SemaDeclCXX.cpp revision 16d41ca8932b22d587c10391a223844215cd6bfa
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/TypeLoc.h"
22#include "clang/AST/TypeOrdering.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Template.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Lex/Preprocessor.h"
28#include "llvm/ADT/STLExtras.h"
29#include <map>
30#include <set>
31
32using namespace clang;
33
34//===----------------------------------------------------------------------===//
35// CheckDefaultArgumentVisitor
36//===----------------------------------------------------------------------===//
37
38namespace {
39  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
40  /// the default argument of a parameter to determine whether it
41  /// contains any ill-formed subexpressions. For example, this will
42  /// diagnose the use of local variables or parameters within the
43  /// default argument expression.
44  class CheckDefaultArgumentVisitor
45    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
46    Expr *DefaultArg;
47    Sema *S;
48
49  public:
50    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
51      : DefaultArg(defarg), S(s) {}
52
53    bool VisitExpr(Expr *Node);
54    bool VisitDeclRefExpr(DeclRefExpr *DRE);
55    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
56  };
57
58  /// VisitExpr - Visit all of the children of this expression.
59  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
60    bool IsInvalid = false;
61    for (Stmt::child_iterator I = Node->child_begin(),
62         E = Node->child_end(); I != E; ++I)
63      IsInvalid |= Visit(*I);
64    return IsInvalid;
65  }
66
67  /// VisitDeclRefExpr - Visit a reference to a declaration, to
68  /// determine whether this declaration can be used in the default
69  /// argument expression.
70  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
71    NamedDecl *Decl = DRE->getDecl();
72    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
73      // C++ [dcl.fct.default]p9
74      //   Default arguments are evaluated each time the function is
75      //   called. The order of evaluation of function arguments is
76      //   unspecified. Consequently, parameters of a function shall not
77      //   be used in default argument expressions, even if they are not
78      //   evaluated. Parameters of a function declared before a default
79      //   argument expression are in scope and can hide namespace and
80      //   class member names.
81      return S->Diag(DRE->getSourceRange().getBegin(),
82                     diag::err_param_default_argument_references_param)
83         << Param->getDeclName() << DefaultArg->getSourceRange();
84    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p7
86      //   Local variables shall not be used in default argument
87      //   expressions.
88      if (VDecl->isBlockVarDecl())
89        return S->Diag(DRE->getSourceRange().getBegin(),
90                       diag::err_param_default_argument_references_local)
91          << VDecl->getDeclName() << DefaultArg->getSourceRange();
92    }
93
94    return false;
95  }
96
97  /// VisitCXXThisExpr - Visit a C++ "this" expression.
98  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
99    // C++ [dcl.fct.default]p8:
100    //   The keyword this shall not be used in a default argument of a
101    //   member function.
102    return S->Diag(ThisE->getSourceRange().getBegin(),
103                   diag::err_param_default_argument_references_this)
104               << ThisE->getSourceRange();
105  }
106}
107
108bool
109Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
110                              SourceLocation EqualLoc) {
111  QualType ParamType = Param->getType();
112
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
128                            Param->getDeclName(), /*DirectInit=*/false))
129    return true;
130
131  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
132
133  // Okay: add the default argument to the parameter
134  Param->setDefaultArg(Arg);
135
136  DefaultArg.release();
137
138  return false;
139}
140
141/// ActOnParamDefaultArgument - Check whether the default argument
142/// provided for a function parameter is well-formed. If so, attach it
143/// to the parameter declaration.
144void
145Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
146                                ExprArg defarg) {
147  if (!param || !defarg.get())
148    return;
149
150  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
151  UnparsedDefaultArgLocs.erase(Param);
152
153  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
154  QualType ParamType = Param->getType();
155
156  // Default arguments are only permitted in C++
157  if (!getLangOptions().CPlusPlus) {
158    Diag(EqualLoc, diag::err_param_default_argument)
159      << DefaultArg->getSourceRange();
160    Param->setInvalidDecl();
161    return;
162  }
163
164  // Check that the default argument is well-formed
165  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
166  if (DefaultArgChecker.Visit(DefaultArg.get())) {
167    Param->setInvalidDecl();
168    return;
169  }
170
171  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
172}
173
174/// ActOnParamUnparsedDefaultArgument - We've seen a default
175/// argument for a function parameter, but we can't parse it yet
176/// because we're inside a class definition. Note that this default
177/// argument will be parsed later.
178void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
179                                             SourceLocation EqualLoc,
180                                             SourceLocation ArgLoc) {
181  if (!param)
182    return;
183
184  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
185  if (Param)
186    Param->setUnparsedDefaultArg();
187
188  UnparsedDefaultArgLocs[Param] = ArgLoc;
189}
190
191/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
192/// the default argument for the parameter param failed.
193void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
194  if (!param)
195    return;
196
197  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
198
199  Param->setInvalidDecl();
200
201  UnparsedDefaultArgLocs.erase(Param);
202}
203
204/// CheckExtraCXXDefaultArguments - Check for any extra default
205/// arguments in the declarator, which is not a function declaration
206/// or definition and therefore is not permitted to have default
207/// arguments. This routine should be invoked for every declarator
208/// that is not a function declaration or definition.
209void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
210  // C++ [dcl.fct.default]p3
211  //   A default argument expression shall be specified only in the
212  //   parameter-declaration-clause of a function declaration or in a
213  //   template-parameter (14.1). It shall not be specified for a
214  //   parameter pack. If it is specified in a
215  //   parameter-declaration-clause, it shall not occur within a
216  //   declarator or abstract-declarator of a parameter-declaration.
217  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
218    DeclaratorChunk &chunk = D.getTypeObject(i);
219    if (chunk.Kind == DeclaratorChunk::Function) {
220      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
221        ParmVarDecl *Param =
222          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
223        if (Param->hasUnparsedDefaultArg()) {
224          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
225          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
226            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
227          delete Toks;
228          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
229        } else if (Param->getDefaultArg()) {
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << Param->getDefaultArg()->getSourceRange();
232          Param->setDefaultArg(0);
233        }
234      }
235    }
236  }
237}
238
239// MergeCXXFunctionDecl - Merge two declarations of the same C++
240// function, once we already know that they have the same
241// type. Subroutine of MergeFunctionDecl. Returns true if there was an
242// error, false otherwise.
243bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
244  bool Invalid = false;
245
246  // C++ [dcl.fct.default]p4:
247  //   For non-template functions, default arguments can be added in
248  //   later declarations of a function in the same
249  //   scope. Declarations in different scopes have completely
250  //   distinct sets of default arguments. That is, declarations in
251  //   inner scopes do not acquire default arguments from
252  //   declarations in outer scopes, and vice versa. In a given
253  //   function declaration, all parameters subsequent to a
254  //   parameter with a default argument shall have default
255  //   arguments supplied in this or previous declarations. A
256  //   default argument shall not be redefined by a later
257  //   declaration (not even to the same value).
258  //
259  // C++ [dcl.fct.default]p6:
260  //   Except for member functions of class templates, the default arguments
261  //   in a member function definition that appears outside of the class
262  //   definition are added to the set of default arguments provided by the
263  //   member function declaration in the class definition.
264  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
265    ParmVarDecl *OldParam = Old->getParamDecl(p);
266    ParmVarDecl *NewParam = New->getParamDecl(p);
267
268    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
269      // FIXME: If the parameter doesn't have an identifier then the location
270      // points to the '=' which means that the fixit hint won't remove any
271      // extra spaces between the type and the '='.
272      SourceLocation Begin = NewParam->getLocation();
273      if (NewParam->getIdentifier())
274        Begin = PP.getLocForEndOfToken(Begin);
275
276      Diag(NewParam->getLocation(),
277           diag::err_param_default_argument_redefinition)
278        << NewParam->getDefaultArgRange()
279        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
280                                                        NewParam->getLocEnd()));
281
282      // Look for the function declaration where the default argument was
283      // actually written, which may be a declaration prior to Old.
284      for (FunctionDecl *Older = Old->getPreviousDeclaration();
285           Older; Older = Older->getPreviousDeclaration()) {
286        if (!Older->getParamDecl(p)->hasDefaultArg())
287          break;
288
289        OldParam = Older->getParamDecl(p);
290      }
291
292      Diag(OldParam->getLocation(), diag::note_previous_definition)
293        << OldParam->getDefaultArgRange();
294      Invalid = true;
295    } else if (OldParam->hasDefaultArg()) {
296      // Merge the old default argument into the new parameter
297      if (OldParam->hasUninstantiatedDefaultArg())
298        NewParam->setUninstantiatedDefaultArg(
299                                      OldParam->getUninstantiatedDefaultArg());
300      else
301        NewParam->setDefaultArg(OldParam->getDefaultArg());
302    } else if (NewParam->hasDefaultArg()) {
303      if (New->getDescribedFunctionTemplate()) {
304        // Paragraph 4, quoted above, only applies to non-template functions.
305        Diag(NewParam->getLocation(),
306             diag::err_param_default_argument_template_redecl)
307          << NewParam->getDefaultArgRange();
308        Diag(Old->getLocation(), diag::note_template_prev_declaration)
309          << false;
310      } else if (New->getTemplateSpecializationKind()
311                   != TSK_ImplicitInstantiation &&
312                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
313        // C++ [temp.expr.spec]p21:
314        //   Default function arguments shall not be specified in a declaration
315        //   or a definition for one of the following explicit specializations:
316        //     - the explicit specialization of a function template;
317        //     - the explicit specialization of a member function template;
318        //     - the explicit specialization of a member function of a class
319        //       template where the class template specialization to which the
320        //       member function specialization belongs is implicitly
321        //       instantiated.
322        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
323          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
324          << New->getDeclName()
325          << NewParam->getDefaultArgRange();
326      } else if (New->getDeclContext()->isDependentContext()) {
327        // C++ [dcl.fct.default]p6 (DR217):
328        //   Default arguments for a member function of a class template shall
329        //   be specified on the initial declaration of the member function
330        //   within the class template.
331        //
332        // Reading the tea leaves a bit in DR217 and its reference to DR205
333        // leads me to the conclusion that one cannot add default function
334        // arguments for an out-of-line definition of a member function of a
335        // dependent type.
336        int WhichKind = 2;
337        if (CXXRecordDecl *Record
338              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
339          if (Record->getDescribedClassTemplate())
340            WhichKind = 0;
341          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
342            WhichKind = 1;
343          else
344            WhichKind = 2;
345        }
346
347        Diag(NewParam->getLocation(),
348             diag::err_param_default_argument_member_template_redecl)
349          << WhichKind
350          << NewParam->getDefaultArgRange();
351      }
352    }
353  }
354
355  if (CheckEquivalentExceptionSpec(
356          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
357          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
358    Invalid = true;
359
360  return Invalid;
361}
362
363/// CheckCXXDefaultArguments - Verify that the default arguments for a
364/// function declaration are well-formed according to C++
365/// [dcl.fct.default].
366void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
367  unsigned NumParams = FD->getNumParams();
368  unsigned p;
369
370  // Find first parameter with a default argument
371  for (p = 0; p < NumParams; ++p) {
372    ParmVarDecl *Param = FD->getParamDecl(p);
373    if (Param->hasDefaultArg())
374      break;
375  }
376
377  // C++ [dcl.fct.default]p4:
378  //   In a given function declaration, all parameters
379  //   subsequent to a parameter with a default argument shall
380  //   have default arguments supplied in this or previous
381  //   declarations. A default argument shall not be redefined
382  //   by a later declaration (not even to the same value).
383  unsigned LastMissingDefaultArg = 0;
384  for (; p < NumParams; ++p) {
385    ParmVarDecl *Param = FD->getParamDecl(p);
386    if (!Param->hasDefaultArg()) {
387      if (Param->isInvalidDecl())
388        /* We already complained about this parameter. */;
389      else if (Param->getIdentifier())
390        Diag(Param->getLocation(),
391             diag::err_param_default_argument_missing_name)
392          << Param->getIdentifier();
393      else
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing);
396
397      LastMissingDefaultArg = p;
398    }
399  }
400
401  if (LastMissingDefaultArg > 0) {
402    // Some default arguments were missing. Clear out all of the
403    // default arguments up to (and including) the last missing
404    // default argument, so that we leave the function parameters
405    // in a semantically valid state.
406    for (p = 0; p <= LastMissingDefaultArg; ++p) {
407      ParmVarDecl *Param = FD->getParamDecl(p);
408      if (Param->hasDefaultArg()) {
409        if (!Param->hasUnparsedDefaultArg())
410          Param->getDefaultArg()->Destroy(Context);
411        Param->setDefaultArg(0);
412      }
413    }
414  }
415}
416
417/// isCurrentClassName - Determine whether the identifier II is the
418/// name of the class type currently being defined. In the case of
419/// nested classes, this will only return true if II is the name of
420/// the innermost class.
421bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
422                              const CXXScopeSpec *SS) {
423  CXXRecordDecl *CurDecl;
424  if (SS && SS->isSet() && !SS->isInvalid()) {
425    DeclContext *DC = computeDeclContext(*SS, true);
426    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
427  } else
428    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
429
430  if (CurDecl)
431    return &II == CurDecl->getIdentifier();
432  else
433    return false;
434}
435
436/// \brief Check the validity of a C++ base class specifier.
437///
438/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
439/// and returns NULL otherwise.
440CXXBaseSpecifier *
441Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
442                         SourceRange SpecifierRange,
443                         bool Virtual, AccessSpecifier Access,
444                         QualType BaseType,
445                         SourceLocation BaseLoc) {
446  // C++ [class.union]p1:
447  //   A union shall not have base classes.
448  if (Class->isUnion()) {
449    Diag(Class->getLocation(), diag::err_base_clause_on_union)
450      << SpecifierRange;
451    return 0;
452  }
453
454  if (BaseType->isDependentType())
455    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
456                                Class->getTagKind() == RecordDecl::TK_class,
457                                Access, BaseType);
458
459  // Base specifiers must be record types.
460  if (!BaseType->isRecordType()) {
461    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
462    return 0;
463  }
464
465  // C++ [class.union]p1:
466  //   A union shall not be used as a base class.
467  if (BaseType->isUnionType()) {
468    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.derived]p2:
473  //   The class-name in a base-specifier shall not be an incompletely
474  //   defined class.
475  if (RequireCompleteType(BaseLoc, BaseType,
476                          PDiag(diag::err_incomplete_base_class)
477                            << SpecifierRange))
478    return 0;
479
480  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
481  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
482  assert(BaseDecl && "Record type has no declaration");
483  BaseDecl = BaseDecl->getDefinition(Context);
484  assert(BaseDecl && "Base type is not incomplete, but has no definition");
485  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
486  assert(CXXBaseDecl && "Base type is not a C++ type");
487  if (!CXXBaseDecl->isEmpty())
488    Class->setEmpty(false);
489  if (CXXBaseDecl->isPolymorphic())
490    Class->setPolymorphic(true);
491  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
492  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
493    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
494    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
495      << BaseType;
496    return 0;
497  }
498
499  SetClassDeclAttributesFromBase(Class, cast<CXXRecordDecl>(BaseDecl), Virtual);
500
501  // Create the base specifier.
502  // FIXME: Allocate via ASTContext?
503  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
504                              Class->getTagKind() == RecordDecl::TK_class,
505                              Access, BaseType);
506}
507
508void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
509                                          const CXXRecordDecl *BaseClass,
510                                          bool BaseIsVirtual) {
511
512  // C++ [dcl.init.aggr]p1:
513  //   An aggregate is [...] a class with [...] no base classes [...].
514  Class->setAggregate(false);
515  Class->setPOD(false);
516
517  if (BaseIsVirtual) {
518    // C++ [class.ctor]p5:
519    //   A constructor is trivial if its class has no virtual base classes.
520    Class->setHasTrivialConstructor(false);
521
522    // C++ [class.copy]p6:
523    //   A copy constructor is trivial if its class has no virtual base classes.
524    Class->setHasTrivialCopyConstructor(false);
525
526    // C++ [class.copy]p11:
527    //   A copy assignment operator is trivial if its class has no virtual
528    //   base classes.
529    Class->setHasTrivialCopyAssignment(false);
530
531    // C++0x [meta.unary.prop] is_empty:
532    //    T is a class type, but not a union type, with ... no virtual base
533    //    classes
534    Class->setEmpty(false);
535  } else {
536    // C++ [class.ctor]p5:
537    //   A constructor is trivial if all the direct base classes of its
538    //   class have trivial constructors.
539    if (!BaseClass->hasTrivialConstructor())
540      Class->setHasTrivialConstructor(false);
541
542    // C++ [class.copy]p6:
543    //   A copy constructor is trivial if all the direct base classes of its
544    //   class have trivial copy constructors.
545    if (!BaseClass->hasTrivialCopyConstructor())
546      Class->setHasTrivialCopyConstructor(false);
547
548    // C++ [class.copy]p11:
549    //   A copy assignment operator is trivial if all the direct base classes
550    //   of its class have trivial copy assignment operators.
551    if (!BaseClass->hasTrivialCopyAssignment())
552      Class->setHasTrivialCopyAssignment(false);
553  }
554
555  // C++ [class.ctor]p3:
556  //   A destructor is trivial if all the direct base classes of its class
557  //   have trivial destructors.
558  if (!BaseClass->hasTrivialDestructor())
559    Class->setHasTrivialDestructor(false);
560}
561
562/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
563/// one entry in the base class list of a class specifier, for
564/// example:
565///    class foo : public bar, virtual private baz {
566/// 'public bar' and 'virtual private baz' are each base-specifiers.
567Sema::BaseResult
568Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
569                         bool Virtual, AccessSpecifier Access,
570                         TypeTy *basetype, SourceLocation BaseLoc) {
571  if (!classdecl)
572    return true;
573
574  AdjustDeclIfTemplate(classdecl);
575  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
576  QualType BaseType = GetTypeFromParser(basetype);
577  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
578                                                      Virtual, Access,
579                                                      BaseType, BaseLoc))
580    return BaseSpec;
581
582  return true;
583}
584
585/// \brief Performs the actual work of attaching the given base class
586/// specifiers to a C++ class.
587bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
588                                unsigned NumBases) {
589 if (NumBases == 0)
590    return false;
591
592  // Used to keep track of which base types we have already seen, so
593  // that we can properly diagnose redundant direct base types. Note
594  // that the key is always the unqualified canonical type of the base
595  // class.
596  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
597
598  // Copy non-redundant base specifiers into permanent storage.
599  unsigned NumGoodBases = 0;
600  bool Invalid = false;
601  for (unsigned idx = 0; idx < NumBases; ++idx) {
602    QualType NewBaseType
603      = Context.getCanonicalType(Bases[idx]->getType());
604    NewBaseType = NewBaseType.getLocalUnqualifiedType();
605
606    if (KnownBaseTypes[NewBaseType]) {
607      // C++ [class.mi]p3:
608      //   A class shall not be specified as a direct base class of a
609      //   derived class more than once.
610      Diag(Bases[idx]->getSourceRange().getBegin(),
611           diag::err_duplicate_base_class)
612        << KnownBaseTypes[NewBaseType]->getType()
613        << Bases[idx]->getSourceRange();
614
615      // Delete the duplicate base class specifier; we're going to
616      // overwrite its pointer later.
617      Context.Deallocate(Bases[idx]);
618
619      Invalid = true;
620    } else {
621      // Okay, add this new base class.
622      KnownBaseTypes[NewBaseType] = Bases[idx];
623      Bases[NumGoodBases++] = Bases[idx];
624    }
625  }
626
627  // Attach the remaining base class specifiers to the derived class.
628  Class->setBases(Context, Bases, NumGoodBases);
629
630  // Delete the remaining (good) base class specifiers, since their
631  // data has been copied into the CXXRecordDecl.
632  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
633    Context.Deallocate(Bases[idx]);
634
635  return Invalid;
636}
637
638/// ActOnBaseSpecifiers - Attach the given base specifiers to the
639/// class, after checking whether there are any duplicate base
640/// classes.
641void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
642                               unsigned NumBases) {
643  if (!ClassDecl || !Bases || !NumBases)
644    return;
645
646  AdjustDeclIfTemplate(ClassDecl);
647  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
648                       (CXXBaseSpecifier**)(Bases), NumBases);
649}
650
651/// \brief Determine whether the type \p Derived is a C++ class that is
652/// derived from the type \p Base.
653bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
654  if (!getLangOptions().CPlusPlus)
655    return false;
656
657  const RecordType *DerivedRT = Derived->getAs<RecordType>();
658  if (!DerivedRT)
659    return false;
660
661  const RecordType *BaseRT = Base->getAs<RecordType>();
662  if (!BaseRT)
663    return false;
664
665  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
666  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
667  return DerivedRD->isDerivedFrom(BaseRD);
668}
669
670/// \brief Determine whether the type \p Derived is a C++ class that is
671/// derived from the type \p Base.
672bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
673  if (!getLangOptions().CPlusPlus)
674    return false;
675
676  const RecordType *DerivedRT = Derived->getAs<RecordType>();
677  if (!DerivedRT)
678    return false;
679
680  const RecordType *BaseRT = Base->getAs<RecordType>();
681  if (!BaseRT)
682    return false;
683
684  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
685  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
686  return DerivedRD->isDerivedFrom(BaseRD, Paths);
687}
688
689/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
690/// conversion (where Derived and Base are class types) is
691/// well-formed, meaning that the conversion is unambiguous (and
692/// that all of the base classes are accessible). Returns true
693/// and emits a diagnostic if the code is ill-formed, returns false
694/// otherwise. Loc is the location where this routine should point to
695/// if there is an error, and Range is the source range to highlight
696/// if there is an error.
697bool
698Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
699                                   unsigned InaccessibleBaseID,
700                                   unsigned AmbigiousBaseConvID,
701                                   SourceLocation Loc, SourceRange Range,
702                                   DeclarationName Name) {
703  // First, determine whether the path from Derived to Base is
704  // ambiguous. This is slightly more expensive than checking whether
705  // the Derived to Base conversion exists, because here we need to
706  // explore multiple paths to determine if there is an ambiguity.
707  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
708                     /*DetectVirtual=*/false);
709  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
710  assert(DerivationOkay &&
711         "Can only be used with a derived-to-base conversion");
712  (void)DerivationOkay;
713
714  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
715    if (InaccessibleBaseID == 0)
716      return false;
717    // Check that the base class can be accessed.
718    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
719                                Name);
720  }
721
722  // We know that the derived-to-base conversion is ambiguous, and
723  // we're going to produce a diagnostic. Perform the derived-to-base
724  // search just one more time to compute all of the possible paths so
725  // that we can print them out. This is more expensive than any of
726  // the previous derived-to-base checks we've done, but at this point
727  // performance isn't as much of an issue.
728  Paths.clear();
729  Paths.setRecordingPaths(true);
730  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
731  assert(StillOkay && "Can only be used with a derived-to-base conversion");
732  (void)StillOkay;
733
734  // Build up a textual representation of the ambiguous paths, e.g.,
735  // D -> B -> A, that will be used to illustrate the ambiguous
736  // conversions in the diagnostic. We only print one of the paths
737  // to each base class subobject.
738  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
739
740  Diag(Loc, AmbigiousBaseConvID)
741  << Derived << Base << PathDisplayStr << Range << Name;
742  return true;
743}
744
745bool
746Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
747                                   SourceLocation Loc, SourceRange Range,
748                                   bool IgnoreAccess) {
749  return CheckDerivedToBaseConversion(Derived, Base,
750                                      IgnoreAccess ? 0 :
751                                        diag::err_conv_to_inaccessible_base,
752                                      diag::err_ambiguous_derived_to_base_conv,
753                                      Loc, Range, DeclarationName());
754}
755
756
757/// @brief Builds a string representing ambiguous paths from a
758/// specific derived class to different subobjects of the same base
759/// class.
760///
761/// This function builds a string that can be used in error messages
762/// to show the different paths that one can take through the
763/// inheritance hierarchy to go from the derived class to different
764/// subobjects of a base class. The result looks something like this:
765/// @code
766/// struct D -> struct B -> struct A
767/// struct D -> struct C -> struct A
768/// @endcode
769std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
770  std::string PathDisplayStr;
771  std::set<unsigned> DisplayedPaths;
772  for (CXXBasePaths::paths_iterator Path = Paths.begin();
773       Path != Paths.end(); ++Path) {
774    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
775      // We haven't displayed a path to this particular base
776      // class subobject yet.
777      PathDisplayStr += "\n    ";
778      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
779      for (CXXBasePath::const_iterator Element = Path->begin();
780           Element != Path->end(); ++Element)
781        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
782    }
783  }
784
785  return PathDisplayStr;
786}
787
788//===----------------------------------------------------------------------===//
789// C++ class member Handling
790//===----------------------------------------------------------------------===//
791
792/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
793/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
794/// bitfield width if there is one and 'InitExpr' specifies the initializer if
795/// any.
796Sema::DeclPtrTy
797Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
798                               MultiTemplateParamsArg TemplateParameterLists,
799                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
800                               bool Deleted) {
801  const DeclSpec &DS = D.getDeclSpec();
802  DeclarationName Name = GetNameForDeclarator(D);
803  Expr *BitWidth = static_cast<Expr*>(BW);
804  Expr *Init = static_cast<Expr*>(InitExpr);
805  SourceLocation Loc = D.getIdentifierLoc();
806
807  bool isFunc = D.isFunctionDeclarator();
808
809  assert(!DS.isFriendSpecified());
810
811  // C++ 9.2p6: A member shall not be declared to have automatic storage
812  // duration (auto, register) or with the extern storage-class-specifier.
813  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
814  // data members and cannot be applied to names declared const or static,
815  // and cannot be applied to reference members.
816  switch (DS.getStorageClassSpec()) {
817    case DeclSpec::SCS_unspecified:
818    case DeclSpec::SCS_typedef:
819    case DeclSpec::SCS_static:
820      // FALL THROUGH.
821      break;
822    case DeclSpec::SCS_mutable:
823      if (isFunc) {
824        if (DS.getStorageClassSpecLoc().isValid())
825          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
826        else
827          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
828
829        // FIXME: It would be nicer if the keyword was ignored only for this
830        // declarator. Otherwise we could get follow-up errors.
831        D.getMutableDeclSpec().ClearStorageClassSpecs();
832      } else {
833        QualType T = GetTypeForDeclarator(D, S);
834        diag::kind err = static_cast<diag::kind>(0);
835        if (T->isReferenceType())
836          err = diag::err_mutable_reference;
837        else if (T.isConstQualified())
838          err = diag::err_mutable_const;
839        if (err != 0) {
840          if (DS.getStorageClassSpecLoc().isValid())
841            Diag(DS.getStorageClassSpecLoc(), err);
842          else
843            Diag(DS.getThreadSpecLoc(), err);
844          // FIXME: It would be nicer if the keyword was ignored only for this
845          // declarator. Otherwise we could get follow-up errors.
846          D.getMutableDeclSpec().ClearStorageClassSpecs();
847        }
848      }
849      break;
850    default:
851      if (DS.getStorageClassSpecLoc().isValid())
852        Diag(DS.getStorageClassSpecLoc(),
853             diag::err_storageclass_invalid_for_member);
854      else
855        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
856      D.getMutableDeclSpec().ClearStorageClassSpecs();
857  }
858
859  if (!isFunc &&
860      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
861      D.getNumTypeObjects() == 0) {
862    // Check also for this case:
863    //
864    // typedef int f();
865    // f a;
866    //
867    QualType TDType = GetTypeFromParser(DS.getTypeRep());
868    isFunc = TDType->isFunctionType();
869  }
870
871  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
872                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
873                      !isFunc);
874
875  Decl *Member;
876  if (isInstField) {
877    // FIXME: Check for template parameters!
878    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
879                         AS);
880    assert(Member && "HandleField never returns null");
881  } else {
882    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
883               .getAs<Decl>();
884    if (!Member) {
885      if (BitWidth) DeleteExpr(BitWidth);
886      return DeclPtrTy();
887    }
888
889    // Non-instance-fields can't have a bitfield.
890    if (BitWidth) {
891      if (Member->isInvalidDecl()) {
892        // don't emit another diagnostic.
893      } else if (isa<VarDecl>(Member)) {
894        // C++ 9.6p3: A bit-field shall not be a static member.
895        // "static member 'A' cannot be a bit-field"
896        Diag(Loc, diag::err_static_not_bitfield)
897          << Name << BitWidth->getSourceRange();
898      } else if (isa<TypedefDecl>(Member)) {
899        // "typedef member 'x' cannot be a bit-field"
900        Diag(Loc, diag::err_typedef_not_bitfield)
901          << Name << BitWidth->getSourceRange();
902      } else {
903        // A function typedef ("typedef int f(); f a;").
904        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
905        Diag(Loc, diag::err_not_integral_type_bitfield)
906          << Name << cast<ValueDecl>(Member)->getType()
907          << BitWidth->getSourceRange();
908      }
909
910      DeleteExpr(BitWidth);
911      BitWidth = 0;
912      Member->setInvalidDecl();
913    }
914
915    Member->setAccess(AS);
916
917    // If we have declared a member function template, set the access of the
918    // templated declaration as well.
919    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
920      FunTmpl->getTemplatedDecl()->setAccess(AS);
921  }
922
923  assert((Name || isInstField) && "No identifier for non-field ?");
924
925  if (Init)
926    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
927  if (Deleted) // FIXME: Source location is not very good.
928    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
929
930  if (isInstField) {
931    FieldCollector->Add(cast<FieldDecl>(Member));
932    return DeclPtrTy();
933  }
934  return DeclPtrTy::make(Member);
935}
936
937/// ActOnMemInitializer - Handle a C++ member initializer.
938Sema::MemInitResult
939Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
940                          Scope *S,
941                          const CXXScopeSpec &SS,
942                          IdentifierInfo *MemberOrBase,
943                          TypeTy *TemplateTypeTy,
944                          SourceLocation IdLoc,
945                          SourceLocation LParenLoc,
946                          ExprTy **Args, unsigned NumArgs,
947                          SourceLocation *CommaLocs,
948                          SourceLocation RParenLoc) {
949  if (!ConstructorD)
950    return true;
951
952  AdjustDeclIfTemplate(ConstructorD);
953
954  CXXConstructorDecl *Constructor
955    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
956  if (!Constructor) {
957    // The user wrote a constructor initializer on a function that is
958    // not a C++ constructor. Ignore the error for now, because we may
959    // have more member initializers coming; we'll diagnose it just
960    // once in ActOnMemInitializers.
961    return true;
962  }
963
964  CXXRecordDecl *ClassDecl = Constructor->getParent();
965
966  // C++ [class.base.init]p2:
967  //   Names in a mem-initializer-id are looked up in the scope of the
968  //   constructor’s class and, if not found in that scope, are looked
969  //   up in the scope containing the constructor’s
970  //   definition. [Note: if the constructor’s class contains a member
971  //   with the same name as a direct or virtual base class of the
972  //   class, a mem-initializer-id naming the member or base class and
973  //   composed of a single identifier refers to the class member. A
974  //   mem-initializer-id for the hidden base class may be specified
975  //   using a qualified name. ]
976  if (!SS.getScopeRep() && !TemplateTypeTy) {
977    // Look for a member, first.
978    FieldDecl *Member = 0;
979    DeclContext::lookup_result Result
980      = ClassDecl->lookup(MemberOrBase);
981    if (Result.first != Result.second)
982      Member = dyn_cast<FieldDecl>(*Result.first);
983
984    // FIXME: Handle members of an anonymous union.
985
986    if (Member)
987      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
988                                    LParenLoc, RParenLoc);
989  }
990  // It didn't name a member, so see if it names a class.
991  QualType BaseType;
992
993  DeclaratorInfo *DInfo = 0;
994  if (TemplateTypeTy)
995    BaseType = GetTypeFromParser(TemplateTypeTy, &DInfo);
996  else
997    BaseType = QualType::getFromOpaquePtr(getTypeName(*MemberOrBase, IdLoc,
998                                                      S, &SS));
999  if (BaseType.isNull())
1000    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1001      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1002
1003  if (!DInfo)
1004    DInfo = Context.getTrivialDeclaratorInfo(BaseType, IdLoc);
1005
1006  return BuildBaseInitializer(BaseType, DInfo, (Expr **)Args, NumArgs,
1007                              LParenLoc, RParenLoc, ClassDecl);
1008}
1009
1010/// Checks an initializer expression for use of uninitialized fields, such as
1011/// containing the field that is being initialized. Returns true if there is an
1012/// uninitialized field was used an updates the SourceLocation parameter; false
1013/// otherwise.
1014static bool InitExprContainsUninitializedFields(const Stmt* S,
1015                                                const FieldDecl* LhsField,
1016                                                SourceLocation* L) {
1017  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1018  if (ME) {
1019    const NamedDecl* RhsField = ME->getMemberDecl();
1020    if (RhsField == LhsField) {
1021      // Initializing a field with itself. Throw a warning.
1022      // But wait; there are exceptions!
1023      // Exception #1:  The field may not belong to this record.
1024      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1025      const Expr* base = ME->getBase();
1026      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1027        // Even though the field matches, it does not belong to this record.
1028        return false;
1029      }
1030      // None of the exceptions triggered; return true to indicate an
1031      // uninitialized field was used.
1032      *L = ME->getMemberLoc();
1033      return true;
1034    }
1035  }
1036  bool found = false;
1037  for (Stmt::const_child_iterator it = S->child_begin();
1038       it != S->child_end() && found == false;
1039       ++it) {
1040    if (isa<CallExpr>(S)) {
1041      // Do not descend into function calls or constructors, as the use
1042      // of an uninitialized field may be valid. One would have to inspect
1043      // the contents of the function/ctor to determine if it is safe or not.
1044      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1045      // may be safe, depending on what the function/ctor does.
1046      continue;
1047    }
1048    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1049  }
1050  return found;
1051}
1052
1053Sema::MemInitResult
1054Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1055                             unsigned NumArgs, SourceLocation IdLoc,
1056                             SourceLocation LParenLoc,
1057                             SourceLocation RParenLoc) {
1058  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1059  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1060  ExprTemporaries.clear();
1061
1062  // Diagnose value-uses of fields to initialize themselves, e.g.
1063  //   foo(foo)
1064  // where foo is not also a parameter to the constructor.
1065  // TODO: implement -Wuninitialized and fold this into that framework.
1066  for (unsigned i = 0; i < NumArgs; ++i) {
1067    SourceLocation L;
1068    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1069      // FIXME: Return true in the case when other fields are used before being
1070      // uninitialized. For example, let this field be the i'th field. When
1071      // initializing the i'th field, throw a warning if any of the >= i'th
1072      // fields are used, as they are not yet initialized.
1073      // Right now we are only handling the case where the i'th field uses
1074      // itself in its initializer.
1075      Diag(L, diag::warn_field_is_uninit);
1076    }
1077  }
1078
1079  bool HasDependentArg = false;
1080  for (unsigned i = 0; i < NumArgs; i++)
1081    HasDependentArg |= Args[i]->isTypeDependent();
1082
1083  CXXConstructorDecl *C = 0;
1084  QualType FieldType = Member->getType();
1085  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1086    FieldType = Array->getElementType();
1087  if (FieldType->isDependentType()) {
1088    // Can't check init for dependent type.
1089  } else if (FieldType->isRecordType()) {
1090    // Member is a record (struct/union/class), so pass the initializer
1091    // arguments down to the record's constructor.
1092    if (!HasDependentArg) {
1093      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1094
1095      C = PerformInitializationByConstructor(FieldType,
1096                                             MultiExprArg(*this,
1097                                                          (void**)Args,
1098                                                          NumArgs),
1099                                             IdLoc,
1100                                             SourceRange(IdLoc, RParenLoc),
1101                                             Member->getDeclName(), IK_Direct,
1102                                             ConstructorArgs);
1103
1104      if (C) {
1105        // Take over the constructor arguments as our own.
1106        NumArgs = ConstructorArgs.size();
1107        Args = (Expr **)ConstructorArgs.take();
1108      }
1109    }
1110  } else if (NumArgs != 1 && NumArgs != 0) {
1111    // The member type is not a record type (or an array of record
1112    // types), so it can be only be default- or copy-initialized.
1113    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1114                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1115  } else if (!HasDependentArg) {
1116    Expr *NewExp;
1117    if (NumArgs == 0) {
1118      if (FieldType->isReferenceType()) {
1119        Diag(IdLoc, diag::err_null_intialized_reference_member)
1120              << Member->getDeclName();
1121        return Diag(Member->getLocation(), diag::note_declared_at);
1122      }
1123      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1124      NumArgs = 1;
1125    }
1126    else
1127      NewExp = (Expr*)Args[0];
1128    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1129      return true;
1130    Args[0] = NewExp;
1131  }
1132
1133  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1134  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1135  ExprTemporaries.clear();
1136
1137  // FIXME: Perform direct initialization of the member.
1138  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1139                                                  C, LParenLoc, (Expr **)Args,
1140                                                  NumArgs, RParenLoc);
1141}
1142
1143Sema::MemInitResult
1144Sema::BuildBaseInitializer(QualType BaseType, DeclaratorInfo *BaseDInfo,
1145                           Expr **Args, unsigned NumArgs,
1146                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1147                           CXXRecordDecl *ClassDecl) {
1148  bool HasDependentArg = false;
1149  for (unsigned i = 0; i < NumArgs; i++)
1150    HasDependentArg |= Args[i]->isTypeDependent();
1151
1152  SourceLocation BaseLoc = BaseDInfo->getTypeLoc().getSourceRange().getBegin();
1153  if (!BaseType->isDependentType()) {
1154    if (!BaseType->isRecordType())
1155      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1156        << BaseType << BaseDInfo->getTypeLoc().getSourceRange();
1157
1158    // C++ [class.base.init]p2:
1159    //   [...] Unless the mem-initializer-id names a nonstatic data
1160    //   member of the constructor’s class or a direct or virtual base
1161    //   of that class, the mem-initializer is ill-formed. A
1162    //   mem-initializer-list can initialize a base class using any
1163    //   name that denotes that base class type.
1164
1165    // First, check for a direct base class.
1166    const CXXBaseSpecifier *DirectBaseSpec = 0;
1167    for (CXXRecordDecl::base_class_const_iterator Base =
1168         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1169      if (Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1170        // We found a direct base of this type. That's what we're
1171        // initializing.
1172        DirectBaseSpec = &*Base;
1173        break;
1174      }
1175    }
1176
1177    // Check for a virtual base class.
1178    // FIXME: We might be able to short-circuit this if we know in advance that
1179    // there are no virtual bases.
1180    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1181    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1182      // We haven't found a base yet; search the class hierarchy for a
1183      // virtual base class.
1184      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1185                         /*DetectVirtual=*/false);
1186      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1187        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1188             Path != Paths.end(); ++Path) {
1189          if (Path->back().Base->isVirtual()) {
1190            VirtualBaseSpec = Path->back().Base;
1191            break;
1192          }
1193        }
1194      }
1195    }
1196
1197    // C++ [base.class.init]p2:
1198    //   If a mem-initializer-id is ambiguous because it designates both
1199    //   a direct non-virtual base class and an inherited virtual base
1200    //   class, the mem-initializer is ill-formed.
1201    if (DirectBaseSpec && VirtualBaseSpec)
1202      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1203        << BaseType << BaseDInfo->getTypeLoc().getSourceRange();
1204    // C++ [base.class.init]p2:
1205    // Unless the mem-initializer-id names a nonstatic data membeer of the
1206    // constructor's class ot a direst or virtual base of that class, the
1207    // mem-initializer is ill-formed.
1208    if (!DirectBaseSpec && !VirtualBaseSpec)
1209      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1210        << BaseType << ClassDecl->getNameAsCString()
1211        << BaseDInfo->getTypeLoc().getSourceRange();
1212  }
1213
1214  CXXConstructorDecl *C = 0;
1215  if (!BaseType->isDependentType() && !HasDependentArg) {
1216    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1217                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1218    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1219
1220    C = PerformInitializationByConstructor(BaseType,
1221                                           MultiExprArg(*this,
1222                                                        (void**)Args, NumArgs),
1223                                           BaseLoc,
1224                                           SourceRange(BaseLoc, RParenLoc),
1225                                           Name, IK_Direct,
1226                                           ConstructorArgs);
1227    if (C) {
1228      // Take over the constructor arguments as our own.
1229      NumArgs = ConstructorArgs.size();
1230      Args = (Expr **)ConstructorArgs.take();
1231    }
1232  }
1233
1234  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1235  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1236  ExprTemporaries.clear();
1237
1238  return new (Context) CXXBaseOrMemberInitializer(Context, BaseDInfo, C,
1239                                                  LParenLoc, (Expr **)Args,
1240                                                  NumArgs, RParenLoc);
1241}
1242
1243bool
1244Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1245                              CXXBaseOrMemberInitializer **Initializers,
1246                              unsigned NumInitializers,
1247                              bool IsImplicitConstructor) {
1248  // We need to build the initializer AST according to order of construction
1249  // and not what user specified in the Initializers list.
1250  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1251  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1252  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1253  bool HasDependentBaseInit = false;
1254  bool HadError = false;
1255
1256  for (unsigned i = 0; i < NumInitializers; i++) {
1257    CXXBaseOrMemberInitializer *Member = Initializers[i];
1258    if (Member->isBaseInitializer()) {
1259      if (Member->getBaseClass()->isDependentType())
1260        HasDependentBaseInit = true;
1261      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1262    } else {
1263      AllBaseFields[Member->getMember()] = Member;
1264    }
1265  }
1266
1267  if (HasDependentBaseInit) {
1268    // FIXME. This does not preserve the ordering of the initializers.
1269    // Try (with -Wreorder)
1270    // template<class X> struct A {};
1271    // template<class X> struct B : A<X> {
1272    //   B() : x1(10), A<X>() {}
1273    //   int x1;
1274    // };
1275    // B<int> x;
1276    // On seeing one dependent type, we should essentially exit this routine
1277    // while preserving user-declared initializer list. When this routine is
1278    // called during instantiatiation process, this routine will rebuild the
1279    // ordered initializer list correctly.
1280
1281    // If we have a dependent base initialization, we can't determine the
1282    // association between initializers and bases; just dump the known
1283    // initializers into the list, and don't try to deal with other bases.
1284    for (unsigned i = 0; i < NumInitializers; i++) {
1285      CXXBaseOrMemberInitializer *Member = Initializers[i];
1286      if (Member->isBaseInitializer())
1287        AllToInit.push_back(Member);
1288    }
1289  } else {
1290    // Push virtual bases before others.
1291    for (CXXRecordDecl::base_class_iterator VBase =
1292         ClassDecl->vbases_begin(),
1293         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1294      if (VBase->getType()->isDependentType())
1295        continue;
1296      if (CXXBaseOrMemberInitializer *Value
1297            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1298        AllToInit.push_back(Value);
1299      }
1300      else {
1301        CXXRecordDecl *VBaseDecl =
1302          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1303        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1304        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1305        if (!Ctor) {
1306          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1307            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1308            << 0 << VBase->getType();
1309          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1310            << Context.getTagDeclType(VBaseDecl);
1311          HadError = true;
1312          continue;
1313        }
1314
1315        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1316        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1317                                    Constructor->getLocation(), CtorArgs))
1318          continue;
1319
1320        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1321
1322        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1323        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1324        // necessary.
1325        // FIXME: Is there any better source-location information we can give?
1326        ExprTemporaries.clear();
1327        CXXBaseOrMemberInitializer *Member =
1328          new (Context) CXXBaseOrMemberInitializer(Context,
1329                             Context.getTrivialDeclaratorInfo(VBase->getType(),
1330                                                              SourceLocation()),
1331                                                   Ctor,
1332                                                   SourceLocation(),
1333                                                   CtorArgs.takeAs<Expr>(),
1334                                                   CtorArgs.size(),
1335                                                   SourceLocation());
1336        AllToInit.push_back(Member);
1337      }
1338    }
1339
1340    for (CXXRecordDecl::base_class_iterator Base =
1341         ClassDecl->bases_begin(),
1342         E = ClassDecl->bases_end(); Base != E; ++Base) {
1343      // Virtuals are in the virtual base list and already constructed.
1344      if (Base->isVirtual())
1345        continue;
1346      // Skip dependent types.
1347      if (Base->getType()->isDependentType())
1348        continue;
1349      if (CXXBaseOrMemberInitializer *Value
1350            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1351        AllToInit.push_back(Value);
1352      }
1353      else {
1354        CXXRecordDecl *BaseDecl =
1355          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1356        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1357         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1358        if (!Ctor) {
1359          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1360            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1361            << 0 << Base->getType();
1362          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1363            << Context.getTagDeclType(BaseDecl);
1364          HadError = true;
1365          continue;
1366        }
1367
1368        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1369        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1370                                     Constructor->getLocation(), CtorArgs))
1371          continue;
1372
1373        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1374
1375        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1376        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1377        // necessary.
1378        // FIXME: Is there any better source-location information we can give?
1379        ExprTemporaries.clear();
1380        CXXBaseOrMemberInitializer *Member =
1381          new (Context) CXXBaseOrMemberInitializer(Context,
1382                             Context.getTrivialDeclaratorInfo(Base->getType(),
1383                                                              SourceLocation()),
1384                                                   Ctor,
1385                                                   SourceLocation(),
1386                                                   CtorArgs.takeAs<Expr>(),
1387                                                   CtorArgs.size(),
1388                                                   SourceLocation());
1389        AllToInit.push_back(Member);
1390      }
1391    }
1392  }
1393
1394  // non-static data members.
1395  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1396       E = ClassDecl->field_end(); Field != E; ++Field) {
1397    if ((*Field)->isAnonymousStructOrUnion()) {
1398      if (const RecordType *FieldClassType =
1399          Field->getType()->getAs<RecordType>()) {
1400        CXXRecordDecl *FieldClassDecl
1401          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1402        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1403            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1404          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1405            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1406            // set to the anonymous union data member used in the initializer
1407            // list.
1408            Value->setMember(*Field);
1409            Value->setAnonUnionMember(*FA);
1410            AllToInit.push_back(Value);
1411            break;
1412          }
1413        }
1414      }
1415      continue;
1416    }
1417    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1418      AllToInit.push_back(Value);
1419      continue;
1420    }
1421
1422    if ((*Field)->getType()->isDependentType())
1423      continue;
1424
1425    QualType FT = Context.getBaseElementType((*Field)->getType());
1426    if (const RecordType* RT = FT->getAs<RecordType>()) {
1427      CXXConstructorDecl *Ctor =
1428        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1429      if (!Ctor) {
1430        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1431          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1432          << 1 << (*Field)->getDeclName();
1433        Diag(Field->getLocation(), diag::note_field_decl);
1434        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1435          << Context.getTagDeclType(RT->getDecl());
1436        HadError = true;
1437        continue;
1438      }
1439
1440      if (FT.isConstQualified() && Ctor->isTrivial()) {
1441        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1442          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1443          << 1 << (*Field)->getDeclName();
1444        Diag((*Field)->getLocation(), diag::note_declared_at);
1445        HadError = true;
1446      }
1447
1448      // Don't create initializers for trivial constructors, since they don't
1449      // actually need to be run.
1450      if (Ctor->isTrivial())
1451        continue;
1452
1453      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1454      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1455                                  Constructor->getLocation(), CtorArgs))
1456        continue;
1457
1458      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1459      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1460      ExprTemporaries.clear();
1461      CXXBaseOrMemberInitializer *Member =
1462        new (Context) CXXBaseOrMemberInitializer(Context,
1463                                                 *Field, SourceLocation(),
1464                                                 Ctor,
1465                                                 SourceLocation(),
1466                                                 CtorArgs.takeAs<Expr>(),
1467                                                 CtorArgs.size(),
1468                                                 SourceLocation());
1469
1470      AllToInit.push_back(Member);
1471      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1472    }
1473    else if (FT->isReferenceType()) {
1474      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1475        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1476        << 0 << (*Field)->getDeclName();
1477      Diag((*Field)->getLocation(), diag::note_declared_at);
1478      HadError = true;
1479    }
1480    else if (FT.isConstQualified()) {
1481      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1482        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1483        << 1 << (*Field)->getDeclName();
1484      Diag((*Field)->getLocation(), diag::note_declared_at);
1485      HadError = true;
1486    }
1487  }
1488
1489  NumInitializers = AllToInit.size();
1490  if (NumInitializers > 0) {
1491    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1492    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1493      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1494
1495    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1496    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1497      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1498  }
1499
1500  return HadError;
1501}
1502
1503static void *GetKeyForTopLevelField(FieldDecl *Field) {
1504  // For anonymous unions, use the class declaration as the key.
1505  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1506    if (RT->getDecl()->isAnonymousStructOrUnion())
1507      return static_cast<void *>(RT->getDecl());
1508  }
1509  return static_cast<void *>(Field);
1510}
1511
1512static void *GetKeyForBase(QualType BaseType) {
1513  if (const RecordType *RT = BaseType->getAs<RecordType>())
1514    return (void *)RT;
1515
1516  assert(0 && "Unexpected base type!");
1517  return 0;
1518}
1519
1520static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1521                             bool MemberMaybeAnon = false) {
1522  // For fields injected into the class via declaration of an anonymous union,
1523  // use its anonymous union class declaration as the unique key.
1524  if (Member->isMemberInitializer()) {
1525    FieldDecl *Field = Member->getMember();
1526
1527    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1528    // data member of the class. Data member used in the initializer list is
1529    // in AnonUnionMember field.
1530    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1531      Field = Member->getAnonUnionMember();
1532    if (Field->getDeclContext()->isRecord()) {
1533      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1534      if (RD->isAnonymousStructOrUnion())
1535        return static_cast<void *>(RD);
1536    }
1537    return static_cast<void *>(Field);
1538  }
1539
1540  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1541}
1542
1543/// ActOnMemInitializers - Handle the member initializers for a constructor.
1544void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1545                                SourceLocation ColonLoc,
1546                                MemInitTy **MemInits, unsigned NumMemInits) {
1547  if (!ConstructorDecl)
1548    return;
1549
1550  AdjustDeclIfTemplate(ConstructorDecl);
1551
1552  CXXConstructorDecl *Constructor
1553    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1554
1555  if (!Constructor) {
1556    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1557    return;
1558  }
1559
1560  if (!Constructor->isDependentContext()) {
1561    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1562    bool err = false;
1563    for (unsigned i = 0; i < NumMemInits; i++) {
1564      CXXBaseOrMemberInitializer *Member =
1565        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1566      void *KeyToMember = GetKeyForMember(Member);
1567      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1568      if (!PrevMember) {
1569        PrevMember = Member;
1570        continue;
1571      }
1572      if (FieldDecl *Field = Member->getMember())
1573        Diag(Member->getSourceLocation(),
1574             diag::error_multiple_mem_initialization)
1575          << Field->getNameAsString()
1576          << Member->getSourceRange();
1577      else {
1578        Type *BaseClass = Member->getBaseClass();
1579        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1580        Diag(Member->getSourceLocation(),
1581             diag::error_multiple_base_initialization)
1582          << QualType(BaseClass, 0)
1583          << Member->getSourceRange();
1584      }
1585      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1586        << 0;
1587      err = true;
1588    }
1589
1590    if (err)
1591      return;
1592  }
1593
1594  SetBaseOrMemberInitializers(Constructor,
1595                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1596                      NumMemInits, false);
1597
1598  if (Constructor->isDependentContext())
1599    return;
1600
1601  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1602      Diagnostic::Ignored &&
1603      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1604      Diagnostic::Ignored)
1605    return;
1606
1607  // Also issue warning if order of ctor-initializer list does not match order
1608  // of 1) base class declarations and 2) order of non-static data members.
1609  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1610
1611  CXXRecordDecl *ClassDecl
1612    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1613  // Push virtual bases before others.
1614  for (CXXRecordDecl::base_class_iterator VBase =
1615       ClassDecl->vbases_begin(),
1616       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1617    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1618
1619  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1620       E = ClassDecl->bases_end(); Base != E; ++Base) {
1621    // Virtuals are alread in the virtual base list and are constructed
1622    // first.
1623    if (Base->isVirtual())
1624      continue;
1625    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1626  }
1627
1628  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1629       E = ClassDecl->field_end(); Field != E; ++Field)
1630    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1631
1632  int Last = AllBaseOrMembers.size();
1633  int curIndex = 0;
1634  CXXBaseOrMemberInitializer *PrevMember = 0;
1635  for (unsigned i = 0; i < NumMemInits; i++) {
1636    CXXBaseOrMemberInitializer *Member =
1637      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1638    void *MemberInCtorList = GetKeyForMember(Member, true);
1639
1640    for (; curIndex < Last; curIndex++)
1641      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1642        break;
1643    if (curIndex == Last) {
1644      assert(PrevMember && "Member not in member list?!");
1645      // Initializer as specified in ctor-initializer list is out of order.
1646      // Issue a warning diagnostic.
1647      if (PrevMember->isBaseInitializer()) {
1648        // Diagnostics is for an initialized base class.
1649        Type *BaseClass = PrevMember->getBaseClass();
1650        Diag(PrevMember->getSourceLocation(),
1651             diag::warn_base_initialized)
1652          << QualType(BaseClass, 0);
1653      } else {
1654        FieldDecl *Field = PrevMember->getMember();
1655        Diag(PrevMember->getSourceLocation(),
1656             diag::warn_field_initialized)
1657          << Field->getNameAsString();
1658      }
1659      // Also the note!
1660      if (FieldDecl *Field = Member->getMember())
1661        Diag(Member->getSourceLocation(),
1662             diag::note_fieldorbase_initialized_here) << 0
1663          << Field->getNameAsString();
1664      else {
1665        Type *BaseClass = Member->getBaseClass();
1666        Diag(Member->getSourceLocation(),
1667             diag::note_fieldorbase_initialized_here) << 1
1668          << QualType(BaseClass, 0);
1669      }
1670      for (curIndex = 0; curIndex < Last; curIndex++)
1671        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1672          break;
1673    }
1674    PrevMember = Member;
1675  }
1676}
1677
1678void
1679Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1680  // Ignore dependent destructors.
1681  if (Destructor->isDependentContext())
1682    return;
1683
1684  CXXRecordDecl *ClassDecl = Destructor->getParent();
1685
1686  // Non-static data members.
1687  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1688       E = ClassDecl->field_end(); I != E; ++I) {
1689    FieldDecl *Field = *I;
1690
1691    QualType FieldType = Context.getBaseElementType(Field->getType());
1692
1693    const RecordType* RT = FieldType->getAs<RecordType>();
1694    if (!RT)
1695      continue;
1696
1697    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1698    if (FieldClassDecl->hasTrivialDestructor())
1699      continue;
1700
1701    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1702    MarkDeclarationReferenced(Destructor->getLocation(),
1703                              const_cast<CXXDestructorDecl*>(Dtor));
1704  }
1705
1706  // Bases.
1707  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1708       E = ClassDecl->bases_end(); Base != E; ++Base) {
1709    // Ignore virtual bases.
1710    if (Base->isVirtual())
1711      continue;
1712
1713    // Ignore trivial destructors.
1714    CXXRecordDecl *BaseClassDecl
1715      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1716    if (BaseClassDecl->hasTrivialDestructor())
1717      continue;
1718
1719    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1720    MarkDeclarationReferenced(Destructor->getLocation(),
1721                              const_cast<CXXDestructorDecl*>(Dtor));
1722  }
1723
1724  // Virtual bases.
1725  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1726       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1727    // Ignore trivial destructors.
1728    CXXRecordDecl *BaseClassDecl
1729      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1730    if (BaseClassDecl->hasTrivialDestructor())
1731      continue;
1732
1733    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1734    MarkDeclarationReferenced(Destructor->getLocation(),
1735                              const_cast<CXXDestructorDecl*>(Dtor));
1736  }
1737}
1738
1739void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1740  if (!CDtorDecl)
1741    return;
1742
1743  AdjustDeclIfTemplate(CDtorDecl);
1744
1745  if (CXXConstructorDecl *Constructor
1746      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1747    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1748}
1749
1750namespace {
1751  /// PureVirtualMethodCollector - traverses a class and its superclasses
1752  /// and determines if it has any pure virtual methods.
1753  class PureVirtualMethodCollector {
1754    ASTContext &Context;
1755
1756  public:
1757    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1758
1759  private:
1760    MethodList Methods;
1761
1762    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1763
1764  public:
1765    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1766      : Context(Ctx) {
1767
1768      MethodList List;
1769      Collect(RD, List);
1770
1771      // Copy the temporary list to methods, and make sure to ignore any
1772      // null entries.
1773      for (size_t i = 0, e = List.size(); i != e; ++i) {
1774        if (List[i])
1775          Methods.push_back(List[i]);
1776      }
1777    }
1778
1779    bool empty() const { return Methods.empty(); }
1780
1781    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1782    MethodList::const_iterator methods_end() { return Methods.end(); }
1783  };
1784
1785  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1786                                           MethodList& Methods) {
1787    // First, collect the pure virtual methods for the base classes.
1788    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1789         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1790      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1791        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1792        if (BaseDecl && BaseDecl->isAbstract())
1793          Collect(BaseDecl, Methods);
1794      }
1795    }
1796
1797    // Next, zero out any pure virtual methods that this class overrides.
1798    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1799
1800    MethodSetTy OverriddenMethods;
1801    size_t MethodsSize = Methods.size();
1802
1803    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1804         i != e; ++i) {
1805      // Traverse the record, looking for methods.
1806      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1807        // If the method is pure virtual, add it to the methods vector.
1808        if (MD->isPure())
1809          Methods.push_back(MD);
1810
1811        // Record all the overridden methods in our set.
1812        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1813             E = MD->end_overridden_methods(); I != E; ++I) {
1814          // Keep track of the overridden methods.
1815          OverriddenMethods.insert(*I);
1816        }
1817      }
1818    }
1819
1820    // Now go through the methods and zero out all the ones we know are
1821    // overridden.
1822    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1823      if (OverriddenMethods.count(Methods[i]))
1824        Methods[i] = 0;
1825    }
1826
1827  }
1828}
1829
1830
1831bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1832                                  unsigned DiagID, AbstractDiagSelID SelID,
1833                                  const CXXRecordDecl *CurrentRD) {
1834  if (SelID == -1)
1835    return RequireNonAbstractType(Loc, T,
1836                                  PDiag(DiagID), CurrentRD);
1837  else
1838    return RequireNonAbstractType(Loc, T,
1839                                  PDiag(DiagID) << SelID, CurrentRD);
1840}
1841
1842bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1843                                  const PartialDiagnostic &PD,
1844                                  const CXXRecordDecl *CurrentRD) {
1845  if (!getLangOptions().CPlusPlus)
1846    return false;
1847
1848  if (const ArrayType *AT = Context.getAsArrayType(T))
1849    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1850                                  CurrentRD);
1851
1852  if (const PointerType *PT = T->getAs<PointerType>()) {
1853    // Find the innermost pointer type.
1854    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1855      PT = T;
1856
1857    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1858      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1859  }
1860
1861  const RecordType *RT = T->getAs<RecordType>();
1862  if (!RT)
1863    return false;
1864
1865  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1866  if (!RD)
1867    return false;
1868
1869  if (CurrentRD && CurrentRD != RD)
1870    return false;
1871
1872  if (!RD->isAbstract())
1873    return false;
1874
1875  Diag(Loc, PD) << RD->getDeclName();
1876
1877  // Check if we've already emitted the list of pure virtual functions for this
1878  // class.
1879  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1880    return true;
1881
1882  PureVirtualMethodCollector Collector(Context, RD);
1883
1884  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1885       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1886    const CXXMethodDecl *MD = *I;
1887
1888    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1889      MD->getDeclName();
1890  }
1891
1892  if (!PureVirtualClassDiagSet)
1893    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1894  PureVirtualClassDiagSet->insert(RD);
1895
1896  return true;
1897}
1898
1899namespace {
1900  class AbstractClassUsageDiagnoser
1901    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1902    Sema &SemaRef;
1903    CXXRecordDecl *AbstractClass;
1904
1905    bool VisitDeclContext(const DeclContext *DC) {
1906      bool Invalid = false;
1907
1908      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1909           E = DC->decls_end(); I != E; ++I)
1910        Invalid |= Visit(*I);
1911
1912      return Invalid;
1913    }
1914
1915  public:
1916    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1917      : SemaRef(SemaRef), AbstractClass(ac) {
1918        Visit(SemaRef.Context.getTranslationUnitDecl());
1919    }
1920
1921    bool VisitFunctionDecl(const FunctionDecl *FD) {
1922      if (FD->isThisDeclarationADefinition()) {
1923        // No need to do the check if we're in a definition, because it requires
1924        // that the return/param types are complete.
1925        // because that requires
1926        return VisitDeclContext(FD);
1927      }
1928
1929      // Check the return type.
1930      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1931      bool Invalid =
1932        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1933                                       diag::err_abstract_type_in_decl,
1934                                       Sema::AbstractReturnType,
1935                                       AbstractClass);
1936
1937      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1938           E = FD->param_end(); I != E; ++I) {
1939        const ParmVarDecl *VD = *I;
1940        Invalid |=
1941          SemaRef.RequireNonAbstractType(VD->getLocation(),
1942                                         VD->getOriginalType(),
1943                                         diag::err_abstract_type_in_decl,
1944                                         Sema::AbstractParamType,
1945                                         AbstractClass);
1946      }
1947
1948      return Invalid;
1949    }
1950
1951    bool VisitDecl(const Decl* D) {
1952      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1953        return VisitDeclContext(DC);
1954
1955      return false;
1956    }
1957  };
1958}
1959
1960/// \brief Perform semantic checks on a class definition that has been
1961/// completing, introducing implicitly-declared members, checking for
1962/// abstract types, etc.
1963void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
1964  if (!Record || Record->isInvalidDecl())
1965    return;
1966
1967  if (!Record->isAbstract()) {
1968    // Collect all the pure virtual methods and see if this is an abstract
1969    // class after all.
1970    PureVirtualMethodCollector Collector(Context, Record);
1971    if (!Collector.empty())
1972      Record->setAbstract(true);
1973  }
1974
1975  if (Record->isAbstract())
1976    (void)AbstractClassUsageDiagnoser(*this, Record);
1977
1978  if (!Record->isDependentType() && !Record->isInvalidDecl())
1979    AddImplicitlyDeclaredMembersToClass(Record);
1980}
1981
1982void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1983                                             DeclPtrTy TagDecl,
1984                                             SourceLocation LBrac,
1985                                             SourceLocation RBrac) {
1986  if (!TagDecl)
1987    return;
1988
1989  AdjustDeclIfTemplate(TagDecl);
1990
1991  ActOnFields(S, RLoc, TagDecl,
1992              (DeclPtrTy*)FieldCollector->getCurFields(),
1993              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1994
1995  CheckCompletedCXXClass(
1996                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
1997}
1998
1999/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2000/// special functions, such as the default constructor, copy
2001/// constructor, or destructor, to the given C++ class (C++
2002/// [special]p1).  This routine can only be executed just before the
2003/// definition of the class is complete.
2004void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2005  CanQualType ClassType
2006    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2007
2008  // FIXME: Implicit declarations have exception specifications, which are
2009  // the union of the specifications of the implicitly called functions.
2010
2011  if (!ClassDecl->hasUserDeclaredConstructor()) {
2012    // C++ [class.ctor]p5:
2013    //   A default constructor for a class X is a constructor of class X
2014    //   that can be called without an argument. If there is no
2015    //   user-declared constructor for class X, a default constructor is
2016    //   implicitly declared. An implicitly-declared default constructor
2017    //   is an inline public member of its class.
2018    DeclarationName Name
2019      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2020    CXXConstructorDecl *DefaultCon =
2021      CXXConstructorDecl::Create(Context, ClassDecl,
2022                                 ClassDecl->getLocation(), Name,
2023                                 Context.getFunctionType(Context.VoidTy,
2024                                                         0, 0, false, 0),
2025                                 /*DInfo=*/0,
2026                                 /*isExplicit=*/false,
2027                                 /*isInline=*/true,
2028                                 /*isImplicitlyDeclared=*/true);
2029    DefaultCon->setAccess(AS_public);
2030    DefaultCon->setImplicit();
2031    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2032    ClassDecl->addDecl(DefaultCon);
2033  }
2034
2035  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2036    // C++ [class.copy]p4:
2037    //   If the class definition does not explicitly declare a copy
2038    //   constructor, one is declared implicitly.
2039
2040    // C++ [class.copy]p5:
2041    //   The implicitly-declared copy constructor for a class X will
2042    //   have the form
2043    //
2044    //       X::X(const X&)
2045    //
2046    //   if
2047    bool HasConstCopyConstructor = true;
2048
2049    //     -- each direct or virtual base class B of X has a copy
2050    //        constructor whose first parameter is of type const B& or
2051    //        const volatile B&, and
2052    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2053         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2054      const CXXRecordDecl *BaseClassDecl
2055        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2056      HasConstCopyConstructor
2057        = BaseClassDecl->hasConstCopyConstructor(Context);
2058    }
2059
2060    //     -- for all the nonstatic data members of X that are of a
2061    //        class type M (or array thereof), each such class type
2062    //        has a copy constructor whose first parameter is of type
2063    //        const M& or const volatile M&.
2064    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2065         HasConstCopyConstructor && Field != ClassDecl->field_end();
2066         ++Field) {
2067      QualType FieldType = (*Field)->getType();
2068      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2069        FieldType = Array->getElementType();
2070      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2071        const CXXRecordDecl *FieldClassDecl
2072          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2073        HasConstCopyConstructor
2074          = FieldClassDecl->hasConstCopyConstructor(Context);
2075      }
2076    }
2077
2078    //   Otherwise, the implicitly declared copy constructor will have
2079    //   the form
2080    //
2081    //       X::X(X&)
2082    QualType ArgType = ClassType;
2083    if (HasConstCopyConstructor)
2084      ArgType = ArgType.withConst();
2085    ArgType = Context.getLValueReferenceType(ArgType);
2086
2087    //   An implicitly-declared copy constructor is an inline public
2088    //   member of its class.
2089    DeclarationName Name
2090      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2091    CXXConstructorDecl *CopyConstructor
2092      = CXXConstructorDecl::Create(Context, ClassDecl,
2093                                   ClassDecl->getLocation(), Name,
2094                                   Context.getFunctionType(Context.VoidTy,
2095                                                           &ArgType, 1,
2096                                                           false, 0),
2097                                   /*DInfo=*/0,
2098                                   /*isExplicit=*/false,
2099                                   /*isInline=*/true,
2100                                   /*isImplicitlyDeclared=*/true);
2101    CopyConstructor->setAccess(AS_public);
2102    CopyConstructor->setImplicit();
2103    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2104
2105    // Add the parameter to the constructor.
2106    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2107                                                 ClassDecl->getLocation(),
2108                                                 /*IdentifierInfo=*/0,
2109                                                 ArgType, /*DInfo=*/0,
2110                                                 VarDecl::None, 0);
2111    CopyConstructor->setParams(Context, &FromParam, 1);
2112    ClassDecl->addDecl(CopyConstructor);
2113  }
2114
2115  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2116    // Note: The following rules are largely analoguous to the copy
2117    // constructor rules. Note that virtual bases are not taken into account
2118    // for determining the argument type of the operator. Note also that
2119    // operators taking an object instead of a reference are allowed.
2120    //
2121    // C++ [class.copy]p10:
2122    //   If the class definition does not explicitly declare a copy
2123    //   assignment operator, one is declared implicitly.
2124    //   The implicitly-defined copy assignment operator for a class X
2125    //   will have the form
2126    //
2127    //       X& X::operator=(const X&)
2128    //
2129    //   if
2130    bool HasConstCopyAssignment = true;
2131
2132    //       -- each direct base class B of X has a copy assignment operator
2133    //          whose parameter is of type const B&, const volatile B& or B,
2134    //          and
2135    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2136         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2137      assert(!Base->getType()->isDependentType() &&
2138            "Cannot generate implicit members for class with dependent bases.");
2139      const CXXRecordDecl *BaseClassDecl
2140        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2141      const CXXMethodDecl *MD = 0;
2142      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2143                                                                     MD);
2144    }
2145
2146    //       -- for all the nonstatic data members of X that are of a class
2147    //          type M (or array thereof), each such class type has a copy
2148    //          assignment operator whose parameter is of type const M&,
2149    //          const volatile M& or M.
2150    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2151         HasConstCopyAssignment && Field != ClassDecl->field_end();
2152         ++Field) {
2153      QualType FieldType = (*Field)->getType();
2154      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2155        FieldType = Array->getElementType();
2156      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2157        const CXXRecordDecl *FieldClassDecl
2158          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2159        const CXXMethodDecl *MD = 0;
2160        HasConstCopyAssignment
2161          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2162      }
2163    }
2164
2165    //   Otherwise, the implicitly declared copy assignment operator will
2166    //   have the form
2167    //
2168    //       X& X::operator=(X&)
2169    QualType ArgType = ClassType;
2170    QualType RetType = Context.getLValueReferenceType(ArgType);
2171    if (HasConstCopyAssignment)
2172      ArgType = ArgType.withConst();
2173    ArgType = Context.getLValueReferenceType(ArgType);
2174
2175    //   An implicitly-declared copy assignment operator is an inline public
2176    //   member of its class.
2177    DeclarationName Name =
2178      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2179    CXXMethodDecl *CopyAssignment =
2180      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2181                            Context.getFunctionType(RetType, &ArgType, 1,
2182                                                    false, 0),
2183                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2184    CopyAssignment->setAccess(AS_public);
2185    CopyAssignment->setImplicit();
2186    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2187    CopyAssignment->setCopyAssignment(true);
2188
2189    // Add the parameter to the operator.
2190    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2191                                                 ClassDecl->getLocation(),
2192                                                 /*IdentifierInfo=*/0,
2193                                                 ArgType, /*DInfo=*/0,
2194                                                 VarDecl::None, 0);
2195    CopyAssignment->setParams(Context, &FromParam, 1);
2196
2197    // Don't call addedAssignmentOperator. There is no way to distinguish an
2198    // implicit from an explicit assignment operator.
2199    ClassDecl->addDecl(CopyAssignment);
2200    AddOverriddenMethods(ClassDecl, CopyAssignment);
2201  }
2202
2203  if (!ClassDecl->hasUserDeclaredDestructor()) {
2204    // C++ [class.dtor]p2:
2205    //   If a class has no user-declared destructor, a destructor is
2206    //   declared implicitly. An implicitly-declared destructor is an
2207    //   inline public member of its class.
2208    DeclarationName Name
2209      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2210    CXXDestructorDecl *Destructor
2211      = CXXDestructorDecl::Create(Context, ClassDecl,
2212                                  ClassDecl->getLocation(), Name,
2213                                  Context.getFunctionType(Context.VoidTy,
2214                                                          0, 0, false, 0),
2215                                  /*isInline=*/true,
2216                                  /*isImplicitlyDeclared=*/true);
2217    Destructor->setAccess(AS_public);
2218    Destructor->setImplicit();
2219    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2220    ClassDecl->addDecl(Destructor);
2221
2222    AddOverriddenMethods(ClassDecl, Destructor);
2223  }
2224}
2225
2226void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2227  Decl *D = TemplateD.getAs<Decl>();
2228  if (!D)
2229    return;
2230
2231  TemplateParameterList *Params = 0;
2232  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2233    Params = Template->getTemplateParameters();
2234  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2235           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2236    Params = PartialSpec->getTemplateParameters();
2237  else
2238    return;
2239
2240  for (TemplateParameterList::iterator Param = Params->begin(),
2241                                    ParamEnd = Params->end();
2242       Param != ParamEnd; ++Param) {
2243    NamedDecl *Named = cast<NamedDecl>(*Param);
2244    if (Named->getDeclName()) {
2245      S->AddDecl(DeclPtrTy::make(Named));
2246      IdResolver.AddDecl(Named);
2247    }
2248  }
2249}
2250
2251/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2252/// parsing a top-level (non-nested) C++ class, and we are now
2253/// parsing those parts of the given Method declaration that could
2254/// not be parsed earlier (C++ [class.mem]p2), such as default
2255/// arguments. This action should enter the scope of the given
2256/// Method declaration as if we had just parsed the qualified method
2257/// name. However, it should not bring the parameters into scope;
2258/// that will be performed by ActOnDelayedCXXMethodParameter.
2259void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2260  if (!MethodD)
2261    return;
2262
2263  AdjustDeclIfTemplate(MethodD);
2264
2265  CXXScopeSpec SS;
2266  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2267  QualType ClassTy
2268    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2269  SS.setScopeRep(
2270    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2271  ActOnCXXEnterDeclaratorScope(S, SS);
2272}
2273
2274/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2275/// C++ method declaration. We're (re-)introducing the given
2276/// function parameter into scope for use in parsing later parts of
2277/// the method declaration. For example, we could see an
2278/// ActOnParamDefaultArgument event for this parameter.
2279void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2280  if (!ParamD)
2281    return;
2282
2283  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2284
2285  // If this parameter has an unparsed default argument, clear it out
2286  // to make way for the parsed default argument.
2287  if (Param->hasUnparsedDefaultArg())
2288    Param->setDefaultArg(0);
2289
2290  S->AddDecl(DeclPtrTy::make(Param));
2291  if (Param->getDeclName())
2292    IdResolver.AddDecl(Param);
2293}
2294
2295/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2296/// processing the delayed method declaration for Method. The method
2297/// declaration is now considered finished. There may be a separate
2298/// ActOnStartOfFunctionDef action later (not necessarily
2299/// immediately!) for this method, if it was also defined inside the
2300/// class body.
2301void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2302  if (!MethodD)
2303    return;
2304
2305  AdjustDeclIfTemplate(MethodD);
2306
2307  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2308  CXXScopeSpec SS;
2309  QualType ClassTy
2310    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2311  SS.setScopeRep(
2312    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2313  ActOnCXXExitDeclaratorScope(S, SS);
2314
2315  // Now that we have our default arguments, check the constructor
2316  // again. It could produce additional diagnostics or affect whether
2317  // the class has implicitly-declared destructors, among other
2318  // things.
2319  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2320    CheckConstructor(Constructor);
2321
2322  // Check the default arguments, which we may have added.
2323  if (!Method->isInvalidDecl())
2324    CheckCXXDefaultArguments(Method);
2325}
2326
2327/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2328/// the well-formedness of the constructor declarator @p D with type @p
2329/// R. If there are any errors in the declarator, this routine will
2330/// emit diagnostics and set the invalid bit to true.  In any case, the type
2331/// will be updated to reflect a well-formed type for the constructor and
2332/// returned.
2333QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2334                                          FunctionDecl::StorageClass &SC) {
2335  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2336
2337  // C++ [class.ctor]p3:
2338  //   A constructor shall not be virtual (10.3) or static (9.4). A
2339  //   constructor can be invoked for a const, volatile or const
2340  //   volatile object. A constructor shall not be declared const,
2341  //   volatile, or const volatile (9.3.2).
2342  if (isVirtual) {
2343    if (!D.isInvalidType())
2344      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2345        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2346        << SourceRange(D.getIdentifierLoc());
2347    D.setInvalidType();
2348  }
2349  if (SC == FunctionDecl::Static) {
2350    if (!D.isInvalidType())
2351      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2352        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2353        << SourceRange(D.getIdentifierLoc());
2354    D.setInvalidType();
2355    SC = FunctionDecl::None;
2356  }
2357
2358  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2359  if (FTI.TypeQuals != 0) {
2360    if (FTI.TypeQuals & Qualifiers::Const)
2361      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2362        << "const" << SourceRange(D.getIdentifierLoc());
2363    if (FTI.TypeQuals & Qualifiers::Volatile)
2364      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2365        << "volatile" << SourceRange(D.getIdentifierLoc());
2366    if (FTI.TypeQuals & Qualifiers::Restrict)
2367      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2368        << "restrict" << SourceRange(D.getIdentifierLoc());
2369  }
2370
2371  // Rebuild the function type "R" without any type qualifiers (in
2372  // case any of the errors above fired) and with "void" as the
2373  // return type, since constructors don't have return types. We
2374  // *always* have to do this, because GetTypeForDeclarator will
2375  // put in a result type of "int" when none was specified.
2376  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2377  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2378                                 Proto->getNumArgs(),
2379                                 Proto->isVariadic(), 0);
2380}
2381
2382/// CheckConstructor - Checks a fully-formed constructor for
2383/// well-formedness, issuing any diagnostics required. Returns true if
2384/// the constructor declarator is invalid.
2385void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2386  CXXRecordDecl *ClassDecl
2387    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2388  if (!ClassDecl)
2389    return Constructor->setInvalidDecl();
2390
2391  // C++ [class.copy]p3:
2392  //   A declaration of a constructor for a class X is ill-formed if
2393  //   its first parameter is of type (optionally cv-qualified) X and
2394  //   either there are no other parameters or else all other
2395  //   parameters have default arguments.
2396  if (!Constructor->isInvalidDecl() &&
2397      ((Constructor->getNumParams() == 1) ||
2398       (Constructor->getNumParams() > 1 &&
2399        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2400      Constructor->getTemplateSpecializationKind()
2401                                              != TSK_ImplicitInstantiation) {
2402    QualType ParamType = Constructor->getParamDecl(0)->getType();
2403    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2404    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2405      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2406      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2407        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2408
2409      // FIXME: Rather that making the constructor invalid, we should endeavor
2410      // to fix the type.
2411      Constructor->setInvalidDecl();
2412    }
2413  }
2414
2415  // Notify the class that we've added a constructor.
2416  ClassDecl->addedConstructor(Context, Constructor);
2417}
2418
2419/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2420/// issuing any diagnostics required. Returns true on error.
2421bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2422  CXXRecordDecl *RD = Destructor->getParent();
2423
2424  if (Destructor->isVirtual()) {
2425    SourceLocation Loc;
2426
2427    if (!Destructor->isImplicit())
2428      Loc = Destructor->getLocation();
2429    else
2430      Loc = RD->getLocation();
2431
2432    // If we have a virtual destructor, look up the deallocation function
2433    FunctionDecl *OperatorDelete = 0;
2434    DeclarationName Name =
2435    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2436    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2437      return true;
2438
2439    Destructor->setOperatorDelete(OperatorDelete);
2440  }
2441
2442  return false;
2443}
2444
2445static inline bool
2446FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2447  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2448          FTI.ArgInfo[0].Param &&
2449          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2450}
2451
2452/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2453/// the well-formednes of the destructor declarator @p D with type @p
2454/// R. If there are any errors in the declarator, this routine will
2455/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2456/// will be updated to reflect a well-formed type for the destructor and
2457/// returned.
2458QualType Sema::CheckDestructorDeclarator(Declarator &D,
2459                                         FunctionDecl::StorageClass& SC) {
2460  // C++ [class.dtor]p1:
2461  //   [...] A typedef-name that names a class is a class-name
2462  //   (7.1.3); however, a typedef-name that names a class shall not
2463  //   be used as the identifier in the declarator for a destructor
2464  //   declaration.
2465  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2466  if (isa<TypedefType>(DeclaratorType)) {
2467    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2468      << DeclaratorType;
2469    D.setInvalidType();
2470  }
2471
2472  // C++ [class.dtor]p2:
2473  //   A destructor is used to destroy objects of its class type. A
2474  //   destructor takes no parameters, and no return type can be
2475  //   specified for it (not even void). The address of a destructor
2476  //   shall not be taken. A destructor shall not be static. A
2477  //   destructor can be invoked for a const, volatile or const
2478  //   volatile object. A destructor shall not be declared const,
2479  //   volatile or const volatile (9.3.2).
2480  if (SC == FunctionDecl::Static) {
2481    if (!D.isInvalidType())
2482      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2483        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2484        << SourceRange(D.getIdentifierLoc());
2485    SC = FunctionDecl::None;
2486    D.setInvalidType();
2487  }
2488  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2489    // Destructors don't have return types, but the parser will
2490    // happily parse something like:
2491    //
2492    //   class X {
2493    //     float ~X();
2494    //   };
2495    //
2496    // The return type will be eliminated later.
2497    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2498      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2499      << SourceRange(D.getIdentifierLoc());
2500  }
2501
2502  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2503  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2504    if (FTI.TypeQuals & Qualifiers::Const)
2505      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2506        << "const" << SourceRange(D.getIdentifierLoc());
2507    if (FTI.TypeQuals & Qualifiers::Volatile)
2508      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2509        << "volatile" << SourceRange(D.getIdentifierLoc());
2510    if (FTI.TypeQuals & Qualifiers::Restrict)
2511      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2512        << "restrict" << SourceRange(D.getIdentifierLoc());
2513    D.setInvalidType();
2514  }
2515
2516  // Make sure we don't have any parameters.
2517  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2518    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2519
2520    // Delete the parameters.
2521    FTI.freeArgs();
2522    D.setInvalidType();
2523  }
2524
2525  // Make sure the destructor isn't variadic.
2526  if (FTI.isVariadic) {
2527    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2528    D.setInvalidType();
2529  }
2530
2531  // Rebuild the function type "R" without any type qualifiers or
2532  // parameters (in case any of the errors above fired) and with
2533  // "void" as the return type, since destructors don't have return
2534  // types. We *always* have to do this, because GetTypeForDeclarator
2535  // will put in a result type of "int" when none was specified.
2536  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2537}
2538
2539/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2540/// well-formednes of the conversion function declarator @p D with
2541/// type @p R. If there are any errors in the declarator, this routine
2542/// will emit diagnostics and return true. Otherwise, it will return
2543/// false. Either way, the type @p R will be updated to reflect a
2544/// well-formed type for the conversion operator.
2545void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2546                                     FunctionDecl::StorageClass& SC) {
2547  // C++ [class.conv.fct]p1:
2548  //   Neither parameter types nor return type can be specified. The
2549  //   type of a conversion function (8.3.5) is "function taking no
2550  //   parameter returning conversion-type-id."
2551  if (SC == FunctionDecl::Static) {
2552    if (!D.isInvalidType())
2553      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2554        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2555        << SourceRange(D.getIdentifierLoc());
2556    D.setInvalidType();
2557    SC = FunctionDecl::None;
2558  }
2559  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2560    // Conversion functions don't have return types, but the parser will
2561    // happily parse something like:
2562    //
2563    //   class X {
2564    //     float operator bool();
2565    //   };
2566    //
2567    // The return type will be changed later anyway.
2568    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2569      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2570      << SourceRange(D.getIdentifierLoc());
2571  }
2572
2573  // Make sure we don't have any parameters.
2574  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2575    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2576
2577    // Delete the parameters.
2578    D.getTypeObject(0).Fun.freeArgs();
2579    D.setInvalidType();
2580  }
2581
2582  // Make sure the conversion function isn't variadic.
2583  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2584    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2585    D.setInvalidType();
2586  }
2587
2588  // C++ [class.conv.fct]p4:
2589  //   The conversion-type-id shall not represent a function type nor
2590  //   an array type.
2591  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2592  if (ConvType->isArrayType()) {
2593    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2594    ConvType = Context.getPointerType(ConvType);
2595    D.setInvalidType();
2596  } else if (ConvType->isFunctionType()) {
2597    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2598    ConvType = Context.getPointerType(ConvType);
2599    D.setInvalidType();
2600  }
2601
2602  // Rebuild the function type "R" without any parameters (in case any
2603  // of the errors above fired) and with the conversion type as the
2604  // return type.
2605  R = Context.getFunctionType(ConvType, 0, 0, false,
2606                              R->getAs<FunctionProtoType>()->getTypeQuals());
2607
2608  // C++0x explicit conversion operators.
2609  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2610    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2611         diag::warn_explicit_conversion_functions)
2612      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2613}
2614
2615/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2616/// the declaration of the given C++ conversion function. This routine
2617/// is responsible for recording the conversion function in the C++
2618/// class, if possible.
2619Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2620  assert(Conversion && "Expected to receive a conversion function declaration");
2621
2622  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2623
2624  // Make sure we aren't redeclaring the conversion function.
2625  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2626
2627  // C++ [class.conv.fct]p1:
2628  //   [...] A conversion function is never used to convert a
2629  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2630  //   same object type (or a reference to it), to a (possibly
2631  //   cv-qualified) base class of that type (or a reference to it),
2632  //   or to (possibly cv-qualified) void.
2633  // FIXME: Suppress this warning if the conversion function ends up being a
2634  // virtual function that overrides a virtual function in a base class.
2635  QualType ClassType
2636    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2637  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2638    ConvType = ConvTypeRef->getPointeeType();
2639  if (ConvType->isRecordType()) {
2640    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2641    if (ConvType == ClassType)
2642      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2643        << ClassType;
2644    else if (IsDerivedFrom(ClassType, ConvType))
2645      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2646        <<  ClassType << ConvType;
2647  } else if (ConvType->isVoidType()) {
2648    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2649      << ClassType << ConvType;
2650  }
2651
2652  if (Conversion->getPreviousDeclaration()) {
2653    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2654    if (FunctionTemplateDecl *ConversionTemplate
2655          = Conversion->getDescribedFunctionTemplate())
2656      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2657    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2658      return DeclPtrTy::make(Conversion);
2659    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2660  } else if (FunctionTemplateDecl *ConversionTemplate
2661               = Conversion->getDescribedFunctionTemplate())
2662    ClassDecl->addConversionFunction(ConversionTemplate);
2663  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2664    ClassDecl->addConversionFunction(Conversion);
2665
2666  return DeclPtrTy::make(Conversion);
2667}
2668
2669//===----------------------------------------------------------------------===//
2670// Namespace Handling
2671//===----------------------------------------------------------------------===//
2672
2673/// ActOnStartNamespaceDef - This is called at the start of a namespace
2674/// definition.
2675Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2676                                             SourceLocation IdentLoc,
2677                                             IdentifierInfo *II,
2678                                             SourceLocation LBrace) {
2679  NamespaceDecl *Namespc =
2680      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2681  Namespc->setLBracLoc(LBrace);
2682
2683  Scope *DeclRegionScope = NamespcScope->getParent();
2684
2685  if (II) {
2686    // C++ [namespace.def]p2:
2687    // The identifier in an original-namespace-definition shall not have been
2688    // previously defined in the declarative region in which the
2689    // original-namespace-definition appears. The identifier in an
2690    // original-namespace-definition is the name of the namespace. Subsequently
2691    // in that declarative region, it is treated as an original-namespace-name.
2692
2693    NamedDecl *PrevDecl
2694      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2695                         ForRedeclaration);
2696
2697    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2698      // This is an extended namespace definition.
2699      // Attach this namespace decl to the chain of extended namespace
2700      // definitions.
2701      OrigNS->setNextNamespace(Namespc);
2702      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2703
2704      // Remove the previous declaration from the scope.
2705      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2706        IdResolver.RemoveDecl(OrigNS);
2707        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2708      }
2709    } else if (PrevDecl) {
2710      // This is an invalid name redefinition.
2711      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2712       << Namespc->getDeclName();
2713      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2714      Namespc->setInvalidDecl();
2715      // Continue on to push Namespc as current DeclContext and return it.
2716    } else if (II->isStr("std") &&
2717               CurContext->getLookupContext()->isTranslationUnit()) {
2718      // This is the first "real" definition of the namespace "std", so update
2719      // our cache of the "std" namespace to point at this definition.
2720      if (StdNamespace) {
2721        // We had already defined a dummy namespace "std". Link this new
2722        // namespace definition to the dummy namespace "std".
2723        StdNamespace->setNextNamespace(Namespc);
2724        StdNamespace->setLocation(IdentLoc);
2725        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2726      }
2727
2728      // Make our StdNamespace cache point at the first real definition of the
2729      // "std" namespace.
2730      StdNamespace = Namespc;
2731    }
2732
2733    PushOnScopeChains(Namespc, DeclRegionScope);
2734  } else {
2735    // Anonymous namespaces.
2736
2737    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2738    //   behaves as if it were replaced by
2739    //     namespace unique { /* empty body */ }
2740    //     using namespace unique;
2741    //     namespace unique { namespace-body }
2742    //   where all occurrences of 'unique' in a translation unit are
2743    //   replaced by the same identifier and this identifier differs
2744    //   from all other identifiers in the entire program.
2745
2746    // We just create the namespace with an empty name and then add an
2747    // implicit using declaration, just like the standard suggests.
2748    //
2749    // CodeGen enforces the "universally unique" aspect by giving all
2750    // declarations semantically contained within an anonymous
2751    // namespace internal linkage.
2752
2753    assert(Namespc->isAnonymousNamespace());
2754    CurContext->addDecl(Namespc);
2755
2756    UsingDirectiveDecl* UD
2757      = UsingDirectiveDecl::Create(Context, CurContext,
2758                                   /* 'using' */ LBrace,
2759                                   /* 'namespace' */ SourceLocation(),
2760                                   /* qualifier */ SourceRange(),
2761                                   /* NNS */ NULL,
2762                                   /* identifier */ SourceLocation(),
2763                                   Namespc,
2764                                   /* Ancestor */ CurContext);
2765    UD->setImplicit();
2766    CurContext->addDecl(UD);
2767  }
2768
2769  // Although we could have an invalid decl (i.e. the namespace name is a
2770  // redefinition), push it as current DeclContext and try to continue parsing.
2771  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2772  // for the namespace has the declarations that showed up in that particular
2773  // namespace definition.
2774  PushDeclContext(NamespcScope, Namespc);
2775  return DeclPtrTy::make(Namespc);
2776}
2777
2778/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2779/// is a namespace alias, returns the namespace it points to.
2780static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2781  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2782    return AD->getNamespace();
2783  return dyn_cast_or_null<NamespaceDecl>(D);
2784}
2785
2786/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2787/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2788void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2789  Decl *Dcl = D.getAs<Decl>();
2790  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2791  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2792  Namespc->setRBracLoc(RBrace);
2793  PopDeclContext();
2794}
2795
2796Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2797                                          SourceLocation UsingLoc,
2798                                          SourceLocation NamespcLoc,
2799                                          const CXXScopeSpec &SS,
2800                                          SourceLocation IdentLoc,
2801                                          IdentifierInfo *NamespcName,
2802                                          AttributeList *AttrList) {
2803  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2804  assert(NamespcName && "Invalid NamespcName.");
2805  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2806  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2807
2808  UsingDirectiveDecl *UDir = 0;
2809
2810  // Lookup namespace name.
2811  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2812  LookupParsedName(R, S, &SS);
2813  if (R.isAmbiguous())
2814    return DeclPtrTy();
2815
2816  if (!R.empty()) {
2817    NamedDecl *Named = R.getFoundDecl();
2818    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2819        && "expected namespace decl");
2820    // C++ [namespace.udir]p1:
2821    //   A using-directive specifies that the names in the nominated
2822    //   namespace can be used in the scope in which the
2823    //   using-directive appears after the using-directive. During
2824    //   unqualified name lookup (3.4.1), the names appear as if they
2825    //   were declared in the nearest enclosing namespace which
2826    //   contains both the using-directive and the nominated
2827    //   namespace. [Note: in this context, "contains" means "contains
2828    //   directly or indirectly". ]
2829
2830    // Find enclosing context containing both using-directive and
2831    // nominated namespace.
2832    NamespaceDecl *NS = getNamespaceDecl(Named);
2833    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2834    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2835      CommonAncestor = CommonAncestor->getParent();
2836
2837    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2838                                      SS.getRange(),
2839                                      (NestedNameSpecifier *)SS.getScopeRep(),
2840                                      IdentLoc, Named, CommonAncestor);
2841    PushUsingDirective(S, UDir);
2842  } else {
2843    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2844  }
2845
2846  // FIXME: We ignore attributes for now.
2847  delete AttrList;
2848  return DeclPtrTy::make(UDir);
2849}
2850
2851void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2852  // If scope has associated entity, then using directive is at namespace
2853  // or translation unit scope. We add UsingDirectiveDecls, into
2854  // it's lookup structure.
2855  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2856    Ctx->addDecl(UDir);
2857  else
2858    // Otherwise it is block-sope. using-directives will affect lookup
2859    // only to the end of scope.
2860    S->PushUsingDirective(DeclPtrTy::make(UDir));
2861}
2862
2863
2864Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2865                                            AccessSpecifier AS,
2866                                            SourceLocation UsingLoc,
2867                                            const CXXScopeSpec &SS,
2868                                            UnqualifiedId &Name,
2869                                            AttributeList *AttrList,
2870                                            bool IsTypeName,
2871                                            SourceLocation TypenameLoc) {
2872  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2873
2874  switch (Name.getKind()) {
2875  case UnqualifiedId::IK_Identifier:
2876  case UnqualifiedId::IK_OperatorFunctionId:
2877  case UnqualifiedId::IK_LiteralOperatorId:
2878  case UnqualifiedId::IK_ConversionFunctionId:
2879    break;
2880
2881  case UnqualifiedId::IK_ConstructorName:
2882    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2883      << SS.getRange();
2884    return DeclPtrTy();
2885
2886  case UnqualifiedId::IK_DestructorName:
2887    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2888      << SS.getRange();
2889    return DeclPtrTy();
2890
2891  case UnqualifiedId::IK_TemplateId:
2892    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2893      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2894    return DeclPtrTy();
2895  }
2896
2897  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2898  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
2899                                        Name.getSourceRange().getBegin(),
2900                                        TargetName, AttrList,
2901                                        /* IsInstantiation */ false,
2902                                        IsTypeName, TypenameLoc);
2903  if (UD) {
2904    PushOnScopeChains(UD, S);
2905    UD->setAccess(AS);
2906  }
2907
2908  return DeclPtrTy::make(UD);
2909}
2910
2911/// Builds a shadow declaration corresponding to a 'using' declaration.
2912static UsingShadowDecl *BuildUsingShadowDecl(Sema &SemaRef, Scope *S,
2913                                             AccessSpecifier AS,
2914                                             UsingDecl *UD, NamedDecl *Orig) {
2915  // FIXME: diagnose hiding, collisions
2916
2917  // If we resolved to another shadow declaration, just coalesce them.
2918  if (isa<UsingShadowDecl>(Orig)) {
2919    Orig = cast<UsingShadowDecl>(Orig)->getTargetDecl();
2920    assert(!isa<UsingShadowDecl>(Orig) && "nested shadow declaration");
2921  }
2922
2923  UsingShadowDecl *Shadow
2924    = UsingShadowDecl::Create(SemaRef.Context, SemaRef.CurContext,
2925                              UD->getLocation(), UD, Orig);
2926  UD->addShadowDecl(Shadow);
2927
2928  if (S)
2929    SemaRef.PushOnScopeChains(Shadow, S);
2930  else
2931    SemaRef.CurContext->addDecl(Shadow);
2932  Shadow->setAccess(AS);
2933
2934  return Shadow;
2935}
2936
2937/// Builds a using declaration.
2938///
2939/// \param IsInstantiation - Whether this call arises from an
2940///   instantiation of an unresolved using declaration.  We treat
2941///   the lookup differently for these declarations.
2942NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
2943                                       SourceLocation UsingLoc,
2944                                       const CXXScopeSpec &SS,
2945                                       SourceLocation IdentLoc,
2946                                       DeclarationName Name,
2947                                       AttributeList *AttrList,
2948                                       bool IsInstantiation,
2949                                       bool IsTypeName,
2950                                       SourceLocation TypenameLoc) {
2951  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2952  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2953
2954  // FIXME: We ignore attributes for now.
2955  delete AttrList;
2956
2957  if (SS.isEmpty()) {
2958    Diag(IdentLoc, diag::err_using_requires_qualname);
2959    return 0;
2960  }
2961
2962  NestedNameSpecifier *NNS =
2963    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2964
2965  DeclContext *LookupContext = computeDeclContext(SS);
2966  if (!LookupContext) {
2967    if (IsTypeName) {
2968      return UnresolvedUsingTypenameDecl::Create(Context, CurContext,
2969                                                 UsingLoc, TypenameLoc,
2970                                                 SS.getRange(), NNS,
2971                                                 IdentLoc, Name);
2972    } else {
2973      return UnresolvedUsingValueDecl::Create(Context, CurContext,
2974                                              UsingLoc, SS.getRange(), NNS,
2975                                              IdentLoc, Name);
2976    }
2977  }
2978
2979  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2980    // C++0x N2914 [namespace.udecl]p3:
2981    // A using-declaration used as a member-declaration shall refer to a member
2982    // of a base class of the class being defined, shall refer to a member of an
2983    // anonymous union that is a member of a base class of the class being
2984    // defined, or shall refer to an enumerator for an enumeration type that is
2985    // a member of a base class of the class being defined.
2986
2987    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2988    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2989      Diag(SS.getRange().getBegin(),
2990           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2991        << NNS << RD->getDeclName();
2992      return 0;
2993    }
2994  } else {
2995    // C++0x N2914 [namespace.udecl]p8:
2996    // A using-declaration for a class member shall be a member-declaration.
2997    if (isa<CXXRecordDecl>(LookupContext)) {
2998      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2999        << SS.getRange();
3000      return 0;
3001    }
3002  }
3003
3004  // Look up the target name.  Unlike most lookups, we do not want to
3005  // hide tag declarations: tag names are visible through the using
3006  // declaration even if hidden by ordinary names.
3007  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3008
3009  // We don't hide tags behind ordinary decls if we're in a
3010  // non-dependent context, but in a dependent context, this is
3011  // important for the stability of two-phase lookup.
3012  if (!IsInstantiation)
3013    R.setHideTags(false);
3014
3015  LookupQualifiedName(R, LookupContext);
3016
3017  if (R.empty()) {
3018    Diag(IdentLoc, diag::err_no_member)
3019      << Name << LookupContext << SS.getRange();
3020    return 0;
3021  }
3022
3023  if (R.isAmbiguous())
3024    return 0;
3025
3026  if (IsTypeName) {
3027    // If we asked for a typename and got a non-type decl, error out.
3028    if (R.getResultKind() != LookupResult::Found
3029        || !isa<TypeDecl>(R.getFoundDecl())) {
3030      Diag(IdentLoc, diag::err_using_typename_non_type);
3031      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3032        Diag((*I)->getUnderlyingDecl()->getLocation(),
3033             diag::note_using_decl_target);
3034      return 0;
3035    }
3036  } else {
3037    // If we asked for a non-typename and we got a type, error out,
3038    // but only if this is an instantiation of an unresolved using
3039    // decl.  Otherwise just silently find the type name.
3040    if (IsInstantiation &&
3041        R.getResultKind() == LookupResult::Found &&
3042        isa<TypeDecl>(R.getFoundDecl())) {
3043      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3044      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3045      return 0;
3046    }
3047  }
3048
3049  // C++0x N2914 [namespace.udecl]p6:
3050  // A using-declaration shall not name a namespace.
3051  if (R.getResultKind() == LookupResult::Found
3052      && isa<NamespaceDecl>(R.getFoundDecl())) {
3053    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3054      << SS.getRange();
3055    return 0;
3056  }
3057
3058  UsingDecl *UD = UsingDecl::Create(Context, CurContext, IdentLoc,
3059                                    SS.getRange(), UsingLoc, NNS, Name,
3060                                    IsTypeName);
3061
3062  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3063    BuildUsingShadowDecl(*this, S, AS, UD, *I);
3064
3065  return UD;
3066}
3067
3068Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3069                                             SourceLocation NamespaceLoc,
3070                                             SourceLocation AliasLoc,
3071                                             IdentifierInfo *Alias,
3072                                             const CXXScopeSpec &SS,
3073                                             SourceLocation IdentLoc,
3074                                             IdentifierInfo *Ident) {
3075
3076  // Lookup the namespace name.
3077  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3078  LookupParsedName(R, S, &SS);
3079
3080  // Check if we have a previous declaration with the same name.
3081  if (NamedDecl *PrevDecl
3082        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3083    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3084      // We already have an alias with the same name that points to the same
3085      // namespace, so don't create a new one.
3086      if (!R.isAmbiguous() && !R.empty() &&
3087          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3088        return DeclPtrTy();
3089    }
3090
3091    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3092      diag::err_redefinition_different_kind;
3093    Diag(AliasLoc, DiagID) << Alias;
3094    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3095    return DeclPtrTy();
3096  }
3097
3098  if (R.isAmbiguous())
3099    return DeclPtrTy();
3100
3101  if (R.empty()) {
3102    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3103    return DeclPtrTy();
3104  }
3105
3106  NamespaceAliasDecl *AliasDecl =
3107    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3108                               Alias, SS.getRange(),
3109                               (NestedNameSpecifier *)SS.getScopeRep(),
3110                               IdentLoc, R.getFoundDecl());
3111
3112  CurContext->addDecl(AliasDecl);
3113  return DeclPtrTy::make(AliasDecl);
3114}
3115
3116void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3117                                            CXXConstructorDecl *Constructor) {
3118  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3119          !Constructor->isUsed()) &&
3120    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3121
3122  CXXRecordDecl *ClassDecl
3123    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3124  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3125
3126  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3127    Diag(CurrentLocation, diag::note_member_synthesized_at)
3128      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3129    Constructor->setInvalidDecl();
3130  } else {
3131    Constructor->setUsed();
3132  }
3133
3134  MaybeMarkVirtualImplicitMembersReferenced(CurrentLocation, Constructor);
3135}
3136
3137void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3138                                    CXXDestructorDecl *Destructor) {
3139  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3140         "DefineImplicitDestructor - call it for implicit default dtor");
3141  CXXRecordDecl *ClassDecl = Destructor->getParent();
3142  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3143  // C++ [class.dtor] p5
3144  // Before the implicitly-declared default destructor for a class is
3145  // implicitly defined, all the implicitly-declared default destructors
3146  // for its base class and its non-static data members shall have been
3147  // implicitly defined.
3148  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3149       E = ClassDecl->bases_end(); Base != E; ++Base) {
3150    CXXRecordDecl *BaseClassDecl
3151      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3152    if (!BaseClassDecl->hasTrivialDestructor()) {
3153      if (CXXDestructorDecl *BaseDtor =
3154          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3155        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3156      else
3157        assert(false &&
3158               "DefineImplicitDestructor - missing dtor in a base class");
3159    }
3160  }
3161
3162  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3163       E = ClassDecl->field_end(); Field != E; ++Field) {
3164    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3165    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3166      FieldType = Array->getElementType();
3167    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3168      CXXRecordDecl *FieldClassDecl
3169        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3170      if (!FieldClassDecl->hasTrivialDestructor()) {
3171        if (CXXDestructorDecl *FieldDtor =
3172            const_cast<CXXDestructorDecl*>(
3173                                        FieldClassDecl->getDestructor(Context)))
3174          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3175        else
3176          assert(false &&
3177          "DefineImplicitDestructor - missing dtor in class of a data member");
3178      }
3179    }
3180  }
3181
3182  // FIXME: If CheckDestructor fails, we should emit a note about where the
3183  // implicit destructor was needed.
3184  if (CheckDestructor(Destructor)) {
3185    Diag(CurrentLocation, diag::note_member_synthesized_at)
3186      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3187
3188    Destructor->setInvalidDecl();
3189    return;
3190  }
3191
3192  Destructor->setUsed();
3193}
3194
3195void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3196                                          CXXMethodDecl *MethodDecl) {
3197  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3198          MethodDecl->getOverloadedOperator() == OO_Equal &&
3199          !MethodDecl->isUsed()) &&
3200         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3201
3202  CXXRecordDecl *ClassDecl
3203    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3204
3205  // C++[class.copy] p12
3206  // Before the implicitly-declared copy assignment operator for a class is
3207  // implicitly defined, all implicitly-declared copy assignment operators
3208  // for its direct base classes and its nonstatic data members shall have
3209  // been implicitly defined.
3210  bool err = false;
3211  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3212       E = ClassDecl->bases_end(); Base != E; ++Base) {
3213    CXXRecordDecl *BaseClassDecl
3214      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3215    if (CXXMethodDecl *BaseAssignOpMethod =
3216          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3217      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3218  }
3219  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3220       E = ClassDecl->field_end(); Field != E; ++Field) {
3221    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3222    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3223      FieldType = Array->getElementType();
3224    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3225      CXXRecordDecl *FieldClassDecl
3226        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3227      if (CXXMethodDecl *FieldAssignOpMethod =
3228          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3229        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3230    } else if (FieldType->isReferenceType()) {
3231      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3232      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3233      Diag(Field->getLocation(), diag::note_declared_at);
3234      Diag(CurrentLocation, diag::note_first_required_here);
3235      err = true;
3236    } else if (FieldType.isConstQualified()) {
3237      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3238      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3239      Diag(Field->getLocation(), diag::note_declared_at);
3240      Diag(CurrentLocation, diag::note_first_required_here);
3241      err = true;
3242    }
3243  }
3244  if (!err)
3245    MethodDecl->setUsed();
3246}
3247
3248CXXMethodDecl *
3249Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3250                              CXXRecordDecl *ClassDecl) {
3251  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3252  QualType RHSType(LHSType);
3253  // If class's assignment operator argument is const/volatile qualified,
3254  // look for operator = (const/volatile B&). Otherwise, look for
3255  // operator = (B&).
3256  RHSType = Context.getCVRQualifiedType(RHSType,
3257                                     ParmDecl->getType().getCVRQualifiers());
3258  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3259                                                          LHSType,
3260                                                          SourceLocation()));
3261  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3262                                                          RHSType,
3263                                                          SourceLocation()));
3264  Expr *Args[2] = { &*LHS, &*RHS };
3265  OverloadCandidateSet CandidateSet;
3266  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3267                              CandidateSet);
3268  OverloadCandidateSet::iterator Best;
3269  if (BestViableFunction(CandidateSet,
3270                         ClassDecl->getLocation(), Best) == OR_Success)
3271    return cast<CXXMethodDecl>(Best->Function);
3272  assert(false &&
3273         "getAssignOperatorMethod - copy assignment operator method not found");
3274  return 0;
3275}
3276
3277void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3278                                   CXXConstructorDecl *CopyConstructor,
3279                                   unsigned TypeQuals) {
3280  assert((CopyConstructor->isImplicit() &&
3281          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3282          !CopyConstructor->isUsed()) &&
3283         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3284
3285  CXXRecordDecl *ClassDecl
3286    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3287  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3288  // C++ [class.copy] p209
3289  // Before the implicitly-declared copy constructor for a class is
3290  // implicitly defined, all the implicitly-declared copy constructors
3291  // for its base class and its non-static data members shall have been
3292  // implicitly defined.
3293  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3294       Base != ClassDecl->bases_end(); ++Base) {
3295    CXXRecordDecl *BaseClassDecl
3296      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3297    if (CXXConstructorDecl *BaseCopyCtor =
3298        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3299      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3300  }
3301  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3302                                  FieldEnd = ClassDecl->field_end();
3303       Field != FieldEnd; ++Field) {
3304    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3305    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3306      FieldType = Array->getElementType();
3307    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3308      CXXRecordDecl *FieldClassDecl
3309        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3310      if (CXXConstructorDecl *FieldCopyCtor =
3311          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3312        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3313    }
3314  }
3315  CopyConstructor->setUsed();
3316}
3317
3318Sema::OwningExprResult
3319Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3320                            CXXConstructorDecl *Constructor,
3321                            MultiExprArg ExprArgs) {
3322  bool Elidable = false;
3323
3324  // C++ [class.copy]p15:
3325  //   Whenever a temporary class object is copied using a copy constructor, and
3326  //   this object and the copy have the same cv-unqualified type, an
3327  //   implementation is permitted to treat the original and the copy as two
3328  //   different ways of referring to the same object and not perform a copy at
3329  //   all, even if the class copy constructor or destructor have side effects.
3330
3331  // FIXME: Is this enough?
3332  if (Constructor->isCopyConstructor(Context)) {
3333    Expr *E = ((Expr **)ExprArgs.get())[0];
3334    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3335      E = BE->getSubExpr();
3336    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3337      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3338        E = ICE->getSubExpr();
3339
3340    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3341      Elidable = true;
3342  }
3343
3344  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3345                               Elidable, move(ExprArgs));
3346}
3347
3348/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3349/// including handling of its default argument expressions.
3350Sema::OwningExprResult
3351Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3352                            CXXConstructorDecl *Constructor, bool Elidable,
3353                            MultiExprArg ExprArgs) {
3354  unsigned NumExprs = ExprArgs.size();
3355  Expr **Exprs = (Expr **)ExprArgs.release();
3356
3357  MarkDeclarationReferenced(ConstructLoc, Constructor);
3358  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3359                                        Elidable, Exprs, NumExprs));
3360}
3361
3362Sema::OwningExprResult
3363Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3364                                  QualType Ty,
3365                                  SourceLocation TyBeginLoc,
3366                                  MultiExprArg Args,
3367                                  SourceLocation RParenLoc) {
3368  unsigned NumExprs = Args.size();
3369  Expr **Exprs = (Expr **)Args.release();
3370
3371  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3372  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3373                                                    TyBeginLoc, Exprs,
3374                                                    NumExprs, RParenLoc));
3375}
3376
3377
3378bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3379                                        CXXConstructorDecl *Constructor,
3380                                        MultiExprArg Exprs) {
3381  OwningExprResult TempResult =
3382    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3383                          move(Exprs));
3384  if (TempResult.isInvalid())
3385    return true;
3386
3387  Expr *Temp = TempResult.takeAs<Expr>();
3388  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3389  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3390  VD->setInit(Context, Temp);
3391
3392  return false;
3393}
3394
3395void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3396  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3397                                  DeclInitType->getAs<RecordType>()->getDecl());
3398  if (!ClassDecl->hasTrivialDestructor())
3399    if (CXXDestructorDecl *Destructor =
3400        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3401      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3402}
3403
3404/// AddCXXDirectInitializerToDecl - This action is called immediately after
3405/// ActOnDeclarator, when a C++ direct initializer is present.
3406/// e.g: "int x(1);"
3407void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3408                                         SourceLocation LParenLoc,
3409                                         MultiExprArg Exprs,
3410                                         SourceLocation *CommaLocs,
3411                                         SourceLocation RParenLoc) {
3412  unsigned NumExprs = Exprs.size();
3413  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3414  Decl *RealDecl = Dcl.getAs<Decl>();
3415
3416  // If there is no declaration, there was an error parsing it.  Just ignore
3417  // the initializer.
3418  if (RealDecl == 0)
3419    return;
3420
3421  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3422  if (!VDecl) {
3423    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3424    RealDecl->setInvalidDecl();
3425    return;
3426  }
3427
3428  // We will represent direct-initialization similarly to copy-initialization:
3429  //    int x(1);  -as-> int x = 1;
3430  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3431  //
3432  // Clients that want to distinguish between the two forms, can check for
3433  // direct initializer using VarDecl::hasCXXDirectInitializer().
3434  // A major benefit is that clients that don't particularly care about which
3435  // exactly form was it (like the CodeGen) can handle both cases without
3436  // special case code.
3437
3438  // If either the declaration has a dependent type or if any of the expressions
3439  // is type-dependent, we represent the initialization via a ParenListExpr for
3440  // later use during template instantiation.
3441  if (VDecl->getType()->isDependentType() ||
3442      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3443    // Let clients know that initialization was done with a direct initializer.
3444    VDecl->setCXXDirectInitializer(true);
3445
3446    // Store the initialization expressions as a ParenListExpr.
3447    unsigned NumExprs = Exprs.size();
3448    VDecl->setInit(Context,
3449                   new (Context) ParenListExpr(Context, LParenLoc,
3450                                               (Expr **)Exprs.release(),
3451                                               NumExprs, RParenLoc));
3452    return;
3453  }
3454
3455
3456  // C++ 8.5p11:
3457  // The form of initialization (using parentheses or '=') is generally
3458  // insignificant, but does matter when the entity being initialized has a
3459  // class type.
3460  QualType DeclInitType = VDecl->getType();
3461  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3462    DeclInitType = Context.getBaseElementType(Array);
3463
3464  // FIXME: This isn't the right place to complete the type.
3465  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3466                          diag::err_typecheck_decl_incomplete_type)) {
3467    VDecl->setInvalidDecl();
3468    return;
3469  }
3470
3471  if (VDecl->getType()->isRecordType()) {
3472    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3473
3474    CXXConstructorDecl *Constructor
3475      = PerformInitializationByConstructor(DeclInitType,
3476                                           move(Exprs),
3477                                           VDecl->getLocation(),
3478                                           SourceRange(VDecl->getLocation(),
3479                                                       RParenLoc),
3480                                           VDecl->getDeclName(),
3481                                           IK_Direct,
3482                                           ConstructorArgs);
3483    if (!Constructor)
3484      RealDecl->setInvalidDecl();
3485    else {
3486      VDecl->setCXXDirectInitializer(true);
3487      if (InitializeVarWithConstructor(VDecl, Constructor,
3488                                       move_arg(ConstructorArgs)))
3489        RealDecl->setInvalidDecl();
3490      FinalizeVarWithDestructor(VDecl, DeclInitType);
3491    }
3492    return;
3493  }
3494
3495  if (NumExprs > 1) {
3496    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3497      << SourceRange(VDecl->getLocation(), RParenLoc);
3498    RealDecl->setInvalidDecl();
3499    return;
3500  }
3501
3502  // Let clients know that initialization was done with a direct initializer.
3503  VDecl->setCXXDirectInitializer(true);
3504
3505  assert(NumExprs == 1 && "Expected 1 expression");
3506  // Set the init expression, handles conversions.
3507  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3508                       /*DirectInit=*/true);
3509}
3510
3511/// \brief Add the applicable constructor candidates for an initialization
3512/// by constructor.
3513static void AddConstructorInitializationCandidates(Sema &SemaRef,
3514                                                   QualType ClassType,
3515                                                   Expr **Args,
3516                                                   unsigned NumArgs,
3517                                                  Sema::InitializationKind Kind,
3518                                           OverloadCandidateSet &CandidateSet) {
3519  // C++ [dcl.init]p14:
3520  //   If the initialization is direct-initialization, or if it is
3521  //   copy-initialization where the cv-unqualified version of the
3522  //   source type is the same class as, or a derived class of, the
3523  //   class of the destination, constructors are considered. The
3524  //   applicable constructors are enumerated (13.3.1.3), and the
3525  //   best one is chosen through overload resolution (13.3). The
3526  //   constructor so selected is called to initialize the object,
3527  //   with the initializer expression(s) as its argument(s). If no
3528  //   constructor applies, or the overload resolution is ambiguous,
3529  //   the initialization is ill-formed.
3530  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3531  assert(ClassRec && "Can only initialize a class type here");
3532
3533  // FIXME: When we decide not to synthesize the implicitly-declared
3534  // constructors, we'll need to make them appear here.
3535
3536  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3537  DeclarationName ConstructorName
3538    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
3539              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
3540  DeclContext::lookup_const_iterator Con, ConEnd;
3541  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3542       Con != ConEnd; ++Con) {
3543    // Find the constructor (which may be a template).
3544    CXXConstructorDecl *Constructor = 0;
3545    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3546    if (ConstructorTmpl)
3547      Constructor
3548      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3549    else
3550      Constructor = cast<CXXConstructorDecl>(*Con);
3551
3552    if ((Kind == Sema::IK_Direct) ||
3553        (Kind == Sema::IK_Copy &&
3554         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3555        (Kind == Sema::IK_Default && Constructor->isDefaultConstructor())) {
3556      if (ConstructorTmpl)
3557        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
3558                                             /*ExplicitArgs*/ 0,
3559                                             Args, NumArgs, CandidateSet);
3560      else
3561        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3562    }
3563  }
3564}
3565
3566/// \brief Attempt to perform initialization by constructor
3567/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
3568/// copy-initialization.
3569///
3570/// This routine determines whether initialization by constructor is possible,
3571/// but it does not emit any diagnostics in the case where the initialization
3572/// is ill-formed.
3573///
3574/// \param ClassType the type of the object being initialized, which must have
3575/// class type.
3576///
3577/// \param Args the arguments provided to initialize the object
3578///
3579/// \param NumArgs the number of arguments provided to initialize the object
3580///
3581/// \param Kind the type of initialization being performed
3582///
3583/// \returns the constructor used to initialize the object, if successful.
3584/// Otherwise, emits a diagnostic and returns NULL.
3585CXXConstructorDecl *
3586Sema::TryInitializationByConstructor(QualType ClassType,
3587                                     Expr **Args, unsigned NumArgs,
3588                                     SourceLocation Loc,
3589                                     InitializationKind Kind) {
3590  // Build the overload candidate set
3591  OverloadCandidateSet CandidateSet;
3592  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3593                                         CandidateSet);
3594
3595  // Determine whether we found a constructor we can use.
3596  OverloadCandidateSet::iterator Best;
3597  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3598    case OR_Success:
3599    case OR_Deleted:
3600      // We found a constructor. Return it.
3601      return cast<CXXConstructorDecl>(Best->Function);
3602
3603    case OR_No_Viable_Function:
3604    case OR_Ambiguous:
3605      // Overload resolution failed. Return nothing.
3606      return 0;
3607  }
3608
3609  // Silence GCC warning
3610  return 0;
3611}
3612
3613/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3614/// may occur as part of direct-initialization or copy-initialization.
3615///
3616/// \param ClassType the type of the object being initialized, which must have
3617/// class type.
3618///
3619/// \param ArgsPtr the arguments provided to initialize the object
3620///
3621/// \param Loc the source location where the initialization occurs
3622///
3623/// \param Range the source range that covers the entire initialization
3624///
3625/// \param InitEntity the name of the entity being initialized, if known
3626///
3627/// \param Kind the type of initialization being performed
3628///
3629/// \param ConvertedArgs a vector that will be filled in with the
3630/// appropriately-converted arguments to the constructor (if initialization
3631/// succeeded).
3632///
3633/// \returns the constructor used to initialize the object, if successful.
3634/// Otherwise, emits a diagnostic and returns NULL.
3635CXXConstructorDecl *
3636Sema::PerformInitializationByConstructor(QualType ClassType,
3637                                         MultiExprArg ArgsPtr,
3638                                         SourceLocation Loc, SourceRange Range,
3639                                         DeclarationName InitEntity,
3640                                         InitializationKind Kind,
3641                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3642
3643  // Build the overload candidate set
3644  Expr **Args = (Expr **)ArgsPtr.get();
3645  unsigned NumArgs = ArgsPtr.size();
3646  OverloadCandidateSet CandidateSet;
3647  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3648                                         CandidateSet);
3649
3650  OverloadCandidateSet::iterator Best;
3651  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3652  case OR_Success:
3653    // We found a constructor. Break out so that we can convert the arguments
3654    // appropriately.
3655    break;
3656
3657  case OR_No_Viable_Function:
3658    if (InitEntity)
3659      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3660        << InitEntity << Range;
3661    else
3662      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3663        << ClassType << Range;
3664    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3665    return 0;
3666
3667  case OR_Ambiguous:
3668    if (InitEntity)
3669      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3670    else
3671      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3672    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3673    return 0;
3674
3675  case OR_Deleted:
3676    if (InitEntity)
3677      Diag(Loc, diag::err_ovl_deleted_init)
3678        << Best->Function->isDeleted()
3679        << InitEntity << Range;
3680    else {
3681      const CXXRecordDecl *RD =
3682          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
3683      Diag(Loc, diag::err_ovl_deleted_init)
3684        << Best->Function->isDeleted()
3685        << RD->getDeclName() << Range;
3686    }
3687    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3688    return 0;
3689  }
3690
3691  // Convert the arguments, fill in default arguments, etc.
3692  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3693  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3694    return 0;
3695
3696  return Constructor;
3697}
3698
3699/// \brief Given a constructor and the set of arguments provided for the
3700/// constructor, convert the arguments and add any required default arguments
3701/// to form a proper call to this constructor.
3702///
3703/// \returns true if an error occurred, false otherwise.
3704bool
3705Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3706                              MultiExprArg ArgsPtr,
3707                              SourceLocation Loc,
3708                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3709  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3710  unsigned NumArgs = ArgsPtr.size();
3711  Expr **Args = (Expr **)ArgsPtr.get();
3712
3713  const FunctionProtoType *Proto
3714    = Constructor->getType()->getAs<FunctionProtoType>();
3715  assert(Proto && "Constructor without a prototype?");
3716  unsigned NumArgsInProto = Proto->getNumArgs();
3717
3718  // If too few arguments are available, we'll fill in the rest with defaults.
3719  if (NumArgs < NumArgsInProto)
3720    ConvertedArgs.reserve(NumArgsInProto);
3721  else
3722    ConvertedArgs.reserve(NumArgs);
3723
3724  VariadicCallType CallType =
3725    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
3726  llvm::SmallVector<Expr *, 8> AllArgs;
3727  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
3728                                        Proto, 0, Args, NumArgs, AllArgs,
3729                                        CallType);
3730  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
3731    ConvertedArgs.push_back(AllArgs[i]);
3732  return Invalid;
3733}
3734
3735/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3736/// determine whether they are reference-related,
3737/// reference-compatible, reference-compatible with added
3738/// qualification, or incompatible, for use in C++ initialization by
3739/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3740/// type, and the first type (T1) is the pointee type of the reference
3741/// type being initialized.
3742Sema::ReferenceCompareResult
3743Sema::CompareReferenceRelationship(SourceLocation Loc,
3744                                   QualType OrigT1, QualType OrigT2,
3745                                   bool& DerivedToBase) {
3746  assert(!OrigT1->isReferenceType() &&
3747    "T1 must be the pointee type of the reference type");
3748  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3749
3750  QualType T1 = Context.getCanonicalType(OrigT1);
3751  QualType T2 = Context.getCanonicalType(OrigT2);
3752  QualType UnqualT1 = T1.getLocalUnqualifiedType();
3753  QualType UnqualT2 = T2.getLocalUnqualifiedType();
3754
3755  // C++ [dcl.init.ref]p4:
3756  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3757  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3758  //   T1 is a base class of T2.
3759  if (UnqualT1 == UnqualT2)
3760    DerivedToBase = false;
3761  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3762           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3763           IsDerivedFrom(UnqualT2, UnqualT1))
3764    DerivedToBase = true;
3765  else
3766    return Ref_Incompatible;
3767
3768  // At this point, we know that T1 and T2 are reference-related (at
3769  // least).
3770
3771  // C++ [dcl.init.ref]p4:
3772  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3773  //   reference-related to T2 and cv1 is the same cv-qualification
3774  //   as, or greater cv-qualification than, cv2. For purposes of
3775  //   overload resolution, cases for which cv1 is greater
3776  //   cv-qualification than cv2 are identified as
3777  //   reference-compatible with added qualification (see 13.3.3.2).
3778  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3779    return Ref_Compatible;
3780  else if (T1.isMoreQualifiedThan(T2))
3781    return Ref_Compatible_With_Added_Qualification;
3782  else
3783    return Ref_Related;
3784}
3785
3786/// CheckReferenceInit - Check the initialization of a reference
3787/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3788/// the initializer (either a simple initializer or an initializer
3789/// list), and DeclType is the type of the declaration. When ICS is
3790/// non-null, this routine will compute the implicit conversion
3791/// sequence according to C++ [over.ics.ref] and will not produce any
3792/// diagnostics; when ICS is null, it will emit diagnostics when any
3793/// errors are found. Either way, a return value of true indicates
3794/// that there was a failure, a return value of false indicates that
3795/// the reference initialization succeeded.
3796///
3797/// When @p SuppressUserConversions, user-defined conversions are
3798/// suppressed.
3799/// When @p AllowExplicit, we also permit explicit user-defined
3800/// conversion functions.
3801/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3802/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
3803/// This is used when this is called from a C-style cast.
3804bool
3805Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3806                         SourceLocation DeclLoc,
3807                         bool SuppressUserConversions,
3808                         bool AllowExplicit, bool ForceRValue,
3809                         ImplicitConversionSequence *ICS,
3810                         bool IgnoreBaseAccess) {
3811  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3812
3813  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3814  QualType T2 = Init->getType();
3815
3816  // If the initializer is the address of an overloaded function, try
3817  // to resolve the overloaded function. If all goes well, T2 is the
3818  // type of the resulting function.
3819  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3820    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3821                                                          ICS != 0);
3822    if (Fn) {
3823      // Since we're performing this reference-initialization for
3824      // real, update the initializer with the resulting function.
3825      if (!ICS) {
3826        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3827          return true;
3828
3829        Init = FixOverloadedFunctionReference(Init, Fn);
3830      }
3831
3832      T2 = Fn->getType();
3833    }
3834  }
3835
3836  // Compute some basic properties of the types and the initializer.
3837  bool isRValRef = DeclType->isRValueReferenceType();
3838  bool DerivedToBase = false;
3839  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3840                                                  Init->isLvalue(Context);
3841  ReferenceCompareResult RefRelationship
3842    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3843
3844  // Most paths end in a failed conversion.
3845  if (ICS)
3846    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3847
3848  // C++ [dcl.init.ref]p5:
3849  //   A reference to type "cv1 T1" is initialized by an expression
3850  //   of type "cv2 T2" as follows:
3851
3852  //     -- If the initializer expression
3853
3854  // Rvalue references cannot bind to lvalues (N2812).
3855  // There is absolutely no situation where they can. In particular, note that
3856  // this is ill-formed, even if B has a user-defined conversion to A&&:
3857  //   B b;
3858  //   A&& r = b;
3859  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3860    if (!ICS)
3861      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3862        << Init->getSourceRange();
3863    return true;
3864  }
3865
3866  bool BindsDirectly = false;
3867  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3868  //          reference-compatible with "cv2 T2," or
3869  //
3870  // Note that the bit-field check is skipped if we are just computing
3871  // the implicit conversion sequence (C++ [over.best.ics]p2).
3872  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3873      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3874    BindsDirectly = true;
3875
3876    if (ICS) {
3877      // C++ [over.ics.ref]p1:
3878      //   When a parameter of reference type binds directly (8.5.3)
3879      //   to an argument expression, the implicit conversion sequence
3880      //   is the identity conversion, unless the argument expression
3881      //   has a type that is a derived class of the parameter type,
3882      //   in which case the implicit conversion sequence is a
3883      //   derived-to-base Conversion (13.3.3.1).
3884      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3885      ICS->Standard.First = ICK_Identity;
3886      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3887      ICS->Standard.Third = ICK_Identity;
3888      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3889      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3890      ICS->Standard.ReferenceBinding = true;
3891      ICS->Standard.DirectBinding = true;
3892      ICS->Standard.RRefBinding = false;
3893      ICS->Standard.CopyConstructor = 0;
3894
3895      // Nothing more to do: the inaccessibility/ambiguity check for
3896      // derived-to-base conversions is suppressed when we're
3897      // computing the implicit conversion sequence (C++
3898      // [over.best.ics]p2).
3899      return false;
3900    } else {
3901      // Perform the conversion.
3902      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3903      if (DerivedToBase)
3904        CK = CastExpr::CK_DerivedToBase;
3905      else if(CheckExceptionSpecCompatibility(Init, T1))
3906        return true;
3907      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3908    }
3909  }
3910
3911  //       -- has a class type (i.e., T2 is a class type) and can be
3912  //          implicitly converted to an lvalue of type "cv3 T3,"
3913  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3914  //          92) (this conversion is selected by enumerating the
3915  //          applicable conversion functions (13.3.1.6) and choosing
3916  //          the best one through overload resolution (13.3)),
3917  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3918      !RequireCompleteType(DeclLoc, T2, 0)) {
3919    CXXRecordDecl *T2RecordDecl
3920      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3921
3922    OverloadCandidateSet CandidateSet;
3923    const UnresolvedSet *Conversions
3924      = T2RecordDecl->getVisibleConversionFunctions();
3925    for (UnresolvedSet::iterator I = Conversions->begin(),
3926           E = Conversions->end(); I != E; ++I) {
3927      NamedDecl *D = *I;
3928      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3929      if (isa<UsingShadowDecl>(D))
3930        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3931
3932      FunctionTemplateDecl *ConvTemplate
3933        = dyn_cast<FunctionTemplateDecl>(D);
3934      CXXConversionDecl *Conv;
3935      if (ConvTemplate)
3936        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3937      else
3938        Conv = cast<CXXConversionDecl>(D);
3939
3940      // If the conversion function doesn't return a reference type,
3941      // it can't be considered for this conversion.
3942      if (Conv->getConversionType()->isLValueReferenceType() &&
3943          (AllowExplicit || !Conv->isExplicit())) {
3944        if (ConvTemplate)
3945          AddTemplateConversionCandidate(ConvTemplate, ActingDC,
3946                                         Init, DeclType, CandidateSet);
3947        else
3948          AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet);
3949      }
3950    }
3951
3952    OverloadCandidateSet::iterator Best;
3953    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3954    case OR_Success:
3955      // This is a direct binding.
3956      BindsDirectly = true;
3957
3958      if (ICS) {
3959        // C++ [over.ics.ref]p1:
3960        //
3961        //   [...] If the parameter binds directly to the result of
3962        //   applying a conversion function to the argument
3963        //   expression, the implicit conversion sequence is a
3964        //   user-defined conversion sequence (13.3.3.1.2), with the
3965        //   second standard conversion sequence either an identity
3966        //   conversion or, if the conversion function returns an
3967        //   entity of a type that is a derived class of the parameter
3968        //   type, a derived-to-base Conversion.
3969        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3970        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3971        ICS->UserDefined.After = Best->FinalConversion;
3972        ICS->UserDefined.ConversionFunction = Best->Function;
3973        ICS->UserDefined.EllipsisConversion = false;
3974        assert(ICS->UserDefined.After.ReferenceBinding &&
3975               ICS->UserDefined.After.DirectBinding &&
3976               "Expected a direct reference binding!");
3977        return false;
3978      } else {
3979        OwningExprResult InitConversion =
3980          BuildCXXCastArgument(DeclLoc, QualType(),
3981                               CastExpr::CK_UserDefinedConversion,
3982                               cast<CXXMethodDecl>(Best->Function),
3983                               Owned(Init));
3984        Init = InitConversion.takeAs<Expr>();
3985
3986        if (CheckExceptionSpecCompatibility(Init, T1))
3987          return true;
3988        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3989                          /*isLvalue=*/true);
3990      }
3991      break;
3992
3993    case OR_Ambiguous:
3994      if (ICS) {
3995        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3996             Cand != CandidateSet.end(); ++Cand)
3997          if (Cand->Viable)
3998            ICS->ConversionFunctionSet.push_back(Cand->Function);
3999        break;
4000      }
4001      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4002            << Init->getSourceRange();
4003      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4004      return true;
4005
4006    case OR_No_Viable_Function:
4007    case OR_Deleted:
4008      // There was no suitable conversion, or we found a deleted
4009      // conversion; continue with other checks.
4010      break;
4011    }
4012  }
4013
4014  if (BindsDirectly) {
4015    // C++ [dcl.init.ref]p4:
4016    //   [...] In all cases where the reference-related or
4017    //   reference-compatible relationship of two types is used to
4018    //   establish the validity of a reference binding, and T1 is a
4019    //   base class of T2, a program that necessitates such a binding
4020    //   is ill-formed if T1 is an inaccessible (clause 11) or
4021    //   ambiguous (10.2) base class of T2.
4022    //
4023    // Note that we only check this condition when we're allowed to
4024    // complain about errors, because we should not be checking for
4025    // ambiguity (or inaccessibility) unless the reference binding
4026    // actually happens.
4027    if (DerivedToBase)
4028      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4029                                          Init->getSourceRange(),
4030                                          IgnoreBaseAccess);
4031    else
4032      return false;
4033  }
4034
4035  //     -- Otherwise, the reference shall be to a non-volatile const
4036  //        type (i.e., cv1 shall be const), or the reference shall be an
4037  //        rvalue reference and the initializer expression shall be an rvalue.
4038  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4039    if (!ICS)
4040      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4041        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
4042        << T2 << Init->getSourceRange();
4043    return true;
4044  }
4045
4046  //       -- If the initializer expression is an rvalue, with T2 a
4047  //          class type, and "cv1 T1" is reference-compatible with
4048  //          "cv2 T2," the reference is bound in one of the
4049  //          following ways (the choice is implementation-defined):
4050  //
4051  //          -- The reference is bound to the object represented by
4052  //             the rvalue (see 3.10) or to a sub-object within that
4053  //             object.
4054  //
4055  //          -- A temporary of type "cv1 T2" [sic] is created, and
4056  //             a constructor is called to copy the entire rvalue
4057  //             object into the temporary. The reference is bound to
4058  //             the temporary or to a sub-object within the
4059  //             temporary.
4060  //
4061  //          The constructor that would be used to make the copy
4062  //          shall be callable whether or not the copy is actually
4063  //          done.
4064  //
4065  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4066  // freedom, so we will always take the first option and never build
4067  // a temporary in this case. FIXME: We will, however, have to check
4068  // for the presence of a copy constructor in C++98/03 mode.
4069  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4070      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4071    if (ICS) {
4072      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4073      ICS->Standard.First = ICK_Identity;
4074      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4075      ICS->Standard.Third = ICK_Identity;
4076      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4077      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4078      ICS->Standard.ReferenceBinding = true;
4079      ICS->Standard.DirectBinding = false;
4080      ICS->Standard.RRefBinding = isRValRef;
4081      ICS->Standard.CopyConstructor = 0;
4082    } else {
4083      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4084      if (DerivedToBase)
4085        CK = CastExpr::CK_DerivedToBase;
4086      else if(CheckExceptionSpecCompatibility(Init, T1))
4087        return true;
4088      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4089    }
4090    return false;
4091  }
4092
4093  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4094  //          initialized from the initializer expression using the
4095  //          rules for a non-reference copy initialization (8.5). The
4096  //          reference is then bound to the temporary. If T1 is
4097  //          reference-related to T2, cv1 must be the same
4098  //          cv-qualification as, or greater cv-qualification than,
4099  //          cv2; otherwise, the program is ill-formed.
4100  if (RefRelationship == Ref_Related) {
4101    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4102    // we would be reference-compatible or reference-compatible with
4103    // added qualification. But that wasn't the case, so the reference
4104    // initialization fails.
4105    if (!ICS)
4106      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4107        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
4108        << T2 << Init->getSourceRange();
4109    return true;
4110  }
4111
4112  // If at least one of the types is a class type, the types are not
4113  // related, and we aren't allowed any user conversions, the
4114  // reference binding fails. This case is important for breaking
4115  // recursion, since TryImplicitConversion below will attempt to
4116  // create a temporary through the use of a copy constructor.
4117  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4118      (T1->isRecordType() || T2->isRecordType())) {
4119    if (!ICS)
4120      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4121        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
4122    return true;
4123  }
4124
4125  // Actually try to convert the initializer to T1.
4126  if (ICS) {
4127    // C++ [over.ics.ref]p2:
4128    //
4129    //   When a parameter of reference type is not bound directly to
4130    //   an argument expression, the conversion sequence is the one
4131    //   required to convert the argument expression to the
4132    //   underlying type of the reference according to
4133    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4134    //   to copy-initializing a temporary of the underlying type with
4135    //   the argument expression. Any difference in top-level
4136    //   cv-qualification is subsumed by the initialization itself
4137    //   and does not constitute a conversion.
4138    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4139                                 /*AllowExplicit=*/false,
4140                                 /*ForceRValue=*/false,
4141                                 /*InOverloadResolution=*/false);
4142
4143    // Of course, that's still a reference binding.
4144    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4145      ICS->Standard.ReferenceBinding = true;
4146      ICS->Standard.RRefBinding = isRValRef;
4147    } else if (ICS->ConversionKind ==
4148              ImplicitConversionSequence::UserDefinedConversion) {
4149      ICS->UserDefined.After.ReferenceBinding = true;
4150      ICS->UserDefined.After.RRefBinding = isRValRef;
4151    }
4152    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4153  } else {
4154    ImplicitConversionSequence Conversions;
4155    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
4156                                                   false, false,
4157                                                   Conversions);
4158    if (badConversion) {
4159      if ((Conversions.ConversionKind  ==
4160            ImplicitConversionSequence::BadConversion)
4161          && !Conversions.ConversionFunctionSet.empty()) {
4162        Diag(DeclLoc,
4163             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4164        for (int j = Conversions.ConversionFunctionSet.size()-1;
4165             j >= 0; j--) {
4166          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4167          Diag(Func->getLocation(), diag::err_ovl_candidate);
4168        }
4169      }
4170      else {
4171        if (isRValRef)
4172          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4173            << Init->getSourceRange();
4174        else
4175          Diag(DeclLoc, diag::err_invalid_initialization)
4176            << DeclType << Init->getType() << Init->getSourceRange();
4177      }
4178    }
4179    return badConversion;
4180  }
4181}
4182
4183/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4184/// of this overloaded operator is well-formed. If so, returns false;
4185/// otherwise, emits appropriate diagnostics and returns true.
4186bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4187  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4188         "Expected an overloaded operator declaration");
4189
4190  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4191
4192  // C++ [over.oper]p5:
4193  //   The allocation and deallocation functions, operator new,
4194  //   operator new[], operator delete and operator delete[], are
4195  //   described completely in 3.7.3. The attributes and restrictions
4196  //   found in the rest of this subclause do not apply to them unless
4197  //   explicitly stated in 3.7.3.
4198  // FIXME: Write a separate routine for checking this. For now, just allow it.
4199  if (Op == OO_Delete || Op == OO_Array_Delete)
4200    return false;
4201
4202  if (Op == OO_New || Op == OO_Array_New) {
4203    bool ret = false;
4204    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4205      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4206      QualType T = Context.getCanonicalType((*Param)->getType());
4207      if (!T->isDependentType() && SizeTy != T) {
4208        Diag(FnDecl->getLocation(),
4209             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4210              << SizeTy;
4211        ret = true;
4212      }
4213    }
4214    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4215    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4216      return Diag(FnDecl->getLocation(),
4217                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4218                  << static_cast<QualType>(Context.VoidPtrTy);
4219    return ret;
4220  }
4221
4222  // C++ [over.oper]p6:
4223  //   An operator function shall either be a non-static member
4224  //   function or be a non-member function and have at least one
4225  //   parameter whose type is a class, a reference to a class, an
4226  //   enumeration, or a reference to an enumeration.
4227  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4228    if (MethodDecl->isStatic())
4229      return Diag(FnDecl->getLocation(),
4230                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4231  } else {
4232    bool ClassOrEnumParam = false;
4233    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4234                                   ParamEnd = FnDecl->param_end();
4235         Param != ParamEnd; ++Param) {
4236      QualType ParamType = (*Param)->getType().getNonReferenceType();
4237      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4238          ParamType->isEnumeralType()) {
4239        ClassOrEnumParam = true;
4240        break;
4241      }
4242    }
4243
4244    if (!ClassOrEnumParam)
4245      return Diag(FnDecl->getLocation(),
4246                  diag::err_operator_overload_needs_class_or_enum)
4247        << FnDecl->getDeclName();
4248  }
4249
4250  // C++ [over.oper]p8:
4251  //   An operator function cannot have default arguments (8.3.6),
4252  //   except where explicitly stated below.
4253  //
4254  // Only the function-call operator allows default arguments
4255  // (C++ [over.call]p1).
4256  if (Op != OO_Call) {
4257    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4258         Param != FnDecl->param_end(); ++Param) {
4259      if ((*Param)->hasUnparsedDefaultArg())
4260        return Diag((*Param)->getLocation(),
4261                    diag::err_operator_overload_default_arg)
4262          << FnDecl->getDeclName();
4263      else if (Expr *DefArg = (*Param)->getDefaultArg())
4264        return Diag((*Param)->getLocation(),
4265                    diag::err_operator_overload_default_arg)
4266          << FnDecl->getDeclName() << DefArg->getSourceRange();
4267    }
4268  }
4269
4270  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4271    { false, false, false }
4272#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4273    , { Unary, Binary, MemberOnly }
4274#include "clang/Basic/OperatorKinds.def"
4275  };
4276
4277  bool CanBeUnaryOperator = OperatorUses[Op][0];
4278  bool CanBeBinaryOperator = OperatorUses[Op][1];
4279  bool MustBeMemberOperator = OperatorUses[Op][2];
4280
4281  // C++ [over.oper]p8:
4282  //   [...] Operator functions cannot have more or fewer parameters
4283  //   than the number required for the corresponding operator, as
4284  //   described in the rest of this subclause.
4285  unsigned NumParams = FnDecl->getNumParams()
4286                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4287  if (Op != OO_Call &&
4288      ((NumParams == 1 && !CanBeUnaryOperator) ||
4289       (NumParams == 2 && !CanBeBinaryOperator) ||
4290       (NumParams < 1) || (NumParams > 2))) {
4291    // We have the wrong number of parameters.
4292    unsigned ErrorKind;
4293    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4294      ErrorKind = 2;  // 2 -> unary or binary.
4295    } else if (CanBeUnaryOperator) {
4296      ErrorKind = 0;  // 0 -> unary
4297    } else {
4298      assert(CanBeBinaryOperator &&
4299             "All non-call overloaded operators are unary or binary!");
4300      ErrorKind = 1;  // 1 -> binary
4301    }
4302
4303    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4304      << FnDecl->getDeclName() << NumParams << ErrorKind;
4305  }
4306
4307  // Overloaded operators other than operator() cannot be variadic.
4308  if (Op != OO_Call &&
4309      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4310    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4311      << FnDecl->getDeclName();
4312  }
4313
4314  // Some operators must be non-static member functions.
4315  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4316    return Diag(FnDecl->getLocation(),
4317                diag::err_operator_overload_must_be_member)
4318      << FnDecl->getDeclName();
4319  }
4320
4321  // C++ [over.inc]p1:
4322  //   The user-defined function called operator++ implements the
4323  //   prefix and postfix ++ operator. If this function is a member
4324  //   function with no parameters, or a non-member function with one
4325  //   parameter of class or enumeration type, it defines the prefix
4326  //   increment operator ++ for objects of that type. If the function
4327  //   is a member function with one parameter (which shall be of type
4328  //   int) or a non-member function with two parameters (the second
4329  //   of which shall be of type int), it defines the postfix
4330  //   increment operator ++ for objects of that type.
4331  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4332    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4333    bool ParamIsInt = false;
4334    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4335      ParamIsInt = BT->getKind() == BuiltinType::Int;
4336
4337    if (!ParamIsInt)
4338      return Diag(LastParam->getLocation(),
4339                  diag::err_operator_overload_post_incdec_must_be_int)
4340        << LastParam->getType() << (Op == OO_MinusMinus);
4341  }
4342
4343  // Notify the class if it got an assignment operator.
4344  if (Op == OO_Equal) {
4345    // Would have returned earlier otherwise.
4346    assert(isa<CXXMethodDecl>(FnDecl) &&
4347      "Overloaded = not member, but not filtered.");
4348    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4349    Method->getParent()->addedAssignmentOperator(Context, Method);
4350  }
4351
4352  return false;
4353}
4354
4355/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4356/// linkage specification, including the language and (if present)
4357/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4358/// the location of the language string literal, which is provided
4359/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4360/// the '{' brace. Otherwise, this linkage specification does not
4361/// have any braces.
4362Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4363                                                     SourceLocation ExternLoc,
4364                                                     SourceLocation LangLoc,
4365                                                     const char *Lang,
4366                                                     unsigned StrSize,
4367                                                     SourceLocation LBraceLoc) {
4368  LinkageSpecDecl::LanguageIDs Language;
4369  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4370    Language = LinkageSpecDecl::lang_c;
4371  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4372    Language = LinkageSpecDecl::lang_cxx;
4373  else {
4374    Diag(LangLoc, diag::err_bad_language);
4375    return DeclPtrTy();
4376  }
4377
4378  // FIXME: Add all the various semantics of linkage specifications
4379
4380  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4381                                               LangLoc, Language,
4382                                               LBraceLoc.isValid());
4383  CurContext->addDecl(D);
4384  PushDeclContext(S, D);
4385  return DeclPtrTy::make(D);
4386}
4387
4388/// ActOnFinishLinkageSpecification - Completely the definition of
4389/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4390/// valid, it's the position of the closing '}' brace in a linkage
4391/// specification that uses braces.
4392Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4393                                                      DeclPtrTy LinkageSpec,
4394                                                      SourceLocation RBraceLoc) {
4395  if (LinkageSpec)
4396    PopDeclContext();
4397  return LinkageSpec;
4398}
4399
4400/// \brief Perform semantic analysis for the variable declaration that
4401/// occurs within a C++ catch clause, returning the newly-created
4402/// variable.
4403VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4404                                         DeclaratorInfo *DInfo,
4405                                         IdentifierInfo *Name,
4406                                         SourceLocation Loc,
4407                                         SourceRange Range) {
4408  bool Invalid = false;
4409
4410  // Arrays and functions decay.
4411  if (ExDeclType->isArrayType())
4412    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4413  else if (ExDeclType->isFunctionType())
4414    ExDeclType = Context.getPointerType(ExDeclType);
4415
4416  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4417  // The exception-declaration shall not denote a pointer or reference to an
4418  // incomplete type, other than [cv] void*.
4419  // N2844 forbids rvalue references.
4420  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4421    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4422    Invalid = true;
4423  }
4424
4425  QualType BaseType = ExDeclType;
4426  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4427  unsigned DK = diag::err_catch_incomplete;
4428  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4429    BaseType = Ptr->getPointeeType();
4430    Mode = 1;
4431    DK = diag::err_catch_incomplete_ptr;
4432  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4433    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4434    BaseType = Ref->getPointeeType();
4435    Mode = 2;
4436    DK = diag::err_catch_incomplete_ref;
4437  }
4438  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4439      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4440    Invalid = true;
4441
4442  if (!Invalid && !ExDeclType->isDependentType() &&
4443      RequireNonAbstractType(Loc, ExDeclType,
4444                             diag::err_abstract_type_in_decl,
4445                             AbstractVariableType))
4446    Invalid = true;
4447
4448  // FIXME: Need to test for ability to copy-construct and destroy the
4449  // exception variable.
4450
4451  // FIXME: Need to check for abstract classes.
4452
4453  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4454                                    Name, ExDeclType, DInfo, VarDecl::None);
4455
4456  if (Invalid)
4457    ExDecl->setInvalidDecl();
4458
4459  return ExDecl;
4460}
4461
4462/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4463/// handler.
4464Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4465  DeclaratorInfo *DInfo = 0;
4466  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4467
4468  bool Invalid = D.isInvalidType();
4469  IdentifierInfo *II = D.getIdentifier();
4470  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4471    // The scope should be freshly made just for us. There is just no way
4472    // it contains any previous declaration.
4473    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4474    if (PrevDecl->isTemplateParameter()) {
4475      // Maybe we will complain about the shadowed template parameter.
4476      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4477    }
4478  }
4479
4480  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4481    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4482      << D.getCXXScopeSpec().getRange();
4483    Invalid = true;
4484  }
4485
4486  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4487                                              D.getIdentifier(),
4488                                              D.getIdentifierLoc(),
4489                                            D.getDeclSpec().getSourceRange());
4490
4491  if (Invalid)
4492    ExDecl->setInvalidDecl();
4493
4494  // Add the exception declaration into this scope.
4495  if (II)
4496    PushOnScopeChains(ExDecl, S);
4497  else
4498    CurContext->addDecl(ExDecl);
4499
4500  ProcessDeclAttributes(S, ExDecl, D);
4501  return DeclPtrTy::make(ExDecl);
4502}
4503
4504Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4505                                                   ExprArg assertexpr,
4506                                                   ExprArg assertmessageexpr) {
4507  Expr *AssertExpr = (Expr *)assertexpr.get();
4508  StringLiteral *AssertMessage =
4509    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4510
4511  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4512    llvm::APSInt Value(32);
4513    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4514      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4515        AssertExpr->getSourceRange();
4516      return DeclPtrTy();
4517    }
4518
4519    if (Value == 0) {
4520      std::string str(AssertMessage->getStrData(),
4521                      AssertMessage->getByteLength());
4522      Diag(AssertLoc, diag::err_static_assert_failed)
4523        << str << AssertExpr->getSourceRange();
4524    }
4525  }
4526
4527  assertexpr.release();
4528  assertmessageexpr.release();
4529  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4530                                        AssertExpr, AssertMessage);
4531
4532  CurContext->addDecl(Decl);
4533  return DeclPtrTy::make(Decl);
4534}
4535
4536/// Handle a friend type declaration.  This works in tandem with
4537/// ActOnTag.
4538///
4539/// Notes on friend class templates:
4540///
4541/// We generally treat friend class declarations as if they were
4542/// declaring a class.  So, for example, the elaborated type specifier
4543/// in a friend declaration is required to obey the restrictions of a
4544/// class-head (i.e. no typedefs in the scope chain), template
4545/// parameters are required to match up with simple template-ids, &c.
4546/// However, unlike when declaring a template specialization, it's
4547/// okay to refer to a template specialization without an empty
4548/// template parameter declaration, e.g.
4549///   friend class A<T>::B<unsigned>;
4550/// We permit this as a special case; if there are any template
4551/// parameters present at all, require proper matching, i.e.
4552///   template <> template <class T> friend class A<int>::B;
4553Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4554                                          MultiTemplateParamsArg TempParams) {
4555  SourceLocation Loc = DS.getSourceRange().getBegin();
4556
4557  assert(DS.isFriendSpecified());
4558  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4559
4560  // Try to convert the decl specifier to a type.  This works for
4561  // friend templates because ActOnTag never produces a ClassTemplateDecl
4562  // for a TUK_Friend.
4563  Declarator TheDeclarator(DS, Declarator::MemberContext);
4564  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4565  if (TheDeclarator.isInvalidType())
4566    return DeclPtrTy();
4567
4568  // This is definitely an error in C++98.  It's probably meant to
4569  // be forbidden in C++0x, too, but the specification is just
4570  // poorly written.
4571  //
4572  // The problem is with declarations like the following:
4573  //   template <T> friend A<T>::foo;
4574  // where deciding whether a class C is a friend or not now hinges
4575  // on whether there exists an instantiation of A that causes
4576  // 'foo' to equal C.  There are restrictions on class-heads
4577  // (which we declare (by fiat) elaborated friend declarations to
4578  // be) that makes this tractable.
4579  //
4580  // FIXME: handle "template <> friend class A<T>;", which
4581  // is possibly well-formed?  Who even knows?
4582  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4583    Diag(Loc, diag::err_tagless_friend_type_template)
4584      << DS.getSourceRange();
4585    return DeclPtrTy();
4586  }
4587
4588  // C++ [class.friend]p2:
4589  //   An elaborated-type-specifier shall be used in a friend declaration
4590  //   for a class.*
4591  //   * The class-key of the elaborated-type-specifier is required.
4592  // This is one of the rare places in Clang where it's legitimate to
4593  // ask about the "spelling" of the type.
4594  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4595    // If we evaluated the type to a record type, suggest putting
4596    // a tag in front.
4597    if (const RecordType *RT = T->getAs<RecordType>()) {
4598      RecordDecl *RD = RT->getDecl();
4599
4600      std::string InsertionText = std::string(" ") + RD->getKindName();
4601
4602      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4603        << (unsigned) RD->getTagKind()
4604        << T
4605        << SourceRange(DS.getFriendSpecLoc())
4606        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4607                                                 InsertionText);
4608      return DeclPtrTy();
4609    }else {
4610      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4611          << DS.getSourceRange();
4612      return DeclPtrTy();
4613    }
4614  }
4615
4616  // Enum types cannot be friends.
4617  if (T->getAs<EnumType>()) {
4618    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4619      << SourceRange(DS.getFriendSpecLoc());
4620    return DeclPtrTy();
4621  }
4622
4623  // C++98 [class.friend]p1: A friend of a class is a function
4624  //   or class that is not a member of the class . . .
4625  // But that's a silly restriction which nobody implements for
4626  // inner classes, and C++0x removes it anyway, so we only report
4627  // this (as a warning) if we're being pedantic.
4628  if (!getLangOptions().CPlusPlus0x)
4629    if (const RecordType *RT = T->getAs<RecordType>())
4630      if (RT->getDecl()->getDeclContext() == CurContext)
4631        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4632
4633  Decl *D;
4634  if (TempParams.size())
4635    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4636                                   TempParams.size(),
4637                                 (TemplateParameterList**) TempParams.release(),
4638                                   T.getTypePtr(),
4639                                   DS.getFriendSpecLoc());
4640  else
4641    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4642                           DS.getFriendSpecLoc());
4643  D->setAccess(AS_public);
4644  CurContext->addDecl(D);
4645
4646  return DeclPtrTy::make(D);
4647}
4648
4649Sema::DeclPtrTy
4650Sema::ActOnFriendFunctionDecl(Scope *S,
4651                              Declarator &D,
4652                              bool IsDefinition,
4653                              MultiTemplateParamsArg TemplateParams) {
4654  const DeclSpec &DS = D.getDeclSpec();
4655
4656  assert(DS.isFriendSpecified());
4657  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4658
4659  SourceLocation Loc = D.getIdentifierLoc();
4660  DeclaratorInfo *DInfo = 0;
4661  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4662
4663  // C++ [class.friend]p1
4664  //   A friend of a class is a function or class....
4665  // Note that this sees through typedefs, which is intended.
4666  // It *doesn't* see through dependent types, which is correct
4667  // according to [temp.arg.type]p3:
4668  //   If a declaration acquires a function type through a
4669  //   type dependent on a template-parameter and this causes
4670  //   a declaration that does not use the syntactic form of a
4671  //   function declarator to have a function type, the program
4672  //   is ill-formed.
4673  if (!T->isFunctionType()) {
4674    Diag(Loc, diag::err_unexpected_friend);
4675
4676    // It might be worthwhile to try to recover by creating an
4677    // appropriate declaration.
4678    return DeclPtrTy();
4679  }
4680
4681  // C++ [namespace.memdef]p3
4682  //  - If a friend declaration in a non-local class first declares a
4683  //    class or function, the friend class or function is a member
4684  //    of the innermost enclosing namespace.
4685  //  - The name of the friend is not found by simple name lookup
4686  //    until a matching declaration is provided in that namespace
4687  //    scope (either before or after the class declaration granting
4688  //    friendship).
4689  //  - If a friend function is called, its name may be found by the
4690  //    name lookup that considers functions from namespaces and
4691  //    classes associated with the types of the function arguments.
4692  //  - When looking for a prior declaration of a class or a function
4693  //    declared as a friend, scopes outside the innermost enclosing
4694  //    namespace scope are not considered.
4695
4696  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4697  DeclarationName Name = GetNameForDeclarator(D);
4698  assert(Name);
4699
4700  // The context we found the declaration in, or in which we should
4701  // create the declaration.
4702  DeclContext *DC;
4703
4704  // FIXME: handle local classes
4705
4706  // Recover from invalid scope qualifiers as if they just weren't there.
4707  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
4708                        ForRedeclaration);
4709  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4710    // FIXME: RequireCompleteDeclContext
4711    DC = computeDeclContext(ScopeQual);
4712
4713    // FIXME: handle dependent contexts
4714    if (!DC) return DeclPtrTy();
4715
4716    LookupQualifiedName(Previous, DC);
4717
4718    // If searching in that context implicitly found a declaration in
4719    // a different context, treat it like it wasn't found at all.
4720    // TODO: better diagnostics for this case.  Suggesting the right
4721    // qualified scope would be nice...
4722    // FIXME: getRepresentativeDecl() is not right here at all
4723    if (Previous.empty() ||
4724        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
4725      D.setInvalidType();
4726      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4727      return DeclPtrTy();
4728    }
4729
4730    // C++ [class.friend]p1: A friend of a class is a function or
4731    //   class that is not a member of the class . . .
4732    if (DC->Equals(CurContext))
4733      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4734
4735  // Otherwise walk out to the nearest namespace scope looking for matches.
4736  } else {
4737    // TODO: handle local class contexts.
4738
4739    DC = CurContext;
4740    while (true) {
4741      // Skip class contexts.  If someone can cite chapter and verse
4742      // for this behavior, that would be nice --- it's what GCC and
4743      // EDG do, and it seems like a reasonable intent, but the spec
4744      // really only says that checks for unqualified existing
4745      // declarations should stop at the nearest enclosing namespace,
4746      // not that they should only consider the nearest enclosing
4747      // namespace.
4748      while (DC->isRecord())
4749        DC = DC->getParent();
4750
4751      LookupQualifiedName(Previous, DC);
4752
4753      // TODO: decide what we think about using declarations.
4754      if (!Previous.empty())
4755        break;
4756
4757      if (DC->isFileContext()) break;
4758      DC = DC->getParent();
4759    }
4760
4761    // C++ [class.friend]p1: A friend of a class is a function or
4762    //   class that is not a member of the class . . .
4763    // C++0x changes this for both friend types and functions.
4764    // Most C++ 98 compilers do seem to give an error here, so
4765    // we do, too.
4766    if (!Previous.empty() && DC->Equals(CurContext)
4767        && !getLangOptions().CPlusPlus0x)
4768      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4769  }
4770
4771  if (DC->isFileContext()) {
4772    // This implies that it has to be an operator or function.
4773    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4774        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4775        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4776      Diag(Loc, diag::err_introducing_special_friend) <<
4777        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4778         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4779      return DeclPtrTy();
4780    }
4781  }
4782
4783  bool Redeclaration = false;
4784  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, Previous,
4785                                          move(TemplateParams),
4786                                          IsDefinition,
4787                                          Redeclaration);
4788  if (!ND) return DeclPtrTy();
4789
4790  assert(ND->getDeclContext() == DC);
4791  assert(ND->getLexicalDeclContext() == CurContext);
4792
4793  // Add the function declaration to the appropriate lookup tables,
4794  // adjusting the redeclarations list as necessary.  We don't
4795  // want to do this yet if the friending class is dependent.
4796  //
4797  // Also update the scope-based lookup if the target context's
4798  // lookup context is in lexical scope.
4799  if (!CurContext->isDependentContext()) {
4800    DC = DC->getLookupContext();
4801    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4802    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4803      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4804  }
4805
4806  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4807                                       D.getIdentifierLoc(), ND,
4808                                       DS.getFriendSpecLoc());
4809  FrD->setAccess(AS_public);
4810  CurContext->addDecl(FrD);
4811
4812  return DeclPtrTy::make(ND);
4813}
4814
4815void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4816  AdjustDeclIfTemplate(dcl);
4817
4818  Decl *Dcl = dcl.getAs<Decl>();
4819  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4820  if (!Fn) {
4821    Diag(DelLoc, diag::err_deleted_non_function);
4822    return;
4823  }
4824  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4825    Diag(DelLoc, diag::err_deleted_decl_not_first);
4826    Diag(Prev->getLocation(), diag::note_previous_declaration);
4827    // If the declaration wasn't the first, we delete the function anyway for
4828    // recovery.
4829  }
4830  Fn->setDeleted();
4831}
4832
4833static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4834  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4835       ++CI) {
4836    Stmt *SubStmt = *CI;
4837    if (!SubStmt)
4838      continue;
4839    if (isa<ReturnStmt>(SubStmt))
4840      Self.Diag(SubStmt->getSourceRange().getBegin(),
4841           diag::err_return_in_constructor_handler);
4842    if (!isa<Expr>(SubStmt))
4843      SearchForReturnInStmt(Self, SubStmt);
4844  }
4845}
4846
4847void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4848  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4849    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4850    SearchForReturnInStmt(*this, Handler);
4851  }
4852}
4853
4854bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4855                                             const CXXMethodDecl *Old) {
4856  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4857  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4858
4859  QualType CNewTy = Context.getCanonicalType(NewTy);
4860  QualType COldTy = Context.getCanonicalType(OldTy);
4861
4862  if (CNewTy == COldTy &&
4863      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
4864    return false;
4865
4866  // Check if the return types are covariant
4867  QualType NewClassTy, OldClassTy;
4868
4869  /// Both types must be pointers or references to classes.
4870  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4871    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4872      NewClassTy = NewPT->getPointeeType();
4873      OldClassTy = OldPT->getPointeeType();
4874    }
4875  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4876    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4877      NewClassTy = NewRT->getPointeeType();
4878      OldClassTy = OldRT->getPointeeType();
4879    }
4880  }
4881
4882  // The return types aren't either both pointers or references to a class type.
4883  if (NewClassTy.isNull()) {
4884    Diag(New->getLocation(),
4885         diag::err_different_return_type_for_overriding_virtual_function)
4886      << New->getDeclName() << NewTy << OldTy;
4887    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4888
4889    return true;
4890  }
4891
4892  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
4893    // Check if the new class derives from the old class.
4894    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4895      Diag(New->getLocation(),
4896           diag::err_covariant_return_not_derived)
4897      << New->getDeclName() << NewTy << OldTy;
4898      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4899      return true;
4900    }
4901
4902    // Check if we the conversion from derived to base is valid.
4903    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4904                      diag::err_covariant_return_inaccessible_base,
4905                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4906                      // FIXME: Should this point to the return type?
4907                      New->getLocation(), SourceRange(), New->getDeclName())) {
4908      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4909      return true;
4910    }
4911  }
4912
4913  // The qualifiers of the return types must be the same.
4914  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
4915    Diag(New->getLocation(),
4916         diag::err_covariant_return_type_different_qualifications)
4917    << New->getDeclName() << NewTy << OldTy;
4918    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4919    return true;
4920  };
4921
4922
4923  // The new class type must have the same or less qualifiers as the old type.
4924  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4925    Diag(New->getLocation(),
4926         diag::err_covariant_return_type_class_type_more_qualified)
4927    << New->getDeclName() << NewTy << OldTy;
4928    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4929    return true;
4930  };
4931
4932  return false;
4933}
4934
4935bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
4936                                             const CXXMethodDecl *Old)
4937{
4938  if (Old->hasAttr<FinalAttr>()) {
4939    Diag(New->getLocation(), diag::err_final_function_overridden)
4940      << New->getDeclName();
4941    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4942    return true;
4943  }
4944
4945  return false;
4946}
4947
4948/// \brief Mark the given method pure.
4949///
4950/// \param Method the method to be marked pure.
4951///
4952/// \param InitRange the source range that covers the "0" initializer.
4953bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
4954  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
4955    Method->setPure();
4956
4957    // A class is abstract if at least one function is pure virtual.
4958    Method->getParent()->setAbstract(true);
4959    return false;
4960  }
4961
4962  if (!Method->isInvalidDecl())
4963    Diag(Method->getLocation(), diag::err_non_virtual_pure)
4964      << Method->getDeclName() << InitRange;
4965  return true;
4966}
4967
4968/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4969/// initializer for the declaration 'Dcl'.
4970/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4971/// static data member of class X, names should be looked up in the scope of
4972/// class X.
4973void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4974  AdjustDeclIfTemplate(Dcl);
4975
4976  Decl *D = Dcl.getAs<Decl>();
4977  // If there is no declaration, there was an error parsing it.
4978  if (D == 0)
4979    return;
4980
4981  // Check whether it is a declaration with a nested name specifier like
4982  // int foo::bar;
4983  if (!D->isOutOfLine())
4984    return;
4985
4986  // C++ [basic.lookup.unqual]p13
4987  //
4988  // A name used in the definition of a static data member of class X
4989  // (after the qualified-id of the static member) is looked up as if the name
4990  // was used in a member function of X.
4991
4992  // Change current context into the context of the initializing declaration.
4993  EnterDeclaratorContext(S, D->getDeclContext());
4994}
4995
4996/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4997/// initializer for the declaration 'Dcl'.
4998void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4999  AdjustDeclIfTemplate(Dcl);
5000
5001  Decl *D = Dcl.getAs<Decl>();
5002  // If there is no declaration, there was an error parsing it.
5003  if (D == 0)
5004    return;
5005
5006  // Check whether it is a declaration with a nested name specifier like
5007  // int foo::bar;
5008  if (!D->isOutOfLine())
5009    return;
5010
5011  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
5012  ExitDeclaratorContext(S);
5013}
5014
5015/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5016/// C++ if/switch/while/for statement.
5017/// e.g: "if (int x = f()) {...}"
5018Action::DeclResult
5019Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5020  // C++ 6.4p2:
5021  // The declarator shall not specify a function or an array.
5022  // The type-specifier-seq shall not contain typedef and shall not declare a
5023  // new class or enumeration.
5024  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5025         "Parser allowed 'typedef' as storage class of condition decl.");
5026
5027  DeclaratorInfo *DInfo = 0;
5028  TagDecl *OwnedTag = 0;
5029  QualType Ty = GetTypeForDeclarator(D, S, &DInfo, &OwnedTag);
5030
5031  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5032                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5033                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5034    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5035      << D.getSourceRange();
5036    return DeclResult();
5037  } else if (OwnedTag && OwnedTag->isDefinition()) {
5038    // The type-specifier-seq shall not declare a new class or enumeration.
5039    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5040  }
5041
5042  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5043  if (!Dcl)
5044    return DeclResult();
5045
5046  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5047  VD->setDeclaredInCondition(true);
5048  return Dcl;
5049}
5050
5051void Sema::MaybeMarkVirtualImplicitMembersReferenced(SourceLocation Loc,
5052                                                     CXXMethodDecl *MD) {
5053  // Ignore dependent types.
5054  if (MD->isDependentContext())
5055    return;
5056
5057  CXXRecordDecl *RD = MD->getParent();
5058  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5059  const CXXMethodDecl *KeyFunction = Layout.getKeyFunction();
5060
5061  if (!KeyFunction) {
5062    // This record does not have a key function, so we assume that the vtable
5063    // will be emitted when it's used by the constructor.
5064    if (!isa<CXXConstructorDecl>(MD))
5065      return;
5066  } else if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) {
5067    // We don't have the right key function.
5068    return;
5069  }
5070
5071  if (CXXDestructorDecl *Dtor = RD->getDestructor(Context)) {
5072    if (Dtor->isImplicit() && Dtor->isVirtual())
5073      MarkDeclarationReferenced(Loc, Dtor);
5074  }
5075
5076  // FIXME: Need to handle the virtual assignment operator here too.
5077}
5078