2373/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2374/// of this overloaded operator is well-formed. If so, returns false;
2375/// otherwise, emits appropriate diagnostics and returns true.
2376bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2377  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2378         "Expected an overloaded operator declaration");
2379
2380  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2381
2382  // C++ [over.oper]p5:
2383  //   The allocation and deallocation functions, operator new,
2384  //   operator new[], operator delete and operator delete[], are
2385  //   described completely in 3.7.3. The attributes and restrictions
2386  //   found in the rest of this subclause do not apply to them unless
2387  //   explicitly stated in 3.7.3.
2388  // FIXME: Write a separate routine for checking this. For now, just allow it.
2389  if (Op == OO_New || Op == OO_Array_New ||
2390      Op == OO_Delete || Op == OO_Array_Delete)
2391    return false;
2392
2393  // C++ [over.oper]p6:
2394  //   An operator function shall either be a non-static member
2395  //   function or be a non-member function and have at least one
2396  //   parameter whose type is a class, a reference to a class, an
2397  //   enumeration, or a reference to an enumeration.
2398  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2399    if (MethodDecl->isStatic())
2400      return Diag(FnDecl->getLocation(),
2401                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2402  } else {
2403    bool ClassOrEnumParam = false;
2404    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2405                                   ParamEnd = FnDecl->param_end();
2406         Param != ParamEnd; ++Param) {
2407      QualType ParamType = (*Param)->getType().getNonReferenceType();
2408      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2409        ClassOrEnumParam = true;
2410        break;
2411      }
2412    }
2413
2414    if (!ClassOrEnumParam)
2415      return Diag(FnDecl->getLocation(),
2416                  diag::err_operator_overload_needs_class_or_enum)
2417        << FnDecl->getDeclName();
2418  }
2419
2420  // C++ [over.oper]p8:
2421  //   An operator function cannot have default arguments (8.3.6),
2422  //   except where explicitly stated below.
2423  //
2424  // Only the function-call operator allows default arguments
2425  // (C++ [over.call]p1).
2426  if (Op != OO_Call) {
2427    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2428         Param != FnDecl->param_end(); ++Param) {
2429      if ((*Param)->hasUnparsedDefaultArg())
2430        return Diag((*Param)->getLocation(),
2431                    diag::err_operator_overload_default_arg)
2432          << FnDecl->getDeclName();
2433      else if (Expr *DefArg = (*Param)->getDefaultArg())
2434        return Diag((*Param)->getLocation(),
2435                    diag::err_operator_overload_default_arg)
2436          << FnDecl->getDeclName() << DefArg->getSourceRange();
2437    }
2438  }
2439
2440  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2441    { false, false, false }
2442#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2443    , { Unary, Binary, MemberOnly }
2444#include "clang/Basic/OperatorKinds.def"
2445  };
2446
2447  bool CanBeUnaryOperator = OperatorUses[Op][0];
2448  bool CanBeBinaryOperator = OperatorUses[Op][1];
2449  bool MustBeMemberOperator = OperatorUses[Op][2];
2450
2451  // C++ [over.oper]p8:
2452  //   [...] Operator functions cannot have more or fewer parameters
2453  //   than the number required for the corresponding operator, as
2454  //   described in the rest of this subclause.
2455  unsigned NumParams = FnDecl->getNumParams()
2456                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2457  if (Op != OO_Call &&
2458      ((NumParams == 1 && !CanBeUnaryOperator) ||
2459       (NumParams == 2 && !CanBeBinaryOperator) ||
2460       (NumParams < 1) || (NumParams > 2))) {
2461    // We have the wrong number of parameters.
2462    unsigned ErrorKind;
2463    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2464      ErrorKind = 2;  // 2 -> unary or binary.
2465    } else if (CanBeUnaryOperator) {
2466      ErrorKind = 0;  // 0 -> unary
2467    } else {
2468      assert(CanBeBinaryOperator &&
2469             "All non-call overloaded operators are unary or binary!");
2470      ErrorKind = 1;  // 1 -> binary
2471    }
2472
2473    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2474      << FnDecl->getDeclName() << NumParams << ErrorKind;
2475  }
2476
2477  // Overloaded operators other than operator() cannot be variadic.
2478  if (Op != OO_Call &&
2479      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2480    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2481      << FnDecl->getDeclName();
2482  }
2483
2484  // Some operators must be non-static member functions.
2485  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2486    return Diag(FnDecl->getLocation(),
2487                diag::err_operator_overload_must_be_member)
2488      << FnDecl->getDeclName();
2489  }
2490
2491  // C++ [over.inc]p1:
2492  //   The user-defined function called operator++ implements the
2493  //   prefix and postfix ++ operator. If this function is a member
2494  //   function with no parameters, or a non-member function with one
2495  //   parameter of class or enumeration type, it defines the prefix
2496  //   increment operator ++ for objects of that type. If the function
2497  //   is a member function with one parameter (which shall be of type
2498  //   int) or a non-member function with two parameters (the second
2499  //   of which shall be of type int), it defines the postfix
2500  //   increment operator ++ for objects of that type.
2501  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2502    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2503    bool ParamIsInt = false;
2504    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2505      ParamIsInt = BT->getKind() == BuiltinType::Int;
2506
2507    if (!ParamIsInt)
2508      return Diag(LastParam->getLocation(),
2509                  diag::err_operator_overload_post_incdec_must_be_int)
2510        << LastParam->getType() << (Op == OO_MinusMinus);
2511  }
2512
2513  // Notify the class if it got an assignment operator.
2514  if (Op == OO_Equal) {
2515    // Would have returned earlier otherwise.
2516    assert(isa<CXXMethodDecl>(FnDecl) &&
2517      "Overloaded = not member, but not filtered.");
2518    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2519    Method->getParent()->addedAssignmentOperator(Context, Method);
2520  }
2521
2522  return false;
2523}
2524
2525/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2526/// linkage specification, including the language and (if present)
2527/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2528/// the location of the language string literal, which is provided
2529/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2530/// the '{' brace. Otherwise, this linkage specification does not
2531/// have any braces.
2532Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2533                                                     SourceLocation ExternLoc,
2534                                                     SourceLocation LangLoc,
2535                                                     const char *Lang,
2536                                                     unsigned StrSize,
2537                                                     SourceLocation LBraceLoc) {
2538  LinkageSpecDecl::LanguageIDs Language;
2539  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2540    Language = LinkageSpecDecl::lang_c;
2541  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2542    Language = LinkageSpecDecl::lang_cxx;
2543  else {
2544    Diag(LangLoc, diag::err_bad_language);
2545    return DeclPtrTy();
2546  }
2547
2548  // FIXME: Add all the various semantics of linkage specifications
2549
2550  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2551                                               LangLoc, Language,
2552                                               LBraceLoc.isValid());
2553  CurContext->addDecl(Context, D);
2554  PushDeclContext(S, D);
2555  return DeclPtrTy::make(D);
2556}
2557
2558/// ActOnFinishLinkageSpecification - Completely the definition of
2559/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2560/// valid, it's the position of the closing '}' brace in a linkage
2561/// specification that uses braces.
2562Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2563                                                      DeclPtrTy LinkageSpec,
2564                                                      SourceLocation RBraceLoc) {
2565  if (LinkageSpec)
2566    PopDeclContext();
2567  return LinkageSpec;
2568}
2569
2570/// \brief Perform semantic analysis for the variable declaration that
2571/// occurs within a C++ catch clause, returning the newly-created
2572/// variable.
2573VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2574                                         IdentifierInfo *Name,
2575                                         SourceLocation Loc,
2576                                         SourceRange Range) {
2577  bool Invalid = false;
2578
2579  // Arrays and functions decay.
2580  if (ExDeclType->isArrayType())
2581    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2582  else if (ExDeclType->isFunctionType())
2583    ExDeclType = Context.getPointerType(ExDeclType);
2584
2585  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2586  // The exception-declaration shall not denote a pointer or reference to an
2587  // incomplete type, other than [cv] void*.
2588  // N2844 forbids rvalue references.
2589  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2590    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2591    Invalid = true;
2592  }
2593
2594  QualType BaseType = ExDeclType;
2595  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2596  unsigned DK = diag::err_catch_incomplete;
2597  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2598    BaseType = Ptr->getPointeeType();
2599    Mode = 1;
2600    DK = diag::err_catch_incomplete_ptr;
2601  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2602    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2603    BaseType = Ref->getPointeeType();
2604    Mode = 2;
2605    DK = diag::err_catch_incomplete_ref;
2606  }
2607  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2608      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2609    Invalid = true;
2610
2611  if (!Invalid && !ExDeclType->isDependentType() &&
2612      RequireNonAbstractType(Loc, ExDeclType,
2613                             diag::err_abstract_type_in_decl,
2614                             AbstractVariableType))
2615    Invalid = true;
2616
2617  // FIXME: Need to test for ability to copy-construct and destroy the
2618  // exception variable.
2619
2620  // FIXME: Need to check for abstract classes.
2621
2622  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2623                                    Name, ExDeclType, VarDecl::None,
2624                                    Range.getBegin());
2625
2626  if (Invalid)
2627    ExDecl->setInvalidDecl();
2628
2629  return ExDecl;
2630}
2631
2632/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2633/// handler.
2634Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2635  QualType ExDeclType = GetTypeForDeclarator(D, S);
2636
2637  bool Invalid = D.isInvalidType();
2638  IdentifierInfo *II = D.getIdentifier();
2639  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2640    // The scope should be freshly made just for us. There is just no way
2641    // it contains any previous declaration.
2642    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2643    if (PrevDecl->isTemplateParameter()) {
2644      // Maybe we will complain about the shadowed template parameter.
2645      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2646    }
2647  }
2648
2649  if (D.getCXXScopeSpec().isSet() && !Invalid) {
2650    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2651      << D.getCXXScopeSpec().getRange();
2652    Invalid = true;
2653  }
2654
2655  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
2656                                              D.getIdentifier(),
2657                                              D.getIdentifierLoc(),
2658                                            D.getDeclSpec().getSourceRange());
2659
2660  if (Invalid)
2661    ExDecl->setInvalidDecl();
2662
2663  // Add the exception declaration into this scope.
2664  if (II)
2665    PushOnScopeChains(ExDecl, S);
2666  else
2667    CurContext->addDecl(Context, ExDecl);
2668
2669  ProcessDeclAttributes(S, ExDecl, D);
2670  return DeclPtrTy::make(ExDecl);
2671}
2672
2673Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2674                                                   ExprArg assertexpr,
2675                                                   ExprArg assertmessageexpr) {
2676  Expr *AssertExpr = (Expr *)assertexpr.get();
2677  StringLiteral *AssertMessage =
2678    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2679
2680  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2681    llvm::APSInt Value(32);
2682    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2683      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2684        AssertExpr->getSourceRange();
2685      return DeclPtrTy();
2686    }
2687
2688    if (Value == 0) {
2689      std::string str(AssertMessage->getStrData(),
2690                      AssertMessage->getByteLength());
2691      Diag(AssertLoc, diag::err_static_assert_failed)
2692        << str << AssertExpr->getSourceRange();
2693    }
2694  }
2695
2696  assertexpr.release();
2697  assertmessageexpr.release();
2698  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2699                                        AssertExpr, AssertMessage);
2700
2701  CurContext->addDecl(Context, Decl);
2702  return DeclPtrTy::make(Decl);
2703}
2704
2705bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
2706  if (!(S->getFlags() & Scope::ClassScope)) {
2707    Diag(FriendLoc, diag::err_friend_decl_outside_class);
2708    return true;
2709  }
2710
2711  return false;
2712}
2713
2714void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2715  Decl *Dcl = dcl.getAs<Decl>();
2716  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2717  if (!Fn) {
2718    Diag(DelLoc, diag::err_deleted_non_function);
2719    return;
2720  }
2721  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2722    Diag(DelLoc, diag::err_deleted_decl_not_first);
2723    Diag(Prev->getLocation(), diag::note_previous_declaration);
2724    // If the declaration wasn't the first, we delete the function anyway for
2725    // recovery.
2726  }
2727  Fn->setDeleted();
2728}
2729
2730static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
2731  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
2732       ++CI) {
2733    Stmt *SubStmt = *CI;
2734    if (!SubStmt)
2735      continue;
2736    if (isa<ReturnStmt>(SubStmt))
2737      Self.Diag(SubStmt->getSourceRange().getBegin(),
2738           diag::err_return_in_constructor_handler);
2739    if (!isa<Expr>(SubStmt))
2740      SearchForReturnInStmt(Self, SubStmt);
2741  }
2742}
2743
2744void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
2745  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
2746    CXXCatchStmt *Handler = TryBlock->getHandler(I);
2747    SearchForReturnInStmt(*this, Handler);
2748  }
2749}
2750
2751bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
2752                                             const CXXMethodDecl *Old) {
2753  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
2754  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
2755
2756  QualType CNewTy = Context.getCanonicalType(NewTy);
2757  QualType COldTy = Context.getCanonicalType(OldTy);
2758
2759  if (CNewTy == COldTy &&
2760      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
2761    return false;
2762
2763  // Check if the return types are covariant
2764  QualType NewClassTy, OldClassTy;
2765
2766  /// Both types must be pointers or references to classes.
2767  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
2768    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
2769      NewClassTy = NewPT->getPointeeType();
2770      OldClassTy = OldPT->getPointeeType();
2771    }
2772  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
2773    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
2774      NewClassTy = NewRT->getPointeeType();
2775      OldClassTy = OldRT->getPointeeType();
2776    }
2777  }
2778
2779  // The return types aren't either both pointers or references to a class type.
2780  if (NewClassTy.isNull()) {
2781    Diag(New->getLocation(),
2782         diag::err_different_return_type_for_overriding_virtual_function)
2783      << New->getDeclName() << NewTy << OldTy;
2784    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2785
2786    return true;
2787  }
2788
2789  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
2790    // Check if the new class derives from the old class.
2791    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
2792      Diag(New->getLocation(),
2793           diag::err_covariant_return_not_derived)
2794      << New->getDeclName() << NewTy << OldTy;
2795      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2796      return true;
2797    }
2798
2799    // Check if we the conversion from derived to base is valid.
2800    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
2801                      diag::err_covariant_return_inaccessible_base,
2802                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
2803                      // FIXME: Should this point to the return type?
2804                      New->getLocation(), SourceRange(), New->getDeclName())) {
2805      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2806      return true;
2807    }
2808  }
2809
2810  // The qualifiers of the return types must be the same.
2811  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
2812    Diag(New->getLocation(),
2813         diag::err_covariant_return_type_different_qualifications)
2814    << New->getDeclName() << NewTy << OldTy;
2815    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2816    return true;
2817  };
2818
2819
2820  // The new class type must have the same or less qualifiers as the old type.
2821  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
2822    Diag(New->getLocation(),
2823         diag::err_covariant_return_type_class_type_more_qualified)
2824    << New->getDeclName() << NewTy << OldTy;
2825    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2826    return true;
2827  };
2828
2829  return false;
2830}
2831
2832/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
2833/// initializer for the declaration 'Dcl'.
2834/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
2835/// static data member of class X, names should be looked up in the scope of
2836/// class X.
2837void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
2838  Decl *D = Dcl.getAs<Decl>();
2839  // If there is no declaration, there was an error parsing it.
2840  if (D == 0)
2841    return;
2842
2843  // Check whether it is a declaration with a nested name specifier like
2844  // int foo::bar;
2845  if (!D->isOutOfLine())
2846    return;
2847
2848  // C++ [basic.lookup.unqual]p13
2849  //
2850  // A name used in the definition of a static data member of class X
2851  // (after the qualified-id of the static member) is looked up as if the name
2852  // was used in a member function of X.
2853
2854  // Change current context into the context of the initializing declaration.
2855
2856  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
2857  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
2858  CurContext = D->getDeclContext();
2859  assert(CurContext && "No context?");
2860  S->setEntity(CurContext);
2861}
2862
2863/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
2864/// initializer for the declaration 'Dcl'.
2865void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
2866  Decl *D = Dcl.getAs<Decl>();
2867  // If there is no declaration, there was an error parsing it.
2868  if (D == 0)
2869    return;
2870
2871  // Check whether it is a declaration with a nested name specifier like
2872  // int foo::bar;
2873  if (!D->isOutOfLine())
2874    return;
2875
2876  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
2877  S->setEntity(PreDeclaratorDC);
2878  PreDeclaratorDC = 0;
2879
2880  // Reset CurContext to the nearest enclosing context.
2881  while (!S->getEntity() && S->getParent())
2882    S = S->getParent();
2883  CurContext = static_cast<DeclContext*>(S->getEntity());
2884  assert(CurContext && "No context?");
2885}
2886