SemaDeclCXX.cpp revision 152b4e4652baedfceba1cd8115515629225e713f
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/ADT/SmallString.h"
41#include <map>
42#include <set>
43
44using namespace clang;
45
46//===----------------------------------------------------------------------===//
47// CheckDefaultArgumentVisitor
48//===----------------------------------------------------------------------===//
49
50namespace {
51  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
52  /// the default argument of a parameter to determine whether it
53  /// contains any ill-formed subexpressions. For example, this will
54  /// diagnose the use of local variables or parameters within the
55  /// default argument expression.
56  class CheckDefaultArgumentVisitor
57    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
58    Expr *DefaultArg;
59    Sema *S;
60
61  public:
62    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
63      : DefaultArg(defarg), S(s) {}
64
65    bool VisitExpr(Expr *Node);
66    bool VisitDeclRefExpr(DeclRefExpr *DRE);
67    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
68    bool VisitLambdaExpr(LambdaExpr *Lambda);
69    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
70  };
71
72  /// VisitExpr - Visit all of the children of this expression.
73  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
74    bool IsInvalid = false;
75    for (Stmt::child_range I = Node->children(); I; ++I)
76      IsInvalid |= Visit(*I);
77    return IsInvalid;
78  }
79
80  /// VisitDeclRefExpr - Visit a reference to a declaration, to
81  /// determine whether this declaration can be used in the default
82  /// argument expression.
83  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
84    NamedDecl *Decl = DRE->getDecl();
85    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p9
87      //   Default arguments are evaluated each time the function is
88      //   called. The order of evaluation of function arguments is
89      //   unspecified. Consequently, parameters of a function shall not
90      //   be used in default argument expressions, even if they are not
91      //   evaluated. Parameters of a function declared before a default
92      //   argument expression are in scope and can hide namespace and
93      //   class member names.
94      return S->Diag(DRE->getLocStart(),
95                     diag::err_param_default_argument_references_param)
96         << Param->getDeclName() << DefaultArg->getSourceRange();
97    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
98      // C++ [dcl.fct.default]p7
99      //   Local variables shall not be used in default argument
100      //   expressions.
101      if (VDecl->isLocalVarDecl())
102        return S->Diag(DRE->getLocStart(),
103                       diag::err_param_default_argument_references_local)
104          << VDecl->getDeclName() << DefaultArg->getSourceRange();
105    }
106
107    return false;
108  }
109
110  /// VisitCXXThisExpr - Visit a C++ "this" expression.
111  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
112    // C++ [dcl.fct.default]p8:
113    //   The keyword this shall not be used in a default argument of a
114    //   member function.
115    return S->Diag(ThisE->getLocStart(),
116                   diag::err_param_default_argument_references_this)
117               << ThisE->getSourceRange();
118  }
119
120  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
121    bool Invalid = false;
122    for (PseudoObjectExpr::semantics_iterator
123           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
124      Expr *E = *i;
125
126      // Look through bindings.
127      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
128        E = OVE->getSourceExpr();
129        assert(E && "pseudo-object binding without source expression?");
130      }
131
132      Invalid |= Visit(E);
133    }
134    return Invalid;
135  }
136
137  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
138    // C++11 [expr.lambda.prim]p13:
139    //   A lambda-expression appearing in a default argument shall not
140    //   implicitly or explicitly capture any entity.
141    if (Lambda->capture_begin() == Lambda->capture_end())
142      return false;
143
144    return S->Diag(Lambda->getLocStart(),
145                   diag::err_lambda_capture_default_arg);
146  }
147}
148
149void
150Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
151                                                 const CXXMethodDecl *Method) {
152  // If we have an MSAny spec already, don't bother.
153  if (!Method || ComputedEST == EST_MSAny)
154    return;
155
156  const FunctionProtoType *Proto
157    = Method->getType()->getAs<FunctionProtoType>();
158  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
159  if (!Proto)
160    return;
161
162  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
163
164  // If this function can throw any exceptions, make a note of that.
165  if (EST == EST_MSAny || EST == EST_None) {
166    ClearExceptions();
167    ComputedEST = EST;
168    return;
169  }
170
171  // FIXME: If the call to this decl is using any of its default arguments, we
172  // need to search them for potentially-throwing calls.
173
174  // If this function has a basic noexcept, it doesn't affect the outcome.
175  if (EST == EST_BasicNoexcept)
176    return;
177
178  // If we have a throw-all spec at this point, ignore the function.
179  if (ComputedEST == EST_None)
180    return;
181
182  // If we're still at noexcept(true) and there's a nothrow() callee,
183  // change to that specification.
184  if (EST == EST_DynamicNone) {
185    if (ComputedEST == EST_BasicNoexcept)
186      ComputedEST = EST_DynamicNone;
187    return;
188  }
189
190  // Check out noexcept specs.
191  if (EST == EST_ComputedNoexcept) {
192    FunctionProtoType::NoexceptResult NR =
193        Proto->getNoexceptSpec(Self->Context);
194    assert(NR != FunctionProtoType::NR_NoNoexcept &&
195           "Must have noexcept result for EST_ComputedNoexcept.");
196    assert(NR != FunctionProtoType::NR_Dependent &&
197           "Should not generate implicit declarations for dependent cases, "
198           "and don't know how to handle them anyway.");
199
200    // noexcept(false) -> no spec on the new function
201    if (NR == FunctionProtoType::NR_Throw) {
202      ClearExceptions();
203      ComputedEST = EST_None;
204    }
205    // noexcept(true) won't change anything either.
206    return;
207  }
208
209  assert(EST == EST_Dynamic && "EST case not considered earlier.");
210  assert(ComputedEST != EST_None &&
211         "Shouldn't collect exceptions when throw-all is guaranteed.");
212  ComputedEST = EST_Dynamic;
213  // Record the exceptions in this function's exception specification.
214  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
215                                          EEnd = Proto->exception_end();
216       E != EEnd; ++E)
217    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
218      Exceptions.push_back(*E);
219}
220
221void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
222  if (!E || ComputedEST == EST_MSAny)
223    return;
224
225  // FIXME:
226  //
227  // C++0x [except.spec]p14:
228  //   [An] implicit exception-specification specifies the type-id T if and
229  // only if T is allowed by the exception-specification of a function directly
230  // invoked by f's implicit definition; f shall allow all exceptions if any
231  // function it directly invokes allows all exceptions, and f shall allow no
232  // exceptions if every function it directly invokes allows no exceptions.
233  //
234  // Note in particular that if an implicit exception-specification is generated
235  // for a function containing a throw-expression, that specification can still
236  // be noexcept(true).
237  //
238  // Note also that 'directly invoked' is not defined in the standard, and there
239  // is no indication that we should only consider potentially-evaluated calls.
240  //
241  // Ultimately we should implement the intent of the standard: the exception
242  // specification should be the set of exceptions which can be thrown by the
243  // implicit definition. For now, we assume that any non-nothrow expression can
244  // throw any exception.
245
246  if (Self->canThrow(E))
247    ComputedEST = EST_None;
248}
249
250bool
251Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
252                              SourceLocation EqualLoc) {
253  if (RequireCompleteType(Param->getLocation(), Param->getType(),
254                          diag::err_typecheck_decl_incomplete_type)) {
255    Param->setInvalidDecl();
256    return true;
257  }
258
259  // C++ [dcl.fct.default]p5
260  //   A default argument expression is implicitly converted (clause
261  //   4) to the parameter type. The default argument expression has
262  //   the same semantic constraints as the initializer expression in
263  //   a declaration of a variable of the parameter type, using the
264  //   copy-initialization semantics (8.5).
265  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
266                                                                    Param);
267  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
268                                                           EqualLoc);
269  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
270  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
271  if (Result.isInvalid())
272    return true;
273  Arg = Result.takeAs<Expr>();
274
275  CheckCompletedExpr(Arg, EqualLoc);
276  Arg = MaybeCreateExprWithCleanups(Arg);
277
278  // Okay: add the default argument to the parameter
279  Param->setDefaultArg(Arg);
280
281  // We have already instantiated this parameter; provide each of the
282  // instantiations with the uninstantiated default argument.
283  UnparsedDefaultArgInstantiationsMap::iterator InstPos
284    = UnparsedDefaultArgInstantiations.find(Param);
285  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
286    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
287      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
288
289    // We're done tracking this parameter's instantiations.
290    UnparsedDefaultArgInstantiations.erase(InstPos);
291  }
292
293  return false;
294}
295
296/// ActOnParamDefaultArgument - Check whether the default argument
297/// provided for a function parameter is well-formed. If so, attach it
298/// to the parameter declaration.
299void
300Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
301                                Expr *DefaultArg) {
302  if (!param || !DefaultArg)
303    return;
304
305  ParmVarDecl *Param = cast<ParmVarDecl>(param);
306  UnparsedDefaultArgLocs.erase(Param);
307
308  // Default arguments are only permitted in C++
309  if (!getLangOpts().CPlusPlus) {
310    Diag(EqualLoc, diag::err_param_default_argument)
311      << DefaultArg->getSourceRange();
312    Param->setInvalidDecl();
313    return;
314  }
315
316  // Check for unexpanded parameter packs.
317  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
318    Param->setInvalidDecl();
319    return;
320  }
321
322  // Check that the default argument is well-formed
323  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
324  if (DefaultArgChecker.Visit(DefaultArg)) {
325    Param->setInvalidDecl();
326    return;
327  }
328
329  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
330}
331
332/// ActOnParamUnparsedDefaultArgument - We've seen a default
333/// argument for a function parameter, but we can't parse it yet
334/// because we're inside a class definition. Note that this default
335/// argument will be parsed later.
336void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
337                                             SourceLocation EqualLoc,
338                                             SourceLocation ArgLoc) {
339  if (!param)
340    return;
341
342  ParmVarDecl *Param = cast<ParmVarDecl>(param);
343  if (Param)
344    Param->setUnparsedDefaultArg();
345
346  UnparsedDefaultArgLocs[Param] = ArgLoc;
347}
348
349/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
350/// the default argument for the parameter param failed.
351void Sema::ActOnParamDefaultArgumentError(Decl *param) {
352  if (!param)
353    return;
354
355  ParmVarDecl *Param = cast<ParmVarDecl>(param);
356
357  Param->setInvalidDecl();
358
359  UnparsedDefaultArgLocs.erase(Param);
360}
361
362/// CheckExtraCXXDefaultArguments - Check for any extra default
363/// arguments in the declarator, which is not a function declaration
364/// or definition and therefore is not permitted to have default
365/// arguments. This routine should be invoked for every declarator
366/// that is not a function declaration or definition.
367void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
368  // C++ [dcl.fct.default]p3
369  //   A default argument expression shall be specified only in the
370  //   parameter-declaration-clause of a function declaration or in a
371  //   template-parameter (14.1). It shall not be specified for a
372  //   parameter pack. If it is specified in a
373  //   parameter-declaration-clause, it shall not occur within a
374  //   declarator or abstract-declarator of a parameter-declaration.
375  bool MightBeFunction = D.isFunctionDeclarationContext();
376  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
377    DeclaratorChunk &chunk = D.getTypeObject(i);
378    if (chunk.Kind == DeclaratorChunk::Function) {
379      if (MightBeFunction) {
380        // This is a function declaration. It can have default arguments, but
381        // keep looking in case its return type is a function type with default
382        // arguments.
383        MightBeFunction = false;
384        continue;
385      }
386      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
387        ParmVarDecl *Param =
388          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
389        if (Param->hasUnparsedDefaultArg()) {
390          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
391          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
392            << SourceRange((*Toks)[1].getLocation(),
393                           Toks->back().getLocation());
394          delete Toks;
395          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
396        } else if (Param->getDefaultArg()) {
397          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
398            << Param->getDefaultArg()->getSourceRange();
399          Param->setDefaultArg(0);
400        }
401      }
402    } else if (chunk.Kind != DeclaratorChunk::Paren) {
403      MightBeFunction = false;
404    }
405  }
406}
407
408static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
409  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
410    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
411    if (!PVD->hasDefaultArg())
412      return false;
413    if (!PVD->hasInheritedDefaultArg())
414      return true;
415  }
416  return false;
417}
418
419/// MergeCXXFunctionDecl - Merge two declarations of the same C++
420/// function, once we already know that they have the same
421/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
422/// error, false otherwise.
423bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
424                                Scope *S) {
425  bool Invalid = false;
426
427  // C++ [dcl.fct.default]p4:
428  //   For non-template functions, default arguments can be added in
429  //   later declarations of a function in the same
430  //   scope. Declarations in different scopes have completely
431  //   distinct sets of default arguments. That is, declarations in
432  //   inner scopes do not acquire default arguments from
433  //   declarations in outer scopes, and vice versa. In a given
434  //   function declaration, all parameters subsequent to a
435  //   parameter with a default argument shall have default
436  //   arguments supplied in this or previous declarations. A
437  //   default argument shall not be redefined by a later
438  //   declaration (not even to the same value).
439  //
440  // C++ [dcl.fct.default]p6:
441  //   Except for member functions of class templates, the default arguments
442  //   in a member function definition that appears outside of the class
443  //   definition are added to the set of default arguments provided by the
444  //   member function declaration in the class definition.
445  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
446    ParmVarDecl *OldParam = Old->getParamDecl(p);
447    ParmVarDecl *NewParam = New->getParamDecl(p);
448
449    bool OldParamHasDfl = OldParam->hasDefaultArg();
450    bool NewParamHasDfl = NewParam->hasDefaultArg();
451
452    NamedDecl *ND = Old;
453    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
454      // Ignore default parameters of old decl if they are not in
455      // the same scope.
456      OldParamHasDfl = false;
457
458    if (OldParamHasDfl && NewParamHasDfl) {
459
460      unsigned DiagDefaultParamID =
461        diag::err_param_default_argument_redefinition;
462
463      // MSVC accepts that default parameters be redefined for member functions
464      // of template class. The new default parameter's value is ignored.
465      Invalid = true;
466      if (getLangOpts().MicrosoftExt) {
467        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
468        if (MD && MD->getParent()->getDescribedClassTemplate()) {
469          // Merge the old default argument into the new parameter.
470          NewParam->setHasInheritedDefaultArg();
471          if (OldParam->hasUninstantiatedDefaultArg())
472            NewParam->setUninstantiatedDefaultArg(
473                                      OldParam->getUninstantiatedDefaultArg());
474          else
475            NewParam->setDefaultArg(OldParam->getInit());
476          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
477          Invalid = false;
478        }
479      }
480
481      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
482      // hint here. Alternatively, we could walk the type-source information
483      // for NewParam to find the last source location in the type... but it
484      // isn't worth the effort right now. This is the kind of test case that
485      // is hard to get right:
486      //   int f(int);
487      //   void g(int (*fp)(int) = f);
488      //   void g(int (*fp)(int) = &f);
489      Diag(NewParam->getLocation(), DiagDefaultParamID)
490        << NewParam->getDefaultArgRange();
491
492      // Look for the function declaration where the default argument was
493      // actually written, which may be a declaration prior to Old.
494      for (FunctionDecl *Older = Old->getPreviousDecl();
495           Older; Older = Older->getPreviousDecl()) {
496        if (!Older->getParamDecl(p)->hasDefaultArg())
497          break;
498
499        OldParam = Older->getParamDecl(p);
500      }
501
502      Diag(OldParam->getLocation(), diag::note_previous_definition)
503        << OldParam->getDefaultArgRange();
504    } else if (OldParamHasDfl) {
505      // Merge the old default argument into the new parameter.
506      // It's important to use getInit() here;  getDefaultArg()
507      // strips off any top-level ExprWithCleanups.
508      NewParam->setHasInheritedDefaultArg();
509      if (OldParam->hasUninstantiatedDefaultArg())
510        NewParam->setUninstantiatedDefaultArg(
511                                      OldParam->getUninstantiatedDefaultArg());
512      else
513        NewParam->setDefaultArg(OldParam->getInit());
514    } else if (NewParamHasDfl) {
515      if (New->getDescribedFunctionTemplate()) {
516        // Paragraph 4, quoted above, only applies to non-template functions.
517        Diag(NewParam->getLocation(),
518             diag::err_param_default_argument_template_redecl)
519          << NewParam->getDefaultArgRange();
520        Diag(Old->getLocation(), diag::note_template_prev_declaration)
521          << false;
522      } else if (New->getTemplateSpecializationKind()
523                   != TSK_ImplicitInstantiation &&
524                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
525        // C++ [temp.expr.spec]p21:
526        //   Default function arguments shall not be specified in a declaration
527        //   or a definition for one of the following explicit specializations:
528        //     - the explicit specialization of a function template;
529        //     - the explicit specialization of a member function template;
530        //     - the explicit specialization of a member function of a class
531        //       template where the class template specialization to which the
532        //       member function specialization belongs is implicitly
533        //       instantiated.
534        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
535          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
536          << New->getDeclName()
537          << NewParam->getDefaultArgRange();
538      } else if (New->getDeclContext()->isDependentContext()) {
539        // C++ [dcl.fct.default]p6 (DR217):
540        //   Default arguments for a member function of a class template shall
541        //   be specified on the initial declaration of the member function
542        //   within the class template.
543        //
544        // Reading the tea leaves a bit in DR217 and its reference to DR205
545        // leads me to the conclusion that one cannot add default function
546        // arguments for an out-of-line definition of a member function of a
547        // dependent type.
548        int WhichKind = 2;
549        if (CXXRecordDecl *Record
550              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
551          if (Record->getDescribedClassTemplate())
552            WhichKind = 0;
553          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
554            WhichKind = 1;
555          else
556            WhichKind = 2;
557        }
558
559        Diag(NewParam->getLocation(),
560             diag::err_param_default_argument_member_template_redecl)
561          << WhichKind
562          << NewParam->getDefaultArgRange();
563      }
564    }
565  }
566
567  // DR1344: If a default argument is added outside a class definition and that
568  // default argument makes the function a special member function, the program
569  // is ill-formed. This can only happen for constructors.
570  if (isa<CXXConstructorDecl>(New) &&
571      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
572    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
573                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
574    if (NewSM != OldSM) {
575      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
576      assert(NewParam->hasDefaultArg());
577      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
578        << NewParam->getDefaultArgRange() << NewSM;
579      Diag(Old->getLocation(), diag::note_previous_declaration);
580    }
581  }
582
583  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
584  // template has a constexpr specifier then all its declarations shall
585  // contain the constexpr specifier.
586  if (New->isConstexpr() != Old->isConstexpr()) {
587    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
588      << New << New->isConstexpr();
589    Diag(Old->getLocation(), diag::note_previous_declaration);
590    Invalid = true;
591  }
592
593  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
594  // argument expression, that declaration shall be a definition and shall be
595  // the only declaration of the function or function template in the
596  // translation unit.
597  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
598      functionDeclHasDefaultArgument(Old)) {
599    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
600    Diag(Old->getLocation(), diag::note_previous_declaration);
601    Invalid = true;
602  }
603
604  if (CheckEquivalentExceptionSpec(Old, New))
605    Invalid = true;
606
607  return Invalid;
608}
609
610/// \brief Merge the exception specifications of two variable declarations.
611///
612/// This is called when there's a redeclaration of a VarDecl. The function
613/// checks if the redeclaration might have an exception specification and
614/// validates compatibility and merges the specs if necessary.
615void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
616  // Shortcut if exceptions are disabled.
617  if (!getLangOpts().CXXExceptions)
618    return;
619
620  assert(Context.hasSameType(New->getType(), Old->getType()) &&
621         "Should only be called if types are otherwise the same.");
622
623  QualType NewType = New->getType();
624  QualType OldType = Old->getType();
625
626  // We're only interested in pointers and references to functions, as well
627  // as pointers to member functions.
628  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
629    NewType = R->getPointeeType();
630    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
631  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
632    NewType = P->getPointeeType();
633    OldType = OldType->getAs<PointerType>()->getPointeeType();
634  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
635    NewType = M->getPointeeType();
636    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
637  }
638
639  if (!NewType->isFunctionProtoType())
640    return;
641
642  // There's lots of special cases for functions. For function pointers, system
643  // libraries are hopefully not as broken so that we don't need these
644  // workarounds.
645  if (CheckEquivalentExceptionSpec(
646        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
647        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
648    New->setInvalidDecl();
649  }
650}
651
652/// CheckCXXDefaultArguments - Verify that the default arguments for a
653/// function declaration are well-formed according to C++
654/// [dcl.fct.default].
655void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
656  unsigned NumParams = FD->getNumParams();
657  unsigned p;
658
659  // Find first parameter with a default argument
660  for (p = 0; p < NumParams; ++p) {
661    ParmVarDecl *Param = FD->getParamDecl(p);
662    if (Param->hasDefaultArg())
663      break;
664  }
665
666  // C++ [dcl.fct.default]p4:
667  //   In a given function declaration, all parameters
668  //   subsequent to a parameter with a default argument shall
669  //   have default arguments supplied in this or previous
670  //   declarations. A default argument shall not be redefined
671  //   by a later declaration (not even to the same value).
672  unsigned LastMissingDefaultArg = 0;
673  for (; p < NumParams; ++p) {
674    ParmVarDecl *Param = FD->getParamDecl(p);
675    if (!Param->hasDefaultArg()) {
676      if (Param->isInvalidDecl())
677        /* We already complained about this parameter. */;
678      else if (Param->getIdentifier())
679        Diag(Param->getLocation(),
680             diag::err_param_default_argument_missing_name)
681          << Param->getIdentifier();
682      else
683        Diag(Param->getLocation(),
684             diag::err_param_default_argument_missing);
685
686      LastMissingDefaultArg = p;
687    }
688  }
689
690  if (LastMissingDefaultArg > 0) {
691    // Some default arguments were missing. Clear out all of the
692    // default arguments up to (and including) the last missing
693    // default argument, so that we leave the function parameters
694    // in a semantically valid state.
695    for (p = 0; p <= LastMissingDefaultArg; ++p) {
696      ParmVarDecl *Param = FD->getParamDecl(p);
697      if (Param->hasDefaultArg()) {
698        Param->setDefaultArg(0);
699      }
700    }
701  }
702}
703
704// CheckConstexprParameterTypes - Check whether a function's parameter types
705// are all literal types. If so, return true. If not, produce a suitable
706// diagnostic and return false.
707static bool CheckConstexprParameterTypes(Sema &SemaRef,
708                                         const FunctionDecl *FD) {
709  unsigned ArgIndex = 0;
710  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
711  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
712       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
713    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
714    SourceLocation ParamLoc = PD->getLocation();
715    if (!(*i)->isDependentType() &&
716        SemaRef.RequireLiteralType(ParamLoc, *i,
717                                   diag::err_constexpr_non_literal_param,
718                                   ArgIndex+1, PD->getSourceRange(),
719                                   isa<CXXConstructorDecl>(FD)))
720      return false;
721  }
722  return true;
723}
724
725/// \brief Get diagnostic %select index for tag kind for
726/// record diagnostic message.
727/// WARNING: Indexes apply to particular diagnostics only!
728///
729/// \returns diagnostic %select index.
730static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
731  switch (Tag) {
732  case TTK_Struct: return 0;
733  case TTK_Interface: return 1;
734  case TTK_Class:  return 2;
735  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
736  }
737}
738
739// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
740// the requirements of a constexpr function definition or a constexpr
741// constructor definition. If so, return true. If not, produce appropriate
742// diagnostics and return false.
743//
744// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
745bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
746  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
747  if (MD && MD->isInstance()) {
748    // C++11 [dcl.constexpr]p4:
749    //  The definition of a constexpr constructor shall satisfy the following
750    //  constraints:
751    //  - the class shall not have any virtual base classes;
752    const CXXRecordDecl *RD = MD->getParent();
753    if (RD->getNumVBases()) {
754      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
755        << isa<CXXConstructorDecl>(NewFD)
756        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
757      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
758             E = RD->vbases_end(); I != E; ++I)
759        Diag(I->getLocStart(),
760             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
761      return false;
762    }
763  }
764
765  if (!isa<CXXConstructorDecl>(NewFD)) {
766    // C++11 [dcl.constexpr]p3:
767    //  The definition of a constexpr function shall satisfy the following
768    //  constraints:
769    // - it shall not be virtual;
770    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
771    if (Method && Method->isVirtual()) {
772      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
773
774      // If it's not obvious why this function is virtual, find an overridden
775      // function which uses the 'virtual' keyword.
776      const CXXMethodDecl *WrittenVirtual = Method;
777      while (!WrittenVirtual->isVirtualAsWritten())
778        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
779      if (WrittenVirtual != Method)
780        Diag(WrittenVirtual->getLocation(),
781             diag::note_overridden_virtual_function);
782      return false;
783    }
784
785    // - its return type shall be a literal type;
786    QualType RT = NewFD->getResultType();
787    if (!RT->isDependentType() &&
788        RequireLiteralType(NewFD->getLocation(), RT,
789                           diag::err_constexpr_non_literal_return))
790      return false;
791  }
792
793  // - each of its parameter types shall be a literal type;
794  if (!CheckConstexprParameterTypes(*this, NewFD))
795    return false;
796
797  return true;
798}
799
800/// Check the given declaration statement is legal within a constexpr function
801/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
802///
803/// \return true if the body is OK (maybe only as an extension), false if we
804///         have diagnosed a problem.
805static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
806                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
807  // C++11 [dcl.constexpr]p3 and p4:
808  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
809  //  contain only
810  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
811         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
812    switch ((*DclIt)->getKind()) {
813    case Decl::StaticAssert:
814    case Decl::Using:
815    case Decl::UsingShadow:
816    case Decl::UsingDirective:
817    case Decl::UnresolvedUsingTypename:
818    case Decl::UnresolvedUsingValue:
819      //   - static_assert-declarations
820      //   - using-declarations,
821      //   - using-directives,
822      continue;
823
824    case Decl::Typedef:
825    case Decl::TypeAlias: {
826      //   - typedef declarations and alias-declarations that do not define
827      //     classes or enumerations,
828      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
829      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
830        // Don't allow variably-modified types in constexpr functions.
831        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
832        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
833          << TL.getSourceRange() << TL.getType()
834          << isa<CXXConstructorDecl>(Dcl);
835        return false;
836      }
837      continue;
838    }
839
840    case Decl::Enum:
841    case Decl::CXXRecord:
842      // C++1y allows types to be defined, not just declared.
843      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
844        SemaRef.Diag(DS->getLocStart(),
845                     SemaRef.getLangOpts().CPlusPlus1y
846                       ? diag::warn_cxx11_compat_constexpr_type_definition
847                       : diag::ext_constexpr_type_definition)
848          << isa<CXXConstructorDecl>(Dcl);
849      continue;
850
851    case Decl::EnumConstant:
852    case Decl::IndirectField:
853    case Decl::ParmVar:
854      // These can only appear with other declarations which are banned in
855      // C++11 and permitted in C++1y, so ignore them.
856      continue;
857
858    case Decl::Var: {
859      // C++1y [dcl.constexpr]p3 allows anything except:
860      //   a definition of a variable of non-literal type or of static or
861      //   thread storage duration or for which no initialization is performed.
862      VarDecl *VD = cast<VarDecl>(*DclIt);
863      if (VD->isThisDeclarationADefinition()) {
864        if (VD->isStaticLocal()) {
865          SemaRef.Diag(VD->getLocation(),
866                       diag::err_constexpr_local_var_static)
867            << isa<CXXConstructorDecl>(Dcl)
868            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
869          return false;
870        }
871        if (!VD->getType()->isDependentType() &&
872            SemaRef.RequireLiteralType(
873              VD->getLocation(), VD->getType(),
874              diag::err_constexpr_local_var_non_literal_type,
875              isa<CXXConstructorDecl>(Dcl)))
876          return false;
877        if (!VD->hasInit()) {
878          SemaRef.Diag(VD->getLocation(),
879                       diag::err_constexpr_local_var_no_init)
880            << isa<CXXConstructorDecl>(Dcl);
881          return false;
882        }
883      }
884      SemaRef.Diag(VD->getLocation(),
885                   SemaRef.getLangOpts().CPlusPlus1y
886                    ? diag::warn_cxx11_compat_constexpr_local_var
887                    : diag::ext_constexpr_local_var)
888        << isa<CXXConstructorDecl>(Dcl);
889      continue;
890    }
891
892    case Decl::NamespaceAlias:
893    case Decl::Function:
894      // These are disallowed in C++11 and permitted in C++1y. Allow them
895      // everywhere as an extension.
896      if (!Cxx1yLoc.isValid())
897        Cxx1yLoc = DS->getLocStart();
898      continue;
899
900    default:
901      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
902        << isa<CXXConstructorDecl>(Dcl);
903      return false;
904    }
905  }
906
907  return true;
908}
909
910/// Check that the given field is initialized within a constexpr constructor.
911///
912/// \param Dcl The constexpr constructor being checked.
913/// \param Field The field being checked. This may be a member of an anonymous
914///        struct or union nested within the class being checked.
915/// \param Inits All declarations, including anonymous struct/union members and
916///        indirect members, for which any initialization was provided.
917/// \param Diagnosed Set to true if an error is produced.
918static void CheckConstexprCtorInitializer(Sema &SemaRef,
919                                          const FunctionDecl *Dcl,
920                                          FieldDecl *Field,
921                                          llvm::SmallSet<Decl*, 16> &Inits,
922                                          bool &Diagnosed) {
923  if (Field->isInvalidDecl())
924    return;
925
926  if (Field->isUnnamedBitfield())
927    return;
928
929  if (Field->isAnonymousStructOrUnion() &&
930      Field->getType()->getAsCXXRecordDecl()->isEmpty())
931    return;
932
933  if (!Inits.count(Field)) {
934    if (!Diagnosed) {
935      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
936      Diagnosed = true;
937    }
938    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
939  } else if (Field->isAnonymousStructOrUnion()) {
940    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
941    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
942         I != E; ++I)
943      // If an anonymous union contains an anonymous struct of which any member
944      // is initialized, all members must be initialized.
945      if (!RD->isUnion() || Inits.count(*I))
946        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
947  }
948}
949
950/// Check the provided statement is allowed in a constexpr function
951/// definition.
952static bool
953CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
954                           SmallVectorImpl<SourceLocation> &ReturnStmts,
955                           SourceLocation &Cxx1yLoc) {
956  // - its function-body shall be [...] a compound-statement that contains only
957  switch (S->getStmtClass()) {
958  case Stmt::NullStmtClass:
959    //   - null statements,
960    return true;
961
962  case Stmt::DeclStmtClass:
963    //   - static_assert-declarations
964    //   - using-declarations,
965    //   - using-directives,
966    //   - typedef declarations and alias-declarations that do not define
967    //     classes or enumerations,
968    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
969      return false;
970    return true;
971
972  case Stmt::ReturnStmtClass:
973    //   - and exactly one return statement;
974    if (isa<CXXConstructorDecl>(Dcl)) {
975      // C++1y allows return statements in constexpr constructors.
976      if (!Cxx1yLoc.isValid())
977        Cxx1yLoc = S->getLocStart();
978      return true;
979    }
980
981    ReturnStmts.push_back(S->getLocStart());
982    return true;
983
984  case Stmt::CompoundStmtClass: {
985    // C++1y allows compound-statements.
986    if (!Cxx1yLoc.isValid())
987      Cxx1yLoc = S->getLocStart();
988
989    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
990    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
991           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
992      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
993                                      Cxx1yLoc))
994        return false;
995    }
996    return true;
997  }
998
999  case Stmt::AttributedStmtClass:
1000    if (!Cxx1yLoc.isValid())
1001      Cxx1yLoc = S->getLocStart();
1002    return true;
1003
1004  case Stmt::IfStmtClass: {
1005    // C++1y allows if-statements.
1006    if (!Cxx1yLoc.isValid())
1007      Cxx1yLoc = S->getLocStart();
1008
1009    IfStmt *If = cast<IfStmt>(S);
1010    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1011                                    Cxx1yLoc))
1012      return false;
1013    if (If->getElse() &&
1014        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1015                                    Cxx1yLoc))
1016      return false;
1017    return true;
1018  }
1019
1020  case Stmt::WhileStmtClass:
1021  case Stmt::DoStmtClass:
1022  case Stmt::ForStmtClass:
1023  case Stmt::CXXForRangeStmtClass:
1024  case Stmt::ContinueStmtClass:
1025    // C++1y allows all of these. We don't allow them as extensions in C++11,
1026    // because they don't make sense without variable mutation.
1027    if (!SemaRef.getLangOpts().CPlusPlus1y)
1028      break;
1029    if (!Cxx1yLoc.isValid())
1030      Cxx1yLoc = S->getLocStart();
1031    for (Stmt::child_range Children = S->children(); Children; ++Children)
1032      if (*Children &&
1033          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1034                                      Cxx1yLoc))
1035        return false;
1036    return true;
1037
1038  case Stmt::SwitchStmtClass:
1039  case Stmt::CaseStmtClass:
1040  case Stmt::DefaultStmtClass:
1041  case Stmt::BreakStmtClass:
1042    // C++1y allows switch-statements, and since they don't need variable
1043    // mutation, we can reasonably allow them in C++11 as an extension.
1044    if (!Cxx1yLoc.isValid())
1045      Cxx1yLoc = S->getLocStart();
1046    for (Stmt::child_range Children = S->children(); Children; ++Children)
1047      if (*Children &&
1048          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1049                                      Cxx1yLoc))
1050        return false;
1051    return true;
1052
1053  default:
1054    if (!isa<Expr>(S))
1055      break;
1056
1057    // C++1y allows expression-statements.
1058    if (!Cxx1yLoc.isValid())
1059      Cxx1yLoc = S->getLocStart();
1060    return true;
1061  }
1062
1063  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1064    << isa<CXXConstructorDecl>(Dcl);
1065  return false;
1066}
1067
1068/// Check the body for the given constexpr function declaration only contains
1069/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1070///
1071/// \return true if the body is OK, false if we have diagnosed a problem.
1072bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1073  if (isa<CXXTryStmt>(Body)) {
1074    // C++11 [dcl.constexpr]p3:
1075    //  The definition of a constexpr function shall satisfy the following
1076    //  constraints: [...]
1077    // - its function-body shall be = delete, = default, or a
1078    //   compound-statement
1079    //
1080    // C++11 [dcl.constexpr]p4:
1081    //  In the definition of a constexpr constructor, [...]
1082    // - its function-body shall not be a function-try-block;
1083    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1084      << isa<CXXConstructorDecl>(Dcl);
1085    return false;
1086  }
1087
1088  SmallVector<SourceLocation, 4> ReturnStmts;
1089
1090  // - its function-body shall be [...] a compound-statement that contains only
1091  //   [... list of cases ...]
1092  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1093  SourceLocation Cxx1yLoc;
1094  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1095         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1096    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1097      return false;
1098  }
1099
1100  if (Cxx1yLoc.isValid())
1101    Diag(Cxx1yLoc,
1102         getLangOpts().CPlusPlus1y
1103           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1104           : diag::ext_constexpr_body_invalid_stmt)
1105      << isa<CXXConstructorDecl>(Dcl);
1106
1107  if (const CXXConstructorDecl *Constructor
1108        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1109    const CXXRecordDecl *RD = Constructor->getParent();
1110    // DR1359:
1111    // - every non-variant non-static data member and base class sub-object
1112    //   shall be initialized;
1113    // - if the class is a non-empty union, or for each non-empty anonymous
1114    //   union member of a non-union class, exactly one non-static data member
1115    //   shall be initialized;
1116    if (RD->isUnion()) {
1117      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1118        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1119        return false;
1120      }
1121    } else if (!Constructor->isDependentContext() &&
1122               !Constructor->isDelegatingConstructor()) {
1123      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1124
1125      // Skip detailed checking if we have enough initializers, and we would
1126      // allow at most one initializer per member.
1127      bool AnyAnonStructUnionMembers = false;
1128      unsigned Fields = 0;
1129      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1130           E = RD->field_end(); I != E; ++I, ++Fields) {
1131        if (I->isAnonymousStructOrUnion()) {
1132          AnyAnonStructUnionMembers = true;
1133          break;
1134        }
1135      }
1136      if (AnyAnonStructUnionMembers ||
1137          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1138        // Check initialization of non-static data members. Base classes are
1139        // always initialized so do not need to be checked. Dependent bases
1140        // might not have initializers in the member initializer list.
1141        llvm::SmallSet<Decl*, 16> Inits;
1142        for (CXXConstructorDecl::init_const_iterator
1143               I = Constructor->init_begin(), E = Constructor->init_end();
1144             I != E; ++I) {
1145          if (FieldDecl *FD = (*I)->getMember())
1146            Inits.insert(FD);
1147          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1148            Inits.insert(ID->chain_begin(), ID->chain_end());
1149        }
1150
1151        bool Diagnosed = false;
1152        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1153             E = RD->field_end(); I != E; ++I)
1154          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1155        if (Diagnosed)
1156          return false;
1157      }
1158    }
1159  } else {
1160    if (ReturnStmts.empty()) {
1161      // C++1y doesn't require constexpr functions to contain a 'return'
1162      // statement. We still do, unless the return type is void, because
1163      // otherwise if there's no return statement, the function cannot
1164      // be used in a core constant expression.
1165      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1166      Diag(Dcl->getLocation(),
1167           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1168              : diag::err_constexpr_body_no_return);
1169      return OK;
1170    }
1171    if (ReturnStmts.size() > 1) {
1172      Diag(ReturnStmts.back(),
1173           getLangOpts().CPlusPlus1y
1174             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1175             : diag::ext_constexpr_body_multiple_return);
1176      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1177        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1178    }
1179  }
1180
1181  // C++11 [dcl.constexpr]p5:
1182  //   if no function argument values exist such that the function invocation
1183  //   substitution would produce a constant expression, the program is
1184  //   ill-formed; no diagnostic required.
1185  // C++11 [dcl.constexpr]p3:
1186  //   - every constructor call and implicit conversion used in initializing the
1187  //     return value shall be one of those allowed in a constant expression.
1188  // C++11 [dcl.constexpr]p4:
1189  //   - every constructor involved in initializing non-static data members and
1190  //     base class sub-objects shall be a constexpr constructor.
1191  SmallVector<PartialDiagnosticAt, 8> Diags;
1192  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1193    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1194      << isa<CXXConstructorDecl>(Dcl);
1195    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1196      Diag(Diags[I].first, Diags[I].second);
1197    // Don't return false here: we allow this for compatibility in
1198    // system headers.
1199  }
1200
1201  return true;
1202}
1203
1204/// isCurrentClassName - Determine whether the identifier II is the
1205/// name of the class type currently being defined. In the case of
1206/// nested classes, this will only return true if II is the name of
1207/// the innermost class.
1208bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1209                              const CXXScopeSpec *SS) {
1210  assert(getLangOpts().CPlusPlus && "No class names in C!");
1211
1212  CXXRecordDecl *CurDecl;
1213  if (SS && SS->isSet() && !SS->isInvalid()) {
1214    DeclContext *DC = computeDeclContext(*SS, true);
1215    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1216  } else
1217    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1218
1219  if (CurDecl && CurDecl->getIdentifier())
1220    return &II == CurDecl->getIdentifier();
1221  return false;
1222}
1223
1224/// \brief Determine whether the given class is a base class of the given
1225/// class, including looking at dependent bases.
1226static bool findCircularInheritance(const CXXRecordDecl *Class,
1227                                    const CXXRecordDecl *Current) {
1228  SmallVector<const CXXRecordDecl*, 8> Queue;
1229
1230  Class = Class->getCanonicalDecl();
1231  while (true) {
1232    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1233                                                  E = Current->bases_end();
1234         I != E; ++I) {
1235      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1236      if (!Base)
1237        continue;
1238
1239      Base = Base->getDefinition();
1240      if (!Base)
1241        continue;
1242
1243      if (Base->getCanonicalDecl() == Class)
1244        return true;
1245
1246      Queue.push_back(Base);
1247    }
1248
1249    if (Queue.empty())
1250      return false;
1251
1252    Current = Queue.back();
1253    Queue.pop_back();
1254  }
1255
1256  return false;
1257}
1258
1259/// \brief Check the validity of a C++ base class specifier.
1260///
1261/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1262/// and returns NULL otherwise.
1263CXXBaseSpecifier *
1264Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1265                         SourceRange SpecifierRange,
1266                         bool Virtual, AccessSpecifier Access,
1267                         TypeSourceInfo *TInfo,
1268                         SourceLocation EllipsisLoc) {
1269  QualType BaseType = TInfo->getType();
1270
1271  // C++ [class.union]p1:
1272  //   A union shall not have base classes.
1273  if (Class->isUnion()) {
1274    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1275      << SpecifierRange;
1276    return 0;
1277  }
1278
1279  if (EllipsisLoc.isValid() &&
1280      !TInfo->getType()->containsUnexpandedParameterPack()) {
1281    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1282      << TInfo->getTypeLoc().getSourceRange();
1283    EllipsisLoc = SourceLocation();
1284  }
1285
1286  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1287
1288  if (BaseType->isDependentType()) {
1289    // Make sure that we don't have circular inheritance among our dependent
1290    // bases. For non-dependent bases, the check for completeness below handles
1291    // this.
1292    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1293      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1294          ((BaseDecl = BaseDecl->getDefinition()) &&
1295           findCircularInheritance(Class, BaseDecl))) {
1296        Diag(BaseLoc, diag::err_circular_inheritance)
1297          << BaseType << Context.getTypeDeclType(Class);
1298
1299        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1300          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1301            << BaseType;
1302
1303        return 0;
1304      }
1305    }
1306
1307    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1308                                          Class->getTagKind() == TTK_Class,
1309                                          Access, TInfo, EllipsisLoc);
1310  }
1311
1312  // Base specifiers must be record types.
1313  if (!BaseType->isRecordType()) {
1314    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1315    return 0;
1316  }
1317
1318  // C++ [class.union]p1:
1319  //   A union shall not be used as a base class.
1320  if (BaseType->isUnionType()) {
1321    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1322    return 0;
1323  }
1324
1325  // C++ [class.derived]p2:
1326  //   The class-name in a base-specifier shall not be an incompletely
1327  //   defined class.
1328  if (RequireCompleteType(BaseLoc, BaseType,
1329                          diag::err_incomplete_base_class, SpecifierRange)) {
1330    Class->setInvalidDecl();
1331    return 0;
1332  }
1333
1334  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1335  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1336  assert(BaseDecl && "Record type has no declaration");
1337  BaseDecl = BaseDecl->getDefinition();
1338  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1339  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1340  assert(CXXBaseDecl && "Base type is not a C++ type");
1341
1342  // C++ [class]p3:
1343  //   If a class is marked final and it appears as a base-type-specifier in
1344  //   base-clause, the program is ill-formed.
1345  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1346    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1347      << CXXBaseDecl->getDeclName();
1348    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1349      << CXXBaseDecl->getDeclName();
1350    return 0;
1351  }
1352
1353  if (BaseDecl->isInvalidDecl())
1354    Class->setInvalidDecl();
1355
1356  // Create the base specifier.
1357  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1358                                        Class->getTagKind() == TTK_Class,
1359                                        Access, TInfo, EllipsisLoc);
1360}
1361
1362/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1363/// one entry in the base class list of a class specifier, for
1364/// example:
1365///    class foo : public bar, virtual private baz {
1366/// 'public bar' and 'virtual private baz' are each base-specifiers.
1367BaseResult
1368Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1369                         ParsedAttributes &Attributes,
1370                         bool Virtual, AccessSpecifier Access,
1371                         ParsedType basetype, SourceLocation BaseLoc,
1372                         SourceLocation EllipsisLoc) {
1373  if (!classdecl)
1374    return true;
1375
1376  AdjustDeclIfTemplate(classdecl);
1377  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1378  if (!Class)
1379    return true;
1380
1381  // We do not support any C++11 attributes on base-specifiers yet.
1382  // Diagnose any attributes we see.
1383  if (!Attributes.empty()) {
1384    for (AttributeList *Attr = Attributes.getList(); Attr;
1385         Attr = Attr->getNext()) {
1386      if (Attr->isInvalid() ||
1387          Attr->getKind() == AttributeList::IgnoredAttribute)
1388        continue;
1389      Diag(Attr->getLoc(),
1390           Attr->getKind() == AttributeList::UnknownAttribute
1391             ? diag::warn_unknown_attribute_ignored
1392             : diag::err_base_specifier_attribute)
1393        << Attr->getName();
1394    }
1395  }
1396
1397  TypeSourceInfo *TInfo = 0;
1398  GetTypeFromParser(basetype, &TInfo);
1399
1400  if (EllipsisLoc.isInvalid() &&
1401      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1402                                      UPPC_BaseType))
1403    return true;
1404
1405  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1406                                                      Virtual, Access, TInfo,
1407                                                      EllipsisLoc))
1408    return BaseSpec;
1409  else
1410    Class->setInvalidDecl();
1411
1412  return true;
1413}
1414
1415/// \brief Performs the actual work of attaching the given base class
1416/// specifiers to a C++ class.
1417bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1418                                unsigned NumBases) {
1419 if (NumBases == 0)
1420    return false;
1421
1422  // Used to keep track of which base types we have already seen, so
1423  // that we can properly diagnose redundant direct base types. Note
1424  // that the key is always the unqualified canonical type of the base
1425  // class.
1426  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1427
1428  // Copy non-redundant base specifiers into permanent storage.
1429  unsigned NumGoodBases = 0;
1430  bool Invalid = false;
1431  for (unsigned idx = 0; idx < NumBases; ++idx) {
1432    QualType NewBaseType
1433      = Context.getCanonicalType(Bases[idx]->getType());
1434    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1435
1436    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1437    if (KnownBase) {
1438      // C++ [class.mi]p3:
1439      //   A class shall not be specified as a direct base class of a
1440      //   derived class more than once.
1441      Diag(Bases[idx]->getLocStart(),
1442           diag::err_duplicate_base_class)
1443        << KnownBase->getType()
1444        << Bases[idx]->getSourceRange();
1445
1446      // Delete the duplicate base class specifier; we're going to
1447      // overwrite its pointer later.
1448      Context.Deallocate(Bases[idx]);
1449
1450      Invalid = true;
1451    } else {
1452      // Okay, add this new base class.
1453      KnownBase = Bases[idx];
1454      Bases[NumGoodBases++] = Bases[idx];
1455      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1456        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1457        if (Class->isInterface() &&
1458              (!RD->isInterface() ||
1459               KnownBase->getAccessSpecifier() != AS_public)) {
1460          // The Microsoft extension __interface does not permit bases that
1461          // are not themselves public interfaces.
1462          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1463            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1464            << RD->getSourceRange();
1465          Invalid = true;
1466        }
1467        if (RD->hasAttr<WeakAttr>())
1468          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1469      }
1470    }
1471  }
1472
1473  // Attach the remaining base class specifiers to the derived class.
1474  Class->setBases(Bases, NumGoodBases);
1475
1476  // Delete the remaining (good) base class specifiers, since their
1477  // data has been copied into the CXXRecordDecl.
1478  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1479    Context.Deallocate(Bases[idx]);
1480
1481  return Invalid;
1482}
1483
1484/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1485/// class, after checking whether there are any duplicate base
1486/// classes.
1487void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1488                               unsigned NumBases) {
1489  if (!ClassDecl || !Bases || !NumBases)
1490    return;
1491
1492  AdjustDeclIfTemplate(ClassDecl);
1493  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1494}
1495
1496/// \brief Determine whether the type \p Derived is a C++ class that is
1497/// derived from the type \p Base.
1498bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1499  if (!getLangOpts().CPlusPlus)
1500    return false;
1501
1502  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1503  if (!DerivedRD)
1504    return false;
1505
1506  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1507  if (!BaseRD)
1508    return false;
1509
1510  // If either the base or the derived type is invalid, don't try to
1511  // check whether one is derived from the other.
1512  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1513    return false;
1514
1515  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1516  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1517}
1518
1519/// \brief Determine whether the type \p Derived is a C++ class that is
1520/// derived from the type \p Base.
1521bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1522  if (!getLangOpts().CPlusPlus)
1523    return false;
1524
1525  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1526  if (!DerivedRD)
1527    return false;
1528
1529  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1530  if (!BaseRD)
1531    return false;
1532
1533  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1534}
1535
1536void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1537                              CXXCastPath &BasePathArray) {
1538  assert(BasePathArray.empty() && "Base path array must be empty!");
1539  assert(Paths.isRecordingPaths() && "Must record paths!");
1540
1541  const CXXBasePath &Path = Paths.front();
1542
1543  // We first go backward and check if we have a virtual base.
1544  // FIXME: It would be better if CXXBasePath had the base specifier for
1545  // the nearest virtual base.
1546  unsigned Start = 0;
1547  for (unsigned I = Path.size(); I != 0; --I) {
1548    if (Path[I - 1].Base->isVirtual()) {
1549      Start = I - 1;
1550      break;
1551    }
1552  }
1553
1554  // Now add all bases.
1555  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1556    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1557}
1558
1559/// \brief Determine whether the given base path includes a virtual
1560/// base class.
1561bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1562  for (CXXCastPath::const_iterator B = BasePath.begin(),
1563                                BEnd = BasePath.end();
1564       B != BEnd; ++B)
1565    if ((*B)->isVirtual())
1566      return true;
1567
1568  return false;
1569}
1570
1571/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1572/// conversion (where Derived and Base are class types) is
1573/// well-formed, meaning that the conversion is unambiguous (and
1574/// that all of the base classes are accessible). Returns true
1575/// and emits a diagnostic if the code is ill-formed, returns false
1576/// otherwise. Loc is the location where this routine should point to
1577/// if there is an error, and Range is the source range to highlight
1578/// if there is an error.
1579bool
1580Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1581                                   unsigned InaccessibleBaseID,
1582                                   unsigned AmbigiousBaseConvID,
1583                                   SourceLocation Loc, SourceRange Range,
1584                                   DeclarationName Name,
1585                                   CXXCastPath *BasePath) {
1586  // First, determine whether the path from Derived to Base is
1587  // ambiguous. This is slightly more expensive than checking whether
1588  // the Derived to Base conversion exists, because here we need to
1589  // explore multiple paths to determine if there is an ambiguity.
1590  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1591                     /*DetectVirtual=*/false);
1592  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1593  assert(DerivationOkay &&
1594         "Can only be used with a derived-to-base conversion");
1595  (void)DerivationOkay;
1596
1597  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1598    if (InaccessibleBaseID) {
1599      // Check that the base class can be accessed.
1600      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1601                                   InaccessibleBaseID)) {
1602        case AR_inaccessible:
1603          return true;
1604        case AR_accessible:
1605        case AR_dependent:
1606        case AR_delayed:
1607          break;
1608      }
1609    }
1610
1611    // Build a base path if necessary.
1612    if (BasePath)
1613      BuildBasePathArray(Paths, *BasePath);
1614    return false;
1615  }
1616
1617  if (AmbigiousBaseConvID) {
1618    // We know that the derived-to-base conversion is ambiguous, and
1619    // we're going to produce a diagnostic. Perform the derived-to-base
1620    // search just one more time to compute all of the possible paths so
1621    // that we can print them out. This is more expensive than any of
1622    // the previous derived-to-base checks we've done, but at this point
1623    // performance isn't as much of an issue.
1624    Paths.clear();
1625    Paths.setRecordingPaths(true);
1626    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1627    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1628    (void)StillOkay;
1629
1630    // Build up a textual representation of the ambiguous paths, e.g.,
1631    // D -> B -> A, that will be used to illustrate the ambiguous
1632    // conversions in the diagnostic. We only print one of the paths
1633    // to each base class subobject.
1634    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1635
1636    Diag(Loc, AmbigiousBaseConvID)
1637    << Derived << Base << PathDisplayStr << Range << Name;
1638  }
1639  return true;
1640}
1641
1642bool
1643Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1644                                   SourceLocation Loc, SourceRange Range,
1645                                   CXXCastPath *BasePath,
1646                                   bool IgnoreAccess) {
1647  return CheckDerivedToBaseConversion(Derived, Base,
1648                                      IgnoreAccess ? 0
1649                                       : diag::err_upcast_to_inaccessible_base,
1650                                      diag::err_ambiguous_derived_to_base_conv,
1651                                      Loc, Range, DeclarationName(),
1652                                      BasePath);
1653}
1654
1655
1656/// @brief Builds a string representing ambiguous paths from a
1657/// specific derived class to different subobjects of the same base
1658/// class.
1659///
1660/// This function builds a string that can be used in error messages
1661/// to show the different paths that one can take through the
1662/// inheritance hierarchy to go from the derived class to different
1663/// subobjects of a base class. The result looks something like this:
1664/// @code
1665/// struct D -> struct B -> struct A
1666/// struct D -> struct C -> struct A
1667/// @endcode
1668std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1669  std::string PathDisplayStr;
1670  std::set<unsigned> DisplayedPaths;
1671  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1672       Path != Paths.end(); ++Path) {
1673    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1674      // We haven't displayed a path to this particular base
1675      // class subobject yet.
1676      PathDisplayStr += "\n    ";
1677      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1678      for (CXXBasePath::const_iterator Element = Path->begin();
1679           Element != Path->end(); ++Element)
1680        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1681    }
1682  }
1683
1684  return PathDisplayStr;
1685}
1686
1687//===----------------------------------------------------------------------===//
1688// C++ class member Handling
1689//===----------------------------------------------------------------------===//
1690
1691/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1692bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1693                                SourceLocation ASLoc,
1694                                SourceLocation ColonLoc,
1695                                AttributeList *Attrs) {
1696  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1697  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1698                                                  ASLoc, ColonLoc);
1699  CurContext->addHiddenDecl(ASDecl);
1700  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1701}
1702
1703/// CheckOverrideControl - Check C++11 override control semantics.
1704void Sema::CheckOverrideControl(Decl *D) {
1705  if (D->isInvalidDecl())
1706    return;
1707
1708  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1709
1710  // Do we know which functions this declaration might be overriding?
1711  bool OverridesAreKnown = !MD ||
1712      (!MD->getParent()->hasAnyDependentBases() &&
1713       !MD->getType()->isDependentType());
1714
1715  if (!MD || !MD->isVirtual()) {
1716    if (OverridesAreKnown) {
1717      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1718        Diag(OA->getLocation(),
1719             diag::override_keyword_only_allowed_on_virtual_member_functions)
1720          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1721        D->dropAttr<OverrideAttr>();
1722      }
1723      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1724        Diag(FA->getLocation(),
1725             diag::override_keyword_only_allowed_on_virtual_member_functions)
1726          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1727        D->dropAttr<FinalAttr>();
1728      }
1729    }
1730    return;
1731  }
1732
1733  if (!OverridesAreKnown)
1734    return;
1735
1736  // C++11 [class.virtual]p5:
1737  //   If a virtual function is marked with the virt-specifier override and
1738  //   does not override a member function of a base class, the program is
1739  //   ill-formed.
1740  bool HasOverriddenMethods =
1741    MD->begin_overridden_methods() != MD->end_overridden_methods();
1742  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1743    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1744      << MD->getDeclName();
1745}
1746
1747/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1748/// function overrides a virtual member function marked 'final', according to
1749/// C++11 [class.virtual]p4.
1750bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1751                                                  const CXXMethodDecl *Old) {
1752  if (!Old->hasAttr<FinalAttr>())
1753    return false;
1754
1755  Diag(New->getLocation(), diag::err_final_function_overridden)
1756    << New->getDeclName();
1757  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1758  return true;
1759}
1760
1761static bool InitializationHasSideEffects(const FieldDecl &FD) {
1762  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1763  // FIXME: Destruction of ObjC lifetime types has side-effects.
1764  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1765    return !RD->isCompleteDefinition() ||
1766           !RD->hasTrivialDefaultConstructor() ||
1767           !RD->hasTrivialDestructor();
1768  return false;
1769}
1770
1771static AttributeList *getMSPropertyAttr(AttributeList *list) {
1772  for (AttributeList* it = list; it != 0; it = it->getNext())
1773    if (it->isDeclspecPropertyAttribute())
1774      return it;
1775  return 0;
1776}
1777
1778/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1779/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1780/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1781/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1782/// present (but parsing it has been deferred).
1783NamedDecl *
1784Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1785                               MultiTemplateParamsArg TemplateParameterLists,
1786                               Expr *BW, const VirtSpecifiers &VS,
1787                               InClassInitStyle InitStyle) {
1788  const DeclSpec &DS = D.getDeclSpec();
1789  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1790  DeclarationName Name = NameInfo.getName();
1791  SourceLocation Loc = NameInfo.getLoc();
1792
1793  // For anonymous bitfields, the location should point to the type.
1794  if (Loc.isInvalid())
1795    Loc = D.getLocStart();
1796
1797  Expr *BitWidth = static_cast<Expr*>(BW);
1798
1799  assert(isa<CXXRecordDecl>(CurContext));
1800  assert(!DS.isFriendSpecified());
1801
1802  bool isFunc = D.isDeclarationOfFunction();
1803
1804  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1805    // The Microsoft extension __interface only permits public member functions
1806    // and prohibits constructors, destructors, operators, non-public member
1807    // functions, static methods and data members.
1808    unsigned InvalidDecl;
1809    bool ShowDeclName = true;
1810    if (!isFunc)
1811      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1812    else if (AS != AS_public)
1813      InvalidDecl = 2;
1814    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1815      InvalidDecl = 3;
1816    else switch (Name.getNameKind()) {
1817      case DeclarationName::CXXConstructorName:
1818        InvalidDecl = 4;
1819        ShowDeclName = false;
1820        break;
1821
1822      case DeclarationName::CXXDestructorName:
1823        InvalidDecl = 5;
1824        ShowDeclName = false;
1825        break;
1826
1827      case DeclarationName::CXXOperatorName:
1828      case DeclarationName::CXXConversionFunctionName:
1829        InvalidDecl = 6;
1830        break;
1831
1832      default:
1833        InvalidDecl = 0;
1834        break;
1835    }
1836
1837    if (InvalidDecl) {
1838      if (ShowDeclName)
1839        Diag(Loc, diag::err_invalid_member_in_interface)
1840          << (InvalidDecl-1) << Name;
1841      else
1842        Diag(Loc, diag::err_invalid_member_in_interface)
1843          << (InvalidDecl-1) << "";
1844      return 0;
1845    }
1846  }
1847
1848  // C++ 9.2p6: A member shall not be declared to have automatic storage
1849  // duration (auto, register) or with the extern storage-class-specifier.
1850  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1851  // data members and cannot be applied to names declared const or static,
1852  // and cannot be applied to reference members.
1853  switch (DS.getStorageClassSpec()) {
1854  case DeclSpec::SCS_unspecified:
1855  case DeclSpec::SCS_typedef:
1856  case DeclSpec::SCS_static:
1857    break;
1858  case DeclSpec::SCS_mutable:
1859    if (isFunc) {
1860      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1861
1862      // FIXME: It would be nicer if the keyword was ignored only for this
1863      // declarator. Otherwise we could get follow-up errors.
1864      D.getMutableDeclSpec().ClearStorageClassSpecs();
1865    }
1866    break;
1867  default:
1868    Diag(DS.getStorageClassSpecLoc(),
1869         diag::err_storageclass_invalid_for_member);
1870    D.getMutableDeclSpec().ClearStorageClassSpecs();
1871    break;
1872  }
1873
1874  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1875                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1876                      !isFunc);
1877
1878  if (DS.isConstexprSpecified() && isInstField) {
1879    SemaDiagnosticBuilder B =
1880        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1881    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1882    if (InitStyle == ICIS_NoInit) {
1883      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1884      D.getMutableDeclSpec().ClearConstexprSpec();
1885      const char *PrevSpec;
1886      unsigned DiagID;
1887      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1888                                         PrevSpec, DiagID, getLangOpts());
1889      (void)Failed;
1890      assert(!Failed && "Making a constexpr member const shouldn't fail");
1891    } else {
1892      B << 1;
1893      const char *PrevSpec;
1894      unsigned DiagID;
1895      if (D.getMutableDeclSpec().SetStorageClassSpec(
1896          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1897        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1898               "This is the only DeclSpec that should fail to be applied");
1899        B << 1;
1900      } else {
1901        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1902        isInstField = false;
1903      }
1904    }
1905  }
1906
1907  NamedDecl *Member;
1908  if (isInstField) {
1909    CXXScopeSpec &SS = D.getCXXScopeSpec();
1910
1911    // Data members must have identifiers for names.
1912    if (!Name.isIdentifier()) {
1913      Diag(Loc, diag::err_bad_variable_name)
1914        << Name;
1915      return 0;
1916    }
1917
1918    IdentifierInfo *II = Name.getAsIdentifierInfo();
1919
1920    // Member field could not be with "template" keyword.
1921    // So TemplateParameterLists should be empty in this case.
1922    if (TemplateParameterLists.size()) {
1923      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1924      if (TemplateParams->size()) {
1925        // There is no such thing as a member field template.
1926        Diag(D.getIdentifierLoc(), diag::err_template_member)
1927            << II
1928            << SourceRange(TemplateParams->getTemplateLoc(),
1929                TemplateParams->getRAngleLoc());
1930      } else {
1931        // There is an extraneous 'template<>' for this member.
1932        Diag(TemplateParams->getTemplateLoc(),
1933            diag::err_template_member_noparams)
1934            << II
1935            << SourceRange(TemplateParams->getTemplateLoc(),
1936                TemplateParams->getRAngleLoc());
1937      }
1938      return 0;
1939    }
1940
1941    if (SS.isSet() && !SS.isInvalid()) {
1942      // The user provided a superfluous scope specifier inside a class
1943      // definition:
1944      //
1945      // class X {
1946      //   int X::member;
1947      // };
1948      if (DeclContext *DC = computeDeclContext(SS, false))
1949        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1950      else
1951        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1952          << Name << SS.getRange();
1953
1954      SS.clear();
1955    }
1956
1957    AttributeList *MSPropertyAttr =
1958      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1959    if (MSPropertyAttr) {
1960      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1961                                BitWidth, InitStyle, AS, MSPropertyAttr);
1962      if (!Member)
1963        return 0;
1964      isInstField = false;
1965    } else {
1966      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1967                                BitWidth, InitStyle, AS);
1968      assert(Member && "HandleField never returns null");
1969    }
1970  } else {
1971    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1972
1973    Member = HandleDeclarator(S, D, TemplateParameterLists);
1974    if (!Member)
1975      return 0;
1976
1977    // Non-instance-fields can't have a bitfield.
1978    if (BitWidth) {
1979      if (Member->isInvalidDecl()) {
1980        // don't emit another diagnostic.
1981      } else if (isa<VarDecl>(Member)) {
1982        // C++ 9.6p3: A bit-field shall not be a static member.
1983        // "static member 'A' cannot be a bit-field"
1984        Diag(Loc, diag::err_static_not_bitfield)
1985          << Name << BitWidth->getSourceRange();
1986      } else if (isa<TypedefDecl>(Member)) {
1987        // "typedef member 'x' cannot be a bit-field"
1988        Diag(Loc, diag::err_typedef_not_bitfield)
1989          << Name << BitWidth->getSourceRange();
1990      } else {
1991        // A function typedef ("typedef int f(); f a;").
1992        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1993        Diag(Loc, diag::err_not_integral_type_bitfield)
1994          << Name << cast<ValueDecl>(Member)->getType()
1995          << BitWidth->getSourceRange();
1996      }
1997
1998      BitWidth = 0;
1999      Member->setInvalidDecl();
2000    }
2001
2002    Member->setAccess(AS);
2003
2004    // If we have declared a member function template or static data member
2005    // template, set the access of the templated declaration as well.
2006    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2007      FunTmpl->getTemplatedDecl()->setAccess(AS);
2008    else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2009      VarTmpl->getTemplatedDecl()->setAccess(AS);
2010  }
2011
2012  if (VS.isOverrideSpecified())
2013    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2014  if (VS.isFinalSpecified())
2015    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
2016
2017  if (VS.getLastLocation().isValid()) {
2018    // Update the end location of a method that has a virt-specifiers.
2019    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2020      MD->setRangeEnd(VS.getLastLocation());
2021  }
2022
2023  CheckOverrideControl(Member);
2024
2025  assert((Name || isInstField) && "No identifier for non-field ?");
2026
2027  if (isInstField) {
2028    FieldDecl *FD = cast<FieldDecl>(Member);
2029    FieldCollector->Add(FD);
2030
2031    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2032                                 FD->getLocation())
2033          != DiagnosticsEngine::Ignored) {
2034      // Remember all explicit private FieldDecls that have a name, no side
2035      // effects and are not part of a dependent type declaration.
2036      if (!FD->isImplicit() && FD->getDeclName() &&
2037          FD->getAccess() == AS_private &&
2038          !FD->hasAttr<UnusedAttr>() &&
2039          !FD->getParent()->isDependentContext() &&
2040          !InitializationHasSideEffects(*FD))
2041        UnusedPrivateFields.insert(FD);
2042    }
2043  }
2044
2045  return Member;
2046}
2047
2048namespace {
2049  class UninitializedFieldVisitor
2050      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2051    Sema &S;
2052    ValueDecl *VD;
2053  public:
2054    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2055    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2056                                                        S(S) {
2057      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2058        this->VD = IFD->getAnonField();
2059      else
2060        this->VD = VD;
2061    }
2062
2063    void HandleExpr(Expr *E) {
2064      if (!E) return;
2065
2066      // Expressions like x(x) sometimes lack the surrounding expressions
2067      // but need to be checked anyways.
2068      HandleValue(E);
2069      Visit(E);
2070    }
2071
2072    void HandleValue(Expr *E) {
2073      E = E->IgnoreParens();
2074
2075      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2076        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2077          return;
2078
2079        // FieldME is the inner-most MemberExpr that is not an anonymous struct
2080        // or union.
2081        MemberExpr *FieldME = ME;
2082
2083        Expr *Base = E;
2084        while (isa<MemberExpr>(Base)) {
2085          ME = cast<MemberExpr>(Base);
2086
2087          if (isa<VarDecl>(ME->getMemberDecl()))
2088            return;
2089
2090          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2091            if (!FD->isAnonymousStructOrUnion())
2092              FieldME = ME;
2093
2094          Base = ME->getBase();
2095        }
2096
2097        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2098          unsigned diag = VD->getType()->isReferenceType()
2099              ? diag::warn_reference_field_is_uninit
2100              : diag::warn_field_is_uninit;
2101          S.Diag(FieldME->getExprLoc(), diag) << VD;
2102        }
2103        return;
2104      }
2105
2106      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2107        HandleValue(CO->getTrueExpr());
2108        HandleValue(CO->getFalseExpr());
2109        return;
2110      }
2111
2112      if (BinaryConditionalOperator *BCO =
2113              dyn_cast<BinaryConditionalOperator>(E)) {
2114        HandleValue(BCO->getCommon());
2115        HandleValue(BCO->getFalseExpr());
2116        return;
2117      }
2118
2119      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2120        switch (BO->getOpcode()) {
2121        default:
2122          return;
2123        case(BO_PtrMemD):
2124        case(BO_PtrMemI):
2125          HandleValue(BO->getLHS());
2126          return;
2127        case(BO_Comma):
2128          HandleValue(BO->getRHS());
2129          return;
2130        }
2131      }
2132    }
2133
2134    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2135      if (E->getCastKind() == CK_LValueToRValue)
2136        HandleValue(E->getSubExpr());
2137
2138      Inherited::VisitImplicitCastExpr(E);
2139    }
2140
2141    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2142      Expr *Callee = E->getCallee();
2143      if (isa<MemberExpr>(Callee))
2144        HandleValue(Callee);
2145
2146      Inherited::VisitCXXMemberCallExpr(E);
2147    }
2148  };
2149  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2150                                                       ValueDecl *VD) {
2151    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2152  }
2153} // namespace
2154
2155/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2156/// in-class initializer for a non-static C++ class member, and after
2157/// instantiating an in-class initializer in a class template. Such actions
2158/// are deferred until the class is complete.
2159void
2160Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2161                                       Expr *InitExpr) {
2162  FieldDecl *FD = cast<FieldDecl>(D);
2163  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2164         "must set init style when field is created");
2165
2166  if (!InitExpr) {
2167    FD->setInvalidDecl();
2168    FD->removeInClassInitializer();
2169    return;
2170  }
2171
2172  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2173    FD->setInvalidDecl();
2174    FD->removeInClassInitializer();
2175    return;
2176  }
2177
2178  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2179      != DiagnosticsEngine::Ignored) {
2180    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2181  }
2182
2183  ExprResult Init = InitExpr;
2184  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2185    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2186    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2187        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2188        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2189    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2190    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2191    if (Init.isInvalid()) {
2192      FD->setInvalidDecl();
2193      return;
2194    }
2195  }
2196
2197  // C++11 [class.base.init]p7:
2198  //   The initialization of each base and member constitutes a
2199  //   full-expression.
2200  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2201  if (Init.isInvalid()) {
2202    FD->setInvalidDecl();
2203    return;
2204  }
2205
2206  InitExpr = Init.release();
2207
2208  FD->setInClassInitializer(InitExpr);
2209}
2210
2211/// \brief Find the direct and/or virtual base specifiers that
2212/// correspond to the given base type, for use in base initialization
2213/// within a constructor.
2214static bool FindBaseInitializer(Sema &SemaRef,
2215                                CXXRecordDecl *ClassDecl,
2216                                QualType BaseType,
2217                                const CXXBaseSpecifier *&DirectBaseSpec,
2218                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2219  // First, check for a direct base class.
2220  DirectBaseSpec = 0;
2221  for (CXXRecordDecl::base_class_const_iterator Base
2222         = ClassDecl->bases_begin();
2223       Base != ClassDecl->bases_end(); ++Base) {
2224    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2225      // We found a direct base of this type. That's what we're
2226      // initializing.
2227      DirectBaseSpec = &*Base;
2228      break;
2229    }
2230  }
2231
2232  // Check for a virtual base class.
2233  // FIXME: We might be able to short-circuit this if we know in advance that
2234  // there are no virtual bases.
2235  VirtualBaseSpec = 0;
2236  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2237    // We haven't found a base yet; search the class hierarchy for a
2238    // virtual base class.
2239    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2240                       /*DetectVirtual=*/false);
2241    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2242                              BaseType, Paths)) {
2243      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2244           Path != Paths.end(); ++Path) {
2245        if (Path->back().Base->isVirtual()) {
2246          VirtualBaseSpec = Path->back().Base;
2247          break;
2248        }
2249      }
2250    }
2251  }
2252
2253  return DirectBaseSpec || VirtualBaseSpec;
2254}
2255
2256/// \brief Handle a C++ member initializer using braced-init-list syntax.
2257MemInitResult
2258Sema::ActOnMemInitializer(Decl *ConstructorD,
2259                          Scope *S,
2260                          CXXScopeSpec &SS,
2261                          IdentifierInfo *MemberOrBase,
2262                          ParsedType TemplateTypeTy,
2263                          const DeclSpec &DS,
2264                          SourceLocation IdLoc,
2265                          Expr *InitList,
2266                          SourceLocation EllipsisLoc) {
2267  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2268                             DS, IdLoc, InitList,
2269                             EllipsisLoc);
2270}
2271
2272/// \brief Handle a C++ member initializer using parentheses syntax.
2273MemInitResult
2274Sema::ActOnMemInitializer(Decl *ConstructorD,
2275                          Scope *S,
2276                          CXXScopeSpec &SS,
2277                          IdentifierInfo *MemberOrBase,
2278                          ParsedType TemplateTypeTy,
2279                          const DeclSpec &DS,
2280                          SourceLocation IdLoc,
2281                          SourceLocation LParenLoc,
2282                          ArrayRef<Expr *> Args,
2283                          SourceLocation RParenLoc,
2284                          SourceLocation EllipsisLoc) {
2285  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2286                                           Args, RParenLoc);
2287  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2288                             DS, IdLoc, List, EllipsisLoc);
2289}
2290
2291namespace {
2292
2293// Callback to only accept typo corrections that can be a valid C++ member
2294// intializer: either a non-static field member or a base class.
2295class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2296public:
2297  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2298      : ClassDecl(ClassDecl) {}
2299
2300  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
2301    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2302      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2303        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2304      return isa<TypeDecl>(ND);
2305    }
2306    return false;
2307  }
2308
2309private:
2310  CXXRecordDecl *ClassDecl;
2311};
2312
2313}
2314
2315/// \brief Handle a C++ member initializer.
2316MemInitResult
2317Sema::BuildMemInitializer(Decl *ConstructorD,
2318                          Scope *S,
2319                          CXXScopeSpec &SS,
2320                          IdentifierInfo *MemberOrBase,
2321                          ParsedType TemplateTypeTy,
2322                          const DeclSpec &DS,
2323                          SourceLocation IdLoc,
2324                          Expr *Init,
2325                          SourceLocation EllipsisLoc) {
2326  if (!ConstructorD)
2327    return true;
2328
2329  AdjustDeclIfTemplate(ConstructorD);
2330
2331  CXXConstructorDecl *Constructor
2332    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2333  if (!Constructor) {
2334    // The user wrote a constructor initializer on a function that is
2335    // not a C++ constructor. Ignore the error for now, because we may
2336    // have more member initializers coming; we'll diagnose it just
2337    // once in ActOnMemInitializers.
2338    return true;
2339  }
2340
2341  CXXRecordDecl *ClassDecl = Constructor->getParent();
2342
2343  // C++ [class.base.init]p2:
2344  //   Names in a mem-initializer-id are looked up in the scope of the
2345  //   constructor's class and, if not found in that scope, are looked
2346  //   up in the scope containing the constructor's definition.
2347  //   [Note: if the constructor's class contains a member with the
2348  //   same name as a direct or virtual base class of the class, a
2349  //   mem-initializer-id naming the member or base class and composed
2350  //   of a single identifier refers to the class member. A
2351  //   mem-initializer-id for the hidden base class may be specified
2352  //   using a qualified name. ]
2353  if (!SS.getScopeRep() && !TemplateTypeTy) {
2354    // Look for a member, first.
2355    DeclContext::lookup_result Result
2356      = ClassDecl->lookup(MemberOrBase);
2357    if (!Result.empty()) {
2358      ValueDecl *Member;
2359      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2360          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2361        if (EllipsisLoc.isValid())
2362          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2363            << MemberOrBase
2364            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2365
2366        return BuildMemberInitializer(Member, Init, IdLoc);
2367      }
2368    }
2369  }
2370  // It didn't name a member, so see if it names a class.
2371  QualType BaseType;
2372  TypeSourceInfo *TInfo = 0;
2373
2374  if (TemplateTypeTy) {
2375    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2376  } else if (DS.getTypeSpecType() == TST_decltype) {
2377    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2378  } else {
2379    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2380    LookupParsedName(R, S, &SS);
2381
2382    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2383    if (!TyD) {
2384      if (R.isAmbiguous()) return true;
2385
2386      // We don't want access-control diagnostics here.
2387      R.suppressDiagnostics();
2388
2389      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2390        bool NotUnknownSpecialization = false;
2391        DeclContext *DC = computeDeclContext(SS, false);
2392        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2393          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2394
2395        if (!NotUnknownSpecialization) {
2396          // When the scope specifier can refer to a member of an unknown
2397          // specialization, we take it as a type name.
2398          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2399                                       SS.getWithLocInContext(Context),
2400                                       *MemberOrBase, IdLoc);
2401          if (BaseType.isNull())
2402            return true;
2403
2404          R.clear();
2405          R.setLookupName(MemberOrBase);
2406        }
2407      }
2408
2409      // If no results were found, try to correct typos.
2410      TypoCorrection Corr;
2411      MemInitializerValidatorCCC Validator(ClassDecl);
2412      if (R.empty() && BaseType.isNull() &&
2413          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2414                              Validator, ClassDecl))) {
2415        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2416          // We have found a non-static data member with a similar
2417          // name to what was typed; complain and initialize that
2418          // member.
2419          diagnoseTypo(Corr,
2420                       PDiag(diag::err_mem_init_not_member_or_class_suggest)
2421                         << MemberOrBase << true);
2422          return BuildMemberInitializer(Member, Init, IdLoc);
2423        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2424          const CXXBaseSpecifier *DirectBaseSpec;
2425          const CXXBaseSpecifier *VirtualBaseSpec;
2426          if (FindBaseInitializer(*this, ClassDecl,
2427                                  Context.getTypeDeclType(Type),
2428                                  DirectBaseSpec, VirtualBaseSpec)) {
2429            // We have found a direct or virtual base class with a
2430            // similar name to what was typed; complain and initialize
2431            // that base class.
2432            diagnoseTypo(Corr,
2433                         PDiag(diag::err_mem_init_not_member_or_class_suggest)
2434                           << MemberOrBase << false,
2435                         PDiag() /*Suppress note, we provide our own.*/);
2436
2437            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2438                                                              : VirtualBaseSpec;
2439            Diag(BaseSpec->getLocStart(),
2440                 diag::note_base_class_specified_here)
2441              << BaseSpec->getType()
2442              << BaseSpec->getSourceRange();
2443
2444            TyD = Type;
2445          }
2446        }
2447      }
2448
2449      if (!TyD && BaseType.isNull()) {
2450        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2451          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2452        return true;
2453      }
2454    }
2455
2456    if (BaseType.isNull()) {
2457      BaseType = Context.getTypeDeclType(TyD);
2458      if (SS.isSet()) {
2459        NestedNameSpecifier *Qualifier =
2460          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2461
2462        // FIXME: preserve source range information
2463        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2464      }
2465    }
2466  }
2467
2468  if (!TInfo)
2469    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2470
2471  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2472}
2473
2474/// Checks a member initializer expression for cases where reference (or
2475/// pointer) members are bound to by-value parameters (or their addresses).
2476static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2477                                               Expr *Init,
2478                                               SourceLocation IdLoc) {
2479  QualType MemberTy = Member->getType();
2480
2481  // We only handle pointers and references currently.
2482  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2483  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2484    return;
2485
2486  const bool IsPointer = MemberTy->isPointerType();
2487  if (IsPointer) {
2488    if (const UnaryOperator *Op
2489          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2490      // The only case we're worried about with pointers requires taking the
2491      // address.
2492      if (Op->getOpcode() != UO_AddrOf)
2493        return;
2494
2495      Init = Op->getSubExpr();
2496    } else {
2497      // We only handle address-of expression initializers for pointers.
2498      return;
2499    }
2500  }
2501
2502  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2503    // We only warn when referring to a non-reference parameter declaration.
2504    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2505    if (!Parameter || Parameter->getType()->isReferenceType())
2506      return;
2507
2508    S.Diag(Init->getExprLoc(),
2509           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2510                     : diag::warn_bind_ref_member_to_parameter)
2511      << Member << Parameter << Init->getSourceRange();
2512  } else {
2513    // Other initializers are fine.
2514    return;
2515  }
2516
2517  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2518    << (unsigned)IsPointer;
2519}
2520
2521MemInitResult
2522Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2523                             SourceLocation IdLoc) {
2524  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2525  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2526  assert((DirectMember || IndirectMember) &&
2527         "Member must be a FieldDecl or IndirectFieldDecl");
2528
2529  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2530    return true;
2531
2532  if (Member->isInvalidDecl())
2533    return true;
2534
2535  // Diagnose value-uses of fields to initialize themselves, e.g.
2536  //   foo(foo)
2537  // where foo is not also a parameter to the constructor.
2538  // TODO: implement -Wuninitialized and fold this into that framework.
2539  MultiExprArg Args;
2540  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2541    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2542  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2543    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2544  } else {
2545    // Template instantiation doesn't reconstruct ParenListExprs for us.
2546    Args = Init;
2547  }
2548
2549  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2550        != DiagnosticsEngine::Ignored)
2551    for (unsigned i = 0, e = Args.size(); i != e; ++i)
2552      // FIXME: Warn about the case when other fields are used before being
2553      // initialized. For example, let this field be the i'th field. When
2554      // initializing the i'th field, throw a warning if any of the >= i'th
2555      // fields are used, as they are not yet initialized.
2556      // Right now we are only handling the case where the i'th field uses
2557      // itself in its initializer.
2558      // Also need to take into account that some fields may be initialized by
2559      // in-class initializers, see C++11 [class.base.init]p9.
2560      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2561
2562  SourceRange InitRange = Init->getSourceRange();
2563
2564  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2565    // Can't check initialization for a member of dependent type or when
2566    // any of the arguments are type-dependent expressions.
2567    DiscardCleanupsInEvaluationContext();
2568  } else {
2569    bool InitList = false;
2570    if (isa<InitListExpr>(Init)) {
2571      InitList = true;
2572      Args = Init;
2573    }
2574
2575    // Initialize the member.
2576    InitializedEntity MemberEntity =
2577      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2578                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2579    InitializationKind Kind =
2580      InitList ? InitializationKind::CreateDirectList(IdLoc)
2581               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2582                                                  InitRange.getEnd());
2583
2584    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2585    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2586    if (MemberInit.isInvalid())
2587      return true;
2588
2589    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2590
2591    // C++11 [class.base.init]p7:
2592    //   The initialization of each base and member constitutes a
2593    //   full-expression.
2594    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2595    if (MemberInit.isInvalid())
2596      return true;
2597
2598    Init = MemberInit.get();
2599  }
2600
2601  if (DirectMember) {
2602    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2603                                            InitRange.getBegin(), Init,
2604                                            InitRange.getEnd());
2605  } else {
2606    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2607                                            InitRange.getBegin(), Init,
2608                                            InitRange.getEnd());
2609  }
2610}
2611
2612MemInitResult
2613Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2614                                 CXXRecordDecl *ClassDecl) {
2615  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2616  if (!LangOpts.CPlusPlus11)
2617    return Diag(NameLoc, diag::err_delegating_ctor)
2618      << TInfo->getTypeLoc().getLocalSourceRange();
2619  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2620
2621  bool InitList = true;
2622  MultiExprArg Args = Init;
2623  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2624    InitList = false;
2625    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2626  }
2627
2628  SourceRange InitRange = Init->getSourceRange();
2629  // Initialize the object.
2630  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2631                                     QualType(ClassDecl->getTypeForDecl(), 0));
2632  InitializationKind Kind =
2633    InitList ? InitializationKind::CreateDirectList(NameLoc)
2634             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2635                                                InitRange.getEnd());
2636  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2637  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2638                                              Args, 0);
2639  if (DelegationInit.isInvalid())
2640    return true;
2641
2642  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2643         "Delegating constructor with no target?");
2644
2645  // C++11 [class.base.init]p7:
2646  //   The initialization of each base and member constitutes a
2647  //   full-expression.
2648  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2649                                       InitRange.getBegin());
2650  if (DelegationInit.isInvalid())
2651    return true;
2652
2653  // If we are in a dependent context, template instantiation will
2654  // perform this type-checking again. Just save the arguments that we
2655  // received in a ParenListExpr.
2656  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2657  // of the information that we have about the base
2658  // initializer. However, deconstructing the ASTs is a dicey process,
2659  // and this approach is far more likely to get the corner cases right.
2660  if (CurContext->isDependentContext())
2661    DelegationInit = Owned(Init);
2662
2663  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2664                                          DelegationInit.takeAs<Expr>(),
2665                                          InitRange.getEnd());
2666}
2667
2668MemInitResult
2669Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2670                           Expr *Init, CXXRecordDecl *ClassDecl,
2671                           SourceLocation EllipsisLoc) {
2672  SourceLocation BaseLoc
2673    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2674
2675  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2676    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2677             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2678
2679  // C++ [class.base.init]p2:
2680  //   [...] Unless the mem-initializer-id names a nonstatic data
2681  //   member of the constructor's class or a direct or virtual base
2682  //   of that class, the mem-initializer is ill-formed. A
2683  //   mem-initializer-list can initialize a base class using any
2684  //   name that denotes that base class type.
2685  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2686
2687  SourceRange InitRange = Init->getSourceRange();
2688  if (EllipsisLoc.isValid()) {
2689    // This is a pack expansion.
2690    if (!BaseType->containsUnexpandedParameterPack())  {
2691      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2692        << SourceRange(BaseLoc, InitRange.getEnd());
2693
2694      EllipsisLoc = SourceLocation();
2695    }
2696  } else {
2697    // Check for any unexpanded parameter packs.
2698    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2699      return true;
2700
2701    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2702      return true;
2703  }
2704
2705  // Check for direct and virtual base classes.
2706  const CXXBaseSpecifier *DirectBaseSpec = 0;
2707  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2708  if (!Dependent) {
2709    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2710                                       BaseType))
2711      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2712
2713    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2714                        VirtualBaseSpec);
2715
2716    // C++ [base.class.init]p2:
2717    // Unless the mem-initializer-id names a nonstatic data member of the
2718    // constructor's class or a direct or virtual base of that class, the
2719    // mem-initializer is ill-formed.
2720    if (!DirectBaseSpec && !VirtualBaseSpec) {
2721      // If the class has any dependent bases, then it's possible that
2722      // one of those types will resolve to the same type as
2723      // BaseType. Therefore, just treat this as a dependent base
2724      // class initialization.  FIXME: Should we try to check the
2725      // initialization anyway? It seems odd.
2726      if (ClassDecl->hasAnyDependentBases())
2727        Dependent = true;
2728      else
2729        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2730          << BaseType << Context.getTypeDeclType(ClassDecl)
2731          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2732    }
2733  }
2734
2735  if (Dependent) {
2736    DiscardCleanupsInEvaluationContext();
2737
2738    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2739                                            /*IsVirtual=*/false,
2740                                            InitRange.getBegin(), Init,
2741                                            InitRange.getEnd(), EllipsisLoc);
2742  }
2743
2744  // C++ [base.class.init]p2:
2745  //   If a mem-initializer-id is ambiguous because it designates both
2746  //   a direct non-virtual base class and an inherited virtual base
2747  //   class, the mem-initializer is ill-formed.
2748  if (DirectBaseSpec && VirtualBaseSpec)
2749    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2750      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2751
2752  const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2753  if (!BaseSpec)
2754    BaseSpec = VirtualBaseSpec;
2755
2756  // Initialize the base.
2757  bool InitList = true;
2758  MultiExprArg Args = Init;
2759  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2760    InitList = false;
2761    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2762  }
2763
2764  InitializedEntity BaseEntity =
2765    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2766  InitializationKind Kind =
2767    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2768             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2769                                                InitRange.getEnd());
2770  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2771  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2772  if (BaseInit.isInvalid())
2773    return true;
2774
2775  // C++11 [class.base.init]p7:
2776  //   The initialization of each base and member constitutes a
2777  //   full-expression.
2778  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2779  if (BaseInit.isInvalid())
2780    return true;
2781
2782  // If we are in a dependent context, template instantiation will
2783  // perform this type-checking again. Just save the arguments that we
2784  // received in a ParenListExpr.
2785  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2786  // of the information that we have about the base
2787  // initializer. However, deconstructing the ASTs is a dicey process,
2788  // and this approach is far more likely to get the corner cases right.
2789  if (CurContext->isDependentContext())
2790    BaseInit = Owned(Init);
2791
2792  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2793                                          BaseSpec->isVirtual(),
2794                                          InitRange.getBegin(),
2795                                          BaseInit.takeAs<Expr>(),
2796                                          InitRange.getEnd(), EllipsisLoc);
2797}
2798
2799// Create a static_cast\<T&&>(expr).
2800static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2801  if (T.isNull()) T = E->getType();
2802  QualType TargetType = SemaRef.BuildReferenceType(
2803      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2804  SourceLocation ExprLoc = E->getLocStart();
2805  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2806      TargetType, ExprLoc);
2807
2808  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2809                                   SourceRange(ExprLoc, ExprLoc),
2810                                   E->getSourceRange()).take();
2811}
2812
2813/// ImplicitInitializerKind - How an implicit base or member initializer should
2814/// initialize its base or member.
2815enum ImplicitInitializerKind {
2816  IIK_Default,
2817  IIK_Copy,
2818  IIK_Move,
2819  IIK_Inherit
2820};
2821
2822static bool
2823BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2824                             ImplicitInitializerKind ImplicitInitKind,
2825                             CXXBaseSpecifier *BaseSpec,
2826                             bool IsInheritedVirtualBase,
2827                             CXXCtorInitializer *&CXXBaseInit) {
2828  InitializedEntity InitEntity
2829    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2830                                        IsInheritedVirtualBase);
2831
2832  ExprResult BaseInit;
2833
2834  switch (ImplicitInitKind) {
2835  case IIK_Inherit: {
2836    const CXXRecordDecl *Inherited =
2837        Constructor->getInheritedConstructor()->getParent();
2838    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2839    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2840      // C++11 [class.inhctor]p8:
2841      //   Each expression in the expression-list is of the form
2842      //   static_cast<T&&>(p), where p is the name of the corresponding
2843      //   constructor parameter and T is the declared type of p.
2844      SmallVector<Expr*, 16> Args;
2845      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2846        ParmVarDecl *PD = Constructor->getParamDecl(I);
2847        ExprResult ArgExpr =
2848            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2849                                     VK_LValue, SourceLocation());
2850        if (ArgExpr.isInvalid())
2851          return true;
2852        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2853      }
2854
2855      InitializationKind InitKind = InitializationKind::CreateDirect(
2856          Constructor->getLocation(), SourceLocation(), SourceLocation());
2857      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2858      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2859      break;
2860    }
2861  }
2862  // Fall through.
2863  case IIK_Default: {
2864    InitializationKind InitKind
2865      = InitializationKind::CreateDefault(Constructor->getLocation());
2866    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2867    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2868    break;
2869  }
2870
2871  case IIK_Move:
2872  case IIK_Copy: {
2873    bool Moving = ImplicitInitKind == IIK_Move;
2874    ParmVarDecl *Param = Constructor->getParamDecl(0);
2875    QualType ParamType = Param->getType().getNonReferenceType();
2876
2877    Expr *CopyCtorArg =
2878      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2879                          SourceLocation(), Param, false,
2880                          Constructor->getLocation(), ParamType,
2881                          VK_LValue, 0);
2882
2883    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2884
2885    // Cast to the base class to avoid ambiguities.
2886    QualType ArgTy =
2887      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2888                                       ParamType.getQualifiers());
2889
2890    if (Moving) {
2891      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2892    }
2893
2894    CXXCastPath BasePath;
2895    BasePath.push_back(BaseSpec);
2896    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2897                                            CK_UncheckedDerivedToBase,
2898                                            Moving ? VK_XValue : VK_LValue,
2899                                            &BasePath).take();
2900
2901    InitializationKind InitKind
2902      = InitializationKind::CreateDirect(Constructor->getLocation(),
2903                                         SourceLocation(), SourceLocation());
2904    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2905    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2906    break;
2907  }
2908  }
2909
2910  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2911  if (BaseInit.isInvalid())
2912    return true;
2913
2914  CXXBaseInit =
2915    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2916               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2917                                                        SourceLocation()),
2918                                             BaseSpec->isVirtual(),
2919                                             SourceLocation(),
2920                                             BaseInit.takeAs<Expr>(),
2921                                             SourceLocation(),
2922                                             SourceLocation());
2923
2924  return false;
2925}
2926
2927static bool RefersToRValueRef(Expr *MemRef) {
2928  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2929  return Referenced->getType()->isRValueReferenceType();
2930}
2931
2932static bool
2933BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2934                               ImplicitInitializerKind ImplicitInitKind,
2935                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2936                               CXXCtorInitializer *&CXXMemberInit) {
2937  if (Field->isInvalidDecl())
2938    return true;
2939
2940  SourceLocation Loc = Constructor->getLocation();
2941
2942  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2943    bool Moving = ImplicitInitKind == IIK_Move;
2944    ParmVarDecl *Param = Constructor->getParamDecl(0);
2945    QualType ParamType = Param->getType().getNonReferenceType();
2946
2947    // Suppress copying zero-width bitfields.
2948    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2949      return false;
2950
2951    Expr *MemberExprBase =
2952      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2953                          SourceLocation(), Param, false,
2954                          Loc, ParamType, VK_LValue, 0);
2955
2956    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2957
2958    if (Moving) {
2959      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2960    }
2961
2962    // Build a reference to this field within the parameter.
2963    CXXScopeSpec SS;
2964    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2965                              Sema::LookupMemberName);
2966    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2967                                  : cast<ValueDecl>(Field), AS_public);
2968    MemberLookup.resolveKind();
2969    ExprResult CtorArg
2970      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2971                                         ParamType, Loc,
2972                                         /*IsArrow=*/false,
2973                                         SS,
2974                                         /*TemplateKWLoc=*/SourceLocation(),
2975                                         /*FirstQualifierInScope=*/0,
2976                                         MemberLookup,
2977                                         /*TemplateArgs=*/0);
2978    if (CtorArg.isInvalid())
2979      return true;
2980
2981    // C++11 [class.copy]p15:
2982    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2983    //     with static_cast<T&&>(x.m);
2984    if (RefersToRValueRef(CtorArg.get())) {
2985      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2986    }
2987
2988    // When the field we are copying is an array, create index variables for
2989    // each dimension of the array. We use these index variables to subscript
2990    // the source array, and other clients (e.g., CodeGen) will perform the
2991    // necessary iteration with these index variables.
2992    SmallVector<VarDecl *, 4> IndexVariables;
2993    QualType BaseType = Field->getType();
2994    QualType SizeType = SemaRef.Context.getSizeType();
2995    bool InitializingArray = false;
2996    while (const ConstantArrayType *Array
2997                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2998      InitializingArray = true;
2999      // Create the iteration variable for this array index.
3000      IdentifierInfo *IterationVarName = 0;
3001      {
3002        SmallString<8> Str;
3003        llvm::raw_svector_ostream OS(Str);
3004        OS << "__i" << IndexVariables.size();
3005        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3006      }
3007      VarDecl *IterationVar
3008        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3009                          IterationVarName, SizeType,
3010                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3011                          SC_None);
3012      IndexVariables.push_back(IterationVar);
3013
3014      // Create a reference to the iteration variable.
3015      ExprResult IterationVarRef
3016        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3017      assert(!IterationVarRef.isInvalid() &&
3018             "Reference to invented variable cannot fail!");
3019      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3020      assert(!IterationVarRef.isInvalid() &&
3021             "Conversion of invented variable cannot fail!");
3022
3023      // Subscript the array with this iteration variable.
3024      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3025                                                        IterationVarRef.take(),
3026                                                        Loc);
3027      if (CtorArg.isInvalid())
3028        return true;
3029
3030      BaseType = Array->getElementType();
3031    }
3032
3033    // The array subscript expression is an lvalue, which is wrong for moving.
3034    if (Moving && InitializingArray)
3035      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3036
3037    // Construct the entity that we will be initializing. For an array, this
3038    // will be first element in the array, which may require several levels
3039    // of array-subscript entities.
3040    SmallVector<InitializedEntity, 4> Entities;
3041    Entities.reserve(1 + IndexVariables.size());
3042    if (Indirect)
3043      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3044    else
3045      Entities.push_back(InitializedEntity::InitializeMember(Field));
3046    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3047      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3048                                                              0,
3049                                                              Entities.back()));
3050
3051    // Direct-initialize to use the copy constructor.
3052    InitializationKind InitKind =
3053      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3054
3055    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3056    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3057
3058    ExprResult MemberInit
3059      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3060                        MultiExprArg(&CtorArgE, 1));
3061    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3062    if (MemberInit.isInvalid())
3063      return true;
3064
3065    if (Indirect) {
3066      assert(IndexVariables.size() == 0 &&
3067             "Indirect field improperly initialized");
3068      CXXMemberInit
3069        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3070                                                   Loc, Loc,
3071                                                   MemberInit.takeAs<Expr>(),
3072                                                   Loc);
3073    } else
3074      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3075                                                 Loc, MemberInit.takeAs<Expr>(),
3076                                                 Loc,
3077                                                 IndexVariables.data(),
3078                                                 IndexVariables.size());
3079    return false;
3080  }
3081
3082  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3083         "Unhandled implicit init kind!");
3084
3085  QualType FieldBaseElementType =
3086    SemaRef.Context.getBaseElementType(Field->getType());
3087
3088  if (FieldBaseElementType->isRecordType()) {
3089    InitializedEntity InitEntity
3090      = Indirect? InitializedEntity::InitializeMember(Indirect)
3091                : InitializedEntity::InitializeMember(Field);
3092    InitializationKind InitKind =
3093      InitializationKind::CreateDefault(Loc);
3094
3095    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3096    ExprResult MemberInit =
3097      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3098
3099    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3100    if (MemberInit.isInvalid())
3101      return true;
3102
3103    if (Indirect)
3104      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3105                                                               Indirect, Loc,
3106                                                               Loc,
3107                                                               MemberInit.get(),
3108                                                               Loc);
3109    else
3110      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3111                                                               Field, Loc, Loc,
3112                                                               MemberInit.get(),
3113                                                               Loc);
3114    return false;
3115  }
3116
3117  if (!Field->getParent()->isUnion()) {
3118    if (FieldBaseElementType->isReferenceType()) {
3119      SemaRef.Diag(Constructor->getLocation(),
3120                   diag::err_uninitialized_member_in_ctor)
3121      << (int)Constructor->isImplicit()
3122      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3123      << 0 << Field->getDeclName();
3124      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3125      return true;
3126    }
3127
3128    if (FieldBaseElementType.isConstQualified()) {
3129      SemaRef.Diag(Constructor->getLocation(),
3130                   diag::err_uninitialized_member_in_ctor)
3131      << (int)Constructor->isImplicit()
3132      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3133      << 1 << Field->getDeclName();
3134      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3135      return true;
3136    }
3137  }
3138
3139  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3140      FieldBaseElementType->isObjCRetainableType() &&
3141      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3142      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3143    // ARC:
3144    //   Default-initialize Objective-C pointers to NULL.
3145    CXXMemberInit
3146      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3147                                                 Loc, Loc,
3148                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3149                                                 Loc);
3150    return false;
3151  }
3152
3153  // Nothing to initialize.
3154  CXXMemberInit = 0;
3155  return false;
3156}
3157
3158namespace {
3159struct BaseAndFieldInfo {
3160  Sema &S;
3161  CXXConstructorDecl *Ctor;
3162  bool AnyErrorsInInits;
3163  ImplicitInitializerKind IIK;
3164  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3165  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3166
3167  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3168    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3169    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3170    if (Generated && Ctor->isCopyConstructor())
3171      IIK = IIK_Copy;
3172    else if (Generated && Ctor->isMoveConstructor())
3173      IIK = IIK_Move;
3174    else if (Ctor->getInheritedConstructor())
3175      IIK = IIK_Inherit;
3176    else
3177      IIK = IIK_Default;
3178  }
3179
3180  bool isImplicitCopyOrMove() const {
3181    switch (IIK) {
3182    case IIK_Copy:
3183    case IIK_Move:
3184      return true;
3185
3186    case IIK_Default:
3187    case IIK_Inherit:
3188      return false;
3189    }
3190
3191    llvm_unreachable("Invalid ImplicitInitializerKind!");
3192  }
3193
3194  bool addFieldInitializer(CXXCtorInitializer *Init) {
3195    AllToInit.push_back(Init);
3196
3197    // Check whether this initializer makes the field "used".
3198    if (Init->getInit()->HasSideEffects(S.Context))
3199      S.UnusedPrivateFields.remove(Init->getAnyMember());
3200
3201    return false;
3202  }
3203};
3204}
3205
3206/// \brief Determine whether the given indirect field declaration is somewhere
3207/// within an anonymous union.
3208static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3209  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3210                                      CEnd = F->chain_end();
3211       C != CEnd; ++C)
3212    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3213      if (Record->isUnion())
3214        return true;
3215
3216  return false;
3217}
3218
3219/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3220/// array type.
3221static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3222  if (T->isIncompleteArrayType())
3223    return true;
3224
3225  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3226    if (!ArrayT->getSize())
3227      return true;
3228
3229    T = ArrayT->getElementType();
3230  }
3231
3232  return false;
3233}
3234
3235static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3236                                    FieldDecl *Field,
3237                                    IndirectFieldDecl *Indirect = 0) {
3238  if (Field->isInvalidDecl())
3239    return false;
3240
3241  // Overwhelmingly common case: we have a direct initializer for this field.
3242  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3243    return Info.addFieldInitializer(Init);
3244
3245  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3246  // has a brace-or-equal-initializer, the entity is initialized as specified
3247  // in [dcl.init].
3248  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3249    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3250                                           Info.Ctor->getLocation(), Field);
3251    CXXCtorInitializer *Init;
3252    if (Indirect)
3253      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3254                                                      SourceLocation(),
3255                                                      SourceLocation(), DIE,
3256                                                      SourceLocation());
3257    else
3258      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3259                                                      SourceLocation(),
3260                                                      SourceLocation(), DIE,
3261                                                      SourceLocation());
3262    return Info.addFieldInitializer(Init);
3263  }
3264
3265  // Don't build an implicit initializer for union members if none was
3266  // explicitly specified.
3267  if (Field->getParent()->isUnion() ||
3268      (Indirect && isWithinAnonymousUnion(Indirect)))
3269    return false;
3270
3271  // Don't initialize incomplete or zero-length arrays.
3272  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3273    return false;
3274
3275  // Don't try to build an implicit initializer if there were semantic
3276  // errors in any of the initializers (and therefore we might be
3277  // missing some that the user actually wrote).
3278  if (Info.AnyErrorsInInits)
3279    return false;
3280
3281  CXXCtorInitializer *Init = 0;
3282  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3283                                     Indirect, Init))
3284    return true;
3285
3286  if (!Init)
3287    return false;
3288
3289  return Info.addFieldInitializer(Init);
3290}
3291
3292bool
3293Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3294                               CXXCtorInitializer *Initializer) {
3295  assert(Initializer->isDelegatingInitializer());
3296  Constructor->setNumCtorInitializers(1);
3297  CXXCtorInitializer **initializer =
3298    new (Context) CXXCtorInitializer*[1];
3299  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3300  Constructor->setCtorInitializers(initializer);
3301
3302  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3303    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3304    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3305  }
3306
3307  DelegatingCtorDecls.push_back(Constructor);
3308
3309  return false;
3310}
3311
3312bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3313                               ArrayRef<CXXCtorInitializer *> Initializers) {
3314  if (Constructor->isDependentContext()) {
3315    // Just store the initializers as written, they will be checked during
3316    // instantiation.
3317    if (!Initializers.empty()) {
3318      Constructor->setNumCtorInitializers(Initializers.size());
3319      CXXCtorInitializer **baseOrMemberInitializers =
3320        new (Context) CXXCtorInitializer*[Initializers.size()];
3321      memcpy(baseOrMemberInitializers, Initializers.data(),
3322             Initializers.size() * sizeof(CXXCtorInitializer*));
3323      Constructor->setCtorInitializers(baseOrMemberInitializers);
3324    }
3325
3326    // Let template instantiation know whether we had errors.
3327    if (AnyErrors)
3328      Constructor->setInvalidDecl();
3329
3330    return false;
3331  }
3332
3333  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3334
3335  // We need to build the initializer AST according to order of construction
3336  // and not what user specified in the Initializers list.
3337  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3338  if (!ClassDecl)
3339    return true;
3340
3341  bool HadError = false;
3342
3343  for (unsigned i = 0; i < Initializers.size(); i++) {
3344    CXXCtorInitializer *Member = Initializers[i];
3345
3346    if (Member->isBaseInitializer())
3347      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3348    else
3349      Info.AllBaseFields[Member->getAnyMember()] = Member;
3350  }
3351
3352  // Keep track of the direct virtual bases.
3353  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3354  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3355       E = ClassDecl->bases_end(); I != E; ++I) {
3356    if (I->isVirtual())
3357      DirectVBases.insert(I);
3358  }
3359
3360  // Push virtual bases before others.
3361  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3362       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3363
3364    if (CXXCtorInitializer *Value
3365        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3366      // [class.base.init]p7, per DR257:
3367      //   A mem-initializer where the mem-initializer-id names a virtual base
3368      //   class is ignored during execution of a constructor of any class that
3369      //   is not the most derived class.
3370      if (ClassDecl->isAbstract()) {
3371        // FIXME: Provide a fixit to remove the base specifier. This requires
3372        // tracking the location of the associated comma for a base specifier.
3373        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3374          << VBase->getType() << ClassDecl;
3375        DiagnoseAbstractType(ClassDecl);
3376      }
3377
3378      Info.AllToInit.push_back(Value);
3379    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3380      // [class.base.init]p8, per DR257:
3381      //   If a given [...] base class is not named by a mem-initializer-id
3382      //   [...] and the entity is not a virtual base class of an abstract
3383      //   class, then [...] the entity is default-initialized.
3384      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3385      CXXCtorInitializer *CXXBaseInit;
3386      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3387                                       VBase, IsInheritedVirtualBase,
3388                                       CXXBaseInit)) {
3389        HadError = true;
3390        continue;
3391      }
3392
3393      Info.AllToInit.push_back(CXXBaseInit);
3394    }
3395  }
3396
3397  // Non-virtual bases.
3398  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3399       E = ClassDecl->bases_end(); Base != E; ++Base) {
3400    // Virtuals are in the virtual base list and already constructed.
3401    if (Base->isVirtual())
3402      continue;
3403
3404    if (CXXCtorInitializer *Value
3405          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3406      Info.AllToInit.push_back(Value);
3407    } else if (!AnyErrors) {
3408      CXXCtorInitializer *CXXBaseInit;
3409      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3410                                       Base, /*IsInheritedVirtualBase=*/false,
3411                                       CXXBaseInit)) {
3412        HadError = true;
3413        continue;
3414      }
3415
3416      Info.AllToInit.push_back(CXXBaseInit);
3417    }
3418  }
3419
3420  // Fields.
3421  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3422                               MemEnd = ClassDecl->decls_end();
3423       Mem != MemEnd; ++Mem) {
3424    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3425      // C++ [class.bit]p2:
3426      //   A declaration for a bit-field that omits the identifier declares an
3427      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3428      //   initialized.
3429      if (F->isUnnamedBitfield())
3430        continue;
3431
3432      // If we're not generating the implicit copy/move constructor, then we'll
3433      // handle anonymous struct/union fields based on their individual
3434      // indirect fields.
3435      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3436        continue;
3437
3438      if (CollectFieldInitializer(*this, Info, F))
3439        HadError = true;
3440      continue;
3441    }
3442
3443    // Beyond this point, we only consider default initialization.
3444    if (Info.isImplicitCopyOrMove())
3445      continue;
3446
3447    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3448      if (F->getType()->isIncompleteArrayType()) {
3449        assert(ClassDecl->hasFlexibleArrayMember() &&
3450               "Incomplete array type is not valid");
3451        continue;
3452      }
3453
3454      // Initialize each field of an anonymous struct individually.
3455      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3456        HadError = true;
3457
3458      continue;
3459    }
3460  }
3461
3462  unsigned NumInitializers = Info.AllToInit.size();
3463  if (NumInitializers > 0) {
3464    Constructor->setNumCtorInitializers(NumInitializers);
3465    CXXCtorInitializer **baseOrMemberInitializers =
3466      new (Context) CXXCtorInitializer*[NumInitializers];
3467    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3468           NumInitializers * sizeof(CXXCtorInitializer*));
3469    Constructor->setCtorInitializers(baseOrMemberInitializers);
3470
3471    // Constructors implicitly reference the base and member
3472    // destructors.
3473    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3474                                           Constructor->getParent());
3475  }
3476
3477  return HadError;
3478}
3479
3480static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3481  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3482    const RecordDecl *RD = RT->getDecl();
3483    if (RD->isAnonymousStructOrUnion()) {
3484      for (RecordDecl::field_iterator Field = RD->field_begin(),
3485          E = RD->field_end(); Field != E; ++Field)
3486        PopulateKeysForFields(*Field, IdealInits);
3487      return;
3488    }
3489  }
3490  IdealInits.push_back(Field);
3491}
3492
3493static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3494  return Context.getCanonicalType(BaseType).getTypePtr();
3495}
3496
3497static const void *GetKeyForMember(ASTContext &Context,
3498                                   CXXCtorInitializer *Member) {
3499  if (!Member->isAnyMemberInitializer())
3500    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3501
3502  return Member->getAnyMember();
3503}
3504
3505static void DiagnoseBaseOrMemInitializerOrder(
3506    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3507    ArrayRef<CXXCtorInitializer *> Inits) {
3508  if (Constructor->getDeclContext()->isDependentContext())
3509    return;
3510
3511  // Don't check initializers order unless the warning is enabled at the
3512  // location of at least one initializer.
3513  bool ShouldCheckOrder = false;
3514  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3515    CXXCtorInitializer *Init = Inits[InitIndex];
3516    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3517                                         Init->getSourceLocation())
3518          != DiagnosticsEngine::Ignored) {
3519      ShouldCheckOrder = true;
3520      break;
3521    }
3522  }
3523  if (!ShouldCheckOrder)
3524    return;
3525
3526  // Build the list of bases and members in the order that they'll
3527  // actually be initialized.  The explicit initializers should be in
3528  // this same order but may be missing things.
3529  SmallVector<const void*, 32> IdealInitKeys;
3530
3531  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3532
3533  // 1. Virtual bases.
3534  for (CXXRecordDecl::base_class_const_iterator VBase =
3535       ClassDecl->vbases_begin(),
3536       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3537    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3538
3539  // 2. Non-virtual bases.
3540  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3541       E = ClassDecl->bases_end(); Base != E; ++Base) {
3542    if (Base->isVirtual())
3543      continue;
3544    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3545  }
3546
3547  // 3. Direct fields.
3548  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3549       E = ClassDecl->field_end(); Field != E; ++Field) {
3550    if (Field->isUnnamedBitfield())
3551      continue;
3552
3553    PopulateKeysForFields(*Field, IdealInitKeys);
3554  }
3555
3556  unsigned NumIdealInits = IdealInitKeys.size();
3557  unsigned IdealIndex = 0;
3558
3559  CXXCtorInitializer *PrevInit = 0;
3560  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3561    CXXCtorInitializer *Init = Inits[InitIndex];
3562    const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3563
3564    // Scan forward to try to find this initializer in the idealized
3565    // initializers list.
3566    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3567      if (InitKey == IdealInitKeys[IdealIndex])
3568        break;
3569
3570    // If we didn't find this initializer, it must be because we
3571    // scanned past it on a previous iteration.  That can only
3572    // happen if we're out of order;  emit a warning.
3573    if (IdealIndex == NumIdealInits && PrevInit) {
3574      Sema::SemaDiagnosticBuilder D =
3575        SemaRef.Diag(PrevInit->getSourceLocation(),
3576                     diag::warn_initializer_out_of_order);
3577
3578      if (PrevInit->isAnyMemberInitializer())
3579        D << 0 << PrevInit->getAnyMember()->getDeclName();
3580      else
3581        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3582
3583      if (Init->isAnyMemberInitializer())
3584        D << 0 << Init->getAnyMember()->getDeclName();
3585      else
3586        D << 1 << Init->getTypeSourceInfo()->getType();
3587
3588      // Move back to the initializer's location in the ideal list.
3589      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3590        if (InitKey == IdealInitKeys[IdealIndex])
3591          break;
3592
3593      assert(IdealIndex != NumIdealInits &&
3594             "initializer not found in initializer list");
3595    }
3596
3597    PrevInit = Init;
3598  }
3599}
3600
3601namespace {
3602bool CheckRedundantInit(Sema &S,
3603                        CXXCtorInitializer *Init,
3604                        CXXCtorInitializer *&PrevInit) {
3605  if (!PrevInit) {
3606    PrevInit = Init;
3607    return false;
3608  }
3609
3610  if (FieldDecl *Field = Init->getAnyMember())
3611    S.Diag(Init->getSourceLocation(),
3612           diag::err_multiple_mem_initialization)
3613      << Field->getDeclName()
3614      << Init->getSourceRange();
3615  else {
3616    const Type *BaseClass = Init->getBaseClass();
3617    assert(BaseClass && "neither field nor base");
3618    S.Diag(Init->getSourceLocation(),
3619           diag::err_multiple_base_initialization)
3620      << QualType(BaseClass, 0)
3621      << Init->getSourceRange();
3622  }
3623  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3624    << 0 << PrevInit->getSourceRange();
3625
3626  return true;
3627}
3628
3629typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3630typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3631
3632bool CheckRedundantUnionInit(Sema &S,
3633                             CXXCtorInitializer *Init,
3634                             RedundantUnionMap &Unions) {
3635  FieldDecl *Field = Init->getAnyMember();
3636  RecordDecl *Parent = Field->getParent();
3637  NamedDecl *Child = Field;
3638
3639  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3640    if (Parent->isUnion()) {
3641      UnionEntry &En = Unions[Parent];
3642      if (En.first && En.first != Child) {
3643        S.Diag(Init->getSourceLocation(),
3644               diag::err_multiple_mem_union_initialization)
3645          << Field->getDeclName()
3646          << Init->getSourceRange();
3647        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3648          << 0 << En.second->getSourceRange();
3649        return true;
3650      }
3651      if (!En.first) {
3652        En.first = Child;
3653        En.second = Init;
3654      }
3655      if (!Parent->isAnonymousStructOrUnion())
3656        return false;
3657    }
3658
3659    Child = Parent;
3660    Parent = cast<RecordDecl>(Parent->getDeclContext());
3661  }
3662
3663  return false;
3664}
3665}
3666
3667/// ActOnMemInitializers - Handle the member initializers for a constructor.
3668void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3669                                SourceLocation ColonLoc,
3670                                ArrayRef<CXXCtorInitializer*> MemInits,
3671                                bool AnyErrors) {
3672  if (!ConstructorDecl)
3673    return;
3674
3675  AdjustDeclIfTemplate(ConstructorDecl);
3676
3677  CXXConstructorDecl *Constructor
3678    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3679
3680  if (!Constructor) {
3681    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3682    return;
3683  }
3684
3685  // Mapping for the duplicate initializers check.
3686  // For member initializers, this is keyed with a FieldDecl*.
3687  // For base initializers, this is keyed with a Type*.
3688  llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3689
3690  // Mapping for the inconsistent anonymous-union initializers check.
3691  RedundantUnionMap MemberUnions;
3692
3693  bool HadError = false;
3694  for (unsigned i = 0; i < MemInits.size(); i++) {
3695    CXXCtorInitializer *Init = MemInits[i];
3696
3697    // Set the source order index.
3698    Init->setSourceOrder(i);
3699
3700    if (Init->isAnyMemberInitializer()) {
3701      FieldDecl *Field = Init->getAnyMember();
3702      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3703          CheckRedundantUnionInit(*this, Init, MemberUnions))
3704        HadError = true;
3705    } else if (Init->isBaseInitializer()) {
3706      const void *Key =
3707          GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3708      if (CheckRedundantInit(*this, Init, Members[Key]))
3709        HadError = true;
3710    } else {
3711      assert(Init->isDelegatingInitializer());
3712      // This must be the only initializer
3713      if (MemInits.size() != 1) {
3714        Diag(Init->getSourceLocation(),
3715             diag::err_delegating_initializer_alone)
3716          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3717        // We will treat this as being the only initializer.
3718      }
3719      SetDelegatingInitializer(Constructor, MemInits[i]);
3720      // Return immediately as the initializer is set.
3721      return;
3722    }
3723  }
3724
3725  if (HadError)
3726    return;
3727
3728  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3729
3730  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3731}
3732
3733void
3734Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3735                                             CXXRecordDecl *ClassDecl) {
3736  // Ignore dependent contexts. Also ignore unions, since their members never
3737  // have destructors implicitly called.
3738  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3739    return;
3740
3741  // FIXME: all the access-control diagnostics are positioned on the
3742  // field/base declaration.  That's probably good; that said, the
3743  // user might reasonably want to know why the destructor is being
3744  // emitted, and we currently don't say.
3745
3746  // Non-static data members.
3747  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3748       E = ClassDecl->field_end(); I != E; ++I) {
3749    FieldDecl *Field = *I;
3750    if (Field->isInvalidDecl())
3751      continue;
3752
3753    // Don't destroy incomplete or zero-length arrays.
3754    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3755      continue;
3756
3757    QualType FieldType = Context.getBaseElementType(Field->getType());
3758
3759    const RecordType* RT = FieldType->getAs<RecordType>();
3760    if (!RT)
3761      continue;
3762
3763    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3764    if (FieldClassDecl->isInvalidDecl())
3765      continue;
3766    if (FieldClassDecl->hasIrrelevantDestructor())
3767      continue;
3768    // The destructor for an implicit anonymous union member is never invoked.
3769    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3770      continue;
3771
3772    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3773    assert(Dtor && "No dtor found for FieldClassDecl!");
3774    CheckDestructorAccess(Field->getLocation(), Dtor,
3775                          PDiag(diag::err_access_dtor_field)
3776                            << Field->getDeclName()
3777                            << FieldType);
3778
3779    MarkFunctionReferenced(Location, Dtor);
3780    DiagnoseUseOfDecl(Dtor, Location);
3781  }
3782
3783  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3784
3785  // Bases.
3786  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3787       E = ClassDecl->bases_end(); Base != E; ++Base) {
3788    // Bases are always records in a well-formed non-dependent class.
3789    const RecordType *RT = Base->getType()->getAs<RecordType>();
3790
3791    // Remember direct virtual bases.
3792    if (Base->isVirtual())
3793      DirectVirtualBases.insert(RT);
3794
3795    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3796    // If our base class is invalid, we probably can't get its dtor anyway.
3797    if (BaseClassDecl->isInvalidDecl())
3798      continue;
3799    if (BaseClassDecl->hasIrrelevantDestructor())
3800      continue;
3801
3802    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3803    assert(Dtor && "No dtor found for BaseClassDecl!");
3804
3805    // FIXME: caret should be on the start of the class name
3806    CheckDestructorAccess(Base->getLocStart(), Dtor,
3807                          PDiag(diag::err_access_dtor_base)
3808                            << Base->getType()
3809                            << Base->getSourceRange(),
3810                          Context.getTypeDeclType(ClassDecl));
3811
3812    MarkFunctionReferenced(Location, Dtor);
3813    DiagnoseUseOfDecl(Dtor, Location);
3814  }
3815
3816  // Virtual bases.
3817  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3818       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3819
3820    // Bases are always records in a well-formed non-dependent class.
3821    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3822
3823    // Ignore direct virtual bases.
3824    if (DirectVirtualBases.count(RT))
3825      continue;
3826
3827    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3828    // If our base class is invalid, we probably can't get its dtor anyway.
3829    if (BaseClassDecl->isInvalidDecl())
3830      continue;
3831    if (BaseClassDecl->hasIrrelevantDestructor())
3832      continue;
3833
3834    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3835    assert(Dtor && "No dtor found for BaseClassDecl!");
3836    if (CheckDestructorAccess(
3837            ClassDecl->getLocation(), Dtor,
3838            PDiag(diag::err_access_dtor_vbase)
3839                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3840            Context.getTypeDeclType(ClassDecl)) ==
3841        AR_accessible) {
3842      CheckDerivedToBaseConversion(
3843          Context.getTypeDeclType(ClassDecl), VBase->getType(),
3844          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
3845          SourceRange(), DeclarationName(), 0);
3846    }
3847
3848    MarkFunctionReferenced(Location, Dtor);
3849    DiagnoseUseOfDecl(Dtor, Location);
3850  }
3851}
3852
3853void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3854  if (!CDtorDecl)
3855    return;
3856
3857  if (CXXConstructorDecl *Constructor
3858      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3859    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3860}
3861
3862bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3863                                  unsigned DiagID, AbstractDiagSelID SelID) {
3864  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3865    unsigned DiagID;
3866    AbstractDiagSelID SelID;
3867
3868  public:
3869    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3870      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3871
3872    void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
3873      if (Suppressed) return;
3874      if (SelID == -1)
3875        S.Diag(Loc, DiagID) << T;
3876      else
3877        S.Diag(Loc, DiagID) << SelID << T;
3878    }
3879  } Diagnoser(DiagID, SelID);
3880
3881  return RequireNonAbstractType(Loc, T, Diagnoser);
3882}
3883
3884bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3885                                  TypeDiagnoser &Diagnoser) {
3886  if (!getLangOpts().CPlusPlus)
3887    return false;
3888
3889  if (const ArrayType *AT = Context.getAsArrayType(T))
3890    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3891
3892  if (const PointerType *PT = T->getAs<PointerType>()) {
3893    // Find the innermost pointer type.
3894    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3895      PT = T;
3896
3897    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3898      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3899  }
3900
3901  const RecordType *RT = T->getAs<RecordType>();
3902  if (!RT)
3903    return false;
3904
3905  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3906
3907  // We can't answer whether something is abstract until it has a
3908  // definition.  If it's currently being defined, we'll walk back
3909  // over all the declarations when we have a full definition.
3910  const CXXRecordDecl *Def = RD->getDefinition();
3911  if (!Def || Def->isBeingDefined())
3912    return false;
3913
3914  if (!RD->isAbstract())
3915    return false;
3916
3917  Diagnoser.diagnose(*this, Loc, T);
3918  DiagnoseAbstractType(RD);
3919
3920  return true;
3921}
3922
3923void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3924  // Check if we've already emitted the list of pure virtual functions
3925  // for this class.
3926  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3927    return;
3928
3929  // If the diagnostic is suppressed, don't emit the notes. We're only
3930  // going to emit them once, so try to attach them to a diagnostic we're
3931  // actually going to show.
3932  if (Diags.isLastDiagnosticIgnored())
3933    return;
3934
3935  CXXFinalOverriderMap FinalOverriders;
3936  RD->getFinalOverriders(FinalOverriders);
3937
3938  // Keep a set of seen pure methods so we won't diagnose the same method
3939  // more than once.
3940  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3941
3942  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3943                                   MEnd = FinalOverriders.end();
3944       M != MEnd;
3945       ++M) {
3946    for (OverridingMethods::iterator SO = M->second.begin(),
3947                                  SOEnd = M->second.end();
3948         SO != SOEnd; ++SO) {
3949      // C++ [class.abstract]p4:
3950      //   A class is abstract if it contains or inherits at least one
3951      //   pure virtual function for which the final overrider is pure
3952      //   virtual.
3953
3954      //
3955      if (SO->second.size() != 1)
3956        continue;
3957
3958      if (!SO->second.front().Method->isPure())
3959        continue;
3960
3961      if (!SeenPureMethods.insert(SO->second.front().Method))
3962        continue;
3963
3964      Diag(SO->second.front().Method->getLocation(),
3965           diag::note_pure_virtual_function)
3966        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3967    }
3968  }
3969
3970  if (!PureVirtualClassDiagSet)
3971    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3972  PureVirtualClassDiagSet->insert(RD);
3973}
3974
3975namespace {
3976struct AbstractUsageInfo {
3977  Sema &S;
3978  CXXRecordDecl *Record;
3979  CanQualType AbstractType;
3980  bool Invalid;
3981
3982  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3983    : S(S), Record(Record),
3984      AbstractType(S.Context.getCanonicalType(
3985                   S.Context.getTypeDeclType(Record))),
3986      Invalid(false) {}
3987
3988  void DiagnoseAbstractType() {
3989    if (Invalid) return;
3990    S.DiagnoseAbstractType(Record);
3991    Invalid = true;
3992  }
3993
3994  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3995};
3996
3997struct CheckAbstractUsage {
3998  AbstractUsageInfo &Info;
3999  const NamedDecl *Ctx;
4000
4001  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4002    : Info(Info), Ctx(Ctx) {}
4003
4004  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4005    switch (TL.getTypeLocClass()) {
4006#define ABSTRACT_TYPELOC(CLASS, PARENT)
4007#define TYPELOC(CLASS, PARENT) \
4008    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4009#include "clang/AST/TypeLocNodes.def"
4010    }
4011  }
4012
4013  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4014    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4015    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4016      if (!TL.getArg(I))
4017        continue;
4018
4019      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4020      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4021    }
4022  }
4023
4024  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4025    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4026  }
4027
4028  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4029    // Visit the type parameters from a permissive context.
4030    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4031      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4032      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4033        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4034          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4035      // TODO: other template argument types?
4036    }
4037  }
4038
4039  // Visit pointee types from a permissive context.
4040#define CheckPolymorphic(Type) \
4041  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4042    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4043  }
4044  CheckPolymorphic(PointerTypeLoc)
4045  CheckPolymorphic(ReferenceTypeLoc)
4046  CheckPolymorphic(MemberPointerTypeLoc)
4047  CheckPolymorphic(BlockPointerTypeLoc)
4048  CheckPolymorphic(AtomicTypeLoc)
4049
4050  /// Handle all the types we haven't given a more specific
4051  /// implementation for above.
4052  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4053    // Every other kind of type that we haven't called out already
4054    // that has an inner type is either (1) sugar or (2) contains that
4055    // inner type in some way as a subobject.
4056    if (TypeLoc Next = TL.getNextTypeLoc())
4057      return Visit(Next, Sel);
4058
4059    // If there's no inner type and we're in a permissive context,
4060    // don't diagnose.
4061    if (Sel == Sema::AbstractNone) return;
4062
4063    // Check whether the type matches the abstract type.
4064    QualType T = TL.getType();
4065    if (T->isArrayType()) {
4066      Sel = Sema::AbstractArrayType;
4067      T = Info.S.Context.getBaseElementType(T);
4068    }
4069    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4070    if (CT != Info.AbstractType) return;
4071
4072    // It matched; do some magic.
4073    if (Sel == Sema::AbstractArrayType) {
4074      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4075        << T << TL.getSourceRange();
4076    } else {
4077      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4078        << Sel << T << TL.getSourceRange();
4079    }
4080    Info.DiagnoseAbstractType();
4081  }
4082};
4083
4084void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4085                                  Sema::AbstractDiagSelID Sel) {
4086  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4087}
4088
4089}
4090
4091/// Check for invalid uses of an abstract type in a method declaration.
4092static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4093                                    CXXMethodDecl *MD) {
4094  // No need to do the check on definitions, which require that
4095  // the return/param types be complete.
4096  if (MD->doesThisDeclarationHaveABody())
4097    return;
4098
4099  // For safety's sake, just ignore it if we don't have type source
4100  // information.  This should never happen for non-implicit methods,
4101  // but...
4102  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4103    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4104}
4105
4106/// Check for invalid uses of an abstract type within a class definition.
4107static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4108                                    CXXRecordDecl *RD) {
4109  for (CXXRecordDecl::decl_iterator
4110         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4111    Decl *D = *I;
4112    if (D->isImplicit()) continue;
4113
4114    // Methods and method templates.
4115    if (isa<CXXMethodDecl>(D)) {
4116      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4117    } else if (isa<FunctionTemplateDecl>(D)) {
4118      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4119      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4120
4121    // Fields and static variables.
4122    } else if (isa<FieldDecl>(D)) {
4123      FieldDecl *FD = cast<FieldDecl>(D);
4124      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4125        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4126    } else if (isa<VarDecl>(D)) {
4127      VarDecl *VD = cast<VarDecl>(D);
4128      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4129        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4130
4131    // Nested classes and class templates.
4132    } else if (isa<CXXRecordDecl>(D)) {
4133      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4134    } else if (isa<ClassTemplateDecl>(D)) {
4135      CheckAbstractClassUsage(Info,
4136                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4137    }
4138  }
4139}
4140
4141/// \brief Perform semantic checks on a class definition that has been
4142/// completing, introducing implicitly-declared members, checking for
4143/// abstract types, etc.
4144void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4145  if (!Record)
4146    return;
4147
4148  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4149    AbstractUsageInfo Info(*this, Record);
4150    CheckAbstractClassUsage(Info, Record);
4151  }
4152
4153  // If this is not an aggregate type and has no user-declared constructor,
4154  // complain about any non-static data members of reference or const scalar
4155  // type, since they will never get initializers.
4156  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4157      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4158      !Record->isLambda()) {
4159    bool Complained = false;
4160    for (RecordDecl::field_iterator F = Record->field_begin(),
4161                                 FEnd = Record->field_end();
4162         F != FEnd; ++F) {
4163      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4164        continue;
4165
4166      if (F->getType()->isReferenceType() ||
4167          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4168        if (!Complained) {
4169          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4170            << Record->getTagKind() << Record;
4171          Complained = true;
4172        }
4173
4174        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4175          << F->getType()->isReferenceType()
4176          << F->getDeclName();
4177      }
4178    }
4179  }
4180
4181  if (Record->isDynamicClass() && !Record->isDependentType())
4182    DynamicClasses.push_back(Record);
4183
4184  if (Record->getIdentifier()) {
4185    // C++ [class.mem]p13:
4186    //   If T is the name of a class, then each of the following shall have a
4187    //   name different from T:
4188    //     - every member of every anonymous union that is a member of class T.
4189    //
4190    // C++ [class.mem]p14:
4191    //   In addition, if class T has a user-declared constructor (12.1), every
4192    //   non-static data member of class T shall have a name different from T.
4193    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4194    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4195         ++I) {
4196      NamedDecl *D = *I;
4197      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4198          isa<IndirectFieldDecl>(D)) {
4199        Diag(D->getLocation(), diag::err_member_name_of_class)
4200          << D->getDeclName();
4201        break;
4202      }
4203    }
4204  }
4205
4206  // Warn if the class has virtual methods but non-virtual public destructor.
4207  if (Record->isPolymorphic() && !Record->isDependentType()) {
4208    CXXDestructorDecl *dtor = Record->getDestructor();
4209    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4210      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4211           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4212  }
4213
4214  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4215    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4216    DiagnoseAbstractType(Record);
4217  }
4218
4219  if (!Record->isDependentType()) {
4220    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4221                                     MEnd = Record->method_end();
4222         M != MEnd; ++M) {
4223      // See if a method overloads virtual methods in a base
4224      // class without overriding any.
4225      if (!M->isStatic())
4226        DiagnoseHiddenVirtualMethods(Record, *M);
4227
4228      // Check whether the explicitly-defaulted special members are valid.
4229      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4230        CheckExplicitlyDefaultedSpecialMember(*M);
4231
4232      // For an explicitly defaulted or deleted special member, we defer
4233      // determining triviality until the class is complete. That time is now!
4234      if (!M->isImplicit() && !M->isUserProvided()) {
4235        CXXSpecialMember CSM = getSpecialMember(*M);
4236        if (CSM != CXXInvalid) {
4237          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4238
4239          // Inform the class that we've finished declaring this member.
4240          Record->finishedDefaultedOrDeletedMember(*M);
4241        }
4242      }
4243    }
4244  }
4245
4246  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4247  // function that is not a constructor declares that member function to be
4248  // const. [...] The class of which that function is a member shall be
4249  // a literal type.
4250  //
4251  // If the class has virtual bases, any constexpr members will already have
4252  // been diagnosed by the checks performed on the member declaration, so
4253  // suppress this (less useful) diagnostic.
4254  //
4255  // We delay this until we know whether an explicitly-defaulted (or deleted)
4256  // destructor for the class is trivial.
4257  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4258      !Record->isLiteral() && !Record->getNumVBases()) {
4259    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4260                                     MEnd = Record->method_end();
4261         M != MEnd; ++M) {
4262      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4263        switch (Record->getTemplateSpecializationKind()) {
4264        case TSK_ImplicitInstantiation:
4265        case TSK_ExplicitInstantiationDeclaration:
4266        case TSK_ExplicitInstantiationDefinition:
4267          // If a template instantiates to a non-literal type, but its members
4268          // instantiate to constexpr functions, the template is technically
4269          // ill-formed, but we allow it for sanity.
4270          continue;
4271
4272        case TSK_Undeclared:
4273        case TSK_ExplicitSpecialization:
4274          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4275                             diag::err_constexpr_method_non_literal);
4276          break;
4277        }
4278
4279        // Only produce one error per class.
4280        break;
4281      }
4282    }
4283  }
4284
4285  // Declare inheriting constructors. We do this eagerly here because:
4286  // - The standard requires an eager diagnostic for conflicting inheriting
4287  //   constructors from different classes.
4288  // - The lazy declaration of the other implicit constructors is so as to not
4289  //   waste space and performance on classes that are not meant to be
4290  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4291  //   have inheriting constructors.
4292  DeclareInheritingConstructors(Record);
4293}
4294
4295/// Is the special member function which would be selected to perform the
4296/// specified operation on the specified class type a constexpr constructor?
4297static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4298                                     Sema::CXXSpecialMember CSM,
4299                                     bool ConstArg) {
4300  Sema::SpecialMemberOverloadResult *SMOR =
4301      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4302                            false, false, false, false);
4303  if (!SMOR || !SMOR->getMethod())
4304    // A constructor we wouldn't select can't be "involved in initializing"
4305    // anything.
4306    return true;
4307  return SMOR->getMethod()->isConstexpr();
4308}
4309
4310/// Determine whether the specified special member function would be constexpr
4311/// if it were implicitly defined.
4312static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4313                                              Sema::CXXSpecialMember CSM,
4314                                              bool ConstArg) {
4315  if (!S.getLangOpts().CPlusPlus11)
4316    return false;
4317
4318  // C++11 [dcl.constexpr]p4:
4319  // In the definition of a constexpr constructor [...]
4320  bool Ctor = true;
4321  switch (CSM) {
4322  case Sema::CXXDefaultConstructor:
4323    // Since default constructor lookup is essentially trivial (and cannot
4324    // involve, for instance, template instantiation), we compute whether a
4325    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4326    //
4327    // This is important for performance; we need to know whether the default
4328    // constructor is constexpr to determine whether the type is a literal type.
4329    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4330
4331  case Sema::CXXCopyConstructor:
4332  case Sema::CXXMoveConstructor:
4333    // For copy or move constructors, we need to perform overload resolution.
4334    break;
4335
4336  case Sema::CXXCopyAssignment:
4337  case Sema::CXXMoveAssignment:
4338    if (!S.getLangOpts().CPlusPlus1y)
4339      return false;
4340    // In C++1y, we need to perform overload resolution.
4341    Ctor = false;
4342    break;
4343
4344  case Sema::CXXDestructor:
4345  case Sema::CXXInvalid:
4346    return false;
4347  }
4348
4349  //   -- if the class is a non-empty union, or for each non-empty anonymous
4350  //      union member of a non-union class, exactly one non-static data member
4351  //      shall be initialized; [DR1359]
4352  //
4353  // If we squint, this is guaranteed, since exactly one non-static data member
4354  // will be initialized (if the constructor isn't deleted), we just don't know
4355  // which one.
4356  if (Ctor && ClassDecl->isUnion())
4357    return true;
4358
4359  //   -- the class shall not have any virtual base classes;
4360  if (Ctor && ClassDecl->getNumVBases())
4361    return false;
4362
4363  // C++1y [class.copy]p26:
4364  //   -- [the class] is a literal type, and
4365  if (!Ctor && !ClassDecl->isLiteral())
4366    return false;
4367
4368  //   -- every constructor involved in initializing [...] base class
4369  //      sub-objects shall be a constexpr constructor;
4370  //   -- the assignment operator selected to copy/move each direct base
4371  //      class is a constexpr function, and
4372  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4373                                       BEnd = ClassDecl->bases_end();
4374       B != BEnd; ++B) {
4375    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4376    if (!BaseType) continue;
4377
4378    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4379    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4380      return false;
4381  }
4382
4383  //   -- every constructor involved in initializing non-static data members
4384  //      [...] shall be a constexpr constructor;
4385  //   -- every non-static data member and base class sub-object shall be
4386  //      initialized
4387  //   -- for each non-stastic data member of X that is of class type (or array
4388  //      thereof), the assignment operator selected to copy/move that member is
4389  //      a constexpr function
4390  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4391                               FEnd = ClassDecl->field_end();
4392       F != FEnd; ++F) {
4393    if (F->isInvalidDecl())
4394      continue;
4395    if (const RecordType *RecordTy =
4396            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4397      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4398      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4399        return false;
4400    }
4401  }
4402
4403  // All OK, it's constexpr!
4404  return true;
4405}
4406
4407static Sema::ImplicitExceptionSpecification
4408computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4409  switch (S.getSpecialMember(MD)) {
4410  case Sema::CXXDefaultConstructor:
4411    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4412  case Sema::CXXCopyConstructor:
4413    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4414  case Sema::CXXCopyAssignment:
4415    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4416  case Sema::CXXMoveConstructor:
4417    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4418  case Sema::CXXMoveAssignment:
4419    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4420  case Sema::CXXDestructor:
4421    return S.ComputeDefaultedDtorExceptionSpec(MD);
4422  case Sema::CXXInvalid:
4423    break;
4424  }
4425  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4426         "only special members have implicit exception specs");
4427  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4428}
4429
4430static void
4431updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4432                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4433  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4434  ExceptSpec.getEPI(EPI);
4435  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4436                                        FPT->getArgTypes(), EPI));
4437}
4438
4439void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4440  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4441  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4442    return;
4443
4444  // Evaluate the exception specification.
4445  ImplicitExceptionSpecification ExceptSpec =
4446      computeImplicitExceptionSpec(*this, Loc, MD);
4447
4448  // Update the type of the special member to use it.
4449  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4450
4451  // A user-provided destructor can be defined outside the class. When that
4452  // happens, be sure to update the exception specification on both
4453  // declarations.
4454  const FunctionProtoType *CanonicalFPT =
4455    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4456  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4457    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4458                        CanonicalFPT, ExceptSpec);
4459}
4460
4461void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4462  CXXRecordDecl *RD = MD->getParent();
4463  CXXSpecialMember CSM = getSpecialMember(MD);
4464
4465  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4466         "not an explicitly-defaulted special member");
4467
4468  // Whether this was the first-declared instance of the constructor.
4469  // This affects whether we implicitly add an exception spec and constexpr.
4470  bool First = MD == MD->getCanonicalDecl();
4471
4472  bool HadError = false;
4473
4474  // C++11 [dcl.fct.def.default]p1:
4475  //   A function that is explicitly defaulted shall
4476  //     -- be a special member function (checked elsewhere),
4477  //     -- have the same type (except for ref-qualifiers, and except that a
4478  //        copy operation can take a non-const reference) as an implicit
4479  //        declaration, and
4480  //     -- not have default arguments.
4481  unsigned ExpectedParams = 1;
4482  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4483    ExpectedParams = 0;
4484  if (MD->getNumParams() != ExpectedParams) {
4485    // This also checks for default arguments: a copy or move constructor with a
4486    // default argument is classified as a default constructor, and assignment
4487    // operations and destructors can't have default arguments.
4488    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4489      << CSM << MD->getSourceRange();
4490    HadError = true;
4491  } else if (MD->isVariadic()) {
4492    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4493      << CSM << MD->getSourceRange();
4494    HadError = true;
4495  }
4496
4497  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4498
4499  bool CanHaveConstParam = false;
4500  if (CSM == CXXCopyConstructor)
4501    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4502  else if (CSM == CXXCopyAssignment)
4503    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4504
4505  QualType ReturnType = Context.VoidTy;
4506  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4507    // Check for return type matching.
4508    ReturnType = Type->getResultType();
4509    QualType ExpectedReturnType =
4510        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4511    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4512      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4513        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4514      HadError = true;
4515    }
4516
4517    // A defaulted special member cannot have cv-qualifiers.
4518    if (Type->getTypeQuals()) {
4519      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4520        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4521      HadError = true;
4522    }
4523  }
4524
4525  // Check for parameter type matching.
4526  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4527  bool HasConstParam = false;
4528  if (ExpectedParams && ArgType->isReferenceType()) {
4529    // Argument must be reference to possibly-const T.
4530    QualType ReferentType = ArgType->getPointeeType();
4531    HasConstParam = ReferentType.isConstQualified();
4532
4533    if (ReferentType.isVolatileQualified()) {
4534      Diag(MD->getLocation(),
4535           diag::err_defaulted_special_member_volatile_param) << CSM;
4536      HadError = true;
4537    }
4538
4539    if (HasConstParam && !CanHaveConstParam) {
4540      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4541        Diag(MD->getLocation(),
4542             diag::err_defaulted_special_member_copy_const_param)
4543          << (CSM == CXXCopyAssignment);
4544        // FIXME: Explain why this special member can't be const.
4545      } else {
4546        Diag(MD->getLocation(),
4547             diag::err_defaulted_special_member_move_const_param)
4548          << (CSM == CXXMoveAssignment);
4549      }
4550      HadError = true;
4551    }
4552  } else if (ExpectedParams) {
4553    // A copy assignment operator can take its argument by value, but a
4554    // defaulted one cannot.
4555    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4556    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4557    HadError = true;
4558  }
4559
4560  // C++11 [dcl.fct.def.default]p2:
4561  //   An explicitly-defaulted function may be declared constexpr only if it
4562  //   would have been implicitly declared as constexpr,
4563  // Do not apply this rule to members of class templates, since core issue 1358
4564  // makes such functions always instantiate to constexpr functions. For
4565  // functions which cannot be constexpr (for non-constructors in C++11 and for
4566  // destructors in C++1y), this is checked elsewhere.
4567  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4568                                                     HasConstParam);
4569  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4570                                 : isa<CXXConstructorDecl>(MD)) &&
4571      MD->isConstexpr() && !Constexpr &&
4572      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4573    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4574    // FIXME: Explain why the special member can't be constexpr.
4575    HadError = true;
4576  }
4577
4578  //   and may have an explicit exception-specification only if it is compatible
4579  //   with the exception-specification on the implicit declaration.
4580  if (Type->hasExceptionSpec()) {
4581    // Delay the check if this is the first declaration of the special member,
4582    // since we may not have parsed some necessary in-class initializers yet.
4583    if (First) {
4584      // If the exception specification needs to be instantiated, do so now,
4585      // before we clobber it with an EST_Unevaluated specification below.
4586      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4587        InstantiateExceptionSpec(MD->getLocStart(), MD);
4588        Type = MD->getType()->getAs<FunctionProtoType>();
4589      }
4590      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4591    } else
4592      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4593  }
4594
4595  //   If a function is explicitly defaulted on its first declaration,
4596  if (First) {
4597    //  -- it is implicitly considered to be constexpr if the implicit
4598    //     definition would be,
4599    MD->setConstexpr(Constexpr);
4600
4601    //  -- it is implicitly considered to have the same exception-specification
4602    //     as if it had been implicitly declared,
4603    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4604    EPI.ExceptionSpecType = EST_Unevaluated;
4605    EPI.ExceptionSpecDecl = MD;
4606    MD->setType(Context.getFunctionType(ReturnType,
4607                                        ArrayRef<QualType>(&ArgType,
4608                                                           ExpectedParams),
4609                                        EPI));
4610  }
4611
4612  if (ShouldDeleteSpecialMember(MD, CSM)) {
4613    if (First) {
4614      SetDeclDeleted(MD, MD->getLocation());
4615    } else {
4616      // C++11 [dcl.fct.def.default]p4:
4617      //   [For a] user-provided explicitly-defaulted function [...] if such a
4618      //   function is implicitly defined as deleted, the program is ill-formed.
4619      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4620      HadError = true;
4621    }
4622  }
4623
4624  if (HadError)
4625    MD->setInvalidDecl();
4626}
4627
4628/// Check whether the exception specification provided for an
4629/// explicitly-defaulted special member matches the exception specification
4630/// that would have been generated for an implicit special member, per
4631/// C++11 [dcl.fct.def.default]p2.
4632void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4633    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4634  // Compute the implicit exception specification.
4635  FunctionProtoType::ExtProtoInfo EPI;
4636  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4637  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4638    Context.getFunctionType(Context.VoidTy, None, EPI));
4639
4640  // Ensure that it matches.
4641  CheckEquivalentExceptionSpec(
4642    PDiag(diag::err_incorrect_defaulted_exception_spec)
4643      << getSpecialMember(MD), PDiag(),
4644    ImplicitType, SourceLocation(),
4645    SpecifiedType, MD->getLocation());
4646}
4647
4648void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4649  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4650       I != N; ++I)
4651    CheckExplicitlyDefaultedMemberExceptionSpec(
4652      DelayedDefaultedMemberExceptionSpecs[I].first,
4653      DelayedDefaultedMemberExceptionSpecs[I].second);
4654
4655  DelayedDefaultedMemberExceptionSpecs.clear();
4656}
4657
4658namespace {
4659struct SpecialMemberDeletionInfo {
4660  Sema &S;
4661  CXXMethodDecl *MD;
4662  Sema::CXXSpecialMember CSM;
4663  bool Diagnose;
4664
4665  // Properties of the special member, computed for convenience.
4666  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4667  SourceLocation Loc;
4668
4669  bool AllFieldsAreConst;
4670
4671  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4672                            Sema::CXXSpecialMember CSM, bool Diagnose)
4673    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4674      IsConstructor(false), IsAssignment(false), IsMove(false),
4675      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4676      AllFieldsAreConst(true) {
4677    switch (CSM) {
4678      case Sema::CXXDefaultConstructor:
4679      case Sema::CXXCopyConstructor:
4680        IsConstructor = true;
4681        break;
4682      case Sema::CXXMoveConstructor:
4683        IsConstructor = true;
4684        IsMove = true;
4685        break;
4686      case Sema::CXXCopyAssignment:
4687        IsAssignment = true;
4688        break;
4689      case Sema::CXXMoveAssignment:
4690        IsAssignment = true;
4691        IsMove = true;
4692        break;
4693      case Sema::CXXDestructor:
4694        break;
4695      case Sema::CXXInvalid:
4696        llvm_unreachable("invalid special member kind");
4697    }
4698
4699    if (MD->getNumParams()) {
4700      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4701      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4702    }
4703  }
4704
4705  bool inUnion() const { return MD->getParent()->isUnion(); }
4706
4707  /// Look up the corresponding special member in the given class.
4708  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4709                                              unsigned Quals) {
4710    unsigned TQ = MD->getTypeQualifiers();
4711    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4712    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4713      Quals = 0;
4714    return S.LookupSpecialMember(Class, CSM,
4715                                 ConstArg || (Quals & Qualifiers::Const),
4716                                 VolatileArg || (Quals & Qualifiers::Volatile),
4717                                 MD->getRefQualifier() == RQ_RValue,
4718                                 TQ & Qualifiers::Const,
4719                                 TQ & Qualifiers::Volatile);
4720  }
4721
4722  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4723
4724  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4725  bool shouldDeleteForField(FieldDecl *FD);
4726  bool shouldDeleteForAllConstMembers();
4727
4728  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4729                                     unsigned Quals);
4730  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4731                                    Sema::SpecialMemberOverloadResult *SMOR,
4732                                    bool IsDtorCallInCtor);
4733
4734  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4735};
4736}
4737
4738/// Is the given special member inaccessible when used on the given
4739/// sub-object.
4740bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4741                                             CXXMethodDecl *target) {
4742  /// If we're operating on a base class, the object type is the
4743  /// type of this special member.
4744  QualType objectTy;
4745  AccessSpecifier access = target->getAccess();
4746  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4747    objectTy = S.Context.getTypeDeclType(MD->getParent());
4748    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4749
4750  // If we're operating on a field, the object type is the type of the field.
4751  } else {
4752    objectTy = S.Context.getTypeDeclType(target->getParent());
4753  }
4754
4755  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4756}
4757
4758/// Check whether we should delete a special member due to the implicit
4759/// definition containing a call to a special member of a subobject.
4760bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4761    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4762    bool IsDtorCallInCtor) {
4763  CXXMethodDecl *Decl = SMOR->getMethod();
4764  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4765
4766  int DiagKind = -1;
4767
4768  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4769    DiagKind = !Decl ? 0 : 1;
4770  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4771    DiagKind = 2;
4772  else if (!isAccessible(Subobj, Decl))
4773    DiagKind = 3;
4774  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4775           !Decl->isTrivial()) {
4776    // A member of a union must have a trivial corresponding special member.
4777    // As a weird special case, a destructor call from a union's constructor
4778    // must be accessible and non-deleted, but need not be trivial. Such a
4779    // destructor is never actually called, but is semantically checked as
4780    // if it were.
4781    DiagKind = 4;
4782  }
4783
4784  if (DiagKind == -1)
4785    return false;
4786
4787  if (Diagnose) {
4788    if (Field) {
4789      S.Diag(Field->getLocation(),
4790             diag::note_deleted_special_member_class_subobject)
4791        << CSM << MD->getParent() << /*IsField*/true
4792        << Field << DiagKind << IsDtorCallInCtor;
4793    } else {
4794      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4795      S.Diag(Base->getLocStart(),
4796             diag::note_deleted_special_member_class_subobject)
4797        << CSM << MD->getParent() << /*IsField*/false
4798        << Base->getType() << DiagKind << IsDtorCallInCtor;
4799    }
4800
4801    if (DiagKind == 1)
4802      S.NoteDeletedFunction(Decl);
4803    // FIXME: Explain inaccessibility if DiagKind == 3.
4804  }
4805
4806  return true;
4807}
4808
4809/// Check whether we should delete a special member function due to having a
4810/// direct or virtual base class or non-static data member of class type M.
4811bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4812    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4813  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4814
4815  // C++11 [class.ctor]p5:
4816  // -- any direct or virtual base class, or non-static data member with no
4817  //    brace-or-equal-initializer, has class type M (or array thereof) and
4818  //    either M has no default constructor or overload resolution as applied
4819  //    to M's default constructor results in an ambiguity or in a function
4820  //    that is deleted or inaccessible
4821  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4822  // -- a direct or virtual base class B that cannot be copied/moved because
4823  //    overload resolution, as applied to B's corresponding special member,
4824  //    results in an ambiguity or a function that is deleted or inaccessible
4825  //    from the defaulted special member
4826  // C++11 [class.dtor]p5:
4827  // -- any direct or virtual base class [...] has a type with a destructor
4828  //    that is deleted or inaccessible
4829  if (!(CSM == Sema::CXXDefaultConstructor &&
4830        Field && Field->hasInClassInitializer()) &&
4831      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4832    return true;
4833
4834  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4835  // -- any direct or virtual base class or non-static data member has a
4836  //    type with a destructor that is deleted or inaccessible
4837  if (IsConstructor) {
4838    Sema::SpecialMemberOverloadResult *SMOR =
4839        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4840                              false, false, false, false, false);
4841    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4842      return true;
4843  }
4844
4845  return false;
4846}
4847
4848/// Check whether we should delete a special member function due to the class
4849/// having a particular direct or virtual base class.
4850bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4851  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4852  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4853}
4854
4855/// Check whether we should delete a special member function due to the class
4856/// having a particular non-static data member.
4857bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4858  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4859  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4860
4861  if (CSM == Sema::CXXDefaultConstructor) {
4862    // For a default constructor, all references must be initialized in-class
4863    // and, if a union, it must have a non-const member.
4864    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4865      if (Diagnose)
4866        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4867          << MD->getParent() << FD << FieldType << /*Reference*/0;
4868      return true;
4869    }
4870    // C++11 [class.ctor]p5: any non-variant non-static data member of
4871    // const-qualified type (or array thereof) with no
4872    // brace-or-equal-initializer does not have a user-provided default
4873    // constructor.
4874    if (!inUnion() && FieldType.isConstQualified() &&
4875        !FD->hasInClassInitializer() &&
4876        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4877      if (Diagnose)
4878        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4879          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4880      return true;
4881    }
4882
4883    if (inUnion() && !FieldType.isConstQualified())
4884      AllFieldsAreConst = false;
4885  } else if (CSM == Sema::CXXCopyConstructor) {
4886    // For a copy constructor, data members must not be of rvalue reference
4887    // type.
4888    if (FieldType->isRValueReferenceType()) {
4889      if (Diagnose)
4890        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4891          << MD->getParent() << FD << FieldType;
4892      return true;
4893    }
4894  } else if (IsAssignment) {
4895    // For an assignment operator, data members must not be of reference type.
4896    if (FieldType->isReferenceType()) {
4897      if (Diagnose)
4898        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4899          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4900      return true;
4901    }
4902    if (!FieldRecord && FieldType.isConstQualified()) {
4903      // C++11 [class.copy]p23:
4904      // -- a non-static data member of const non-class type (or array thereof)
4905      if (Diagnose)
4906        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4907          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4908      return true;
4909    }
4910  }
4911
4912  if (FieldRecord) {
4913    // Some additional restrictions exist on the variant members.
4914    if (!inUnion() && FieldRecord->isUnion() &&
4915        FieldRecord->isAnonymousStructOrUnion()) {
4916      bool AllVariantFieldsAreConst = true;
4917
4918      // FIXME: Handle anonymous unions declared within anonymous unions.
4919      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4920                                         UE = FieldRecord->field_end();
4921           UI != UE; ++UI) {
4922        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4923
4924        if (!UnionFieldType.isConstQualified())
4925          AllVariantFieldsAreConst = false;
4926
4927        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4928        if (UnionFieldRecord &&
4929            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4930                                          UnionFieldType.getCVRQualifiers()))
4931          return true;
4932      }
4933
4934      // At least one member in each anonymous union must be non-const
4935      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4936          FieldRecord->field_begin() != FieldRecord->field_end()) {
4937        if (Diagnose)
4938          S.Diag(FieldRecord->getLocation(),
4939                 diag::note_deleted_default_ctor_all_const)
4940            << MD->getParent() << /*anonymous union*/1;
4941        return true;
4942      }
4943
4944      // Don't check the implicit member of the anonymous union type.
4945      // This is technically non-conformant, but sanity demands it.
4946      return false;
4947    }
4948
4949    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4950                                      FieldType.getCVRQualifiers()))
4951      return true;
4952  }
4953
4954  return false;
4955}
4956
4957/// C++11 [class.ctor] p5:
4958///   A defaulted default constructor for a class X is defined as deleted if
4959/// X is a union and all of its variant members are of const-qualified type.
4960bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4961  // This is a silly definition, because it gives an empty union a deleted
4962  // default constructor. Don't do that.
4963  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4964      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4965    if (Diagnose)
4966      S.Diag(MD->getParent()->getLocation(),
4967             diag::note_deleted_default_ctor_all_const)
4968        << MD->getParent() << /*not anonymous union*/0;
4969    return true;
4970  }
4971  return false;
4972}
4973
4974/// Determine whether a defaulted special member function should be defined as
4975/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4976/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4977bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4978                                     bool Diagnose) {
4979  if (MD->isInvalidDecl())
4980    return false;
4981  CXXRecordDecl *RD = MD->getParent();
4982  assert(!RD->isDependentType() && "do deletion after instantiation");
4983  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4984    return false;
4985
4986  // C++11 [expr.lambda.prim]p19:
4987  //   The closure type associated with a lambda-expression has a
4988  //   deleted (8.4.3) default constructor and a deleted copy
4989  //   assignment operator.
4990  if (RD->isLambda() &&
4991      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4992    if (Diagnose)
4993      Diag(RD->getLocation(), diag::note_lambda_decl);
4994    return true;
4995  }
4996
4997  // For an anonymous struct or union, the copy and assignment special members
4998  // will never be used, so skip the check. For an anonymous union declared at
4999  // namespace scope, the constructor and destructor are used.
5000  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5001      RD->isAnonymousStructOrUnion())
5002    return false;
5003
5004  // C++11 [class.copy]p7, p18:
5005  //   If the class definition declares a move constructor or move assignment
5006  //   operator, an implicitly declared copy constructor or copy assignment
5007  //   operator is defined as deleted.
5008  if (MD->isImplicit() &&
5009      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5010    CXXMethodDecl *UserDeclaredMove = 0;
5011
5012    // In Microsoft mode, a user-declared move only causes the deletion of the
5013    // corresponding copy operation, not both copy operations.
5014    if (RD->hasUserDeclaredMoveConstructor() &&
5015        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5016      if (!Diagnose) return true;
5017
5018      // Find any user-declared move constructor.
5019      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5020                                        E = RD->ctor_end(); I != E; ++I) {
5021        if (I->isMoveConstructor()) {
5022          UserDeclaredMove = *I;
5023          break;
5024        }
5025      }
5026      assert(UserDeclaredMove);
5027    } else if (RD->hasUserDeclaredMoveAssignment() &&
5028               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5029      if (!Diagnose) return true;
5030
5031      // Find any user-declared move assignment operator.
5032      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5033                                          E = RD->method_end(); I != E; ++I) {
5034        if (I->isMoveAssignmentOperator()) {
5035          UserDeclaredMove = *I;
5036          break;
5037        }
5038      }
5039      assert(UserDeclaredMove);
5040    }
5041
5042    if (UserDeclaredMove) {
5043      Diag(UserDeclaredMove->getLocation(),
5044           diag::note_deleted_copy_user_declared_move)
5045        << (CSM == CXXCopyAssignment) << RD
5046        << UserDeclaredMove->isMoveAssignmentOperator();
5047      return true;
5048    }
5049  }
5050
5051  // Do access control from the special member function
5052  ContextRAII MethodContext(*this, MD);
5053
5054  // C++11 [class.dtor]p5:
5055  // -- for a virtual destructor, lookup of the non-array deallocation function
5056  //    results in an ambiguity or in a function that is deleted or inaccessible
5057  if (CSM == CXXDestructor && MD->isVirtual()) {
5058    FunctionDecl *OperatorDelete = 0;
5059    DeclarationName Name =
5060      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5061    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5062                                 OperatorDelete, false)) {
5063      if (Diagnose)
5064        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5065      return true;
5066    }
5067  }
5068
5069  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5070
5071  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5072                                          BE = RD->bases_end(); BI != BE; ++BI)
5073    if (!BI->isVirtual() &&
5074        SMI.shouldDeleteForBase(BI))
5075      return true;
5076
5077  // Per DR1611, do not consider virtual bases of constructors of abstract
5078  // classes, since we are not going to construct them.
5079  if (!RD->isAbstract() || !SMI.IsConstructor) {
5080    for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5081                                            BE = RD->vbases_end();
5082         BI != BE; ++BI)
5083      if (SMI.shouldDeleteForBase(BI))
5084        return true;
5085  }
5086
5087  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5088                                     FE = RD->field_end(); FI != FE; ++FI)
5089    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5090        SMI.shouldDeleteForField(*FI))
5091      return true;
5092
5093  if (SMI.shouldDeleteForAllConstMembers())
5094    return true;
5095
5096  return false;
5097}
5098
5099/// Perform lookup for a special member of the specified kind, and determine
5100/// whether it is trivial. If the triviality can be determined without the
5101/// lookup, skip it. This is intended for use when determining whether a
5102/// special member of a containing object is trivial, and thus does not ever
5103/// perform overload resolution for default constructors.
5104///
5105/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5106/// member that was most likely to be intended to be trivial, if any.
5107static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5108                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5109                                     CXXMethodDecl **Selected) {
5110  if (Selected)
5111    *Selected = 0;
5112
5113  switch (CSM) {
5114  case Sema::CXXInvalid:
5115    llvm_unreachable("not a special member");
5116
5117  case Sema::CXXDefaultConstructor:
5118    // C++11 [class.ctor]p5:
5119    //   A default constructor is trivial if:
5120    //    - all the [direct subobjects] have trivial default constructors
5121    //
5122    // Note, no overload resolution is performed in this case.
5123    if (RD->hasTrivialDefaultConstructor())
5124      return true;
5125
5126    if (Selected) {
5127      // If there's a default constructor which could have been trivial, dig it
5128      // out. Otherwise, if there's any user-provided default constructor, point
5129      // to that as an example of why there's not a trivial one.
5130      CXXConstructorDecl *DefCtor = 0;
5131      if (RD->needsImplicitDefaultConstructor())
5132        S.DeclareImplicitDefaultConstructor(RD);
5133      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5134                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5135        if (!CI->isDefaultConstructor())
5136          continue;
5137        DefCtor = *CI;
5138        if (!DefCtor->isUserProvided())
5139          break;
5140      }
5141
5142      *Selected = DefCtor;
5143    }
5144
5145    return false;
5146
5147  case Sema::CXXDestructor:
5148    // C++11 [class.dtor]p5:
5149    //   A destructor is trivial if:
5150    //    - all the direct [subobjects] have trivial destructors
5151    if (RD->hasTrivialDestructor())
5152      return true;
5153
5154    if (Selected) {
5155      if (RD->needsImplicitDestructor())
5156        S.DeclareImplicitDestructor(RD);
5157      *Selected = RD->getDestructor();
5158    }
5159
5160    return false;
5161
5162  case Sema::CXXCopyConstructor:
5163    // C++11 [class.copy]p12:
5164    //   A copy constructor is trivial if:
5165    //    - the constructor selected to copy each direct [subobject] is trivial
5166    if (RD->hasTrivialCopyConstructor()) {
5167      if (Quals == Qualifiers::Const)
5168        // We must either select the trivial copy constructor or reach an
5169        // ambiguity; no need to actually perform overload resolution.
5170        return true;
5171    } else if (!Selected) {
5172      return false;
5173    }
5174    // In C++98, we are not supposed to perform overload resolution here, but we
5175    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5176    // cases like B as having a non-trivial copy constructor:
5177    //   struct A { template<typename T> A(T&); };
5178    //   struct B { mutable A a; };
5179    goto NeedOverloadResolution;
5180
5181  case Sema::CXXCopyAssignment:
5182    // C++11 [class.copy]p25:
5183    //   A copy assignment operator is trivial if:
5184    //    - the assignment operator selected to copy each direct [subobject] is
5185    //      trivial
5186    if (RD->hasTrivialCopyAssignment()) {
5187      if (Quals == Qualifiers::Const)
5188        return true;
5189    } else if (!Selected) {
5190      return false;
5191    }
5192    // In C++98, we are not supposed to perform overload resolution here, but we
5193    // treat that as a language defect.
5194    goto NeedOverloadResolution;
5195
5196  case Sema::CXXMoveConstructor:
5197  case Sema::CXXMoveAssignment:
5198  NeedOverloadResolution:
5199    Sema::SpecialMemberOverloadResult *SMOR =
5200      S.LookupSpecialMember(RD, CSM,
5201                            Quals & Qualifiers::Const,
5202                            Quals & Qualifiers::Volatile,
5203                            /*RValueThis*/false, /*ConstThis*/false,
5204                            /*VolatileThis*/false);
5205
5206    // The standard doesn't describe how to behave if the lookup is ambiguous.
5207    // We treat it as not making the member non-trivial, just like the standard
5208    // mandates for the default constructor. This should rarely matter, because
5209    // the member will also be deleted.
5210    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5211      return true;
5212
5213    if (!SMOR->getMethod()) {
5214      assert(SMOR->getKind() ==
5215             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5216      return false;
5217    }
5218
5219    // We deliberately don't check if we found a deleted special member. We're
5220    // not supposed to!
5221    if (Selected)
5222      *Selected = SMOR->getMethod();
5223    return SMOR->getMethod()->isTrivial();
5224  }
5225
5226  llvm_unreachable("unknown special method kind");
5227}
5228
5229static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5230  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5231       CI != CE; ++CI)
5232    if (!CI->isImplicit())
5233      return *CI;
5234
5235  // Look for constructor templates.
5236  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5237  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5238    if (CXXConstructorDecl *CD =
5239          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5240      return CD;
5241  }
5242
5243  return 0;
5244}
5245
5246/// The kind of subobject we are checking for triviality. The values of this
5247/// enumeration are used in diagnostics.
5248enum TrivialSubobjectKind {
5249  /// The subobject is a base class.
5250  TSK_BaseClass,
5251  /// The subobject is a non-static data member.
5252  TSK_Field,
5253  /// The object is actually the complete object.
5254  TSK_CompleteObject
5255};
5256
5257/// Check whether the special member selected for a given type would be trivial.
5258static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5259                                      QualType SubType,
5260                                      Sema::CXXSpecialMember CSM,
5261                                      TrivialSubobjectKind Kind,
5262                                      bool Diagnose) {
5263  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5264  if (!SubRD)
5265    return true;
5266
5267  CXXMethodDecl *Selected;
5268  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5269                               Diagnose ? &Selected : 0))
5270    return true;
5271
5272  if (Diagnose) {
5273    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5274      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5275        << Kind << SubType.getUnqualifiedType();
5276      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5277        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5278    } else if (!Selected)
5279      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5280        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5281    else if (Selected->isUserProvided()) {
5282      if (Kind == TSK_CompleteObject)
5283        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5284          << Kind << SubType.getUnqualifiedType() << CSM;
5285      else {
5286        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5287          << Kind << SubType.getUnqualifiedType() << CSM;
5288        S.Diag(Selected->getLocation(), diag::note_declared_at);
5289      }
5290    } else {
5291      if (Kind != TSK_CompleteObject)
5292        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5293          << Kind << SubType.getUnqualifiedType() << CSM;
5294
5295      // Explain why the defaulted or deleted special member isn't trivial.
5296      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5297    }
5298  }
5299
5300  return false;
5301}
5302
5303/// Check whether the members of a class type allow a special member to be
5304/// trivial.
5305static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5306                                     Sema::CXXSpecialMember CSM,
5307                                     bool ConstArg, bool Diagnose) {
5308  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5309                                     FE = RD->field_end(); FI != FE; ++FI) {
5310    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5311      continue;
5312
5313    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5314
5315    // Pretend anonymous struct or union members are members of this class.
5316    if (FI->isAnonymousStructOrUnion()) {
5317      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5318                                    CSM, ConstArg, Diagnose))
5319        return false;
5320      continue;
5321    }
5322
5323    // C++11 [class.ctor]p5:
5324    //   A default constructor is trivial if [...]
5325    //    -- no non-static data member of its class has a
5326    //       brace-or-equal-initializer
5327    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5328      if (Diagnose)
5329        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5330      return false;
5331    }
5332
5333    // Objective C ARC 4.3.5:
5334    //   [...] nontrivally ownership-qualified types are [...] not trivially
5335    //   default constructible, copy constructible, move constructible, copy
5336    //   assignable, move assignable, or destructible [...]
5337    if (S.getLangOpts().ObjCAutoRefCount &&
5338        FieldType.hasNonTrivialObjCLifetime()) {
5339      if (Diagnose)
5340        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5341          << RD << FieldType.getObjCLifetime();
5342      return false;
5343    }
5344
5345    if (ConstArg && !FI->isMutable())
5346      FieldType.addConst();
5347    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5348                                   TSK_Field, Diagnose))
5349      return false;
5350  }
5351
5352  return true;
5353}
5354
5355/// Diagnose why the specified class does not have a trivial special member of
5356/// the given kind.
5357void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5358  QualType Ty = Context.getRecordType(RD);
5359  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5360    Ty.addConst();
5361
5362  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5363                            TSK_CompleteObject, /*Diagnose*/true);
5364}
5365
5366/// Determine whether a defaulted or deleted special member function is trivial,
5367/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5368/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5369bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5370                                  bool Diagnose) {
5371  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5372
5373  CXXRecordDecl *RD = MD->getParent();
5374
5375  bool ConstArg = false;
5376
5377  // C++11 [class.copy]p12, p25:
5378  //   A [special member] is trivial if its declared parameter type is the same
5379  //   as if it had been implicitly declared [...]
5380  switch (CSM) {
5381  case CXXDefaultConstructor:
5382  case CXXDestructor:
5383    // Trivial default constructors and destructors cannot have parameters.
5384    break;
5385
5386  case CXXCopyConstructor:
5387  case CXXCopyAssignment: {
5388    // Trivial copy operations always have const, non-volatile parameter types.
5389    ConstArg = true;
5390    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5391    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5392    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5393      if (Diagnose)
5394        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5395          << Param0->getSourceRange() << Param0->getType()
5396          << Context.getLValueReferenceType(
5397               Context.getRecordType(RD).withConst());
5398      return false;
5399    }
5400    break;
5401  }
5402
5403  case CXXMoveConstructor:
5404  case CXXMoveAssignment: {
5405    // Trivial move operations always have non-cv-qualified parameters.
5406    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5407    const RValueReferenceType *RT =
5408      Param0->getType()->getAs<RValueReferenceType>();
5409    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5410      if (Diagnose)
5411        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5412          << Param0->getSourceRange() << Param0->getType()
5413          << Context.getRValueReferenceType(Context.getRecordType(RD));
5414      return false;
5415    }
5416    break;
5417  }
5418
5419  case CXXInvalid:
5420    llvm_unreachable("not a special member");
5421  }
5422
5423  // FIXME: We require that the parameter-declaration-clause is equivalent to
5424  // that of an implicit declaration, not just that the declared parameter type
5425  // matches, in order to prevent absuridities like a function simultaneously
5426  // being a trivial copy constructor and a non-trivial default constructor.
5427  // This issue has not yet been assigned a core issue number.
5428  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5429    if (Diagnose)
5430      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5431           diag::note_nontrivial_default_arg)
5432        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5433    return false;
5434  }
5435  if (MD->isVariadic()) {
5436    if (Diagnose)
5437      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5438    return false;
5439  }
5440
5441  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5442  //   A copy/move [constructor or assignment operator] is trivial if
5443  //    -- the [member] selected to copy/move each direct base class subobject
5444  //       is trivial
5445  //
5446  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5447  //   A [default constructor or destructor] is trivial if
5448  //    -- all the direct base classes have trivial [default constructors or
5449  //       destructors]
5450  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5451                                          BE = RD->bases_end(); BI != BE; ++BI)
5452    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5453                                   ConstArg ? BI->getType().withConst()
5454                                            : BI->getType(),
5455                                   CSM, TSK_BaseClass, Diagnose))
5456      return false;
5457
5458  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5459  //   A copy/move [constructor or assignment operator] for a class X is
5460  //   trivial if
5461  //    -- for each non-static data member of X that is of class type (or array
5462  //       thereof), the constructor selected to copy/move that member is
5463  //       trivial
5464  //
5465  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5466  //   A [default constructor or destructor] is trivial if
5467  //    -- for all of the non-static data members of its class that are of class
5468  //       type (or array thereof), each such class has a trivial [default
5469  //       constructor or destructor]
5470  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5471    return false;
5472
5473  // C++11 [class.dtor]p5:
5474  //   A destructor is trivial if [...]
5475  //    -- the destructor is not virtual
5476  if (CSM == CXXDestructor && MD->isVirtual()) {
5477    if (Diagnose)
5478      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5479    return false;
5480  }
5481
5482  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5483  //   A [special member] for class X is trivial if [...]
5484  //    -- class X has no virtual functions and no virtual base classes
5485  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5486    if (!Diagnose)
5487      return false;
5488
5489    if (RD->getNumVBases()) {
5490      // Check for virtual bases. We already know that the corresponding
5491      // member in all bases is trivial, so vbases must all be direct.
5492      CXXBaseSpecifier &BS = *RD->vbases_begin();
5493      assert(BS.isVirtual());
5494      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5495      return false;
5496    }
5497
5498    // Must have a virtual method.
5499    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5500                                        ME = RD->method_end(); MI != ME; ++MI) {
5501      if (MI->isVirtual()) {
5502        SourceLocation MLoc = MI->getLocStart();
5503        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5504        return false;
5505      }
5506    }
5507
5508    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5509  }
5510
5511  // Looks like it's trivial!
5512  return true;
5513}
5514
5515/// \brief Data used with FindHiddenVirtualMethod
5516namespace {
5517  struct FindHiddenVirtualMethodData {
5518    Sema *S;
5519    CXXMethodDecl *Method;
5520    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5521    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5522  };
5523}
5524
5525/// \brief Check whether any most overriden method from MD in Methods
5526static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5527                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5528  if (MD->size_overridden_methods() == 0)
5529    return Methods.count(MD->getCanonicalDecl());
5530  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5531                                      E = MD->end_overridden_methods();
5532       I != E; ++I)
5533    if (CheckMostOverridenMethods(*I, Methods))
5534      return true;
5535  return false;
5536}
5537
5538/// \brief Member lookup function that determines whether a given C++
5539/// method overloads virtual methods in a base class without overriding any,
5540/// to be used with CXXRecordDecl::lookupInBases().
5541static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5542                                    CXXBasePath &Path,
5543                                    void *UserData) {
5544  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5545
5546  FindHiddenVirtualMethodData &Data
5547    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5548
5549  DeclarationName Name = Data.Method->getDeclName();
5550  assert(Name.getNameKind() == DeclarationName::Identifier);
5551
5552  bool foundSameNameMethod = false;
5553  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5554  for (Path.Decls = BaseRecord->lookup(Name);
5555       !Path.Decls.empty();
5556       Path.Decls = Path.Decls.slice(1)) {
5557    NamedDecl *D = Path.Decls.front();
5558    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5559      MD = MD->getCanonicalDecl();
5560      foundSameNameMethod = true;
5561      // Interested only in hidden virtual methods.
5562      if (!MD->isVirtual())
5563        continue;
5564      // If the method we are checking overrides a method from its base
5565      // don't warn about the other overloaded methods.
5566      if (!Data.S->IsOverload(Data.Method, MD, false))
5567        return true;
5568      // Collect the overload only if its hidden.
5569      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5570        overloadedMethods.push_back(MD);
5571    }
5572  }
5573
5574  if (foundSameNameMethod)
5575    Data.OverloadedMethods.append(overloadedMethods.begin(),
5576                                   overloadedMethods.end());
5577  return foundSameNameMethod;
5578}
5579
5580/// \brief Add the most overriden methods from MD to Methods
5581static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5582                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5583  if (MD->size_overridden_methods() == 0)
5584    Methods.insert(MD->getCanonicalDecl());
5585  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5586                                      E = MD->end_overridden_methods();
5587       I != E; ++I)
5588    AddMostOverridenMethods(*I, Methods);
5589}
5590
5591/// \brief See if a method overloads virtual methods in a base class without
5592/// overriding any.
5593void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5594  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5595                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5596    return;
5597  if (!MD->getDeclName().isIdentifier())
5598    return;
5599
5600  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5601                     /*bool RecordPaths=*/false,
5602                     /*bool DetectVirtual=*/false);
5603  FindHiddenVirtualMethodData Data;
5604  Data.Method = MD;
5605  Data.S = this;
5606
5607  // Keep the base methods that were overriden or introduced in the subclass
5608  // by 'using' in a set. A base method not in this set is hidden.
5609  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5610  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5611    NamedDecl *ND = *I;
5612    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5613      ND = shad->getTargetDecl();
5614    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5615      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5616  }
5617
5618  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5619      !Data.OverloadedMethods.empty()) {
5620    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5621      << MD << (Data.OverloadedMethods.size() > 1);
5622
5623    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5624      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5625      PartialDiagnostic PD = PDiag(
5626           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5627      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5628      Diag(overloadedMD->getLocation(), PD);
5629    }
5630  }
5631}
5632
5633void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5634                                             Decl *TagDecl,
5635                                             SourceLocation LBrac,
5636                                             SourceLocation RBrac,
5637                                             AttributeList *AttrList) {
5638  if (!TagDecl)
5639    return;
5640
5641  AdjustDeclIfTemplate(TagDecl);
5642
5643  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5644    if (l->getKind() != AttributeList::AT_Visibility)
5645      continue;
5646    l->setInvalid();
5647    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5648      l->getName();
5649  }
5650
5651  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5652              // strict aliasing violation!
5653              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5654              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5655
5656  CheckCompletedCXXClass(
5657                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5658}
5659
5660/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5661/// special functions, such as the default constructor, copy
5662/// constructor, or destructor, to the given C++ class (C++
5663/// [special]p1).  This routine can only be executed just before the
5664/// definition of the class is complete.
5665void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5666  if (!ClassDecl->hasUserDeclaredConstructor())
5667    ++ASTContext::NumImplicitDefaultConstructors;
5668
5669  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5670    ++ASTContext::NumImplicitCopyConstructors;
5671
5672    // If the properties or semantics of the copy constructor couldn't be
5673    // determined while the class was being declared, force a declaration
5674    // of it now.
5675    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5676      DeclareImplicitCopyConstructor(ClassDecl);
5677  }
5678
5679  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5680    ++ASTContext::NumImplicitMoveConstructors;
5681
5682    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5683      DeclareImplicitMoveConstructor(ClassDecl);
5684  }
5685
5686  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5687    ++ASTContext::NumImplicitCopyAssignmentOperators;
5688
5689    // If we have a dynamic class, then the copy assignment operator may be
5690    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5691    // it shows up in the right place in the vtable and that we diagnose
5692    // problems with the implicit exception specification.
5693    if (ClassDecl->isDynamicClass() ||
5694        ClassDecl->needsOverloadResolutionForCopyAssignment())
5695      DeclareImplicitCopyAssignment(ClassDecl);
5696  }
5697
5698  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5699    ++ASTContext::NumImplicitMoveAssignmentOperators;
5700
5701    // Likewise for the move assignment operator.
5702    if (ClassDecl->isDynamicClass() ||
5703        ClassDecl->needsOverloadResolutionForMoveAssignment())
5704      DeclareImplicitMoveAssignment(ClassDecl);
5705  }
5706
5707  if (!ClassDecl->hasUserDeclaredDestructor()) {
5708    ++ASTContext::NumImplicitDestructors;
5709
5710    // If we have a dynamic class, then the destructor may be virtual, so we
5711    // have to declare the destructor immediately. This ensures that, e.g., it
5712    // shows up in the right place in the vtable and that we diagnose problems
5713    // with the implicit exception specification.
5714    if (ClassDecl->isDynamicClass() ||
5715        ClassDecl->needsOverloadResolutionForDestructor())
5716      DeclareImplicitDestructor(ClassDecl);
5717  }
5718}
5719
5720void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5721  if (!D)
5722    return;
5723
5724  int NumParamList = D->getNumTemplateParameterLists();
5725  for (int i = 0; i < NumParamList; i++) {
5726    TemplateParameterList* Params = D->getTemplateParameterList(i);
5727    for (TemplateParameterList::iterator Param = Params->begin(),
5728                                      ParamEnd = Params->end();
5729          Param != ParamEnd; ++Param) {
5730      NamedDecl *Named = cast<NamedDecl>(*Param);
5731      if (Named->getDeclName()) {
5732        S->AddDecl(Named);
5733        IdResolver.AddDecl(Named);
5734      }
5735    }
5736  }
5737}
5738
5739void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5740  if (!D)
5741    return;
5742
5743  TemplateParameterList *Params = 0;
5744  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5745    Params = Template->getTemplateParameters();
5746  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5747           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5748    Params = PartialSpec->getTemplateParameters();
5749  else
5750    return;
5751
5752  for (TemplateParameterList::iterator Param = Params->begin(),
5753                                    ParamEnd = Params->end();
5754       Param != ParamEnd; ++Param) {
5755    NamedDecl *Named = cast<NamedDecl>(*Param);
5756    if (Named->getDeclName()) {
5757      S->AddDecl(Named);
5758      IdResolver.AddDecl(Named);
5759    }
5760  }
5761}
5762
5763void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5764  if (!RecordD) return;
5765  AdjustDeclIfTemplate(RecordD);
5766  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5767  PushDeclContext(S, Record);
5768}
5769
5770void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5771  if (!RecordD) return;
5772  PopDeclContext();
5773}
5774
5775/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5776/// parsing a top-level (non-nested) C++ class, and we are now
5777/// parsing those parts of the given Method declaration that could
5778/// not be parsed earlier (C++ [class.mem]p2), such as default
5779/// arguments. This action should enter the scope of the given
5780/// Method declaration as if we had just parsed the qualified method
5781/// name. However, it should not bring the parameters into scope;
5782/// that will be performed by ActOnDelayedCXXMethodParameter.
5783void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5784}
5785
5786/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5787/// C++ method declaration. We're (re-)introducing the given
5788/// function parameter into scope for use in parsing later parts of
5789/// the method declaration. For example, we could see an
5790/// ActOnParamDefaultArgument event for this parameter.
5791void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5792  if (!ParamD)
5793    return;
5794
5795  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5796
5797  // If this parameter has an unparsed default argument, clear it out
5798  // to make way for the parsed default argument.
5799  if (Param->hasUnparsedDefaultArg())
5800    Param->setDefaultArg(0);
5801
5802  S->AddDecl(Param);
5803  if (Param->getDeclName())
5804    IdResolver.AddDecl(Param);
5805}
5806
5807/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5808/// processing the delayed method declaration for Method. The method
5809/// declaration is now considered finished. There may be a separate
5810/// ActOnStartOfFunctionDef action later (not necessarily
5811/// immediately!) for this method, if it was also defined inside the
5812/// class body.
5813void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5814  if (!MethodD)
5815    return;
5816
5817  AdjustDeclIfTemplate(MethodD);
5818
5819  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5820
5821  // Now that we have our default arguments, check the constructor
5822  // again. It could produce additional diagnostics or affect whether
5823  // the class has implicitly-declared destructors, among other
5824  // things.
5825  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5826    CheckConstructor(Constructor);
5827
5828  // Check the default arguments, which we may have added.
5829  if (!Method->isInvalidDecl())
5830    CheckCXXDefaultArguments(Method);
5831}
5832
5833/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5834/// the well-formedness of the constructor declarator @p D with type @p
5835/// R. If there are any errors in the declarator, this routine will
5836/// emit diagnostics and set the invalid bit to true.  In any case, the type
5837/// will be updated to reflect a well-formed type for the constructor and
5838/// returned.
5839QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5840                                          StorageClass &SC) {
5841  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5842
5843  // C++ [class.ctor]p3:
5844  //   A constructor shall not be virtual (10.3) or static (9.4). A
5845  //   constructor can be invoked for a const, volatile or const
5846  //   volatile object. A constructor shall not be declared const,
5847  //   volatile, or const volatile (9.3.2).
5848  if (isVirtual) {
5849    if (!D.isInvalidType())
5850      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5851        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5852        << SourceRange(D.getIdentifierLoc());
5853    D.setInvalidType();
5854  }
5855  if (SC == SC_Static) {
5856    if (!D.isInvalidType())
5857      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5858        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5859        << SourceRange(D.getIdentifierLoc());
5860    D.setInvalidType();
5861    SC = SC_None;
5862  }
5863
5864  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5865  if (FTI.TypeQuals != 0) {
5866    if (FTI.TypeQuals & Qualifiers::Const)
5867      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5868        << "const" << SourceRange(D.getIdentifierLoc());
5869    if (FTI.TypeQuals & Qualifiers::Volatile)
5870      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5871        << "volatile" << SourceRange(D.getIdentifierLoc());
5872    if (FTI.TypeQuals & Qualifiers::Restrict)
5873      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5874        << "restrict" << SourceRange(D.getIdentifierLoc());
5875    D.setInvalidType();
5876  }
5877
5878  // C++0x [class.ctor]p4:
5879  //   A constructor shall not be declared with a ref-qualifier.
5880  if (FTI.hasRefQualifier()) {
5881    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5882      << FTI.RefQualifierIsLValueRef
5883      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5884    D.setInvalidType();
5885  }
5886
5887  // Rebuild the function type "R" without any type qualifiers (in
5888  // case any of the errors above fired) and with "void" as the
5889  // return type, since constructors don't have return types.
5890  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5891  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5892    return R;
5893
5894  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5895  EPI.TypeQuals = 0;
5896  EPI.RefQualifier = RQ_None;
5897
5898  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5899}
5900
5901/// CheckConstructor - Checks a fully-formed constructor for
5902/// well-formedness, issuing any diagnostics required. Returns true if
5903/// the constructor declarator is invalid.
5904void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5905  CXXRecordDecl *ClassDecl
5906    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5907  if (!ClassDecl)
5908    return Constructor->setInvalidDecl();
5909
5910  // C++ [class.copy]p3:
5911  //   A declaration of a constructor for a class X is ill-formed if
5912  //   its first parameter is of type (optionally cv-qualified) X and
5913  //   either there are no other parameters or else all other
5914  //   parameters have default arguments.
5915  if (!Constructor->isInvalidDecl() &&
5916      ((Constructor->getNumParams() == 1) ||
5917       (Constructor->getNumParams() > 1 &&
5918        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5919      Constructor->getTemplateSpecializationKind()
5920                                              != TSK_ImplicitInstantiation) {
5921    QualType ParamType = Constructor->getParamDecl(0)->getType();
5922    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5923    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5924      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5925      const char *ConstRef
5926        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5927                                                        : " const &";
5928      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5929        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5930
5931      // FIXME: Rather that making the constructor invalid, we should endeavor
5932      // to fix the type.
5933      Constructor->setInvalidDecl();
5934    }
5935  }
5936}
5937
5938/// CheckDestructor - Checks a fully-formed destructor definition for
5939/// well-formedness, issuing any diagnostics required.  Returns true
5940/// on error.
5941bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5942  CXXRecordDecl *RD = Destructor->getParent();
5943
5944  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
5945    SourceLocation Loc;
5946
5947    if (!Destructor->isImplicit())
5948      Loc = Destructor->getLocation();
5949    else
5950      Loc = RD->getLocation();
5951
5952    // If we have a virtual destructor, look up the deallocation function
5953    FunctionDecl *OperatorDelete = 0;
5954    DeclarationName Name =
5955    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5956    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5957      return true;
5958
5959    MarkFunctionReferenced(Loc, OperatorDelete);
5960
5961    Destructor->setOperatorDelete(OperatorDelete);
5962  }
5963
5964  return false;
5965}
5966
5967static inline bool
5968FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5969  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5970          FTI.ArgInfo[0].Param &&
5971          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5972}
5973
5974/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5975/// the well-formednes of the destructor declarator @p D with type @p
5976/// R. If there are any errors in the declarator, this routine will
5977/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5978/// will be updated to reflect a well-formed type for the destructor and
5979/// returned.
5980QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5981                                         StorageClass& SC) {
5982  // C++ [class.dtor]p1:
5983  //   [...] A typedef-name that names a class is a class-name
5984  //   (7.1.3); however, a typedef-name that names a class shall not
5985  //   be used as the identifier in the declarator for a destructor
5986  //   declaration.
5987  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5988  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5989    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5990      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5991  else if (const TemplateSpecializationType *TST =
5992             DeclaratorType->getAs<TemplateSpecializationType>())
5993    if (TST->isTypeAlias())
5994      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5995        << DeclaratorType << 1;
5996
5997  // C++ [class.dtor]p2:
5998  //   A destructor is used to destroy objects of its class type. A
5999  //   destructor takes no parameters, and no return type can be
6000  //   specified for it (not even void). The address of a destructor
6001  //   shall not be taken. A destructor shall not be static. A
6002  //   destructor can be invoked for a const, volatile or const
6003  //   volatile object. A destructor shall not be declared const,
6004  //   volatile or const volatile (9.3.2).
6005  if (SC == SC_Static) {
6006    if (!D.isInvalidType())
6007      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6008        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6009        << SourceRange(D.getIdentifierLoc())
6010        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6011
6012    SC = SC_None;
6013  }
6014  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6015    // Destructors don't have return types, but the parser will
6016    // happily parse something like:
6017    //
6018    //   class X {
6019    //     float ~X();
6020    //   };
6021    //
6022    // The return type will be eliminated later.
6023    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6024      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6025      << SourceRange(D.getIdentifierLoc());
6026  }
6027
6028  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6029  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6030    if (FTI.TypeQuals & Qualifiers::Const)
6031      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6032        << "const" << SourceRange(D.getIdentifierLoc());
6033    if (FTI.TypeQuals & Qualifiers::Volatile)
6034      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6035        << "volatile" << SourceRange(D.getIdentifierLoc());
6036    if (FTI.TypeQuals & Qualifiers::Restrict)
6037      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6038        << "restrict" << SourceRange(D.getIdentifierLoc());
6039    D.setInvalidType();
6040  }
6041
6042  // C++0x [class.dtor]p2:
6043  //   A destructor shall not be declared with a ref-qualifier.
6044  if (FTI.hasRefQualifier()) {
6045    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6046      << FTI.RefQualifierIsLValueRef
6047      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6048    D.setInvalidType();
6049  }
6050
6051  // Make sure we don't have any parameters.
6052  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6053    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6054
6055    // Delete the parameters.
6056    FTI.freeArgs();
6057    D.setInvalidType();
6058  }
6059
6060  // Make sure the destructor isn't variadic.
6061  if (FTI.isVariadic) {
6062    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6063    D.setInvalidType();
6064  }
6065
6066  // Rebuild the function type "R" without any type qualifiers or
6067  // parameters (in case any of the errors above fired) and with
6068  // "void" as the return type, since destructors don't have return
6069  // types.
6070  if (!D.isInvalidType())
6071    return R;
6072
6073  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6074  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6075  EPI.Variadic = false;
6076  EPI.TypeQuals = 0;
6077  EPI.RefQualifier = RQ_None;
6078  return Context.getFunctionType(Context.VoidTy, None, EPI);
6079}
6080
6081/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6082/// well-formednes of the conversion function declarator @p D with
6083/// type @p R. If there are any errors in the declarator, this routine
6084/// will emit diagnostics and return true. Otherwise, it will return
6085/// false. Either way, the type @p R will be updated to reflect a
6086/// well-formed type for the conversion operator.
6087void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6088                                     StorageClass& SC) {
6089  // C++ [class.conv.fct]p1:
6090  //   Neither parameter types nor return type can be specified. The
6091  //   type of a conversion function (8.3.5) is "function taking no
6092  //   parameter returning conversion-type-id."
6093  if (SC == SC_Static) {
6094    if (!D.isInvalidType())
6095      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6096        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6097        << D.getName().getSourceRange();
6098    D.setInvalidType();
6099    SC = SC_None;
6100  }
6101
6102  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6103
6104  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6105    // Conversion functions don't have return types, but the parser will
6106    // happily parse something like:
6107    //
6108    //   class X {
6109    //     float operator bool();
6110    //   };
6111    //
6112    // The return type will be changed later anyway.
6113    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6114      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6115      << SourceRange(D.getIdentifierLoc());
6116    D.setInvalidType();
6117  }
6118
6119  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6120
6121  // Make sure we don't have any parameters.
6122  if (Proto->getNumArgs() > 0) {
6123    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6124
6125    // Delete the parameters.
6126    D.getFunctionTypeInfo().freeArgs();
6127    D.setInvalidType();
6128  } else if (Proto->isVariadic()) {
6129    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6130    D.setInvalidType();
6131  }
6132
6133  // Diagnose "&operator bool()" and other such nonsense.  This
6134  // is actually a gcc extension which we don't support.
6135  if (Proto->getResultType() != ConvType) {
6136    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6137      << Proto->getResultType();
6138    D.setInvalidType();
6139    ConvType = Proto->getResultType();
6140  }
6141
6142  // C++ [class.conv.fct]p4:
6143  //   The conversion-type-id shall not represent a function type nor
6144  //   an array type.
6145  if (ConvType->isArrayType()) {
6146    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6147    ConvType = Context.getPointerType(ConvType);
6148    D.setInvalidType();
6149  } else if (ConvType->isFunctionType()) {
6150    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6151    ConvType = Context.getPointerType(ConvType);
6152    D.setInvalidType();
6153  }
6154
6155  // Rebuild the function type "R" without any parameters (in case any
6156  // of the errors above fired) and with the conversion type as the
6157  // return type.
6158  if (D.isInvalidType())
6159    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6160
6161  // C++0x explicit conversion operators.
6162  if (D.getDeclSpec().isExplicitSpecified())
6163    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6164         getLangOpts().CPlusPlus11 ?
6165           diag::warn_cxx98_compat_explicit_conversion_functions :
6166           diag::ext_explicit_conversion_functions)
6167      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6168}
6169
6170/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6171/// the declaration of the given C++ conversion function. This routine
6172/// is responsible for recording the conversion function in the C++
6173/// class, if possible.
6174Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6175  assert(Conversion && "Expected to receive a conversion function declaration");
6176
6177  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6178
6179  // Make sure we aren't redeclaring the conversion function.
6180  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6181
6182  // C++ [class.conv.fct]p1:
6183  //   [...] A conversion function is never used to convert a
6184  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6185  //   same object type (or a reference to it), to a (possibly
6186  //   cv-qualified) base class of that type (or a reference to it),
6187  //   or to (possibly cv-qualified) void.
6188  // FIXME: Suppress this warning if the conversion function ends up being a
6189  // virtual function that overrides a virtual function in a base class.
6190  QualType ClassType
6191    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6192  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6193    ConvType = ConvTypeRef->getPointeeType();
6194  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6195      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6196    /* Suppress diagnostics for instantiations. */;
6197  else if (ConvType->isRecordType()) {
6198    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6199    if (ConvType == ClassType)
6200      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6201        << ClassType;
6202    else if (IsDerivedFrom(ClassType, ConvType))
6203      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6204        <<  ClassType << ConvType;
6205  } else if (ConvType->isVoidType()) {
6206    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6207      << ClassType << ConvType;
6208  }
6209
6210  if (FunctionTemplateDecl *ConversionTemplate
6211                                = Conversion->getDescribedFunctionTemplate())
6212    return ConversionTemplate;
6213
6214  return Conversion;
6215}
6216
6217//===----------------------------------------------------------------------===//
6218// Namespace Handling
6219//===----------------------------------------------------------------------===//
6220
6221/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6222/// reopened.
6223static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6224                                            SourceLocation Loc,
6225                                            IdentifierInfo *II, bool *IsInline,
6226                                            NamespaceDecl *PrevNS) {
6227  assert(*IsInline != PrevNS->isInline());
6228
6229  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6230  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6231  // inline namespaces, with the intention of bringing names into namespace std.
6232  //
6233  // We support this just well enough to get that case working; this is not
6234  // sufficient to support reopening namespaces as inline in general.
6235  if (*IsInline && II && II->getName().startswith("__atomic") &&
6236      S.getSourceManager().isInSystemHeader(Loc)) {
6237    // Mark all prior declarations of the namespace as inline.
6238    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6239         NS = NS->getPreviousDecl())
6240      NS->setInline(*IsInline);
6241    // Patch up the lookup table for the containing namespace. This isn't really
6242    // correct, but it's good enough for this particular case.
6243    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6244                                    E = PrevNS->decls_end(); I != E; ++I)
6245      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6246        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6247    return;
6248  }
6249
6250  if (PrevNS->isInline())
6251    // The user probably just forgot the 'inline', so suggest that it
6252    // be added back.
6253    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6254      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6255  else
6256    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6257      << IsInline;
6258
6259  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6260  *IsInline = PrevNS->isInline();
6261}
6262
6263/// ActOnStartNamespaceDef - This is called at the start of a namespace
6264/// definition.
6265Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6266                                   SourceLocation InlineLoc,
6267                                   SourceLocation NamespaceLoc,
6268                                   SourceLocation IdentLoc,
6269                                   IdentifierInfo *II,
6270                                   SourceLocation LBrace,
6271                                   AttributeList *AttrList) {
6272  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6273  // For anonymous namespace, take the location of the left brace.
6274  SourceLocation Loc = II ? IdentLoc : LBrace;
6275  bool IsInline = InlineLoc.isValid();
6276  bool IsInvalid = false;
6277  bool IsStd = false;
6278  bool AddToKnown = false;
6279  Scope *DeclRegionScope = NamespcScope->getParent();
6280
6281  NamespaceDecl *PrevNS = 0;
6282  if (II) {
6283    // C++ [namespace.def]p2:
6284    //   The identifier in an original-namespace-definition shall not
6285    //   have been previously defined in the declarative region in
6286    //   which the original-namespace-definition appears. The
6287    //   identifier in an original-namespace-definition is the name of
6288    //   the namespace. Subsequently in that declarative region, it is
6289    //   treated as an original-namespace-name.
6290    //
6291    // Since namespace names are unique in their scope, and we don't
6292    // look through using directives, just look for any ordinary names.
6293
6294    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6295    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6296    Decl::IDNS_Namespace;
6297    NamedDecl *PrevDecl = 0;
6298    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6299    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6300         ++I) {
6301      if ((*I)->getIdentifierNamespace() & IDNS) {
6302        PrevDecl = *I;
6303        break;
6304      }
6305    }
6306
6307    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6308
6309    if (PrevNS) {
6310      // This is an extended namespace definition.
6311      if (IsInline != PrevNS->isInline())
6312        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6313                                        &IsInline, PrevNS);
6314    } else if (PrevDecl) {
6315      // This is an invalid name redefinition.
6316      Diag(Loc, diag::err_redefinition_different_kind)
6317        << II;
6318      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6319      IsInvalid = true;
6320      // Continue on to push Namespc as current DeclContext and return it.
6321    } else if (II->isStr("std") &&
6322               CurContext->getRedeclContext()->isTranslationUnit()) {
6323      // This is the first "real" definition of the namespace "std", so update
6324      // our cache of the "std" namespace to point at this definition.
6325      PrevNS = getStdNamespace();
6326      IsStd = true;
6327      AddToKnown = !IsInline;
6328    } else {
6329      // We've seen this namespace for the first time.
6330      AddToKnown = !IsInline;
6331    }
6332  } else {
6333    // Anonymous namespaces.
6334
6335    // Determine whether the parent already has an anonymous namespace.
6336    DeclContext *Parent = CurContext->getRedeclContext();
6337    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6338      PrevNS = TU->getAnonymousNamespace();
6339    } else {
6340      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6341      PrevNS = ND->getAnonymousNamespace();
6342    }
6343
6344    if (PrevNS && IsInline != PrevNS->isInline())
6345      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6346                                      &IsInline, PrevNS);
6347  }
6348
6349  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6350                                                 StartLoc, Loc, II, PrevNS);
6351  if (IsInvalid)
6352    Namespc->setInvalidDecl();
6353
6354  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6355
6356  // FIXME: Should we be merging attributes?
6357  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6358    PushNamespaceVisibilityAttr(Attr, Loc);
6359
6360  if (IsStd)
6361    StdNamespace = Namespc;
6362  if (AddToKnown)
6363    KnownNamespaces[Namespc] = false;
6364
6365  if (II) {
6366    PushOnScopeChains(Namespc, DeclRegionScope);
6367  } else {
6368    // Link the anonymous namespace into its parent.
6369    DeclContext *Parent = CurContext->getRedeclContext();
6370    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6371      TU->setAnonymousNamespace(Namespc);
6372    } else {
6373      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6374    }
6375
6376    CurContext->addDecl(Namespc);
6377
6378    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6379    //   behaves as if it were replaced by
6380    //     namespace unique { /* empty body */ }
6381    //     using namespace unique;
6382    //     namespace unique { namespace-body }
6383    //   where all occurrences of 'unique' in a translation unit are
6384    //   replaced by the same identifier and this identifier differs
6385    //   from all other identifiers in the entire program.
6386
6387    // We just create the namespace with an empty name and then add an
6388    // implicit using declaration, just like the standard suggests.
6389    //
6390    // CodeGen enforces the "universally unique" aspect by giving all
6391    // declarations semantically contained within an anonymous
6392    // namespace internal linkage.
6393
6394    if (!PrevNS) {
6395      UsingDirectiveDecl* UD
6396        = UsingDirectiveDecl::Create(Context, Parent,
6397                                     /* 'using' */ LBrace,
6398                                     /* 'namespace' */ SourceLocation(),
6399                                     /* qualifier */ NestedNameSpecifierLoc(),
6400                                     /* identifier */ SourceLocation(),
6401                                     Namespc,
6402                                     /* Ancestor */ Parent);
6403      UD->setImplicit();
6404      Parent->addDecl(UD);
6405    }
6406  }
6407
6408  ActOnDocumentableDecl(Namespc);
6409
6410  // Although we could have an invalid decl (i.e. the namespace name is a
6411  // redefinition), push it as current DeclContext and try to continue parsing.
6412  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6413  // for the namespace has the declarations that showed up in that particular
6414  // namespace definition.
6415  PushDeclContext(NamespcScope, Namespc);
6416  return Namespc;
6417}
6418
6419/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6420/// is a namespace alias, returns the namespace it points to.
6421static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6422  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6423    return AD->getNamespace();
6424  return dyn_cast_or_null<NamespaceDecl>(D);
6425}
6426
6427/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6428/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6429void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6430  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6431  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6432  Namespc->setRBraceLoc(RBrace);
6433  PopDeclContext();
6434  if (Namespc->hasAttr<VisibilityAttr>())
6435    PopPragmaVisibility(true, RBrace);
6436}
6437
6438CXXRecordDecl *Sema::getStdBadAlloc() const {
6439  return cast_or_null<CXXRecordDecl>(
6440                                  StdBadAlloc.get(Context.getExternalSource()));
6441}
6442
6443NamespaceDecl *Sema::getStdNamespace() const {
6444  return cast_or_null<NamespaceDecl>(
6445                                 StdNamespace.get(Context.getExternalSource()));
6446}
6447
6448/// \brief Retrieve the special "std" namespace, which may require us to
6449/// implicitly define the namespace.
6450NamespaceDecl *Sema::getOrCreateStdNamespace() {
6451  if (!StdNamespace) {
6452    // The "std" namespace has not yet been defined, so build one implicitly.
6453    StdNamespace = NamespaceDecl::Create(Context,
6454                                         Context.getTranslationUnitDecl(),
6455                                         /*Inline=*/false,
6456                                         SourceLocation(), SourceLocation(),
6457                                         &PP.getIdentifierTable().get("std"),
6458                                         /*PrevDecl=*/0);
6459    getStdNamespace()->setImplicit(true);
6460  }
6461
6462  return getStdNamespace();
6463}
6464
6465bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6466  assert(getLangOpts().CPlusPlus &&
6467         "Looking for std::initializer_list outside of C++.");
6468
6469  // We're looking for implicit instantiations of
6470  // template <typename E> class std::initializer_list.
6471
6472  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6473    return false;
6474
6475  ClassTemplateDecl *Template = 0;
6476  const TemplateArgument *Arguments = 0;
6477
6478  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6479
6480    ClassTemplateSpecializationDecl *Specialization =
6481        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6482    if (!Specialization)
6483      return false;
6484
6485    Template = Specialization->getSpecializedTemplate();
6486    Arguments = Specialization->getTemplateArgs().data();
6487  } else if (const TemplateSpecializationType *TST =
6488                 Ty->getAs<TemplateSpecializationType>()) {
6489    Template = dyn_cast_or_null<ClassTemplateDecl>(
6490        TST->getTemplateName().getAsTemplateDecl());
6491    Arguments = TST->getArgs();
6492  }
6493  if (!Template)
6494    return false;
6495
6496  if (!StdInitializerList) {
6497    // Haven't recognized std::initializer_list yet, maybe this is it.
6498    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6499    if (TemplateClass->getIdentifier() !=
6500            &PP.getIdentifierTable().get("initializer_list") ||
6501        !getStdNamespace()->InEnclosingNamespaceSetOf(
6502            TemplateClass->getDeclContext()))
6503      return false;
6504    // This is a template called std::initializer_list, but is it the right
6505    // template?
6506    TemplateParameterList *Params = Template->getTemplateParameters();
6507    if (Params->getMinRequiredArguments() != 1)
6508      return false;
6509    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6510      return false;
6511
6512    // It's the right template.
6513    StdInitializerList = Template;
6514  }
6515
6516  if (Template != StdInitializerList)
6517    return false;
6518
6519  // This is an instance of std::initializer_list. Find the argument type.
6520  if (Element)
6521    *Element = Arguments[0].getAsType();
6522  return true;
6523}
6524
6525static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6526  NamespaceDecl *Std = S.getStdNamespace();
6527  if (!Std) {
6528    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6529    return 0;
6530  }
6531
6532  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6533                      Loc, Sema::LookupOrdinaryName);
6534  if (!S.LookupQualifiedName(Result, Std)) {
6535    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6536    return 0;
6537  }
6538  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6539  if (!Template) {
6540    Result.suppressDiagnostics();
6541    // We found something weird. Complain about the first thing we found.
6542    NamedDecl *Found = *Result.begin();
6543    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6544    return 0;
6545  }
6546
6547  // We found some template called std::initializer_list. Now verify that it's
6548  // correct.
6549  TemplateParameterList *Params = Template->getTemplateParameters();
6550  if (Params->getMinRequiredArguments() != 1 ||
6551      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6552    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6553    return 0;
6554  }
6555
6556  return Template;
6557}
6558
6559QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6560  if (!StdInitializerList) {
6561    StdInitializerList = LookupStdInitializerList(*this, Loc);
6562    if (!StdInitializerList)
6563      return QualType();
6564  }
6565
6566  TemplateArgumentListInfo Args(Loc, Loc);
6567  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6568                                       Context.getTrivialTypeSourceInfo(Element,
6569                                                                        Loc)));
6570  return Context.getCanonicalType(
6571      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6572}
6573
6574bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6575  // C++ [dcl.init.list]p2:
6576  //   A constructor is an initializer-list constructor if its first parameter
6577  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6578  //   std::initializer_list<E> for some type E, and either there are no other
6579  //   parameters or else all other parameters have default arguments.
6580  if (Ctor->getNumParams() < 1 ||
6581      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6582    return false;
6583
6584  QualType ArgType = Ctor->getParamDecl(0)->getType();
6585  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6586    ArgType = RT->getPointeeType().getUnqualifiedType();
6587
6588  return isStdInitializerList(ArgType, 0);
6589}
6590
6591/// \brief Determine whether a using statement is in a context where it will be
6592/// apply in all contexts.
6593static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6594  switch (CurContext->getDeclKind()) {
6595    case Decl::TranslationUnit:
6596      return true;
6597    case Decl::LinkageSpec:
6598      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6599    default:
6600      return false;
6601  }
6602}
6603
6604namespace {
6605
6606// Callback to only accept typo corrections that are namespaces.
6607class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6608public:
6609  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
6610    if (NamedDecl *ND = candidate.getCorrectionDecl())
6611      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6612    return false;
6613  }
6614};
6615
6616}
6617
6618static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6619                                       CXXScopeSpec &SS,
6620                                       SourceLocation IdentLoc,
6621                                       IdentifierInfo *Ident) {
6622  NamespaceValidatorCCC Validator;
6623  R.clear();
6624  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6625                                               R.getLookupKind(), Sc, &SS,
6626                                               Validator)) {
6627    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6628      std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6629      bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
6630                              Ident->getName().equals(CorrectedStr);
6631      S.diagnoseTypo(Corrected,
6632                     S.PDiag(diag::err_using_directive_member_suggest)
6633                       << Ident << DC << DroppedSpecifier << SS.getRange(),
6634                     S.PDiag(diag::note_namespace_defined_here));
6635    } else {
6636      S.diagnoseTypo(Corrected,
6637                     S.PDiag(diag::err_using_directive_suggest) << Ident,
6638                     S.PDiag(diag::note_namespace_defined_here));
6639    }
6640    R.addDecl(Corrected.getCorrectionDecl());
6641    return true;
6642  }
6643  return false;
6644}
6645
6646Decl *Sema::ActOnUsingDirective(Scope *S,
6647                                          SourceLocation UsingLoc,
6648                                          SourceLocation NamespcLoc,
6649                                          CXXScopeSpec &SS,
6650                                          SourceLocation IdentLoc,
6651                                          IdentifierInfo *NamespcName,
6652                                          AttributeList *AttrList) {
6653  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6654  assert(NamespcName && "Invalid NamespcName.");
6655  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6656
6657  // This can only happen along a recovery path.
6658  while (S->getFlags() & Scope::TemplateParamScope)
6659    S = S->getParent();
6660  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6661
6662  UsingDirectiveDecl *UDir = 0;
6663  NestedNameSpecifier *Qualifier = 0;
6664  if (SS.isSet())
6665    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6666
6667  // Lookup namespace name.
6668  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6669  LookupParsedName(R, S, &SS);
6670  if (R.isAmbiguous())
6671    return 0;
6672
6673  if (R.empty()) {
6674    R.clear();
6675    // Allow "using namespace std;" or "using namespace ::std;" even if
6676    // "std" hasn't been defined yet, for GCC compatibility.
6677    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6678        NamespcName->isStr("std")) {
6679      Diag(IdentLoc, diag::ext_using_undefined_std);
6680      R.addDecl(getOrCreateStdNamespace());
6681      R.resolveKind();
6682    }
6683    // Otherwise, attempt typo correction.
6684    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6685  }
6686
6687  if (!R.empty()) {
6688    NamedDecl *Named = R.getFoundDecl();
6689    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6690        && "expected namespace decl");
6691    // C++ [namespace.udir]p1:
6692    //   A using-directive specifies that the names in the nominated
6693    //   namespace can be used in the scope in which the
6694    //   using-directive appears after the using-directive. During
6695    //   unqualified name lookup (3.4.1), the names appear as if they
6696    //   were declared in the nearest enclosing namespace which
6697    //   contains both the using-directive and the nominated
6698    //   namespace. [Note: in this context, "contains" means "contains
6699    //   directly or indirectly". ]
6700
6701    // Find enclosing context containing both using-directive and
6702    // nominated namespace.
6703    NamespaceDecl *NS = getNamespaceDecl(Named);
6704    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6705    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6706      CommonAncestor = CommonAncestor->getParent();
6707
6708    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6709                                      SS.getWithLocInContext(Context),
6710                                      IdentLoc, Named, CommonAncestor);
6711
6712    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6713        !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6714      Diag(IdentLoc, diag::warn_using_directive_in_header);
6715    }
6716
6717    PushUsingDirective(S, UDir);
6718  } else {
6719    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6720  }
6721
6722  if (UDir)
6723    ProcessDeclAttributeList(S, UDir, AttrList);
6724
6725  return UDir;
6726}
6727
6728void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6729  // If the scope has an associated entity and the using directive is at
6730  // namespace or translation unit scope, add the UsingDirectiveDecl into
6731  // its lookup structure so qualified name lookup can find it.
6732  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6733  if (Ctx && !Ctx->isFunctionOrMethod())
6734    Ctx->addDecl(UDir);
6735  else
6736    // Otherwise, it is at block sope. The using-directives will affect lookup
6737    // only to the end of the scope.
6738    S->PushUsingDirective(UDir);
6739}
6740
6741
6742Decl *Sema::ActOnUsingDeclaration(Scope *S,
6743                                  AccessSpecifier AS,
6744                                  bool HasUsingKeyword,
6745                                  SourceLocation UsingLoc,
6746                                  CXXScopeSpec &SS,
6747                                  UnqualifiedId &Name,
6748                                  AttributeList *AttrList,
6749                                  bool HasTypenameKeyword,
6750                                  SourceLocation TypenameLoc) {
6751  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6752
6753  switch (Name.getKind()) {
6754  case UnqualifiedId::IK_ImplicitSelfParam:
6755  case UnqualifiedId::IK_Identifier:
6756  case UnqualifiedId::IK_OperatorFunctionId:
6757  case UnqualifiedId::IK_LiteralOperatorId:
6758  case UnqualifiedId::IK_ConversionFunctionId:
6759    break;
6760
6761  case UnqualifiedId::IK_ConstructorName:
6762  case UnqualifiedId::IK_ConstructorTemplateId:
6763    // C++11 inheriting constructors.
6764    Diag(Name.getLocStart(),
6765         getLangOpts().CPlusPlus11 ?
6766           diag::warn_cxx98_compat_using_decl_constructor :
6767           diag::err_using_decl_constructor)
6768      << SS.getRange();
6769
6770    if (getLangOpts().CPlusPlus11) break;
6771
6772    return 0;
6773
6774  case UnqualifiedId::IK_DestructorName:
6775    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6776      << SS.getRange();
6777    return 0;
6778
6779  case UnqualifiedId::IK_TemplateId:
6780    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6781      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6782    return 0;
6783  }
6784
6785  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6786  DeclarationName TargetName = TargetNameInfo.getName();
6787  if (!TargetName)
6788    return 0;
6789
6790  // Warn about access declarations.
6791  if (!HasUsingKeyword) {
6792    Diag(Name.getLocStart(),
6793         getLangOpts().CPlusPlus11 ? diag::err_access_decl
6794                                   : diag::warn_access_decl_deprecated)
6795      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6796  }
6797
6798  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6799      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6800    return 0;
6801
6802  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6803                                        TargetNameInfo, AttrList,
6804                                        /* IsInstantiation */ false,
6805                                        HasTypenameKeyword, TypenameLoc);
6806  if (UD)
6807    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6808
6809  return UD;
6810}
6811
6812/// \brief Determine whether a using declaration considers the given
6813/// declarations as "equivalent", e.g., if they are redeclarations of
6814/// the same entity or are both typedefs of the same type.
6815static bool
6816IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6817                         bool &SuppressRedeclaration) {
6818  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6819    SuppressRedeclaration = false;
6820    return true;
6821  }
6822
6823  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6824    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6825      SuppressRedeclaration = true;
6826      return Context.hasSameType(TD1->getUnderlyingType(),
6827                                 TD2->getUnderlyingType());
6828    }
6829
6830  return false;
6831}
6832
6833
6834/// Determines whether to create a using shadow decl for a particular
6835/// decl, given the set of decls existing prior to this using lookup.
6836bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6837                                const LookupResult &Previous) {
6838  // Diagnose finding a decl which is not from a base class of the
6839  // current class.  We do this now because there are cases where this
6840  // function will silently decide not to build a shadow decl, which
6841  // will pre-empt further diagnostics.
6842  //
6843  // We don't need to do this in C++0x because we do the check once on
6844  // the qualifier.
6845  //
6846  // FIXME: diagnose the following if we care enough:
6847  //   struct A { int foo; };
6848  //   struct B : A { using A::foo; };
6849  //   template <class T> struct C : A {};
6850  //   template <class T> struct D : C<T> { using B::foo; } // <---
6851  // This is invalid (during instantiation) in C++03 because B::foo
6852  // resolves to the using decl in B, which is not a base class of D<T>.
6853  // We can't diagnose it immediately because C<T> is an unknown
6854  // specialization.  The UsingShadowDecl in D<T> then points directly
6855  // to A::foo, which will look well-formed when we instantiate.
6856  // The right solution is to not collapse the shadow-decl chain.
6857  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6858    DeclContext *OrigDC = Orig->getDeclContext();
6859
6860    // Handle enums and anonymous structs.
6861    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6862    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6863    while (OrigRec->isAnonymousStructOrUnion())
6864      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6865
6866    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6867      if (OrigDC == CurContext) {
6868        Diag(Using->getLocation(),
6869             diag::err_using_decl_nested_name_specifier_is_current_class)
6870          << Using->getQualifierLoc().getSourceRange();
6871        Diag(Orig->getLocation(), diag::note_using_decl_target);
6872        return true;
6873      }
6874
6875      Diag(Using->getQualifierLoc().getBeginLoc(),
6876           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6877        << Using->getQualifier()
6878        << cast<CXXRecordDecl>(CurContext)
6879        << Using->getQualifierLoc().getSourceRange();
6880      Diag(Orig->getLocation(), diag::note_using_decl_target);
6881      return true;
6882    }
6883  }
6884
6885  if (Previous.empty()) return false;
6886
6887  NamedDecl *Target = Orig;
6888  if (isa<UsingShadowDecl>(Target))
6889    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6890
6891  // If the target happens to be one of the previous declarations, we
6892  // don't have a conflict.
6893  //
6894  // FIXME: but we might be increasing its access, in which case we
6895  // should redeclare it.
6896  NamedDecl *NonTag = 0, *Tag = 0;
6897  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6898         I != E; ++I) {
6899    NamedDecl *D = (*I)->getUnderlyingDecl();
6900    bool Result;
6901    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6902      return Result;
6903
6904    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6905  }
6906
6907  if (Target->isFunctionOrFunctionTemplate()) {
6908    FunctionDecl *FD;
6909    if (isa<FunctionTemplateDecl>(Target))
6910      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6911    else
6912      FD = cast<FunctionDecl>(Target);
6913
6914    NamedDecl *OldDecl = 0;
6915    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6916    case Ovl_Overload:
6917      return false;
6918
6919    case Ovl_NonFunction:
6920      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6921      break;
6922
6923    // We found a decl with the exact signature.
6924    case Ovl_Match:
6925      // If we're in a record, we want to hide the target, so we
6926      // return true (without a diagnostic) to tell the caller not to
6927      // build a shadow decl.
6928      if (CurContext->isRecord())
6929        return true;
6930
6931      // If we're not in a record, this is an error.
6932      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6933      break;
6934    }
6935
6936    Diag(Target->getLocation(), diag::note_using_decl_target);
6937    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6938    return true;
6939  }
6940
6941  // Target is not a function.
6942
6943  if (isa<TagDecl>(Target)) {
6944    // No conflict between a tag and a non-tag.
6945    if (!Tag) return false;
6946
6947    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6948    Diag(Target->getLocation(), diag::note_using_decl_target);
6949    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6950    return true;
6951  }
6952
6953  // No conflict between a tag and a non-tag.
6954  if (!NonTag) return false;
6955
6956  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6957  Diag(Target->getLocation(), diag::note_using_decl_target);
6958  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6959  return true;
6960}
6961
6962/// Builds a shadow declaration corresponding to a 'using' declaration.
6963UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6964                                            UsingDecl *UD,
6965                                            NamedDecl *Orig) {
6966
6967  // If we resolved to another shadow declaration, just coalesce them.
6968  NamedDecl *Target = Orig;
6969  if (isa<UsingShadowDecl>(Target)) {
6970    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6971    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6972  }
6973
6974  UsingShadowDecl *Shadow
6975    = UsingShadowDecl::Create(Context, CurContext,
6976                              UD->getLocation(), UD, Target);
6977  UD->addShadowDecl(Shadow);
6978
6979  Shadow->setAccess(UD->getAccess());
6980  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6981    Shadow->setInvalidDecl();
6982
6983  if (S)
6984    PushOnScopeChains(Shadow, S);
6985  else
6986    CurContext->addDecl(Shadow);
6987
6988
6989  return Shadow;
6990}
6991
6992/// Hides a using shadow declaration.  This is required by the current
6993/// using-decl implementation when a resolvable using declaration in a
6994/// class is followed by a declaration which would hide or override
6995/// one or more of the using decl's targets; for example:
6996///
6997///   struct Base { void foo(int); };
6998///   struct Derived : Base {
6999///     using Base::foo;
7000///     void foo(int);
7001///   };
7002///
7003/// The governing language is C++03 [namespace.udecl]p12:
7004///
7005///   When a using-declaration brings names from a base class into a
7006///   derived class scope, member functions in the derived class
7007///   override and/or hide member functions with the same name and
7008///   parameter types in a base class (rather than conflicting).
7009///
7010/// There are two ways to implement this:
7011///   (1) optimistically create shadow decls when they're not hidden
7012///       by existing declarations, or
7013///   (2) don't create any shadow decls (or at least don't make them
7014///       visible) until we've fully parsed/instantiated the class.
7015/// The problem with (1) is that we might have to retroactively remove
7016/// a shadow decl, which requires several O(n) operations because the
7017/// decl structures are (very reasonably) not designed for removal.
7018/// (2) avoids this but is very fiddly and phase-dependent.
7019void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7020  if (Shadow->getDeclName().getNameKind() ==
7021        DeclarationName::CXXConversionFunctionName)
7022    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7023
7024  // Remove it from the DeclContext...
7025  Shadow->getDeclContext()->removeDecl(Shadow);
7026
7027  // ...and the scope, if applicable...
7028  if (S) {
7029    S->RemoveDecl(Shadow);
7030    IdResolver.RemoveDecl(Shadow);
7031  }
7032
7033  // ...and the using decl.
7034  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7035
7036  // TODO: complain somehow if Shadow was used.  It shouldn't
7037  // be possible for this to happen, because...?
7038}
7039
7040namespace {
7041class UsingValidatorCCC : public CorrectionCandidateCallback {
7042public:
7043  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
7044      : HasTypenameKeyword(HasTypenameKeyword),
7045        IsInstantiation(IsInstantiation) {}
7046
7047  bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
7048    NamedDecl *ND = Candidate.getCorrectionDecl();
7049
7050    // Keywords are not valid here.
7051    if (!ND || isa<NamespaceDecl>(ND))
7052      return false;
7053
7054    // Completely unqualified names are invalid for a 'using' declaration.
7055    if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7056      return false;
7057
7058    if (isa<TypeDecl>(ND))
7059      return HasTypenameKeyword || !IsInstantiation;
7060
7061    return !HasTypenameKeyword;
7062  }
7063
7064private:
7065  bool HasTypenameKeyword;
7066  bool IsInstantiation;
7067};
7068} // end anonymous namespace
7069
7070/// Builds a using declaration.
7071///
7072/// \param IsInstantiation - Whether this call arises from an
7073///   instantiation of an unresolved using declaration.  We treat
7074///   the lookup differently for these declarations.
7075NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7076                                       SourceLocation UsingLoc,
7077                                       CXXScopeSpec &SS,
7078                                       const DeclarationNameInfo &NameInfo,
7079                                       AttributeList *AttrList,
7080                                       bool IsInstantiation,
7081                                       bool HasTypenameKeyword,
7082                                       SourceLocation TypenameLoc) {
7083  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7084  SourceLocation IdentLoc = NameInfo.getLoc();
7085  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7086
7087  // FIXME: We ignore attributes for now.
7088
7089  if (SS.isEmpty()) {
7090    Diag(IdentLoc, diag::err_using_requires_qualname);
7091    return 0;
7092  }
7093
7094  // Do the redeclaration lookup in the current scope.
7095  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7096                        ForRedeclaration);
7097  Previous.setHideTags(false);
7098  if (S) {
7099    LookupName(Previous, S);
7100
7101    // It is really dumb that we have to do this.
7102    LookupResult::Filter F = Previous.makeFilter();
7103    while (F.hasNext()) {
7104      NamedDecl *D = F.next();
7105      if (!isDeclInScope(D, CurContext, S))
7106        F.erase();
7107    }
7108    F.done();
7109  } else {
7110    assert(IsInstantiation && "no scope in non-instantiation");
7111    assert(CurContext->isRecord() && "scope not record in instantiation");
7112    LookupQualifiedName(Previous, CurContext);
7113  }
7114
7115  // Check for invalid redeclarations.
7116  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7117                                  SS, IdentLoc, Previous))
7118    return 0;
7119
7120  // Check for bad qualifiers.
7121  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7122    return 0;
7123
7124  DeclContext *LookupContext = computeDeclContext(SS);
7125  NamedDecl *D;
7126  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7127  if (!LookupContext) {
7128    if (HasTypenameKeyword) {
7129      // FIXME: not all declaration name kinds are legal here
7130      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7131                                              UsingLoc, TypenameLoc,
7132                                              QualifierLoc,
7133                                              IdentLoc, NameInfo.getName());
7134    } else {
7135      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7136                                           QualifierLoc, NameInfo);
7137    }
7138  } else {
7139    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7140                          NameInfo, HasTypenameKeyword);
7141  }
7142  D->setAccess(AS);
7143  CurContext->addDecl(D);
7144
7145  if (!LookupContext) return D;
7146  UsingDecl *UD = cast<UsingDecl>(D);
7147
7148  if (RequireCompleteDeclContext(SS, LookupContext)) {
7149    UD->setInvalidDecl();
7150    return UD;
7151  }
7152
7153  // The normal rules do not apply to inheriting constructor declarations.
7154  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7155    if (CheckInheritingConstructorUsingDecl(UD))
7156      UD->setInvalidDecl();
7157    return UD;
7158  }
7159
7160  // Otherwise, look up the target name.
7161
7162  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7163
7164  // Unlike most lookups, we don't always want to hide tag
7165  // declarations: tag names are visible through the using declaration
7166  // even if hidden by ordinary names, *except* in a dependent context
7167  // where it's important for the sanity of two-phase lookup.
7168  if (!IsInstantiation)
7169    R.setHideTags(false);
7170
7171  // For the purposes of this lookup, we have a base object type
7172  // equal to that of the current context.
7173  if (CurContext->isRecord()) {
7174    R.setBaseObjectType(
7175                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7176  }
7177
7178  LookupQualifiedName(R, LookupContext);
7179
7180  // Try to correct typos if possible.
7181  if (R.empty()) {
7182    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
7183    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7184                                               R.getLookupKind(), S, &SS, CCC)){
7185      // We reject any correction for which ND would be NULL.
7186      NamedDecl *ND = Corrected.getCorrectionDecl();
7187      R.setLookupName(Corrected.getCorrection());
7188      R.addDecl(ND);
7189      // We reject candidates where DroppedSpecifier == true, hence the
7190      // literal '0' below.
7191      diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
7192                                << NameInfo.getName() << LookupContext << 0
7193                                << SS.getRange());
7194    } else {
7195      Diag(IdentLoc, diag::err_no_member)
7196        << NameInfo.getName() << LookupContext << SS.getRange();
7197      UD->setInvalidDecl();
7198      return UD;
7199    }
7200  }
7201
7202  if (R.isAmbiguous()) {
7203    UD->setInvalidDecl();
7204    return UD;
7205  }
7206
7207  if (HasTypenameKeyword) {
7208    // If we asked for a typename and got a non-type decl, error out.
7209    if (!R.getAsSingle<TypeDecl>()) {
7210      Diag(IdentLoc, diag::err_using_typename_non_type);
7211      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7212        Diag((*I)->getUnderlyingDecl()->getLocation(),
7213             diag::note_using_decl_target);
7214      UD->setInvalidDecl();
7215      return UD;
7216    }
7217  } else {
7218    // If we asked for a non-typename and we got a type, error out,
7219    // but only if this is an instantiation of an unresolved using
7220    // decl.  Otherwise just silently find the type name.
7221    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7222      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7223      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7224      UD->setInvalidDecl();
7225      return UD;
7226    }
7227  }
7228
7229  // C++0x N2914 [namespace.udecl]p6:
7230  // A using-declaration shall not name a namespace.
7231  if (R.getAsSingle<NamespaceDecl>()) {
7232    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7233      << SS.getRange();
7234    UD->setInvalidDecl();
7235    return UD;
7236  }
7237
7238  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7239    if (!CheckUsingShadowDecl(UD, *I, Previous))
7240      BuildUsingShadowDecl(S, UD, *I);
7241  }
7242
7243  return UD;
7244}
7245
7246/// Additional checks for a using declaration referring to a constructor name.
7247bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7248  assert(!UD->hasTypename() && "expecting a constructor name");
7249
7250  const Type *SourceType = UD->getQualifier()->getAsType();
7251  assert(SourceType &&
7252         "Using decl naming constructor doesn't have type in scope spec.");
7253  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7254
7255  // Check whether the named type is a direct base class.
7256  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7257  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7258  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7259       BaseIt != BaseE; ++BaseIt) {
7260    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7261    if (CanonicalSourceType == BaseType)
7262      break;
7263    if (BaseIt->getType()->isDependentType())
7264      break;
7265  }
7266
7267  if (BaseIt == BaseE) {
7268    // Did not find SourceType in the bases.
7269    Diag(UD->getUsingLoc(),
7270         diag::err_using_decl_constructor_not_in_direct_base)
7271      << UD->getNameInfo().getSourceRange()
7272      << QualType(SourceType, 0) << TargetClass;
7273    return true;
7274  }
7275
7276  if (!CurContext->isDependentContext())
7277    BaseIt->setInheritConstructors();
7278
7279  return false;
7280}
7281
7282/// Checks that the given using declaration is not an invalid
7283/// redeclaration.  Note that this is checking only for the using decl
7284/// itself, not for any ill-formedness among the UsingShadowDecls.
7285bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7286                                       bool HasTypenameKeyword,
7287                                       const CXXScopeSpec &SS,
7288                                       SourceLocation NameLoc,
7289                                       const LookupResult &Prev) {
7290  // C++03 [namespace.udecl]p8:
7291  // C++0x [namespace.udecl]p10:
7292  //   A using-declaration is a declaration and can therefore be used
7293  //   repeatedly where (and only where) multiple declarations are
7294  //   allowed.
7295  //
7296  // That's in non-member contexts.
7297  if (!CurContext->getRedeclContext()->isRecord())
7298    return false;
7299
7300  NestedNameSpecifier *Qual
7301    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7302
7303  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7304    NamedDecl *D = *I;
7305
7306    bool DTypename;
7307    NestedNameSpecifier *DQual;
7308    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7309      DTypename = UD->hasTypename();
7310      DQual = UD->getQualifier();
7311    } else if (UnresolvedUsingValueDecl *UD
7312                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7313      DTypename = false;
7314      DQual = UD->getQualifier();
7315    } else if (UnresolvedUsingTypenameDecl *UD
7316                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7317      DTypename = true;
7318      DQual = UD->getQualifier();
7319    } else continue;
7320
7321    // using decls differ if one says 'typename' and the other doesn't.
7322    // FIXME: non-dependent using decls?
7323    if (HasTypenameKeyword != DTypename) continue;
7324
7325    // using decls differ if they name different scopes (but note that
7326    // template instantiation can cause this check to trigger when it
7327    // didn't before instantiation).
7328    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7329        Context.getCanonicalNestedNameSpecifier(DQual))
7330      continue;
7331
7332    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7333    Diag(D->getLocation(), diag::note_using_decl) << 1;
7334    return true;
7335  }
7336
7337  return false;
7338}
7339
7340
7341/// Checks that the given nested-name qualifier used in a using decl
7342/// in the current context is appropriately related to the current
7343/// scope.  If an error is found, diagnoses it and returns true.
7344bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7345                                   const CXXScopeSpec &SS,
7346                                   SourceLocation NameLoc) {
7347  DeclContext *NamedContext = computeDeclContext(SS);
7348
7349  if (!CurContext->isRecord()) {
7350    // C++03 [namespace.udecl]p3:
7351    // C++0x [namespace.udecl]p8:
7352    //   A using-declaration for a class member shall be a member-declaration.
7353
7354    // If we weren't able to compute a valid scope, it must be a
7355    // dependent class scope.
7356    if (!NamedContext || NamedContext->isRecord()) {
7357      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7358        << SS.getRange();
7359      return true;
7360    }
7361
7362    // Otherwise, everything is known to be fine.
7363    return false;
7364  }
7365
7366  // The current scope is a record.
7367
7368  // If the named context is dependent, we can't decide much.
7369  if (!NamedContext) {
7370    // FIXME: in C++0x, we can diagnose if we can prove that the
7371    // nested-name-specifier does not refer to a base class, which is
7372    // still possible in some cases.
7373
7374    // Otherwise we have to conservatively report that things might be
7375    // okay.
7376    return false;
7377  }
7378
7379  if (!NamedContext->isRecord()) {
7380    // Ideally this would point at the last name in the specifier,
7381    // but we don't have that level of source info.
7382    Diag(SS.getRange().getBegin(),
7383         diag::err_using_decl_nested_name_specifier_is_not_class)
7384      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7385    return true;
7386  }
7387
7388  if (!NamedContext->isDependentContext() &&
7389      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7390    return true;
7391
7392  if (getLangOpts().CPlusPlus11) {
7393    // C++0x [namespace.udecl]p3:
7394    //   In a using-declaration used as a member-declaration, the
7395    //   nested-name-specifier shall name a base class of the class
7396    //   being defined.
7397
7398    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7399                                 cast<CXXRecordDecl>(NamedContext))) {
7400      if (CurContext == NamedContext) {
7401        Diag(NameLoc,
7402             diag::err_using_decl_nested_name_specifier_is_current_class)
7403          << SS.getRange();
7404        return true;
7405      }
7406
7407      Diag(SS.getRange().getBegin(),
7408           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7409        << (NestedNameSpecifier*) SS.getScopeRep()
7410        << cast<CXXRecordDecl>(CurContext)
7411        << SS.getRange();
7412      return true;
7413    }
7414
7415    return false;
7416  }
7417
7418  // C++03 [namespace.udecl]p4:
7419  //   A using-declaration used as a member-declaration shall refer
7420  //   to a member of a base class of the class being defined [etc.].
7421
7422  // Salient point: SS doesn't have to name a base class as long as
7423  // lookup only finds members from base classes.  Therefore we can
7424  // diagnose here only if we can prove that that can't happen,
7425  // i.e. if the class hierarchies provably don't intersect.
7426
7427  // TODO: it would be nice if "definitely valid" results were cached
7428  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7429  // need to be repeated.
7430
7431  struct UserData {
7432    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7433
7434    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7435      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7436      Data->Bases.insert(Base);
7437      return true;
7438    }
7439
7440    bool hasDependentBases(const CXXRecordDecl *Class) {
7441      return !Class->forallBases(collect, this);
7442    }
7443
7444    /// Returns true if the base is dependent or is one of the
7445    /// accumulated base classes.
7446    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7447      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7448      return !Data->Bases.count(Base);
7449    }
7450
7451    bool mightShareBases(const CXXRecordDecl *Class) {
7452      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7453    }
7454  };
7455
7456  UserData Data;
7457
7458  // Returns false if we find a dependent base.
7459  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7460    return false;
7461
7462  // Returns false if the class has a dependent base or if it or one
7463  // of its bases is present in the base set of the current context.
7464  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7465    return false;
7466
7467  Diag(SS.getRange().getBegin(),
7468       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7469    << (NestedNameSpecifier*) SS.getScopeRep()
7470    << cast<CXXRecordDecl>(CurContext)
7471    << SS.getRange();
7472
7473  return true;
7474}
7475
7476Decl *Sema::ActOnAliasDeclaration(Scope *S,
7477                                  AccessSpecifier AS,
7478                                  MultiTemplateParamsArg TemplateParamLists,
7479                                  SourceLocation UsingLoc,
7480                                  UnqualifiedId &Name,
7481                                  AttributeList *AttrList,
7482                                  TypeResult Type) {
7483  // Skip up to the relevant declaration scope.
7484  while (S->getFlags() & Scope::TemplateParamScope)
7485    S = S->getParent();
7486  assert((S->getFlags() & Scope::DeclScope) &&
7487         "got alias-declaration outside of declaration scope");
7488
7489  if (Type.isInvalid())
7490    return 0;
7491
7492  bool Invalid = false;
7493  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7494  TypeSourceInfo *TInfo = 0;
7495  GetTypeFromParser(Type.get(), &TInfo);
7496
7497  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7498    return 0;
7499
7500  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7501                                      UPPC_DeclarationType)) {
7502    Invalid = true;
7503    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7504                                             TInfo->getTypeLoc().getBeginLoc());
7505  }
7506
7507  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7508  LookupName(Previous, S);
7509
7510  // Warn about shadowing the name of a template parameter.
7511  if (Previous.isSingleResult() &&
7512      Previous.getFoundDecl()->isTemplateParameter()) {
7513    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7514    Previous.clear();
7515  }
7516
7517  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7518         "name in alias declaration must be an identifier");
7519  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7520                                               Name.StartLocation,
7521                                               Name.Identifier, TInfo);
7522
7523  NewTD->setAccess(AS);
7524
7525  if (Invalid)
7526    NewTD->setInvalidDecl();
7527
7528  ProcessDeclAttributeList(S, NewTD, AttrList);
7529
7530  CheckTypedefForVariablyModifiedType(S, NewTD);
7531  Invalid |= NewTD->isInvalidDecl();
7532
7533  bool Redeclaration = false;
7534
7535  NamedDecl *NewND;
7536  if (TemplateParamLists.size()) {
7537    TypeAliasTemplateDecl *OldDecl = 0;
7538    TemplateParameterList *OldTemplateParams = 0;
7539
7540    if (TemplateParamLists.size() != 1) {
7541      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7542        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7543         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7544    }
7545    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7546
7547    // Only consider previous declarations in the same scope.
7548    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7549                         /*ExplicitInstantiationOrSpecialization*/false);
7550    if (!Previous.empty()) {
7551      Redeclaration = true;
7552
7553      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7554      if (!OldDecl && !Invalid) {
7555        Diag(UsingLoc, diag::err_redefinition_different_kind)
7556          << Name.Identifier;
7557
7558        NamedDecl *OldD = Previous.getRepresentativeDecl();
7559        if (OldD->getLocation().isValid())
7560          Diag(OldD->getLocation(), diag::note_previous_definition);
7561
7562        Invalid = true;
7563      }
7564
7565      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7566        if (TemplateParameterListsAreEqual(TemplateParams,
7567                                           OldDecl->getTemplateParameters(),
7568                                           /*Complain=*/true,
7569                                           TPL_TemplateMatch))
7570          OldTemplateParams = OldDecl->getTemplateParameters();
7571        else
7572          Invalid = true;
7573
7574        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7575        if (!Invalid &&
7576            !Context.hasSameType(OldTD->getUnderlyingType(),
7577                                 NewTD->getUnderlyingType())) {
7578          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7579          // but we can't reasonably accept it.
7580          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7581            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7582          if (OldTD->getLocation().isValid())
7583            Diag(OldTD->getLocation(), diag::note_previous_definition);
7584          Invalid = true;
7585        }
7586      }
7587    }
7588
7589    // Merge any previous default template arguments into our parameters,
7590    // and check the parameter list.
7591    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7592                                   TPC_TypeAliasTemplate))
7593      return 0;
7594
7595    TypeAliasTemplateDecl *NewDecl =
7596      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7597                                    Name.Identifier, TemplateParams,
7598                                    NewTD);
7599
7600    NewDecl->setAccess(AS);
7601
7602    if (Invalid)
7603      NewDecl->setInvalidDecl();
7604    else if (OldDecl)
7605      NewDecl->setPreviousDeclaration(OldDecl);
7606
7607    NewND = NewDecl;
7608  } else {
7609    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7610    NewND = NewTD;
7611  }
7612
7613  if (!Redeclaration)
7614    PushOnScopeChains(NewND, S);
7615
7616  ActOnDocumentableDecl(NewND);
7617  return NewND;
7618}
7619
7620Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7621                                             SourceLocation NamespaceLoc,
7622                                             SourceLocation AliasLoc,
7623                                             IdentifierInfo *Alias,
7624                                             CXXScopeSpec &SS,
7625                                             SourceLocation IdentLoc,
7626                                             IdentifierInfo *Ident) {
7627
7628  // Lookup the namespace name.
7629  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7630  LookupParsedName(R, S, &SS);
7631
7632  // Check if we have a previous declaration with the same name.
7633  NamedDecl *PrevDecl
7634    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7635                       ForRedeclaration);
7636  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7637    PrevDecl = 0;
7638
7639  if (PrevDecl) {
7640    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7641      // We already have an alias with the same name that points to the same
7642      // namespace, so don't create a new one.
7643      // FIXME: At some point, we'll want to create the (redundant)
7644      // declaration to maintain better source information.
7645      if (!R.isAmbiguous() && !R.empty() &&
7646          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7647        return 0;
7648    }
7649
7650    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7651      diag::err_redefinition_different_kind;
7652    Diag(AliasLoc, DiagID) << Alias;
7653    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7654    return 0;
7655  }
7656
7657  if (R.isAmbiguous())
7658    return 0;
7659
7660  if (R.empty()) {
7661    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7662      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7663      return 0;
7664    }
7665  }
7666
7667  NamespaceAliasDecl *AliasDecl =
7668    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7669                               Alias, SS.getWithLocInContext(Context),
7670                               IdentLoc, R.getFoundDecl());
7671
7672  PushOnScopeChains(AliasDecl, S);
7673  return AliasDecl;
7674}
7675
7676Sema::ImplicitExceptionSpecification
7677Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7678                                               CXXMethodDecl *MD) {
7679  CXXRecordDecl *ClassDecl = MD->getParent();
7680
7681  // C++ [except.spec]p14:
7682  //   An implicitly declared special member function (Clause 12) shall have an
7683  //   exception-specification. [...]
7684  ImplicitExceptionSpecification ExceptSpec(*this);
7685  if (ClassDecl->isInvalidDecl())
7686    return ExceptSpec;
7687
7688  // Direct base-class constructors.
7689  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7690                                       BEnd = ClassDecl->bases_end();
7691       B != BEnd; ++B) {
7692    if (B->isVirtual()) // Handled below.
7693      continue;
7694
7695    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7696      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7697      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7698      // If this is a deleted function, add it anyway. This might be conformant
7699      // with the standard. This might not. I'm not sure. It might not matter.
7700      if (Constructor)
7701        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7702    }
7703  }
7704
7705  // Virtual base-class constructors.
7706  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7707                                       BEnd = ClassDecl->vbases_end();
7708       B != BEnd; ++B) {
7709    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7710      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7711      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7712      // If this is a deleted function, add it anyway. This might be conformant
7713      // with the standard. This might not. I'm not sure. It might not matter.
7714      if (Constructor)
7715        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7716    }
7717  }
7718
7719  // Field constructors.
7720  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7721                               FEnd = ClassDecl->field_end();
7722       F != FEnd; ++F) {
7723    if (F->hasInClassInitializer()) {
7724      if (Expr *E = F->getInClassInitializer())
7725        ExceptSpec.CalledExpr(E);
7726      else if (!F->isInvalidDecl())
7727        // DR1351:
7728        //   If the brace-or-equal-initializer of a non-static data member
7729        //   invokes a defaulted default constructor of its class or of an
7730        //   enclosing class in a potentially evaluated subexpression, the
7731        //   program is ill-formed.
7732        //
7733        // This resolution is unworkable: the exception specification of the
7734        // default constructor can be needed in an unevaluated context, in
7735        // particular, in the operand of a noexcept-expression, and we can be
7736        // unable to compute an exception specification for an enclosed class.
7737        //
7738        // We do not allow an in-class initializer to require the evaluation
7739        // of the exception specification for any in-class initializer whose
7740        // definition is not lexically complete.
7741        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7742    } else if (const RecordType *RecordTy
7743              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7744      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7745      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7746      // If this is a deleted function, add it anyway. This might be conformant
7747      // with the standard. This might not. I'm not sure. It might not matter.
7748      // In particular, the problem is that this function never gets called. It
7749      // might just be ill-formed because this function attempts to refer to
7750      // a deleted function here.
7751      if (Constructor)
7752        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7753    }
7754  }
7755
7756  return ExceptSpec;
7757}
7758
7759Sema::ImplicitExceptionSpecification
7760Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7761  CXXRecordDecl *ClassDecl = CD->getParent();
7762
7763  // C++ [except.spec]p14:
7764  //   An inheriting constructor [...] shall have an exception-specification. [...]
7765  ImplicitExceptionSpecification ExceptSpec(*this);
7766  if (ClassDecl->isInvalidDecl())
7767    return ExceptSpec;
7768
7769  // Inherited constructor.
7770  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7771  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7772  // FIXME: Copying or moving the parameters could add extra exceptions to the
7773  // set, as could the default arguments for the inherited constructor. This
7774  // will be addressed when we implement the resolution of core issue 1351.
7775  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7776
7777  // Direct base-class constructors.
7778  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7779                                       BEnd = ClassDecl->bases_end();
7780       B != BEnd; ++B) {
7781    if (B->isVirtual()) // Handled below.
7782      continue;
7783
7784    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7785      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7786      if (BaseClassDecl == InheritedDecl)
7787        continue;
7788      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7789      if (Constructor)
7790        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7791    }
7792  }
7793
7794  // Virtual base-class constructors.
7795  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7796                                       BEnd = ClassDecl->vbases_end();
7797       B != BEnd; ++B) {
7798    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7799      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7800      if (BaseClassDecl == InheritedDecl)
7801        continue;
7802      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7803      if (Constructor)
7804        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7805    }
7806  }
7807
7808  // Field constructors.
7809  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7810                               FEnd = ClassDecl->field_end();
7811       F != FEnd; ++F) {
7812    if (F->hasInClassInitializer()) {
7813      if (Expr *E = F->getInClassInitializer())
7814        ExceptSpec.CalledExpr(E);
7815      else if (!F->isInvalidDecl())
7816        Diag(CD->getLocation(),
7817             diag::err_in_class_initializer_references_def_ctor) << CD;
7818    } else if (const RecordType *RecordTy
7819              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7820      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7821      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7822      if (Constructor)
7823        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7824    }
7825  }
7826
7827  return ExceptSpec;
7828}
7829
7830namespace {
7831/// RAII object to register a special member as being currently declared.
7832struct DeclaringSpecialMember {
7833  Sema &S;
7834  Sema::SpecialMemberDecl D;
7835  bool WasAlreadyBeingDeclared;
7836
7837  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7838    : S(S), D(RD, CSM) {
7839    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7840    if (WasAlreadyBeingDeclared)
7841      // This almost never happens, but if it does, ensure that our cache
7842      // doesn't contain a stale result.
7843      S.SpecialMemberCache.clear();
7844
7845    // FIXME: Register a note to be produced if we encounter an error while
7846    // declaring the special member.
7847  }
7848  ~DeclaringSpecialMember() {
7849    if (!WasAlreadyBeingDeclared)
7850      S.SpecialMembersBeingDeclared.erase(D);
7851  }
7852
7853  /// \brief Are we already trying to declare this special member?
7854  bool isAlreadyBeingDeclared() const {
7855    return WasAlreadyBeingDeclared;
7856  }
7857};
7858}
7859
7860CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7861                                                     CXXRecordDecl *ClassDecl) {
7862  // C++ [class.ctor]p5:
7863  //   A default constructor for a class X is a constructor of class X
7864  //   that can be called without an argument. If there is no
7865  //   user-declared constructor for class X, a default constructor is
7866  //   implicitly declared. An implicitly-declared default constructor
7867  //   is an inline public member of its class.
7868  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7869         "Should not build implicit default constructor!");
7870
7871  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7872  if (DSM.isAlreadyBeingDeclared())
7873    return 0;
7874
7875  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7876                                                     CXXDefaultConstructor,
7877                                                     false);
7878
7879  // Create the actual constructor declaration.
7880  CanQualType ClassType
7881    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7882  SourceLocation ClassLoc = ClassDecl->getLocation();
7883  DeclarationName Name
7884    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7885  DeclarationNameInfo NameInfo(Name, ClassLoc);
7886  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7887      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7888      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7889      Constexpr);
7890  DefaultCon->setAccess(AS_public);
7891  DefaultCon->setDefaulted();
7892  DefaultCon->setImplicit();
7893
7894  // Build an exception specification pointing back at this constructor.
7895  FunctionProtoType::ExtProtoInfo EPI;
7896  EPI.ExceptionSpecType = EST_Unevaluated;
7897  EPI.ExceptionSpecDecl = DefaultCon;
7898  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
7899
7900  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7901  // constructors is easy to compute.
7902  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7903
7904  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7905    SetDeclDeleted(DefaultCon, ClassLoc);
7906
7907  // Note that we have declared this constructor.
7908  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7909
7910  if (Scope *S = getScopeForContext(ClassDecl))
7911    PushOnScopeChains(DefaultCon, S, false);
7912  ClassDecl->addDecl(DefaultCon);
7913
7914  return DefaultCon;
7915}
7916
7917void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7918                                            CXXConstructorDecl *Constructor) {
7919  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7920          !Constructor->doesThisDeclarationHaveABody() &&
7921          !Constructor->isDeleted()) &&
7922    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7923
7924  CXXRecordDecl *ClassDecl = Constructor->getParent();
7925  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7926
7927  SynthesizedFunctionScope Scope(*this, Constructor);
7928  DiagnosticErrorTrap Trap(Diags);
7929  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7930      Trap.hasErrorOccurred()) {
7931    Diag(CurrentLocation, diag::note_member_synthesized_at)
7932      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7933    Constructor->setInvalidDecl();
7934    return;
7935  }
7936
7937  SourceLocation Loc = Constructor->getLocation();
7938  Constructor->setBody(new (Context) CompoundStmt(Loc));
7939
7940  Constructor->setUsed();
7941  MarkVTableUsed(CurrentLocation, ClassDecl);
7942
7943  if (ASTMutationListener *L = getASTMutationListener()) {
7944    L->CompletedImplicitDefinition(Constructor);
7945  }
7946}
7947
7948void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7949  // Check that any explicitly-defaulted methods have exception specifications
7950  // compatible with their implicit exception specifications.
7951  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7952}
7953
7954namespace {
7955/// Information on inheriting constructors to declare.
7956class InheritingConstructorInfo {
7957public:
7958  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7959      : SemaRef(SemaRef), Derived(Derived) {
7960    // Mark the constructors that we already have in the derived class.
7961    //
7962    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7963    //   unless there is a user-declared constructor with the same signature in
7964    //   the class where the using-declaration appears.
7965    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7966  }
7967
7968  void inheritAll(CXXRecordDecl *RD) {
7969    visitAll(RD, &InheritingConstructorInfo::inherit);
7970  }
7971
7972private:
7973  /// Information about an inheriting constructor.
7974  struct InheritingConstructor {
7975    InheritingConstructor()
7976      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7977
7978    /// If \c true, a constructor with this signature is already declared
7979    /// in the derived class.
7980    bool DeclaredInDerived;
7981
7982    /// The constructor which is inherited.
7983    const CXXConstructorDecl *BaseCtor;
7984
7985    /// The derived constructor we declared.
7986    CXXConstructorDecl *DerivedCtor;
7987  };
7988
7989  /// Inheriting constructors with a given canonical type. There can be at
7990  /// most one such non-template constructor, and any number of templated
7991  /// constructors.
7992  struct InheritingConstructorsForType {
7993    InheritingConstructor NonTemplate;
7994    SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
7995        Templates;
7996
7997    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7998      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7999        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8000        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8001          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8002                                               false, S.TPL_TemplateMatch))
8003            return Templates[I].second;
8004        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8005        return Templates.back().second;
8006      }
8007
8008      return NonTemplate;
8009    }
8010  };
8011
8012  /// Get or create the inheriting constructor record for a constructor.
8013  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8014                                  QualType CtorType) {
8015    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8016        .getEntry(SemaRef, Ctor);
8017  }
8018
8019  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8020
8021  /// Process all constructors for a class.
8022  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8023    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8024                                      CtorE = RD->ctor_end();
8025         CtorIt != CtorE; ++CtorIt)
8026      (this->*Callback)(*CtorIt);
8027    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8028             I(RD->decls_begin()), E(RD->decls_end());
8029         I != E; ++I) {
8030      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8031      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8032        (this->*Callback)(CD);
8033    }
8034  }
8035
8036  /// Note that a constructor (or constructor template) was declared in Derived.
8037  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8038    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8039  }
8040
8041  /// Inherit a single constructor.
8042  void inherit(const CXXConstructorDecl *Ctor) {
8043    const FunctionProtoType *CtorType =
8044        Ctor->getType()->castAs<FunctionProtoType>();
8045    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8046    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8047
8048    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8049
8050    // Core issue (no number yet): the ellipsis is always discarded.
8051    if (EPI.Variadic) {
8052      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8053      SemaRef.Diag(Ctor->getLocation(),
8054                   diag::note_using_decl_constructor_ellipsis);
8055      EPI.Variadic = false;
8056    }
8057
8058    // Declare a constructor for each number of parameters.
8059    //
8060    // C++11 [class.inhctor]p1:
8061    //   The candidate set of inherited constructors from the class X named in
8062    //   the using-declaration consists of [... modulo defects ...] for each
8063    //   constructor or constructor template of X, the set of constructors or
8064    //   constructor templates that results from omitting any ellipsis parameter
8065    //   specification and successively omitting parameters with a default
8066    //   argument from the end of the parameter-type-list
8067    unsigned MinParams = minParamsToInherit(Ctor);
8068    unsigned Params = Ctor->getNumParams();
8069    if (Params >= MinParams) {
8070      do
8071        declareCtor(UsingLoc, Ctor,
8072                    SemaRef.Context.getFunctionType(
8073                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8074      while (Params > MinParams &&
8075             Ctor->getParamDecl(--Params)->hasDefaultArg());
8076    }
8077  }
8078
8079  /// Find the using-declaration which specified that we should inherit the
8080  /// constructors of \p Base.
8081  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8082    // No fancy lookup required; just look for the base constructor name
8083    // directly within the derived class.
8084    ASTContext &Context = SemaRef.Context;
8085    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8086        Context.getCanonicalType(Context.getRecordType(Base)));
8087    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8088    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8089  }
8090
8091  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8092    // C++11 [class.inhctor]p3:
8093    //   [F]or each constructor template in the candidate set of inherited
8094    //   constructors, a constructor template is implicitly declared
8095    if (Ctor->getDescribedFunctionTemplate())
8096      return 0;
8097
8098    //   For each non-template constructor in the candidate set of inherited
8099    //   constructors other than a constructor having no parameters or a
8100    //   copy/move constructor having a single parameter, a constructor is
8101    //   implicitly declared [...]
8102    if (Ctor->getNumParams() == 0)
8103      return 1;
8104    if (Ctor->isCopyOrMoveConstructor())
8105      return 2;
8106
8107    // Per discussion on core reflector, never inherit a constructor which
8108    // would become a default, copy, or move constructor of Derived either.
8109    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8110    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8111    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8112  }
8113
8114  /// Declare a single inheriting constructor, inheriting the specified
8115  /// constructor, with the given type.
8116  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8117                   QualType DerivedType) {
8118    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8119
8120    // C++11 [class.inhctor]p3:
8121    //   ... a constructor is implicitly declared with the same constructor
8122    //   characteristics unless there is a user-declared constructor with
8123    //   the same signature in the class where the using-declaration appears
8124    if (Entry.DeclaredInDerived)
8125      return;
8126
8127    // C++11 [class.inhctor]p7:
8128    //   If two using-declarations declare inheriting constructors with the
8129    //   same signature, the program is ill-formed
8130    if (Entry.DerivedCtor) {
8131      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8132        // Only diagnose this once per constructor.
8133        if (Entry.DerivedCtor->isInvalidDecl())
8134          return;
8135        Entry.DerivedCtor->setInvalidDecl();
8136
8137        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8138        SemaRef.Diag(BaseCtor->getLocation(),
8139                     diag::note_using_decl_constructor_conflict_current_ctor);
8140        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8141                     diag::note_using_decl_constructor_conflict_previous_ctor);
8142        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8143                     diag::note_using_decl_constructor_conflict_previous_using);
8144      } else {
8145        // Core issue (no number): if the same inheriting constructor is
8146        // produced by multiple base class constructors from the same base
8147        // class, the inheriting constructor is defined as deleted.
8148        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8149      }
8150
8151      return;
8152    }
8153
8154    ASTContext &Context = SemaRef.Context;
8155    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8156        Context.getCanonicalType(Context.getRecordType(Derived)));
8157    DeclarationNameInfo NameInfo(Name, UsingLoc);
8158
8159    TemplateParameterList *TemplateParams = 0;
8160    if (const FunctionTemplateDecl *FTD =
8161            BaseCtor->getDescribedFunctionTemplate()) {
8162      TemplateParams = FTD->getTemplateParameters();
8163      // We're reusing template parameters from a different DeclContext. This
8164      // is questionable at best, but works out because the template depth in
8165      // both places is guaranteed to be 0.
8166      // FIXME: Rebuild the template parameters in the new context, and
8167      // transform the function type to refer to them.
8168    }
8169
8170    // Build type source info pointing at the using-declaration. This is
8171    // required by template instantiation.
8172    TypeSourceInfo *TInfo =
8173        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8174    FunctionProtoTypeLoc ProtoLoc =
8175        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8176
8177    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8178        Context, Derived, UsingLoc, NameInfo, DerivedType,
8179        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8180        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8181
8182    // Build an unevaluated exception specification for this constructor.
8183    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8184    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8185    EPI.ExceptionSpecType = EST_Unevaluated;
8186    EPI.ExceptionSpecDecl = DerivedCtor;
8187    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8188                                                 FPT->getArgTypes(), EPI));
8189
8190    // Build the parameter declarations.
8191    SmallVector<ParmVarDecl *, 16> ParamDecls;
8192    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8193      TypeSourceInfo *TInfo =
8194          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8195      ParmVarDecl *PD = ParmVarDecl::Create(
8196          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8197          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8198      PD->setScopeInfo(0, I);
8199      PD->setImplicit();
8200      ParamDecls.push_back(PD);
8201      ProtoLoc.setArg(I, PD);
8202    }
8203
8204    // Set up the new constructor.
8205    DerivedCtor->setAccess(BaseCtor->getAccess());
8206    DerivedCtor->setParams(ParamDecls);
8207    DerivedCtor->setInheritedConstructor(BaseCtor);
8208    if (BaseCtor->isDeleted())
8209      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8210
8211    // If this is a constructor template, build the template declaration.
8212    if (TemplateParams) {
8213      FunctionTemplateDecl *DerivedTemplate =
8214          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8215                                       TemplateParams, DerivedCtor);
8216      DerivedTemplate->setAccess(BaseCtor->getAccess());
8217      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8218      Derived->addDecl(DerivedTemplate);
8219    } else {
8220      Derived->addDecl(DerivedCtor);
8221    }
8222
8223    Entry.BaseCtor = BaseCtor;
8224    Entry.DerivedCtor = DerivedCtor;
8225  }
8226
8227  Sema &SemaRef;
8228  CXXRecordDecl *Derived;
8229  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8230  MapType Map;
8231};
8232}
8233
8234void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8235  // Defer declaring the inheriting constructors until the class is
8236  // instantiated.
8237  if (ClassDecl->isDependentContext())
8238    return;
8239
8240  // Find base classes from which we might inherit constructors.
8241  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8242  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8243                                          BaseE = ClassDecl->bases_end();
8244       BaseIt != BaseE; ++BaseIt)
8245    if (BaseIt->getInheritConstructors())
8246      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8247
8248  // Go no further if we're not inheriting any constructors.
8249  if (InheritedBases.empty())
8250    return;
8251
8252  // Declare the inherited constructors.
8253  InheritingConstructorInfo ICI(*this, ClassDecl);
8254  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8255    ICI.inheritAll(InheritedBases[I]);
8256}
8257
8258void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8259                                       CXXConstructorDecl *Constructor) {
8260  CXXRecordDecl *ClassDecl = Constructor->getParent();
8261  assert(Constructor->getInheritedConstructor() &&
8262         !Constructor->doesThisDeclarationHaveABody() &&
8263         !Constructor->isDeleted());
8264
8265  SynthesizedFunctionScope Scope(*this, Constructor);
8266  DiagnosticErrorTrap Trap(Diags);
8267  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8268      Trap.hasErrorOccurred()) {
8269    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8270      << Context.getTagDeclType(ClassDecl);
8271    Constructor->setInvalidDecl();
8272    return;
8273  }
8274
8275  SourceLocation Loc = Constructor->getLocation();
8276  Constructor->setBody(new (Context) CompoundStmt(Loc));
8277
8278  Constructor->setUsed();
8279  MarkVTableUsed(CurrentLocation, ClassDecl);
8280
8281  if (ASTMutationListener *L = getASTMutationListener()) {
8282    L->CompletedImplicitDefinition(Constructor);
8283  }
8284}
8285
8286
8287Sema::ImplicitExceptionSpecification
8288Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8289  CXXRecordDecl *ClassDecl = MD->getParent();
8290
8291  // C++ [except.spec]p14:
8292  //   An implicitly declared special member function (Clause 12) shall have
8293  //   an exception-specification.
8294  ImplicitExceptionSpecification ExceptSpec(*this);
8295  if (ClassDecl->isInvalidDecl())
8296    return ExceptSpec;
8297
8298  // Direct base-class destructors.
8299  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8300                                       BEnd = ClassDecl->bases_end();
8301       B != BEnd; ++B) {
8302    if (B->isVirtual()) // Handled below.
8303      continue;
8304
8305    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8306      ExceptSpec.CalledDecl(B->getLocStart(),
8307                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8308  }
8309
8310  // Virtual base-class destructors.
8311  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8312                                       BEnd = ClassDecl->vbases_end();
8313       B != BEnd; ++B) {
8314    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8315      ExceptSpec.CalledDecl(B->getLocStart(),
8316                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8317  }
8318
8319  // Field destructors.
8320  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8321                               FEnd = ClassDecl->field_end();
8322       F != FEnd; ++F) {
8323    if (const RecordType *RecordTy
8324        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8325      ExceptSpec.CalledDecl(F->getLocation(),
8326                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8327  }
8328
8329  return ExceptSpec;
8330}
8331
8332CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8333  // C++ [class.dtor]p2:
8334  //   If a class has no user-declared destructor, a destructor is
8335  //   declared implicitly. An implicitly-declared destructor is an
8336  //   inline public member of its class.
8337  assert(ClassDecl->needsImplicitDestructor());
8338
8339  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8340  if (DSM.isAlreadyBeingDeclared())
8341    return 0;
8342
8343  // Create the actual destructor declaration.
8344  CanQualType ClassType
8345    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8346  SourceLocation ClassLoc = ClassDecl->getLocation();
8347  DeclarationName Name
8348    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8349  DeclarationNameInfo NameInfo(Name, ClassLoc);
8350  CXXDestructorDecl *Destructor
8351      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8352                                  QualType(), 0, /*isInline=*/true,
8353                                  /*isImplicitlyDeclared=*/true);
8354  Destructor->setAccess(AS_public);
8355  Destructor->setDefaulted();
8356  Destructor->setImplicit();
8357
8358  // Build an exception specification pointing back at this destructor.
8359  FunctionProtoType::ExtProtoInfo EPI;
8360  EPI.ExceptionSpecType = EST_Unevaluated;
8361  EPI.ExceptionSpecDecl = Destructor;
8362  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8363
8364  AddOverriddenMethods(ClassDecl, Destructor);
8365
8366  // We don't need to use SpecialMemberIsTrivial here; triviality for
8367  // destructors is easy to compute.
8368  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8369
8370  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8371    SetDeclDeleted(Destructor, ClassLoc);
8372
8373  // Note that we have declared this destructor.
8374  ++ASTContext::NumImplicitDestructorsDeclared;
8375
8376  // Introduce this destructor into its scope.
8377  if (Scope *S = getScopeForContext(ClassDecl))
8378    PushOnScopeChains(Destructor, S, false);
8379  ClassDecl->addDecl(Destructor);
8380
8381  return Destructor;
8382}
8383
8384void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8385                                    CXXDestructorDecl *Destructor) {
8386  assert((Destructor->isDefaulted() &&
8387          !Destructor->doesThisDeclarationHaveABody() &&
8388          !Destructor->isDeleted()) &&
8389         "DefineImplicitDestructor - call it for implicit default dtor");
8390  CXXRecordDecl *ClassDecl = Destructor->getParent();
8391  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8392
8393  if (Destructor->isInvalidDecl())
8394    return;
8395
8396  SynthesizedFunctionScope Scope(*this, Destructor);
8397
8398  DiagnosticErrorTrap Trap(Diags);
8399  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8400                                         Destructor->getParent());
8401
8402  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8403    Diag(CurrentLocation, diag::note_member_synthesized_at)
8404      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8405
8406    Destructor->setInvalidDecl();
8407    return;
8408  }
8409
8410  SourceLocation Loc = Destructor->getLocation();
8411  Destructor->setBody(new (Context) CompoundStmt(Loc));
8412  Destructor->setUsed();
8413  MarkVTableUsed(CurrentLocation, ClassDecl);
8414
8415  if (ASTMutationListener *L = getASTMutationListener()) {
8416    L->CompletedImplicitDefinition(Destructor);
8417  }
8418}
8419
8420/// \brief Perform any semantic analysis which needs to be delayed until all
8421/// pending class member declarations have been parsed.
8422void Sema::ActOnFinishCXXMemberDecls() {
8423  // If the context is an invalid C++ class, just suppress these checks.
8424  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8425    if (Record->isInvalidDecl()) {
8426      DelayedDestructorExceptionSpecChecks.clear();
8427      return;
8428    }
8429  }
8430
8431  // Perform any deferred checking of exception specifications for virtual
8432  // destructors.
8433  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8434       i != e; ++i) {
8435    const CXXDestructorDecl *Dtor =
8436        DelayedDestructorExceptionSpecChecks[i].first;
8437    assert(!Dtor->getParent()->isDependentType() &&
8438           "Should not ever add destructors of templates into the list.");
8439    CheckOverridingFunctionExceptionSpec(Dtor,
8440        DelayedDestructorExceptionSpecChecks[i].second);
8441  }
8442  DelayedDestructorExceptionSpecChecks.clear();
8443}
8444
8445void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8446                                         CXXDestructorDecl *Destructor) {
8447  assert(getLangOpts().CPlusPlus11 &&
8448         "adjusting dtor exception specs was introduced in c++11");
8449
8450  // C++11 [class.dtor]p3:
8451  //   A declaration of a destructor that does not have an exception-
8452  //   specification is implicitly considered to have the same exception-
8453  //   specification as an implicit declaration.
8454  const FunctionProtoType *DtorType = Destructor->getType()->
8455                                        getAs<FunctionProtoType>();
8456  if (DtorType->hasExceptionSpec())
8457    return;
8458
8459  // Replace the destructor's type, building off the existing one. Fortunately,
8460  // the only thing of interest in the destructor type is its extended info.
8461  // The return and arguments are fixed.
8462  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8463  EPI.ExceptionSpecType = EST_Unevaluated;
8464  EPI.ExceptionSpecDecl = Destructor;
8465  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8466
8467  // FIXME: If the destructor has a body that could throw, and the newly created
8468  // spec doesn't allow exceptions, we should emit a warning, because this
8469  // change in behavior can break conforming C++03 programs at runtime.
8470  // However, we don't have a body or an exception specification yet, so it
8471  // needs to be done somewhere else.
8472}
8473
8474/// When generating a defaulted copy or move assignment operator, if a field
8475/// should be copied with __builtin_memcpy rather than via explicit assignments,
8476/// do so. This optimization only applies for arrays of scalars, and for arrays
8477/// of class type where the selected copy/move-assignment operator is trivial.
8478static StmtResult
8479buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8480                           Expr *To, Expr *From) {
8481  // Compute the size of the memory buffer to be copied.
8482  QualType SizeType = S.Context.getSizeType();
8483  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8484                   S.Context.getTypeSizeInChars(T).getQuantity());
8485
8486  // Take the address of the field references for "from" and "to". We
8487  // directly construct UnaryOperators here because semantic analysis
8488  // does not permit us to take the address of an xvalue.
8489  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8490                         S.Context.getPointerType(From->getType()),
8491                         VK_RValue, OK_Ordinary, Loc);
8492  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8493                       S.Context.getPointerType(To->getType()),
8494                       VK_RValue, OK_Ordinary, Loc);
8495
8496  const Type *E = T->getBaseElementTypeUnsafe();
8497  bool NeedsCollectableMemCpy =
8498    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8499
8500  // Create a reference to the __builtin_objc_memmove_collectable function
8501  StringRef MemCpyName = NeedsCollectableMemCpy ?
8502    "__builtin_objc_memmove_collectable" :
8503    "__builtin_memcpy";
8504  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8505                 Sema::LookupOrdinaryName);
8506  S.LookupName(R, S.TUScope, true);
8507
8508  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8509  if (!MemCpy)
8510    // Something went horribly wrong earlier, and we will have complained
8511    // about it.
8512    return StmtError();
8513
8514  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8515                                            VK_RValue, Loc, 0);
8516  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8517
8518  Expr *CallArgs[] = {
8519    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8520  };
8521  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8522                                    Loc, CallArgs, Loc);
8523
8524  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8525  return S.Owned(Call.takeAs<Stmt>());
8526}
8527
8528/// \brief Builds a statement that copies/moves the given entity from \p From to
8529/// \c To.
8530///
8531/// This routine is used to copy/move the members of a class with an
8532/// implicitly-declared copy/move assignment operator. When the entities being
8533/// copied are arrays, this routine builds for loops to copy them.
8534///
8535/// \param S The Sema object used for type-checking.
8536///
8537/// \param Loc The location where the implicit copy/move is being generated.
8538///
8539/// \param T The type of the expressions being copied/moved. Both expressions
8540/// must have this type.
8541///
8542/// \param To The expression we are copying/moving to.
8543///
8544/// \param From The expression we are copying/moving from.
8545///
8546/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8547/// Otherwise, it's a non-static member subobject.
8548///
8549/// \param Copying Whether we're copying or moving.
8550///
8551/// \param Depth Internal parameter recording the depth of the recursion.
8552///
8553/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8554/// if a memcpy should be used instead.
8555static StmtResult
8556buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8557                                 Expr *To, Expr *From,
8558                                 bool CopyingBaseSubobject, bool Copying,
8559                                 unsigned Depth = 0) {
8560  // C++11 [class.copy]p28:
8561  //   Each subobject is assigned in the manner appropriate to its type:
8562  //
8563  //     - if the subobject is of class type, as if by a call to operator= with
8564  //       the subobject as the object expression and the corresponding
8565  //       subobject of x as a single function argument (as if by explicit
8566  //       qualification; that is, ignoring any possible virtual overriding
8567  //       functions in more derived classes);
8568  //
8569  // C++03 [class.copy]p13:
8570  //     - if the subobject is of class type, the copy assignment operator for
8571  //       the class is used (as if by explicit qualification; that is,
8572  //       ignoring any possible virtual overriding functions in more derived
8573  //       classes);
8574  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8575    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8576
8577    // Look for operator=.
8578    DeclarationName Name
8579      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8580    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8581    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8582
8583    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8584    // operator.
8585    if (!S.getLangOpts().CPlusPlus11) {
8586      LookupResult::Filter F = OpLookup.makeFilter();
8587      while (F.hasNext()) {
8588        NamedDecl *D = F.next();
8589        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8590          if (Method->isCopyAssignmentOperator() ||
8591              (!Copying && Method->isMoveAssignmentOperator()))
8592            continue;
8593
8594        F.erase();
8595      }
8596      F.done();
8597    }
8598
8599    // Suppress the protected check (C++ [class.protected]) for each of the
8600    // assignment operators we found. This strange dance is required when
8601    // we're assigning via a base classes's copy-assignment operator. To
8602    // ensure that we're getting the right base class subobject (without
8603    // ambiguities), we need to cast "this" to that subobject type; to
8604    // ensure that we don't go through the virtual call mechanism, we need
8605    // to qualify the operator= name with the base class (see below). However,
8606    // this means that if the base class has a protected copy assignment
8607    // operator, the protected member access check will fail. So, we
8608    // rewrite "protected" access to "public" access in this case, since we
8609    // know by construction that we're calling from a derived class.
8610    if (CopyingBaseSubobject) {
8611      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8612           L != LEnd; ++L) {
8613        if (L.getAccess() == AS_protected)
8614          L.setAccess(AS_public);
8615      }
8616    }
8617
8618    // Create the nested-name-specifier that will be used to qualify the
8619    // reference to operator=; this is required to suppress the virtual
8620    // call mechanism.
8621    CXXScopeSpec SS;
8622    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8623    SS.MakeTrivial(S.Context,
8624                   NestedNameSpecifier::Create(S.Context, 0, false,
8625                                               CanonicalT),
8626                   Loc);
8627
8628    // Create the reference to operator=.
8629    ExprResult OpEqualRef
8630      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8631                                   /*TemplateKWLoc=*/SourceLocation(),
8632                                   /*FirstQualifierInScope=*/0,
8633                                   OpLookup,
8634                                   /*TemplateArgs=*/0,
8635                                   /*SuppressQualifierCheck=*/true);
8636    if (OpEqualRef.isInvalid())
8637      return StmtError();
8638
8639    // Build the call to the assignment operator.
8640
8641    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8642                                                  OpEqualRef.takeAs<Expr>(),
8643                                                  Loc, From, Loc);
8644    if (Call.isInvalid())
8645      return StmtError();
8646
8647    // If we built a call to a trivial 'operator=' while copying an array,
8648    // bail out. We'll replace the whole shebang with a memcpy.
8649    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8650    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8651      return StmtResult((Stmt*)0);
8652
8653    // Convert to an expression-statement, and clean up any produced
8654    // temporaries.
8655    return S.ActOnExprStmt(Call);
8656  }
8657
8658  //     - if the subobject is of scalar type, the built-in assignment
8659  //       operator is used.
8660  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8661  if (!ArrayTy) {
8662    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8663    if (Assignment.isInvalid())
8664      return StmtError();
8665    return S.ActOnExprStmt(Assignment);
8666  }
8667
8668  //     - if the subobject is an array, each element is assigned, in the
8669  //       manner appropriate to the element type;
8670
8671  // Construct a loop over the array bounds, e.g.,
8672  //
8673  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8674  //
8675  // that will copy each of the array elements.
8676  QualType SizeType = S.Context.getSizeType();
8677
8678  // Create the iteration variable.
8679  IdentifierInfo *IterationVarName = 0;
8680  {
8681    SmallString<8> Str;
8682    llvm::raw_svector_ostream OS(Str);
8683    OS << "__i" << Depth;
8684    IterationVarName = &S.Context.Idents.get(OS.str());
8685  }
8686  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8687                                          IterationVarName, SizeType,
8688                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8689                                          SC_None);
8690
8691  // Initialize the iteration variable to zero.
8692  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8693  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8694
8695  // Create a reference to the iteration variable; we'll use this several
8696  // times throughout.
8697  Expr *IterationVarRef
8698    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8699  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8700  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8701  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8702
8703  // Create the DeclStmt that holds the iteration variable.
8704  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8705
8706  // Subscript the "from" and "to" expressions with the iteration variable.
8707  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8708                                                         IterationVarRefRVal,
8709                                                         Loc));
8710  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8711                                                       IterationVarRefRVal,
8712                                                       Loc));
8713  if (!Copying) // Cast to rvalue
8714    From = CastForMoving(S, From);
8715
8716  // Build the copy/move for an individual element of the array.
8717  StmtResult Copy =
8718    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8719                                     To, From, CopyingBaseSubobject,
8720                                     Copying, Depth + 1);
8721  // Bail out if copying fails or if we determined that we should use memcpy.
8722  if (Copy.isInvalid() || !Copy.get())
8723    return Copy;
8724
8725  // Create the comparison against the array bound.
8726  llvm::APInt Upper
8727    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8728  Expr *Comparison
8729    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8730                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8731                                     BO_NE, S.Context.BoolTy,
8732                                     VK_RValue, OK_Ordinary, Loc, false);
8733
8734  // Create the pre-increment of the iteration variable.
8735  Expr *Increment
8736    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8737                                    VK_LValue, OK_Ordinary, Loc);
8738
8739  // Construct the loop that copies all elements of this array.
8740  return S.ActOnForStmt(Loc, Loc, InitStmt,
8741                        S.MakeFullExpr(Comparison),
8742                        0, S.MakeFullDiscardedValueExpr(Increment),
8743                        Loc, Copy.take());
8744}
8745
8746static StmtResult
8747buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8748                      Expr *To, Expr *From,
8749                      bool CopyingBaseSubobject, bool Copying) {
8750  // Maybe we should use a memcpy?
8751  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8752      T.isTriviallyCopyableType(S.Context))
8753    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8754
8755  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8756                                                     CopyingBaseSubobject,
8757                                                     Copying, 0));
8758
8759  // If we ended up picking a trivial assignment operator for an array of a
8760  // non-trivially-copyable class type, just emit a memcpy.
8761  if (!Result.isInvalid() && !Result.get())
8762    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8763
8764  return Result;
8765}
8766
8767Sema::ImplicitExceptionSpecification
8768Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8769  CXXRecordDecl *ClassDecl = MD->getParent();
8770
8771  ImplicitExceptionSpecification ExceptSpec(*this);
8772  if (ClassDecl->isInvalidDecl())
8773    return ExceptSpec;
8774
8775  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8776  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8777  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8778
8779  // C++ [except.spec]p14:
8780  //   An implicitly declared special member function (Clause 12) shall have an
8781  //   exception-specification. [...]
8782
8783  // It is unspecified whether or not an implicit copy assignment operator
8784  // attempts to deduplicate calls to assignment operators of virtual bases are
8785  // made. As such, this exception specification is effectively unspecified.
8786  // Based on a similar decision made for constness in C++0x, we're erring on
8787  // the side of assuming such calls to be made regardless of whether they
8788  // actually happen.
8789  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8790                                       BaseEnd = ClassDecl->bases_end();
8791       Base != BaseEnd; ++Base) {
8792    if (Base->isVirtual())
8793      continue;
8794
8795    CXXRecordDecl *BaseClassDecl
8796      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8797    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8798                                                            ArgQuals, false, 0))
8799      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8800  }
8801
8802  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8803                                       BaseEnd = ClassDecl->vbases_end();
8804       Base != BaseEnd; ++Base) {
8805    CXXRecordDecl *BaseClassDecl
8806      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8807    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8808                                                            ArgQuals, false, 0))
8809      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8810  }
8811
8812  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8813                                  FieldEnd = ClassDecl->field_end();
8814       Field != FieldEnd;
8815       ++Field) {
8816    QualType FieldType = Context.getBaseElementType(Field->getType());
8817    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8818      if (CXXMethodDecl *CopyAssign =
8819          LookupCopyingAssignment(FieldClassDecl,
8820                                  ArgQuals | FieldType.getCVRQualifiers(),
8821                                  false, 0))
8822        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8823    }
8824  }
8825
8826  return ExceptSpec;
8827}
8828
8829CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8830  // Note: The following rules are largely analoguous to the copy
8831  // constructor rules. Note that virtual bases are not taken into account
8832  // for determining the argument type of the operator. Note also that
8833  // operators taking an object instead of a reference are allowed.
8834  assert(ClassDecl->needsImplicitCopyAssignment());
8835
8836  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8837  if (DSM.isAlreadyBeingDeclared())
8838    return 0;
8839
8840  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8841  QualType RetType = Context.getLValueReferenceType(ArgType);
8842  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
8843  if (Const)
8844    ArgType = ArgType.withConst();
8845  ArgType = Context.getLValueReferenceType(ArgType);
8846
8847  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8848                                                     CXXCopyAssignment,
8849                                                     Const);
8850
8851  //   An implicitly-declared copy assignment operator is an inline public
8852  //   member of its class.
8853  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8854  SourceLocation ClassLoc = ClassDecl->getLocation();
8855  DeclarationNameInfo NameInfo(Name, ClassLoc);
8856  CXXMethodDecl *CopyAssignment =
8857      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8858                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
8859                            /*isInline=*/ true, Constexpr, SourceLocation());
8860  CopyAssignment->setAccess(AS_public);
8861  CopyAssignment->setDefaulted();
8862  CopyAssignment->setImplicit();
8863
8864  // Build an exception specification pointing back at this member.
8865  FunctionProtoType::ExtProtoInfo EPI;
8866  EPI.ExceptionSpecType = EST_Unevaluated;
8867  EPI.ExceptionSpecDecl = CopyAssignment;
8868  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8869
8870  // Add the parameter to the operator.
8871  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8872                                               ClassLoc, ClassLoc, /*Id=*/0,
8873                                               ArgType, /*TInfo=*/0,
8874                                               SC_None, 0);
8875  CopyAssignment->setParams(FromParam);
8876
8877  AddOverriddenMethods(ClassDecl, CopyAssignment);
8878
8879  CopyAssignment->setTrivial(
8880    ClassDecl->needsOverloadResolutionForCopyAssignment()
8881      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8882      : ClassDecl->hasTrivialCopyAssignment());
8883
8884  // C++11 [class.copy]p19:
8885  //   ....  If the class definition does not explicitly declare a copy
8886  //   assignment operator, there is no user-declared move constructor, and
8887  //   there is no user-declared move assignment operator, a copy assignment
8888  //   operator is implicitly declared as defaulted.
8889  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8890    SetDeclDeleted(CopyAssignment, ClassLoc);
8891
8892  // Note that we have added this copy-assignment operator.
8893  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8894
8895  if (Scope *S = getScopeForContext(ClassDecl))
8896    PushOnScopeChains(CopyAssignment, S, false);
8897  ClassDecl->addDecl(CopyAssignment);
8898
8899  return CopyAssignment;
8900}
8901
8902/// Diagnose an implicit copy operation for a class which is odr-used, but
8903/// which is deprecated because the class has a user-declared copy constructor,
8904/// copy assignment operator, or destructor.
8905static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
8906                                            SourceLocation UseLoc) {
8907  assert(CopyOp->isImplicit());
8908
8909  CXXRecordDecl *RD = CopyOp->getParent();
8910  CXXMethodDecl *UserDeclaredOperation = 0;
8911
8912  // In Microsoft mode, assignment operations don't affect constructors and
8913  // vice versa.
8914  if (RD->hasUserDeclaredDestructor()) {
8915    UserDeclaredOperation = RD->getDestructor();
8916  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
8917             RD->hasUserDeclaredCopyConstructor() &&
8918             !S.getLangOpts().MicrosoftMode) {
8919    // Find any user-declared copy constructor.
8920    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
8921                                      E = RD->ctor_end(); I != E; ++I) {
8922      if (I->isCopyConstructor()) {
8923        UserDeclaredOperation = *I;
8924        break;
8925      }
8926    }
8927    assert(UserDeclaredOperation);
8928  } else if (isa<CXXConstructorDecl>(CopyOp) &&
8929             RD->hasUserDeclaredCopyAssignment() &&
8930             !S.getLangOpts().MicrosoftMode) {
8931    // Find any user-declared move assignment operator.
8932    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
8933                                        E = RD->method_end(); I != E; ++I) {
8934      if (I->isCopyAssignmentOperator()) {
8935        UserDeclaredOperation = *I;
8936        break;
8937      }
8938    }
8939    assert(UserDeclaredOperation);
8940  }
8941
8942  if (UserDeclaredOperation) {
8943    S.Diag(UserDeclaredOperation->getLocation(),
8944         diag::warn_deprecated_copy_operation)
8945      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
8946      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
8947    S.Diag(UseLoc, diag::note_member_synthesized_at)
8948      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
8949                                          : Sema::CXXCopyAssignment)
8950      << RD;
8951  }
8952}
8953
8954void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8955                                        CXXMethodDecl *CopyAssignOperator) {
8956  assert((CopyAssignOperator->isDefaulted() &&
8957          CopyAssignOperator->isOverloadedOperator() &&
8958          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8959          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8960          !CopyAssignOperator->isDeleted()) &&
8961         "DefineImplicitCopyAssignment called for wrong function");
8962
8963  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8964
8965  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8966    CopyAssignOperator->setInvalidDecl();
8967    return;
8968  }
8969
8970  // C++11 [class.copy]p18:
8971  //   The [definition of an implicitly declared copy assignment operator] is
8972  //   deprecated if the class has a user-declared copy constructor or a
8973  //   user-declared destructor.
8974  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
8975    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
8976
8977  CopyAssignOperator->setUsed();
8978
8979  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8980  DiagnosticErrorTrap Trap(Diags);
8981
8982  // C++0x [class.copy]p30:
8983  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8984  //   for a non-union class X performs memberwise copy assignment of its
8985  //   subobjects. The direct base classes of X are assigned first, in the
8986  //   order of their declaration in the base-specifier-list, and then the
8987  //   immediate non-static data members of X are assigned, in the order in
8988  //   which they were declared in the class definition.
8989
8990  // The statements that form the synthesized function body.
8991  SmallVector<Stmt*, 8> Statements;
8992
8993  // The parameter for the "other" object, which we are copying from.
8994  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8995  Qualifiers OtherQuals = Other->getType().getQualifiers();
8996  QualType OtherRefType = Other->getType();
8997  if (const LValueReferenceType *OtherRef
8998                                = OtherRefType->getAs<LValueReferenceType>()) {
8999    OtherRefType = OtherRef->getPointeeType();
9000    OtherQuals = OtherRefType.getQualifiers();
9001  }
9002
9003  // Our location for everything implicitly-generated.
9004  SourceLocation Loc = CopyAssignOperator->getLocation();
9005
9006  // Construct a reference to the "other" object. We'll be using this
9007  // throughout the generated ASTs.
9008  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9009  assert(OtherRef && "Reference to parameter cannot fail!");
9010
9011  // Construct the "this" pointer. We'll be using this throughout the generated
9012  // ASTs.
9013  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9014  assert(This && "Reference to this cannot fail!");
9015
9016  // Assign base classes.
9017  bool Invalid = false;
9018  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9019       E = ClassDecl->bases_end(); Base != E; ++Base) {
9020    // Form the assignment:
9021    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9022    QualType BaseType = Base->getType().getUnqualifiedType();
9023    if (!BaseType->isRecordType()) {
9024      Invalid = true;
9025      continue;
9026    }
9027
9028    CXXCastPath BasePath;
9029    BasePath.push_back(Base);
9030
9031    // Construct the "from" expression, which is an implicit cast to the
9032    // appropriately-qualified base type.
9033    Expr *From = OtherRef;
9034    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
9035                             CK_UncheckedDerivedToBase,
9036                             VK_LValue, &BasePath).take();
9037
9038    // Dereference "this".
9039    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9040
9041    // Implicitly cast "this" to the appropriately-qualified base type.
9042    To = ImpCastExprToType(To.take(),
9043                           Context.getCVRQualifiedType(BaseType,
9044                                     CopyAssignOperator->getTypeQualifiers()),
9045                           CK_UncheckedDerivedToBase,
9046                           VK_LValue, &BasePath);
9047
9048    // Build the copy.
9049    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9050                                            To.get(), From,
9051                                            /*CopyingBaseSubobject=*/true,
9052                                            /*Copying=*/true);
9053    if (Copy.isInvalid()) {
9054      Diag(CurrentLocation, diag::note_member_synthesized_at)
9055        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9056      CopyAssignOperator->setInvalidDecl();
9057      return;
9058    }
9059
9060    // Success! Record the copy.
9061    Statements.push_back(Copy.takeAs<Expr>());
9062  }
9063
9064  // Assign non-static members.
9065  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9066                                  FieldEnd = ClassDecl->field_end();
9067       Field != FieldEnd; ++Field) {
9068    if (Field->isUnnamedBitfield())
9069      continue;
9070
9071    if (Field->isInvalidDecl()) {
9072      Invalid = true;
9073      continue;
9074    }
9075
9076    // Check for members of reference type; we can't copy those.
9077    if (Field->getType()->isReferenceType()) {
9078      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9079        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9080      Diag(Field->getLocation(), diag::note_declared_at);
9081      Diag(CurrentLocation, diag::note_member_synthesized_at)
9082        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9083      Invalid = true;
9084      continue;
9085    }
9086
9087    // Check for members of const-qualified, non-class type.
9088    QualType BaseType = Context.getBaseElementType(Field->getType());
9089    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9090      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9091        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9092      Diag(Field->getLocation(), diag::note_declared_at);
9093      Diag(CurrentLocation, diag::note_member_synthesized_at)
9094        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9095      Invalid = true;
9096      continue;
9097    }
9098
9099    // Suppress assigning zero-width bitfields.
9100    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9101      continue;
9102
9103    QualType FieldType = Field->getType().getNonReferenceType();
9104    if (FieldType->isIncompleteArrayType()) {
9105      assert(ClassDecl->hasFlexibleArrayMember() &&
9106             "Incomplete array type is not valid");
9107      continue;
9108    }
9109
9110    // Build references to the field in the object we're copying from and to.
9111    CXXScopeSpec SS; // Intentionally empty
9112    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9113                              LookupMemberName);
9114    MemberLookup.addDecl(*Field);
9115    MemberLookup.resolveKind();
9116    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9117                                               Loc, /*IsArrow=*/false,
9118                                               SS, SourceLocation(), 0,
9119                                               MemberLookup, 0);
9120    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9121                                             Loc, /*IsArrow=*/true,
9122                                             SS, SourceLocation(), 0,
9123                                             MemberLookup, 0);
9124    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9125    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9126
9127    // Build the copy of this field.
9128    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9129                                            To.get(), From.get(),
9130                                            /*CopyingBaseSubobject=*/false,
9131                                            /*Copying=*/true);
9132    if (Copy.isInvalid()) {
9133      Diag(CurrentLocation, diag::note_member_synthesized_at)
9134        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9135      CopyAssignOperator->setInvalidDecl();
9136      return;
9137    }
9138
9139    // Success! Record the copy.
9140    Statements.push_back(Copy.takeAs<Stmt>());
9141  }
9142
9143  if (!Invalid) {
9144    // Add a "return *this;"
9145    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9146
9147    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9148    if (Return.isInvalid())
9149      Invalid = true;
9150    else {
9151      Statements.push_back(Return.takeAs<Stmt>());
9152
9153      if (Trap.hasErrorOccurred()) {
9154        Diag(CurrentLocation, diag::note_member_synthesized_at)
9155          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9156        Invalid = true;
9157      }
9158    }
9159  }
9160
9161  if (Invalid) {
9162    CopyAssignOperator->setInvalidDecl();
9163    return;
9164  }
9165
9166  StmtResult Body;
9167  {
9168    CompoundScopeRAII CompoundScope(*this);
9169    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9170                             /*isStmtExpr=*/false);
9171    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9172  }
9173  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9174
9175  if (ASTMutationListener *L = getASTMutationListener()) {
9176    L->CompletedImplicitDefinition(CopyAssignOperator);
9177  }
9178}
9179
9180Sema::ImplicitExceptionSpecification
9181Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9182  CXXRecordDecl *ClassDecl = MD->getParent();
9183
9184  ImplicitExceptionSpecification ExceptSpec(*this);
9185  if (ClassDecl->isInvalidDecl())
9186    return ExceptSpec;
9187
9188  // C++0x [except.spec]p14:
9189  //   An implicitly declared special member function (Clause 12) shall have an
9190  //   exception-specification. [...]
9191
9192  // It is unspecified whether or not an implicit move assignment operator
9193  // attempts to deduplicate calls to assignment operators of virtual bases are
9194  // made. As such, this exception specification is effectively unspecified.
9195  // Based on a similar decision made for constness in C++0x, we're erring on
9196  // the side of assuming such calls to be made regardless of whether they
9197  // actually happen.
9198  // Note that a move constructor is not implicitly declared when there are
9199  // virtual bases, but it can still be user-declared and explicitly defaulted.
9200  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9201                                       BaseEnd = ClassDecl->bases_end();
9202       Base != BaseEnd; ++Base) {
9203    if (Base->isVirtual())
9204      continue;
9205
9206    CXXRecordDecl *BaseClassDecl
9207      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9208    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9209                                                           0, false, 0))
9210      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9211  }
9212
9213  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9214                                       BaseEnd = ClassDecl->vbases_end();
9215       Base != BaseEnd; ++Base) {
9216    CXXRecordDecl *BaseClassDecl
9217      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9218    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9219                                                           0, false, 0))
9220      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9221  }
9222
9223  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9224                                  FieldEnd = ClassDecl->field_end();
9225       Field != FieldEnd;
9226       ++Field) {
9227    QualType FieldType = Context.getBaseElementType(Field->getType());
9228    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9229      if (CXXMethodDecl *MoveAssign =
9230              LookupMovingAssignment(FieldClassDecl,
9231                                     FieldType.getCVRQualifiers(),
9232                                     false, 0))
9233        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9234    }
9235  }
9236
9237  return ExceptSpec;
9238}
9239
9240/// Determine whether the class type has any direct or indirect virtual base
9241/// classes which have a non-trivial move assignment operator.
9242static bool
9243hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9244  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9245                                          BaseEnd = ClassDecl->vbases_end();
9246       Base != BaseEnd; ++Base) {
9247    CXXRecordDecl *BaseClass =
9248        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9249
9250    // Try to declare the move assignment. If it would be deleted, then the
9251    // class does not have a non-trivial move assignment.
9252    if (BaseClass->needsImplicitMoveAssignment())
9253      S.DeclareImplicitMoveAssignment(BaseClass);
9254
9255    if (BaseClass->hasNonTrivialMoveAssignment())
9256      return true;
9257  }
9258
9259  return false;
9260}
9261
9262/// Determine whether the given type either has a move constructor or is
9263/// trivially copyable.
9264static bool
9265hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9266  Type = S.Context.getBaseElementType(Type);
9267
9268  // FIXME: Technically, non-trivially-copyable non-class types, such as
9269  // reference types, are supposed to return false here, but that appears
9270  // to be a standard defect.
9271  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9272  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9273    return true;
9274
9275  if (Type.isTriviallyCopyableType(S.Context))
9276    return true;
9277
9278  if (IsConstructor) {
9279    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9280    // give the right answer.
9281    if (ClassDecl->needsImplicitMoveConstructor())
9282      S.DeclareImplicitMoveConstructor(ClassDecl);
9283    return ClassDecl->hasMoveConstructor();
9284  }
9285
9286  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9287  // give the right answer.
9288  if (ClassDecl->needsImplicitMoveAssignment())
9289    S.DeclareImplicitMoveAssignment(ClassDecl);
9290  return ClassDecl->hasMoveAssignment();
9291}
9292
9293/// Determine whether all non-static data members and direct or virtual bases
9294/// of class \p ClassDecl have either a move operation, or are trivially
9295/// copyable.
9296static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9297                                            bool IsConstructor) {
9298  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9299                                          BaseEnd = ClassDecl->bases_end();
9300       Base != BaseEnd; ++Base) {
9301    if (Base->isVirtual())
9302      continue;
9303
9304    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9305      return false;
9306  }
9307
9308  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9309                                          BaseEnd = ClassDecl->vbases_end();
9310       Base != BaseEnd; ++Base) {
9311    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9312      return false;
9313  }
9314
9315  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9316                                     FieldEnd = ClassDecl->field_end();
9317       Field != FieldEnd; ++Field) {
9318    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9319      return false;
9320  }
9321
9322  return true;
9323}
9324
9325CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9326  // C++11 [class.copy]p20:
9327  //   If the definition of a class X does not explicitly declare a move
9328  //   assignment operator, one will be implicitly declared as defaulted
9329  //   if and only if:
9330  //
9331  //   - [first 4 bullets]
9332  assert(ClassDecl->needsImplicitMoveAssignment());
9333
9334  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9335  if (DSM.isAlreadyBeingDeclared())
9336    return 0;
9337
9338  // [Checked after we build the declaration]
9339  //   - the move assignment operator would not be implicitly defined as
9340  //     deleted,
9341
9342  // [DR1402]:
9343  //   - X has no direct or indirect virtual base class with a non-trivial
9344  //     move assignment operator, and
9345  //   - each of X's non-static data members and direct or virtual base classes
9346  //     has a type that either has a move assignment operator or is trivially
9347  //     copyable.
9348  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9349      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9350    ClassDecl->setFailedImplicitMoveAssignment();
9351    return 0;
9352  }
9353
9354  // Note: The following rules are largely analoguous to the move
9355  // constructor rules.
9356
9357  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9358  QualType RetType = Context.getLValueReferenceType(ArgType);
9359  ArgType = Context.getRValueReferenceType(ArgType);
9360
9361  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9362                                                     CXXMoveAssignment,
9363                                                     false);
9364
9365  //   An implicitly-declared move assignment operator is an inline public
9366  //   member of its class.
9367  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9368  SourceLocation ClassLoc = ClassDecl->getLocation();
9369  DeclarationNameInfo NameInfo(Name, ClassLoc);
9370  CXXMethodDecl *MoveAssignment =
9371      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9372                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9373                            /*isInline=*/true, Constexpr, SourceLocation());
9374  MoveAssignment->setAccess(AS_public);
9375  MoveAssignment->setDefaulted();
9376  MoveAssignment->setImplicit();
9377
9378  // Build an exception specification pointing back at this member.
9379  FunctionProtoType::ExtProtoInfo EPI;
9380  EPI.ExceptionSpecType = EST_Unevaluated;
9381  EPI.ExceptionSpecDecl = MoveAssignment;
9382  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9383
9384  // Add the parameter to the operator.
9385  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9386                                               ClassLoc, ClassLoc, /*Id=*/0,
9387                                               ArgType, /*TInfo=*/0,
9388                                               SC_None, 0);
9389  MoveAssignment->setParams(FromParam);
9390
9391  AddOverriddenMethods(ClassDecl, MoveAssignment);
9392
9393  MoveAssignment->setTrivial(
9394    ClassDecl->needsOverloadResolutionForMoveAssignment()
9395      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9396      : ClassDecl->hasTrivialMoveAssignment());
9397
9398  // C++0x [class.copy]p9:
9399  //   If the definition of a class X does not explicitly declare a move
9400  //   assignment operator, one will be implicitly declared as defaulted if and
9401  //   only if:
9402  //   [...]
9403  //   - the move assignment operator would not be implicitly defined as
9404  //     deleted.
9405  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9406    // Cache this result so that we don't try to generate this over and over
9407    // on every lookup, leaking memory and wasting time.
9408    ClassDecl->setFailedImplicitMoveAssignment();
9409    return 0;
9410  }
9411
9412  // Note that we have added this copy-assignment operator.
9413  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9414
9415  if (Scope *S = getScopeForContext(ClassDecl))
9416    PushOnScopeChains(MoveAssignment, S, false);
9417  ClassDecl->addDecl(MoveAssignment);
9418
9419  return MoveAssignment;
9420}
9421
9422void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9423                                        CXXMethodDecl *MoveAssignOperator) {
9424  assert((MoveAssignOperator->isDefaulted() &&
9425          MoveAssignOperator->isOverloadedOperator() &&
9426          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9427          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9428          !MoveAssignOperator->isDeleted()) &&
9429         "DefineImplicitMoveAssignment called for wrong function");
9430
9431  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9432
9433  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9434    MoveAssignOperator->setInvalidDecl();
9435    return;
9436  }
9437
9438  MoveAssignOperator->setUsed();
9439
9440  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9441  DiagnosticErrorTrap Trap(Diags);
9442
9443  // C++0x [class.copy]p28:
9444  //   The implicitly-defined or move assignment operator for a non-union class
9445  //   X performs memberwise move assignment of its subobjects. The direct base
9446  //   classes of X are assigned first, in the order of their declaration in the
9447  //   base-specifier-list, and then the immediate non-static data members of X
9448  //   are assigned, in the order in which they were declared in the class
9449  //   definition.
9450
9451  // The statements that form the synthesized function body.
9452  SmallVector<Stmt*, 8> Statements;
9453
9454  // The parameter for the "other" object, which we are move from.
9455  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9456  QualType OtherRefType = Other->getType()->
9457      getAs<RValueReferenceType>()->getPointeeType();
9458  assert(!OtherRefType.getQualifiers() &&
9459         "Bad argument type of defaulted move assignment");
9460
9461  // Our location for everything implicitly-generated.
9462  SourceLocation Loc = MoveAssignOperator->getLocation();
9463
9464  // Construct a reference to the "other" object. We'll be using this
9465  // throughout the generated ASTs.
9466  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9467  assert(OtherRef && "Reference to parameter cannot fail!");
9468  // Cast to rvalue.
9469  OtherRef = CastForMoving(*this, OtherRef);
9470
9471  // Construct the "this" pointer. We'll be using this throughout the generated
9472  // ASTs.
9473  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9474  assert(This && "Reference to this cannot fail!");
9475
9476  // Assign base classes.
9477  bool Invalid = false;
9478  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9479       E = ClassDecl->bases_end(); Base != E; ++Base) {
9480    // Form the assignment:
9481    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9482    QualType BaseType = Base->getType().getUnqualifiedType();
9483    if (!BaseType->isRecordType()) {
9484      Invalid = true;
9485      continue;
9486    }
9487
9488    CXXCastPath BasePath;
9489    BasePath.push_back(Base);
9490
9491    // Construct the "from" expression, which is an implicit cast to the
9492    // appropriately-qualified base type.
9493    Expr *From = OtherRef;
9494    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9495                             VK_XValue, &BasePath).take();
9496
9497    // Dereference "this".
9498    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9499
9500    // Implicitly cast "this" to the appropriately-qualified base type.
9501    To = ImpCastExprToType(To.take(),
9502                           Context.getCVRQualifiedType(BaseType,
9503                                     MoveAssignOperator->getTypeQualifiers()),
9504                           CK_UncheckedDerivedToBase,
9505                           VK_LValue, &BasePath);
9506
9507    // Build the move.
9508    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9509                                            To.get(), From,
9510                                            /*CopyingBaseSubobject=*/true,
9511                                            /*Copying=*/false);
9512    if (Move.isInvalid()) {
9513      Diag(CurrentLocation, diag::note_member_synthesized_at)
9514        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9515      MoveAssignOperator->setInvalidDecl();
9516      return;
9517    }
9518
9519    // Success! Record the move.
9520    Statements.push_back(Move.takeAs<Expr>());
9521  }
9522
9523  // Assign non-static members.
9524  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9525                                  FieldEnd = ClassDecl->field_end();
9526       Field != FieldEnd; ++Field) {
9527    if (Field->isUnnamedBitfield())
9528      continue;
9529
9530    if (Field->isInvalidDecl()) {
9531      Invalid = true;
9532      continue;
9533    }
9534
9535    // Check for members of reference type; we can't move those.
9536    if (Field->getType()->isReferenceType()) {
9537      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9538        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9539      Diag(Field->getLocation(), diag::note_declared_at);
9540      Diag(CurrentLocation, diag::note_member_synthesized_at)
9541        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9542      Invalid = true;
9543      continue;
9544    }
9545
9546    // Check for members of const-qualified, non-class type.
9547    QualType BaseType = Context.getBaseElementType(Field->getType());
9548    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9549      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9550        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9551      Diag(Field->getLocation(), diag::note_declared_at);
9552      Diag(CurrentLocation, diag::note_member_synthesized_at)
9553        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9554      Invalid = true;
9555      continue;
9556    }
9557
9558    // Suppress assigning zero-width bitfields.
9559    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9560      continue;
9561
9562    QualType FieldType = Field->getType().getNonReferenceType();
9563    if (FieldType->isIncompleteArrayType()) {
9564      assert(ClassDecl->hasFlexibleArrayMember() &&
9565             "Incomplete array type is not valid");
9566      continue;
9567    }
9568
9569    // Build references to the field in the object we're copying from and to.
9570    CXXScopeSpec SS; // Intentionally empty
9571    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9572                              LookupMemberName);
9573    MemberLookup.addDecl(*Field);
9574    MemberLookup.resolveKind();
9575    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9576                                               Loc, /*IsArrow=*/false,
9577                                               SS, SourceLocation(), 0,
9578                                               MemberLookup, 0);
9579    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9580                                             Loc, /*IsArrow=*/true,
9581                                             SS, SourceLocation(), 0,
9582                                             MemberLookup, 0);
9583    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9584    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9585
9586    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9587        "Member reference with rvalue base must be rvalue except for reference "
9588        "members, which aren't allowed for move assignment.");
9589
9590    // Build the move of this field.
9591    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9592                                            To.get(), From.get(),
9593                                            /*CopyingBaseSubobject=*/false,
9594                                            /*Copying=*/false);
9595    if (Move.isInvalid()) {
9596      Diag(CurrentLocation, diag::note_member_synthesized_at)
9597        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9598      MoveAssignOperator->setInvalidDecl();
9599      return;
9600    }
9601
9602    // Success! Record the copy.
9603    Statements.push_back(Move.takeAs<Stmt>());
9604  }
9605
9606  if (!Invalid) {
9607    // Add a "return *this;"
9608    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9609
9610    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9611    if (Return.isInvalid())
9612      Invalid = true;
9613    else {
9614      Statements.push_back(Return.takeAs<Stmt>());
9615
9616      if (Trap.hasErrorOccurred()) {
9617        Diag(CurrentLocation, diag::note_member_synthesized_at)
9618          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9619        Invalid = true;
9620      }
9621    }
9622  }
9623
9624  if (Invalid) {
9625    MoveAssignOperator->setInvalidDecl();
9626    return;
9627  }
9628
9629  StmtResult Body;
9630  {
9631    CompoundScopeRAII CompoundScope(*this);
9632    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9633                             /*isStmtExpr=*/false);
9634    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9635  }
9636  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9637
9638  if (ASTMutationListener *L = getASTMutationListener()) {
9639    L->CompletedImplicitDefinition(MoveAssignOperator);
9640  }
9641}
9642
9643Sema::ImplicitExceptionSpecification
9644Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9645  CXXRecordDecl *ClassDecl = MD->getParent();
9646
9647  ImplicitExceptionSpecification ExceptSpec(*this);
9648  if (ClassDecl->isInvalidDecl())
9649    return ExceptSpec;
9650
9651  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9652  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9653  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9654
9655  // C++ [except.spec]p14:
9656  //   An implicitly declared special member function (Clause 12) shall have an
9657  //   exception-specification. [...]
9658  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9659                                       BaseEnd = ClassDecl->bases_end();
9660       Base != BaseEnd;
9661       ++Base) {
9662    // Virtual bases are handled below.
9663    if (Base->isVirtual())
9664      continue;
9665
9666    CXXRecordDecl *BaseClassDecl
9667      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9668    if (CXXConstructorDecl *CopyConstructor =
9669          LookupCopyingConstructor(BaseClassDecl, Quals))
9670      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9671  }
9672  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9673                                       BaseEnd = ClassDecl->vbases_end();
9674       Base != BaseEnd;
9675       ++Base) {
9676    CXXRecordDecl *BaseClassDecl
9677      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9678    if (CXXConstructorDecl *CopyConstructor =
9679          LookupCopyingConstructor(BaseClassDecl, Quals))
9680      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9681  }
9682  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9683                                  FieldEnd = ClassDecl->field_end();
9684       Field != FieldEnd;
9685       ++Field) {
9686    QualType FieldType = Context.getBaseElementType(Field->getType());
9687    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9688      if (CXXConstructorDecl *CopyConstructor =
9689              LookupCopyingConstructor(FieldClassDecl,
9690                                       Quals | FieldType.getCVRQualifiers()))
9691      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9692    }
9693  }
9694
9695  return ExceptSpec;
9696}
9697
9698CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9699                                                    CXXRecordDecl *ClassDecl) {
9700  // C++ [class.copy]p4:
9701  //   If the class definition does not explicitly declare a copy
9702  //   constructor, one is declared implicitly.
9703  assert(ClassDecl->needsImplicitCopyConstructor());
9704
9705  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9706  if (DSM.isAlreadyBeingDeclared())
9707    return 0;
9708
9709  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9710  QualType ArgType = ClassType;
9711  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9712  if (Const)
9713    ArgType = ArgType.withConst();
9714  ArgType = Context.getLValueReferenceType(ArgType);
9715
9716  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9717                                                     CXXCopyConstructor,
9718                                                     Const);
9719
9720  DeclarationName Name
9721    = Context.DeclarationNames.getCXXConstructorName(
9722                                           Context.getCanonicalType(ClassType));
9723  SourceLocation ClassLoc = ClassDecl->getLocation();
9724  DeclarationNameInfo NameInfo(Name, ClassLoc);
9725
9726  //   An implicitly-declared copy constructor is an inline public
9727  //   member of its class.
9728  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9729      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9730      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9731      Constexpr);
9732  CopyConstructor->setAccess(AS_public);
9733  CopyConstructor->setDefaulted();
9734
9735  // Build an exception specification pointing back at this member.
9736  FunctionProtoType::ExtProtoInfo EPI;
9737  EPI.ExceptionSpecType = EST_Unevaluated;
9738  EPI.ExceptionSpecDecl = CopyConstructor;
9739  CopyConstructor->setType(
9740      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9741
9742  // Add the parameter to the constructor.
9743  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9744                                               ClassLoc, ClassLoc,
9745                                               /*IdentifierInfo=*/0,
9746                                               ArgType, /*TInfo=*/0,
9747                                               SC_None, 0);
9748  CopyConstructor->setParams(FromParam);
9749
9750  CopyConstructor->setTrivial(
9751    ClassDecl->needsOverloadResolutionForCopyConstructor()
9752      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9753      : ClassDecl->hasTrivialCopyConstructor());
9754
9755  // C++11 [class.copy]p8:
9756  //   ... If the class definition does not explicitly declare a copy
9757  //   constructor, there is no user-declared move constructor, and there is no
9758  //   user-declared move assignment operator, a copy constructor is implicitly
9759  //   declared as defaulted.
9760  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9761    SetDeclDeleted(CopyConstructor, ClassLoc);
9762
9763  // Note that we have declared this constructor.
9764  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9765
9766  if (Scope *S = getScopeForContext(ClassDecl))
9767    PushOnScopeChains(CopyConstructor, S, false);
9768  ClassDecl->addDecl(CopyConstructor);
9769
9770  return CopyConstructor;
9771}
9772
9773void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9774                                   CXXConstructorDecl *CopyConstructor) {
9775  assert((CopyConstructor->isDefaulted() &&
9776          CopyConstructor->isCopyConstructor() &&
9777          !CopyConstructor->doesThisDeclarationHaveABody() &&
9778          !CopyConstructor->isDeleted()) &&
9779         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9780
9781  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9782  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9783
9784  // C++11 [class.copy]p7:
9785  //   The [definition of an implicitly declared copy constructro] is
9786  //   deprecated if the class has a user-declared copy assignment operator
9787  //   or a user-declared destructor.
9788  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
9789    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
9790
9791  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9792  DiagnosticErrorTrap Trap(Diags);
9793
9794  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9795      Trap.hasErrorOccurred()) {
9796    Diag(CurrentLocation, diag::note_member_synthesized_at)
9797      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9798    CopyConstructor->setInvalidDecl();
9799  }  else {
9800    Sema::CompoundScopeRAII CompoundScope(*this);
9801    CopyConstructor->setBody(ActOnCompoundStmt(
9802        CopyConstructor->getLocation(), CopyConstructor->getLocation(), None,
9803        /*isStmtExpr=*/ false).takeAs<Stmt>());
9804  }
9805
9806  CopyConstructor->setUsed();
9807  if (ASTMutationListener *L = getASTMutationListener()) {
9808    L->CompletedImplicitDefinition(CopyConstructor);
9809  }
9810}
9811
9812Sema::ImplicitExceptionSpecification
9813Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9814  CXXRecordDecl *ClassDecl = MD->getParent();
9815
9816  // C++ [except.spec]p14:
9817  //   An implicitly declared special member function (Clause 12) shall have an
9818  //   exception-specification. [...]
9819  ImplicitExceptionSpecification ExceptSpec(*this);
9820  if (ClassDecl->isInvalidDecl())
9821    return ExceptSpec;
9822
9823  // Direct base-class constructors.
9824  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9825                                       BEnd = ClassDecl->bases_end();
9826       B != BEnd; ++B) {
9827    if (B->isVirtual()) // Handled below.
9828      continue;
9829
9830    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9831      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9832      CXXConstructorDecl *Constructor =
9833          LookupMovingConstructor(BaseClassDecl, 0);
9834      // If this is a deleted function, add it anyway. This might be conformant
9835      // with the standard. This might not. I'm not sure. It might not matter.
9836      if (Constructor)
9837        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9838    }
9839  }
9840
9841  // Virtual base-class constructors.
9842  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9843                                       BEnd = ClassDecl->vbases_end();
9844       B != BEnd; ++B) {
9845    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9846      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9847      CXXConstructorDecl *Constructor =
9848          LookupMovingConstructor(BaseClassDecl, 0);
9849      // If this is a deleted function, add it anyway. This might be conformant
9850      // with the standard. This might not. I'm not sure. It might not matter.
9851      if (Constructor)
9852        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9853    }
9854  }
9855
9856  // Field constructors.
9857  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9858                               FEnd = ClassDecl->field_end();
9859       F != FEnd; ++F) {
9860    QualType FieldType = Context.getBaseElementType(F->getType());
9861    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9862      CXXConstructorDecl *Constructor =
9863          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9864      // If this is a deleted function, add it anyway. This might be conformant
9865      // with the standard. This might not. I'm not sure. It might not matter.
9866      // In particular, the problem is that this function never gets called. It
9867      // might just be ill-formed because this function attempts to refer to
9868      // a deleted function here.
9869      if (Constructor)
9870        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9871    }
9872  }
9873
9874  return ExceptSpec;
9875}
9876
9877CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9878                                                    CXXRecordDecl *ClassDecl) {
9879  // C++11 [class.copy]p9:
9880  //   If the definition of a class X does not explicitly declare a move
9881  //   constructor, one will be implicitly declared as defaulted if and only if:
9882  //
9883  //   - [first 4 bullets]
9884  assert(ClassDecl->needsImplicitMoveConstructor());
9885
9886  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9887  if (DSM.isAlreadyBeingDeclared())
9888    return 0;
9889
9890  // [Checked after we build the declaration]
9891  //   - the move assignment operator would not be implicitly defined as
9892  //     deleted,
9893
9894  // [DR1402]:
9895  //   - each of X's non-static data members and direct or virtual base classes
9896  //     has a type that either has a move constructor or is trivially copyable.
9897  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9898    ClassDecl->setFailedImplicitMoveConstructor();
9899    return 0;
9900  }
9901
9902  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9903  QualType ArgType = Context.getRValueReferenceType(ClassType);
9904
9905  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9906                                                     CXXMoveConstructor,
9907                                                     false);
9908
9909  DeclarationName Name
9910    = Context.DeclarationNames.getCXXConstructorName(
9911                                           Context.getCanonicalType(ClassType));
9912  SourceLocation ClassLoc = ClassDecl->getLocation();
9913  DeclarationNameInfo NameInfo(Name, ClassLoc);
9914
9915  // C++11 [class.copy]p11:
9916  //   An implicitly-declared copy/move constructor is an inline public
9917  //   member of its class.
9918  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9919      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9920      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9921      Constexpr);
9922  MoveConstructor->setAccess(AS_public);
9923  MoveConstructor->setDefaulted();
9924
9925  // Build an exception specification pointing back at this member.
9926  FunctionProtoType::ExtProtoInfo EPI;
9927  EPI.ExceptionSpecType = EST_Unevaluated;
9928  EPI.ExceptionSpecDecl = MoveConstructor;
9929  MoveConstructor->setType(
9930      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9931
9932  // Add the parameter to the constructor.
9933  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9934                                               ClassLoc, ClassLoc,
9935                                               /*IdentifierInfo=*/0,
9936                                               ArgType, /*TInfo=*/0,
9937                                               SC_None, 0);
9938  MoveConstructor->setParams(FromParam);
9939
9940  MoveConstructor->setTrivial(
9941    ClassDecl->needsOverloadResolutionForMoveConstructor()
9942      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9943      : ClassDecl->hasTrivialMoveConstructor());
9944
9945  // C++0x [class.copy]p9:
9946  //   If the definition of a class X does not explicitly declare a move
9947  //   constructor, one will be implicitly declared as defaulted if and only if:
9948  //   [...]
9949  //   - the move constructor would not be implicitly defined as deleted.
9950  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9951    // Cache this result so that we don't try to generate this over and over
9952    // on every lookup, leaking memory and wasting time.
9953    ClassDecl->setFailedImplicitMoveConstructor();
9954    return 0;
9955  }
9956
9957  // Note that we have declared this constructor.
9958  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9959
9960  if (Scope *S = getScopeForContext(ClassDecl))
9961    PushOnScopeChains(MoveConstructor, S, false);
9962  ClassDecl->addDecl(MoveConstructor);
9963
9964  return MoveConstructor;
9965}
9966
9967void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9968                                   CXXConstructorDecl *MoveConstructor) {
9969  assert((MoveConstructor->isDefaulted() &&
9970          MoveConstructor->isMoveConstructor() &&
9971          !MoveConstructor->doesThisDeclarationHaveABody() &&
9972          !MoveConstructor->isDeleted()) &&
9973         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9974
9975  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9976  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9977
9978  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9979  DiagnosticErrorTrap Trap(Diags);
9980
9981  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9982      Trap.hasErrorOccurred()) {
9983    Diag(CurrentLocation, diag::note_member_synthesized_at)
9984      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9985    MoveConstructor->setInvalidDecl();
9986  }  else {
9987    Sema::CompoundScopeRAII CompoundScope(*this);
9988    MoveConstructor->setBody(ActOnCompoundStmt(
9989        MoveConstructor->getLocation(), MoveConstructor->getLocation(), None,
9990        /*isStmtExpr=*/ false).takeAs<Stmt>());
9991  }
9992
9993  MoveConstructor->setUsed();
9994
9995  if (ASTMutationListener *L = getASTMutationListener()) {
9996    L->CompletedImplicitDefinition(MoveConstructor);
9997  }
9998}
9999
10000bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10001  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10002}
10003
10004/// \brief Mark the call operator of the given lambda closure type as "used".
10005static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
10006  CXXMethodDecl *CallOperator
10007    = cast<CXXMethodDecl>(
10008        Lambda->lookup(
10009          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
10010  CallOperator->setReferenced();
10011  CallOperator->setUsed();
10012}
10013
10014void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10015       SourceLocation CurrentLocation,
10016       CXXConversionDecl *Conv)
10017{
10018  CXXRecordDecl *Lambda = Conv->getParent();
10019
10020  // Make sure that the lambda call operator is marked used.
10021  markLambdaCallOperatorUsed(*this, Lambda);
10022
10023  Conv->setUsed();
10024
10025  SynthesizedFunctionScope Scope(*this, Conv);
10026  DiagnosticErrorTrap Trap(Diags);
10027
10028  // Return the address of the __invoke function.
10029  DeclarationName InvokeName = &Context.Idents.get("__invoke");
10030  CXXMethodDecl *Invoke
10031    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
10032  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
10033                                       VK_LValue, Conv->getLocation()).take();
10034  assert(FunctionRef && "Can't refer to __invoke function?");
10035  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10036  Conv->setBody(new (Context) CompoundStmt(Context, Return,
10037                                           Conv->getLocation(),
10038                                           Conv->getLocation()));
10039
10040  // Fill in the __invoke function with a dummy implementation. IR generation
10041  // will fill in the actual details.
10042  Invoke->setUsed();
10043  Invoke->setReferenced();
10044  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10045
10046  if (ASTMutationListener *L = getASTMutationListener()) {
10047    L->CompletedImplicitDefinition(Conv);
10048    L->CompletedImplicitDefinition(Invoke);
10049  }
10050}
10051
10052void Sema::DefineImplicitLambdaToBlockPointerConversion(
10053       SourceLocation CurrentLocation,
10054       CXXConversionDecl *Conv)
10055{
10056  Conv->setUsed();
10057
10058  SynthesizedFunctionScope Scope(*this, Conv);
10059  DiagnosticErrorTrap Trap(Diags);
10060
10061  // Copy-initialize the lambda object as needed to capture it.
10062  Expr *This = ActOnCXXThis(CurrentLocation).take();
10063  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10064
10065  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10066                                                        Conv->getLocation(),
10067                                                        Conv, DerefThis);
10068
10069  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10070  // behavior.  Note that only the general conversion function does this
10071  // (since it's unusable otherwise); in the case where we inline the
10072  // block literal, it has block literal lifetime semantics.
10073  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10074    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10075                                          CK_CopyAndAutoreleaseBlockObject,
10076                                          BuildBlock.get(), 0, VK_RValue);
10077
10078  if (BuildBlock.isInvalid()) {
10079    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10080    Conv->setInvalidDecl();
10081    return;
10082  }
10083
10084  // Create the return statement that returns the block from the conversion
10085  // function.
10086  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10087  if (Return.isInvalid()) {
10088    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10089    Conv->setInvalidDecl();
10090    return;
10091  }
10092
10093  // Set the body of the conversion function.
10094  Stmt *ReturnS = Return.take();
10095  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10096                                           Conv->getLocation(),
10097                                           Conv->getLocation()));
10098
10099  // We're done; notify the mutation listener, if any.
10100  if (ASTMutationListener *L = getASTMutationListener()) {
10101    L->CompletedImplicitDefinition(Conv);
10102  }
10103}
10104
10105/// \brief Determine whether the given list arguments contains exactly one
10106/// "real" (non-default) argument.
10107static bool hasOneRealArgument(MultiExprArg Args) {
10108  switch (Args.size()) {
10109  case 0:
10110    return false;
10111
10112  default:
10113    if (!Args[1]->isDefaultArgument())
10114      return false;
10115
10116    // fall through
10117  case 1:
10118    return !Args[0]->isDefaultArgument();
10119  }
10120
10121  return false;
10122}
10123
10124ExprResult
10125Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10126                            CXXConstructorDecl *Constructor,
10127                            MultiExprArg ExprArgs,
10128                            bool HadMultipleCandidates,
10129                            bool IsListInitialization,
10130                            bool RequiresZeroInit,
10131                            unsigned ConstructKind,
10132                            SourceRange ParenRange) {
10133  bool Elidable = false;
10134
10135  // C++0x [class.copy]p34:
10136  //   When certain criteria are met, an implementation is allowed to
10137  //   omit the copy/move construction of a class object, even if the
10138  //   copy/move constructor and/or destructor for the object have
10139  //   side effects. [...]
10140  //     - when a temporary class object that has not been bound to a
10141  //       reference (12.2) would be copied/moved to a class object
10142  //       with the same cv-unqualified type, the copy/move operation
10143  //       can be omitted by constructing the temporary object
10144  //       directly into the target of the omitted copy/move
10145  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10146      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10147    Expr *SubExpr = ExprArgs[0];
10148    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10149  }
10150
10151  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10152                               Elidable, ExprArgs, HadMultipleCandidates,
10153                               IsListInitialization, RequiresZeroInit,
10154                               ConstructKind, ParenRange);
10155}
10156
10157/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10158/// including handling of its default argument expressions.
10159ExprResult
10160Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10161                            CXXConstructorDecl *Constructor, bool Elidable,
10162                            MultiExprArg ExprArgs,
10163                            bool HadMultipleCandidates,
10164                            bool IsListInitialization,
10165                            bool RequiresZeroInit,
10166                            unsigned ConstructKind,
10167                            SourceRange ParenRange) {
10168  MarkFunctionReferenced(ConstructLoc, Constructor);
10169  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10170                                        Constructor, Elidable, ExprArgs,
10171                                        HadMultipleCandidates,
10172                                        IsListInitialization, RequiresZeroInit,
10173              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10174                                        ParenRange));
10175}
10176
10177void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10178  if (VD->isInvalidDecl()) return;
10179
10180  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10181  if (ClassDecl->isInvalidDecl()) return;
10182  if (ClassDecl->hasIrrelevantDestructor()) return;
10183  if (ClassDecl->isDependentContext()) return;
10184
10185  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10186  MarkFunctionReferenced(VD->getLocation(), Destructor);
10187  CheckDestructorAccess(VD->getLocation(), Destructor,
10188                        PDiag(diag::err_access_dtor_var)
10189                        << VD->getDeclName()
10190                        << VD->getType());
10191  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10192
10193  if (!VD->hasGlobalStorage()) return;
10194
10195  // Emit warning for non-trivial dtor in global scope (a real global,
10196  // class-static, function-static).
10197  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10198
10199  // TODO: this should be re-enabled for static locals by !CXAAtExit
10200  if (!VD->isStaticLocal())
10201    Diag(VD->getLocation(), diag::warn_global_destructor);
10202}
10203
10204/// \brief Given a constructor and the set of arguments provided for the
10205/// constructor, convert the arguments and add any required default arguments
10206/// to form a proper call to this constructor.
10207///
10208/// \returns true if an error occurred, false otherwise.
10209bool
10210Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10211                              MultiExprArg ArgsPtr,
10212                              SourceLocation Loc,
10213                              SmallVectorImpl<Expr*> &ConvertedArgs,
10214                              bool AllowExplicit,
10215                              bool IsListInitialization) {
10216  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10217  unsigned NumArgs = ArgsPtr.size();
10218  Expr **Args = ArgsPtr.data();
10219
10220  const FunctionProtoType *Proto
10221    = Constructor->getType()->getAs<FunctionProtoType>();
10222  assert(Proto && "Constructor without a prototype?");
10223  unsigned NumArgsInProto = Proto->getNumArgs();
10224
10225  // If too few arguments are available, we'll fill in the rest with defaults.
10226  if (NumArgs < NumArgsInProto)
10227    ConvertedArgs.reserve(NumArgsInProto);
10228  else
10229    ConvertedArgs.reserve(NumArgs);
10230
10231  VariadicCallType CallType =
10232    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10233  SmallVector<Expr *, 8> AllArgs;
10234  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10235                                        Proto, 0,
10236                                        llvm::makeArrayRef(Args, NumArgs),
10237                                        AllArgs,
10238                                        CallType, AllowExplicit,
10239                                        IsListInitialization);
10240  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10241
10242  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10243
10244  CheckConstructorCall(Constructor,
10245                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10246                                                        AllArgs.size()),
10247                       Proto, Loc);
10248
10249  return Invalid;
10250}
10251
10252static inline bool
10253CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10254                                       const FunctionDecl *FnDecl) {
10255  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10256  if (isa<NamespaceDecl>(DC)) {
10257    return SemaRef.Diag(FnDecl->getLocation(),
10258                        diag::err_operator_new_delete_declared_in_namespace)
10259      << FnDecl->getDeclName();
10260  }
10261
10262  if (isa<TranslationUnitDecl>(DC) &&
10263      FnDecl->getStorageClass() == SC_Static) {
10264    return SemaRef.Diag(FnDecl->getLocation(),
10265                        diag::err_operator_new_delete_declared_static)
10266      << FnDecl->getDeclName();
10267  }
10268
10269  return false;
10270}
10271
10272static inline bool
10273CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10274                            CanQualType ExpectedResultType,
10275                            CanQualType ExpectedFirstParamType,
10276                            unsigned DependentParamTypeDiag,
10277                            unsigned InvalidParamTypeDiag) {
10278  QualType ResultType =
10279    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10280
10281  // Check that the result type is not dependent.
10282  if (ResultType->isDependentType())
10283    return SemaRef.Diag(FnDecl->getLocation(),
10284                        diag::err_operator_new_delete_dependent_result_type)
10285    << FnDecl->getDeclName() << ExpectedResultType;
10286
10287  // Check that the result type is what we expect.
10288  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10289    return SemaRef.Diag(FnDecl->getLocation(),
10290                        diag::err_operator_new_delete_invalid_result_type)
10291    << FnDecl->getDeclName() << ExpectedResultType;
10292
10293  // A function template must have at least 2 parameters.
10294  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10295    return SemaRef.Diag(FnDecl->getLocation(),
10296                      diag::err_operator_new_delete_template_too_few_parameters)
10297        << FnDecl->getDeclName();
10298
10299  // The function decl must have at least 1 parameter.
10300  if (FnDecl->getNumParams() == 0)
10301    return SemaRef.Diag(FnDecl->getLocation(),
10302                        diag::err_operator_new_delete_too_few_parameters)
10303      << FnDecl->getDeclName();
10304
10305  // Check the first parameter type is not dependent.
10306  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10307  if (FirstParamType->isDependentType())
10308    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10309      << FnDecl->getDeclName() << ExpectedFirstParamType;
10310
10311  // Check that the first parameter type is what we expect.
10312  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10313      ExpectedFirstParamType)
10314    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10315    << FnDecl->getDeclName() << ExpectedFirstParamType;
10316
10317  return false;
10318}
10319
10320static bool
10321CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10322  // C++ [basic.stc.dynamic.allocation]p1:
10323  //   A program is ill-formed if an allocation function is declared in a
10324  //   namespace scope other than global scope or declared static in global
10325  //   scope.
10326  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10327    return true;
10328
10329  CanQualType SizeTy =
10330    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10331
10332  // C++ [basic.stc.dynamic.allocation]p1:
10333  //  The return type shall be void*. The first parameter shall have type
10334  //  std::size_t.
10335  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10336                                  SizeTy,
10337                                  diag::err_operator_new_dependent_param_type,
10338                                  diag::err_operator_new_param_type))
10339    return true;
10340
10341  // C++ [basic.stc.dynamic.allocation]p1:
10342  //  The first parameter shall not have an associated default argument.
10343  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10344    return SemaRef.Diag(FnDecl->getLocation(),
10345                        diag::err_operator_new_default_arg)
10346      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10347
10348  return false;
10349}
10350
10351static bool
10352CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10353  // C++ [basic.stc.dynamic.deallocation]p1:
10354  //   A program is ill-formed if deallocation functions are declared in a
10355  //   namespace scope other than global scope or declared static in global
10356  //   scope.
10357  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10358    return true;
10359
10360  // C++ [basic.stc.dynamic.deallocation]p2:
10361  //   Each deallocation function shall return void and its first parameter
10362  //   shall be void*.
10363  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10364                                  SemaRef.Context.VoidPtrTy,
10365                                 diag::err_operator_delete_dependent_param_type,
10366                                 diag::err_operator_delete_param_type))
10367    return true;
10368
10369  return false;
10370}
10371
10372/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10373/// of this overloaded operator is well-formed. If so, returns false;
10374/// otherwise, emits appropriate diagnostics and returns true.
10375bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10376  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10377         "Expected an overloaded operator declaration");
10378
10379  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10380
10381  // C++ [over.oper]p5:
10382  //   The allocation and deallocation functions, operator new,
10383  //   operator new[], operator delete and operator delete[], are
10384  //   described completely in 3.7.3. The attributes and restrictions
10385  //   found in the rest of this subclause do not apply to them unless
10386  //   explicitly stated in 3.7.3.
10387  if (Op == OO_Delete || Op == OO_Array_Delete)
10388    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10389
10390  if (Op == OO_New || Op == OO_Array_New)
10391    return CheckOperatorNewDeclaration(*this, FnDecl);
10392
10393  // C++ [over.oper]p6:
10394  //   An operator function shall either be a non-static member
10395  //   function or be a non-member function and have at least one
10396  //   parameter whose type is a class, a reference to a class, an
10397  //   enumeration, or a reference to an enumeration.
10398  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10399    if (MethodDecl->isStatic())
10400      return Diag(FnDecl->getLocation(),
10401                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10402  } else {
10403    bool ClassOrEnumParam = false;
10404    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10405                                   ParamEnd = FnDecl->param_end();
10406         Param != ParamEnd; ++Param) {
10407      QualType ParamType = (*Param)->getType().getNonReferenceType();
10408      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10409          ParamType->isEnumeralType()) {
10410        ClassOrEnumParam = true;
10411        break;
10412      }
10413    }
10414
10415    if (!ClassOrEnumParam)
10416      return Diag(FnDecl->getLocation(),
10417                  diag::err_operator_overload_needs_class_or_enum)
10418        << FnDecl->getDeclName();
10419  }
10420
10421  // C++ [over.oper]p8:
10422  //   An operator function cannot have default arguments (8.3.6),
10423  //   except where explicitly stated below.
10424  //
10425  // Only the function-call operator allows default arguments
10426  // (C++ [over.call]p1).
10427  if (Op != OO_Call) {
10428    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10429         Param != FnDecl->param_end(); ++Param) {
10430      if ((*Param)->hasDefaultArg())
10431        return Diag((*Param)->getLocation(),
10432                    diag::err_operator_overload_default_arg)
10433          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10434    }
10435  }
10436
10437  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10438    { false, false, false }
10439#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10440    , { Unary, Binary, MemberOnly }
10441#include "clang/Basic/OperatorKinds.def"
10442  };
10443
10444  bool CanBeUnaryOperator = OperatorUses[Op][0];
10445  bool CanBeBinaryOperator = OperatorUses[Op][1];
10446  bool MustBeMemberOperator = OperatorUses[Op][2];
10447
10448  // C++ [over.oper]p8:
10449  //   [...] Operator functions cannot have more or fewer parameters
10450  //   than the number required for the corresponding operator, as
10451  //   described in the rest of this subclause.
10452  unsigned NumParams = FnDecl->getNumParams()
10453                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10454  if (Op != OO_Call &&
10455      ((NumParams == 1 && !CanBeUnaryOperator) ||
10456       (NumParams == 2 && !CanBeBinaryOperator) ||
10457       (NumParams < 1) || (NumParams > 2))) {
10458    // We have the wrong number of parameters.
10459    unsigned ErrorKind;
10460    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10461      ErrorKind = 2;  // 2 -> unary or binary.
10462    } else if (CanBeUnaryOperator) {
10463      ErrorKind = 0;  // 0 -> unary
10464    } else {
10465      assert(CanBeBinaryOperator &&
10466             "All non-call overloaded operators are unary or binary!");
10467      ErrorKind = 1;  // 1 -> binary
10468    }
10469
10470    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10471      << FnDecl->getDeclName() << NumParams << ErrorKind;
10472  }
10473
10474  // Overloaded operators other than operator() cannot be variadic.
10475  if (Op != OO_Call &&
10476      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10477    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10478      << FnDecl->getDeclName();
10479  }
10480
10481  // Some operators must be non-static member functions.
10482  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10483    return Diag(FnDecl->getLocation(),
10484                diag::err_operator_overload_must_be_member)
10485      << FnDecl->getDeclName();
10486  }
10487
10488  // C++ [over.inc]p1:
10489  //   The user-defined function called operator++ implements the
10490  //   prefix and postfix ++ operator. If this function is a member
10491  //   function with no parameters, or a non-member function with one
10492  //   parameter of class or enumeration type, it defines the prefix
10493  //   increment operator ++ for objects of that type. If the function
10494  //   is a member function with one parameter (which shall be of type
10495  //   int) or a non-member function with two parameters (the second
10496  //   of which shall be of type int), it defines the postfix
10497  //   increment operator ++ for objects of that type.
10498  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10499    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10500    bool ParamIsInt = false;
10501    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10502      ParamIsInt = BT->getKind() == BuiltinType::Int;
10503
10504    if (!ParamIsInt)
10505      return Diag(LastParam->getLocation(),
10506                  diag::err_operator_overload_post_incdec_must_be_int)
10507        << LastParam->getType() << (Op == OO_MinusMinus);
10508  }
10509
10510  return false;
10511}
10512
10513/// CheckLiteralOperatorDeclaration - Check whether the declaration
10514/// of this literal operator function is well-formed. If so, returns
10515/// false; otherwise, emits appropriate diagnostics and returns true.
10516bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10517  if (isa<CXXMethodDecl>(FnDecl)) {
10518    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10519      << FnDecl->getDeclName();
10520    return true;
10521  }
10522
10523  if (FnDecl->isExternC()) {
10524    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10525    return true;
10526  }
10527
10528  bool Valid = false;
10529
10530  // This might be the definition of a literal operator template.
10531  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10532  // This might be a specialization of a literal operator template.
10533  if (!TpDecl)
10534    TpDecl = FnDecl->getPrimaryTemplate();
10535
10536  // template <char...> type operator "" name() is the only valid template
10537  // signature, and the only valid signature with no parameters.
10538  if (TpDecl) {
10539    if (FnDecl->param_size() == 0) {
10540      // Must have only one template parameter
10541      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10542      if (Params->size() == 1) {
10543        NonTypeTemplateParmDecl *PmDecl =
10544          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10545
10546        // The template parameter must be a char parameter pack.
10547        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10548            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10549          Valid = true;
10550      }
10551    }
10552  } else if (FnDecl->param_size()) {
10553    // Check the first parameter
10554    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10555
10556    QualType T = (*Param)->getType().getUnqualifiedType();
10557
10558    // unsigned long long int, long double, and any character type are allowed
10559    // as the only parameters.
10560    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10561        Context.hasSameType(T, Context.LongDoubleTy) ||
10562        Context.hasSameType(T, Context.CharTy) ||
10563        Context.hasSameType(T, Context.WideCharTy) ||
10564        Context.hasSameType(T, Context.Char16Ty) ||
10565        Context.hasSameType(T, Context.Char32Ty)) {
10566      if (++Param == FnDecl->param_end())
10567        Valid = true;
10568      goto FinishedParams;
10569    }
10570
10571    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10572    const PointerType *PT = T->getAs<PointerType>();
10573    if (!PT)
10574      goto FinishedParams;
10575    T = PT->getPointeeType();
10576    if (!T.isConstQualified() || T.isVolatileQualified())
10577      goto FinishedParams;
10578    T = T.getUnqualifiedType();
10579
10580    // Move on to the second parameter;
10581    ++Param;
10582
10583    // If there is no second parameter, the first must be a const char *
10584    if (Param == FnDecl->param_end()) {
10585      if (Context.hasSameType(T, Context.CharTy))
10586        Valid = true;
10587      goto FinishedParams;
10588    }
10589
10590    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10591    // are allowed as the first parameter to a two-parameter function
10592    if (!(Context.hasSameType(T, Context.CharTy) ||
10593          Context.hasSameType(T, Context.WideCharTy) ||
10594          Context.hasSameType(T, Context.Char16Ty) ||
10595          Context.hasSameType(T, Context.Char32Ty)))
10596      goto FinishedParams;
10597
10598    // The second and final parameter must be an std::size_t
10599    T = (*Param)->getType().getUnqualifiedType();
10600    if (Context.hasSameType(T, Context.getSizeType()) &&
10601        ++Param == FnDecl->param_end())
10602      Valid = true;
10603  }
10604
10605  // FIXME: This diagnostic is absolutely terrible.
10606FinishedParams:
10607  if (!Valid) {
10608    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10609      << FnDecl->getDeclName();
10610    return true;
10611  }
10612
10613  // A parameter-declaration-clause containing a default argument is not
10614  // equivalent to any of the permitted forms.
10615  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10616                                    ParamEnd = FnDecl->param_end();
10617       Param != ParamEnd; ++Param) {
10618    if ((*Param)->hasDefaultArg()) {
10619      Diag((*Param)->getDefaultArgRange().getBegin(),
10620           diag::err_literal_operator_default_argument)
10621        << (*Param)->getDefaultArgRange();
10622      break;
10623    }
10624  }
10625
10626  StringRef LiteralName
10627    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10628  if (LiteralName[0] != '_') {
10629    // C++11 [usrlit.suffix]p1:
10630    //   Literal suffix identifiers that do not start with an underscore
10631    //   are reserved for future standardization.
10632    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
10633      << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
10634  }
10635
10636  return false;
10637}
10638
10639/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10640/// linkage specification, including the language and (if present)
10641/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10642/// the location of the language string literal, which is provided
10643/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10644/// the '{' brace. Otherwise, this linkage specification does not
10645/// have any braces.
10646Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10647                                           SourceLocation LangLoc,
10648                                           StringRef Lang,
10649                                           SourceLocation LBraceLoc) {
10650  LinkageSpecDecl::LanguageIDs Language;
10651  if (Lang == "\"C\"")
10652    Language = LinkageSpecDecl::lang_c;
10653  else if (Lang == "\"C++\"")
10654    Language = LinkageSpecDecl::lang_cxx;
10655  else {
10656    Diag(LangLoc, diag::err_bad_language);
10657    return 0;
10658  }
10659
10660  // FIXME: Add all the various semantics of linkage specifications
10661
10662  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10663                                               ExternLoc, LangLoc, Language,
10664                                               LBraceLoc.isValid());
10665  CurContext->addDecl(D);
10666  PushDeclContext(S, D);
10667  return D;
10668}
10669
10670/// ActOnFinishLinkageSpecification - Complete the definition of
10671/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10672/// valid, it's the position of the closing '}' brace in a linkage
10673/// specification that uses braces.
10674Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10675                                            Decl *LinkageSpec,
10676                                            SourceLocation RBraceLoc) {
10677  if (LinkageSpec) {
10678    if (RBraceLoc.isValid()) {
10679      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10680      LSDecl->setRBraceLoc(RBraceLoc);
10681    }
10682    PopDeclContext();
10683  }
10684  return LinkageSpec;
10685}
10686
10687Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10688                                  AttributeList *AttrList,
10689                                  SourceLocation SemiLoc) {
10690  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10691  // Attribute declarations appertain to empty declaration so we handle
10692  // them here.
10693  if (AttrList)
10694    ProcessDeclAttributeList(S, ED, AttrList);
10695
10696  CurContext->addDecl(ED);
10697  return ED;
10698}
10699
10700/// \brief Perform semantic analysis for the variable declaration that
10701/// occurs within a C++ catch clause, returning the newly-created
10702/// variable.
10703VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10704                                         TypeSourceInfo *TInfo,
10705                                         SourceLocation StartLoc,
10706                                         SourceLocation Loc,
10707                                         IdentifierInfo *Name) {
10708  bool Invalid = false;
10709  QualType ExDeclType = TInfo->getType();
10710
10711  // Arrays and functions decay.
10712  if (ExDeclType->isArrayType())
10713    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10714  else if (ExDeclType->isFunctionType())
10715    ExDeclType = Context.getPointerType(ExDeclType);
10716
10717  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10718  // The exception-declaration shall not denote a pointer or reference to an
10719  // incomplete type, other than [cv] void*.
10720  // N2844 forbids rvalue references.
10721  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10722    Diag(Loc, diag::err_catch_rvalue_ref);
10723    Invalid = true;
10724  }
10725
10726  QualType BaseType = ExDeclType;
10727  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10728  unsigned DK = diag::err_catch_incomplete;
10729  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10730    BaseType = Ptr->getPointeeType();
10731    Mode = 1;
10732    DK = diag::err_catch_incomplete_ptr;
10733  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10734    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10735    BaseType = Ref->getPointeeType();
10736    Mode = 2;
10737    DK = diag::err_catch_incomplete_ref;
10738  }
10739  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10740      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10741    Invalid = true;
10742
10743  if (!Invalid && !ExDeclType->isDependentType() &&
10744      RequireNonAbstractType(Loc, ExDeclType,
10745                             diag::err_abstract_type_in_decl,
10746                             AbstractVariableType))
10747    Invalid = true;
10748
10749  // Only the non-fragile NeXT runtime currently supports C++ catches
10750  // of ObjC types, and no runtime supports catching ObjC types by value.
10751  if (!Invalid && getLangOpts().ObjC1) {
10752    QualType T = ExDeclType;
10753    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10754      T = RT->getPointeeType();
10755
10756    if (T->isObjCObjectType()) {
10757      Diag(Loc, diag::err_objc_object_catch);
10758      Invalid = true;
10759    } else if (T->isObjCObjectPointerType()) {
10760      // FIXME: should this be a test for macosx-fragile specifically?
10761      if (getLangOpts().ObjCRuntime.isFragile())
10762        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10763    }
10764  }
10765
10766  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10767                                    ExDeclType, TInfo, SC_None);
10768  ExDecl->setExceptionVariable(true);
10769
10770  // In ARC, infer 'retaining' for variables of retainable type.
10771  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10772    Invalid = true;
10773
10774  if (!Invalid && !ExDeclType->isDependentType()) {
10775    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10776      // Insulate this from anything else we might currently be parsing.
10777      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10778
10779      // C++ [except.handle]p16:
10780      //   The object declared in an exception-declaration or, if the
10781      //   exception-declaration does not specify a name, a temporary (12.2) is
10782      //   copy-initialized (8.5) from the exception object. [...]
10783      //   The object is destroyed when the handler exits, after the destruction
10784      //   of any automatic objects initialized within the handler.
10785      //
10786      // We just pretend to initialize the object with itself, then make sure
10787      // it can be destroyed later.
10788      QualType initType = ExDeclType;
10789
10790      InitializedEntity entity =
10791        InitializedEntity::InitializeVariable(ExDecl);
10792      InitializationKind initKind =
10793        InitializationKind::CreateCopy(Loc, SourceLocation());
10794
10795      Expr *opaqueValue =
10796        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10797      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
10798      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
10799      if (result.isInvalid())
10800        Invalid = true;
10801      else {
10802        // If the constructor used was non-trivial, set this as the
10803        // "initializer".
10804        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10805        if (!construct->getConstructor()->isTrivial()) {
10806          Expr *init = MaybeCreateExprWithCleanups(construct);
10807          ExDecl->setInit(init);
10808        }
10809
10810        // And make sure it's destructable.
10811        FinalizeVarWithDestructor(ExDecl, recordType);
10812      }
10813    }
10814  }
10815
10816  if (Invalid)
10817    ExDecl->setInvalidDecl();
10818
10819  return ExDecl;
10820}
10821
10822/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10823/// handler.
10824Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10825  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10826  bool Invalid = D.isInvalidType();
10827
10828  // Check for unexpanded parameter packs.
10829  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10830                                      UPPC_ExceptionType)) {
10831    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10832                                             D.getIdentifierLoc());
10833    Invalid = true;
10834  }
10835
10836  IdentifierInfo *II = D.getIdentifier();
10837  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10838                                             LookupOrdinaryName,
10839                                             ForRedeclaration)) {
10840    // The scope should be freshly made just for us. There is just no way
10841    // it contains any previous declaration.
10842    assert(!S->isDeclScope(PrevDecl));
10843    if (PrevDecl->isTemplateParameter()) {
10844      // Maybe we will complain about the shadowed template parameter.
10845      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10846      PrevDecl = 0;
10847    }
10848  }
10849
10850  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10851    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10852      << D.getCXXScopeSpec().getRange();
10853    Invalid = true;
10854  }
10855
10856  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10857                                              D.getLocStart(),
10858                                              D.getIdentifierLoc(),
10859                                              D.getIdentifier());
10860  if (Invalid)
10861    ExDecl->setInvalidDecl();
10862
10863  // Add the exception declaration into this scope.
10864  if (II)
10865    PushOnScopeChains(ExDecl, S);
10866  else
10867    CurContext->addDecl(ExDecl);
10868
10869  ProcessDeclAttributes(S, ExDecl, D);
10870  return ExDecl;
10871}
10872
10873Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10874                                         Expr *AssertExpr,
10875                                         Expr *AssertMessageExpr,
10876                                         SourceLocation RParenLoc) {
10877  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10878
10879  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10880    return 0;
10881
10882  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10883                                      AssertMessage, RParenLoc, false);
10884}
10885
10886Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10887                                         Expr *AssertExpr,
10888                                         StringLiteral *AssertMessage,
10889                                         SourceLocation RParenLoc,
10890                                         bool Failed) {
10891  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10892      !Failed) {
10893    // In a static_assert-declaration, the constant-expression shall be a
10894    // constant expression that can be contextually converted to bool.
10895    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10896    if (Converted.isInvalid())
10897      Failed = true;
10898
10899    llvm::APSInt Cond;
10900    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10901          diag::err_static_assert_expression_is_not_constant,
10902          /*AllowFold=*/false).isInvalid())
10903      Failed = true;
10904
10905    if (!Failed && !Cond) {
10906      SmallString<256> MsgBuffer;
10907      llvm::raw_svector_ostream Msg(MsgBuffer);
10908      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10909      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10910        << Msg.str() << AssertExpr->getSourceRange();
10911      Failed = true;
10912    }
10913  }
10914
10915  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10916                                        AssertExpr, AssertMessage, RParenLoc,
10917                                        Failed);
10918
10919  CurContext->addDecl(Decl);
10920  return Decl;
10921}
10922
10923/// \brief Perform semantic analysis of the given friend type declaration.
10924///
10925/// \returns A friend declaration that.
10926FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10927                                      SourceLocation FriendLoc,
10928                                      TypeSourceInfo *TSInfo) {
10929  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10930
10931  QualType T = TSInfo->getType();
10932  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10933
10934  // C++03 [class.friend]p2:
10935  //   An elaborated-type-specifier shall be used in a friend declaration
10936  //   for a class.*
10937  //
10938  //   * The class-key of the elaborated-type-specifier is required.
10939  if (!ActiveTemplateInstantiations.empty()) {
10940    // Do not complain about the form of friend template types during
10941    // template instantiation; we will already have complained when the
10942    // template was declared.
10943  } else {
10944    if (!T->isElaboratedTypeSpecifier()) {
10945      // If we evaluated the type to a record type, suggest putting
10946      // a tag in front.
10947      if (const RecordType *RT = T->getAs<RecordType>()) {
10948        RecordDecl *RD = RT->getDecl();
10949
10950        std::string InsertionText = std::string(" ") + RD->getKindName();
10951
10952        Diag(TypeRange.getBegin(),
10953             getLangOpts().CPlusPlus11 ?
10954               diag::warn_cxx98_compat_unelaborated_friend_type :
10955               diag::ext_unelaborated_friend_type)
10956          << (unsigned) RD->getTagKind()
10957          << T
10958          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10959                                        InsertionText);
10960      } else {
10961        Diag(FriendLoc,
10962             getLangOpts().CPlusPlus11 ?
10963               diag::warn_cxx98_compat_nonclass_type_friend :
10964               diag::ext_nonclass_type_friend)
10965          << T
10966          << TypeRange;
10967      }
10968    } else if (T->getAs<EnumType>()) {
10969      Diag(FriendLoc,
10970           getLangOpts().CPlusPlus11 ?
10971             diag::warn_cxx98_compat_enum_friend :
10972             diag::ext_enum_friend)
10973        << T
10974        << TypeRange;
10975    }
10976
10977    // C++11 [class.friend]p3:
10978    //   A friend declaration that does not declare a function shall have one
10979    //   of the following forms:
10980    //     friend elaborated-type-specifier ;
10981    //     friend simple-type-specifier ;
10982    //     friend typename-specifier ;
10983    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10984      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10985  }
10986
10987  //   If the type specifier in a friend declaration designates a (possibly
10988  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10989  //   the friend declaration is ignored.
10990  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10991}
10992
10993/// Handle a friend tag declaration where the scope specifier was
10994/// templated.
10995Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10996                                    unsigned TagSpec, SourceLocation TagLoc,
10997                                    CXXScopeSpec &SS,
10998                                    IdentifierInfo *Name,
10999                                    SourceLocation NameLoc,
11000                                    AttributeList *Attr,
11001                                    MultiTemplateParamsArg TempParamLists) {
11002  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11003
11004  bool isExplicitSpecialization = false;
11005  bool Invalid = false;
11006
11007  if (TemplateParameterList *TemplateParams =
11008          MatchTemplateParametersToScopeSpecifier(
11009              TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11010              isExplicitSpecialization, Invalid)) {
11011    if (TemplateParams->size() > 0) {
11012      // This is a declaration of a class template.
11013      if (Invalid)
11014        return 0;
11015
11016      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11017                                SS, Name, NameLoc, Attr,
11018                                TemplateParams, AS_public,
11019                                /*ModulePrivateLoc=*/SourceLocation(),
11020                                TempParamLists.size() - 1,
11021                                TempParamLists.data()).take();
11022    } else {
11023      // The "template<>" header is extraneous.
11024      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11025        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11026      isExplicitSpecialization = true;
11027    }
11028  }
11029
11030  if (Invalid) return 0;
11031
11032  bool isAllExplicitSpecializations = true;
11033  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11034    if (TempParamLists[I]->size()) {
11035      isAllExplicitSpecializations = false;
11036      break;
11037    }
11038  }
11039
11040  // FIXME: don't ignore attributes.
11041
11042  // If it's explicit specializations all the way down, just forget
11043  // about the template header and build an appropriate non-templated
11044  // friend.  TODO: for source fidelity, remember the headers.
11045  if (isAllExplicitSpecializations) {
11046    if (SS.isEmpty()) {
11047      bool Owned = false;
11048      bool IsDependent = false;
11049      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11050                      Attr, AS_public,
11051                      /*ModulePrivateLoc=*/SourceLocation(),
11052                      MultiTemplateParamsArg(), Owned, IsDependent,
11053                      /*ScopedEnumKWLoc=*/SourceLocation(),
11054                      /*ScopedEnumUsesClassTag=*/false,
11055                      /*UnderlyingType=*/TypeResult());
11056    }
11057
11058    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11059    ElaboratedTypeKeyword Keyword
11060      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11061    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11062                                   *Name, NameLoc);
11063    if (T.isNull())
11064      return 0;
11065
11066    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11067    if (isa<DependentNameType>(T)) {
11068      DependentNameTypeLoc TL =
11069          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11070      TL.setElaboratedKeywordLoc(TagLoc);
11071      TL.setQualifierLoc(QualifierLoc);
11072      TL.setNameLoc(NameLoc);
11073    } else {
11074      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11075      TL.setElaboratedKeywordLoc(TagLoc);
11076      TL.setQualifierLoc(QualifierLoc);
11077      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11078    }
11079
11080    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11081                                            TSI, FriendLoc, TempParamLists);
11082    Friend->setAccess(AS_public);
11083    CurContext->addDecl(Friend);
11084    return Friend;
11085  }
11086
11087  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11088
11089
11090
11091  // Handle the case of a templated-scope friend class.  e.g.
11092  //   template <class T> class A<T>::B;
11093  // FIXME: we don't support these right now.
11094  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11095  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11096  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11097  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11098  TL.setElaboratedKeywordLoc(TagLoc);
11099  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11100  TL.setNameLoc(NameLoc);
11101
11102  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11103                                          TSI, FriendLoc, TempParamLists);
11104  Friend->setAccess(AS_public);
11105  Friend->setUnsupportedFriend(true);
11106  CurContext->addDecl(Friend);
11107  return Friend;
11108}
11109
11110
11111/// Handle a friend type declaration.  This works in tandem with
11112/// ActOnTag.
11113///
11114/// Notes on friend class templates:
11115///
11116/// We generally treat friend class declarations as if they were
11117/// declaring a class.  So, for example, the elaborated type specifier
11118/// in a friend declaration is required to obey the restrictions of a
11119/// class-head (i.e. no typedefs in the scope chain), template
11120/// parameters are required to match up with simple template-ids, &c.
11121/// However, unlike when declaring a template specialization, it's
11122/// okay to refer to a template specialization without an empty
11123/// template parameter declaration, e.g.
11124///   friend class A<T>::B<unsigned>;
11125/// We permit this as a special case; if there are any template
11126/// parameters present at all, require proper matching, i.e.
11127///   template <> template \<class T> friend class A<int>::B;
11128Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11129                                MultiTemplateParamsArg TempParams) {
11130  SourceLocation Loc = DS.getLocStart();
11131
11132  assert(DS.isFriendSpecified());
11133  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11134
11135  // Try to convert the decl specifier to a type.  This works for
11136  // friend templates because ActOnTag never produces a ClassTemplateDecl
11137  // for a TUK_Friend.
11138  Declarator TheDeclarator(DS, Declarator::MemberContext);
11139  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11140  QualType T = TSI->getType();
11141  if (TheDeclarator.isInvalidType())
11142    return 0;
11143
11144  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11145    return 0;
11146
11147  // This is definitely an error in C++98.  It's probably meant to
11148  // be forbidden in C++0x, too, but the specification is just
11149  // poorly written.
11150  //
11151  // The problem is with declarations like the following:
11152  //   template <T> friend A<T>::foo;
11153  // where deciding whether a class C is a friend or not now hinges
11154  // on whether there exists an instantiation of A that causes
11155  // 'foo' to equal C.  There are restrictions on class-heads
11156  // (which we declare (by fiat) elaborated friend declarations to
11157  // be) that makes this tractable.
11158  //
11159  // FIXME: handle "template <> friend class A<T>;", which
11160  // is possibly well-formed?  Who even knows?
11161  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11162    Diag(Loc, diag::err_tagless_friend_type_template)
11163      << DS.getSourceRange();
11164    return 0;
11165  }
11166
11167  // C++98 [class.friend]p1: A friend of a class is a function
11168  //   or class that is not a member of the class . . .
11169  // This is fixed in DR77, which just barely didn't make the C++03
11170  // deadline.  It's also a very silly restriction that seriously
11171  // affects inner classes and which nobody else seems to implement;
11172  // thus we never diagnose it, not even in -pedantic.
11173  //
11174  // But note that we could warn about it: it's always useless to
11175  // friend one of your own members (it's not, however, worthless to
11176  // friend a member of an arbitrary specialization of your template).
11177
11178  Decl *D;
11179  if (unsigned NumTempParamLists = TempParams.size())
11180    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11181                                   NumTempParamLists,
11182                                   TempParams.data(),
11183                                   TSI,
11184                                   DS.getFriendSpecLoc());
11185  else
11186    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11187
11188  if (!D)
11189    return 0;
11190
11191  D->setAccess(AS_public);
11192  CurContext->addDecl(D);
11193
11194  return D;
11195}
11196
11197NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11198                                        MultiTemplateParamsArg TemplateParams) {
11199  const DeclSpec &DS = D.getDeclSpec();
11200
11201  assert(DS.isFriendSpecified());
11202  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11203
11204  SourceLocation Loc = D.getIdentifierLoc();
11205  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11206
11207  // C++ [class.friend]p1
11208  //   A friend of a class is a function or class....
11209  // Note that this sees through typedefs, which is intended.
11210  // It *doesn't* see through dependent types, which is correct
11211  // according to [temp.arg.type]p3:
11212  //   If a declaration acquires a function type through a
11213  //   type dependent on a template-parameter and this causes
11214  //   a declaration that does not use the syntactic form of a
11215  //   function declarator to have a function type, the program
11216  //   is ill-formed.
11217  if (!TInfo->getType()->isFunctionType()) {
11218    Diag(Loc, diag::err_unexpected_friend);
11219
11220    // It might be worthwhile to try to recover by creating an
11221    // appropriate declaration.
11222    return 0;
11223  }
11224
11225  // C++ [namespace.memdef]p3
11226  //  - If a friend declaration in a non-local class first declares a
11227  //    class or function, the friend class or function is a member
11228  //    of the innermost enclosing namespace.
11229  //  - The name of the friend is not found by simple name lookup
11230  //    until a matching declaration is provided in that namespace
11231  //    scope (either before or after the class declaration granting
11232  //    friendship).
11233  //  - If a friend function is called, its name may be found by the
11234  //    name lookup that considers functions from namespaces and
11235  //    classes associated with the types of the function arguments.
11236  //  - When looking for a prior declaration of a class or a function
11237  //    declared as a friend, scopes outside the innermost enclosing
11238  //    namespace scope are not considered.
11239
11240  CXXScopeSpec &SS = D.getCXXScopeSpec();
11241  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11242  DeclarationName Name = NameInfo.getName();
11243  assert(Name);
11244
11245  // Check for unexpanded parameter packs.
11246  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11247      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11248      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11249    return 0;
11250
11251  // The context we found the declaration in, or in which we should
11252  // create the declaration.
11253  DeclContext *DC;
11254  Scope *DCScope = S;
11255  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11256                        ForRedeclaration);
11257
11258  // There are five cases here.
11259  //   - There's no scope specifier and we're in a local class. Only look
11260  //     for functions declared in the immediately-enclosing block scope.
11261  // We recover from invalid scope qualifiers as if they just weren't there.
11262  FunctionDecl *FunctionContainingLocalClass = 0;
11263  if ((SS.isInvalid() || !SS.isSet()) &&
11264      (FunctionContainingLocalClass =
11265           cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
11266    // C++11 [class.friend]p11:
11267    //   If a friend declaration appears in a local class and the name
11268    //   specified is an unqualified name, a prior declaration is
11269    //   looked up without considering scopes that are outside the
11270    //   innermost enclosing non-class scope. For a friend function
11271    //   declaration, if there is no prior declaration, the program is
11272    //   ill-formed.
11273
11274    // Find the innermost enclosing non-class scope. This is the block
11275    // scope containing the local class definition (or for a nested class,
11276    // the outer local class).
11277    DCScope = S->getFnParent();
11278
11279    // Look up the function name in the scope.
11280    Previous.clear(LookupLocalFriendName);
11281    LookupName(Previous, S, /*AllowBuiltinCreation*/false);
11282
11283    if (!Previous.empty()) {
11284      // All possible previous declarations must have the same context:
11285      // either they were declared at block scope or they are members of
11286      // one of the enclosing local classes.
11287      DC = Previous.getRepresentativeDecl()->getDeclContext();
11288    } else {
11289      // This is ill-formed, but provide the context that we would have
11290      // declared the function in, if we were permitted to, for error recovery.
11291      DC = FunctionContainingLocalClass;
11292    }
11293
11294    // C++ [class.friend]p6:
11295    //   A function can be defined in a friend declaration of a class if and
11296    //   only if the class is a non-local class (9.8), the function name is
11297    //   unqualified, and the function has namespace scope.
11298    if (D.isFunctionDefinition()) {
11299      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11300    }
11301
11302  //   - There's no scope specifier, in which case we just go to the
11303  //     appropriate scope and look for a function or function template
11304  //     there as appropriate.
11305  } else if (SS.isInvalid() || !SS.isSet()) {
11306    // C++11 [namespace.memdef]p3:
11307    //   If the name in a friend declaration is neither qualified nor
11308    //   a template-id and the declaration is a function or an
11309    //   elaborated-type-specifier, the lookup to determine whether
11310    //   the entity has been previously declared shall not consider
11311    //   any scopes outside the innermost enclosing namespace.
11312    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11313
11314    // Find the appropriate context according to the above.
11315    DC = CurContext;
11316
11317    // Skip class contexts.  If someone can cite chapter and verse
11318    // for this behavior, that would be nice --- it's what GCC and
11319    // EDG do, and it seems like a reasonable intent, but the spec
11320    // really only says that checks for unqualified existing
11321    // declarations should stop at the nearest enclosing namespace,
11322    // not that they should only consider the nearest enclosing
11323    // namespace.
11324    while (DC->isRecord())
11325      DC = DC->getParent();
11326
11327    DeclContext *LookupDC = DC;
11328    while (LookupDC->isTransparentContext())
11329      LookupDC = LookupDC->getParent();
11330
11331    while (true) {
11332      LookupQualifiedName(Previous, LookupDC);
11333
11334      if (!Previous.empty()) {
11335        DC = LookupDC;
11336        break;
11337      }
11338
11339      if (isTemplateId) {
11340        if (isa<TranslationUnitDecl>(LookupDC)) break;
11341      } else {
11342        if (LookupDC->isFileContext()) break;
11343      }
11344      LookupDC = LookupDC->getParent();
11345    }
11346
11347    DCScope = getScopeForDeclContext(S, DC);
11348
11349  //   - There's a non-dependent scope specifier, in which case we
11350  //     compute it and do a previous lookup there for a function
11351  //     or function template.
11352  } else if (!SS.getScopeRep()->isDependent()) {
11353    DC = computeDeclContext(SS);
11354    if (!DC) return 0;
11355
11356    if (RequireCompleteDeclContext(SS, DC)) return 0;
11357
11358    LookupQualifiedName(Previous, DC);
11359
11360    // Ignore things found implicitly in the wrong scope.
11361    // TODO: better diagnostics for this case.  Suggesting the right
11362    // qualified scope would be nice...
11363    LookupResult::Filter F = Previous.makeFilter();
11364    while (F.hasNext()) {
11365      NamedDecl *D = F.next();
11366      if (!DC->InEnclosingNamespaceSetOf(
11367              D->getDeclContext()->getRedeclContext()))
11368        F.erase();
11369    }
11370    F.done();
11371
11372    if (Previous.empty()) {
11373      D.setInvalidType();
11374      Diag(Loc, diag::err_qualified_friend_not_found)
11375          << Name << TInfo->getType();
11376      return 0;
11377    }
11378
11379    // C++ [class.friend]p1: A friend of a class is a function or
11380    //   class that is not a member of the class . . .
11381    if (DC->Equals(CurContext))
11382      Diag(DS.getFriendSpecLoc(),
11383           getLangOpts().CPlusPlus11 ?
11384             diag::warn_cxx98_compat_friend_is_member :
11385             diag::err_friend_is_member);
11386
11387    if (D.isFunctionDefinition()) {
11388      // C++ [class.friend]p6:
11389      //   A function can be defined in a friend declaration of a class if and
11390      //   only if the class is a non-local class (9.8), the function name is
11391      //   unqualified, and the function has namespace scope.
11392      SemaDiagnosticBuilder DB
11393        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11394
11395      DB << SS.getScopeRep();
11396      if (DC->isFileContext())
11397        DB << FixItHint::CreateRemoval(SS.getRange());
11398      SS.clear();
11399    }
11400
11401  //   - There's a scope specifier that does not match any template
11402  //     parameter lists, in which case we use some arbitrary context,
11403  //     create a method or method template, and wait for instantiation.
11404  //   - There's a scope specifier that does match some template
11405  //     parameter lists, which we don't handle right now.
11406  } else {
11407    if (D.isFunctionDefinition()) {
11408      // C++ [class.friend]p6:
11409      //   A function can be defined in a friend declaration of a class if and
11410      //   only if the class is a non-local class (9.8), the function name is
11411      //   unqualified, and the function has namespace scope.
11412      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11413        << SS.getScopeRep();
11414    }
11415
11416    DC = CurContext;
11417    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11418  }
11419
11420  if (!DC->isRecord()) {
11421    // This implies that it has to be an operator or function.
11422    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11423        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11424        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11425      Diag(Loc, diag::err_introducing_special_friend) <<
11426        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11427         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11428      return 0;
11429    }
11430  }
11431
11432  // FIXME: This is an egregious hack to cope with cases where the scope stack
11433  // does not contain the declaration context, i.e., in an out-of-line
11434  // definition of a class.
11435  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11436  if (!DCScope) {
11437    FakeDCScope.setEntity(DC);
11438    DCScope = &FakeDCScope;
11439  }
11440
11441  bool AddToScope = true;
11442  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11443                                          TemplateParams, AddToScope);
11444  if (!ND) return 0;
11445
11446  assert(ND->getLexicalDeclContext() == CurContext);
11447
11448  // If we performed typo correction, we might have added a scope specifier
11449  // and changed the decl context.
11450  DC = ND->getDeclContext();
11451
11452  // Add the function declaration to the appropriate lookup tables,
11453  // adjusting the redeclarations list as necessary.  We don't
11454  // want to do this yet if the friending class is dependent.
11455  //
11456  // Also update the scope-based lookup if the target context's
11457  // lookup context is in lexical scope.
11458  if (!CurContext->isDependentContext()) {
11459    DC = DC->getRedeclContext();
11460    DC->makeDeclVisibleInContext(ND);
11461    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11462      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11463  }
11464
11465  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11466                                       D.getIdentifierLoc(), ND,
11467                                       DS.getFriendSpecLoc());
11468  FrD->setAccess(AS_public);
11469  CurContext->addDecl(FrD);
11470
11471  if (ND->isInvalidDecl()) {
11472    FrD->setInvalidDecl();
11473  } else {
11474    if (DC->isRecord()) CheckFriendAccess(ND);
11475
11476    FunctionDecl *FD;
11477    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11478      FD = FTD->getTemplatedDecl();
11479    else
11480      FD = cast<FunctionDecl>(ND);
11481
11482    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11483    // default argument expression, that declaration shall be a definition
11484    // and shall be the only declaration of the function or function
11485    // template in the translation unit.
11486    if (functionDeclHasDefaultArgument(FD)) {
11487      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11488        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11489        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11490      } else if (!D.isFunctionDefinition())
11491        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11492    }
11493
11494    // Mark templated-scope function declarations as unsupported.
11495    if (FD->getNumTemplateParameterLists())
11496      FrD->setUnsupportedFriend(true);
11497  }
11498
11499  return ND;
11500}
11501
11502void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11503  AdjustDeclIfTemplate(Dcl);
11504
11505  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11506  if (!Fn) {
11507    Diag(DelLoc, diag::err_deleted_non_function);
11508    return;
11509  }
11510
11511  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11512    // Don't consider the implicit declaration we generate for explicit
11513    // specializations. FIXME: Do not generate these implicit declarations.
11514    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11515        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11516      Diag(DelLoc, diag::err_deleted_decl_not_first);
11517      Diag(Prev->getLocation(), diag::note_previous_declaration);
11518    }
11519    // If the declaration wasn't the first, we delete the function anyway for
11520    // recovery.
11521    Fn = Fn->getCanonicalDecl();
11522  }
11523
11524  if (Fn->isDeleted())
11525    return;
11526
11527  // See if we're deleting a function which is already known to override a
11528  // non-deleted virtual function.
11529  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11530    bool IssuedDiagnostic = false;
11531    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11532                                        E = MD->end_overridden_methods();
11533         I != E; ++I) {
11534      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11535        if (!IssuedDiagnostic) {
11536          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11537          IssuedDiagnostic = true;
11538        }
11539        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11540      }
11541    }
11542  }
11543
11544  Fn->setDeletedAsWritten();
11545}
11546
11547void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11548  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11549
11550  if (MD) {
11551    if (MD->getParent()->isDependentType()) {
11552      MD->setDefaulted();
11553      MD->setExplicitlyDefaulted();
11554      return;
11555    }
11556
11557    CXXSpecialMember Member = getSpecialMember(MD);
11558    if (Member == CXXInvalid) {
11559      if (!MD->isInvalidDecl())
11560        Diag(DefaultLoc, diag::err_default_special_members);
11561      return;
11562    }
11563
11564    MD->setDefaulted();
11565    MD->setExplicitlyDefaulted();
11566
11567    // If this definition appears within the record, do the checking when
11568    // the record is complete.
11569    const FunctionDecl *Primary = MD;
11570    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11571      // Find the uninstantiated declaration that actually had the '= default'
11572      // on it.
11573      Pattern->isDefined(Primary);
11574
11575    // If the method was defaulted on its first declaration, we will have
11576    // already performed the checking in CheckCompletedCXXClass. Such a
11577    // declaration doesn't trigger an implicit definition.
11578    if (Primary == Primary->getCanonicalDecl())
11579      return;
11580
11581    CheckExplicitlyDefaultedSpecialMember(MD);
11582
11583    // The exception specification is needed because we are defining the
11584    // function.
11585    ResolveExceptionSpec(DefaultLoc,
11586                         MD->getType()->castAs<FunctionProtoType>());
11587
11588    if (MD->isInvalidDecl())
11589      return;
11590
11591    switch (Member) {
11592    case CXXDefaultConstructor:
11593      DefineImplicitDefaultConstructor(DefaultLoc,
11594                                       cast<CXXConstructorDecl>(MD));
11595      break;
11596    case CXXCopyConstructor:
11597      DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11598      break;
11599    case CXXCopyAssignment:
11600      DefineImplicitCopyAssignment(DefaultLoc, MD);
11601      break;
11602    case CXXDestructor:
11603      DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
11604      break;
11605    case CXXMoveConstructor:
11606      DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11607      break;
11608    case CXXMoveAssignment:
11609      DefineImplicitMoveAssignment(DefaultLoc, MD);
11610      break;
11611    case CXXInvalid:
11612      llvm_unreachable("Invalid special member.");
11613    }
11614  } else {
11615    Diag(DefaultLoc, diag::err_default_special_members);
11616  }
11617}
11618
11619static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11620  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11621    Stmt *SubStmt = *CI;
11622    if (!SubStmt)
11623      continue;
11624    if (isa<ReturnStmt>(SubStmt))
11625      Self.Diag(SubStmt->getLocStart(),
11626           diag::err_return_in_constructor_handler);
11627    if (!isa<Expr>(SubStmt))
11628      SearchForReturnInStmt(Self, SubStmt);
11629  }
11630}
11631
11632void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11633  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11634    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11635    SearchForReturnInStmt(*this, Handler);
11636  }
11637}
11638
11639bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11640                                             const CXXMethodDecl *Old) {
11641  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11642  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11643
11644  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11645
11646  // If the calling conventions match, everything is fine
11647  if (NewCC == OldCC)
11648    return false;
11649
11650  // If either of the calling conventions are set to "default", we need to pick
11651  // something more sensible based on the target. This supports code where the
11652  // one method explicitly sets thiscall, and another has no explicit calling
11653  // convention.
11654  CallingConv Default =
11655    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11656  if (NewCC == CC_Default)
11657    NewCC = Default;
11658  if (OldCC == CC_Default)
11659    OldCC = Default;
11660
11661  // If the calling conventions still don't match, then report the error
11662  if (NewCC != OldCC) {
11663    Diag(New->getLocation(),
11664         diag::err_conflicting_overriding_cc_attributes)
11665      << New->getDeclName() << New->getType() << Old->getType();
11666    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11667    return true;
11668  }
11669
11670  return false;
11671}
11672
11673bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11674                                             const CXXMethodDecl *Old) {
11675  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11676  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11677
11678  if (Context.hasSameType(NewTy, OldTy) ||
11679      NewTy->isDependentType() || OldTy->isDependentType())
11680    return false;
11681
11682  // Check if the return types are covariant
11683  QualType NewClassTy, OldClassTy;
11684
11685  /// Both types must be pointers or references to classes.
11686  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11687    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11688      NewClassTy = NewPT->getPointeeType();
11689      OldClassTy = OldPT->getPointeeType();
11690    }
11691  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11692    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11693      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11694        NewClassTy = NewRT->getPointeeType();
11695        OldClassTy = OldRT->getPointeeType();
11696      }
11697    }
11698  }
11699
11700  // The return types aren't either both pointers or references to a class type.
11701  if (NewClassTy.isNull()) {
11702    Diag(New->getLocation(),
11703         diag::err_different_return_type_for_overriding_virtual_function)
11704      << New->getDeclName() << NewTy << OldTy;
11705    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11706
11707    return true;
11708  }
11709
11710  // C++ [class.virtual]p6:
11711  //   If the return type of D::f differs from the return type of B::f, the
11712  //   class type in the return type of D::f shall be complete at the point of
11713  //   declaration of D::f or shall be the class type D.
11714  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11715    if (!RT->isBeingDefined() &&
11716        RequireCompleteType(New->getLocation(), NewClassTy,
11717                            diag::err_covariant_return_incomplete,
11718                            New->getDeclName()))
11719    return true;
11720  }
11721
11722  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11723    // Check if the new class derives from the old class.
11724    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11725      Diag(New->getLocation(),
11726           diag::err_covariant_return_not_derived)
11727      << New->getDeclName() << NewTy << OldTy;
11728      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11729      return true;
11730    }
11731
11732    // Check if we the conversion from derived to base is valid.
11733    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11734                    diag::err_covariant_return_inaccessible_base,
11735                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11736                    // FIXME: Should this point to the return type?
11737                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11738      // FIXME: this note won't trigger for delayed access control
11739      // diagnostics, and it's impossible to get an undelayed error
11740      // here from access control during the original parse because
11741      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11742      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11743      return true;
11744    }
11745  }
11746
11747  // The qualifiers of the return types must be the same.
11748  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11749    Diag(New->getLocation(),
11750         diag::err_covariant_return_type_different_qualifications)
11751    << New->getDeclName() << NewTy << OldTy;
11752    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11753    return true;
11754  };
11755
11756
11757  // The new class type must have the same or less qualifiers as the old type.
11758  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11759    Diag(New->getLocation(),
11760         diag::err_covariant_return_type_class_type_more_qualified)
11761    << New->getDeclName() << NewTy << OldTy;
11762    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11763    return true;
11764  };
11765
11766  return false;
11767}
11768
11769/// \brief Mark the given method pure.
11770///
11771/// \param Method the method to be marked pure.
11772///
11773/// \param InitRange the source range that covers the "0" initializer.
11774bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11775  SourceLocation EndLoc = InitRange.getEnd();
11776  if (EndLoc.isValid())
11777    Method->setRangeEnd(EndLoc);
11778
11779  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11780    Method->setPure();
11781    return false;
11782  }
11783
11784  if (!Method->isInvalidDecl())
11785    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11786      << Method->getDeclName() << InitRange;
11787  return true;
11788}
11789
11790/// \brief Determine whether the given declaration is a static data member.
11791static bool isStaticDataMember(const Decl *D) {
11792  if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
11793    return Var->isStaticDataMember();
11794
11795  return false;
11796}
11797
11798/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11799/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11800/// is a fresh scope pushed for just this purpose.
11801///
11802/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11803/// static data member of class X, names should be looked up in the scope of
11804/// class X.
11805void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11806  // If there is no declaration, there was an error parsing it.
11807  if (D == 0 || D->isInvalidDecl()) return;
11808
11809  // We should only get called for declarations with scope specifiers, like:
11810  //   int foo::bar;
11811  assert(D->isOutOfLine());
11812  EnterDeclaratorContext(S, D->getDeclContext());
11813
11814  // If we are parsing the initializer for a static data member, push a
11815  // new expression evaluation context that is associated with this static
11816  // data member.
11817  if (isStaticDataMember(D))
11818    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11819}
11820
11821/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11822/// initializer for the out-of-line declaration 'D'.
11823void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11824  // If there is no declaration, there was an error parsing it.
11825  if (D == 0 || D->isInvalidDecl()) return;
11826
11827  if (isStaticDataMember(D))
11828    PopExpressionEvaluationContext();
11829
11830  assert(D->isOutOfLine());
11831  ExitDeclaratorContext(S);
11832}
11833
11834/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11835/// C++ if/switch/while/for statement.
11836/// e.g: "if (int x = f()) {...}"
11837DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11838  // C++ 6.4p2:
11839  // The declarator shall not specify a function or an array.
11840  // The type-specifier-seq shall not contain typedef and shall not declare a
11841  // new class or enumeration.
11842  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11843         "Parser allowed 'typedef' as storage class of condition decl.");
11844
11845  Decl *Dcl = ActOnDeclarator(S, D);
11846  if (!Dcl)
11847    return true;
11848
11849  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11850    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11851      << D.getSourceRange();
11852    return true;
11853  }
11854
11855  return Dcl;
11856}
11857
11858void Sema::LoadExternalVTableUses() {
11859  if (!ExternalSource)
11860    return;
11861
11862  SmallVector<ExternalVTableUse, 4> VTables;
11863  ExternalSource->ReadUsedVTables(VTables);
11864  SmallVector<VTableUse, 4> NewUses;
11865  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11866    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11867      = VTablesUsed.find(VTables[I].Record);
11868    // Even if a definition wasn't required before, it may be required now.
11869    if (Pos != VTablesUsed.end()) {
11870      if (!Pos->second && VTables[I].DefinitionRequired)
11871        Pos->second = true;
11872      continue;
11873    }
11874
11875    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11876    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11877  }
11878
11879  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11880}
11881
11882void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11883                          bool DefinitionRequired) {
11884  // Ignore any vtable uses in unevaluated operands or for classes that do
11885  // not have a vtable.
11886  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11887      CurContext->isDependentContext() || isUnevaluatedContext())
11888    return;
11889
11890  // Try to insert this class into the map.
11891  LoadExternalVTableUses();
11892  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11893  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11894    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11895  if (!Pos.second) {
11896    // If we already had an entry, check to see if we are promoting this vtable
11897    // to required a definition. If so, we need to reappend to the VTableUses
11898    // list, since we may have already processed the first entry.
11899    if (DefinitionRequired && !Pos.first->second) {
11900      Pos.first->second = true;
11901    } else {
11902      // Otherwise, we can early exit.
11903      return;
11904    }
11905  }
11906
11907  // Local classes need to have their virtual members marked
11908  // immediately. For all other classes, we mark their virtual members
11909  // at the end of the translation unit.
11910  if (Class->isLocalClass())
11911    MarkVirtualMembersReferenced(Loc, Class);
11912  else
11913    VTableUses.push_back(std::make_pair(Class, Loc));
11914}
11915
11916bool Sema::DefineUsedVTables() {
11917  LoadExternalVTableUses();
11918  if (VTableUses.empty())
11919    return false;
11920
11921  // Note: The VTableUses vector could grow as a result of marking
11922  // the members of a class as "used", so we check the size each
11923  // time through the loop and prefer indices (which are stable) to
11924  // iterators (which are not).
11925  bool DefinedAnything = false;
11926  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11927    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11928    if (!Class)
11929      continue;
11930
11931    SourceLocation Loc = VTableUses[I].second;
11932
11933    bool DefineVTable = true;
11934
11935    // If this class has a key function, but that key function is
11936    // defined in another translation unit, we don't need to emit the
11937    // vtable even though we're using it.
11938    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11939    if (KeyFunction && !KeyFunction->hasBody()) {
11940      switch (KeyFunction->getTemplateSpecializationKind()) {
11941      case TSK_Undeclared:
11942      case TSK_ExplicitSpecialization:
11943      case TSK_ExplicitInstantiationDeclaration:
11944        // The key function is in another translation unit.
11945        DefineVTable = false;
11946        break;
11947
11948      case TSK_ExplicitInstantiationDefinition:
11949      case TSK_ImplicitInstantiation:
11950        // We will be instantiating the key function.
11951        break;
11952      }
11953    } else if (!KeyFunction) {
11954      // If we have a class with no key function that is the subject
11955      // of an explicit instantiation declaration, suppress the
11956      // vtable; it will live with the explicit instantiation
11957      // definition.
11958      bool IsExplicitInstantiationDeclaration
11959        = Class->getTemplateSpecializationKind()
11960                                      == TSK_ExplicitInstantiationDeclaration;
11961      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11962                                 REnd = Class->redecls_end();
11963           R != REnd; ++R) {
11964        TemplateSpecializationKind TSK
11965          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11966        if (TSK == TSK_ExplicitInstantiationDeclaration)
11967          IsExplicitInstantiationDeclaration = true;
11968        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11969          IsExplicitInstantiationDeclaration = false;
11970          break;
11971        }
11972      }
11973
11974      if (IsExplicitInstantiationDeclaration)
11975        DefineVTable = false;
11976    }
11977
11978    // The exception specifications for all virtual members may be needed even
11979    // if we are not providing an authoritative form of the vtable in this TU.
11980    // We may choose to emit it available_externally anyway.
11981    if (!DefineVTable) {
11982      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11983      continue;
11984    }
11985
11986    // Mark all of the virtual members of this class as referenced, so
11987    // that we can build a vtable. Then, tell the AST consumer that a
11988    // vtable for this class is required.
11989    DefinedAnything = true;
11990    MarkVirtualMembersReferenced(Loc, Class);
11991    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11992    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11993
11994    // Optionally warn if we're emitting a weak vtable.
11995    if (Class->isExternallyVisible() &&
11996        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11997      const FunctionDecl *KeyFunctionDef = 0;
11998      if (!KeyFunction ||
11999          (KeyFunction->hasBody(KeyFunctionDef) &&
12000           KeyFunctionDef->isInlined()))
12001        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12002             TSK_ExplicitInstantiationDefinition
12003             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12004          << Class;
12005    }
12006  }
12007  VTableUses.clear();
12008
12009  return DefinedAnything;
12010}
12011
12012void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12013                                                 const CXXRecordDecl *RD) {
12014  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12015                                      E = RD->method_end(); I != E; ++I)
12016    if ((*I)->isVirtual() && !(*I)->isPure())
12017      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12018}
12019
12020void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12021                                        const CXXRecordDecl *RD) {
12022  // Mark all functions which will appear in RD's vtable as used.
12023  CXXFinalOverriderMap FinalOverriders;
12024  RD->getFinalOverriders(FinalOverriders);
12025  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12026                                            E = FinalOverriders.end();
12027       I != E; ++I) {
12028    for (OverridingMethods::const_iterator OI = I->second.begin(),
12029                                           OE = I->second.end();
12030         OI != OE; ++OI) {
12031      assert(OI->second.size() > 0 && "no final overrider");
12032      CXXMethodDecl *Overrider = OI->second.front().Method;
12033
12034      // C++ [basic.def.odr]p2:
12035      //   [...] A virtual member function is used if it is not pure. [...]
12036      if (!Overrider->isPure())
12037        MarkFunctionReferenced(Loc, Overrider);
12038    }
12039  }
12040
12041  // Only classes that have virtual bases need a VTT.
12042  if (RD->getNumVBases() == 0)
12043    return;
12044
12045  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12046           e = RD->bases_end(); i != e; ++i) {
12047    const CXXRecordDecl *Base =
12048        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12049    if (Base->getNumVBases() == 0)
12050      continue;
12051    MarkVirtualMembersReferenced(Loc, Base);
12052  }
12053}
12054
12055/// SetIvarInitializers - This routine builds initialization ASTs for the
12056/// Objective-C implementation whose ivars need be initialized.
12057void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12058  if (!getLangOpts().CPlusPlus)
12059    return;
12060  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12061    SmallVector<ObjCIvarDecl*, 8> ivars;
12062    CollectIvarsToConstructOrDestruct(OID, ivars);
12063    if (ivars.empty())
12064      return;
12065    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12066    for (unsigned i = 0; i < ivars.size(); i++) {
12067      FieldDecl *Field = ivars[i];
12068      if (Field->isInvalidDecl())
12069        continue;
12070
12071      CXXCtorInitializer *Member;
12072      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12073      InitializationKind InitKind =
12074        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12075
12076      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12077      ExprResult MemberInit =
12078        InitSeq.Perform(*this, InitEntity, InitKind, None);
12079      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12080      // Note, MemberInit could actually come back empty if no initialization
12081      // is required (e.g., because it would call a trivial default constructor)
12082      if (!MemberInit.get() || MemberInit.isInvalid())
12083        continue;
12084
12085      Member =
12086        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12087                                         SourceLocation(),
12088                                         MemberInit.takeAs<Expr>(),
12089                                         SourceLocation());
12090      AllToInit.push_back(Member);
12091
12092      // Be sure that the destructor is accessible and is marked as referenced.
12093      if (const RecordType *RecordTy
12094                  = Context.getBaseElementType(Field->getType())
12095                                                        ->getAs<RecordType>()) {
12096                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12097        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12098          MarkFunctionReferenced(Field->getLocation(), Destructor);
12099          CheckDestructorAccess(Field->getLocation(), Destructor,
12100                            PDiag(diag::err_access_dtor_ivar)
12101                              << Context.getBaseElementType(Field->getType()));
12102        }
12103      }
12104    }
12105    ObjCImplementation->setIvarInitializers(Context,
12106                                            AllToInit.data(), AllToInit.size());
12107  }
12108}
12109
12110static
12111void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12112                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12113                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12114                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12115                           Sema &S) {
12116  if (Ctor->isInvalidDecl())
12117    return;
12118
12119  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12120
12121  // Target may not be determinable yet, for instance if this is a dependent
12122  // call in an uninstantiated template.
12123  if (Target) {
12124    const FunctionDecl *FNTarget = 0;
12125    (void)Target->hasBody(FNTarget);
12126    Target = const_cast<CXXConstructorDecl*>(
12127      cast_or_null<CXXConstructorDecl>(FNTarget));
12128  }
12129
12130  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12131                     // Avoid dereferencing a null pointer here.
12132                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12133
12134  if (!Current.insert(Canonical))
12135    return;
12136
12137  // We know that beyond here, we aren't chaining into a cycle.
12138  if (!Target || !Target->isDelegatingConstructor() ||
12139      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12140    Valid.insert(Current.begin(), Current.end());
12141    Current.clear();
12142  // We've hit a cycle.
12143  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12144             Current.count(TCanonical)) {
12145    // If we haven't diagnosed this cycle yet, do so now.
12146    if (!Invalid.count(TCanonical)) {
12147      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12148             diag::warn_delegating_ctor_cycle)
12149        << Ctor;
12150
12151      // Don't add a note for a function delegating directly to itself.
12152      if (TCanonical != Canonical)
12153        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12154
12155      CXXConstructorDecl *C = Target;
12156      while (C->getCanonicalDecl() != Canonical) {
12157        const FunctionDecl *FNTarget = 0;
12158        (void)C->getTargetConstructor()->hasBody(FNTarget);
12159        assert(FNTarget && "Ctor cycle through bodiless function");
12160
12161        C = const_cast<CXXConstructorDecl*>(
12162          cast<CXXConstructorDecl>(FNTarget));
12163        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12164      }
12165    }
12166
12167    Invalid.insert(Current.begin(), Current.end());
12168    Current.clear();
12169  } else {
12170    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12171  }
12172}
12173
12174
12175void Sema::CheckDelegatingCtorCycles() {
12176  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12177
12178  for (DelegatingCtorDeclsType::iterator
12179         I = DelegatingCtorDecls.begin(ExternalSource),
12180         E = DelegatingCtorDecls.end();
12181       I != E; ++I)
12182    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12183
12184  for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12185                                                         CE = Invalid.end();
12186       CI != CE; ++CI)
12187    (*CI)->setInvalidDecl();
12188}
12189
12190namespace {
12191  /// \brief AST visitor that finds references to the 'this' expression.
12192  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12193    Sema &S;
12194
12195  public:
12196    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12197
12198    bool VisitCXXThisExpr(CXXThisExpr *E) {
12199      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12200        << E->isImplicit();
12201      return false;
12202    }
12203  };
12204}
12205
12206bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12207  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12208  if (!TSInfo)
12209    return false;
12210
12211  TypeLoc TL = TSInfo->getTypeLoc();
12212  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12213  if (!ProtoTL)
12214    return false;
12215
12216  // C++11 [expr.prim.general]p3:
12217  //   [The expression this] shall not appear before the optional
12218  //   cv-qualifier-seq and it shall not appear within the declaration of a
12219  //   static member function (although its type and value category are defined
12220  //   within a static member function as they are within a non-static member
12221  //   function). [ Note: this is because declaration matching does not occur
12222  //  until the complete declarator is known. - end note ]
12223  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12224  FindCXXThisExpr Finder(*this);
12225
12226  // If the return type came after the cv-qualifier-seq, check it now.
12227  if (Proto->hasTrailingReturn() &&
12228      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12229    return true;
12230
12231  // Check the exception specification.
12232  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12233    return true;
12234
12235  return checkThisInStaticMemberFunctionAttributes(Method);
12236}
12237
12238bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12239  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12240  if (!TSInfo)
12241    return false;
12242
12243  TypeLoc TL = TSInfo->getTypeLoc();
12244  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12245  if (!ProtoTL)
12246    return false;
12247
12248  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12249  FindCXXThisExpr Finder(*this);
12250
12251  switch (Proto->getExceptionSpecType()) {
12252  case EST_Uninstantiated:
12253  case EST_Unevaluated:
12254  case EST_BasicNoexcept:
12255  case EST_DynamicNone:
12256  case EST_MSAny:
12257  case EST_None:
12258    break;
12259
12260  case EST_ComputedNoexcept:
12261    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12262      return true;
12263
12264  case EST_Dynamic:
12265    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12266         EEnd = Proto->exception_end();
12267         E != EEnd; ++E) {
12268      if (!Finder.TraverseType(*E))
12269        return true;
12270    }
12271    break;
12272  }
12273
12274  return false;
12275}
12276
12277bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12278  FindCXXThisExpr Finder(*this);
12279
12280  // Check attributes.
12281  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12282       A != AEnd; ++A) {
12283    // FIXME: This should be emitted by tblgen.
12284    Expr *Arg = 0;
12285    ArrayRef<Expr *> Args;
12286    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12287      Arg = G->getArg();
12288    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12289      Arg = G->getArg();
12290    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12291      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12292    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12293      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12294    else if (ExclusiveLockFunctionAttr *ELF
12295               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12296      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12297    else if (SharedLockFunctionAttr *SLF
12298               = dyn_cast<SharedLockFunctionAttr>(*A))
12299      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12300    else if (ExclusiveTrylockFunctionAttr *ETLF
12301               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12302      Arg = ETLF->getSuccessValue();
12303      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12304    } else if (SharedTrylockFunctionAttr *STLF
12305                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12306      Arg = STLF->getSuccessValue();
12307      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12308    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12309      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12310    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12311      Arg = LR->getArg();
12312    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12313      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12314    else if (ExclusiveLocksRequiredAttr *ELR
12315               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12316      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12317    else if (SharedLocksRequiredAttr *SLR
12318               = dyn_cast<SharedLocksRequiredAttr>(*A))
12319      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12320
12321    if (Arg && !Finder.TraverseStmt(Arg))
12322      return true;
12323
12324    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12325      if (!Finder.TraverseStmt(Args[I]))
12326        return true;
12327    }
12328  }
12329
12330  return false;
12331}
12332
12333void
12334Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12335                                  ArrayRef<ParsedType> DynamicExceptions,
12336                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12337                                  Expr *NoexceptExpr,
12338                                  SmallVectorImpl<QualType> &Exceptions,
12339                                  FunctionProtoType::ExtProtoInfo &EPI) {
12340  Exceptions.clear();
12341  EPI.ExceptionSpecType = EST;
12342  if (EST == EST_Dynamic) {
12343    Exceptions.reserve(DynamicExceptions.size());
12344    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12345      // FIXME: Preserve type source info.
12346      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12347
12348      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12349      collectUnexpandedParameterPacks(ET, Unexpanded);
12350      if (!Unexpanded.empty()) {
12351        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12352                                         UPPC_ExceptionType,
12353                                         Unexpanded);
12354        continue;
12355      }
12356
12357      // Check that the type is valid for an exception spec, and
12358      // drop it if not.
12359      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12360        Exceptions.push_back(ET);
12361    }
12362    EPI.NumExceptions = Exceptions.size();
12363    EPI.Exceptions = Exceptions.data();
12364    return;
12365  }
12366
12367  if (EST == EST_ComputedNoexcept) {
12368    // If an error occurred, there's no expression here.
12369    if (NoexceptExpr) {
12370      assert((NoexceptExpr->isTypeDependent() ||
12371              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12372              Context.BoolTy) &&
12373             "Parser should have made sure that the expression is boolean");
12374      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12375        EPI.ExceptionSpecType = EST_BasicNoexcept;
12376        return;
12377      }
12378
12379      if (!NoexceptExpr->isValueDependent())
12380        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12381                         diag::err_noexcept_needs_constant_expression,
12382                         /*AllowFold*/ false).take();
12383      EPI.NoexceptExpr = NoexceptExpr;
12384    }
12385    return;
12386  }
12387}
12388
12389/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12390Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12391  // Implicitly declared functions (e.g. copy constructors) are
12392  // __host__ __device__
12393  if (D->isImplicit())
12394    return CFT_HostDevice;
12395
12396  if (D->hasAttr<CUDAGlobalAttr>())
12397    return CFT_Global;
12398
12399  if (D->hasAttr<CUDADeviceAttr>()) {
12400    if (D->hasAttr<CUDAHostAttr>())
12401      return CFT_HostDevice;
12402    return CFT_Device;
12403  }
12404
12405  return CFT_Host;
12406}
12407
12408bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12409                           CUDAFunctionTarget CalleeTarget) {
12410  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12411  // Callable from the device only."
12412  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12413    return true;
12414
12415  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12416  // Callable from the host only."
12417  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12418  // Callable from the host only."
12419  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12420      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12421    return true;
12422
12423  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12424    return true;
12425
12426  return false;
12427}
12428
12429/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12430///
12431MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12432                                       SourceLocation DeclStart,
12433                                       Declarator &D, Expr *BitWidth,
12434                                       InClassInitStyle InitStyle,
12435                                       AccessSpecifier AS,
12436                                       AttributeList *MSPropertyAttr) {
12437  IdentifierInfo *II = D.getIdentifier();
12438  if (!II) {
12439    Diag(DeclStart, diag::err_anonymous_property);
12440    return NULL;
12441  }
12442  SourceLocation Loc = D.getIdentifierLoc();
12443
12444  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12445  QualType T = TInfo->getType();
12446  if (getLangOpts().CPlusPlus) {
12447    CheckExtraCXXDefaultArguments(D);
12448
12449    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12450                                        UPPC_DataMemberType)) {
12451      D.setInvalidType();
12452      T = Context.IntTy;
12453      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12454    }
12455  }
12456
12457  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12458
12459  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12460    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12461         diag::err_invalid_thread)
12462      << DeclSpec::getSpecifierName(TSCS);
12463
12464  // Check to see if this name was declared as a member previously
12465  NamedDecl *PrevDecl = 0;
12466  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12467  LookupName(Previous, S);
12468  switch (Previous.getResultKind()) {
12469  case LookupResult::Found:
12470  case LookupResult::FoundUnresolvedValue:
12471    PrevDecl = Previous.getAsSingle<NamedDecl>();
12472    break;
12473
12474  case LookupResult::FoundOverloaded:
12475    PrevDecl = Previous.getRepresentativeDecl();
12476    break;
12477
12478  case LookupResult::NotFound:
12479  case LookupResult::NotFoundInCurrentInstantiation:
12480  case LookupResult::Ambiguous:
12481    break;
12482  }
12483
12484  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12485    // Maybe we will complain about the shadowed template parameter.
12486    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12487    // Just pretend that we didn't see the previous declaration.
12488    PrevDecl = 0;
12489  }
12490
12491  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12492    PrevDecl = 0;
12493
12494  SourceLocation TSSL = D.getLocStart();
12495  MSPropertyDecl *NewPD;
12496  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12497  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12498                                       II, T, TInfo, TSSL,
12499                                       Data.GetterId, Data.SetterId);
12500  ProcessDeclAttributes(TUScope, NewPD, D);
12501  NewPD->setAccess(AS);
12502
12503  if (NewPD->isInvalidDecl())
12504    Record->setInvalidDecl();
12505
12506  if (D.getDeclSpec().isModulePrivateSpecified())
12507    NewPD->setModulePrivate();
12508
12509  if (NewPD->isInvalidDecl() && PrevDecl) {
12510    // Don't introduce NewFD into scope; there's already something
12511    // with the same name in the same scope.
12512  } else if (II) {
12513    PushOnScopeChains(NewPD, S);
12514  } else
12515    Record->addDecl(NewPD);
12516
12517  return NewPD;
12518}
12519