SemaDeclCXX.cpp revision 114a297ef02a722b3afcd719210c060811d431e0
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      // We don't want access-control diagnostics here.
1080      R.suppressDiagnostics();
1081
1082      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1083        bool NotUnknownSpecialization = false;
1084        DeclContext *DC = computeDeclContext(SS, false);
1085        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1086          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1087
1088        if (!NotUnknownSpecialization) {
1089          // When the scope specifier can refer to a member of an unknown
1090          // specialization, we take it as a type name.
1091          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1092                                       *MemberOrBase, SS.getRange());
1093          if (BaseType.isNull())
1094            return true;
1095
1096          R.clear();
1097        }
1098      }
1099
1100      // If no results were found, try to correct typos.
1101      if (R.empty() && BaseType.isNull() &&
1102          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1103          R.isSingleResult()) {
1104        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1105          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1106            // We have found a non-static data member with a similar
1107            // name to what was typed; complain and initialize that
1108            // member.
1109            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1110              << MemberOrBase << true << R.getLookupName()
1111              << FixItHint::CreateReplacement(R.getNameLoc(),
1112                                              R.getLookupName().getAsString());
1113            Diag(Member->getLocation(), diag::note_previous_decl)
1114              << Member->getDeclName();
1115
1116            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1117                                          LParenLoc, RParenLoc);
1118          }
1119        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1120          const CXXBaseSpecifier *DirectBaseSpec;
1121          const CXXBaseSpecifier *VirtualBaseSpec;
1122          if (FindBaseInitializer(*this, ClassDecl,
1123                                  Context.getTypeDeclType(Type),
1124                                  DirectBaseSpec, VirtualBaseSpec)) {
1125            // We have found a direct or virtual base class with a
1126            // similar name to what was typed; complain and initialize
1127            // that base class.
1128            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1129              << MemberOrBase << false << R.getLookupName()
1130              << FixItHint::CreateReplacement(R.getNameLoc(),
1131                                              R.getLookupName().getAsString());
1132
1133            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1134                                                             : VirtualBaseSpec;
1135            Diag(BaseSpec->getSourceRange().getBegin(),
1136                 diag::note_base_class_specified_here)
1137              << BaseSpec->getType()
1138              << BaseSpec->getSourceRange();
1139
1140            TyD = Type;
1141          }
1142        }
1143      }
1144
1145      if (!TyD && BaseType.isNull()) {
1146        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1147          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1148        return true;
1149      }
1150    }
1151
1152    if (BaseType.isNull()) {
1153      BaseType = Context.getTypeDeclType(TyD);
1154      if (SS.isSet()) {
1155        NestedNameSpecifier *Qualifier =
1156          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1157
1158        // FIXME: preserve source range information
1159        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1160      }
1161    }
1162  }
1163
1164  if (!TInfo)
1165    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1166
1167  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1168                              LParenLoc, RParenLoc, ClassDecl);
1169}
1170
1171/// Checks an initializer expression for use of uninitialized fields, such as
1172/// containing the field that is being initialized. Returns true if there is an
1173/// uninitialized field was used an updates the SourceLocation parameter; false
1174/// otherwise.
1175static bool InitExprContainsUninitializedFields(const Stmt* S,
1176                                                const FieldDecl* LhsField,
1177                                                SourceLocation* L) {
1178  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1179  if (ME) {
1180    const NamedDecl* RhsField = ME->getMemberDecl();
1181    if (RhsField == LhsField) {
1182      // Initializing a field with itself. Throw a warning.
1183      // But wait; there are exceptions!
1184      // Exception #1:  The field may not belong to this record.
1185      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1186      const Expr* base = ME->getBase();
1187      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1188        // Even though the field matches, it does not belong to this record.
1189        return false;
1190      }
1191      // None of the exceptions triggered; return true to indicate an
1192      // uninitialized field was used.
1193      *L = ME->getMemberLoc();
1194      return true;
1195    }
1196  }
1197  bool found = false;
1198  for (Stmt::const_child_iterator it = S->child_begin();
1199       it != S->child_end() && found == false;
1200       ++it) {
1201    if (isa<CallExpr>(S)) {
1202      // Do not descend into function calls or constructors, as the use
1203      // of an uninitialized field may be valid. One would have to inspect
1204      // the contents of the function/ctor to determine if it is safe or not.
1205      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1206      // may be safe, depending on what the function/ctor does.
1207      continue;
1208    }
1209    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1210  }
1211  return found;
1212}
1213
1214Sema::MemInitResult
1215Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1216                             unsigned NumArgs, SourceLocation IdLoc,
1217                             SourceLocation LParenLoc,
1218                             SourceLocation RParenLoc) {
1219  // Diagnose value-uses of fields to initialize themselves, e.g.
1220  //   foo(foo)
1221  // where foo is not also a parameter to the constructor.
1222  // TODO: implement -Wuninitialized and fold this into that framework.
1223  for (unsigned i = 0; i < NumArgs; ++i) {
1224    SourceLocation L;
1225    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1226      // FIXME: Return true in the case when other fields are used before being
1227      // uninitialized. For example, let this field be the i'th field. When
1228      // initializing the i'th field, throw a warning if any of the >= i'th
1229      // fields are used, as they are not yet initialized.
1230      // Right now we are only handling the case where the i'th field uses
1231      // itself in its initializer.
1232      Diag(L, diag::warn_field_is_uninit);
1233    }
1234  }
1235
1236  bool HasDependentArg = false;
1237  for (unsigned i = 0; i < NumArgs; i++)
1238    HasDependentArg |= Args[i]->isTypeDependent();
1239
1240  QualType FieldType = Member->getType();
1241  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1242    FieldType = Array->getElementType();
1243  if (FieldType->isDependentType() || HasDependentArg) {
1244    // Can't check initialization for a member of dependent type or when
1245    // any of the arguments are type-dependent expressions.
1246    OwningExprResult Init
1247      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1248                                          RParenLoc));
1249
1250    // Erase any temporaries within this evaluation context; we're not
1251    // going to track them in the AST, since we'll be rebuilding the
1252    // ASTs during template instantiation.
1253    ExprTemporaries.erase(
1254              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1255                          ExprTemporaries.end());
1256
1257    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1258                                                    LParenLoc,
1259                                                    Init.takeAs<Expr>(),
1260                                                    RParenLoc);
1261
1262  }
1263
1264  if (Member->isInvalidDecl())
1265    return true;
1266
1267  // Initialize the member.
1268  InitializedEntity MemberEntity =
1269    InitializedEntity::InitializeMember(Member, 0);
1270  InitializationKind Kind =
1271    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1272
1273  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1274
1275  OwningExprResult MemberInit =
1276    InitSeq.Perform(*this, MemberEntity, Kind,
1277                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1278  if (MemberInit.isInvalid())
1279    return true;
1280
1281  // C++0x [class.base.init]p7:
1282  //   The initialization of each base and member constitutes a
1283  //   full-expression.
1284  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1285  if (MemberInit.isInvalid())
1286    return true;
1287
1288  // If we are in a dependent context, template instantiation will
1289  // perform this type-checking again. Just save the arguments that we
1290  // received in a ParenListExpr.
1291  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1292  // of the information that we have about the member
1293  // initializer. However, deconstructing the ASTs is a dicey process,
1294  // and this approach is far more likely to get the corner cases right.
1295  if (CurContext->isDependentContext()) {
1296    // Bump the reference count of all of the arguments.
1297    for (unsigned I = 0; I != NumArgs; ++I)
1298      Args[I]->Retain();
1299
1300    OwningExprResult Init
1301      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1302                                          RParenLoc));
1303    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1304                                                    LParenLoc,
1305                                                    Init.takeAs<Expr>(),
1306                                                    RParenLoc);
1307  }
1308
1309  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1310                                                  LParenLoc,
1311                                                  MemberInit.takeAs<Expr>(),
1312                                                  RParenLoc);
1313}
1314
1315Sema::MemInitResult
1316Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1317                           Expr **Args, unsigned NumArgs,
1318                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1319                           CXXRecordDecl *ClassDecl) {
1320  bool HasDependentArg = false;
1321  for (unsigned i = 0; i < NumArgs; i++)
1322    HasDependentArg |= Args[i]->isTypeDependent();
1323
1324  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1325  if (BaseType->isDependentType() || HasDependentArg) {
1326    // Can't check initialization for a base of dependent type or when
1327    // any of the arguments are type-dependent expressions.
1328    OwningExprResult BaseInit
1329      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1330                                          RParenLoc));
1331
1332    // Erase any temporaries within this evaluation context; we're not
1333    // going to track them in the AST, since we'll be rebuilding the
1334    // ASTs during template instantiation.
1335    ExprTemporaries.erase(
1336              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1337                          ExprTemporaries.end());
1338
1339    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1340                                                    /*IsVirtual=*/false,
1341                                                    LParenLoc,
1342                                                    BaseInit.takeAs<Expr>(),
1343                                                    RParenLoc);
1344  }
1345
1346  if (!BaseType->isRecordType())
1347    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1348             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1349
1350  // C++ [class.base.init]p2:
1351  //   [...] Unless the mem-initializer-id names a nonstatic data
1352  //   member of the constructor’s class or a direct or virtual base
1353  //   of that class, the mem-initializer is ill-formed. A
1354  //   mem-initializer-list can initialize a base class using any
1355  //   name that denotes that base class type.
1356
1357  // Check for direct and virtual base classes.
1358  const CXXBaseSpecifier *DirectBaseSpec = 0;
1359  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1360  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1361                      VirtualBaseSpec);
1362
1363  // C++ [base.class.init]p2:
1364  //   If a mem-initializer-id is ambiguous because it designates both
1365  //   a direct non-virtual base class and an inherited virtual base
1366  //   class, the mem-initializer is ill-formed.
1367  if (DirectBaseSpec && VirtualBaseSpec)
1368    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1369      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1370  // C++ [base.class.init]p2:
1371  // Unless the mem-initializer-id names a nonstatic data membeer of the
1372  // constructor's class ot a direst or virtual base of that class, the
1373  // mem-initializer is ill-formed.
1374  if (!DirectBaseSpec && !VirtualBaseSpec)
1375    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1376      << BaseType << ClassDecl->getNameAsCString()
1377      << BaseTInfo->getTypeLoc().getSourceRange();
1378
1379  CXXBaseSpecifier *BaseSpec
1380    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1381  if (!BaseSpec)
1382    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1383
1384  // Initialize the base.
1385  InitializedEntity BaseEntity =
1386    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1387  InitializationKind Kind =
1388    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1389
1390  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1391
1392  OwningExprResult BaseInit =
1393    InitSeq.Perform(*this, BaseEntity, Kind,
1394                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1395  if (BaseInit.isInvalid())
1396    return true;
1397
1398  // C++0x [class.base.init]p7:
1399  //   The initialization of each base and member constitutes a
1400  //   full-expression.
1401  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1402  if (BaseInit.isInvalid())
1403    return true;
1404
1405  // If we are in a dependent context, template instantiation will
1406  // perform this type-checking again. Just save the arguments that we
1407  // received in a ParenListExpr.
1408  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1409  // of the information that we have about the base
1410  // initializer. However, deconstructing the ASTs is a dicey process,
1411  // and this approach is far more likely to get the corner cases right.
1412  if (CurContext->isDependentContext()) {
1413    // Bump the reference count of all of the arguments.
1414    for (unsigned I = 0; I != NumArgs; ++I)
1415      Args[I]->Retain();
1416
1417    OwningExprResult Init
1418      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1419                                          RParenLoc));
1420    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1421                                                    BaseSpec->isVirtual(),
1422                                                    LParenLoc,
1423                                                    Init.takeAs<Expr>(),
1424                                                    RParenLoc);
1425  }
1426
1427  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1428                                                  BaseSpec->isVirtual(),
1429                                                  LParenLoc,
1430                                                  BaseInit.takeAs<Expr>(),
1431                                                  RParenLoc);
1432}
1433
1434static bool
1435BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1436                             CXXBaseSpecifier *BaseSpec,
1437                             bool IsInheritedVirtualBase,
1438                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1439  InitializedEntity InitEntity
1440    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1441                                        IsInheritedVirtualBase);
1442
1443  InitializationKind InitKind
1444    = InitializationKind::CreateDefault(Constructor->getLocation());
1445
1446  InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1447  Sema::OwningExprResult BaseInit =
1448    InitSeq.Perform(SemaRef, InitEntity, InitKind,
1449                    Sema::MultiExprArg(SemaRef, 0, 0));
1450
1451  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1452  if (BaseInit.isInvalid())
1453    return true;
1454
1455  CXXBaseInit =
1456    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1457               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1458                                                        SourceLocation()),
1459                                             BaseSpec->isVirtual(),
1460                                             SourceLocation(),
1461                                             BaseInit.takeAs<Expr>(),
1462                                             SourceLocation());
1463
1464  return false;
1465}
1466
1467static bool
1468BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1469                               FieldDecl *Field,
1470                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1471  QualType FieldBaseElementType =
1472    SemaRef.Context.getBaseElementType(Field->getType());
1473
1474  if (FieldBaseElementType->isRecordType()) {
1475    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1476    InitializationKind InitKind
1477      = InitializationKind::CreateDefault(Constructor->getLocation());
1478
1479    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1480    Sema::OwningExprResult MemberInit =
1481      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1482                      Sema::MultiExprArg(SemaRef, 0, 0));
1483    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1484    if (MemberInit.isInvalid())
1485      return true;
1486
1487    CXXMemberInit =
1488      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1489                                                       Field, SourceLocation(),
1490                                                       SourceLocation(),
1491                                                      MemberInit.takeAs<Expr>(),
1492                                                       SourceLocation());
1493    return false;
1494  }
1495
1496  if (FieldBaseElementType->isReferenceType()) {
1497    SemaRef.Diag(Constructor->getLocation(),
1498                 diag::err_uninitialized_member_in_ctor)
1499    << (int)Constructor->isImplicit()
1500    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1501    << 0 << Field->getDeclName();
1502    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1503    return true;
1504  }
1505
1506  if (FieldBaseElementType.isConstQualified()) {
1507    SemaRef.Diag(Constructor->getLocation(),
1508                 diag::err_uninitialized_member_in_ctor)
1509    << (int)Constructor->isImplicit()
1510    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1511    << 1 << Field->getDeclName();
1512    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1513    return true;
1514  }
1515
1516  // Nothing to initialize.
1517  CXXMemberInit = 0;
1518  return false;
1519}
1520
1521bool
1522Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1523                                  CXXBaseOrMemberInitializer **Initializers,
1524                                  unsigned NumInitializers,
1525                                  bool AnyErrors) {
1526  if (Constructor->getDeclContext()->isDependentContext()) {
1527    // Just store the initializers as written, they will be checked during
1528    // instantiation.
1529    if (NumInitializers > 0) {
1530      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1531      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1532        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1533      memcpy(baseOrMemberInitializers, Initializers,
1534             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1535      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1536    }
1537
1538    return false;
1539  }
1540
1541  // We need to build the initializer AST according to order of construction
1542  // and not what user specified in the Initializers list.
1543  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1544  if (!ClassDecl)
1545    return true;
1546
1547  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1548  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1549  bool HadError = false;
1550
1551  for (unsigned i = 0; i < NumInitializers; i++) {
1552    CXXBaseOrMemberInitializer *Member = Initializers[i];
1553
1554    if (Member->isBaseInitializer())
1555      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1556    else
1557      AllBaseFields[Member->getMember()] = Member;
1558  }
1559
1560  // Keep track of the direct virtual bases.
1561  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1562  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1563       E = ClassDecl->bases_end(); I != E; ++I) {
1564    if (I->isVirtual())
1565      DirectVBases.insert(I);
1566  }
1567
1568  // Push virtual bases before others.
1569  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1570       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1571
1572    if (CXXBaseOrMemberInitializer *Value
1573        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1574      AllToInit.push_back(Value);
1575    } else if (!AnyErrors) {
1576      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1577      CXXBaseOrMemberInitializer *CXXBaseInit;
1578      if (BuildImplicitBaseInitializer(*this, Constructor, VBase,
1579                                       IsInheritedVirtualBase, CXXBaseInit)) {
1580        HadError = true;
1581        continue;
1582      }
1583
1584      AllToInit.push_back(CXXBaseInit);
1585    }
1586  }
1587
1588  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1589       E = ClassDecl->bases_end(); Base != E; ++Base) {
1590    // Virtuals are in the virtual base list and already constructed.
1591    if (Base->isVirtual())
1592      continue;
1593
1594    if (CXXBaseOrMemberInitializer *Value
1595          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1596      AllToInit.push_back(Value);
1597    } else if (!AnyErrors) {
1598      CXXBaseOrMemberInitializer *CXXBaseInit;
1599      if (BuildImplicitBaseInitializer(*this, Constructor, Base,
1600                                       /*IsInheritedVirtualBase=*/false,
1601                                       CXXBaseInit)) {
1602        HadError = true;
1603        continue;
1604      }
1605
1606      AllToInit.push_back(CXXBaseInit);
1607    }
1608  }
1609
1610  // non-static data members.
1611  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1612       E = ClassDecl->field_end(); Field != E; ++Field) {
1613    if ((*Field)->isAnonymousStructOrUnion()) {
1614      if (const RecordType *FieldClassType =
1615          Field->getType()->getAs<RecordType>()) {
1616        CXXRecordDecl *FieldClassDecl
1617          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1618        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1619            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1620          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1621            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1622            // set to the anonymous union data member used in the initializer
1623            // list.
1624            Value->setMember(*Field);
1625            Value->setAnonUnionMember(*FA);
1626            AllToInit.push_back(Value);
1627            break;
1628          }
1629        }
1630      }
1631      continue;
1632    }
1633    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1634      AllToInit.push_back(Value);
1635      continue;
1636    }
1637
1638    if (AnyErrors)
1639      continue;
1640
1641    CXXBaseOrMemberInitializer *Member;
1642    if (BuildImplicitMemberInitializer(*this, Constructor, *Field, Member)) {
1643      HadError = true;
1644      continue;
1645    }
1646
1647    // If the member doesn't need to be initialized, it will be null.
1648    if (Member)
1649      AllToInit.push_back(Member);
1650  }
1651
1652  NumInitializers = AllToInit.size();
1653  if (NumInitializers > 0) {
1654    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1655    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1656      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1657    memcpy(baseOrMemberInitializers, AllToInit.data(),
1658           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1659    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1660
1661    // Constructors implicitly reference the base and member
1662    // destructors.
1663    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1664                                           Constructor->getParent());
1665  }
1666
1667  return HadError;
1668}
1669
1670static void *GetKeyForTopLevelField(FieldDecl *Field) {
1671  // For anonymous unions, use the class declaration as the key.
1672  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1673    if (RT->getDecl()->isAnonymousStructOrUnion())
1674      return static_cast<void *>(RT->getDecl());
1675  }
1676  return static_cast<void *>(Field);
1677}
1678
1679static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1680  return Context.getCanonicalType(BaseType).getTypePtr();
1681}
1682
1683static void *GetKeyForMember(ASTContext &Context,
1684                             CXXBaseOrMemberInitializer *Member,
1685                             bool MemberMaybeAnon = false) {
1686  if (!Member->isMemberInitializer())
1687    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1688
1689  // For fields injected into the class via declaration of an anonymous union,
1690  // use its anonymous union class declaration as the unique key.
1691  FieldDecl *Field = Member->getMember();
1692
1693  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1694  // data member of the class. Data member used in the initializer list is
1695  // in AnonUnionMember field.
1696  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1697    Field = Member->getAnonUnionMember();
1698
1699  // If the field is a member of an anonymous struct or union, our key
1700  // is the anonymous record decl that's a direct child of the class.
1701  RecordDecl *RD = Field->getParent();
1702  if (RD->isAnonymousStructOrUnion()) {
1703    while (true) {
1704      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1705      if (Parent->isAnonymousStructOrUnion())
1706        RD = Parent;
1707      else
1708        break;
1709    }
1710
1711    return static_cast<void *>(RD);
1712  }
1713
1714  return static_cast<void *>(Field);
1715}
1716
1717static void
1718DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1719                                  const CXXConstructorDecl *Constructor,
1720                                  CXXBaseOrMemberInitializer **Inits,
1721                                  unsigned NumInits) {
1722  if (Constructor->getDeclContext()->isDependentContext())
1723    return;
1724
1725  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1726        == Diagnostic::Ignored)
1727    return;
1728
1729  // Build the list of bases and members in the order that they'll
1730  // actually be initialized.  The explicit initializers should be in
1731  // this same order but may be missing things.
1732  llvm::SmallVector<const void*, 32> IdealInitKeys;
1733
1734  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1735
1736  // 1. Virtual bases.
1737  for (CXXRecordDecl::base_class_const_iterator VBase =
1738       ClassDecl->vbases_begin(),
1739       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1740    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1741
1742  // 2. Non-virtual bases.
1743  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1744       E = ClassDecl->bases_end(); Base != E; ++Base) {
1745    if (Base->isVirtual())
1746      continue;
1747    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1748  }
1749
1750  // 3. Direct fields.
1751  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1752       E = ClassDecl->field_end(); Field != E; ++Field)
1753    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1754
1755  unsigned NumIdealInits = IdealInitKeys.size();
1756  unsigned IdealIndex = 0;
1757
1758  CXXBaseOrMemberInitializer *PrevInit = 0;
1759  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1760    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1761    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1762
1763    // Scan forward to try to find this initializer in the idealized
1764    // initializers list.
1765    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1766      if (InitKey == IdealInitKeys[IdealIndex])
1767        break;
1768
1769    // If we didn't find this initializer, it must be because we
1770    // scanned past it on a previous iteration.  That can only
1771    // happen if we're out of order;  emit a warning.
1772    if (IdealIndex == NumIdealInits) {
1773      assert(PrevInit && "initializer not found in initializer list");
1774
1775      Sema::SemaDiagnosticBuilder D =
1776        SemaRef.Diag(PrevInit->getSourceLocation(),
1777                     diag::warn_initializer_out_of_order);
1778
1779      if (PrevInit->isMemberInitializer())
1780        D << 0 << PrevInit->getMember()->getDeclName();
1781      else
1782        D << 1 << PrevInit->getBaseClassInfo()->getType();
1783
1784      if (Init->isMemberInitializer())
1785        D << 0 << Init->getMember()->getDeclName();
1786      else
1787        D << 1 << Init->getBaseClassInfo()->getType();
1788
1789      // Move back to the initializer's location in the ideal list.
1790      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1791        if (InitKey == IdealInitKeys[IdealIndex])
1792          break;
1793
1794      assert(IdealIndex != NumIdealInits &&
1795             "initializer not found in initializer list");
1796    }
1797
1798    PrevInit = Init;
1799  }
1800}
1801
1802namespace {
1803bool CheckRedundantInit(Sema &S,
1804                        CXXBaseOrMemberInitializer *Init,
1805                        CXXBaseOrMemberInitializer *&PrevInit) {
1806  if (!PrevInit) {
1807    PrevInit = Init;
1808    return false;
1809  }
1810
1811  if (FieldDecl *Field = Init->getMember())
1812    S.Diag(Init->getSourceLocation(),
1813           diag::err_multiple_mem_initialization)
1814      << Field->getDeclName()
1815      << Init->getSourceRange();
1816  else {
1817    Type *BaseClass = Init->getBaseClass();
1818    assert(BaseClass && "neither field nor base");
1819    S.Diag(Init->getSourceLocation(),
1820           diag::err_multiple_base_initialization)
1821      << QualType(BaseClass, 0)
1822      << Init->getSourceRange();
1823  }
1824  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1825    << 0 << PrevInit->getSourceRange();
1826
1827  return true;
1828}
1829
1830typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1831typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1832
1833bool CheckRedundantUnionInit(Sema &S,
1834                             CXXBaseOrMemberInitializer *Init,
1835                             RedundantUnionMap &Unions) {
1836  FieldDecl *Field = Init->getMember();
1837  RecordDecl *Parent = Field->getParent();
1838  if (!Parent->isAnonymousStructOrUnion())
1839    return false;
1840
1841  NamedDecl *Child = Field;
1842  do {
1843    if (Parent->isUnion()) {
1844      UnionEntry &En = Unions[Parent];
1845      if (En.first && En.first != Child) {
1846        S.Diag(Init->getSourceLocation(),
1847               diag::err_multiple_mem_union_initialization)
1848          << Field->getDeclName()
1849          << Init->getSourceRange();
1850        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1851          << 0 << En.second->getSourceRange();
1852        return true;
1853      } else if (!En.first) {
1854        En.first = Child;
1855        En.second = Init;
1856      }
1857    }
1858
1859    Child = Parent;
1860    Parent = cast<RecordDecl>(Parent->getDeclContext());
1861  } while (Parent->isAnonymousStructOrUnion());
1862
1863  return false;
1864}
1865}
1866
1867/// ActOnMemInitializers - Handle the member initializers for a constructor.
1868void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1869                                SourceLocation ColonLoc,
1870                                MemInitTy **meminits, unsigned NumMemInits,
1871                                bool AnyErrors) {
1872  if (!ConstructorDecl)
1873    return;
1874
1875  AdjustDeclIfTemplate(ConstructorDecl);
1876
1877  CXXConstructorDecl *Constructor
1878    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1879
1880  if (!Constructor) {
1881    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1882    return;
1883  }
1884
1885  CXXBaseOrMemberInitializer **MemInits =
1886    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1887
1888  // Mapping for the duplicate initializers check.
1889  // For member initializers, this is keyed with a FieldDecl*.
1890  // For base initializers, this is keyed with a Type*.
1891  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1892
1893  // Mapping for the inconsistent anonymous-union initializers check.
1894  RedundantUnionMap MemberUnions;
1895
1896  bool HadError = false;
1897  for (unsigned i = 0; i < NumMemInits; i++) {
1898    CXXBaseOrMemberInitializer *Init = MemInits[i];
1899
1900    if (Init->isMemberInitializer()) {
1901      FieldDecl *Field = Init->getMember();
1902      if (CheckRedundantInit(*this, Init, Members[Field]) ||
1903          CheckRedundantUnionInit(*this, Init, MemberUnions))
1904        HadError = true;
1905    } else {
1906      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
1907      if (CheckRedundantInit(*this, Init, Members[Key]))
1908        HadError = true;
1909    }
1910  }
1911
1912  if (HadError)
1913    return;
1914
1915  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1916
1917  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1918}
1919
1920void
1921Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1922                                             CXXRecordDecl *ClassDecl) {
1923  // Ignore dependent contexts.
1924  if (ClassDecl->isDependentContext())
1925    return;
1926
1927  // FIXME: all the access-control diagnostics are positioned on the
1928  // field/base declaration.  That's probably good; that said, the
1929  // user might reasonably want to know why the destructor is being
1930  // emitted, and we currently don't say.
1931
1932  // Non-static data members.
1933  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1934       E = ClassDecl->field_end(); I != E; ++I) {
1935    FieldDecl *Field = *I;
1936
1937    QualType FieldType = Context.getBaseElementType(Field->getType());
1938
1939    const RecordType* RT = FieldType->getAs<RecordType>();
1940    if (!RT)
1941      continue;
1942
1943    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1944    if (FieldClassDecl->hasTrivialDestructor())
1945      continue;
1946
1947    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1948    CheckDestructorAccess(Field->getLocation(), Dtor,
1949                          PDiag(diag::err_access_dtor_field)
1950                            << Field->getDeclName()
1951                            << FieldType);
1952
1953    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1954  }
1955
1956  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1957
1958  // Bases.
1959  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1960       E = ClassDecl->bases_end(); Base != E; ++Base) {
1961    // Bases are always records in a well-formed non-dependent class.
1962    const RecordType *RT = Base->getType()->getAs<RecordType>();
1963
1964    // Remember direct virtual bases.
1965    if (Base->isVirtual())
1966      DirectVirtualBases.insert(RT);
1967
1968    // Ignore trivial destructors.
1969    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1970    if (BaseClassDecl->hasTrivialDestructor())
1971      continue;
1972
1973    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1974
1975    // FIXME: caret should be on the start of the class name
1976    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1977                          PDiag(diag::err_access_dtor_base)
1978                            << Base->getType()
1979                            << Base->getSourceRange());
1980
1981    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1982  }
1983
1984  // Virtual bases.
1985  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1986       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1987
1988    // Bases are always records in a well-formed non-dependent class.
1989    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1990
1991    // Ignore direct virtual bases.
1992    if (DirectVirtualBases.count(RT))
1993      continue;
1994
1995    // Ignore trivial destructors.
1996    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1997    if (BaseClassDecl->hasTrivialDestructor())
1998      continue;
1999
2000    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2001    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2002                          PDiag(diag::err_access_dtor_vbase)
2003                            << VBase->getType());
2004
2005    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2006  }
2007}
2008
2009void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2010  if (!CDtorDecl)
2011    return;
2012
2013  if (CXXConstructorDecl *Constructor
2014      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2015    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2016}
2017
2018bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2019                                  unsigned DiagID, AbstractDiagSelID SelID,
2020                                  const CXXRecordDecl *CurrentRD) {
2021  if (SelID == -1)
2022    return RequireNonAbstractType(Loc, T,
2023                                  PDiag(DiagID), CurrentRD);
2024  else
2025    return RequireNonAbstractType(Loc, T,
2026                                  PDiag(DiagID) << SelID, CurrentRD);
2027}
2028
2029bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2030                                  const PartialDiagnostic &PD,
2031                                  const CXXRecordDecl *CurrentRD) {
2032  if (!getLangOptions().CPlusPlus)
2033    return false;
2034
2035  if (const ArrayType *AT = Context.getAsArrayType(T))
2036    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2037                                  CurrentRD);
2038
2039  if (const PointerType *PT = T->getAs<PointerType>()) {
2040    // Find the innermost pointer type.
2041    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2042      PT = T;
2043
2044    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2045      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2046  }
2047
2048  const RecordType *RT = T->getAs<RecordType>();
2049  if (!RT)
2050    return false;
2051
2052  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2053
2054  if (CurrentRD && CurrentRD != RD)
2055    return false;
2056
2057  // FIXME: is this reasonable?  It matches current behavior, but....
2058  if (!RD->getDefinition())
2059    return false;
2060
2061  if (!RD->isAbstract())
2062    return false;
2063
2064  Diag(Loc, PD) << RD->getDeclName();
2065
2066  // Check if we've already emitted the list of pure virtual functions for this
2067  // class.
2068  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2069    return true;
2070
2071  CXXFinalOverriderMap FinalOverriders;
2072  RD->getFinalOverriders(FinalOverriders);
2073
2074  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2075                                   MEnd = FinalOverriders.end();
2076       M != MEnd;
2077       ++M) {
2078    for (OverridingMethods::iterator SO = M->second.begin(),
2079                                  SOEnd = M->second.end();
2080         SO != SOEnd; ++SO) {
2081      // C++ [class.abstract]p4:
2082      //   A class is abstract if it contains or inherits at least one
2083      //   pure virtual function for which the final overrider is pure
2084      //   virtual.
2085
2086      //
2087      if (SO->second.size() != 1)
2088        continue;
2089
2090      if (!SO->second.front().Method->isPure())
2091        continue;
2092
2093      Diag(SO->second.front().Method->getLocation(),
2094           diag::note_pure_virtual_function)
2095        << SO->second.front().Method->getDeclName();
2096    }
2097  }
2098
2099  if (!PureVirtualClassDiagSet)
2100    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2101  PureVirtualClassDiagSet->insert(RD);
2102
2103  return true;
2104}
2105
2106namespace {
2107  class AbstractClassUsageDiagnoser
2108    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2109    Sema &SemaRef;
2110    CXXRecordDecl *AbstractClass;
2111
2112    bool VisitDeclContext(const DeclContext *DC) {
2113      bool Invalid = false;
2114
2115      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2116           E = DC->decls_end(); I != E; ++I)
2117        Invalid |= Visit(*I);
2118
2119      return Invalid;
2120    }
2121
2122  public:
2123    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2124      : SemaRef(SemaRef), AbstractClass(ac) {
2125        Visit(SemaRef.Context.getTranslationUnitDecl());
2126    }
2127
2128    bool VisitFunctionDecl(const FunctionDecl *FD) {
2129      if (FD->isThisDeclarationADefinition()) {
2130        // No need to do the check if we're in a definition, because it requires
2131        // that the return/param types are complete.
2132        // because that requires
2133        return VisitDeclContext(FD);
2134      }
2135
2136      // Check the return type.
2137      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2138      bool Invalid =
2139        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2140                                       diag::err_abstract_type_in_decl,
2141                                       Sema::AbstractReturnType,
2142                                       AbstractClass);
2143
2144      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2145           E = FD->param_end(); I != E; ++I) {
2146        const ParmVarDecl *VD = *I;
2147        Invalid |=
2148          SemaRef.RequireNonAbstractType(VD->getLocation(),
2149                                         VD->getOriginalType(),
2150                                         diag::err_abstract_type_in_decl,
2151                                         Sema::AbstractParamType,
2152                                         AbstractClass);
2153      }
2154
2155      return Invalid;
2156    }
2157
2158    bool VisitDecl(const Decl* D) {
2159      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2160        return VisitDeclContext(DC);
2161
2162      return false;
2163    }
2164  };
2165}
2166
2167/// \brief Perform semantic checks on a class definition that has been
2168/// completing, introducing implicitly-declared members, checking for
2169/// abstract types, etc.
2170void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2171  if (!Record || Record->isInvalidDecl())
2172    return;
2173
2174  if (!Record->isDependentType())
2175    AddImplicitlyDeclaredMembersToClass(S, Record);
2176
2177  if (Record->isInvalidDecl())
2178    return;
2179
2180  // Set access bits correctly on the directly-declared conversions.
2181  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2182  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2183    Convs->setAccess(I, (*I)->getAccess());
2184
2185  // Determine whether we need to check for final overriders. We do
2186  // this either when there are virtual base classes (in which case we
2187  // may end up finding multiple final overriders for a given virtual
2188  // function) or any of the base classes is abstract (in which case
2189  // we might detect that this class is abstract).
2190  bool CheckFinalOverriders = false;
2191  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2192      !Record->isDependentType()) {
2193    if (Record->getNumVBases())
2194      CheckFinalOverriders = true;
2195    else if (!Record->isAbstract()) {
2196      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2197                                                 BEnd = Record->bases_end();
2198           B != BEnd; ++B) {
2199        CXXRecordDecl *BaseDecl
2200          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2201        if (BaseDecl->isAbstract()) {
2202          CheckFinalOverriders = true;
2203          break;
2204        }
2205      }
2206    }
2207  }
2208
2209  if (CheckFinalOverriders) {
2210    CXXFinalOverriderMap FinalOverriders;
2211    Record->getFinalOverriders(FinalOverriders);
2212
2213    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2214                                     MEnd = FinalOverriders.end();
2215         M != MEnd; ++M) {
2216      for (OverridingMethods::iterator SO = M->second.begin(),
2217                                    SOEnd = M->second.end();
2218           SO != SOEnd; ++SO) {
2219        assert(SO->second.size() > 0 &&
2220               "All virtual functions have overridding virtual functions");
2221        if (SO->second.size() == 1) {
2222          // C++ [class.abstract]p4:
2223          //   A class is abstract if it contains or inherits at least one
2224          //   pure virtual function for which the final overrider is pure
2225          //   virtual.
2226          if (SO->second.front().Method->isPure())
2227            Record->setAbstract(true);
2228          continue;
2229        }
2230
2231        // C++ [class.virtual]p2:
2232        //   In a derived class, if a virtual member function of a base
2233        //   class subobject has more than one final overrider the
2234        //   program is ill-formed.
2235        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2236          << (NamedDecl *)M->first << Record;
2237        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2238        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2239                                                 OMEnd = SO->second.end();
2240             OM != OMEnd; ++OM)
2241          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2242            << (NamedDecl *)M->first << OM->Method->getParent();
2243
2244        Record->setInvalidDecl();
2245      }
2246    }
2247  }
2248
2249  if (Record->isAbstract() && !Record->isInvalidDecl())
2250    (void)AbstractClassUsageDiagnoser(*this, Record);
2251
2252  // If this is not an aggregate type and has no user-declared constructor,
2253  // complain about any non-static data members of reference or const scalar
2254  // type, since they will never get initializers.
2255  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2256      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2257    bool Complained = false;
2258    for (RecordDecl::field_iterator F = Record->field_begin(),
2259                                 FEnd = Record->field_end();
2260         F != FEnd; ++F) {
2261      if (F->getType()->isReferenceType() ||
2262          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2263        if (!Complained) {
2264          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2265            << Record->getTagKind() << Record;
2266          Complained = true;
2267        }
2268
2269        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2270          << F->getType()->isReferenceType()
2271          << F->getDeclName();
2272      }
2273    }
2274  }
2275}
2276
2277void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2278                                             DeclPtrTy TagDecl,
2279                                             SourceLocation LBrac,
2280                                             SourceLocation RBrac,
2281                                             AttributeList *AttrList) {
2282  if (!TagDecl)
2283    return;
2284
2285  AdjustDeclIfTemplate(TagDecl);
2286
2287  ActOnFields(S, RLoc, TagDecl,
2288              (DeclPtrTy*)FieldCollector->getCurFields(),
2289              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2290
2291  CheckCompletedCXXClass(S,
2292                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2293}
2294
2295/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2296/// special functions, such as the default constructor, copy
2297/// constructor, or destructor, to the given C++ class (C++
2298/// [special]p1).  This routine can only be executed just before the
2299/// definition of the class is complete.
2300///
2301/// The scope, if provided, is the class scope.
2302void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2303                                               CXXRecordDecl *ClassDecl) {
2304  CanQualType ClassType
2305    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2306
2307  // FIXME: Implicit declarations have exception specifications, which are
2308  // the union of the specifications of the implicitly called functions.
2309
2310  if (!ClassDecl->hasUserDeclaredConstructor()) {
2311    // C++ [class.ctor]p5:
2312    //   A default constructor for a class X is a constructor of class X
2313    //   that can be called without an argument. If there is no
2314    //   user-declared constructor for class X, a default constructor is
2315    //   implicitly declared. An implicitly-declared default constructor
2316    //   is an inline public member of its class.
2317    DeclarationName Name
2318      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2319    CXXConstructorDecl *DefaultCon =
2320      CXXConstructorDecl::Create(Context, ClassDecl,
2321                                 ClassDecl->getLocation(), Name,
2322                                 Context.getFunctionType(Context.VoidTy,
2323                                                         0, 0, false, 0,
2324                                                         /*FIXME*/false, false,
2325                                                         0, 0,
2326                                                       FunctionType::ExtInfo()),
2327                                 /*TInfo=*/0,
2328                                 /*isExplicit=*/false,
2329                                 /*isInline=*/true,
2330                                 /*isImplicitlyDeclared=*/true);
2331    DefaultCon->setAccess(AS_public);
2332    DefaultCon->setImplicit();
2333    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2334    if (S)
2335      PushOnScopeChains(DefaultCon, S, true);
2336    else
2337      ClassDecl->addDecl(DefaultCon);
2338  }
2339
2340  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2341    // C++ [class.copy]p4:
2342    //   If the class definition does not explicitly declare a copy
2343    //   constructor, one is declared implicitly.
2344
2345    // C++ [class.copy]p5:
2346    //   The implicitly-declared copy constructor for a class X will
2347    //   have the form
2348    //
2349    //       X::X(const X&)
2350    //
2351    //   if
2352    bool HasConstCopyConstructor = true;
2353
2354    //     -- each direct or virtual base class B of X has a copy
2355    //        constructor whose first parameter is of type const B& or
2356    //        const volatile B&, and
2357    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2358         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2359      const CXXRecordDecl *BaseClassDecl
2360        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2361      HasConstCopyConstructor
2362        = BaseClassDecl->hasConstCopyConstructor(Context);
2363    }
2364
2365    //     -- for all the nonstatic data members of X that are of a
2366    //        class type M (or array thereof), each such class type
2367    //        has a copy constructor whose first parameter is of type
2368    //        const M& or const volatile M&.
2369    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2370         HasConstCopyConstructor && Field != ClassDecl->field_end();
2371         ++Field) {
2372      QualType FieldType = (*Field)->getType();
2373      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2374        FieldType = Array->getElementType();
2375      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2376        const CXXRecordDecl *FieldClassDecl
2377          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2378        HasConstCopyConstructor
2379          = FieldClassDecl->hasConstCopyConstructor(Context);
2380      }
2381    }
2382
2383    //   Otherwise, the implicitly declared copy constructor will have
2384    //   the form
2385    //
2386    //       X::X(X&)
2387    QualType ArgType = ClassType;
2388    if (HasConstCopyConstructor)
2389      ArgType = ArgType.withConst();
2390    ArgType = Context.getLValueReferenceType(ArgType);
2391
2392    //   An implicitly-declared copy constructor is an inline public
2393    //   member of its class.
2394    DeclarationName Name
2395      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2396    CXXConstructorDecl *CopyConstructor
2397      = CXXConstructorDecl::Create(Context, ClassDecl,
2398                                   ClassDecl->getLocation(), Name,
2399                                   Context.getFunctionType(Context.VoidTy,
2400                                                           &ArgType, 1,
2401                                                           false, 0,
2402                                                           /*FIXME:*/false,
2403                                                           false, 0, 0,
2404                                                       FunctionType::ExtInfo()),
2405                                   /*TInfo=*/0,
2406                                   /*isExplicit=*/false,
2407                                   /*isInline=*/true,
2408                                   /*isImplicitlyDeclared=*/true);
2409    CopyConstructor->setAccess(AS_public);
2410    CopyConstructor->setImplicit();
2411    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2412
2413    // Add the parameter to the constructor.
2414    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2415                                                 ClassDecl->getLocation(),
2416                                                 /*IdentifierInfo=*/0,
2417                                                 ArgType, /*TInfo=*/0,
2418                                                 VarDecl::None,
2419                                                 VarDecl::None, 0);
2420    CopyConstructor->setParams(&FromParam, 1);
2421    if (S)
2422      PushOnScopeChains(CopyConstructor, S, true);
2423    else
2424      ClassDecl->addDecl(CopyConstructor);
2425  }
2426
2427  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2428    // Note: The following rules are largely analoguous to the copy
2429    // constructor rules. Note that virtual bases are not taken into account
2430    // for determining the argument type of the operator. Note also that
2431    // operators taking an object instead of a reference are allowed.
2432    //
2433    // C++ [class.copy]p10:
2434    //   If the class definition does not explicitly declare a copy
2435    //   assignment operator, one is declared implicitly.
2436    //   The implicitly-defined copy assignment operator for a class X
2437    //   will have the form
2438    //
2439    //       X& X::operator=(const X&)
2440    //
2441    //   if
2442    bool HasConstCopyAssignment = true;
2443
2444    //       -- each direct base class B of X has a copy assignment operator
2445    //          whose parameter is of type const B&, const volatile B& or B,
2446    //          and
2447    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2448         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2449      assert(!Base->getType()->isDependentType() &&
2450            "Cannot generate implicit members for class with dependent bases.");
2451      const CXXRecordDecl *BaseClassDecl
2452        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2453      const CXXMethodDecl *MD = 0;
2454      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2455                                                                     MD);
2456    }
2457
2458    //       -- for all the nonstatic data members of X that are of a class
2459    //          type M (or array thereof), each such class type has a copy
2460    //          assignment operator whose parameter is of type const M&,
2461    //          const volatile M& or M.
2462    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2463         HasConstCopyAssignment && Field != ClassDecl->field_end();
2464         ++Field) {
2465      QualType FieldType = (*Field)->getType();
2466      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2467        FieldType = Array->getElementType();
2468      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2469        const CXXRecordDecl *FieldClassDecl
2470          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2471        const CXXMethodDecl *MD = 0;
2472        HasConstCopyAssignment
2473          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2474      }
2475    }
2476
2477    //   Otherwise, the implicitly declared copy assignment operator will
2478    //   have the form
2479    //
2480    //       X& X::operator=(X&)
2481    QualType ArgType = ClassType;
2482    QualType RetType = Context.getLValueReferenceType(ArgType);
2483    if (HasConstCopyAssignment)
2484      ArgType = ArgType.withConst();
2485    ArgType = Context.getLValueReferenceType(ArgType);
2486
2487    //   An implicitly-declared copy assignment operator is an inline public
2488    //   member of its class.
2489    DeclarationName Name =
2490      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2491    CXXMethodDecl *CopyAssignment =
2492      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2493                            Context.getFunctionType(RetType, &ArgType, 1,
2494                                                    false, 0,
2495                                                    /*FIXME:*/false,
2496                                                    false, 0, 0,
2497                                                    FunctionType::ExtInfo()),
2498                            /*TInfo=*/0, /*isStatic=*/false,
2499                            /*StorageClassAsWritten=*/FunctionDecl::None,
2500                            /*isInline=*/true);
2501    CopyAssignment->setAccess(AS_public);
2502    CopyAssignment->setImplicit();
2503    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2504    CopyAssignment->setCopyAssignment(true);
2505
2506    // Add the parameter to the operator.
2507    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2508                                                 ClassDecl->getLocation(),
2509                                                 /*IdentifierInfo=*/0,
2510                                                 ArgType, /*TInfo=*/0,
2511                                                 VarDecl::None,
2512                                                 VarDecl::None, 0);
2513    CopyAssignment->setParams(&FromParam, 1);
2514
2515    // Don't call addedAssignmentOperator. There is no way to distinguish an
2516    // implicit from an explicit assignment operator.
2517    if (S)
2518      PushOnScopeChains(CopyAssignment, S, true);
2519    else
2520      ClassDecl->addDecl(CopyAssignment);
2521    AddOverriddenMethods(ClassDecl, CopyAssignment);
2522  }
2523
2524  if (!ClassDecl->hasUserDeclaredDestructor()) {
2525    // C++ [class.dtor]p2:
2526    //   If a class has no user-declared destructor, a destructor is
2527    //   declared implicitly. An implicitly-declared destructor is an
2528    //   inline public member of its class.
2529    QualType Ty = Context.getFunctionType(Context.VoidTy,
2530                                          0, 0, false, 0,
2531                                          /*FIXME:*/false,
2532                                          false, 0, 0, FunctionType::ExtInfo());
2533
2534    DeclarationName Name
2535      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2536    CXXDestructorDecl *Destructor
2537      = CXXDestructorDecl::Create(Context, ClassDecl,
2538                                  ClassDecl->getLocation(), Name, Ty,
2539                                  /*isInline=*/true,
2540                                  /*isImplicitlyDeclared=*/true);
2541    Destructor->setAccess(AS_public);
2542    Destructor->setImplicit();
2543    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2544    if (S)
2545      PushOnScopeChains(Destructor, S, true);
2546    else
2547      ClassDecl->addDecl(Destructor);
2548
2549    // This could be uniqued if it ever proves significant.
2550    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2551
2552    AddOverriddenMethods(ClassDecl, Destructor);
2553  }
2554}
2555
2556void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2557  Decl *D = TemplateD.getAs<Decl>();
2558  if (!D)
2559    return;
2560
2561  TemplateParameterList *Params = 0;
2562  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2563    Params = Template->getTemplateParameters();
2564  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2565           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2566    Params = PartialSpec->getTemplateParameters();
2567  else
2568    return;
2569
2570  for (TemplateParameterList::iterator Param = Params->begin(),
2571                                    ParamEnd = Params->end();
2572       Param != ParamEnd; ++Param) {
2573    NamedDecl *Named = cast<NamedDecl>(*Param);
2574    if (Named->getDeclName()) {
2575      S->AddDecl(DeclPtrTy::make(Named));
2576      IdResolver.AddDecl(Named);
2577    }
2578  }
2579}
2580
2581void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2582  if (!RecordD) return;
2583  AdjustDeclIfTemplate(RecordD);
2584  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2585  PushDeclContext(S, Record);
2586}
2587
2588void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2589  if (!RecordD) return;
2590  PopDeclContext();
2591}
2592
2593/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2594/// parsing a top-level (non-nested) C++ class, and we are now
2595/// parsing those parts of the given Method declaration that could
2596/// not be parsed earlier (C++ [class.mem]p2), such as default
2597/// arguments. This action should enter the scope of the given
2598/// Method declaration as if we had just parsed the qualified method
2599/// name. However, it should not bring the parameters into scope;
2600/// that will be performed by ActOnDelayedCXXMethodParameter.
2601void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2602}
2603
2604/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2605/// C++ method declaration. We're (re-)introducing the given
2606/// function parameter into scope for use in parsing later parts of
2607/// the method declaration. For example, we could see an
2608/// ActOnParamDefaultArgument event for this parameter.
2609void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2610  if (!ParamD)
2611    return;
2612
2613  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2614
2615  // If this parameter has an unparsed default argument, clear it out
2616  // to make way for the parsed default argument.
2617  if (Param->hasUnparsedDefaultArg())
2618    Param->setDefaultArg(0);
2619
2620  S->AddDecl(DeclPtrTy::make(Param));
2621  if (Param->getDeclName())
2622    IdResolver.AddDecl(Param);
2623}
2624
2625/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2626/// processing the delayed method declaration for Method. The method
2627/// declaration is now considered finished. There may be a separate
2628/// ActOnStartOfFunctionDef action later (not necessarily
2629/// immediately!) for this method, if it was also defined inside the
2630/// class body.
2631void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2632  if (!MethodD)
2633    return;
2634
2635  AdjustDeclIfTemplate(MethodD);
2636
2637  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2638
2639  // Now that we have our default arguments, check the constructor
2640  // again. It could produce additional diagnostics or affect whether
2641  // the class has implicitly-declared destructors, among other
2642  // things.
2643  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2644    CheckConstructor(Constructor);
2645
2646  // Check the default arguments, which we may have added.
2647  if (!Method->isInvalidDecl())
2648    CheckCXXDefaultArguments(Method);
2649}
2650
2651/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2652/// the well-formedness of the constructor declarator @p D with type @p
2653/// R. If there are any errors in the declarator, this routine will
2654/// emit diagnostics and set the invalid bit to true.  In any case, the type
2655/// will be updated to reflect a well-formed type for the constructor and
2656/// returned.
2657QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2658                                          FunctionDecl::StorageClass &SC) {
2659  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2660
2661  // C++ [class.ctor]p3:
2662  //   A constructor shall not be virtual (10.3) or static (9.4). A
2663  //   constructor can be invoked for a const, volatile or const
2664  //   volatile object. A constructor shall not be declared const,
2665  //   volatile, or const volatile (9.3.2).
2666  if (isVirtual) {
2667    if (!D.isInvalidType())
2668      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2669        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2670        << SourceRange(D.getIdentifierLoc());
2671    D.setInvalidType();
2672  }
2673  if (SC == FunctionDecl::Static) {
2674    if (!D.isInvalidType())
2675      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2676        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2677        << SourceRange(D.getIdentifierLoc());
2678    D.setInvalidType();
2679    SC = FunctionDecl::None;
2680  }
2681
2682  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2683  if (FTI.TypeQuals != 0) {
2684    if (FTI.TypeQuals & Qualifiers::Const)
2685      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2686        << "const" << SourceRange(D.getIdentifierLoc());
2687    if (FTI.TypeQuals & Qualifiers::Volatile)
2688      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2689        << "volatile" << SourceRange(D.getIdentifierLoc());
2690    if (FTI.TypeQuals & Qualifiers::Restrict)
2691      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2692        << "restrict" << SourceRange(D.getIdentifierLoc());
2693  }
2694
2695  // Rebuild the function type "R" without any type qualifiers (in
2696  // case any of the errors above fired) and with "void" as the
2697  // return type, since constructors don't have return types. We
2698  // *always* have to do this, because GetTypeForDeclarator will
2699  // put in a result type of "int" when none was specified.
2700  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2701  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2702                                 Proto->getNumArgs(),
2703                                 Proto->isVariadic(), 0,
2704                                 Proto->hasExceptionSpec(),
2705                                 Proto->hasAnyExceptionSpec(),
2706                                 Proto->getNumExceptions(),
2707                                 Proto->exception_begin(),
2708                                 Proto->getExtInfo());
2709}
2710
2711/// CheckConstructor - Checks a fully-formed constructor for
2712/// well-formedness, issuing any diagnostics required. Returns true if
2713/// the constructor declarator is invalid.
2714void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2715  CXXRecordDecl *ClassDecl
2716    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2717  if (!ClassDecl)
2718    return Constructor->setInvalidDecl();
2719
2720  // C++ [class.copy]p3:
2721  //   A declaration of a constructor for a class X is ill-formed if
2722  //   its first parameter is of type (optionally cv-qualified) X and
2723  //   either there are no other parameters or else all other
2724  //   parameters have default arguments.
2725  if (!Constructor->isInvalidDecl() &&
2726      ((Constructor->getNumParams() == 1) ||
2727       (Constructor->getNumParams() > 1 &&
2728        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2729      Constructor->getTemplateSpecializationKind()
2730                                              != TSK_ImplicitInstantiation) {
2731    QualType ParamType = Constructor->getParamDecl(0)->getType();
2732    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2733    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2734      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2735      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2736        << FixItHint::CreateInsertion(ParamLoc, " const &");
2737
2738      // FIXME: Rather that making the constructor invalid, we should endeavor
2739      // to fix the type.
2740      Constructor->setInvalidDecl();
2741    }
2742  }
2743
2744  // Notify the class that we've added a constructor.  In principle we
2745  // don't need to do this for out-of-line declarations; in practice
2746  // we only instantiate the most recent declaration of a method, so
2747  // we have to call this for everything but friends.
2748  if (!Constructor->getFriendObjectKind())
2749    ClassDecl->addedConstructor(Context, Constructor);
2750}
2751
2752/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2753/// issuing any diagnostics required. Returns true on error.
2754bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2755  CXXRecordDecl *RD = Destructor->getParent();
2756
2757  if (Destructor->isVirtual()) {
2758    SourceLocation Loc;
2759
2760    if (!Destructor->isImplicit())
2761      Loc = Destructor->getLocation();
2762    else
2763      Loc = RD->getLocation();
2764
2765    // If we have a virtual destructor, look up the deallocation function
2766    FunctionDecl *OperatorDelete = 0;
2767    DeclarationName Name =
2768    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2769    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2770      return true;
2771
2772    Destructor->setOperatorDelete(OperatorDelete);
2773  }
2774
2775  return false;
2776}
2777
2778static inline bool
2779FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2780  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2781          FTI.ArgInfo[0].Param &&
2782          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2783}
2784
2785/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2786/// the well-formednes of the destructor declarator @p D with type @p
2787/// R. If there are any errors in the declarator, this routine will
2788/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2789/// will be updated to reflect a well-formed type for the destructor and
2790/// returned.
2791QualType Sema::CheckDestructorDeclarator(Declarator &D,
2792                                         FunctionDecl::StorageClass& SC) {
2793  // C++ [class.dtor]p1:
2794  //   [...] A typedef-name that names a class is a class-name
2795  //   (7.1.3); however, a typedef-name that names a class shall not
2796  //   be used as the identifier in the declarator for a destructor
2797  //   declaration.
2798  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2799  if (isa<TypedefType>(DeclaratorType)) {
2800    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2801      << DeclaratorType;
2802    D.setInvalidType();
2803  }
2804
2805  // C++ [class.dtor]p2:
2806  //   A destructor is used to destroy objects of its class type. A
2807  //   destructor takes no parameters, and no return type can be
2808  //   specified for it (not even void). The address of a destructor
2809  //   shall not be taken. A destructor shall not be static. A
2810  //   destructor can be invoked for a const, volatile or const
2811  //   volatile object. A destructor shall not be declared const,
2812  //   volatile or const volatile (9.3.2).
2813  if (SC == FunctionDecl::Static) {
2814    if (!D.isInvalidType())
2815      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2816        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2817        << SourceRange(D.getIdentifierLoc());
2818    SC = FunctionDecl::None;
2819    D.setInvalidType();
2820  }
2821  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2822    // Destructors don't have return types, but the parser will
2823    // happily parse something like:
2824    //
2825    //   class X {
2826    //     float ~X();
2827    //   };
2828    //
2829    // The return type will be eliminated later.
2830    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2831      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2832      << SourceRange(D.getIdentifierLoc());
2833  }
2834
2835  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2836  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2837    if (FTI.TypeQuals & Qualifiers::Const)
2838      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2839        << "const" << SourceRange(D.getIdentifierLoc());
2840    if (FTI.TypeQuals & Qualifiers::Volatile)
2841      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2842        << "volatile" << SourceRange(D.getIdentifierLoc());
2843    if (FTI.TypeQuals & Qualifiers::Restrict)
2844      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2845        << "restrict" << SourceRange(D.getIdentifierLoc());
2846    D.setInvalidType();
2847  }
2848
2849  // Make sure we don't have any parameters.
2850  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2851    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2852
2853    // Delete the parameters.
2854    FTI.freeArgs();
2855    D.setInvalidType();
2856  }
2857
2858  // Make sure the destructor isn't variadic.
2859  if (FTI.isVariadic) {
2860    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2861    D.setInvalidType();
2862  }
2863
2864  // Rebuild the function type "R" without any type qualifiers or
2865  // parameters (in case any of the errors above fired) and with
2866  // "void" as the return type, since destructors don't have return
2867  // types. We *always* have to do this, because GetTypeForDeclarator
2868  // will put in a result type of "int" when none was specified.
2869  // FIXME: Exceptions!
2870  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2871                                 false, false, 0, 0, FunctionType::ExtInfo());
2872}
2873
2874/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2875/// well-formednes of the conversion function declarator @p D with
2876/// type @p R. If there are any errors in the declarator, this routine
2877/// will emit diagnostics and return true. Otherwise, it will return
2878/// false. Either way, the type @p R will be updated to reflect a
2879/// well-formed type for the conversion operator.
2880void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2881                                     FunctionDecl::StorageClass& SC) {
2882  // C++ [class.conv.fct]p1:
2883  //   Neither parameter types nor return type can be specified. The
2884  //   type of a conversion function (8.3.5) is "function taking no
2885  //   parameter returning conversion-type-id."
2886  if (SC == FunctionDecl::Static) {
2887    if (!D.isInvalidType())
2888      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2889        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2890        << SourceRange(D.getIdentifierLoc());
2891    D.setInvalidType();
2892    SC = FunctionDecl::None;
2893  }
2894
2895  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2896
2897  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2898    // Conversion functions don't have return types, but the parser will
2899    // happily parse something like:
2900    //
2901    //   class X {
2902    //     float operator bool();
2903    //   };
2904    //
2905    // The return type will be changed later anyway.
2906    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2907      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2908      << SourceRange(D.getIdentifierLoc());
2909    D.setInvalidType();
2910  }
2911
2912  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2913
2914  // Make sure we don't have any parameters.
2915  if (Proto->getNumArgs() > 0) {
2916    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2917
2918    // Delete the parameters.
2919    D.getTypeObject(0).Fun.freeArgs();
2920    D.setInvalidType();
2921  } else if (Proto->isVariadic()) {
2922    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2923    D.setInvalidType();
2924  }
2925
2926  // Diagnose "&operator bool()" and other such nonsense.  This
2927  // is actually a gcc extension which we don't support.
2928  if (Proto->getResultType() != ConvType) {
2929    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
2930      << Proto->getResultType();
2931    D.setInvalidType();
2932    ConvType = Proto->getResultType();
2933  }
2934
2935  // C++ [class.conv.fct]p4:
2936  //   The conversion-type-id shall not represent a function type nor
2937  //   an array type.
2938  if (ConvType->isArrayType()) {
2939    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2940    ConvType = Context.getPointerType(ConvType);
2941    D.setInvalidType();
2942  } else if (ConvType->isFunctionType()) {
2943    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2944    ConvType = Context.getPointerType(ConvType);
2945    D.setInvalidType();
2946  }
2947
2948  // Rebuild the function type "R" without any parameters (in case any
2949  // of the errors above fired) and with the conversion type as the
2950  // return type.
2951  if (D.isInvalidType()) {
2952    R = Context.getFunctionType(ConvType, 0, 0, false,
2953                                Proto->getTypeQuals(),
2954                                Proto->hasExceptionSpec(),
2955                                Proto->hasAnyExceptionSpec(),
2956                                Proto->getNumExceptions(),
2957                                Proto->exception_begin(),
2958                                Proto->getExtInfo());
2959  }
2960
2961  // C++0x explicit conversion operators.
2962  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2963    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2964         diag::warn_explicit_conversion_functions)
2965      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2966}
2967
2968/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2969/// the declaration of the given C++ conversion function. This routine
2970/// is responsible for recording the conversion function in the C++
2971/// class, if possible.
2972Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2973  assert(Conversion && "Expected to receive a conversion function declaration");
2974
2975  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2976
2977  // Make sure we aren't redeclaring the conversion function.
2978  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2979
2980  // C++ [class.conv.fct]p1:
2981  //   [...] A conversion function is never used to convert a
2982  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2983  //   same object type (or a reference to it), to a (possibly
2984  //   cv-qualified) base class of that type (or a reference to it),
2985  //   or to (possibly cv-qualified) void.
2986  // FIXME: Suppress this warning if the conversion function ends up being a
2987  // virtual function that overrides a virtual function in a base class.
2988  QualType ClassType
2989    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2990  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2991    ConvType = ConvTypeRef->getPointeeType();
2992  if (ConvType->isRecordType()) {
2993    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2994    if (ConvType == ClassType)
2995      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2996        << ClassType;
2997    else if (IsDerivedFrom(ClassType, ConvType))
2998      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2999        <<  ClassType << ConvType;
3000  } else if (ConvType->isVoidType()) {
3001    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3002      << ClassType << ConvType;
3003  }
3004
3005  if (Conversion->getPrimaryTemplate()) {
3006    // ignore specializations
3007  } else if (Conversion->getPreviousDeclaration()) {
3008    if (FunctionTemplateDecl *ConversionTemplate
3009                                  = Conversion->getDescribedFunctionTemplate()) {
3010      if (ClassDecl->replaceConversion(
3011                                   ConversionTemplate->getPreviousDeclaration(),
3012                                       ConversionTemplate))
3013        return DeclPtrTy::make(ConversionTemplate);
3014    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3015                                            Conversion))
3016      return DeclPtrTy::make(Conversion);
3017    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3018  } else if (FunctionTemplateDecl *ConversionTemplate
3019               = Conversion->getDescribedFunctionTemplate())
3020    ClassDecl->addConversionFunction(ConversionTemplate);
3021  else
3022    ClassDecl->addConversionFunction(Conversion);
3023
3024  return DeclPtrTy::make(Conversion);
3025}
3026
3027//===----------------------------------------------------------------------===//
3028// Namespace Handling
3029//===----------------------------------------------------------------------===//
3030
3031/// ActOnStartNamespaceDef - This is called at the start of a namespace
3032/// definition.
3033Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3034                                             SourceLocation IdentLoc,
3035                                             IdentifierInfo *II,
3036                                             SourceLocation LBrace,
3037                                             AttributeList *AttrList) {
3038  NamespaceDecl *Namespc =
3039      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3040  Namespc->setLBracLoc(LBrace);
3041
3042  Scope *DeclRegionScope = NamespcScope->getParent();
3043
3044  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3045
3046  if (II) {
3047    // C++ [namespace.def]p2:
3048    // The identifier in an original-namespace-definition shall not have been
3049    // previously defined in the declarative region in which the
3050    // original-namespace-definition appears. The identifier in an
3051    // original-namespace-definition is the name of the namespace. Subsequently
3052    // in that declarative region, it is treated as an original-namespace-name.
3053
3054    NamedDecl *PrevDecl
3055      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3056                         ForRedeclaration);
3057
3058    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3059      // This is an extended namespace definition.
3060      // Attach this namespace decl to the chain of extended namespace
3061      // definitions.
3062      OrigNS->setNextNamespace(Namespc);
3063      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3064
3065      // Remove the previous declaration from the scope.
3066      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3067        IdResolver.RemoveDecl(OrigNS);
3068        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3069      }
3070    } else if (PrevDecl) {
3071      // This is an invalid name redefinition.
3072      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3073       << Namespc->getDeclName();
3074      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3075      Namespc->setInvalidDecl();
3076      // Continue on to push Namespc as current DeclContext and return it.
3077    } else if (II->isStr("std") &&
3078               CurContext->getLookupContext()->isTranslationUnit()) {
3079      // This is the first "real" definition of the namespace "std", so update
3080      // our cache of the "std" namespace to point at this definition.
3081      if (StdNamespace) {
3082        // We had already defined a dummy namespace "std". Link this new
3083        // namespace definition to the dummy namespace "std".
3084        StdNamespace->setNextNamespace(Namespc);
3085        StdNamespace->setLocation(IdentLoc);
3086        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3087      }
3088
3089      // Make our StdNamespace cache point at the first real definition of the
3090      // "std" namespace.
3091      StdNamespace = Namespc;
3092    }
3093
3094    PushOnScopeChains(Namespc, DeclRegionScope);
3095  } else {
3096    // Anonymous namespaces.
3097    assert(Namespc->isAnonymousNamespace());
3098
3099    // Link the anonymous namespace into its parent.
3100    NamespaceDecl *PrevDecl;
3101    DeclContext *Parent = CurContext->getLookupContext();
3102    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3103      PrevDecl = TU->getAnonymousNamespace();
3104      TU->setAnonymousNamespace(Namespc);
3105    } else {
3106      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3107      PrevDecl = ND->getAnonymousNamespace();
3108      ND->setAnonymousNamespace(Namespc);
3109    }
3110
3111    // Link the anonymous namespace with its previous declaration.
3112    if (PrevDecl) {
3113      assert(PrevDecl->isAnonymousNamespace());
3114      assert(!PrevDecl->getNextNamespace());
3115      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3116      PrevDecl->setNextNamespace(Namespc);
3117    }
3118
3119    CurContext->addDecl(Namespc);
3120
3121    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3122    //   behaves as if it were replaced by
3123    //     namespace unique { /* empty body */ }
3124    //     using namespace unique;
3125    //     namespace unique { namespace-body }
3126    //   where all occurrences of 'unique' in a translation unit are
3127    //   replaced by the same identifier and this identifier differs
3128    //   from all other identifiers in the entire program.
3129
3130    // We just create the namespace with an empty name and then add an
3131    // implicit using declaration, just like the standard suggests.
3132    //
3133    // CodeGen enforces the "universally unique" aspect by giving all
3134    // declarations semantically contained within an anonymous
3135    // namespace internal linkage.
3136
3137    if (!PrevDecl) {
3138      UsingDirectiveDecl* UD
3139        = UsingDirectiveDecl::Create(Context, CurContext,
3140                                     /* 'using' */ LBrace,
3141                                     /* 'namespace' */ SourceLocation(),
3142                                     /* qualifier */ SourceRange(),
3143                                     /* NNS */ NULL,
3144                                     /* identifier */ SourceLocation(),
3145                                     Namespc,
3146                                     /* Ancestor */ CurContext);
3147      UD->setImplicit();
3148      CurContext->addDecl(UD);
3149    }
3150  }
3151
3152  // Although we could have an invalid decl (i.e. the namespace name is a
3153  // redefinition), push it as current DeclContext and try to continue parsing.
3154  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3155  // for the namespace has the declarations that showed up in that particular
3156  // namespace definition.
3157  PushDeclContext(NamespcScope, Namespc);
3158  return DeclPtrTy::make(Namespc);
3159}
3160
3161/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3162/// is a namespace alias, returns the namespace it points to.
3163static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3164  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3165    return AD->getNamespace();
3166  return dyn_cast_or_null<NamespaceDecl>(D);
3167}
3168
3169/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3170/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3171void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3172  Decl *Dcl = D.getAs<Decl>();
3173  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3174  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3175  Namespc->setRBracLoc(RBrace);
3176  PopDeclContext();
3177}
3178
3179Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3180                                          SourceLocation UsingLoc,
3181                                          SourceLocation NamespcLoc,
3182                                          CXXScopeSpec &SS,
3183                                          SourceLocation IdentLoc,
3184                                          IdentifierInfo *NamespcName,
3185                                          AttributeList *AttrList) {
3186  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3187  assert(NamespcName && "Invalid NamespcName.");
3188  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3189  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3190
3191  UsingDirectiveDecl *UDir = 0;
3192
3193  // Lookup namespace name.
3194  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3195  LookupParsedName(R, S, &SS);
3196  if (R.isAmbiguous())
3197    return DeclPtrTy();
3198
3199  if (!R.empty()) {
3200    NamedDecl *Named = R.getFoundDecl();
3201    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3202        && "expected namespace decl");
3203    // C++ [namespace.udir]p1:
3204    //   A using-directive specifies that the names in the nominated
3205    //   namespace can be used in the scope in which the
3206    //   using-directive appears after the using-directive. During
3207    //   unqualified name lookup (3.4.1), the names appear as if they
3208    //   were declared in the nearest enclosing namespace which
3209    //   contains both the using-directive and the nominated
3210    //   namespace. [Note: in this context, "contains" means "contains
3211    //   directly or indirectly". ]
3212
3213    // Find enclosing context containing both using-directive and
3214    // nominated namespace.
3215    NamespaceDecl *NS = getNamespaceDecl(Named);
3216    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3217    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3218      CommonAncestor = CommonAncestor->getParent();
3219
3220    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3221                                      SS.getRange(),
3222                                      (NestedNameSpecifier *)SS.getScopeRep(),
3223                                      IdentLoc, Named, CommonAncestor);
3224    PushUsingDirective(S, UDir);
3225  } else {
3226    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3227  }
3228
3229  // FIXME: We ignore attributes for now.
3230  delete AttrList;
3231  return DeclPtrTy::make(UDir);
3232}
3233
3234void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3235  // If scope has associated entity, then using directive is at namespace
3236  // or translation unit scope. We add UsingDirectiveDecls, into
3237  // it's lookup structure.
3238  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3239    Ctx->addDecl(UDir);
3240  else
3241    // Otherwise it is block-sope. using-directives will affect lookup
3242    // only to the end of scope.
3243    S->PushUsingDirective(DeclPtrTy::make(UDir));
3244}
3245
3246
3247Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3248                                            AccessSpecifier AS,
3249                                            bool HasUsingKeyword,
3250                                            SourceLocation UsingLoc,
3251                                            CXXScopeSpec &SS,
3252                                            UnqualifiedId &Name,
3253                                            AttributeList *AttrList,
3254                                            bool IsTypeName,
3255                                            SourceLocation TypenameLoc) {
3256  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3257
3258  switch (Name.getKind()) {
3259  case UnqualifiedId::IK_Identifier:
3260  case UnqualifiedId::IK_OperatorFunctionId:
3261  case UnqualifiedId::IK_LiteralOperatorId:
3262  case UnqualifiedId::IK_ConversionFunctionId:
3263    break;
3264
3265  case UnqualifiedId::IK_ConstructorName:
3266  case UnqualifiedId::IK_ConstructorTemplateId:
3267    // C++0x inherited constructors.
3268    if (getLangOptions().CPlusPlus0x) break;
3269
3270    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3271      << SS.getRange();
3272    return DeclPtrTy();
3273
3274  case UnqualifiedId::IK_DestructorName:
3275    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3276      << SS.getRange();
3277    return DeclPtrTy();
3278
3279  case UnqualifiedId::IK_TemplateId:
3280    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3281      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3282    return DeclPtrTy();
3283  }
3284
3285  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3286  if (!TargetName)
3287    return DeclPtrTy();
3288
3289  // Warn about using declarations.
3290  // TODO: store that the declaration was written without 'using' and
3291  // talk about access decls instead of using decls in the
3292  // diagnostics.
3293  if (!HasUsingKeyword) {
3294    UsingLoc = Name.getSourceRange().getBegin();
3295
3296    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3297      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3298  }
3299
3300  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3301                                        Name.getSourceRange().getBegin(),
3302                                        TargetName, AttrList,
3303                                        /* IsInstantiation */ false,
3304                                        IsTypeName, TypenameLoc);
3305  if (UD)
3306    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3307
3308  return DeclPtrTy::make(UD);
3309}
3310
3311/// Determines whether to create a using shadow decl for a particular
3312/// decl, given the set of decls existing prior to this using lookup.
3313bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3314                                const LookupResult &Previous) {
3315  // Diagnose finding a decl which is not from a base class of the
3316  // current class.  We do this now because there are cases where this
3317  // function will silently decide not to build a shadow decl, which
3318  // will pre-empt further diagnostics.
3319  //
3320  // We don't need to do this in C++0x because we do the check once on
3321  // the qualifier.
3322  //
3323  // FIXME: diagnose the following if we care enough:
3324  //   struct A { int foo; };
3325  //   struct B : A { using A::foo; };
3326  //   template <class T> struct C : A {};
3327  //   template <class T> struct D : C<T> { using B::foo; } // <---
3328  // This is invalid (during instantiation) in C++03 because B::foo
3329  // resolves to the using decl in B, which is not a base class of D<T>.
3330  // We can't diagnose it immediately because C<T> is an unknown
3331  // specialization.  The UsingShadowDecl in D<T> then points directly
3332  // to A::foo, which will look well-formed when we instantiate.
3333  // The right solution is to not collapse the shadow-decl chain.
3334  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3335    DeclContext *OrigDC = Orig->getDeclContext();
3336
3337    // Handle enums and anonymous structs.
3338    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3339    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3340    while (OrigRec->isAnonymousStructOrUnion())
3341      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3342
3343    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3344      if (OrigDC == CurContext) {
3345        Diag(Using->getLocation(),
3346             diag::err_using_decl_nested_name_specifier_is_current_class)
3347          << Using->getNestedNameRange();
3348        Diag(Orig->getLocation(), diag::note_using_decl_target);
3349        return true;
3350      }
3351
3352      Diag(Using->getNestedNameRange().getBegin(),
3353           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3354        << Using->getTargetNestedNameDecl()
3355        << cast<CXXRecordDecl>(CurContext)
3356        << Using->getNestedNameRange();
3357      Diag(Orig->getLocation(), diag::note_using_decl_target);
3358      return true;
3359    }
3360  }
3361
3362  if (Previous.empty()) return false;
3363
3364  NamedDecl *Target = Orig;
3365  if (isa<UsingShadowDecl>(Target))
3366    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3367
3368  // If the target happens to be one of the previous declarations, we
3369  // don't have a conflict.
3370  //
3371  // FIXME: but we might be increasing its access, in which case we
3372  // should redeclare it.
3373  NamedDecl *NonTag = 0, *Tag = 0;
3374  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3375         I != E; ++I) {
3376    NamedDecl *D = (*I)->getUnderlyingDecl();
3377    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3378      return false;
3379
3380    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3381  }
3382
3383  if (Target->isFunctionOrFunctionTemplate()) {
3384    FunctionDecl *FD;
3385    if (isa<FunctionTemplateDecl>(Target))
3386      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3387    else
3388      FD = cast<FunctionDecl>(Target);
3389
3390    NamedDecl *OldDecl = 0;
3391    switch (CheckOverload(FD, Previous, OldDecl)) {
3392    case Ovl_Overload:
3393      return false;
3394
3395    case Ovl_NonFunction:
3396      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3397      break;
3398
3399    // We found a decl with the exact signature.
3400    case Ovl_Match:
3401      if (isa<UsingShadowDecl>(OldDecl)) {
3402        // Silently ignore the possible conflict.
3403        return false;
3404      }
3405
3406      // If we're in a record, we want to hide the target, so we
3407      // return true (without a diagnostic) to tell the caller not to
3408      // build a shadow decl.
3409      if (CurContext->isRecord())
3410        return true;
3411
3412      // If we're not in a record, this is an error.
3413      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3414      break;
3415    }
3416
3417    Diag(Target->getLocation(), diag::note_using_decl_target);
3418    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3419    return true;
3420  }
3421
3422  // Target is not a function.
3423
3424  if (isa<TagDecl>(Target)) {
3425    // No conflict between a tag and a non-tag.
3426    if (!Tag) return false;
3427
3428    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3429    Diag(Target->getLocation(), diag::note_using_decl_target);
3430    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3431    return true;
3432  }
3433
3434  // No conflict between a tag and a non-tag.
3435  if (!NonTag) return false;
3436
3437  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3438  Diag(Target->getLocation(), diag::note_using_decl_target);
3439  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3440  return true;
3441}
3442
3443/// Builds a shadow declaration corresponding to a 'using' declaration.
3444UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3445                                            UsingDecl *UD,
3446                                            NamedDecl *Orig) {
3447
3448  // If we resolved to another shadow declaration, just coalesce them.
3449  NamedDecl *Target = Orig;
3450  if (isa<UsingShadowDecl>(Target)) {
3451    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3452    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3453  }
3454
3455  UsingShadowDecl *Shadow
3456    = UsingShadowDecl::Create(Context, CurContext,
3457                              UD->getLocation(), UD, Target);
3458  UD->addShadowDecl(Shadow);
3459
3460  if (S)
3461    PushOnScopeChains(Shadow, S);
3462  else
3463    CurContext->addDecl(Shadow);
3464  Shadow->setAccess(UD->getAccess());
3465
3466  // Register it as a conversion if appropriate.
3467  if (Shadow->getDeclName().getNameKind()
3468        == DeclarationName::CXXConversionFunctionName)
3469    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3470
3471  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3472    Shadow->setInvalidDecl();
3473
3474  return Shadow;
3475}
3476
3477/// Hides a using shadow declaration.  This is required by the current
3478/// using-decl implementation when a resolvable using declaration in a
3479/// class is followed by a declaration which would hide or override
3480/// one or more of the using decl's targets; for example:
3481///
3482///   struct Base { void foo(int); };
3483///   struct Derived : Base {
3484///     using Base::foo;
3485///     void foo(int);
3486///   };
3487///
3488/// The governing language is C++03 [namespace.udecl]p12:
3489///
3490///   When a using-declaration brings names from a base class into a
3491///   derived class scope, member functions in the derived class
3492///   override and/or hide member functions with the same name and
3493///   parameter types in a base class (rather than conflicting).
3494///
3495/// There are two ways to implement this:
3496///   (1) optimistically create shadow decls when they're not hidden
3497///       by existing declarations, or
3498///   (2) don't create any shadow decls (or at least don't make them
3499///       visible) until we've fully parsed/instantiated the class.
3500/// The problem with (1) is that we might have to retroactively remove
3501/// a shadow decl, which requires several O(n) operations because the
3502/// decl structures are (very reasonably) not designed for removal.
3503/// (2) avoids this but is very fiddly and phase-dependent.
3504void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3505  if (Shadow->getDeclName().getNameKind() ==
3506        DeclarationName::CXXConversionFunctionName)
3507    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3508
3509  // Remove it from the DeclContext...
3510  Shadow->getDeclContext()->removeDecl(Shadow);
3511
3512  // ...and the scope, if applicable...
3513  if (S) {
3514    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3515    IdResolver.RemoveDecl(Shadow);
3516  }
3517
3518  // ...and the using decl.
3519  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3520
3521  // TODO: complain somehow if Shadow was used.  It shouldn't
3522  // be possible for this to happen, because...?
3523}
3524
3525/// Builds a using declaration.
3526///
3527/// \param IsInstantiation - Whether this call arises from an
3528///   instantiation of an unresolved using declaration.  We treat
3529///   the lookup differently for these declarations.
3530NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3531                                       SourceLocation UsingLoc,
3532                                       CXXScopeSpec &SS,
3533                                       SourceLocation IdentLoc,
3534                                       DeclarationName Name,
3535                                       AttributeList *AttrList,
3536                                       bool IsInstantiation,
3537                                       bool IsTypeName,
3538                                       SourceLocation TypenameLoc) {
3539  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3540  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3541
3542  // FIXME: We ignore attributes for now.
3543  delete AttrList;
3544
3545  if (SS.isEmpty()) {
3546    Diag(IdentLoc, diag::err_using_requires_qualname);
3547    return 0;
3548  }
3549
3550  // Do the redeclaration lookup in the current scope.
3551  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3552                        ForRedeclaration);
3553  Previous.setHideTags(false);
3554  if (S) {
3555    LookupName(Previous, S);
3556
3557    // It is really dumb that we have to do this.
3558    LookupResult::Filter F = Previous.makeFilter();
3559    while (F.hasNext()) {
3560      NamedDecl *D = F.next();
3561      if (!isDeclInScope(D, CurContext, S))
3562        F.erase();
3563    }
3564    F.done();
3565  } else {
3566    assert(IsInstantiation && "no scope in non-instantiation");
3567    assert(CurContext->isRecord() && "scope not record in instantiation");
3568    LookupQualifiedName(Previous, CurContext);
3569  }
3570
3571  NestedNameSpecifier *NNS =
3572    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3573
3574  // Check for invalid redeclarations.
3575  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3576    return 0;
3577
3578  // Check for bad qualifiers.
3579  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3580    return 0;
3581
3582  DeclContext *LookupContext = computeDeclContext(SS);
3583  NamedDecl *D;
3584  if (!LookupContext) {
3585    if (IsTypeName) {
3586      // FIXME: not all declaration name kinds are legal here
3587      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3588                                              UsingLoc, TypenameLoc,
3589                                              SS.getRange(), NNS,
3590                                              IdentLoc, Name);
3591    } else {
3592      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3593                                           UsingLoc, SS.getRange(), NNS,
3594                                           IdentLoc, Name);
3595    }
3596  } else {
3597    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3598                          SS.getRange(), UsingLoc, NNS, Name,
3599                          IsTypeName);
3600  }
3601  D->setAccess(AS);
3602  CurContext->addDecl(D);
3603
3604  if (!LookupContext) return D;
3605  UsingDecl *UD = cast<UsingDecl>(D);
3606
3607  if (RequireCompleteDeclContext(SS)) {
3608    UD->setInvalidDecl();
3609    return UD;
3610  }
3611
3612  // Look up the target name.
3613
3614  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3615
3616  // Unlike most lookups, we don't always want to hide tag
3617  // declarations: tag names are visible through the using declaration
3618  // even if hidden by ordinary names, *except* in a dependent context
3619  // where it's important for the sanity of two-phase lookup.
3620  if (!IsInstantiation)
3621    R.setHideTags(false);
3622
3623  LookupQualifiedName(R, LookupContext);
3624
3625  if (R.empty()) {
3626    Diag(IdentLoc, diag::err_no_member)
3627      << Name << LookupContext << SS.getRange();
3628    UD->setInvalidDecl();
3629    return UD;
3630  }
3631
3632  if (R.isAmbiguous()) {
3633    UD->setInvalidDecl();
3634    return UD;
3635  }
3636
3637  if (IsTypeName) {
3638    // If we asked for a typename and got a non-type decl, error out.
3639    if (!R.getAsSingle<TypeDecl>()) {
3640      Diag(IdentLoc, diag::err_using_typename_non_type);
3641      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3642        Diag((*I)->getUnderlyingDecl()->getLocation(),
3643             diag::note_using_decl_target);
3644      UD->setInvalidDecl();
3645      return UD;
3646    }
3647  } else {
3648    // If we asked for a non-typename and we got a type, error out,
3649    // but only if this is an instantiation of an unresolved using
3650    // decl.  Otherwise just silently find the type name.
3651    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3652      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3653      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3654      UD->setInvalidDecl();
3655      return UD;
3656    }
3657  }
3658
3659  // C++0x N2914 [namespace.udecl]p6:
3660  // A using-declaration shall not name a namespace.
3661  if (R.getAsSingle<NamespaceDecl>()) {
3662    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3663      << SS.getRange();
3664    UD->setInvalidDecl();
3665    return UD;
3666  }
3667
3668  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3669    if (!CheckUsingShadowDecl(UD, *I, Previous))
3670      BuildUsingShadowDecl(S, UD, *I);
3671  }
3672
3673  return UD;
3674}
3675
3676/// Checks that the given using declaration is not an invalid
3677/// redeclaration.  Note that this is checking only for the using decl
3678/// itself, not for any ill-formedness among the UsingShadowDecls.
3679bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3680                                       bool isTypeName,
3681                                       const CXXScopeSpec &SS,
3682                                       SourceLocation NameLoc,
3683                                       const LookupResult &Prev) {
3684  // C++03 [namespace.udecl]p8:
3685  // C++0x [namespace.udecl]p10:
3686  //   A using-declaration is a declaration and can therefore be used
3687  //   repeatedly where (and only where) multiple declarations are
3688  //   allowed.
3689  // That's only in file contexts.
3690  if (CurContext->getLookupContext()->isFileContext())
3691    return false;
3692
3693  NestedNameSpecifier *Qual
3694    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3695
3696  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3697    NamedDecl *D = *I;
3698
3699    bool DTypename;
3700    NestedNameSpecifier *DQual;
3701    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3702      DTypename = UD->isTypeName();
3703      DQual = UD->getTargetNestedNameDecl();
3704    } else if (UnresolvedUsingValueDecl *UD
3705                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3706      DTypename = false;
3707      DQual = UD->getTargetNestedNameSpecifier();
3708    } else if (UnresolvedUsingTypenameDecl *UD
3709                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3710      DTypename = true;
3711      DQual = UD->getTargetNestedNameSpecifier();
3712    } else continue;
3713
3714    // using decls differ if one says 'typename' and the other doesn't.
3715    // FIXME: non-dependent using decls?
3716    if (isTypeName != DTypename) continue;
3717
3718    // using decls differ if they name different scopes (but note that
3719    // template instantiation can cause this check to trigger when it
3720    // didn't before instantiation).
3721    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3722        Context.getCanonicalNestedNameSpecifier(DQual))
3723      continue;
3724
3725    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3726    Diag(D->getLocation(), diag::note_using_decl) << 1;
3727    return true;
3728  }
3729
3730  return false;
3731}
3732
3733
3734/// Checks that the given nested-name qualifier used in a using decl
3735/// in the current context is appropriately related to the current
3736/// scope.  If an error is found, diagnoses it and returns true.
3737bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3738                                   const CXXScopeSpec &SS,
3739                                   SourceLocation NameLoc) {
3740  DeclContext *NamedContext = computeDeclContext(SS);
3741
3742  if (!CurContext->isRecord()) {
3743    // C++03 [namespace.udecl]p3:
3744    // C++0x [namespace.udecl]p8:
3745    //   A using-declaration for a class member shall be a member-declaration.
3746
3747    // If we weren't able to compute a valid scope, it must be a
3748    // dependent class scope.
3749    if (!NamedContext || NamedContext->isRecord()) {
3750      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3751        << SS.getRange();
3752      return true;
3753    }
3754
3755    // Otherwise, everything is known to be fine.
3756    return false;
3757  }
3758
3759  // The current scope is a record.
3760
3761  // If the named context is dependent, we can't decide much.
3762  if (!NamedContext) {
3763    // FIXME: in C++0x, we can diagnose if we can prove that the
3764    // nested-name-specifier does not refer to a base class, which is
3765    // still possible in some cases.
3766
3767    // Otherwise we have to conservatively report that things might be
3768    // okay.
3769    return false;
3770  }
3771
3772  if (!NamedContext->isRecord()) {
3773    // Ideally this would point at the last name in the specifier,
3774    // but we don't have that level of source info.
3775    Diag(SS.getRange().getBegin(),
3776         diag::err_using_decl_nested_name_specifier_is_not_class)
3777      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3778    return true;
3779  }
3780
3781  if (getLangOptions().CPlusPlus0x) {
3782    // C++0x [namespace.udecl]p3:
3783    //   In a using-declaration used as a member-declaration, the
3784    //   nested-name-specifier shall name a base class of the class
3785    //   being defined.
3786
3787    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3788                                 cast<CXXRecordDecl>(NamedContext))) {
3789      if (CurContext == NamedContext) {
3790        Diag(NameLoc,
3791             diag::err_using_decl_nested_name_specifier_is_current_class)
3792          << SS.getRange();
3793        return true;
3794      }
3795
3796      Diag(SS.getRange().getBegin(),
3797           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3798        << (NestedNameSpecifier*) SS.getScopeRep()
3799        << cast<CXXRecordDecl>(CurContext)
3800        << SS.getRange();
3801      return true;
3802    }
3803
3804    return false;
3805  }
3806
3807  // C++03 [namespace.udecl]p4:
3808  //   A using-declaration used as a member-declaration shall refer
3809  //   to a member of a base class of the class being defined [etc.].
3810
3811  // Salient point: SS doesn't have to name a base class as long as
3812  // lookup only finds members from base classes.  Therefore we can
3813  // diagnose here only if we can prove that that can't happen,
3814  // i.e. if the class hierarchies provably don't intersect.
3815
3816  // TODO: it would be nice if "definitely valid" results were cached
3817  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3818  // need to be repeated.
3819
3820  struct UserData {
3821    llvm::DenseSet<const CXXRecordDecl*> Bases;
3822
3823    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3824      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3825      Data->Bases.insert(Base);
3826      return true;
3827    }
3828
3829    bool hasDependentBases(const CXXRecordDecl *Class) {
3830      return !Class->forallBases(collect, this);
3831    }
3832
3833    /// Returns true if the base is dependent or is one of the
3834    /// accumulated base classes.
3835    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3836      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3837      return !Data->Bases.count(Base);
3838    }
3839
3840    bool mightShareBases(const CXXRecordDecl *Class) {
3841      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3842    }
3843  };
3844
3845  UserData Data;
3846
3847  // Returns false if we find a dependent base.
3848  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3849    return false;
3850
3851  // Returns false if the class has a dependent base or if it or one
3852  // of its bases is present in the base set of the current context.
3853  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3854    return false;
3855
3856  Diag(SS.getRange().getBegin(),
3857       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3858    << (NestedNameSpecifier*) SS.getScopeRep()
3859    << cast<CXXRecordDecl>(CurContext)
3860    << SS.getRange();
3861
3862  return true;
3863}
3864
3865Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3866                                             SourceLocation NamespaceLoc,
3867                                             SourceLocation AliasLoc,
3868                                             IdentifierInfo *Alias,
3869                                             CXXScopeSpec &SS,
3870                                             SourceLocation IdentLoc,
3871                                             IdentifierInfo *Ident) {
3872
3873  // Lookup the namespace name.
3874  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3875  LookupParsedName(R, S, &SS);
3876
3877  // Check if we have a previous declaration with the same name.
3878  if (NamedDecl *PrevDecl
3879        = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
3880                           ForRedeclaration)) {
3881    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3882      // We already have an alias with the same name that points to the same
3883      // namespace, so don't create a new one.
3884      // FIXME: At some point, we'll want to create the (redundant)
3885      // declaration to maintain better source information.
3886      if (!R.isAmbiguous() && !R.empty() &&
3887          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3888        return DeclPtrTy();
3889    }
3890
3891    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3892      diag::err_redefinition_different_kind;
3893    Diag(AliasLoc, DiagID) << Alias;
3894    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3895    return DeclPtrTy();
3896  }
3897
3898  if (R.isAmbiguous())
3899    return DeclPtrTy();
3900
3901  if (R.empty()) {
3902    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3903    return DeclPtrTy();
3904  }
3905
3906  NamespaceAliasDecl *AliasDecl =
3907    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3908                               Alias, SS.getRange(),
3909                               (NestedNameSpecifier *)SS.getScopeRep(),
3910                               IdentLoc, R.getFoundDecl());
3911
3912  PushOnScopeChains(AliasDecl, S);
3913  return DeclPtrTy::make(AliasDecl);
3914}
3915
3916void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3917                                            CXXConstructorDecl *Constructor) {
3918  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3919          !Constructor->isUsed()) &&
3920    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3921
3922  CXXRecordDecl *ClassDecl
3923    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3924  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3925
3926  DeclContext *PreviousContext = CurContext;
3927  CurContext = Constructor;
3928  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3929    Diag(CurrentLocation, diag::note_member_synthesized_at)
3930      << CXXConstructor << Context.getTagDeclType(ClassDecl);
3931    Constructor->setInvalidDecl();
3932  } else {
3933    Constructor->setUsed();
3934  }
3935  CurContext = PreviousContext;
3936}
3937
3938void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3939                                    CXXDestructorDecl *Destructor) {
3940  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3941         "DefineImplicitDestructor - call it for implicit default dtor");
3942  CXXRecordDecl *ClassDecl = Destructor->getParent();
3943  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3944
3945  DeclContext *PreviousContext = CurContext;
3946  CurContext = Destructor;
3947
3948  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3949                                         Destructor->getParent());
3950
3951  // FIXME: If CheckDestructor fails, we should emit a note about where the
3952  // implicit destructor was needed.
3953  if (CheckDestructor(Destructor)) {
3954    Diag(CurrentLocation, diag::note_member_synthesized_at)
3955      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3956
3957    Destructor->setInvalidDecl();
3958    CurContext = PreviousContext;
3959
3960    return;
3961  }
3962  CurContext = PreviousContext;
3963
3964  Destructor->setUsed();
3965}
3966
3967void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3968                                          CXXMethodDecl *MethodDecl) {
3969  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3970          MethodDecl->getOverloadedOperator() == OO_Equal &&
3971          !MethodDecl->isUsed()) &&
3972         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3973
3974  CXXRecordDecl *ClassDecl
3975    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3976
3977  DeclContext *PreviousContext = CurContext;
3978  CurContext = MethodDecl;
3979
3980  // C++[class.copy] p12
3981  // Before the implicitly-declared copy assignment operator for a class is
3982  // implicitly defined, all implicitly-declared copy assignment operators
3983  // for its direct base classes and its nonstatic data members shall have
3984  // been implicitly defined.
3985  bool err = false;
3986  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3987       E = ClassDecl->bases_end(); Base != E; ++Base) {
3988    CXXRecordDecl *BaseClassDecl
3989      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3990    if (CXXMethodDecl *BaseAssignOpMethod =
3991          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3992                                  BaseClassDecl)) {
3993      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3994                              BaseAssignOpMethod,
3995                              PDiag(diag::err_access_assign_base)
3996                                << Base->getType());
3997
3998      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3999    }
4000  }
4001  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4002       E = ClassDecl->field_end(); Field != E; ++Field) {
4003    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4004    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4005      FieldType = Array->getElementType();
4006    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4007      CXXRecordDecl *FieldClassDecl
4008        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4009      if (CXXMethodDecl *FieldAssignOpMethod =
4010          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4011                                  FieldClassDecl)) {
4012        CheckDirectMemberAccess(Field->getLocation(),
4013                                FieldAssignOpMethod,
4014                                PDiag(diag::err_access_assign_field)
4015                                  << Field->getDeclName() << Field->getType());
4016
4017        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
4018      }
4019    } else if (FieldType->isReferenceType()) {
4020      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4021      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4022      Diag(Field->getLocation(), diag::note_declared_at);
4023      Diag(CurrentLocation, diag::note_first_required_here);
4024      err = true;
4025    } else if (FieldType.isConstQualified()) {
4026      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4027      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4028      Diag(Field->getLocation(), diag::note_declared_at);
4029      Diag(CurrentLocation, diag::note_first_required_here);
4030      err = true;
4031    }
4032  }
4033  if (!err)
4034    MethodDecl->setUsed();
4035
4036  CurContext = PreviousContext;
4037}
4038
4039CXXMethodDecl *
4040Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
4041                              ParmVarDecl *ParmDecl,
4042                              CXXRecordDecl *ClassDecl) {
4043  QualType LHSType = Context.getTypeDeclType(ClassDecl);
4044  QualType RHSType(LHSType);
4045  // If class's assignment operator argument is const/volatile qualified,
4046  // look for operator = (const/volatile B&). Otherwise, look for
4047  // operator = (B&).
4048  RHSType = Context.getCVRQualifiedType(RHSType,
4049                                     ParmDecl->getType().getCVRQualifiers());
4050  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
4051                                                           LHSType,
4052                                                           SourceLocation()));
4053  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
4054                                                           RHSType,
4055                                                           CurrentLocation));
4056  Expr *Args[2] = { &*LHS, &*RHS };
4057  OverloadCandidateSet CandidateSet(CurrentLocation);
4058  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
4059                              CandidateSet);
4060  OverloadCandidateSet::iterator Best;
4061  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
4062    return cast<CXXMethodDecl>(Best->Function);
4063  assert(false &&
4064         "getAssignOperatorMethod - copy assignment operator method not found");
4065  return 0;
4066}
4067
4068void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4069                                   CXXConstructorDecl *CopyConstructor,
4070                                   unsigned TypeQuals) {
4071  assert((CopyConstructor->isImplicit() &&
4072          CopyConstructor->isCopyConstructor(TypeQuals) &&
4073          !CopyConstructor->isUsed()) &&
4074         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4075
4076  CXXRecordDecl *ClassDecl
4077    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
4078  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4079
4080  DeclContext *PreviousContext = CurContext;
4081  CurContext = CopyConstructor;
4082
4083  // C++ [class.copy] p209
4084  // Before the implicitly-declared copy constructor for a class is
4085  // implicitly defined, all the implicitly-declared copy constructors
4086  // for its base class and its non-static data members shall have been
4087  // implicitly defined.
4088  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
4089       Base != ClassDecl->bases_end(); ++Base) {
4090    CXXRecordDecl *BaseClassDecl
4091      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4092    if (CXXConstructorDecl *BaseCopyCtor =
4093        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
4094      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4095                              BaseCopyCtor,
4096                              PDiag(diag::err_access_copy_base)
4097                                << Base->getType());
4098
4099      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4100    }
4101  }
4102  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4103                                  FieldEnd = ClassDecl->field_end();
4104       Field != FieldEnd; ++Field) {
4105    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4106    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4107      FieldType = Array->getElementType();
4108    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4109      CXXRecordDecl *FieldClassDecl
4110        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4111      if (CXXConstructorDecl *FieldCopyCtor =
4112          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4113        CheckDirectMemberAccess(Field->getLocation(),
4114                                FieldCopyCtor,
4115                                PDiag(diag::err_access_copy_field)
4116                                  << Field->getDeclName() << Field->getType());
4117
4118        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4119      }
4120    }
4121  }
4122  CopyConstructor->setUsed();
4123
4124  CurContext = PreviousContext;
4125}
4126
4127Sema::OwningExprResult
4128Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4129                            CXXConstructorDecl *Constructor,
4130                            MultiExprArg ExprArgs,
4131                            bool RequiresZeroInit,
4132                            bool BaseInitialization) {
4133  bool Elidable = false;
4134
4135  // C++0x [class.copy]p34:
4136  //   When certain criteria are met, an implementation is allowed to
4137  //   omit the copy/move construction of a class object, even if the
4138  //   copy/move constructor and/or destructor for the object have
4139  //   side effects. [...]
4140  //     - when a temporary class object that has not been bound to a
4141  //       reference (12.2) would be copied/moved to a class object
4142  //       with the same cv-unqualified type, the copy/move operation
4143  //       can be omitted by constructing the temporary object
4144  //       directly into the target of the omitted copy/move
4145  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4146    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4147    Elidable = SubExpr->isTemporaryObject() &&
4148      Context.hasSameUnqualifiedType(SubExpr->getType(),
4149                           Context.getTypeDeclType(Constructor->getParent()));
4150  }
4151
4152  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4153                               Elidable, move(ExprArgs), RequiresZeroInit,
4154                               BaseInitialization);
4155}
4156
4157/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4158/// including handling of its default argument expressions.
4159Sema::OwningExprResult
4160Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4161                            CXXConstructorDecl *Constructor, bool Elidable,
4162                            MultiExprArg ExprArgs,
4163                            bool RequiresZeroInit,
4164                            bool BaseInitialization) {
4165  unsigned NumExprs = ExprArgs.size();
4166  Expr **Exprs = (Expr **)ExprArgs.release();
4167
4168  MarkDeclarationReferenced(ConstructLoc, Constructor);
4169  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4170                                        Constructor, Elidable, Exprs, NumExprs,
4171                                        RequiresZeroInit, BaseInitialization));
4172}
4173
4174bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4175                                        CXXConstructorDecl *Constructor,
4176                                        MultiExprArg Exprs) {
4177  OwningExprResult TempResult =
4178    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4179                          move(Exprs));
4180  if (TempResult.isInvalid())
4181    return true;
4182
4183  Expr *Temp = TempResult.takeAs<Expr>();
4184  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4185  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4186  VD->setInit(Temp);
4187
4188  return false;
4189}
4190
4191void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4192  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4193  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4194      !ClassDecl->hasTrivialDestructor()) {
4195    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4196    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4197    CheckDestructorAccess(VD->getLocation(), Destructor,
4198                          PDiag(diag::err_access_dtor_var)
4199                            << VD->getDeclName()
4200                            << VD->getType());
4201  }
4202}
4203
4204/// AddCXXDirectInitializerToDecl - This action is called immediately after
4205/// ActOnDeclarator, when a C++ direct initializer is present.
4206/// e.g: "int x(1);"
4207void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4208                                         SourceLocation LParenLoc,
4209                                         MultiExprArg Exprs,
4210                                         SourceLocation *CommaLocs,
4211                                         SourceLocation RParenLoc) {
4212  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4213  Decl *RealDecl = Dcl.getAs<Decl>();
4214
4215  // If there is no declaration, there was an error parsing it.  Just ignore
4216  // the initializer.
4217  if (RealDecl == 0)
4218    return;
4219
4220  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4221  if (!VDecl) {
4222    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4223    RealDecl->setInvalidDecl();
4224    return;
4225  }
4226
4227  // We will represent direct-initialization similarly to copy-initialization:
4228  //    int x(1);  -as-> int x = 1;
4229  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4230  //
4231  // Clients that want to distinguish between the two forms, can check for
4232  // direct initializer using VarDecl::hasCXXDirectInitializer().
4233  // A major benefit is that clients that don't particularly care about which
4234  // exactly form was it (like the CodeGen) can handle both cases without
4235  // special case code.
4236
4237  // C++ 8.5p11:
4238  // The form of initialization (using parentheses or '=') is generally
4239  // insignificant, but does matter when the entity being initialized has a
4240  // class type.
4241  QualType DeclInitType = VDecl->getType();
4242  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4243    DeclInitType = Context.getBaseElementType(Array);
4244
4245  if (!VDecl->getType()->isDependentType() &&
4246      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4247                          diag::err_typecheck_decl_incomplete_type)) {
4248    VDecl->setInvalidDecl();
4249    return;
4250  }
4251
4252  // The variable can not have an abstract class type.
4253  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4254                             diag::err_abstract_type_in_decl,
4255                             AbstractVariableType))
4256    VDecl->setInvalidDecl();
4257
4258  const VarDecl *Def;
4259  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4260    Diag(VDecl->getLocation(), diag::err_redefinition)
4261    << VDecl->getDeclName();
4262    Diag(Def->getLocation(), diag::note_previous_definition);
4263    VDecl->setInvalidDecl();
4264    return;
4265  }
4266
4267  // If either the declaration has a dependent type or if any of the
4268  // expressions is type-dependent, we represent the initialization
4269  // via a ParenListExpr for later use during template instantiation.
4270  if (VDecl->getType()->isDependentType() ||
4271      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4272    // Let clients know that initialization was done with a direct initializer.
4273    VDecl->setCXXDirectInitializer(true);
4274
4275    // Store the initialization expressions as a ParenListExpr.
4276    unsigned NumExprs = Exprs.size();
4277    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4278                                               (Expr **)Exprs.release(),
4279                                               NumExprs, RParenLoc));
4280    return;
4281  }
4282
4283  // Capture the variable that is being initialized and the style of
4284  // initialization.
4285  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4286
4287  // FIXME: Poor source location information.
4288  InitializationKind Kind
4289    = InitializationKind::CreateDirect(VDecl->getLocation(),
4290                                       LParenLoc, RParenLoc);
4291
4292  InitializationSequence InitSeq(*this, Entity, Kind,
4293                                 (Expr**)Exprs.get(), Exprs.size());
4294  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4295  if (Result.isInvalid()) {
4296    VDecl->setInvalidDecl();
4297    return;
4298  }
4299
4300  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4301  VDecl->setInit(Result.takeAs<Expr>());
4302  VDecl->setCXXDirectInitializer(true);
4303
4304  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4305    FinalizeVarWithDestructor(VDecl, Record);
4306}
4307
4308/// \brief Given a constructor and the set of arguments provided for the
4309/// constructor, convert the arguments and add any required default arguments
4310/// to form a proper call to this constructor.
4311///
4312/// \returns true if an error occurred, false otherwise.
4313bool
4314Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4315                              MultiExprArg ArgsPtr,
4316                              SourceLocation Loc,
4317                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4318  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4319  unsigned NumArgs = ArgsPtr.size();
4320  Expr **Args = (Expr **)ArgsPtr.get();
4321
4322  const FunctionProtoType *Proto
4323    = Constructor->getType()->getAs<FunctionProtoType>();
4324  assert(Proto && "Constructor without a prototype?");
4325  unsigned NumArgsInProto = Proto->getNumArgs();
4326
4327  // If too few arguments are available, we'll fill in the rest with defaults.
4328  if (NumArgs < NumArgsInProto)
4329    ConvertedArgs.reserve(NumArgsInProto);
4330  else
4331    ConvertedArgs.reserve(NumArgs);
4332
4333  VariadicCallType CallType =
4334    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4335  llvm::SmallVector<Expr *, 8> AllArgs;
4336  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4337                                        Proto, 0, Args, NumArgs, AllArgs,
4338                                        CallType);
4339  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4340    ConvertedArgs.push_back(AllArgs[i]);
4341  return Invalid;
4342}
4343
4344static inline bool
4345CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4346                                       const FunctionDecl *FnDecl) {
4347  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4348  if (isa<NamespaceDecl>(DC)) {
4349    return SemaRef.Diag(FnDecl->getLocation(),
4350                        diag::err_operator_new_delete_declared_in_namespace)
4351      << FnDecl->getDeclName();
4352  }
4353
4354  if (isa<TranslationUnitDecl>(DC) &&
4355      FnDecl->getStorageClass() == FunctionDecl::Static) {
4356    return SemaRef.Diag(FnDecl->getLocation(),
4357                        diag::err_operator_new_delete_declared_static)
4358      << FnDecl->getDeclName();
4359  }
4360
4361  return false;
4362}
4363
4364static inline bool
4365CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4366                            CanQualType ExpectedResultType,
4367                            CanQualType ExpectedFirstParamType,
4368                            unsigned DependentParamTypeDiag,
4369                            unsigned InvalidParamTypeDiag) {
4370  QualType ResultType =
4371    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4372
4373  // Check that the result type is not dependent.
4374  if (ResultType->isDependentType())
4375    return SemaRef.Diag(FnDecl->getLocation(),
4376                        diag::err_operator_new_delete_dependent_result_type)
4377    << FnDecl->getDeclName() << ExpectedResultType;
4378
4379  // Check that the result type is what we expect.
4380  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4381    return SemaRef.Diag(FnDecl->getLocation(),
4382                        diag::err_operator_new_delete_invalid_result_type)
4383    << FnDecl->getDeclName() << ExpectedResultType;
4384
4385  // A function template must have at least 2 parameters.
4386  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4387    return SemaRef.Diag(FnDecl->getLocation(),
4388                      diag::err_operator_new_delete_template_too_few_parameters)
4389        << FnDecl->getDeclName();
4390
4391  // The function decl must have at least 1 parameter.
4392  if (FnDecl->getNumParams() == 0)
4393    return SemaRef.Diag(FnDecl->getLocation(),
4394                        diag::err_operator_new_delete_too_few_parameters)
4395      << FnDecl->getDeclName();
4396
4397  // Check the the first parameter type is not dependent.
4398  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4399  if (FirstParamType->isDependentType())
4400    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4401      << FnDecl->getDeclName() << ExpectedFirstParamType;
4402
4403  // Check that the first parameter type is what we expect.
4404  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4405      ExpectedFirstParamType)
4406    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4407    << FnDecl->getDeclName() << ExpectedFirstParamType;
4408
4409  return false;
4410}
4411
4412static bool
4413CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4414  // C++ [basic.stc.dynamic.allocation]p1:
4415  //   A program is ill-formed if an allocation function is declared in a
4416  //   namespace scope other than global scope or declared static in global
4417  //   scope.
4418  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4419    return true;
4420
4421  CanQualType SizeTy =
4422    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4423
4424  // C++ [basic.stc.dynamic.allocation]p1:
4425  //  The return type shall be void*. The first parameter shall have type
4426  //  std::size_t.
4427  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4428                                  SizeTy,
4429                                  diag::err_operator_new_dependent_param_type,
4430                                  diag::err_operator_new_param_type))
4431    return true;
4432
4433  // C++ [basic.stc.dynamic.allocation]p1:
4434  //  The first parameter shall not have an associated default argument.
4435  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4436    return SemaRef.Diag(FnDecl->getLocation(),
4437                        diag::err_operator_new_default_arg)
4438      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4439
4440  return false;
4441}
4442
4443static bool
4444CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4445  // C++ [basic.stc.dynamic.deallocation]p1:
4446  //   A program is ill-formed if deallocation functions are declared in a
4447  //   namespace scope other than global scope or declared static in global
4448  //   scope.
4449  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4450    return true;
4451
4452  // C++ [basic.stc.dynamic.deallocation]p2:
4453  //   Each deallocation function shall return void and its first parameter
4454  //   shall be void*.
4455  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4456                                  SemaRef.Context.VoidPtrTy,
4457                                 diag::err_operator_delete_dependent_param_type,
4458                                 diag::err_operator_delete_param_type))
4459    return true;
4460
4461  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4462  if (FirstParamType->isDependentType())
4463    return SemaRef.Diag(FnDecl->getLocation(),
4464                        diag::err_operator_delete_dependent_param_type)
4465    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4466
4467  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4468      SemaRef.Context.VoidPtrTy)
4469    return SemaRef.Diag(FnDecl->getLocation(),
4470                        diag::err_operator_delete_param_type)
4471      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4472
4473  return false;
4474}
4475
4476/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4477/// of this overloaded operator is well-formed. If so, returns false;
4478/// otherwise, emits appropriate diagnostics and returns true.
4479bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4480  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4481         "Expected an overloaded operator declaration");
4482
4483  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4484
4485  // C++ [over.oper]p5:
4486  //   The allocation and deallocation functions, operator new,
4487  //   operator new[], operator delete and operator delete[], are
4488  //   described completely in 3.7.3. The attributes and restrictions
4489  //   found in the rest of this subclause do not apply to them unless
4490  //   explicitly stated in 3.7.3.
4491  if (Op == OO_Delete || Op == OO_Array_Delete)
4492    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4493
4494  if (Op == OO_New || Op == OO_Array_New)
4495    return CheckOperatorNewDeclaration(*this, FnDecl);
4496
4497  // C++ [over.oper]p6:
4498  //   An operator function shall either be a non-static member
4499  //   function or be a non-member function and have at least one
4500  //   parameter whose type is a class, a reference to a class, an
4501  //   enumeration, or a reference to an enumeration.
4502  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4503    if (MethodDecl->isStatic())
4504      return Diag(FnDecl->getLocation(),
4505                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4506  } else {
4507    bool ClassOrEnumParam = false;
4508    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4509                                   ParamEnd = FnDecl->param_end();
4510         Param != ParamEnd; ++Param) {
4511      QualType ParamType = (*Param)->getType().getNonReferenceType();
4512      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4513          ParamType->isEnumeralType()) {
4514        ClassOrEnumParam = true;
4515        break;
4516      }
4517    }
4518
4519    if (!ClassOrEnumParam)
4520      return Diag(FnDecl->getLocation(),
4521                  diag::err_operator_overload_needs_class_or_enum)
4522        << FnDecl->getDeclName();
4523  }
4524
4525  // C++ [over.oper]p8:
4526  //   An operator function cannot have default arguments (8.3.6),
4527  //   except where explicitly stated below.
4528  //
4529  // Only the function-call operator allows default arguments
4530  // (C++ [over.call]p1).
4531  if (Op != OO_Call) {
4532    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4533         Param != FnDecl->param_end(); ++Param) {
4534      if ((*Param)->hasDefaultArg())
4535        return Diag((*Param)->getLocation(),
4536                    diag::err_operator_overload_default_arg)
4537          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4538    }
4539  }
4540
4541  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4542    { false, false, false }
4543#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4544    , { Unary, Binary, MemberOnly }
4545#include "clang/Basic/OperatorKinds.def"
4546  };
4547
4548  bool CanBeUnaryOperator = OperatorUses[Op][0];
4549  bool CanBeBinaryOperator = OperatorUses[Op][1];
4550  bool MustBeMemberOperator = OperatorUses[Op][2];
4551
4552  // C++ [over.oper]p8:
4553  //   [...] Operator functions cannot have more or fewer parameters
4554  //   than the number required for the corresponding operator, as
4555  //   described in the rest of this subclause.
4556  unsigned NumParams = FnDecl->getNumParams()
4557                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4558  if (Op != OO_Call &&
4559      ((NumParams == 1 && !CanBeUnaryOperator) ||
4560       (NumParams == 2 && !CanBeBinaryOperator) ||
4561       (NumParams < 1) || (NumParams > 2))) {
4562    // We have the wrong number of parameters.
4563    unsigned ErrorKind;
4564    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4565      ErrorKind = 2;  // 2 -> unary or binary.
4566    } else if (CanBeUnaryOperator) {
4567      ErrorKind = 0;  // 0 -> unary
4568    } else {
4569      assert(CanBeBinaryOperator &&
4570             "All non-call overloaded operators are unary or binary!");
4571      ErrorKind = 1;  // 1 -> binary
4572    }
4573
4574    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4575      << FnDecl->getDeclName() << NumParams << ErrorKind;
4576  }
4577
4578  // Overloaded operators other than operator() cannot be variadic.
4579  if (Op != OO_Call &&
4580      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4581    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4582      << FnDecl->getDeclName();
4583  }
4584
4585  // Some operators must be non-static member functions.
4586  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4587    return Diag(FnDecl->getLocation(),
4588                diag::err_operator_overload_must_be_member)
4589      << FnDecl->getDeclName();
4590  }
4591
4592  // C++ [over.inc]p1:
4593  //   The user-defined function called operator++ implements the
4594  //   prefix and postfix ++ operator. If this function is a member
4595  //   function with no parameters, or a non-member function with one
4596  //   parameter of class or enumeration type, it defines the prefix
4597  //   increment operator ++ for objects of that type. If the function
4598  //   is a member function with one parameter (which shall be of type
4599  //   int) or a non-member function with two parameters (the second
4600  //   of which shall be of type int), it defines the postfix
4601  //   increment operator ++ for objects of that type.
4602  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4603    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4604    bool ParamIsInt = false;
4605    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4606      ParamIsInt = BT->getKind() == BuiltinType::Int;
4607
4608    if (!ParamIsInt)
4609      return Diag(LastParam->getLocation(),
4610                  diag::err_operator_overload_post_incdec_must_be_int)
4611        << LastParam->getType() << (Op == OO_MinusMinus);
4612  }
4613
4614  // Notify the class if it got an assignment operator.
4615  if (Op == OO_Equal) {
4616    // Would have returned earlier otherwise.
4617    assert(isa<CXXMethodDecl>(FnDecl) &&
4618      "Overloaded = not member, but not filtered.");
4619    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4620    Method->getParent()->addedAssignmentOperator(Context, Method);
4621  }
4622
4623  return false;
4624}
4625
4626/// CheckLiteralOperatorDeclaration - Check whether the declaration
4627/// of this literal operator function is well-formed. If so, returns
4628/// false; otherwise, emits appropriate diagnostics and returns true.
4629bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
4630  DeclContext *DC = FnDecl->getDeclContext();
4631  Decl::Kind Kind = DC->getDeclKind();
4632  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
4633      Kind != Decl::LinkageSpec) {
4634    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
4635      << FnDecl->getDeclName();
4636    return true;
4637  }
4638
4639  bool Valid = false;
4640
4641  // template <char...> type operator "" name() is the only valid template
4642  // signature, and the only valid signature with no parameters.
4643  if (FnDecl->param_size() == 0) {
4644    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
4645      // Must have only one template parameter
4646      TemplateParameterList *Params = TpDecl->getTemplateParameters();
4647      if (Params->size() == 1) {
4648        NonTypeTemplateParmDecl *PmDecl =
4649          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
4650
4651        // The template parameter must be a char parameter pack.
4652        // FIXME: This test will always fail because non-type parameter packs
4653        //   have not been implemented.
4654        if (PmDecl && PmDecl->isTemplateParameterPack() &&
4655            Context.hasSameType(PmDecl->getType(), Context.CharTy))
4656          Valid = true;
4657      }
4658    }
4659  } else {
4660    // Check the first parameter
4661    FunctionDecl::param_iterator Param = FnDecl->param_begin();
4662
4663    QualType T = (*Param)->getType();
4664
4665    // unsigned long long int, long double, and any character type are allowed
4666    // as the only parameters.
4667    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
4668        Context.hasSameType(T, Context.LongDoubleTy) ||
4669        Context.hasSameType(T, Context.CharTy) ||
4670        Context.hasSameType(T, Context.WCharTy) ||
4671        Context.hasSameType(T, Context.Char16Ty) ||
4672        Context.hasSameType(T, Context.Char32Ty)) {
4673      if (++Param == FnDecl->param_end())
4674        Valid = true;
4675      goto FinishedParams;
4676    }
4677
4678    // Otherwise it must be a pointer to const; let's strip those qualifiers.
4679    const PointerType *PT = T->getAs<PointerType>();
4680    if (!PT)
4681      goto FinishedParams;
4682    T = PT->getPointeeType();
4683    if (!T.isConstQualified())
4684      goto FinishedParams;
4685    T = T.getUnqualifiedType();
4686
4687    // Move on to the second parameter;
4688    ++Param;
4689
4690    // If there is no second parameter, the first must be a const char *
4691    if (Param == FnDecl->param_end()) {
4692      if (Context.hasSameType(T, Context.CharTy))
4693        Valid = true;
4694      goto FinishedParams;
4695    }
4696
4697    // const char *, const wchar_t*, const char16_t*, and const char32_t*
4698    // are allowed as the first parameter to a two-parameter function
4699    if (!(Context.hasSameType(T, Context.CharTy) ||
4700          Context.hasSameType(T, Context.WCharTy) ||
4701          Context.hasSameType(T, Context.Char16Ty) ||
4702          Context.hasSameType(T, Context.Char32Ty)))
4703      goto FinishedParams;
4704
4705    // The second and final parameter must be an std::size_t
4706    T = (*Param)->getType().getUnqualifiedType();
4707    if (Context.hasSameType(T, Context.getSizeType()) &&
4708        ++Param == FnDecl->param_end())
4709      Valid = true;
4710  }
4711
4712  // FIXME: This diagnostic is absolutely terrible.
4713FinishedParams:
4714  if (!Valid) {
4715    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
4716      << FnDecl->getDeclName();
4717    return true;
4718  }
4719
4720  return false;
4721}
4722
4723/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4724/// linkage specification, including the language and (if present)
4725/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4726/// the location of the language string literal, which is provided
4727/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4728/// the '{' brace. Otherwise, this linkage specification does not
4729/// have any braces.
4730Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4731                                                     SourceLocation ExternLoc,
4732                                                     SourceLocation LangLoc,
4733                                                     const char *Lang,
4734                                                     unsigned StrSize,
4735                                                     SourceLocation LBraceLoc) {
4736  LinkageSpecDecl::LanguageIDs Language;
4737  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4738    Language = LinkageSpecDecl::lang_c;
4739  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4740    Language = LinkageSpecDecl::lang_cxx;
4741  else {
4742    Diag(LangLoc, diag::err_bad_language);
4743    return DeclPtrTy();
4744  }
4745
4746  // FIXME: Add all the various semantics of linkage specifications
4747
4748  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4749                                               LangLoc, Language,
4750                                               LBraceLoc.isValid());
4751  CurContext->addDecl(D);
4752  PushDeclContext(S, D);
4753  return DeclPtrTy::make(D);
4754}
4755
4756/// ActOnFinishLinkageSpecification - Completely the definition of
4757/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4758/// valid, it's the position of the closing '}' brace in a linkage
4759/// specification that uses braces.
4760Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4761                                                      DeclPtrTy LinkageSpec,
4762                                                      SourceLocation RBraceLoc) {
4763  if (LinkageSpec)
4764    PopDeclContext();
4765  return LinkageSpec;
4766}
4767
4768/// \brief Perform semantic analysis for the variable declaration that
4769/// occurs within a C++ catch clause, returning the newly-created
4770/// variable.
4771VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4772                                         TypeSourceInfo *TInfo,
4773                                         IdentifierInfo *Name,
4774                                         SourceLocation Loc,
4775                                         SourceRange Range) {
4776  bool Invalid = false;
4777
4778  // Arrays and functions decay.
4779  if (ExDeclType->isArrayType())
4780    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4781  else if (ExDeclType->isFunctionType())
4782    ExDeclType = Context.getPointerType(ExDeclType);
4783
4784  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4785  // The exception-declaration shall not denote a pointer or reference to an
4786  // incomplete type, other than [cv] void*.
4787  // N2844 forbids rvalue references.
4788  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4789    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4790    Invalid = true;
4791  }
4792
4793  // GCC allows catching pointers and references to incomplete types
4794  // as an extension; so do we, but we warn by default.
4795
4796  QualType BaseType = ExDeclType;
4797  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4798  unsigned DK = diag::err_catch_incomplete;
4799  bool IncompleteCatchIsInvalid = true;
4800  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4801    BaseType = Ptr->getPointeeType();
4802    Mode = 1;
4803    DK = diag::ext_catch_incomplete_ptr;
4804    IncompleteCatchIsInvalid = false;
4805  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4806    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4807    BaseType = Ref->getPointeeType();
4808    Mode = 2;
4809    DK = diag::ext_catch_incomplete_ref;
4810    IncompleteCatchIsInvalid = false;
4811  }
4812  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4813      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
4814      IncompleteCatchIsInvalid)
4815    Invalid = true;
4816
4817  if (!Invalid && !ExDeclType->isDependentType() &&
4818      RequireNonAbstractType(Loc, ExDeclType,
4819                             diag::err_abstract_type_in_decl,
4820                             AbstractVariableType))
4821    Invalid = true;
4822
4823  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4824                                    Name, ExDeclType, TInfo, VarDecl::None,
4825                                    VarDecl::None);
4826
4827  if (!Invalid) {
4828    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
4829      // C++ [except.handle]p16:
4830      //   The object declared in an exception-declaration or, if the
4831      //   exception-declaration does not specify a name, a temporary (12.2) is
4832      //   copy-initialized (8.5) from the exception object. [...]
4833      //   The object is destroyed when the handler exits, after the destruction
4834      //   of any automatic objects initialized within the handler.
4835      //
4836      // We just pretend to initialize the object with itself, then make sure
4837      // it can be destroyed later.
4838      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
4839      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
4840                                            Loc, ExDeclType, 0);
4841      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
4842                                                               SourceLocation());
4843      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
4844      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4845                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
4846      if (Result.isInvalid())
4847        Invalid = true;
4848      else
4849        FinalizeVarWithDestructor(ExDecl, RecordTy);
4850    }
4851  }
4852
4853  if (Invalid)
4854    ExDecl->setInvalidDecl();
4855
4856  return ExDecl;
4857}
4858
4859/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4860/// handler.
4861Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4862  TypeSourceInfo *TInfo = 0;
4863  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
4864
4865  bool Invalid = D.isInvalidType();
4866  IdentifierInfo *II = D.getIdentifier();
4867  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
4868                                             LookupOrdinaryName,
4869                                             ForRedeclaration)) {
4870    // The scope should be freshly made just for us. There is just no way
4871    // it contains any previous declaration.
4872    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4873    if (PrevDecl->isTemplateParameter()) {
4874      // Maybe we will complain about the shadowed template parameter.
4875      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4876    }
4877  }
4878
4879  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4880    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4881      << D.getCXXScopeSpec().getRange();
4882    Invalid = true;
4883  }
4884
4885  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
4886                                              D.getIdentifier(),
4887                                              D.getIdentifierLoc(),
4888                                            D.getDeclSpec().getSourceRange());
4889
4890  if (Invalid)
4891    ExDecl->setInvalidDecl();
4892
4893  // Add the exception declaration into this scope.
4894  if (II)
4895    PushOnScopeChains(ExDecl, S);
4896  else
4897    CurContext->addDecl(ExDecl);
4898
4899  ProcessDeclAttributes(S, ExDecl, D);
4900  return DeclPtrTy::make(ExDecl);
4901}
4902
4903Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4904                                                   ExprArg assertexpr,
4905                                                   ExprArg assertmessageexpr) {
4906  Expr *AssertExpr = (Expr *)assertexpr.get();
4907  StringLiteral *AssertMessage =
4908    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4909
4910  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4911    llvm::APSInt Value(32);
4912    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4913      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4914        AssertExpr->getSourceRange();
4915      return DeclPtrTy();
4916    }
4917
4918    if (Value == 0) {
4919      Diag(AssertLoc, diag::err_static_assert_failed)
4920        << AssertMessage->getString() << AssertExpr->getSourceRange();
4921    }
4922  }
4923
4924  assertexpr.release();
4925  assertmessageexpr.release();
4926  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4927                                        AssertExpr, AssertMessage);
4928
4929  CurContext->addDecl(Decl);
4930  return DeclPtrTy::make(Decl);
4931}
4932
4933/// \brief Perform semantic analysis of the given friend type declaration.
4934///
4935/// \returns A friend declaration that.
4936FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
4937                                      TypeSourceInfo *TSInfo) {
4938  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
4939
4940  QualType T = TSInfo->getType();
4941  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
4942
4943  if (!getLangOptions().CPlusPlus0x) {
4944    // C++03 [class.friend]p2:
4945    //   An elaborated-type-specifier shall be used in a friend declaration
4946    //   for a class.*
4947    //
4948    //   * The class-key of the elaborated-type-specifier is required.
4949    if (!ActiveTemplateInstantiations.empty()) {
4950      // Do not complain about the form of friend template types during
4951      // template instantiation; we will already have complained when the
4952      // template was declared.
4953    } else if (!T->isElaboratedTypeSpecifier()) {
4954      // If we evaluated the type to a record type, suggest putting
4955      // a tag in front.
4956      if (const RecordType *RT = T->getAs<RecordType>()) {
4957        RecordDecl *RD = RT->getDecl();
4958
4959        std::string InsertionText = std::string(" ") + RD->getKindName();
4960
4961        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
4962          << (unsigned) RD->getTagKind()
4963          << T
4964          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
4965                                        InsertionText);
4966      } else {
4967        Diag(FriendLoc, diag::ext_nonclass_type_friend)
4968          << T
4969          << SourceRange(FriendLoc, TypeRange.getEnd());
4970      }
4971    } else if (T->getAs<EnumType>()) {
4972      Diag(FriendLoc, diag::ext_enum_friend)
4973        << T
4974        << SourceRange(FriendLoc, TypeRange.getEnd());
4975    }
4976  }
4977
4978  // C++0x [class.friend]p3:
4979  //   If the type specifier in a friend declaration designates a (possibly
4980  //   cv-qualified) class type, that class is declared as a friend; otherwise,
4981  //   the friend declaration is ignored.
4982
4983  // FIXME: C++0x has some syntactic restrictions on friend type declarations
4984  // in [class.friend]p3 that we do not implement.
4985
4986  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
4987}
4988
4989/// Handle a friend type declaration.  This works in tandem with
4990/// ActOnTag.
4991///
4992/// Notes on friend class templates:
4993///
4994/// We generally treat friend class declarations as if they were
4995/// declaring a class.  So, for example, the elaborated type specifier
4996/// in a friend declaration is required to obey the restrictions of a
4997/// class-head (i.e. no typedefs in the scope chain), template
4998/// parameters are required to match up with simple template-ids, &c.
4999/// However, unlike when declaring a template specialization, it's
5000/// okay to refer to a template specialization without an empty
5001/// template parameter declaration, e.g.
5002///   friend class A<T>::B<unsigned>;
5003/// We permit this as a special case; if there are any template
5004/// parameters present at all, require proper matching, i.e.
5005///   template <> template <class T> friend class A<int>::B;
5006Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5007                                          MultiTemplateParamsArg TempParams) {
5008  SourceLocation Loc = DS.getSourceRange().getBegin();
5009
5010  assert(DS.isFriendSpecified());
5011  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5012
5013  // Try to convert the decl specifier to a type.  This works for
5014  // friend templates because ActOnTag never produces a ClassTemplateDecl
5015  // for a TUK_Friend.
5016  Declarator TheDeclarator(DS, Declarator::MemberContext);
5017  TypeSourceInfo *TSI;
5018  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5019  if (TheDeclarator.isInvalidType())
5020    return DeclPtrTy();
5021
5022  if (!TSI)
5023    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5024
5025  // This is definitely an error in C++98.  It's probably meant to
5026  // be forbidden in C++0x, too, but the specification is just
5027  // poorly written.
5028  //
5029  // The problem is with declarations like the following:
5030  //   template <T> friend A<T>::foo;
5031  // where deciding whether a class C is a friend or not now hinges
5032  // on whether there exists an instantiation of A that causes
5033  // 'foo' to equal C.  There are restrictions on class-heads
5034  // (which we declare (by fiat) elaborated friend declarations to
5035  // be) that makes this tractable.
5036  //
5037  // FIXME: handle "template <> friend class A<T>;", which
5038  // is possibly well-formed?  Who even knows?
5039  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5040    Diag(Loc, diag::err_tagless_friend_type_template)
5041      << DS.getSourceRange();
5042    return DeclPtrTy();
5043  }
5044
5045  // C++98 [class.friend]p1: A friend of a class is a function
5046  //   or class that is not a member of the class . . .
5047  // This is fixed in DR77, which just barely didn't make the C++03
5048  // deadline.  It's also a very silly restriction that seriously
5049  // affects inner classes and which nobody else seems to implement;
5050  // thus we never diagnose it, not even in -pedantic.
5051  //
5052  // But note that we could warn about it: it's always useless to
5053  // friend one of your own members (it's not, however, worthless to
5054  // friend a member of an arbitrary specialization of your template).
5055
5056  Decl *D;
5057  if (unsigned NumTempParamLists = TempParams.size())
5058    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5059                                   NumTempParamLists,
5060                                 (TemplateParameterList**) TempParams.release(),
5061                                   TSI,
5062                                   DS.getFriendSpecLoc());
5063  else
5064    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5065
5066  if (!D)
5067    return DeclPtrTy();
5068
5069  D->setAccess(AS_public);
5070  CurContext->addDecl(D);
5071
5072  return DeclPtrTy::make(D);
5073}
5074
5075Sema::DeclPtrTy
5076Sema::ActOnFriendFunctionDecl(Scope *S,
5077                              Declarator &D,
5078                              bool IsDefinition,
5079                              MultiTemplateParamsArg TemplateParams) {
5080  const DeclSpec &DS = D.getDeclSpec();
5081
5082  assert(DS.isFriendSpecified());
5083  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5084
5085  SourceLocation Loc = D.getIdentifierLoc();
5086  TypeSourceInfo *TInfo = 0;
5087  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5088
5089  // C++ [class.friend]p1
5090  //   A friend of a class is a function or class....
5091  // Note that this sees through typedefs, which is intended.
5092  // It *doesn't* see through dependent types, which is correct
5093  // according to [temp.arg.type]p3:
5094  //   If a declaration acquires a function type through a
5095  //   type dependent on a template-parameter and this causes
5096  //   a declaration that does not use the syntactic form of a
5097  //   function declarator to have a function type, the program
5098  //   is ill-formed.
5099  if (!T->isFunctionType()) {
5100    Diag(Loc, diag::err_unexpected_friend);
5101
5102    // It might be worthwhile to try to recover by creating an
5103    // appropriate declaration.
5104    return DeclPtrTy();
5105  }
5106
5107  // C++ [namespace.memdef]p3
5108  //  - If a friend declaration in a non-local class first declares a
5109  //    class or function, the friend class or function is a member
5110  //    of the innermost enclosing namespace.
5111  //  - The name of the friend is not found by simple name lookup
5112  //    until a matching declaration is provided in that namespace
5113  //    scope (either before or after the class declaration granting
5114  //    friendship).
5115  //  - If a friend function is called, its name may be found by the
5116  //    name lookup that considers functions from namespaces and
5117  //    classes associated with the types of the function arguments.
5118  //  - When looking for a prior declaration of a class or a function
5119  //    declared as a friend, scopes outside the innermost enclosing
5120  //    namespace scope are not considered.
5121
5122  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5123  DeclarationName Name = GetNameForDeclarator(D);
5124  assert(Name);
5125
5126  // The context we found the declaration in, or in which we should
5127  // create the declaration.
5128  DeclContext *DC;
5129
5130  // FIXME: handle local classes
5131
5132  // Recover from invalid scope qualifiers as if they just weren't there.
5133  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5134                        ForRedeclaration);
5135  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5136    // FIXME: RequireCompleteDeclContext
5137    DC = computeDeclContext(ScopeQual);
5138
5139    // FIXME: handle dependent contexts
5140    if (!DC) return DeclPtrTy();
5141
5142    LookupQualifiedName(Previous, DC);
5143
5144    // If searching in that context implicitly found a declaration in
5145    // a different context, treat it like it wasn't found at all.
5146    // TODO: better diagnostics for this case.  Suggesting the right
5147    // qualified scope would be nice...
5148    // FIXME: getRepresentativeDecl() is not right here at all
5149    if (Previous.empty() ||
5150        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5151      D.setInvalidType();
5152      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5153      return DeclPtrTy();
5154    }
5155
5156    // C++ [class.friend]p1: A friend of a class is a function or
5157    //   class that is not a member of the class . . .
5158    if (DC->Equals(CurContext))
5159      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5160
5161  // Otherwise walk out to the nearest namespace scope looking for matches.
5162  } else {
5163    // TODO: handle local class contexts.
5164
5165    DC = CurContext;
5166    while (true) {
5167      // Skip class contexts.  If someone can cite chapter and verse
5168      // for this behavior, that would be nice --- it's what GCC and
5169      // EDG do, and it seems like a reasonable intent, but the spec
5170      // really only says that checks for unqualified existing
5171      // declarations should stop at the nearest enclosing namespace,
5172      // not that they should only consider the nearest enclosing
5173      // namespace.
5174      while (DC->isRecord())
5175        DC = DC->getParent();
5176
5177      LookupQualifiedName(Previous, DC);
5178
5179      // TODO: decide what we think about using declarations.
5180      if (!Previous.empty())
5181        break;
5182
5183      if (DC->isFileContext()) break;
5184      DC = DC->getParent();
5185    }
5186
5187    // C++ [class.friend]p1: A friend of a class is a function or
5188    //   class that is not a member of the class . . .
5189    // C++0x changes this for both friend types and functions.
5190    // Most C++ 98 compilers do seem to give an error here, so
5191    // we do, too.
5192    if (!Previous.empty() && DC->Equals(CurContext)
5193        && !getLangOptions().CPlusPlus0x)
5194      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5195  }
5196
5197  if (DC->isFileContext()) {
5198    // This implies that it has to be an operator or function.
5199    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5200        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5201        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5202      Diag(Loc, diag::err_introducing_special_friend) <<
5203        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5204         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5205      return DeclPtrTy();
5206    }
5207  }
5208
5209  bool Redeclaration = false;
5210  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5211                                          move(TemplateParams),
5212                                          IsDefinition,
5213                                          Redeclaration);
5214  if (!ND) return DeclPtrTy();
5215
5216  assert(ND->getDeclContext() == DC);
5217  assert(ND->getLexicalDeclContext() == CurContext);
5218
5219  // Add the function declaration to the appropriate lookup tables,
5220  // adjusting the redeclarations list as necessary.  We don't
5221  // want to do this yet if the friending class is dependent.
5222  //
5223  // Also update the scope-based lookup if the target context's
5224  // lookup context is in lexical scope.
5225  if (!CurContext->isDependentContext()) {
5226    DC = DC->getLookupContext();
5227    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5228    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5229      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5230  }
5231
5232  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5233                                       D.getIdentifierLoc(), ND,
5234                                       DS.getFriendSpecLoc());
5235  FrD->setAccess(AS_public);
5236  CurContext->addDecl(FrD);
5237
5238  return DeclPtrTy::make(ND);
5239}
5240
5241void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5242  AdjustDeclIfTemplate(dcl);
5243
5244  Decl *Dcl = dcl.getAs<Decl>();
5245  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5246  if (!Fn) {
5247    Diag(DelLoc, diag::err_deleted_non_function);
5248    return;
5249  }
5250  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5251    Diag(DelLoc, diag::err_deleted_decl_not_first);
5252    Diag(Prev->getLocation(), diag::note_previous_declaration);
5253    // If the declaration wasn't the first, we delete the function anyway for
5254    // recovery.
5255  }
5256  Fn->setDeleted();
5257}
5258
5259static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5260  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5261       ++CI) {
5262    Stmt *SubStmt = *CI;
5263    if (!SubStmt)
5264      continue;
5265    if (isa<ReturnStmt>(SubStmt))
5266      Self.Diag(SubStmt->getSourceRange().getBegin(),
5267           diag::err_return_in_constructor_handler);
5268    if (!isa<Expr>(SubStmt))
5269      SearchForReturnInStmt(Self, SubStmt);
5270  }
5271}
5272
5273void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5274  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5275    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5276    SearchForReturnInStmt(*this, Handler);
5277  }
5278}
5279
5280bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5281                                             const CXXMethodDecl *Old) {
5282  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5283  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5284
5285  if (Context.hasSameType(NewTy, OldTy) ||
5286      NewTy->isDependentType() || OldTy->isDependentType())
5287    return false;
5288
5289  // Check if the return types are covariant
5290  QualType NewClassTy, OldClassTy;
5291
5292  /// Both types must be pointers or references to classes.
5293  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5294    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5295      NewClassTy = NewPT->getPointeeType();
5296      OldClassTy = OldPT->getPointeeType();
5297    }
5298  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5299    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5300      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5301        NewClassTy = NewRT->getPointeeType();
5302        OldClassTy = OldRT->getPointeeType();
5303      }
5304    }
5305  }
5306
5307  // The return types aren't either both pointers or references to a class type.
5308  if (NewClassTy.isNull()) {
5309    Diag(New->getLocation(),
5310         diag::err_different_return_type_for_overriding_virtual_function)
5311      << New->getDeclName() << NewTy << OldTy;
5312    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5313
5314    return true;
5315  }
5316
5317  // C++ [class.virtual]p6:
5318  //   If the return type of D::f differs from the return type of B::f, the
5319  //   class type in the return type of D::f shall be complete at the point of
5320  //   declaration of D::f or shall be the class type D.
5321  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5322    if (!RT->isBeingDefined() &&
5323        RequireCompleteType(New->getLocation(), NewClassTy,
5324                            PDiag(diag::err_covariant_return_incomplete)
5325                              << New->getDeclName()))
5326    return true;
5327  }
5328
5329  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5330    // Check if the new class derives from the old class.
5331    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5332      Diag(New->getLocation(),
5333           diag::err_covariant_return_not_derived)
5334      << New->getDeclName() << NewTy << OldTy;
5335      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5336      return true;
5337    }
5338
5339    // Check if we the conversion from derived to base is valid.
5340    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5341                      diag::err_covariant_return_inaccessible_base,
5342                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5343                      // FIXME: Should this point to the return type?
5344                      New->getLocation(), SourceRange(), New->getDeclName())) {
5345      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5346      return true;
5347    }
5348  }
5349
5350  // The qualifiers of the return types must be the same.
5351  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5352    Diag(New->getLocation(),
5353         diag::err_covariant_return_type_different_qualifications)
5354    << New->getDeclName() << NewTy << OldTy;
5355    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5356    return true;
5357  };
5358
5359
5360  // The new class type must have the same or less qualifiers as the old type.
5361  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5362    Diag(New->getLocation(),
5363         diag::err_covariant_return_type_class_type_more_qualified)
5364    << New->getDeclName() << NewTy << OldTy;
5365    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5366    return true;
5367  };
5368
5369  return false;
5370}
5371
5372bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5373                                             const CXXMethodDecl *Old)
5374{
5375  if (Old->hasAttr<FinalAttr>()) {
5376    Diag(New->getLocation(), diag::err_final_function_overridden)
5377      << New->getDeclName();
5378    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5379    return true;
5380  }
5381
5382  return false;
5383}
5384
5385/// \brief Mark the given method pure.
5386///
5387/// \param Method the method to be marked pure.
5388///
5389/// \param InitRange the source range that covers the "0" initializer.
5390bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5391  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5392    Method->setPure();
5393
5394    // A class is abstract if at least one function is pure virtual.
5395    Method->getParent()->setAbstract(true);
5396    return false;
5397  }
5398
5399  if (!Method->isInvalidDecl())
5400    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5401      << Method->getDeclName() << InitRange;
5402  return true;
5403}
5404
5405/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5406/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5407/// is a fresh scope pushed for just this purpose.
5408///
5409/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5410/// static data member of class X, names should be looked up in the scope of
5411/// class X.
5412void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5413  // If there is no declaration, there was an error parsing it.
5414  Decl *D = Dcl.getAs<Decl>();
5415  if (D == 0) return;
5416
5417  // We should only get called for declarations with scope specifiers, like:
5418  //   int foo::bar;
5419  assert(D->isOutOfLine());
5420  EnterDeclaratorContext(S, D->getDeclContext());
5421}
5422
5423/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5424/// initializer for the out-of-line declaration 'Dcl'.
5425void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5426  // If there is no declaration, there was an error parsing it.
5427  Decl *D = Dcl.getAs<Decl>();
5428  if (D == 0) return;
5429
5430  assert(D->isOutOfLine());
5431  ExitDeclaratorContext(S);
5432}
5433
5434/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5435/// C++ if/switch/while/for statement.
5436/// e.g: "if (int x = f()) {...}"
5437Action::DeclResult
5438Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5439  // C++ 6.4p2:
5440  // The declarator shall not specify a function or an array.
5441  // The type-specifier-seq shall not contain typedef and shall not declare a
5442  // new class or enumeration.
5443  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5444         "Parser allowed 'typedef' as storage class of condition decl.");
5445
5446  TypeSourceInfo *TInfo = 0;
5447  TagDecl *OwnedTag = 0;
5448  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5449
5450  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5451                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5452                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5453    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5454      << D.getSourceRange();
5455    return DeclResult();
5456  } else if (OwnedTag && OwnedTag->isDefinition()) {
5457    // The type-specifier-seq shall not declare a new class or enumeration.
5458    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5459  }
5460
5461  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5462  if (!Dcl)
5463    return DeclResult();
5464
5465  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5466  VD->setDeclaredInCondition(true);
5467  return Dcl;
5468}
5469
5470static bool needsVTable(CXXMethodDecl *MD, ASTContext &Context) {
5471  // Ignore dependent types.
5472  if (MD->isDependentContext())
5473    return false;
5474
5475  // Ignore declarations that are not definitions.
5476  if (!MD->isThisDeclarationADefinition())
5477    return false;
5478
5479  CXXRecordDecl *RD = MD->getParent();
5480
5481  // Ignore classes without a vtable.
5482  if (!RD->isDynamicClass())
5483    return false;
5484
5485  switch (MD->getParent()->getTemplateSpecializationKind()) {
5486  case TSK_Undeclared:
5487  case TSK_ExplicitSpecialization:
5488    // Classes that aren't instantiations of templates don't need their
5489    // virtual methods marked until we see the definition of the key
5490    // function.
5491    break;
5492
5493  case TSK_ImplicitInstantiation:
5494    // This is a constructor of a class template; mark all of the virtual
5495    // members as referenced to ensure that they get instantiatied.
5496    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5497      return true;
5498    break;
5499
5500  case TSK_ExplicitInstantiationDeclaration:
5501    return false;
5502
5503  case TSK_ExplicitInstantiationDefinition:
5504    // This is method of a explicit instantiation; mark all of the virtual
5505    // members as referenced to ensure that they get instantiatied.
5506    return true;
5507  }
5508
5509  // Consider only out-of-line definitions of member functions. When we see
5510  // an inline definition, it's too early to compute the key function.
5511  if (!MD->isOutOfLine())
5512    return false;
5513
5514  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5515
5516  // If there is no key function, we will need a copy of the vtable.
5517  if (!KeyFunction)
5518    return true;
5519
5520  // If this is the key function, we need to mark virtual members.
5521  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5522    return true;
5523
5524  return false;
5525}
5526
5527void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5528                                             CXXMethodDecl *MD) {
5529  CXXRecordDecl *RD = MD->getParent();
5530
5531  // We will need to mark all of the virtual members as referenced to build the
5532  // vtable.
5533  if (!needsVTable(MD, Context))
5534    return;
5535
5536  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5537  if (kind == TSK_ImplicitInstantiation)
5538    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5539  else
5540    MarkVirtualMembersReferenced(Loc, RD);
5541}
5542
5543bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5544  if (ClassesWithUnmarkedVirtualMembers.empty())
5545    return false;
5546
5547  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5548    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5549    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5550    ClassesWithUnmarkedVirtualMembers.pop_back();
5551    MarkVirtualMembersReferenced(Loc, RD);
5552  }
5553
5554  return true;
5555}
5556
5557void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5558                                        const CXXRecordDecl *RD) {
5559  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5560       e = RD->method_end(); i != e; ++i) {
5561    CXXMethodDecl *MD = *i;
5562
5563    // C++ [basic.def.odr]p2:
5564    //   [...] A virtual member function is used if it is not pure. [...]
5565    if (MD->isVirtual() && !MD->isPure())
5566      MarkDeclarationReferenced(Loc, MD);
5567  }
5568
5569  // Only classes that have virtual bases need a VTT.
5570  if (RD->getNumVBases() == 0)
5571    return;
5572
5573  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5574           e = RD->bases_end(); i != e; ++i) {
5575    const CXXRecordDecl *Base =
5576        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5577    if (i->isVirtual())
5578      continue;
5579    if (Base->getNumVBases() == 0)
5580      continue;
5581    MarkVirtualMembersReferenced(Loc, Base);
5582  }
5583}
5584