SemaDeclCXX.cpp revision 1c0131e5b7914bfd65abf07004f07c5881591fdc
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isBlockVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                            MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
140
141  // Okay: add the default argument to the parameter
142  Param->setDefaultArg(Arg);
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
152                                Expr *DefaultArg) {
153  if (!param || !DefaultArg)
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param);
157  UnparsedDefaultArgLocs.erase(Param);
158
159  // Default arguments are only permitted in C++
160  if (!getLangOptions().CPlusPlus) {
161    Diag(EqualLoc, diag::err_param_default_argument)
162      << DefaultArg->getSourceRange();
163    Param->setInvalidDecl();
164    return;
165  }
166
167  // Check that the default argument is well-formed
168  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
169  if (DefaultArgChecker.Visit(DefaultArg)) {
170    Param->setInvalidDecl();
171    return;
172  }
173
174  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
175}
176
177/// ActOnParamUnparsedDefaultArgument - We've seen a default
178/// argument for a function parameter, but we can't parse it yet
179/// because we're inside a class definition. Note that this default
180/// argument will be parsed later.
181void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
182                                             SourceLocation EqualLoc,
183                                             SourceLocation ArgLoc) {
184  if (!param)
185    return;
186
187  ParmVarDecl *Param = cast<ParmVarDecl>(param);
188  if (Param)
189    Param->setUnparsedDefaultArg();
190
191  UnparsedDefaultArgLocs[Param] = ArgLoc;
192}
193
194/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
195/// the default argument for the parameter param failed.
196void Sema::ActOnParamDefaultArgumentError(Decl *param) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param);
201
202  Param->setInvalidDecl();
203
204  UnparsedDefaultArgLocs.erase(Param);
205}
206
207/// CheckExtraCXXDefaultArguments - Check for any extra default
208/// arguments in the declarator, which is not a function declaration
209/// or definition and therefore is not permitted to have default
210/// arguments. This routine should be invoked for every declarator
211/// that is not a function declaration or definition.
212void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
213  // C++ [dcl.fct.default]p3
214  //   A default argument expression shall be specified only in the
215  //   parameter-declaration-clause of a function declaration or in a
216  //   template-parameter (14.1). It shall not be specified for a
217  //   parameter pack. If it is specified in a
218  //   parameter-declaration-clause, it shall not occur within a
219  //   declarator or abstract-declarator of a parameter-declaration.
220  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
221    DeclaratorChunk &chunk = D.getTypeObject(i);
222    if (chunk.Kind == DeclaratorChunk::Function) {
223      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
224        ParmVarDecl *Param =
225          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
226        if (Param->hasUnparsedDefaultArg()) {
227          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
230          delete Toks;
231          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
232        } else if (Param->getDefaultArg()) {
233          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
234            << Param->getDefaultArg()->getSourceRange();
235          Param->setDefaultArg(0);
236        }
237      }
238    }
239  }
240}
241
242// MergeCXXFunctionDecl - Merge two declarations of the same C++
243// function, once we already know that they have the same
244// type. Subroutine of MergeFunctionDecl. Returns true if there was an
245// error, false otherwise.
246bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
247  bool Invalid = false;
248
249  // C++ [dcl.fct.default]p4:
250  //   For non-template functions, default arguments can be added in
251  //   later declarations of a function in the same
252  //   scope. Declarations in different scopes have completely
253  //   distinct sets of default arguments. That is, declarations in
254  //   inner scopes do not acquire default arguments from
255  //   declarations in outer scopes, and vice versa. In a given
256  //   function declaration, all parameters subsequent to a
257  //   parameter with a default argument shall have default
258  //   arguments supplied in this or previous declarations. A
259  //   default argument shall not be redefined by a later
260  //   declaration (not even to the same value).
261  //
262  // C++ [dcl.fct.default]p6:
263  //   Except for member functions of class templates, the default arguments
264  //   in a member function definition that appears outside of the class
265  //   definition are added to the set of default arguments provided by the
266  //   member function declaration in the class definition.
267  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
268    ParmVarDecl *OldParam = Old->getParamDecl(p);
269    ParmVarDecl *NewParam = New->getParamDecl(p);
270
271    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
272      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
273      // hint here. Alternatively, we could walk the type-source information
274      // for NewParam to find the last source location in the type... but it
275      // isn't worth the effort right now. This is the kind of test case that
276      // is hard to get right:
277
278      //   int f(int);
279      //   void g(int (*fp)(int) = f);
280      //   void g(int (*fp)(int) = &f);
281      Diag(NewParam->getLocation(),
282           diag::err_param_default_argument_redefinition)
283        << NewParam->getDefaultArgRange();
284
285      // Look for the function declaration where the default argument was
286      // actually written, which may be a declaration prior to Old.
287      for (FunctionDecl *Older = Old->getPreviousDeclaration();
288           Older; Older = Older->getPreviousDeclaration()) {
289        if (!Older->getParamDecl(p)->hasDefaultArg())
290          break;
291
292        OldParam = Older->getParamDecl(p);
293      }
294
295      Diag(OldParam->getLocation(), diag::note_previous_definition)
296        << OldParam->getDefaultArgRange();
297      Invalid = true;
298    } else if (OldParam->hasDefaultArg()) {
299      // Merge the old default argument into the new parameter.
300      // It's important to use getInit() here;  getDefaultArg()
301      // strips off any top-level CXXExprWithTemporaries.
302      NewParam->setHasInheritedDefaultArg();
303      if (OldParam->hasUninstantiatedDefaultArg())
304        NewParam->setUninstantiatedDefaultArg(
305                                      OldParam->getUninstantiatedDefaultArg());
306      else
307        NewParam->setDefaultArg(OldParam->getInit());
308    } else if (NewParam->hasDefaultArg()) {
309      if (New->getDescribedFunctionTemplate()) {
310        // Paragraph 4, quoted above, only applies to non-template functions.
311        Diag(NewParam->getLocation(),
312             diag::err_param_default_argument_template_redecl)
313          << NewParam->getDefaultArgRange();
314        Diag(Old->getLocation(), diag::note_template_prev_declaration)
315          << false;
316      } else if (New->getTemplateSpecializationKind()
317                   != TSK_ImplicitInstantiation &&
318                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
319        // C++ [temp.expr.spec]p21:
320        //   Default function arguments shall not be specified in a declaration
321        //   or a definition for one of the following explicit specializations:
322        //     - the explicit specialization of a function template;
323        //     - the explicit specialization of a member function template;
324        //     - the explicit specialization of a member function of a class
325        //       template where the class template specialization to which the
326        //       member function specialization belongs is implicitly
327        //       instantiated.
328        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
329          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
330          << New->getDeclName()
331          << NewParam->getDefaultArgRange();
332      } else if (New->getDeclContext()->isDependentContext()) {
333        // C++ [dcl.fct.default]p6 (DR217):
334        //   Default arguments for a member function of a class template shall
335        //   be specified on the initial declaration of the member function
336        //   within the class template.
337        //
338        // Reading the tea leaves a bit in DR217 and its reference to DR205
339        // leads me to the conclusion that one cannot add default function
340        // arguments for an out-of-line definition of a member function of a
341        // dependent type.
342        int WhichKind = 2;
343        if (CXXRecordDecl *Record
344              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
345          if (Record->getDescribedClassTemplate())
346            WhichKind = 0;
347          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
348            WhichKind = 1;
349          else
350            WhichKind = 2;
351        }
352
353        Diag(NewParam->getLocation(),
354             diag::err_param_default_argument_member_template_redecl)
355          << WhichKind
356          << NewParam->getDefaultArgRange();
357      }
358    }
359  }
360
361  if (CheckEquivalentExceptionSpec(Old, New))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        Param->setDefaultArg(0);
414      }
415    }
416  }
417}
418
419/// isCurrentClassName - Determine whether the identifier II is the
420/// name of the class type currently being defined. In the case of
421/// nested classes, this will only return true if II is the name of
422/// the innermost class.
423bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
424                              const CXXScopeSpec *SS) {
425  assert(getLangOptions().CPlusPlus && "No class names in C!");
426
427  CXXRecordDecl *CurDecl;
428  if (SS && SS->isSet() && !SS->isInvalid()) {
429    DeclContext *DC = computeDeclContext(*SS, true);
430    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
431  } else
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
433
434  if (CurDecl && CurDecl->getIdentifier())
435    return &II == CurDecl->getIdentifier();
436  else
437    return false;
438}
439
440/// \brief Check the validity of a C++ base class specifier.
441///
442/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
443/// and returns NULL otherwise.
444CXXBaseSpecifier *
445Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
446                         SourceRange SpecifierRange,
447                         bool Virtual, AccessSpecifier Access,
448                         TypeSourceInfo *TInfo) {
449  QualType BaseType = TInfo->getType();
450
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                          Class->getTagKind() == TTK_Class,
462                                          Access, TInfo);
463
464  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
465
466  // Base specifiers must be record types.
467  if (!BaseType->isRecordType()) {
468    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.union]p1:
473  //   A union shall not be used as a base class.
474  if (BaseType->isUnionType()) {
475    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
476    return 0;
477  }
478
479  // C++ [class.derived]p2:
480  //   The class-name in a base-specifier shall not be an incompletely
481  //   defined class.
482  if (RequireCompleteType(BaseLoc, BaseType,
483                          PDiag(diag::err_incomplete_base_class)
484                            << SpecifierRange)) {
485    Class->setInvalidDecl();
486    return 0;
487  }
488
489  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
490  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
491  assert(BaseDecl && "Record type has no declaration");
492  BaseDecl = BaseDecl->getDefinition();
493  assert(BaseDecl && "Base type is not incomplete, but has no definition");
494  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
495  assert(CXXBaseDecl && "Base type is not a C++ type");
496
497  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
498  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
499    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
500    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
501      << BaseType;
502    return 0;
503  }
504
505  if (BaseDecl->isInvalidDecl())
506    Class->setInvalidDecl();
507
508  // Create the base specifier.
509  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
510                                        Class->getTagKind() == TTK_Class,
511                                        Access, TInfo);
512}
513
514/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
515/// one entry in the base class list of a class specifier, for
516/// example:
517///    class foo : public bar, virtual private baz {
518/// 'public bar' and 'virtual private baz' are each base-specifiers.
519BaseResult
520Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
521                         bool Virtual, AccessSpecifier Access,
522                         ParsedType basetype, SourceLocation BaseLoc) {
523  if (!classdecl)
524    return true;
525
526  AdjustDeclIfTemplate(classdecl);
527  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
528  if (!Class)
529    return true;
530
531  TypeSourceInfo *TInfo = 0;
532  GetTypeFromParser(basetype, &TInfo);
533  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
534                                                      Virtual, Access, TInfo))
535    return BaseSpec;
536
537  return true;
538}
539
540/// \brief Performs the actual work of attaching the given base class
541/// specifiers to a C++ class.
542bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
543                                unsigned NumBases) {
544 if (NumBases == 0)
545    return false;
546
547  // Used to keep track of which base types we have already seen, so
548  // that we can properly diagnose redundant direct base types. Note
549  // that the key is always the unqualified canonical type of the base
550  // class.
551  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
552
553  // Copy non-redundant base specifiers into permanent storage.
554  unsigned NumGoodBases = 0;
555  bool Invalid = false;
556  for (unsigned idx = 0; idx < NumBases; ++idx) {
557    QualType NewBaseType
558      = Context.getCanonicalType(Bases[idx]->getType());
559    NewBaseType = NewBaseType.getLocalUnqualifiedType();
560    if (!Class->hasObjectMember()) {
561      if (const RecordType *FDTTy =
562            NewBaseType.getTypePtr()->getAs<RecordType>())
563        if (FDTTy->getDecl()->hasObjectMember())
564          Class->setHasObjectMember(true);
565    }
566
567    if (KnownBaseTypes[NewBaseType]) {
568      // C++ [class.mi]p3:
569      //   A class shall not be specified as a direct base class of a
570      //   derived class more than once.
571      Diag(Bases[idx]->getSourceRange().getBegin(),
572           diag::err_duplicate_base_class)
573        << KnownBaseTypes[NewBaseType]->getType()
574        << Bases[idx]->getSourceRange();
575
576      // Delete the duplicate base class specifier; we're going to
577      // overwrite its pointer later.
578      Context.Deallocate(Bases[idx]);
579
580      Invalid = true;
581    } else {
582      // Okay, add this new base class.
583      KnownBaseTypes[NewBaseType] = Bases[idx];
584      Bases[NumGoodBases++] = Bases[idx];
585    }
586  }
587
588  // Attach the remaining base class specifiers to the derived class.
589  Class->setBases(Bases, NumGoodBases);
590
591  // Delete the remaining (good) base class specifiers, since their
592  // data has been copied into the CXXRecordDecl.
593  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
594    Context.Deallocate(Bases[idx]);
595
596  return Invalid;
597}
598
599/// ActOnBaseSpecifiers - Attach the given base specifiers to the
600/// class, after checking whether there are any duplicate base
601/// classes.
602void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
603                               unsigned NumBases) {
604  if (!ClassDecl || !Bases || !NumBases)
605    return;
606
607  AdjustDeclIfTemplate(ClassDecl);
608  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
609                       (CXXBaseSpecifier**)(Bases), NumBases);
610}
611
612static CXXRecordDecl *GetClassForType(QualType T) {
613  if (const RecordType *RT = T->getAs<RecordType>())
614    return cast<CXXRecordDecl>(RT->getDecl());
615  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
616    return ICT->getDecl();
617  else
618    return 0;
619}
620
621/// \brief Determine whether the type \p Derived is a C++ class that is
622/// derived from the type \p Base.
623bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
624  if (!getLangOptions().CPlusPlus)
625    return false;
626
627  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
628  if (!DerivedRD)
629    return false;
630
631  CXXRecordDecl *BaseRD = GetClassForType(Base);
632  if (!BaseRD)
633    return false;
634
635  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
636  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
637}
638
639/// \brief Determine whether the type \p Derived is a C++ class that is
640/// derived from the type \p Base.
641bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
642  if (!getLangOptions().CPlusPlus)
643    return false;
644
645  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
646  if (!DerivedRD)
647    return false;
648
649  CXXRecordDecl *BaseRD = GetClassForType(Base);
650  if (!BaseRD)
651    return false;
652
653  return DerivedRD->isDerivedFrom(BaseRD, Paths);
654}
655
656void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
657                              CXXCastPath &BasePathArray) {
658  assert(BasePathArray.empty() && "Base path array must be empty!");
659  assert(Paths.isRecordingPaths() && "Must record paths!");
660
661  const CXXBasePath &Path = Paths.front();
662
663  // We first go backward and check if we have a virtual base.
664  // FIXME: It would be better if CXXBasePath had the base specifier for
665  // the nearest virtual base.
666  unsigned Start = 0;
667  for (unsigned I = Path.size(); I != 0; --I) {
668    if (Path[I - 1].Base->isVirtual()) {
669      Start = I - 1;
670      break;
671    }
672  }
673
674  // Now add all bases.
675  for (unsigned I = Start, E = Path.size(); I != E; ++I)
676    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
677}
678
679/// \brief Determine whether the given base path includes a virtual
680/// base class.
681bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
682  for (CXXCastPath::const_iterator B = BasePath.begin(),
683                                BEnd = BasePath.end();
684       B != BEnd; ++B)
685    if ((*B)->isVirtual())
686      return true;
687
688  return false;
689}
690
691/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
692/// conversion (where Derived and Base are class types) is
693/// well-formed, meaning that the conversion is unambiguous (and
694/// that all of the base classes are accessible). Returns true
695/// and emits a diagnostic if the code is ill-formed, returns false
696/// otherwise. Loc is the location where this routine should point to
697/// if there is an error, and Range is the source range to highlight
698/// if there is an error.
699bool
700Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
701                                   unsigned InaccessibleBaseID,
702                                   unsigned AmbigiousBaseConvID,
703                                   SourceLocation Loc, SourceRange Range,
704                                   DeclarationName Name,
705                                   CXXCastPath *BasePath) {
706  // First, determine whether the path from Derived to Base is
707  // ambiguous. This is slightly more expensive than checking whether
708  // the Derived to Base conversion exists, because here we need to
709  // explore multiple paths to determine if there is an ambiguity.
710  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
711                     /*DetectVirtual=*/false);
712  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
713  assert(DerivationOkay &&
714         "Can only be used with a derived-to-base conversion");
715  (void)DerivationOkay;
716
717  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
718    if (InaccessibleBaseID) {
719      // Check that the base class can be accessed.
720      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
721                                   InaccessibleBaseID)) {
722        case AR_inaccessible:
723          return true;
724        case AR_accessible:
725        case AR_dependent:
726        case AR_delayed:
727          break;
728      }
729    }
730
731    // Build a base path if necessary.
732    if (BasePath)
733      BuildBasePathArray(Paths, *BasePath);
734    return false;
735  }
736
737  // We know that the derived-to-base conversion is ambiguous, and
738  // we're going to produce a diagnostic. Perform the derived-to-base
739  // search just one more time to compute all of the possible paths so
740  // that we can print them out. This is more expensive than any of
741  // the previous derived-to-base checks we've done, but at this point
742  // performance isn't as much of an issue.
743  Paths.clear();
744  Paths.setRecordingPaths(true);
745  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
746  assert(StillOkay && "Can only be used with a derived-to-base conversion");
747  (void)StillOkay;
748
749  // Build up a textual representation of the ambiguous paths, e.g.,
750  // D -> B -> A, that will be used to illustrate the ambiguous
751  // conversions in the diagnostic. We only print one of the paths
752  // to each base class subobject.
753  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
754
755  Diag(Loc, AmbigiousBaseConvID)
756  << Derived << Base << PathDisplayStr << Range << Name;
757  return true;
758}
759
760bool
761Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
762                                   SourceLocation Loc, SourceRange Range,
763                                   CXXCastPath *BasePath,
764                                   bool IgnoreAccess) {
765  return CheckDerivedToBaseConversion(Derived, Base,
766                                      IgnoreAccess ? 0
767                                       : diag::err_upcast_to_inaccessible_base,
768                                      diag::err_ambiguous_derived_to_base_conv,
769                                      Loc, Range, DeclarationName(),
770                                      BasePath);
771}
772
773
774/// @brief Builds a string representing ambiguous paths from a
775/// specific derived class to different subobjects of the same base
776/// class.
777///
778/// This function builds a string that can be used in error messages
779/// to show the different paths that one can take through the
780/// inheritance hierarchy to go from the derived class to different
781/// subobjects of a base class. The result looks something like this:
782/// @code
783/// struct D -> struct B -> struct A
784/// struct D -> struct C -> struct A
785/// @endcode
786std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
787  std::string PathDisplayStr;
788  std::set<unsigned> DisplayedPaths;
789  for (CXXBasePaths::paths_iterator Path = Paths.begin();
790       Path != Paths.end(); ++Path) {
791    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
792      // We haven't displayed a path to this particular base
793      // class subobject yet.
794      PathDisplayStr += "\n    ";
795      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
796      for (CXXBasePath::const_iterator Element = Path->begin();
797           Element != Path->end(); ++Element)
798        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
799    }
800  }
801
802  return PathDisplayStr;
803}
804
805//===----------------------------------------------------------------------===//
806// C++ class member Handling
807//===----------------------------------------------------------------------===//
808
809/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
810Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
811                                 SourceLocation ASLoc,
812                                 SourceLocation ColonLoc) {
813  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
814  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
815                                                  ASLoc, ColonLoc);
816  CurContext->addHiddenDecl(ASDecl);
817  return ASDecl;
818}
819
820/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
821/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
822/// bitfield width if there is one and 'InitExpr' specifies the initializer if
823/// any.
824Decl *
825Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
826                               MultiTemplateParamsArg TemplateParameterLists,
827                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
828                               bool Deleted) {
829  const DeclSpec &DS = D.getDeclSpec();
830  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
831  DeclarationName Name = NameInfo.getName();
832  SourceLocation Loc = NameInfo.getLoc();
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835
836  assert(isa<CXXRecordDecl>(CurContext));
837  assert(!DS.isFriendSpecified());
838
839  bool isFunc = false;
840  if (D.isFunctionDeclarator())
841    isFunc = true;
842  else if (D.getNumTypeObjects() == 0 &&
843           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
844    QualType TDType = GetTypeFromParser(DS.getRepAsType());
845    isFunc = TDType->isFunctionType();
846  }
847
848  // C++ 9.2p6: A member shall not be declared to have automatic storage
849  // duration (auto, register) or with the extern storage-class-specifier.
850  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
851  // data members and cannot be applied to names declared const or static,
852  // and cannot be applied to reference members.
853  switch (DS.getStorageClassSpec()) {
854    case DeclSpec::SCS_unspecified:
855    case DeclSpec::SCS_typedef:
856    case DeclSpec::SCS_static:
857      // FALL THROUGH.
858      break;
859    case DeclSpec::SCS_mutable:
860      if (isFunc) {
861        if (DS.getStorageClassSpecLoc().isValid())
862          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
863        else
864          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
865
866        // FIXME: It would be nicer if the keyword was ignored only for this
867        // declarator. Otherwise we could get follow-up errors.
868        D.getMutableDeclSpec().ClearStorageClassSpecs();
869      }
870      break;
871    default:
872      if (DS.getStorageClassSpecLoc().isValid())
873        Diag(DS.getStorageClassSpecLoc(),
874             diag::err_storageclass_invalid_for_member);
875      else
876        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
877      D.getMutableDeclSpec().ClearStorageClassSpecs();
878  }
879
880  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
881                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
882                      !isFunc);
883
884  Decl *Member;
885  if (isInstField) {
886    // FIXME: Check for template parameters!
887    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
888                         AS);
889    assert(Member && "HandleField never returns null");
890  } else {
891    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
892    if (!Member) {
893      return 0;
894    }
895
896    // Non-instance-fields can't have a bitfield.
897    if (BitWidth) {
898      if (Member->isInvalidDecl()) {
899        // don't emit another diagnostic.
900      } else if (isa<VarDecl>(Member)) {
901        // C++ 9.6p3: A bit-field shall not be a static member.
902        // "static member 'A' cannot be a bit-field"
903        Diag(Loc, diag::err_static_not_bitfield)
904          << Name << BitWidth->getSourceRange();
905      } else if (isa<TypedefDecl>(Member)) {
906        // "typedef member 'x' cannot be a bit-field"
907        Diag(Loc, diag::err_typedef_not_bitfield)
908          << Name << BitWidth->getSourceRange();
909      } else {
910        // A function typedef ("typedef int f(); f a;").
911        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
912        Diag(Loc, diag::err_not_integral_type_bitfield)
913          << Name << cast<ValueDecl>(Member)->getType()
914          << BitWidth->getSourceRange();
915      }
916
917      BitWidth = 0;
918      Member->setInvalidDecl();
919    }
920
921    Member->setAccess(AS);
922
923    // If we have declared a member function template, set the access of the
924    // templated declaration as well.
925    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
926      FunTmpl->getTemplatedDecl()->setAccess(AS);
927  }
928
929  assert((Name || isInstField) && "No identifier for non-field ?");
930
931  if (Init)
932    AddInitializerToDecl(Member, Init, false);
933  if (Deleted) // FIXME: Source location is not very good.
934    SetDeclDeleted(Member, D.getSourceRange().getBegin());
935
936  if (isInstField) {
937    FieldCollector->Add(cast<FieldDecl>(Member));
938    return 0;
939  }
940  return Member;
941}
942
943/// \brief Find the direct and/or virtual base specifiers that
944/// correspond to the given base type, for use in base initialization
945/// within a constructor.
946static bool FindBaseInitializer(Sema &SemaRef,
947                                CXXRecordDecl *ClassDecl,
948                                QualType BaseType,
949                                const CXXBaseSpecifier *&DirectBaseSpec,
950                                const CXXBaseSpecifier *&VirtualBaseSpec) {
951  // First, check for a direct base class.
952  DirectBaseSpec = 0;
953  for (CXXRecordDecl::base_class_const_iterator Base
954         = ClassDecl->bases_begin();
955       Base != ClassDecl->bases_end(); ++Base) {
956    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
957      // We found a direct base of this type. That's what we're
958      // initializing.
959      DirectBaseSpec = &*Base;
960      break;
961    }
962  }
963
964  // Check for a virtual base class.
965  // FIXME: We might be able to short-circuit this if we know in advance that
966  // there are no virtual bases.
967  VirtualBaseSpec = 0;
968  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
969    // We haven't found a base yet; search the class hierarchy for a
970    // virtual base class.
971    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
972                       /*DetectVirtual=*/false);
973    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
974                              BaseType, Paths)) {
975      for (CXXBasePaths::paths_iterator Path = Paths.begin();
976           Path != Paths.end(); ++Path) {
977        if (Path->back().Base->isVirtual()) {
978          VirtualBaseSpec = Path->back().Base;
979          break;
980        }
981      }
982    }
983  }
984
985  return DirectBaseSpec || VirtualBaseSpec;
986}
987
988/// ActOnMemInitializer - Handle a C++ member initializer.
989MemInitResult
990Sema::ActOnMemInitializer(Decl *ConstructorD,
991                          Scope *S,
992                          CXXScopeSpec &SS,
993                          IdentifierInfo *MemberOrBase,
994                          ParsedType TemplateTypeTy,
995                          SourceLocation IdLoc,
996                          SourceLocation LParenLoc,
997                          ExprTy **Args, unsigned NumArgs,
998                          SourceLocation RParenLoc) {
999  if (!ConstructorD)
1000    return true;
1001
1002  AdjustDeclIfTemplate(ConstructorD);
1003
1004  CXXConstructorDecl *Constructor
1005    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1006  if (!Constructor) {
1007    // The user wrote a constructor initializer on a function that is
1008    // not a C++ constructor. Ignore the error for now, because we may
1009    // have more member initializers coming; we'll diagnose it just
1010    // once in ActOnMemInitializers.
1011    return true;
1012  }
1013
1014  CXXRecordDecl *ClassDecl = Constructor->getParent();
1015
1016  // C++ [class.base.init]p2:
1017  //   Names in a mem-initializer-id are looked up in the scope of the
1018  //   constructor’s class and, if not found in that scope, are looked
1019  //   up in the scope containing the constructor’s
1020  //   definition. [Note: if the constructor’s class contains a member
1021  //   with the same name as a direct or virtual base class of the
1022  //   class, a mem-initializer-id naming the member or base class and
1023  //   composed of a single identifier refers to the class member. A
1024  //   mem-initializer-id for the hidden base class may be specified
1025  //   using a qualified name. ]
1026  if (!SS.getScopeRep() && !TemplateTypeTy) {
1027    // Look for a member, first.
1028    FieldDecl *Member = 0;
1029    DeclContext::lookup_result Result
1030      = ClassDecl->lookup(MemberOrBase);
1031    if (Result.first != Result.second)
1032      Member = dyn_cast<FieldDecl>(*Result.first);
1033
1034    // FIXME: Handle members of an anonymous union.
1035
1036    if (Member)
1037      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1038                                    LParenLoc, RParenLoc);
1039  }
1040  // It didn't name a member, so see if it names a class.
1041  QualType BaseType;
1042  TypeSourceInfo *TInfo = 0;
1043
1044  if (TemplateTypeTy) {
1045    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1046  } else {
1047    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1048    LookupParsedName(R, S, &SS);
1049
1050    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1051    if (!TyD) {
1052      if (R.isAmbiguous()) return true;
1053
1054      // We don't want access-control diagnostics here.
1055      R.suppressDiagnostics();
1056
1057      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1058        bool NotUnknownSpecialization = false;
1059        DeclContext *DC = computeDeclContext(SS, false);
1060        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1061          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1062
1063        if (!NotUnknownSpecialization) {
1064          // When the scope specifier can refer to a member of an unknown
1065          // specialization, we take it as a type name.
1066          BaseType = CheckTypenameType(ETK_None,
1067                                       (NestedNameSpecifier *)SS.getScopeRep(),
1068                                       *MemberOrBase, SourceLocation(),
1069                                       SS.getRange(), IdLoc);
1070          if (BaseType.isNull())
1071            return true;
1072
1073          R.clear();
1074          R.setLookupName(MemberOrBase);
1075        }
1076      }
1077
1078      // If no results were found, try to correct typos.
1079      if (R.empty() && BaseType.isNull() &&
1080          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1081          R.isSingleResult()) {
1082        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1083          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1084            // We have found a non-static data member with a similar
1085            // name to what was typed; complain and initialize that
1086            // member.
1087            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1088              << MemberOrBase << true << R.getLookupName()
1089              << FixItHint::CreateReplacement(R.getNameLoc(),
1090                                              R.getLookupName().getAsString());
1091            Diag(Member->getLocation(), diag::note_previous_decl)
1092              << Member->getDeclName();
1093
1094            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1095                                          LParenLoc, RParenLoc);
1096          }
1097        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1098          const CXXBaseSpecifier *DirectBaseSpec;
1099          const CXXBaseSpecifier *VirtualBaseSpec;
1100          if (FindBaseInitializer(*this, ClassDecl,
1101                                  Context.getTypeDeclType(Type),
1102                                  DirectBaseSpec, VirtualBaseSpec)) {
1103            // We have found a direct or virtual base class with a
1104            // similar name to what was typed; complain and initialize
1105            // that base class.
1106            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1107              << MemberOrBase << false << R.getLookupName()
1108              << FixItHint::CreateReplacement(R.getNameLoc(),
1109                                              R.getLookupName().getAsString());
1110
1111            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1112                                                             : VirtualBaseSpec;
1113            Diag(BaseSpec->getSourceRange().getBegin(),
1114                 diag::note_base_class_specified_here)
1115              << BaseSpec->getType()
1116              << BaseSpec->getSourceRange();
1117
1118            TyD = Type;
1119          }
1120        }
1121      }
1122
1123      if (!TyD && BaseType.isNull()) {
1124        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1125          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1126        return true;
1127      }
1128    }
1129
1130    if (BaseType.isNull()) {
1131      BaseType = Context.getTypeDeclType(TyD);
1132      if (SS.isSet()) {
1133        NestedNameSpecifier *Qualifier =
1134          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1135
1136        // FIXME: preserve source range information
1137        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1138      }
1139    }
1140  }
1141
1142  if (!TInfo)
1143    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1144
1145  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1146                              LParenLoc, RParenLoc, ClassDecl);
1147}
1148
1149/// Checks an initializer expression for use of uninitialized fields, such as
1150/// containing the field that is being initialized. Returns true if there is an
1151/// uninitialized field was used an updates the SourceLocation parameter; false
1152/// otherwise.
1153static bool InitExprContainsUninitializedFields(const Stmt *S,
1154                                                const FieldDecl *LhsField,
1155                                                SourceLocation *L) {
1156  if (isa<CallExpr>(S)) {
1157    // Do not descend into function calls or constructors, as the use
1158    // of an uninitialized field may be valid. One would have to inspect
1159    // the contents of the function/ctor to determine if it is safe or not.
1160    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1161    // may be safe, depending on what the function/ctor does.
1162    return false;
1163  }
1164  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1165    const NamedDecl *RhsField = ME->getMemberDecl();
1166    if (RhsField == LhsField) {
1167      // Initializing a field with itself. Throw a warning.
1168      // But wait; there are exceptions!
1169      // Exception #1:  The field may not belong to this record.
1170      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1171      const Expr *base = ME->getBase();
1172      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1173        // Even though the field matches, it does not belong to this record.
1174        return false;
1175      }
1176      // None of the exceptions triggered; return true to indicate an
1177      // uninitialized field was used.
1178      *L = ME->getMemberLoc();
1179      return true;
1180    }
1181  } else if (isa<SizeOfAlignOfExpr>(S)) {
1182    // sizeof/alignof doesn't reference contents, do not warn.
1183    return false;
1184  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1185    // address-of doesn't reference contents (the pointer may be dereferenced
1186    // in the same expression but it would be rare; and weird).
1187    if (UOE->getOpcode() == UO_AddrOf)
1188      return false;
1189  }
1190  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1191       it != e; ++it) {
1192    if (!*it) {
1193      // An expression such as 'member(arg ?: "")' may trigger this.
1194      continue;
1195    }
1196    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1197      return true;
1198  }
1199  return false;
1200}
1201
1202MemInitResult
1203Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1204                             unsigned NumArgs, SourceLocation IdLoc,
1205                             SourceLocation LParenLoc,
1206                             SourceLocation RParenLoc) {
1207  // Diagnose value-uses of fields to initialize themselves, e.g.
1208  //   foo(foo)
1209  // where foo is not also a parameter to the constructor.
1210  // TODO: implement -Wuninitialized and fold this into that framework.
1211  for (unsigned i = 0; i < NumArgs; ++i) {
1212    SourceLocation L;
1213    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1214      // FIXME: Return true in the case when other fields are used before being
1215      // uninitialized. For example, let this field be the i'th field. When
1216      // initializing the i'th field, throw a warning if any of the >= i'th
1217      // fields are used, as they are not yet initialized.
1218      // Right now we are only handling the case where the i'th field uses
1219      // itself in its initializer.
1220      Diag(L, diag::warn_field_is_uninit);
1221    }
1222  }
1223
1224  bool HasDependentArg = false;
1225  for (unsigned i = 0; i < NumArgs; i++)
1226    HasDependentArg |= Args[i]->isTypeDependent();
1227
1228  if (Member->getType()->isDependentType() || HasDependentArg) {
1229    // Can't check initialization for a member of dependent type or when
1230    // any of the arguments are type-dependent expressions.
1231    Expr *Init
1232      = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1233                                    RParenLoc);
1234
1235    // Erase any temporaries within this evaluation context; we're not
1236    // going to track them in the AST, since we'll be rebuilding the
1237    // ASTs during template instantiation.
1238    ExprTemporaries.erase(
1239              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1240                          ExprTemporaries.end());
1241
1242    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1243                                                    LParenLoc,
1244                                                    Init,
1245                                                    RParenLoc);
1246
1247  }
1248
1249  if (Member->isInvalidDecl())
1250    return true;
1251
1252  // Initialize the member.
1253  InitializedEntity MemberEntity =
1254    InitializedEntity::InitializeMember(Member, 0);
1255  InitializationKind Kind =
1256    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1257
1258  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1259
1260  ExprResult MemberInit =
1261    InitSeq.Perform(*this, MemberEntity, Kind,
1262                    MultiExprArg(*this, Args, NumArgs), 0);
1263  if (MemberInit.isInvalid())
1264    return true;
1265
1266  // C++0x [class.base.init]p7:
1267  //   The initialization of each base and member constitutes a
1268  //   full-expression.
1269  MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1270  if (MemberInit.isInvalid())
1271    return true;
1272
1273  // If we are in a dependent context, template instantiation will
1274  // perform this type-checking again. Just save the arguments that we
1275  // received in a ParenListExpr.
1276  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1277  // of the information that we have about the member
1278  // initializer. However, deconstructing the ASTs is a dicey process,
1279  // and this approach is far more likely to get the corner cases right.
1280  if (CurContext->isDependentContext()) {
1281    // Bump the reference count of all of the arguments.
1282    for (unsigned I = 0; I != NumArgs; ++I)
1283      Args[I]->Retain();
1284
1285    Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1286                                             RParenLoc);
1287    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1288                                                    LParenLoc,
1289                                                    Init,
1290                                                    RParenLoc);
1291  }
1292
1293  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1294                                                  LParenLoc,
1295                                                  MemberInit.get(),
1296                                                  RParenLoc);
1297}
1298
1299MemInitResult
1300Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1301                           Expr **Args, unsigned NumArgs,
1302                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1303                           CXXRecordDecl *ClassDecl) {
1304  bool HasDependentArg = false;
1305  for (unsigned i = 0; i < NumArgs; i++)
1306    HasDependentArg |= Args[i]->isTypeDependent();
1307
1308  SourceLocation BaseLoc
1309    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1310
1311  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1312    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1313             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1314
1315  // C++ [class.base.init]p2:
1316  //   [...] Unless the mem-initializer-id names a nonstatic data
1317  //   member of the constructor’s class or a direct or virtual base
1318  //   of that class, the mem-initializer is ill-formed. A
1319  //   mem-initializer-list can initialize a base class using any
1320  //   name that denotes that base class type.
1321  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1322
1323  // Check for direct and virtual base classes.
1324  const CXXBaseSpecifier *DirectBaseSpec = 0;
1325  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1326  if (!Dependent) {
1327    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1328                        VirtualBaseSpec);
1329
1330    // C++ [base.class.init]p2:
1331    // Unless the mem-initializer-id names a nonstatic data member of the
1332    // constructor's class or a direct or virtual base of that class, the
1333    // mem-initializer is ill-formed.
1334    if (!DirectBaseSpec && !VirtualBaseSpec) {
1335      // If the class has any dependent bases, then it's possible that
1336      // one of those types will resolve to the same type as
1337      // BaseType. Therefore, just treat this as a dependent base
1338      // class initialization.  FIXME: Should we try to check the
1339      // initialization anyway? It seems odd.
1340      if (ClassDecl->hasAnyDependentBases())
1341        Dependent = true;
1342      else
1343        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1344          << BaseType << Context.getTypeDeclType(ClassDecl)
1345          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1346    }
1347  }
1348
1349  if (Dependent) {
1350    // Can't check initialization for a base of dependent type or when
1351    // any of the arguments are type-dependent expressions.
1352    ExprResult BaseInit
1353      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1354                                          RParenLoc));
1355
1356    // Erase any temporaries within this evaluation context; we're not
1357    // going to track them in the AST, since we'll be rebuilding the
1358    // ASTs during template instantiation.
1359    ExprTemporaries.erase(
1360              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1361                          ExprTemporaries.end());
1362
1363    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1364                                                    /*IsVirtual=*/false,
1365                                                    LParenLoc,
1366                                                    BaseInit.takeAs<Expr>(),
1367                                                    RParenLoc);
1368  }
1369
1370  // C++ [base.class.init]p2:
1371  //   If a mem-initializer-id is ambiguous because it designates both
1372  //   a direct non-virtual base class and an inherited virtual base
1373  //   class, the mem-initializer is ill-formed.
1374  if (DirectBaseSpec && VirtualBaseSpec)
1375    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1376      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1377
1378  CXXBaseSpecifier *BaseSpec
1379    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1380  if (!BaseSpec)
1381    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1382
1383  // Initialize the base.
1384  InitializedEntity BaseEntity =
1385    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1386  InitializationKind Kind =
1387    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1388
1389  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1390
1391  ExprResult BaseInit =
1392    InitSeq.Perform(*this, BaseEntity, Kind,
1393                    MultiExprArg(*this, Args, NumArgs), 0);
1394  if (BaseInit.isInvalid())
1395    return true;
1396
1397  // C++0x [class.base.init]p7:
1398  //   The initialization of each base and member constitutes a
1399  //   full-expression.
1400  BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1401  if (BaseInit.isInvalid())
1402    return true;
1403
1404  // If we are in a dependent context, template instantiation will
1405  // perform this type-checking again. Just save the arguments that we
1406  // received in a ParenListExpr.
1407  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1408  // of the information that we have about the base
1409  // initializer. However, deconstructing the ASTs is a dicey process,
1410  // and this approach is far more likely to get the corner cases right.
1411  if (CurContext->isDependentContext()) {
1412    // Bump the reference count of all of the arguments.
1413    for (unsigned I = 0; I != NumArgs; ++I)
1414      Args[I]->Retain();
1415
1416    ExprResult Init
1417      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                          RParenLoc));
1419    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1420                                                    BaseSpec->isVirtual(),
1421                                                    LParenLoc,
1422                                                    Init.takeAs<Expr>(),
1423                                                    RParenLoc);
1424  }
1425
1426  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1427                                                  BaseSpec->isVirtual(),
1428                                                  LParenLoc,
1429                                                  BaseInit.takeAs<Expr>(),
1430                                                  RParenLoc);
1431}
1432
1433/// ImplicitInitializerKind - How an implicit base or member initializer should
1434/// initialize its base or member.
1435enum ImplicitInitializerKind {
1436  IIK_Default,
1437  IIK_Copy,
1438  IIK_Move
1439};
1440
1441static bool
1442BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1443                             ImplicitInitializerKind ImplicitInitKind,
1444                             CXXBaseSpecifier *BaseSpec,
1445                             bool IsInheritedVirtualBase,
1446                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1447  InitializedEntity InitEntity
1448    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1449                                        IsInheritedVirtualBase);
1450
1451  ExprResult BaseInit;
1452
1453  switch (ImplicitInitKind) {
1454  case IIK_Default: {
1455    InitializationKind InitKind
1456      = InitializationKind::CreateDefault(Constructor->getLocation());
1457    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1458    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1459                               MultiExprArg(SemaRef, 0, 0));
1460    break;
1461  }
1462
1463  case IIK_Copy: {
1464    ParmVarDecl *Param = Constructor->getParamDecl(0);
1465    QualType ParamType = Param->getType().getNonReferenceType();
1466
1467    Expr *CopyCtorArg =
1468      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1469                          Constructor->getLocation(), ParamType, 0);
1470
1471    // Cast to the base class to avoid ambiguities.
1472    QualType ArgTy =
1473      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1474                                       ParamType.getQualifiers());
1475
1476    CXXCastPath BasePath;
1477    BasePath.push_back(BaseSpec);
1478    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1479                              CK_UncheckedDerivedToBase,
1480                              VK_LValue, &BasePath);
1481
1482    InitializationKind InitKind
1483      = InitializationKind::CreateDirect(Constructor->getLocation(),
1484                                         SourceLocation(), SourceLocation());
1485    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1486                                   &CopyCtorArg, 1);
1487    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1488                               MultiExprArg(&CopyCtorArg, 1));
1489    break;
1490  }
1491
1492  case IIK_Move:
1493    assert(false && "Unhandled initializer kind!");
1494  }
1495
1496  if (BaseInit.isInvalid())
1497    return true;
1498
1499  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1500  if (BaseInit.isInvalid())
1501    return true;
1502
1503  CXXBaseInit =
1504    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1505               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1506                                                        SourceLocation()),
1507                                             BaseSpec->isVirtual(),
1508                                             SourceLocation(),
1509                                             BaseInit.takeAs<Expr>(),
1510                                             SourceLocation());
1511
1512  return false;
1513}
1514
1515static bool
1516BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1517                               ImplicitInitializerKind ImplicitInitKind,
1518                               FieldDecl *Field,
1519                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1520  if (Field->isInvalidDecl())
1521    return true;
1522
1523  SourceLocation Loc = Constructor->getLocation();
1524
1525  if (ImplicitInitKind == IIK_Copy) {
1526    ParmVarDecl *Param = Constructor->getParamDecl(0);
1527    QualType ParamType = Param->getType().getNonReferenceType();
1528
1529    Expr *MemberExprBase =
1530      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1531                          Loc, ParamType, 0);
1532
1533    // Build a reference to this field within the parameter.
1534    CXXScopeSpec SS;
1535    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1536                              Sema::LookupMemberName);
1537    MemberLookup.addDecl(Field, AS_public);
1538    MemberLookup.resolveKind();
1539    ExprResult CopyCtorArg
1540      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1541                                         ParamType, Loc,
1542                                         /*IsArrow=*/false,
1543                                         SS,
1544                                         /*FirstQualifierInScope=*/0,
1545                                         MemberLookup,
1546                                         /*TemplateArgs=*/0);
1547    if (CopyCtorArg.isInvalid())
1548      return true;
1549
1550    // When the field we are copying is an array, create index variables for
1551    // each dimension of the array. We use these index variables to subscript
1552    // the source array, and other clients (e.g., CodeGen) will perform the
1553    // necessary iteration with these index variables.
1554    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1555    QualType BaseType = Field->getType();
1556    QualType SizeType = SemaRef.Context.getSizeType();
1557    while (const ConstantArrayType *Array
1558                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1559      // Create the iteration variable for this array index.
1560      IdentifierInfo *IterationVarName = 0;
1561      {
1562        llvm::SmallString<8> Str;
1563        llvm::raw_svector_ostream OS(Str);
1564        OS << "__i" << IndexVariables.size();
1565        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1566      }
1567      VarDecl *IterationVar
1568        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1569                          IterationVarName, SizeType,
1570                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1571                          SC_None, SC_None);
1572      IndexVariables.push_back(IterationVar);
1573
1574      // Create a reference to the iteration variable.
1575      ExprResult IterationVarRef
1576        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1577      assert(!IterationVarRef.isInvalid() &&
1578             "Reference to invented variable cannot fail!");
1579
1580      // Subscript the array with this iteration variable.
1581      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1582                                                            Loc,
1583                                                        IterationVarRef.take(),
1584                                                            Loc);
1585      if (CopyCtorArg.isInvalid())
1586        return true;
1587
1588      BaseType = Array->getElementType();
1589    }
1590
1591    // Construct the entity that we will be initializing. For an array, this
1592    // will be first element in the array, which may require several levels
1593    // of array-subscript entities.
1594    llvm::SmallVector<InitializedEntity, 4> Entities;
1595    Entities.reserve(1 + IndexVariables.size());
1596    Entities.push_back(InitializedEntity::InitializeMember(Field));
1597    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1598      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1599                                                              0,
1600                                                              Entities.back()));
1601
1602    // Direct-initialize to use the copy constructor.
1603    InitializationKind InitKind =
1604      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1605
1606    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1607    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1608                                   &CopyCtorArgE, 1);
1609
1610    ExprResult MemberInit
1611      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1612                        MultiExprArg(&CopyCtorArgE, 1));
1613    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1614    if (MemberInit.isInvalid())
1615      return true;
1616
1617    CXXMemberInit
1618      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1619                                           MemberInit.takeAs<Expr>(), Loc,
1620                                           IndexVariables.data(),
1621                                           IndexVariables.size());
1622    return false;
1623  }
1624
1625  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1626
1627  QualType FieldBaseElementType =
1628    SemaRef.Context.getBaseElementType(Field->getType());
1629
1630  if (FieldBaseElementType->isRecordType()) {
1631    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1632    InitializationKind InitKind =
1633      InitializationKind::CreateDefault(Loc);
1634
1635    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1636    ExprResult MemberInit =
1637      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1638    if (MemberInit.isInvalid())
1639      return true;
1640
1641    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1642    if (MemberInit.isInvalid())
1643      return true;
1644
1645    CXXMemberInit =
1646      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1647                                                       Field, Loc, Loc,
1648                                                       MemberInit.get(),
1649                                                       Loc);
1650    return false;
1651  }
1652
1653  if (FieldBaseElementType->isReferenceType()) {
1654    SemaRef.Diag(Constructor->getLocation(),
1655                 diag::err_uninitialized_member_in_ctor)
1656    << (int)Constructor->isImplicit()
1657    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1658    << 0 << Field->getDeclName();
1659    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1660    return true;
1661  }
1662
1663  if (FieldBaseElementType.isConstQualified()) {
1664    SemaRef.Diag(Constructor->getLocation(),
1665                 diag::err_uninitialized_member_in_ctor)
1666    << (int)Constructor->isImplicit()
1667    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1668    << 1 << Field->getDeclName();
1669    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1670    return true;
1671  }
1672
1673  // Nothing to initialize.
1674  CXXMemberInit = 0;
1675  return false;
1676}
1677
1678namespace {
1679struct BaseAndFieldInfo {
1680  Sema &S;
1681  CXXConstructorDecl *Ctor;
1682  bool AnyErrorsInInits;
1683  ImplicitInitializerKind IIK;
1684  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1685  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1686
1687  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1688    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1689    // FIXME: Handle implicit move constructors.
1690    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1691      IIK = IIK_Copy;
1692    else
1693      IIK = IIK_Default;
1694  }
1695};
1696}
1697
1698static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1699                                   FieldDecl *Top, FieldDecl *Field,
1700                                   CXXBaseOrMemberInitializer *Init) {
1701  // If the member doesn't need to be initialized, Init will still be null.
1702  if (!Init)
1703    return;
1704
1705  Info.AllToInit.push_back(Init);
1706  if (Field != Top) {
1707    Init->setMember(Top);
1708    Init->setAnonUnionMember(Field);
1709  }
1710}
1711
1712static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1713                                    FieldDecl *Top, FieldDecl *Field) {
1714
1715  // Overwhelmingly common case: we have a direct initializer for this field.
1716  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1717    RecordFieldInitializer(Info, Top, Field, Init);
1718    return false;
1719  }
1720
1721  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1722    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1723    assert(FieldClassType && "anonymous struct/union without record type");
1724    CXXRecordDecl *FieldClassDecl
1725      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1726
1727    // Even though union members never have non-trivial default
1728    // constructions in C++03, we still build member initializers for aggregate
1729    // record types which can be union members, and C++0x allows non-trivial
1730    // default constructors for union members, so we ensure that only one
1731    // member is initialized for these.
1732    if (FieldClassDecl->isUnion()) {
1733      // First check for an explicit initializer for one field.
1734      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1735           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1736        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1737          RecordFieldInitializer(Info, Top, *FA, Init);
1738
1739          // Once we've initialized a field of an anonymous union, the union
1740          // field in the class is also initialized, so exit immediately.
1741          return false;
1742        } else if ((*FA)->isAnonymousStructOrUnion()) {
1743          if (CollectFieldInitializer(Info, Top, *FA))
1744            return true;
1745        }
1746      }
1747
1748      // Fallthrough and construct a default initializer for the union as
1749      // a whole, which can call its default constructor if such a thing exists
1750      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1751      // behavior going forward with C++0x, when anonymous unions there are
1752      // finalized, we should revisit this.
1753    } else {
1754      // For structs, we simply descend through to initialize all members where
1755      // necessary.
1756      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1757           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1758        if (CollectFieldInitializer(Info, Top, *FA))
1759          return true;
1760      }
1761    }
1762  }
1763
1764  // Don't try to build an implicit initializer if there were semantic
1765  // errors in any of the initializers (and therefore we might be
1766  // missing some that the user actually wrote).
1767  if (Info.AnyErrorsInInits)
1768    return false;
1769
1770  CXXBaseOrMemberInitializer *Init = 0;
1771  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1772    return true;
1773
1774  RecordFieldInitializer(Info, Top, Field, Init);
1775  return false;
1776}
1777
1778bool
1779Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1780                                  CXXBaseOrMemberInitializer **Initializers,
1781                                  unsigned NumInitializers,
1782                                  bool AnyErrors) {
1783  if (Constructor->getDeclContext()->isDependentContext()) {
1784    // Just store the initializers as written, they will be checked during
1785    // instantiation.
1786    if (NumInitializers > 0) {
1787      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1788      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1789        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1790      memcpy(baseOrMemberInitializers, Initializers,
1791             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1792      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1793    }
1794
1795    return false;
1796  }
1797
1798  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1799
1800  // We need to build the initializer AST according to order of construction
1801  // and not what user specified in the Initializers list.
1802  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1803  if (!ClassDecl)
1804    return true;
1805
1806  bool HadError = false;
1807
1808  for (unsigned i = 0; i < NumInitializers; i++) {
1809    CXXBaseOrMemberInitializer *Member = Initializers[i];
1810
1811    if (Member->isBaseInitializer())
1812      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1813    else
1814      Info.AllBaseFields[Member->getMember()] = Member;
1815  }
1816
1817  // Keep track of the direct virtual bases.
1818  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1819  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1820       E = ClassDecl->bases_end(); I != E; ++I) {
1821    if (I->isVirtual())
1822      DirectVBases.insert(I);
1823  }
1824
1825  // Push virtual bases before others.
1826  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1827       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1828
1829    if (CXXBaseOrMemberInitializer *Value
1830        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1831      Info.AllToInit.push_back(Value);
1832    } else if (!AnyErrors) {
1833      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1834      CXXBaseOrMemberInitializer *CXXBaseInit;
1835      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1836                                       VBase, IsInheritedVirtualBase,
1837                                       CXXBaseInit)) {
1838        HadError = true;
1839        continue;
1840      }
1841
1842      Info.AllToInit.push_back(CXXBaseInit);
1843    }
1844  }
1845
1846  // Non-virtual bases.
1847  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1848       E = ClassDecl->bases_end(); Base != E; ++Base) {
1849    // Virtuals are in the virtual base list and already constructed.
1850    if (Base->isVirtual())
1851      continue;
1852
1853    if (CXXBaseOrMemberInitializer *Value
1854          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1855      Info.AllToInit.push_back(Value);
1856    } else if (!AnyErrors) {
1857      CXXBaseOrMemberInitializer *CXXBaseInit;
1858      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1859                                       Base, /*IsInheritedVirtualBase=*/false,
1860                                       CXXBaseInit)) {
1861        HadError = true;
1862        continue;
1863      }
1864
1865      Info.AllToInit.push_back(CXXBaseInit);
1866    }
1867  }
1868
1869  // Fields.
1870  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1871       E = ClassDecl->field_end(); Field != E; ++Field) {
1872    if ((*Field)->getType()->isIncompleteArrayType()) {
1873      assert(ClassDecl->hasFlexibleArrayMember() &&
1874             "Incomplete array type is not valid");
1875      continue;
1876    }
1877    if (CollectFieldInitializer(Info, *Field, *Field))
1878      HadError = true;
1879  }
1880
1881  NumInitializers = Info.AllToInit.size();
1882  if (NumInitializers > 0) {
1883    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1884    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1885      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1886    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1887           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1888    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1889
1890    // Constructors implicitly reference the base and member
1891    // destructors.
1892    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1893                                           Constructor->getParent());
1894  }
1895
1896  return HadError;
1897}
1898
1899static void *GetKeyForTopLevelField(FieldDecl *Field) {
1900  // For anonymous unions, use the class declaration as the key.
1901  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1902    if (RT->getDecl()->isAnonymousStructOrUnion())
1903      return static_cast<void *>(RT->getDecl());
1904  }
1905  return static_cast<void *>(Field);
1906}
1907
1908static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1909  return Context.getCanonicalType(BaseType).getTypePtr();
1910}
1911
1912static void *GetKeyForMember(ASTContext &Context,
1913                             CXXBaseOrMemberInitializer *Member,
1914                             bool MemberMaybeAnon = false) {
1915  if (!Member->isMemberInitializer())
1916    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1917
1918  // For fields injected into the class via declaration of an anonymous union,
1919  // use its anonymous union class declaration as the unique key.
1920  FieldDecl *Field = Member->getMember();
1921
1922  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1923  // data member of the class. Data member used in the initializer list is
1924  // in AnonUnionMember field.
1925  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1926    Field = Member->getAnonUnionMember();
1927
1928  // If the field is a member of an anonymous struct or union, our key
1929  // is the anonymous record decl that's a direct child of the class.
1930  RecordDecl *RD = Field->getParent();
1931  if (RD->isAnonymousStructOrUnion()) {
1932    while (true) {
1933      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1934      if (Parent->isAnonymousStructOrUnion())
1935        RD = Parent;
1936      else
1937        break;
1938    }
1939
1940    return static_cast<void *>(RD);
1941  }
1942
1943  return static_cast<void *>(Field);
1944}
1945
1946static void
1947DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1948                                  const CXXConstructorDecl *Constructor,
1949                                  CXXBaseOrMemberInitializer **Inits,
1950                                  unsigned NumInits) {
1951  if (Constructor->getDeclContext()->isDependentContext())
1952    return;
1953
1954  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1955        == Diagnostic::Ignored)
1956    return;
1957
1958  // Build the list of bases and members in the order that they'll
1959  // actually be initialized.  The explicit initializers should be in
1960  // this same order but may be missing things.
1961  llvm::SmallVector<const void*, 32> IdealInitKeys;
1962
1963  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1964
1965  // 1. Virtual bases.
1966  for (CXXRecordDecl::base_class_const_iterator VBase =
1967       ClassDecl->vbases_begin(),
1968       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1969    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1970
1971  // 2. Non-virtual bases.
1972  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1973       E = ClassDecl->bases_end(); Base != E; ++Base) {
1974    if (Base->isVirtual())
1975      continue;
1976    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1977  }
1978
1979  // 3. Direct fields.
1980  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1981       E = ClassDecl->field_end(); Field != E; ++Field)
1982    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1983
1984  unsigned NumIdealInits = IdealInitKeys.size();
1985  unsigned IdealIndex = 0;
1986
1987  CXXBaseOrMemberInitializer *PrevInit = 0;
1988  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1989    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1990    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1991
1992    // Scan forward to try to find this initializer in the idealized
1993    // initializers list.
1994    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1995      if (InitKey == IdealInitKeys[IdealIndex])
1996        break;
1997
1998    // If we didn't find this initializer, it must be because we
1999    // scanned past it on a previous iteration.  That can only
2000    // happen if we're out of order;  emit a warning.
2001    if (IdealIndex == NumIdealInits && PrevInit) {
2002      Sema::SemaDiagnosticBuilder D =
2003        SemaRef.Diag(PrevInit->getSourceLocation(),
2004                     diag::warn_initializer_out_of_order);
2005
2006      if (PrevInit->isMemberInitializer())
2007        D << 0 << PrevInit->getMember()->getDeclName();
2008      else
2009        D << 1 << PrevInit->getBaseClassInfo()->getType();
2010
2011      if (Init->isMemberInitializer())
2012        D << 0 << Init->getMember()->getDeclName();
2013      else
2014        D << 1 << Init->getBaseClassInfo()->getType();
2015
2016      // Move back to the initializer's location in the ideal list.
2017      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2018        if (InitKey == IdealInitKeys[IdealIndex])
2019          break;
2020
2021      assert(IdealIndex != NumIdealInits &&
2022             "initializer not found in initializer list");
2023    }
2024
2025    PrevInit = Init;
2026  }
2027}
2028
2029namespace {
2030bool CheckRedundantInit(Sema &S,
2031                        CXXBaseOrMemberInitializer *Init,
2032                        CXXBaseOrMemberInitializer *&PrevInit) {
2033  if (!PrevInit) {
2034    PrevInit = Init;
2035    return false;
2036  }
2037
2038  if (FieldDecl *Field = Init->getMember())
2039    S.Diag(Init->getSourceLocation(),
2040           diag::err_multiple_mem_initialization)
2041      << Field->getDeclName()
2042      << Init->getSourceRange();
2043  else {
2044    Type *BaseClass = Init->getBaseClass();
2045    assert(BaseClass && "neither field nor base");
2046    S.Diag(Init->getSourceLocation(),
2047           diag::err_multiple_base_initialization)
2048      << QualType(BaseClass, 0)
2049      << Init->getSourceRange();
2050  }
2051  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2052    << 0 << PrevInit->getSourceRange();
2053
2054  return true;
2055}
2056
2057typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2058typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2059
2060bool CheckRedundantUnionInit(Sema &S,
2061                             CXXBaseOrMemberInitializer *Init,
2062                             RedundantUnionMap &Unions) {
2063  FieldDecl *Field = Init->getMember();
2064  RecordDecl *Parent = Field->getParent();
2065  if (!Parent->isAnonymousStructOrUnion())
2066    return false;
2067
2068  NamedDecl *Child = Field;
2069  do {
2070    if (Parent->isUnion()) {
2071      UnionEntry &En = Unions[Parent];
2072      if (En.first && En.first != Child) {
2073        S.Diag(Init->getSourceLocation(),
2074               diag::err_multiple_mem_union_initialization)
2075          << Field->getDeclName()
2076          << Init->getSourceRange();
2077        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2078          << 0 << En.second->getSourceRange();
2079        return true;
2080      } else if (!En.first) {
2081        En.first = Child;
2082        En.second = Init;
2083      }
2084    }
2085
2086    Child = Parent;
2087    Parent = cast<RecordDecl>(Parent->getDeclContext());
2088  } while (Parent->isAnonymousStructOrUnion());
2089
2090  return false;
2091}
2092}
2093
2094/// ActOnMemInitializers - Handle the member initializers for a constructor.
2095void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2096                                SourceLocation ColonLoc,
2097                                MemInitTy **meminits, unsigned NumMemInits,
2098                                bool AnyErrors) {
2099  if (!ConstructorDecl)
2100    return;
2101
2102  AdjustDeclIfTemplate(ConstructorDecl);
2103
2104  CXXConstructorDecl *Constructor
2105    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2106
2107  if (!Constructor) {
2108    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2109    return;
2110  }
2111
2112  CXXBaseOrMemberInitializer **MemInits =
2113    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2114
2115  // Mapping for the duplicate initializers check.
2116  // For member initializers, this is keyed with a FieldDecl*.
2117  // For base initializers, this is keyed with a Type*.
2118  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2119
2120  // Mapping for the inconsistent anonymous-union initializers check.
2121  RedundantUnionMap MemberUnions;
2122
2123  bool HadError = false;
2124  for (unsigned i = 0; i < NumMemInits; i++) {
2125    CXXBaseOrMemberInitializer *Init = MemInits[i];
2126
2127    // Set the source order index.
2128    Init->setSourceOrder(i);
2129
2130    if (Init->isMemberInitializer()) {
2131      FieldDecl *Field = Init->getMember();
2132      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2133          CheckRedundantUnionInit(*this, Init, MemberUnions))
2134        HadError = true;
2135    } else {
2136      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2137      if (CheckRedundantInit(*this, Init, Members[Key]))
2138        HadError = true;
2139    }
2140  }
2141
2142  if (HadError)
2143    return;
2144
2145  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2146
2147  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2148}
2149
2150void
2151Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2152                                             CXXRecordDecl *ClassDecl) {
2153  // Ignore dependent contexts.
2154  if (ClassDecl->isDependentContext())
2155    return;
2156
2157  // FIXME: all the access-control diagnostics are positioned on the
2158  // field/base declaration.  That's probably good; that said, the
2159  // user might reasonably want to know why the destructor is being
2160  // emitted, and we currently don't say.
2161
2162  // Non-static data members.
2163  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2164       E = ClassDecl->field_end(); I != E; ++I) {
2165    FieldDecl *Field = *I;
2166    if (Field->isInvalidDecl())
2167      continue;
2168    QualType FieldType = Context.getBaseElementType(Field->getType());
2169
2170    const RecordType* RT = FieldType->getAs<RecordType>();
2171    if (!RT)
2172      continue;
2173
2174    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2175    if (FieldClassDecl->hasTrivialDestructor())
2176      continue;
2177
2178    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2179    CheckDestructorAccess(Field->getLocation(), Dtor,
2180                          PDiag(diag::err_access_dtor_field)
2181                            << Field->getDeclName()
2182                            << FieldType);
2183
2184    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2185  }
2186
2187  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2188
2189  // Bases.
2190  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2191       E = ClassDecl->bases_end(); Base != E; ++Base) {
2192    // Bases are always records in a well-formed non-dependent class.
2193    const RecordType *RT = Base->getType()->getAs<RecordType>();
2194
2195    // Remember direct virtual bases.
2196    if (Base->isVirtual())
2197      DirectVirtualBases.insert(RT);
2198
2199    // Ignore trivial destructors.
2200    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2201    if (BaseClassDecl->hasTrivialDestructor())
2202      continue;
2203
2204    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2205
2206    // FIXME: caret should be on the start of the class name
2207    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2208                          PDiag(diag::err_access_dtor_base)
2209                            << Base->getType()
2210                            << Base->getSourceRange());
2211
2212    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2213  }
2214
2215  // Virtual bases.
2216  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2217       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2218
2219    // Bases are always records in a well-formed non-dependent class.
2220    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2221
2222    // Ignore direct virtual bases.
2223    if (DirectVirtualBases.count(RT))
2224      continue;
2225
2226    // Ignore trivial destructors.
2227    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2228    if (BaseClassDecl->hasTrivialDestructor())
2229      continue;
2230
2231    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2232    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2233                          PDiag(diag::err_access_dtor_vbase)
2234                            << VBase->getType());
2235
2236    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2237  }
2238}
2239
2240void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2241  if (!CDtorDecl)
2242    return;
2243
2244  if (CXXConstructorDecl *Constructor
2245      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2246    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2247}
2248
2249bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2250                                  unsigned DiagID, AbstractDiagSelID SelID) {
2251  if (SelID == -1)
2252    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2253  else
2254    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2255}
2256
2257bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2258                                  const PartialDiagnostic &PD) {
2259  if (!getLangOptions().CPlusPlus)
2260    return false;
2261
2262  if (const ArrayType *AT = Context.getAsArrayType(T))
2263    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2264
2265  if (const PointerType *PT = T->getAs<PointerType>()) {
2266    // Find the innermost pointer type.
2267    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2268      PT = T;
2269
2270    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2271      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2272  }
2273
2274  const RecordType *RT = T->getAs<RecordType>();
2275  if (!RT)
2276    return false;
2277
2278  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2279
2280  // We can't answer whether something is abstract until it has a
2281  // definition.  If it's currently being defined, we'll walk back
2282  // over all the declarations when we have a full definition.
2283  const CXXRecordDecl *Def = RD->getDefinition();
2284  if (!Def || Def->isBeingDefined())
2285    return false;
2286
2287  if (!RD->isAbstract())
2288    return false;
2289
2290  Diag(Loc, PD) << RD->getDeclName();
2291  DiagnoseAbstractType(RD);
2292
2293  return true;
2294}
2295
2296void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2297  // Check if we've already emitted the list of pure virtual functions
2298  // for this class.
2299  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2300    return;
2301
2302  CXXFinalOverriderMap FinalOverriders;
2303  RD->getFinalOverriders(FinalOverriders);
2304
2305  // Keep a set of seen pure methods so we won't diagnose the same method
2306  // more than once.
2307  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2308
2309  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2310                                   MEnd = FinalOverriders.end();
2311       M != MEnd;
2312       ++M) {
2313    for (OverridingMethods::iterator SO = M->second.begin(),
2314                                  SOEnd = M->second.end();
2315         SO != SOEnd; ++SO) {
2316      // C++ [class.abstract]p4:
2317      //   A class is abstract if it contains or inherits at least one
2318      //   pure virtual function for which the final overrider is pure
2319      //   virtual.
2320
2321      //
2322      if (SO->second.size() != 1)
2323        continue;
2324
2325      if (!SO->second.front().Method->isPure())
2326        continue;
2327
2328      if (!SeenPureMethods.insert(SO->second.front().Method))
2329        continue;
2330
2331      Diag(SO->second.front().Method->getLocation(),
2332           diag::note_pure_virtual_function)
2333        << SO->second.front().Method->getDeclName();
2334    }
2335  }
2336
2337  if (!PureVirtualClassDiagSet)
2338    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2339  PureVirtualClassDiagSet->insert(RD);
2340}
2341
2342namespace {
2343struct AbstractUsageInfo {
2344  Sema &S;
2345  CXXRecordDecl *Record;
2346  CanQualType AbstractType;
2347  bool Invalid;
2348
2349  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2350    : S(S), Record(Record),
2351      AbstractType(S.Context.getCanonicalType(
2352                   S.Context.getTypeDeclType(Record))),
2353      Invalid(false) {}
2354
2355  void DiagnoseAbstractType() {
2356    if (Invalid) return;
2357    S.DiagnoseAbstractType(Record);
2358    Invalid = true;
2359  }
2360
2361  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2362};
2363
2364struct CheckAbstractUsage {
2365  AbstractUsageInfo &Info;
2366  const NamedDecl *Ctx;
2367
2368  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2369    : Info(Info), Ctx(Ctx) {}
2370
2371  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2372    switch (TL.getTypeLocClass()) {
2373#define ABSTRACT_TYPELOC(CLASS, PARENT)
2374#define TYPELOC(CLASS, PARENT) \
2375    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2376#include "clang/AST/TypeLocNodes.def"
2377    }
2378  }
2379
2380  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2381    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2382    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2383      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2384      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2385    }
2386  }
2387
2388  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2389    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2390  }
2391
2392  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2393    // Visit the type parameters from a permissive context.
2394    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2395      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2396      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2397        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2398          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2399      // TODO: other template argument types?
2400    }
2401  }
2402
2403  // Visit pointee types from a permissive context.
2404#define CheckPolymorphic(Type) \
2405  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2406    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2407  }
2408  CheckPolymorphic(PointerTypeLoc)
2409  CheckPolymorphic(ReferenceTypeLoc)
2410  CheckPolymorphic(MemberPointerTypeLoc)
2411  CheckPolymorphic(BlockPointerTypeLoc)
2412
2413  /// Handle all the types we haven't given a more specific
2414  /// implementation for above.
2415  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2416    // Every other kind of type that we haven't called out already
2417    // that has an inner type is either (1) sugar or (2) contains that
2418    // inner type in some way as a subobject.
2419    if (TypeLoc Next = TL.getNextTypeLoc())
2420      return Visit(Next, Sel);
2421
2422    // If there's no inner type and we're in a permissive context,
2423    // don't diagnose.
2424    if (Sel == Sema::AbstractNone) return;
2425
2426    // Check whether the type matches the abstract type.
2427    QualType T = TL.getType();
2428    if (T->isArrayType()) {
2429      Sel = Sema::AbstractArrayType;
2430      T = Info.S.Context.getBaseElementType(T);
2431    }
2432    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2433    if (CT != Info.AbstractType) return;
2434
2435    // It matched; do some magic.
2436    if (Sel == Sema::AbstractArrayType) {
2437      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2438        << T << TL.getSourceRange();
2439    } else {
2440      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2441        << Sel << T << TL.getSourceRange();
2442    }
2443    Info.DiagnoseAbstractType();
2444  }
2445};
2446
2447void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2448                                  Sema::AbstractDiagSelID Sel) {
2449  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2450}
2451
2452}
2453
2454/// Check for invalid uses of an abstract type in a method declaration.
2455static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2456                                    CXXMethodDecl *MD) {
2457  // No need to do the check on definitions, which require that
2458  // the return/param types be complete.
2459  if (MD->isThisDeclarationADefinition())
2460    return;
2461
2462  // For safety's sake, just ignore it if we don't have type source
2463  // information.  This should never happen for non-implicit methods,
2464  // but...
2465  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2466    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2467}
2468
2469/// Check for invalid uses of an abstract type within a class definition.
2470static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2471                                    CXXRecordDecl *RD) {
2472  for (CXXRecordDecl::decl_iterator
2473         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2474    Decl *D = *I;
2475    if (D->isImplicit()) continue;
2476
2477    // Methods and method templates.
2478    if (isa<CXXMethodDecl>(D)) {
2479      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2480    } else if (isa<FunctionTemplateDecl>(D)) {
2481      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2482      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2483
2484    // Fields and static variables.
2485    } else if (isa<FieldDecl>(D)) {
2486      FieldDecl *FD = cast<FieldDecl>(D);
2487      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2488        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2489    } else if (isa<VarDecl>(D)) {
2490      VarDecl *VD = cast<VarDecl>(D);
2491      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2492        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2493
2494    // Nested classes and class templates.
2495    } else if (isa<CXXRecordDecl>(D)) {
2496      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2497    } else if (isa<ClassTemplateDecl>(D)) {
2498      CheckAbstractClassUsage(Info,
2499                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2500    }
2501  }
2502}
2503
2504/// \brief Perform semantic checks on a class definition that has been
2505/// completing, introducing implicitly-declared members, checking for
2506/// abstract types, etc.
2507void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2508  if (!Record)
2509    return;
2510
2511  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2512    AbstractUsageInfo Info(*this, Record);
2513    CheckAbstractClassUsage(Info, Record);
2514  }
2515
2516  // If this is not an aggregate type and has no user-declared constructor,
2517  // complain about any non-static data members of reference or const scalar
2518  // type, since they will never get initializers.
2519  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2520      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2521    bool Complained = false;
2522    for (RecordDecl::field_iterator F = Record->field_begin(),
2523                                 FEnd = Record->field_end();
2524         F != FEnd; ++F) {
2525      if (F->getType()->isReferenceType() ||
2526          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2527        if (!Complained) {
2528          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2529            << Record->getTagKind() << Record;
2530          Complained = true;
2531        }
2532
2533        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2534          << F->getType()->isReferenceType()
2535          << F->getDeclName();
2536      }
2537    }
2538  }
2539
2540  if (Record->isDynamicClass())
2541    DynamicClasses.push_back(Record);
2542}
2543
2544void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2545                                             Decl *TagDecl,
2546                                             SourceLocation LBrac,
2547                                             SourceLocation RBrac,
2548                                             AttributeList *AttrList) {
2549  if (!TagDecl)
2550    return;
2551
2552  AdjustDeclIfTemplate(TagDecl);
2553
2554  ActOnFields(S, RLoc, TagDecl,
2555              // strict aliasing violation!
2556              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2557              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2558
2559  CheckCompletedCXXClass(
2560                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2561}
2562
2563namespace {
2564  /// \brief Helper class that collects exception specifications for
2565  /// implicitly-declared special member functions.
2566  class ImplicitExceptionSpecification {
2567    ASTContext &Context;
2568    bool AllowsAllExceptions;
2569    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2570    llvm::SmallVector<QualType, 4> Exceptions;
2571
2572  public:
2573    explicit ImplicitExceptionSpecification(ASTContext &Context)
2574      : Context(Context), AllowsAllExceptions(false) { }
2575
2576    /// \brief Whether the special member function should have any
2577    /// exception specification at all.
2578    bool hasExceptionSpecification() const {
2579      return !AllowsAllExceptions;
2580    }
2581
2582    /// \brief Whether the special member function should have a
2583    /// throw(...) exception specification (a Microsoft extension).
2584    bool hasAnyExceptionSpecification() const {
2585      return false;
2586    }
2587
2588    /// \brief The number of exceptions in the exception specification.
2589    unsigned size() const { return Exceptions.size(); }
2590
2591    /// \brief The set of exceptions in the exception specification.
2592    const QualType *data() const { return Exceptions.data(); }
2593
2594    /// \brief Note that
2595    void CalledDecl(CXXMethodDecl *Method) {
2596      // If we already know that we allow all exceptions, do nothing.
2597      if (AllowsAllExceptions || !Method)
2598        return;
2599
2600      const FunctionProtoType *Proto
2601        = Method->getType()->getAs<FunctionProtoType>();
2602
2603      // If this function can throw any exceptions, make a note of that.
2604      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2605        AllowsAllExceptions = true;
2606        ExceptionsSeen.clear();
2607        Exceptions.clear();
2608        return;
2609      }
2610
2611      // Record the exceptions in this function's exception specification.
2612      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2613                                              EEnd = Proto->exception_end();
2614           E != EEnd; ++E)
2615        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2616          Exceptions.push_back(*E);
2617    }
2618  };
2619}
2620
2621
2622/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2623/// special functions, such as the default constructor, copy
2624/// constructor, or destructor, to the given C++ class (C++
2625/// [special]p1).  This routine can only be executed just before the
2626/// definition of the class is complete.
2627void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2628  if (!ClassDecl->hasUserDeclaredConstructor())
2629    ++ASTContext::NumImplicitDefaultConstructors;
2630
2631  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2632    ++ASTContext::NumImplicitCopyConstructors;
2633
2634  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2635    ++ASTContext::NumImplicitCopyAssignmentOperators;
2636
2637    // If we have a dynamic class, then the copy assignment operator may be
2638    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2639    // it shows up in the right place in the vtable and that we diagnose
2640    // problems with the implicit exception specification.
2641    if (ClassDecl->isDynamicClass())
2642      DeclareImplicitCopyAssignment(ClassDecl);
2643  }
2644
2645  if (!ClassDecl->hasUserDeclaredDestructor()) {
2646    ++ASTContext::NumImplicitDestructors;
2647
2648    // If we have a dynamic class, then the destructor may be virtual, so we
2649    // have to declare the destructor immediately. This ensures that, e.g., it
2650    // shows up in the right place in the vtable and that we diagnose problems
2651    // with the implicit exception specification.
2652    if (ClassDecl->isDynamicClass())
2653      DeclareImplicitDestructor(ClassDecl);
2654  }
2655}
2656
2657void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2658  if (!D)
2659    return;
2660
2661  TemplateParameterList *Params = 0;
2662  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2663    Params = Template->getTemplateParameters();
2664  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2665           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2666    Params = PartialSpec->getTemplateParameters();
2667  else
2668    return;
2669
2670  for (TemplateParameterList::iterator Param = Params->begin(),
2671                                    ParamEnd = Params->end();
2672       Param != ParamEnd; ++Param) {
2673    NamedDecl *Named = cast<NamedDecl>(*Param);
2674    if (Named->getDeclName()) {
2675      S->AddDecl(Named);
2676      IdResolver.AddDecl(Named);
2677    }
2678  }
2679}
2680
2681void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2682  if (!RecordD) return;
2683  AdjustDeclIfTemplate(RecordD);
2684  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2685  PushDeclContext(S, Record);
2686}
2687
2688void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2689  if (!RecordD) return;
2690  PopDeclContext();
2691}
2692
2693/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2694/// parsing a top-level (non-nested) C++ class, and we are now
2695/// parsing those parts of the given Method declaration that could
2696/// not be parsed earlier (C++ [class.mem]p2), such as default
2697/// arguments. This action should enter the scope of the given
2698/// Method declaration as if we had just parsed the qualified method
2699/// name. However, it should not bring the parameters into scope;
2700/// that will be performed by ActOnDelayedCXXMethodParameter.
2701void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2702}
2703
2704/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2705/// C++ method declaration. We're (re-)introducing the given
2706/// function parameter into scope for use in parsing later parts of
2707/// the method declaration. For example, we could see an
2708/// ActOnParamDefaultArgument event for this parameter.
2709void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2710  if (!ParamD)
2711    return;
2712
2713  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2714
2715  // If this parameter has an unparsed default argument, clear it out
2716  // to make way for the parsed default argument.
2717  if (Param->hasUnparsedDefaultArg())
2718    Param->setDefaultArg(0);
2719
2720  S->AddDecl(Param);
2721  if (Param->getDeclName())
2722    IdResolver.AddDecl(Param);
2723}
2724
2725/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2726/// processing the delayed method declaration for Method. The method
2727/// declaration is now considered finished. There may be a separate
2728/// ActOnStartOfFunctionDef action later (not necessarily
2729/// immediately!) for this method, if it was also defined inside the
2730/// class body.
2731void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2732  if (!MethodD)
2733    return;
2734
2735  AdjustDeclIfTemplate(MethodD);
2736
2737  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2738
2739  // Now that we have our default arguments, check the constructor
2740  // again. It could produce additional diagnostics or affect whether
2741  // the class has implicitly-declared destructors, among other
2742  // things.
2743  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2744    CheckConstructor(Constructor);
2745
2746  // Check the default arguments, which we may have added.
2747  if (!Method->isInvalidDecl())
2748    CheckCXXDefaultArguments(Method);
2749}
2750
2751/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2752/// the well-formedness of the constructor declarator @p D with type @p
2753/// R. If there are any errors in the declarator, this routine will
2754/// emit diagnostics and set the invalid bit to true.  In any case, the type
2755/// will be updated to reflect a well-formed type for the constructor and
2756/// returned.
2757QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2758                                          StorageClass &SC) {
2759  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2760
2761  // C++ [class.ctor]p3:
2762  //   A constructor shall not be virtual (10.3) or static (9.4). A
2763  //   constructor can be invoked for a const, volatile or const
2764  //   volatile object. A constructor shall not be declared const,
2765  //   volatile, or const volatile (9.3.2).
2766  if (isVirtual) {
2767    if (!D.isInvalidType())
2768      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2769        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2770        << SourceRange(D.getIdentifierLoc());
2771    D.setInvalidType();
2772  }
2773  if (SC == SC_Static) {
2774    if (!D.isInvalidType())
2775      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2776        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2777        << SourceRange(D.getIdentifierLoc());
2778    D.setInvalidType();
2779    SC = SC_None;
2780  }
2781
2782  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2783  if (FTI.TypeQuals != 0) {
2784    if (FTI.TypeQuals & Qualifiers::Const)
2785      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2786        << "const" << SourceRange(D.getIdentifierLoc());
2787    if (FTI.TypeQuals & Qualifiers::Volatile)
2788      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2789        << "volatile" << SourceRange(D.getIdentifierLoc());
2790    if (FTI.TypeQuals & Qualifiers::Restrict)
2791      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2792        << "restrict" << SourceRange(D.getIdentifierLoc());
2793  }
2794
2795  // Rebuild the function type "R" without any type qualifiers (in
2796  // case any of the errors above fired) and with "void" as the
2797  // return type, since constructors don't have return types.
2798  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2799  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2800                                 Proto->getNumArgs(),
2801                                 Proto->isVariadic(), 0,
2802                                 Proto->hasExceptionSpec(),
2803                                 Proto->hasAnyExceptionSpec(),
2804                                 Proto->getNumExceptions(),
2805                                 Proto->exception_begin(),
2806                                 Proto->getExtInfo());
2807}
2808
2809/// CheckConstructor - Checks a fully-formed constructor for
2810/// well-formedness, issuing any diagnostics required. Returns true if
2811/// the constructor declarator is invalid.
2812void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2813  CXXRecordDecl *ClassDecl
2814    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2815  if (!ClassDecl)
2816    return Constructor->setInvalidDecl();
2817
2818  // C++ [class.copy]p3:
2819  //   A declaration of a constructor for a class X is ill-formed if
2820  //   its first parameter is of type (optionally cv-qualified) X and
2821  //   either there are no other parameters or else all other
2822  //   parameters have default arguments.
2823  if (!Constructor->isInvalidDecl() &&
2824      ((Constructor->getNumParams() == 1) ||
2825       (Constructor->getNumParams() > 1 &&
2826        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2827      Constructor->getTemplateSpecializationKind()
2828                                              != TSK_ImplicitInstantiation) {
2829    QualType ParamType = Constructor->getParamDecl(0)->getType();
2830    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2831    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2832      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2833      const char *ConstRef
2834        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2835                                                        : " const &";
2836      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2837        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2838
2839      // FIXME: Rather that making the constructor invalid, we should endeavor
2840      // to fix the type.
2841      Constructor->setInvalidDecl();
2842    }
2843  }
2844}
2845
2846/// CheckDestructor - Checks a fully-formed destructor definition for
2847/// well-formedness, issuing any diagnostics required.  Returns true
2848/// on error.
2849bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2850  CXXRecordDecl *RD = Destructor->getParent();
2851
2852  if (Destructor->isVirtual()) {
2853    SourceLocation Loc;
2854
2855    if (!Destructor->isImplicit())
2856      Loc = Destructor->getLocation();
2857    else
2858      Loc = RD->getLocation();
2859
2860    // If we have a virtual destructor, look up the deallocation function
2861    FunctionDecl *OperatorDelete = 0;
2862    DeclarationName Name =
2863    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2864    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2865      return true;
2866
2867    MarkDeclarationReferenced(Loc, OperatorDelete);
2868
2869    Destructor->setOperatorDelete(OperatorDelete);
2870  }
2871
2872  return false;
2873}
2874
2875static inline bool
2876FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2877  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2878          FTI.ArgInfo[0].Param &&
2879          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
2880}
2881
2882/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2883/// the well-formednes of the destructor declarator @p D with type @p
2884/// R. If there are any errors in the declarator, this routine will
2885/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2886/// will be updated to reflect a well-formed type for the destructor and
2887/// returned.
2888QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2889                                         StorageClass& SC) {
2890  // C++ [class.dtor]p1:
2891  //   [...] A typedef-name that names a class is a class-name
2892  //   (7.1.3); however, a typedef-name that names a class shall not
2893  //   be used as the identifier in the declarator for a destructor
2894  //   declaration.
2895  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2896  if (isa<TypedefType>(DeclaratorType))
2897    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2898      << DeclaratorType;
2899
2900  // C++ [class.dtor]p2:
2901  //   A destructor is used to destroy objects of its class type. A
2902  //   destructor takes no parameters, and no return type can be
2903  //   specified for it (not even void). The address of a destructor
2904  //   shall not be taken. A destructor shall not be static. A
2905  //   destructor can be invoked for a const, volatile or const
2906  //   volatile object. A destructor shall not be declared const,
2907  //   volatile or const volatile (9.3.2).
2908  if (SC == SC_Static) {
2909    if (!D.isInvalidType())
2910      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2911        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2912        << SourceRange(D.getIdentifierLoc())
2913        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2914
2915    SC = SC_None;
2916  }
2917  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2918    // Destructors don't have return types, but the parser will
2919    // happily parse something like:
2920    //
2921    //   class X {
2922    //     float ~X();
2923    //   };
2924    //
2925    // The return type will be eliminated later.
2926    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2927      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2928      << SourceRange(D.getIdentifierLoc());
2929  }
2930
2931  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2932  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2933    if (FTI.TypeQuals & Qualifiers::Const)
2934      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2935        << "const" << SourceRange(D.getIdentifierLoc());
2936    if (FTI.TypeQuals & Qualifiers::Volatile)
2937      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2938        << "volatile" << SourceRange(D.getIdentifierLoc());
2939    if (FTI.TypeQuals & Qualifiers::Restrict)
2940      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2941        << "restrict" << SourceRange(D.getIdentifierLoc());
2942    D.setInvalidType();
2943  }
2944
2945  // Make sure we don't have any parameters.
2946  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2947    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2948
2949    // Delete the parameters.
2950    FTI.freeArgs();
2951    D.setInvalidType();
2952  }
2953
2954  // Make sure the destructor isn't variadic.
2955  if (FTI.isVariadic) {
2956    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2957    D.setInvalidType();
2958  }
2959
2960  // Rebuild the function type "R" without any type qualifiers or
2961  // parameters (in case any of the errors above fired) and with
2962  // "void" as the return type, since destructors don't have return
2963  // types.
2964  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2965  if (!Proto)
2966    return QualType();
2967
2968  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2969                                 Proto->hasExceptionSpec(),
2970                                 Proto->hasAnyExceptionSpec(),
2971                                 Proto->getNumExceptions(),
2972                                 Proto->exception_begin(),
2973                                 Proto->getExtInfo());
2974}
2975
2976/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2977/// well-formednes of the conversion function declarator @p D with
2978/// type @p R. If there are any errors in the declarator, this routine
2979/// will emit diagnostics and return true. Otherwise, it will return
2980/// false. Either way, the type @p R will be updated to reflect a
2981/// well-formed type for the conversion operator.
2982void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2983                                     StorageClass& SC) {
2984  // C++ [class.conv.fct]p1:
2985  //   Neither parameter types nor return type can be specified. The
2986  //   type of a conversion function (8.3.5) is "function taking no
2987  //   parameter returning conversion-type-id."
2988  if (SC == SC_Static) {
2989    if (!D.isInvalidType())
2990      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2991        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2992        << SourceRange(D.getIdentifierLoc());
2993    D.setInvalidType();
2994    SC = SC_None;
2995  }
2996
2997  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2998
2999  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3000    // Conversion functions don't have return types, but the parser will
3001    // happily parse something like:
3002    //
3003    //   class X {
3004    //     float operator bool();
3005    //   };
3006    //
3007    // The return type will be changed later anyway.
3008    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3009      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3010      << SourceRange(D.getIdentifierLoc());
3011    D.setInvalidType();
3012  }
3013
3014  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3015
3016  // Make sure we don't have any parameters.
3017  if (Proto->getNumArgs() > 0) {
3018    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3019
3020    // Delete the parameters.
3021    D.getTypeObject(0).Fun.freeArgs();
3022    D.setInvalidType();
3023  } else if (Proto->isVariadic()) {
3024    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3025    D.setInvalidType();
3026  }
3027
3028  // Diagnose "&operator bool()" and other such nonsense.  This
3029  // is actually a gcc extension which we don't support.
3030  if (Proto->getResultType() != ConvType) {
3031    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3032      << Proto->getResultType();
3033    D.setInvalidType();
3034    ConvType = Proto->getResultType();
3035  }
3036
3037  // C++ [class.conv.fct]p4:
3038  //   The conversion-type-id shall not represent a function type nor
3039  //   an array type.
3040  if (ConvType->isArrayType()) {
3041    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3042    ConvType = Context.getPointerType(ConvType);
3043    D.setInvalidType();
3044  } else if (ConvType->isFunctionType()) {
3045    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3046    ConvType = Context.getPointerType(ConvType);
3047    D.setInvalidType();
3048  }
3049
3050  // Rebuild the function type "R" without any parameters (in case any
3051  // of the errors above fired) and with the conversion type as the
3052  // return type.
3053  if (D.isInvalidType()) {
3054    R = Context.getFunctionType(ConvType, 0, 0, false,
3055                                Proto->getTypeQuals(),
3056                                Proto->hasExceptionSpec(),
3057                                Proto->hasAnyExceptionSpec(),
3058                                Proto->getNumExceptions(),
3059                                Proto->exception_begin(),
3060                                Proto->getExtInfo());
3061  }
3062
3063  // C++0x explicit conversion operators.
3064  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3065    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3066         diag::warn_explicit_conversion_functions)
3067      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3068}
3069
3070/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3071/// the declaration of the given C++ conversion function. This routine
3072/// is responsible for recording the conversion function in the C++
3073/// class, if possible.
3074Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3075  assert(Conversion && "Expected to receive a conversion function declaration");
3076
3077  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3078
3079  // Make sure we aren't redeclaring the conversion function.
3080  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3081
3082  // C++ [class.conv.fct]p1:
3083  //   [...] A conversion function is never used to convert a
3084  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3085  //   same object type (or a reference to it), to a (possibly
3086  //   cv-qualified) base class of that type (or a reference to it),
3087  //   or to (possibly cv-qualified) void.
3088  // FIXME: Suppress this warning if the conversion function ends up being a
3089  // virtual function that overrides a virtual function in a base class.
3090  QualType ClassType
3091    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3092  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3093    ConvType = ConvTypeRef->getPointeeType();
3094  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3095      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3096    /* Suppress diagnostics for instantiations. */;
3097  else if (ConvType->isRecordType()) {
3098    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3099    if (ConvType == ClassType)
3100      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3101        << ClassType;
3102    else if (IsDerivedFrom(ClassType, ConvType))
3103      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3104        <<  ClassType << ConvType;
3105  } else if (ConvType->isVoidType()) {
3106    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3107      << ClassType << ConvType;
3108  }
3109
3110  if (FunctionTemplateDecl *ConversionTemplate
3111                                = Conversion->getDescribedFunctionTemplate())
3112    return ConversionTemplate;
3113
3114  return Conversion;
3115}
3116
3117//===----------------------------------------------------------------------===//
3118// Namespace Handling
3119//===----------------------------------------------------------------------===//
3120
3121
3122
3123/// ActOnStartNamespaceDef - This is called at the start of a namespace
3124/// definition.
3125Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3126                                   SourceLocation InlineLoc,
3127                                   SourceLocation IdentLoc,
3128                                   IdentifierInfo *II,
3129                                   SourceLocation LBrace,
3130                                   AttributeList *AttrList) {
3131  // anonymous namespace starts at its left brace
3132  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3133    (II ? IdentLoc : LBrace) , II);
3134  Namespc->setLBracLoc(LBrace);
3135  Namespc->setInline(InlineLoc.isValid());
3136
3137  Scope *DeclRegionScope = NamespcScope->getParent();
3138
3139  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3140
3141  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3142    PushVisibilityAttr(attr);
3143
3144  if (II) {
3145    // C++ [namespace.def]p2:
3146    // The identifier in an original-namespace-definition shall not have been
3147    // previously defined in the declarative region in which the
3148    // original-namespace-definition appears. The identifier in an
3149    // original-namespace-definition is the name of the namespace. Subsequently
3150    // in that declarative region, it is treated as an original-namespace-name.
3151
3152    NamedDecl *PrevDecl
3153      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3154                         ForRedeclaration);
3155
3156    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3157      // This is an extended namespace definition.
3158      if (Namespc->isInline() != OrigNS->isInline()) {
3159        // inline-ness must match
3160        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3161          << Namespc->isInline();
3162        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3163        Namespc->setInvalidDecl();
3164        // Recover by ignoring the new namespace's inline status.
3165        Namespc->setInline(OrigNS->isInline());
3166      }
3167
3168      // Attach this namespace decl to the chain of extended namespace
3169      // definitions.
3170      OrigNS->setNextNamespace(Namespc);
3171      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3172
3173      // Remove the previous declaration from the scope.
3174      if (DeclRegionScope->isDeclScope(OrigNS)) {
3175        IdResolver.RemoveDecl(OrigNS);
3176        DeclRegionScope->RemoveDecl(OrigNS);
3177      }
3178    } else if (PrevDecl) {
3179      // This is an invalid name redefinition.
3180      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3181       << Namespc->getDeclName();
3182      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3183      Namespc->setInvalidDecl();
3184      // Continue on to push Namespc as current DeclContext and return it.
3185    } else if (II->isStr("std") &&
3186               CurContext->getRedeclContext()->isTranslationUnit()) {
3187      // This is the first "real" definition of the namespace "std", so update
3188      // our cache of the "std" namespace to point at this definition.
3189      if (NamespaceDecl *StdNS = getStdNamespace()) {
3190        // We had already defined a dummy namespace "std". Link this new
3191        // namespace definition to the dummy namespace "std".
3192        StdNS->setNextNamespace(Namespc);
3193        StdNS->setLocation(IdentLoc);
3194        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3195      }
3196
3197      // Make our StdNamespace cache point at the first real definition of the
3198      // "std" namespace.
3199      StdNamespace = Namespc;
3200    }
3201
3202    PushOnScopeChains(Namespc, DeclRegionScope);
3203  } else {
3204    // Anonymous namespaces.
3205    assert(Namespc->isAnonymousNamespace());
3206
3207    // Link the anonymous namespace into its parent.
3208    NamespaceDecl *PrevDecl;
3209    DeclContext *Parent = CurContext->getRedeclContext();
3210    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3211      PrevDecl = TU->getAnonymousNamespace();
3212      TU->setAnonymousNamespace(Namespc);
3213    } else {
3214      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3215      PrevDecl = ND->getAnonymousNamespace();
3216      ND->setAnonymousNamespace(Namespc);
3217    }
3218
3219    // Link the anonymous namespace with its previous declaration.
3220    if (PrevDecl) {
3221      assert(PrevDecl->isAnonymousNamespace());
3222      assert(!PrevDecl->getNextNamespace());
3223      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3224      PrevDecl->setNextNamespace(Namespc);
3225
3226      if (Namespc->isInline() != PrevDecl->isInline()) {
3227        // inline-ness must match
3228        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3229          << Namespc->isInline();
3230        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3231        Namespc->setInvalidDecl();
3232        // Recover by ignoring the new namespace's inline status.
3233        Namespc->setInline(PrevDecl->isInline());
3234      }
3235    }
3236
3237    CurContext->addDecl(Namespc);
3238
3239    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3240    //   behaves as if it were replaced by
3241    //     namespace unique { /* empty body */ }
3242    //     using namespace unique;
3243    //     namespace unique { namespace-body }
3244    //   where all occurrences of 'unique' in a translation unit are
3245    //   replaced by the same identifier and this identifier differs
3246    //   from all other identifiers in the entire program.
3247
3248    // We just create the namespace with an empty name and then add an
3249    // implicit using declaration, just like the standard suggests.
3250    //
3251    // CodeGen enforces the "universally unique" aspect by giving all
3252    // declarations semantically contained within an anonymous
3253    // namespace internal linkage.
3254
3255    if (!PrevDecl) {
3256      UsingDirectiveDecl* UD
3257        = UsingDirectiveDecl::Create(Context, CurContext,
3258                                     /* 'using' */ LBrace,
3259                                     /* 'namespace' */ SourceLocation(),
3260                                     /* qualifier */ SourceRange(),
3261                                     /* NNS */ NULL,
3262                                     /* identifier */ SourceLocation(),
3263                                     Namespc,
3264                                     /* Ancestor */ CurContext);
3265      UD->setImplicit();
3266      CurContext->addDecl(UD);
3267    }
3268  }
3269
3270  // Although we could have an invalid decl (i.e. the namespace name is a
3271  // redefinition), push it as current DeclContext and try to continue parsing.
3272  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3273  // for the namespace has the declarations that showed up in that particular
3274  // namespace definition.
3275  PushDeclContext(NamespcScope, Namespc);
3276  return Namespc;
3277}
3278
3279/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3280/// is a namespace alias, returns the namespace it points to.
3281static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3282  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3283    return AD->getNamespace();
3284  return dyn_cast_or_null<NamespaceDecl>(D);
3285}
3286
3287/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3288/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3289void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3290  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3291  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3292  Namespc->setRBracLoc(RBrace);
3293  PopDeclContext();
3294  if (Namespc->hasAttr<VisibilityAttr>())
3295    PopPragmaVisibility();
3296}
3297
3298CXXRecordDecl *Sema::getStdBadAlloc() const {
3299  return cast_or_null<CXXRecordDecl>(
3300                                  StdBadAlloc.get(Context.getExternalSource()));
3301}
3302
3303NamespaceDecl *Sema::getStdNamespace() const {
3304  return cast_or_null<NamespaceDecl>(
3305                                 StdNamespace.get(Context.getExternalSource()));
3306}
3307
3308/// \brief Retrieve the special "std" namespace, which may require us to
3309/// implicitly define the namespace.
3310NamespaceDecl *Sema::getOrCreateStdNamespace() {
3311  if (!StdNamespace) {
3312    // The "std" namespace has not yet been defined, so build one implicitly.
3313    StdNamespace = NamespaceDecl::Create(Context,
3314                                         Context.getTranslationUnitDecl(),
3315                                         SourceLocation(),
3316                                         &PP.getIdentifierTable().get("std"));
3317    getStdNamespace()->setImplicit(true);
3318  }
3319
3320  return getStdNamespace();
3321}
3322
3323Decl *Sema::ActOnUsingDirective(Scope *S,
3324                                          SourceLocation UsingLoc,
3325                                          SourceLocation NamespcLoc,
3326                                          CXXScopeSpec &SS,
3327                                          SourceLocation IdentLoc,
3328                                          IdentifierInfo *NamespcName,
3329                                          AttributeList *AttrList) {
3330  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3331  assert(NamespcName && "Invalid NamespcName.");
3332  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3333  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3334
3335  UsingDirectiveDecl *UDir = 0;
3336  NestedNameSpecifier *Qualifier = 0;
3337  if (SS.isSet())
3338    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3339
3340  // Lookup namespace name.
3341  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3342  LookupParsedName(R, S, &SS);
3343  if (R.isAmbiguous())
3344    return 0;
3345
3346  if (R.empty()) {
3347    // Allow "using namespace std;" or "using namespace ::std;" even if
3348    // "std" hasn't been defined yet, for GCC compatibility.
3349    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3350        NamespcName->isStr("std")) {
3351      Diag(IdentLoc, diag::ext_using_undefined_std);
3352      R.addDecl(getOrCreateStdNamespace());
3353      R.resolveKind();
3354    }
3355    // Otherwise, attempt typo correction.
3356    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3357                                                       CTC_NoKeywords, 0)) {
3358      if (R.getAsSingle<NamespaceDecl>() ||
3359          R.getAsSingle<NamespaceAliasDecl>()) {
3360        if (DeclContext *DC = computeDeclContext(SS, false))
3361          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3362            << NamespcName << DC << Corrected << SS.getRange()
3363            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3364        else
3365          Diag(IdentLoc, diag::err_using_directive_suggest)
3366            << NamespcName << Corrected
3367            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3368        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3369          << Corrected;
3370
3371        NamespcName = Corrected.getAsIdentifierInfo();
3372      } else {
3373        R.clear();
3374        R.setLookupName(NamespcName);
3375      }
3376    }
3377  }
3378
3379  if (!R.empty()) {
3380    NamedDecl *Named = R.getFoundDecl();
3381    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3382        && "expected namespace decl");
3383    // C++ [namespace.udir]p1:
3384    //   A using-directive specifies that the names in the nominated
3385    //   namespace can be used in the scope in which the
3386    //   using-directive appears after the using-directive. During
3387    //   unqualified name lookup (3.4.1), the names appear as if they
3388    //   were declared in the nearest enclosing namespace which
3389    //   contains both the using-directive and the nominated
3390    //   namespace. [Note: in this context, "contains" means "contains
3391    //   directly or indirectly". ]
3392
3393    // Find enclosing context containing both using-directive and
3394    // nominated namespace.
3395    NamespaceDecl *NS = getNamespaceDecl(Named);
3396    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3397    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3398      CommonAncestor = CommonAncestor->getParent();
3399
3400    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3401                                      SS.getRange(),
3402                                      (NestedNameSpecifier *)SS.getScopeRep(),
3403                                      IdentLoc, Named, CommonAncestor);
3404    PushUsingDirective(S, UDir);
3405  } else {
3406    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3407  }
3408
3409  // FIXME: We ignore attributes for now.
3410  delete AttrList;
3411  return UDir;
3412}
3413
3414void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3415  // If scope has associated entity, then using directive is at namespace
3416  // or translation unit scope. We add UsingDirectiveDecls, into
3417  // it's lookup structure.
3418  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3419    Ctx->addDecl(UDir);
3420  else
3421    // Otherwise it is block-sope. using-directives will affect lookup
3422    // only to the end of scope.
3423    S->PushUsingDirective(UDir);
3424}
3425
3426
3427Decl *Sema::ActOnUsingDeclaration(Scope *S,
3428                                            AccessSpecifier AS,
3429                                            bool HasUsingKeyword,
3430                                            SourceLocation UsingLoc,
3431                                            CXXScopeSpec &SS,
3432                                            UnqualifiedId &Name,
3433                                            AttributeList *AttrList,
3434                                            bool IsTypeName,
3435                                            SourceLocation TypenameLoc) {
3436  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3437
3438  switch (Name.getKind()) {
3439  case UnqualifiedId::IK_Identifier:
3440  case UnqualifiedId::IK_OperatorFunctionId:
3441  case UnqualifiedId::IK_LiteralOperatorId:
3442  case UnqualifiedId::IK_ConversionFunctionId:
3443    break;
3444
3445  case UnqualifiedId::IK_ConstructorName:
3446  case UnqualifiedId::IK_ConstructorTemplateId:
3447    // C++0x inherited constructors.
3448    if (getLangOptions().CPlusPlus0x) break;
3449
3450    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3451      << SS.getRange();
3452    return 0;
3453
3454  case UnqualifiedId::IK_DestructorName:
3455    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3456      << SS.getRange();
3457    return 0;
3458
3459  case UnqualifiedId::IK_TemplateId:
3460    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3461      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3462    return 0;
3463  }
3464
3465  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3466  DeclarationName TargetName = TargetNameInfo.getName();
3467  if (!TargetName)
3468    return 0;
3469
3470  // Warn about using declarations.
3471  // TODO: store that the declaration was written without 'using' and
3472  // talk about access decls instead of using decls in the
3473  // diagnostics.
3474  if (!HasUsingKeyword) {
3475    UsingLoc = Name.getSourceRange().getBegin();
3476
3477    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3478      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3479  }
3480
3481  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3482                                        TargetNameInfo, AttrList,
3483                                        /* IsInstantiation */ false,
3484                                        IsTypeName, TypenameLoc);
3485  if (UD)
3486    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3487
3488  return UD;
3489}
3490
3491/// \brief Determine whether a using declaration considers the given
3492/// declarations as "equivalent", e.g., if they are redeclarations of
3493/// the same entity or are both typedefs of the same type.
3494static bool
3495IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3496                         bool &SuppressRedeclaration) {
3497  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3498    SuppressRedeclaration = false;
3499    return true;
3500  }
3501
3502  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3503    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3504      SuppressRedeclaration = true;
3505      return Context.hasSameType(TD1->getUnderlyingType(),
3506                                 TD2->getUnderlyingType());
3507    }
3508
3509  return false;
3510}
3511
3512
3513/// Determines whether to create a using shadow decl for a particular
3514/// decl, given the set of decls existing prior to this using lookup.
3515bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3516                                const LookupResult &Previous) {
3517  // Diagnose finding a decl which is not from a base class of the
3518  // current class.  We do this now because there are cases where this
3519  // function will silently decide not to build a shadow decl, which
3520  // will pre-empt further diagnostics.
3521  //
3522  // We don't need to do this in C++0x because we do the check once on
3523  // the qualifier.
3524  //
3525  // FIXME: diagnose the following if we care enough:
3526  //   struct A { int foo; };
3527  //   struct B : A { using A::foo; };
3528  //   template <class T> struct C : A {};
3529  //   template <class T> struct D : C<T> { using B::foo; } // <---
3530  // This is invalid (during instantiation) in C++03 because B::foo
3531  // resolves to the using decl in B, which is not a base class of D<T>.
3532  // We can't diagnose it immediately because C<T> is an unknown
3533  // specialization.  The UsingShadowDecl in D<T> then points directly
3534  // to A::foo, which will look well-formed when we instantiate.
3535  // The right solution is to not collapse the shadow-decl chain.
3536  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3537    DeclContext *OrigDC = Orig->getDeclContext();
3538
3539    // Handle enums and anonymous structs.
3540    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3541    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3542    while (OrigRec->isAnonymousStructOrUnion())
3543      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3544
3545    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3546      if (OrigDC == CurContext) {
3547        Diag(Using->getLocation(),
3548             diag::err_using_decl_nested_name_specifier_is_current_class)
3549          << Using->getNestedNameRange();
3550        Diag(Orig->getLocation(), diag::note_using_decl_target);
3551        return true;
3552      }
3553
3554      Diag(Using->getNestedNameRange().getBegin(),
3555           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3556        << Using->getTargetNestedNameDecl()
3557        << cast<CXXRecordDecl>(CurContext)
3558        << Using->getNestedNameRange();
3559      Diag(Orig->getLocation(), diag::note_using_decl_target);
3560      return true;
3561    }
3562  }
3563
3564  if (Previous.empty()) return false;
3565
3566  NamedDecl *Target = Orig;
3567  if (isa<UsingShadowDecl>(Target))
3568    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3569
3570  // If the target happens to be one of the previous declarations, we
3571  // don't have a conflict.
3572  //
3573  // FIXME: but we might be increasing its access, in which case we
3574  // should redeclare it.
3575  NamedDecl *NonTag = 0, *Tag = 0;
3576  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3577         I != E; ++I) {
3578    NamedDecl *D = (*I)->getUnderlyingDecl();
3579    bool Result;
3580    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3581      return Result;
3582
3583    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3584  }
3585
3586  if (Target->isFunctionOrFunctionTemplate()) {
3587    FunctionDecl *FD;
3588    if (isa<FunctionTemplateDecl>(Target))
3589      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3590    else
3591      FD = cast<FunctionDecl>(Target);
3592
3593    NamedDecl *OldDecl = 0;
3594    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3595    case Ovl_Overload:
3596      return false;
3597
3598    case Ovl_NonFunction:
3599      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3600      break;
3601
3602    // We found a decl with the exact signature.
3603    case Ovl_Match:
3604      // If we're in a record, we want to hide the target, so we
3605      // return true (without a diagnostic) to tell the caller not to
3606      // build a shadow decl.
3607      if (CurContext->isRecord())
3608        return true;
3609
3610      // If we're not in a record, this is an error.
3611      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3612      break;
3613    }
3614
3615    Diag(Target->getLocation(), diag::note_using_decl_target);
3616    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3617    return true;
3618  }
3619
3620  // Target is not a function.
3621
3622  if (isa<TagDecl>(Target)) {
3623    // No conflict between a tag and a non-tag.
3624    if (!Tag) return false;
3625
3626    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3627    Diag(Target->getLocation(), diag::note_using_decl_target);
3628    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3629    return true;
3630  }
3631
3632  // No conflict between a tag and a non-tag.
3633  if (!NonTag) return false;
3634
3635  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3636  Diag(Target->getLocation(), diag::note_using_decl_target);
3637  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3638  return true;
3639}
3640
3641/// Builds a shadow declaration corresponding to a 'using' declaration.
3642UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3643                                            UsingDecl *UD,
3644                                            NamedDecl *Orig) {
3645
3646  // If we resolved to another shadow declaration, just coalesce them.
3647  NamedDecl *Target = Orig;
3648  if (isa<UsingShadowDecl>(Target)) {
3649    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3650    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3651  }
3652
3653  UsingShadowDecl *Shadow
3654    = UsingShadowDecl::Create(Context, CurContext,
3655                              UD->getLocation(), UD, Target);
3656  UD->addShadowDecl(Shadow);
3657
3658  Shadow->setAccess(UD->getAccess());
3659  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3660    Shadow->setInvalidDecl();
3661
3662  if (S)
3663    PushOnScopeChains(Shadow, S);
3664  else
3665    CurContext->addDecl(Shadow);
3666
3667
3668  return Shadow;
3669}
3670
3671/// Hides a using shadow declaration.  This is required by the current
3672/// using-decl implementation when a resolvable using declaration in a
3673/// class is followed by a declaration which would hide or override
3674/// one or more of the using decl's targets; for example:
3675///
3676///   struct Base { void foo(int); };
3677///   struct Derived : Base {
3678///     using Base::foo;
3679///     void foo(int);
3680///   };
3681///
3682/// The governing language is C++03 [namespace.udecl]p12:
3683///
3684///   When a using-declaration brings names from a base class into a
3685///   derived class scope, member functions in the derived class
3686///   override and/or hide member functions with the same name and
3687///   parameter types in a base class (rather than conflicting).
3688///
3689/// There are two ways to implement this:
3690///   (1) optimistically create shadow decls when they're not hidden
3691///       by existing declarations, or
3692///   (2) don't create any shadow decls (or at least don't make them
3693///       visible) until we've fully parsed/instantiated the class.
3694/// The problem with (1) is that we might have to retroactively remove
3695/// a shadow decl, which requires several O(n) operations because the
3696/// decl structures are (very reasonably) not designed for removal.
3697/// (2) avoids this but is very fiddly and phase-dependent.
3698void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3699  if (Shadow->getDeclName().getNameKind() ==
3700        DeclarationName::CXXConversionFunctionName)
3701    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3702
3703  // Remove it from the DeclContext...
3704  Shadow->getDeclContext()->removeDecl(Shadow);
3705
3706  // ...and the scope, if applicable...
3707  if (S) {
3708    S->RemoveDecl(Shadow);
3709    IdResolver.RemoveDecl(Shadow);
3710  }
3711
3712  // ...and the using decl.
3713  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3714
3715  // TODO: complain somehow if Shadow was used.  It shouldn't
3716  // be possible for this to happen, because...?
3717}
3718
3719/// Builds a using declaration.
3720///
3721/// \param IsInstantiation - Whether this call arises from an
3722///   instantiation of an unresolved using declaration.  We treat
3723///   the lookup differently for these declarations.
3724NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3725                                       SourceLocation UsingLoc,
3726                                       CXXScopeSpec &SS,
3727                                       const DeclarationNameInfo &NameInfo,
3728                                       AttributeList *AttrList,
3729                                       bool IsInstantiation,
3730                                       bool IsTypeName,
3731                                       SourceLocation TypenameLoc) {
3732  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3733  SourceLocation IdentLoc = NameInfo.getLoc();
3734  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3735
3736  // FIXME: We ignore attributes for now.
3737  delete AttrList;
3738
3739  if (SS.isEmpty()) {
3740    Diag(IdentLoc, diag::err_using_requires_qualname);
3741    return 0;
3742  }
3743
3744  // Do the redeclaration lookup in the current scope.
3745  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3746                        ForRedeclaration);
3747  Previous.setHideTags(false);
3748  if (S) {
3749    LookupName(Previous, S);
3750
3751    // It is really dumb that we have to do this.
3752    LookupResult::Filter F = Previous.makeFilter();
3753    while (F.hasNext()) {
3754      NamedDecl *D = F.next();
3755      if (!isDeclInScope(D, CurContext, S))
3756        F.erase();
3757    }
3758    F.done();
3759  } else {
3760    assert(IsInstantiation && "no scope in non-instantiation");
3761    assert(CurContext->isRecord() && "scope not record in instantiation");
3762    LookupQualifiedName(Previous, CurContext);
3763  }
3764
3765  NestedNameSpecifier *NNS =
3766    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3767
3768  // Check for invalid redeclarations.
3769  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3770    return 0;
3771
3772  // Check for bad qualifiers.
3773  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3774    return 0;
3775
3776  DeclContext *LookupContext = computeDeclContext(SS);
3777  NamedDecl *D;
3778  if (!LookupContext) {
3779    if (IsTypeName) {
3780      // FIXME: not all declaration name kinds are legal here
3781      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3782                                              UsingLoc, TypenameLoc,
3783                                              SS.getRange(), NNS,
3784                                              IdentLoc, NameInfo.getName());
3785    } else {
3786      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3787                                           UsingLoc, SS.getRange(),
3788                                           NNS, NameInfo);
3789    }
3790  } else {
3791    D = UsingDecl::Create(Context, CurContext,
3792                          SS.getRange(), UsingLoc, NNS, NameInfo,
3793                          IsTypeName);
3794  }
3795  D->setAccess(AS);
3796  CurContext->addDecl(D);
3797
3798  if (!LookupContext) return D;
3799  UsingDecl *UD = cast<UsingDecl>(D);
3800
3801  if (RequireCompleteDeclContext(SS, LookupContext)) {
3802    UD->setInvalidDecl();
3803    return UD;
3804  }
3805
3806  // Look up the target name.
3807
3808  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3809
3810  // Unlike most lookups, we don't always want to hide tag
3811  // declarations: tag names are visible through the using declaration
3812  // even if hidden by ordinary names, *except* in a dependent context
3813  // where it's important for the sanity of two-phase lookup.
3814  if (!IsInstantiation)
3815    R.setHideTags(false);
3816
3817  LookupQualifiedName(R, LookupContext);
3818
3819  if (R.empty()) {
3820    Diag(IdentLoc, diag::err_no_member)
3821      << NameInfo.getName() << LookupContext << SS.getRange();
3822    UD->setInvalidDecl();
3823    return UD;
3824  }
3825
3826  if (R.isAmbiguous()) {
3827    UD->setInvalidDecl();
3828    return UD;
3829  }
3830
3831  if (IsTypeName) {
3832    // If we asked for a typename and got a non-type decl, error out.
3833    if (!R.getAsSingle<TypeDecl>()) {
3834      Diag(IdentLoc, diag::err_using_typename_non_type);
3835      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3836        Diag((*I)->getUnderlyingDecl()->getLocation(),
3837             diag::note_using_decl_target);
3838      UD->setInvalidDecl();
3839      return UD;
3840    }
3841  } else {
3842    // If we asked for a non-typename and we got a type, error out,
3843    // but only if this is an instantiation of an unresolved using
3844    // decl.  Otherwise just silently find the type name.
3845    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3846      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3847      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3848      UD->setInvalidDecl();
3849      return UD;
3850    }
3851  }
3852
3853  // C++0x N2914 [namespace.udecl]p6:
3854  // A using-declaration shall not name a namespace.
3855  if (R.getAsSingle<NamespaceDecl>()) {
3856    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3857      << SS.getRange();
3858    UD->setInvalidDecl();
3859    return UD;
3860  }
3861
3862  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3863    if (!CheckUsingShadowDecl(UD, *I, Previous))
3864      BuildUsingShadowDecl(S, UD, *I);
3865  }
3866
3867  return UD;
3868}
3869
3870/// Checks that the given using declaration is not an invalid
3871/// redeclaration.  Note that this is checking only for the using decl
3872/// itself, not for any ill-formedness among the UsingShadowDecls.
3873bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3874                                       bool isTypeName,
3875                                       const CXXScopeSpec &SS,
3876                                       SourceLocation NameLoc,
3877                                       const LookupResult &Prev) {
3878  // C++03 [namespace.udecl]p8:
3879  // C++0x [namespace.udecl]p10:
3880  //   A using-declaration is a declaration and can therefore be used
3881  //   repeatedly where (and only where) multiple declarations are
3882  //   allowed.
3883  //
3884  // That's in non-member contexts.
3885  if (!CurContext->getRedeclContext()->isRecord())
3886    return false;
3887
3888  NestedNameSpecifier *Qual
3889    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3890
3891  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3892    NamedDecl *D = *I;
3893
3894    bool DTypename;
3895    NestedNameSpecifier *DQual;
3896    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3897      DTypename = UD->isTypeName();
3898      DQual = UD->getTargetNestedNameDecl();
3899    } else if (UnresolvedUsingValueDecl *UD
3900                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3901      DTypename = false;
3902      DQual = UD->getTargetNestedNameSpecifier();
3903    } else if (UnresolvedUsingTypenameDecl *UD
3904                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3905      DTypename = true;
3906      DQual = UD->getTargetNestedNameSpecifier();
3907    } else continue;
3908
3909    // using decls differ if one says 'typename' and the other doesn't.
3910    // FIXME: non-dependent using decls?
3911    if (isTypeName != DTypename) continue;
3912
3913    // using decls differ if they name different scopes (but note that
3914    // template instantiation can cause this check to trigger when it
3915    // didn't before instantiation).
3916    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3917        Context.getCanonicalNestedNameSpecifier(DQual))
3918      continue;
3919
3920    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3921    Diag(D->getLocation(), diag::note_using_decl) << 1;
3922    return true;
3923  }
3924
3925  return false;
3926}
3927
3928
3929/// Checks that the given nested-name qualifier used in a using decl
3930/// in the current context is appropriately related to the current
3931/// scope.  If an error is found, diagnoses it and returns true.
3932bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3933                                   const CXXScopeSpec &SS,
3934                                   SourceLocation NameLoc) {
3935  DeclContext *NamedContext = computeDeclContext(SS);
3936
3937  if (!CurContext->isRecord()) {
3938    // C++03 [namespace.udecl]p3:
3939    // C++0x [namespace.udecl]p8:
3940    //   A using-declaration for a class member shall be a member-declaration.
3941
3942    // If we weren't able to compute a valid scope, it must be a
3943    // dependent class scope.
3944    if (!NamedContext || NamedContext->isRecord()) {
3945      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3946        << SS.getRange();
3947      return true;
3948    }
3949
3950    // Otherwise, everything is known to be fine.
3951    return false;
3952  }
3953
3954  // The current scope is a record.
3955
3956  // If the named context is dependent, we can't decide much.
3957  if (!NamedContext) {
3958    // FIXME: in C++0x, we can diagnose if we can prove that the
3959    // nested-name-specifier does not refer to a base class, which is
3960    // still possible in some cases.
3961
3962    // Otherwise we have to conservatively report that things might be
3963    // okay.
3964    return false;
3965  }
3966
3967  if (!NamedContext->isRecord()) {
3968    // Ideally this would point at the last name in the specifier,
3969    // but we don't have that level of source info.
3970    Diag(SS.getRange().getBegin(),
3971         diag::err_using_decl_nested_name_specifier_is_not_class)
3972      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3973    return true;
3974  }
3975
3976  if (getLangOptions().CPlusPlus0x) {
3977    // C++0x [namespace.udecl]p3:
3978    //   In a using-declaration used as a member-declaration, the
3979    //   nested-name-specifier shall name a base class of the class
3980    //   being defined.
3981
3982    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3983                                 cast<CXXRecordDecl>(NamedContext))) {
3984      if (CurContext == NamedContext) {
3985        Diag(NameLoc,
3986             diag::err_using_decl_nested_name_specifier_is_current_class)
3987          << SS.getRange();
3988        return true;
3989      }
3990
3991      Diag(SS.getRange().getBegin(),
3992           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3993        << (NestedNameSpecifier*) SS.getScopeRep()
3994        << cast<CXXRecordDecl>(CurContext)
3995        << SS.getRange();
3996      return true;
3997    }
3998
3999    return false;
4000  }
4001
4002  // C++03 [namespace.udecl]p4:
4003  //   A using-declaration used as a member-declaration shall refer
4004  //   to a member of a base class of the class being defined [etc.].
4005
4006  // Salient point: SS doesn't have to name a base class as long as
4007  // lookup only finds members from base classes.  Therefore we can
4008  // diagnose here only if we can prove that that can't happen,
4009  // i.e. if the class hierarchies provably don't intersect.
4010
4011  // TODO: it would be nice if "definitely valid" results were cached
4012  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4013  // need to be repeated.
4014
4015  struct UserData {
4016    llvm::DenseSet<const CXXRecordDecl*> Bases;
4017
4018    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4019      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4020      Data->Bases.insert(Base);
4021      return true;
4022    }
4023
4024    bool hasDependentBases(const CXXRecordDecl *Class) {
4025      return !Class->forallBases(collect, this);
4026    }
4027
4028    /// Returns true if the base is dependent or is one of the
4029    /// accumulated base classes.
4030    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4031      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4032      return !Data->Bases.count(Base);
4033    }
4034
4035    bool mightShareBases(const CXXRecordDecl *Class) {
4036      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4037    }
4038  };
4039
4040  UserData Data;
4041
4042  // Returns false if we find a dependent base.
4043  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4044    return false;
4045
4046  // Returns false if the class has a dependent base or if it or one
4047  // of its bases is present in the base set of the current context.
4048  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4049    return false;
4050
4051  Diag(SS.getRange().getBegin(),
4052       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4053    << (NestedNameSpecifier*) SS.getScopeRep()
4054    << cast<CXXRecordDecl>(CurContext)
4055    << SS.getRange();
4056
4057  return true;
4058}
4059
4060Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4061                                             SourceLocation NamespaceLoc,
4062                                             SourceLocation AliasLoc,
4063                                             IdentifierInfo *Alias,
4064                                             CXXScopeSpec &SS,
4065                                             SourceLocation IdentLoc,
4066                                             IdentifierInfo *Ident) {
4067
4068  // Lookup the namespace name.
4069  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4070  LookupParsedName(R, S, &SS);
4071
4072  // Check if we have a previous declaration with the same name.
4073  NamedDecl *PrevDecl
4074    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4075                       ForRedeclaration);
4076  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4077    PrevDecl = 0;
4078
4079  if (PrevDecl) {
4080    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4081      // We already have an alias with the same name that points to the same
4082      // namespace, so don't create a new one.
4083      // FIXME: At some point, we'll want to create the (redundant)
4084      // declaration to maintain better source information.
4085      if (!R.isAmbiguous() && !R.empty() &&
4086          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4087        return 0;
4088    }
4089
4090    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4091      diag::err_redefinition_different_kind;
4092    Diag(AliasLoc, DiagID) << Alias;
4093    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4094    return 0;
4095  }
4096
4097  if (R.isAmbiguous())
4098    return 0;
4099
4100  if (R.empty()) {
4101    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4102                                                CTC_NoKeywords, 0)) {
4103      if (R.getAsSingle<NamespaceDecl>() ||
4104          R.getAsSingle<NamespaceAliasDecl>()) {
4105        if (DeclContext *DC = computeDeclContext(SS, false))
4106          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4107            << Ident << DC << Corrected << SS.getRange()
4108            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4109        else
4110          Diag(IdentLoc, diag::err_using_directive_suggest)
4111            << Ident << Corrected
4112            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4113
4114        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4115          << Corrected;
4116
4117        Ident = Corrected.getAsIdentifierInfo();
4118      } else {
4119        R.clear();
4120        R.setLookupName(Ident);
4121      }
4122    }
4123
4124    if (R.empty()) {
4125      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4126      return 0;
4127    }
4128  }
4129
4130  NamespaceAliasDecl *AliasDecl =
4131    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4132                               Alias, SS.getRange(),
4133                               (NestedNameSpecifier *)SS.getScopeRep(),
4134                               IdentLoc, R.getFoundDecl());
4135
4136  PushOnScopeChains(AliasDecl, S);
4137  return AliasDecl;
4138}
4139
4140namespace {
4141  /// \brief Scoped object used to handle the state changes required in Sema
4142  /// to implicitly define the body of a C++ member function;
4143  class ImplicitlyDefinedFunctionScope {
4144    Sema &S;
4145    DeclContext *PreviousContext;
4146
4147  public:
4148    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4149      : S(S), PreviousContext(S.CurContext)
4150    {
4151      S.CurContext = Method;
4152      S.PushFunctionScope();
4153      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4154    }
4155
4156    ~ImplicitlyDefinedFunctionScope() {
4157      S.PopExpressionEvaluationContext();
4158      S.PopFunctionOrBlockScope();
4159      S.CurContext = PreviousContext;
4160    }
4161  };
4162}
4163
4164static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4165                                                       CXXRecordDecl *D) {
4166  ASTContext &Context = Self.Context;
4167  QualType ClassType = Context.getTypeDeclType(D);
4168  DeclarationName ConstructorName
4169    = Context.DeclarationNames.getCXXConstructorName(
4170                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4171
4172  DeclContext::lookup_const_iterator Con, ConEnd;
4173  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4174       Con != ConEnd; ++Con) {
4175    // FIXME: In C++0x, a constructor template can be a default constructor.
4176    if (isa<FunctionTemplateDecl>(*Con))
4177      continue;
4178
4179    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4180    if (Constructor->isDefaultConstructor())
4181      return Constructor;
4182  }
4183  return 0;
4184}
4185
4186CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4187                                                     CXXRecordDecl *ClassDecl) {
4188  // C++ [class.ctor]p5:
4189  //   A default constructor for a class X is a constructor of class X
4190  //   that can be called without an argument. If there is no
4191  //   user-declared constructor for class X, a default constructor is
4192  //   implicitly declared. An implicitly-declared default constructor
4193  //   is an inline public member of its class.
4194  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4195         "Should not build implicit default constructor!");
4196
4197  // C++ [except.spec]p14:
4198  //   An implicitly declared special member function (Clause 12) shall have an
4199  //   exception-specification. [...]
4200  ImplicitExceptionSpecification ExceptSpec(Context);
4201
4202  // Direct base-class destructors.
4203  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4204                                       BEnd = ClassDecl->bases_end();
4205       B != BEnd; ++B) {
4206    if (B->isVirtual()) // Handled below.
4207      continue;
4208
4209    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4210      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4211      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4212        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4213      else if (CXXConstructorDecl *Constructor
4214                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4215        ExceptSpec.CalledDecl(Constructor);
4216    }
4217  }
4218
4219  // Virtual base-class destructors.
4220  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4221                                       BEnd = ClassDecl->vbases_end();
4222       B != BEnd; ++B) {
4223    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4224      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4225      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4226        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4227      else if (CXXConstructorDecl *Constructor
4228                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4229        ExceptSpec.CalledDecl(Constructor);
4230    }
4231  }
4232
4233  // Field destructors.
4234  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4235                               FEnd = ClassDecl->field_end();
4236       F != FEnd; ++F) {
4237    if (const RecordType *RecordTy
4238              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4239      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4240      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4241        ExceptSpec.CalledDecl(
4242                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4243      else if (CXXConstructorDecl *Constructor
4244                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4245        ExceptSpec.CalledDecl(Constructor);
4246    }
4247  }
4248
4249
4250  // Create the actual constructor declaration.
4251  CanQualType ClassType
4252    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4253  DeclarationName Name
4254    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4255  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4256  CXXConstructorDecl *DefaultCon
4257    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4258                                 Context.getFunctionType(Context.VoidTy,
4259                                                         0, 0, false, 0,
4260                                       ExceptSpec.hasExceptionSpecification(),
4261                                     ExceptSpec.hasAnyExceptionSpecification(),
4262                                                         ExceptSpec.size(),
4263                                                         ExceptSpec.data(),
4264                                                       FunctionType::ExtInfo()),
4265                                 /*TInfo=*/0,
4266                                 /*isExplicit=*/false,
4267                                 /*isInline=*/true,
4268                                 /*isImplicitlyDeclared=*/true);
4269  DefaultCon->setAccess(AS_public);
4270  DefaultCon->setImplicit();
4271  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4272
4273  // Note that we have declared this constructor.
4274  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4275
4276  if (Scope *S = getScopeForContext(ClassDecl))
4277    PushOnScopeChains(DefaultCon, S, false);
4278  ClassDecl->addDecl(DefaultCon);
4279
4280  return DefaultCon;
4281}
4282
4283void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4284                                            CXXConstructorDecl *Constructor) {
4285  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4286          !Constructor->isUsed(false)) &&
4287    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4288
4289  CXXRecordDecl *ClassDecl = Constructor->getParent();
4290  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4291
4292  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4293  ErrorTrap Trap(*this);
4294  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4295      Trap.hasErrorOccurred()) {
4296    Diag(CurrentLocation, diag::note_member_synthesized_at)
4297      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4298    Constructor->setInvalidDecl();
4299    return;
4300  }
4301
4302  SourceLocation Loc = Constructor->getLocation();
4303  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4304
4305  Constructor->setUsed();
4306  MarkVTableUsed(CurrentLocation, ClassDecl);
4307}
4308
4309CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4310  // C++ [class.dtor]p2:
4311  //   If a class has no user-declared destructor, a destructor is
4312  //   declared implicitly. An implicitly-declared destructor is an
4313  //   inline public member of its class.
4314
4315  // C++ [except.spec]p14:
4316  //   An implicitly declared special member function (Clause 12) shall have
4317  //   an exception-specification.
4318  ImplicitExceptionSpecification ExceptSpec(Context);
4319
4320  // Direct base-class destructors.
4321  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4322                                       BEnd = ClassDecl->bases_end();
4323       B != BEnd; ++B) {
4324    if (B->isVirtual()) // Handled below.
4325      continue;
4326
4327    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4328      ExceptSpec.CalledDecl(
4329                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4330  }
4331
4332  // Virtual base-class destructors.
4333  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4334                                       BEnd = ClassDecl->vbases_end();
4335       B != BEnd; ++B) {
4336    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4337      ExceptSpec.CalledDecl(
4338                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4339  }
4340
4341  // Field destructors.
4342  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4343                               FEnd = ClassDecl->field_end();
4344       F != FEnd; ++F) {
4345    if (const RecordType *RecordTy
4346        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4347      ExceptSpec.CalledDecl(
4348                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4349  }
4350
4351  // Create the actual destructor declaration.
4352  QualType Ty = Context.getFunctionType(Context.VoidTy,
4353                                        0, 0, false, 0,
4354                                        ExceptSpec.hasExceptionSpecification(),
4355                                    ExceptSpec.hasAnyExceptionSpecification(),
4356                                        ExceptSpec.size(),
4357                                        ExceptSpec.data(),
4358                                        FunctionType::ExtInfo());
4359
4360  CanQualType ClassType
4361    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4362  DeclarationName Name
4363    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4364  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4365  CXXDestructorDecl *Destructor
4366    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4367                                /*isInline=*/true,
4368                                /*isImplicitlyDeclared=*/true);
4369  Destructor->setAccess(AS_public);
4370  Destructor->setImplicit();
4371  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4372
4373  // Note that we have declared this destructor.
4374  ++ASTContext::NumImplicitDestructorsDeclared;
4375
4376  // Introduce this destructor into its scope.
4377  if (Scope *S = getScopeForContext(ClassDecl))
4378    PushOnScopeChains(Destructor, S, false);
4379  ClassDecl->addDecl(Destructor);
4380
4381  // This could be uniqued if it ever proves significant.
4382  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4383
4384  AddOverriddenMethods(ClassDecl, Destructor);
4385
4386  return Destructor;
4387}
4388
4389void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4390                                    CXXDestructorDecl *Destructor) {
4391  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4392         "DefineImplicitDestructor - call it for implicit default dtor");
4393  CXXRecordDecl *ClassDecl = Destructor->getParent();
4394  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4395
4396  if (Destructor->isInvalidDecl())
4397    return;
4398
4399  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4400
4401  ErrorTrap Trap(*this);
4402  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4403                                         Destructor->getParent());
4404
4405  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4406    Diag(CurrentLocation, diag::note_member_synthesized_at)
4407      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4408
4409    Destructor->setInvalidDecl();
4410    return;
4411  }
4412
4413  SourceLocation Loc = Destructor->getLocation();
4414  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4415
4416  Destructor->setUsed();
4417  MarkVTableUsed(CurrentLocation, ClassDecl);
4418}
4419
4420/// \brief Builds a statement that copies the given entity from \p From to
4421/// \c To.
4422///
4423/// This routine is used to copy the members of a class with an
4424/// implicitly-declared copy assignment operator. When the entities being
4425/// copied are arrays, this routine builds for loops to copy them.
4426///
4427/// \param S The Sema object used for type-checking.
4428///
4429/// \param Loc The location where the implicit copy is being generated.
4430///
4431/// \param T The type of the expressions being copied. Both expressions must
4432/// have this type.
4433///
4434/// \param To The expression we are copying to.
4435///
4436/// \param From The expression we are copying from.
4437///
4438/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4439/// Otherwise, it's a non-static member subobject.
4440///
4441/// \param Depth Internal parameter recording the depth of the recursion.
4442///
4443/// \returns A statement or a loop that copies the expressions.
4444static StmtResult
4445BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4446                      Expr *To, Expr *From,
4447                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4448  // C++0x [class.copy]p30:
4449  //   Each subobject is assigned in the manner appropriate to its type:
4450  //
4451  //     - if the subobject is of class type, the copy assignment operator
4452  //       for the class is used (as if by explicit qualification; that is,
4453  //       ignoring any possible virtual overriding functions in more derived
4454  //       classes);
4455  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4456    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4457
4458    // Look for operator=.
4459    DeclarationName Name
4460      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4461    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4462    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4463
4464    // Filter out any result that isn't a copy-assignment operator.
4465    LookupResult::Filter F = OpLookup.makeFilter();
4466    while (F.hasNext()) {
4467      NamedDecl *D = F.next();
4468      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4469        if (Method->isCopyAssignmentOperator())
4470          continue;
4471
4472      F.erase();
4473    }
4474    F.done();
4475
4476    // Suppress the protected check (C++ [class.protected]) for each of the
4477    // assignment operators we found. This strange dance is required when
4478    // we're assigning via a base classes's copy-assignment operator. To
4479    // ensure that we're getting the right base class subobject (without
4480    // ambiguities), we need to cast "this" to that subobject type; to
4481    // ensure that we don't go through the virtual call mechanism, we need
4482    // to qualify the operator= name with the base class (see below). However,
4483    // this means that if the base class has a protected copy assignment
4484    // operator, the protected member access check will fail. So, we
4485    // rewrite "protected" access to "public" access in this case, since we
4486    // know by construction that we're calling from a derived class.
4487    if (CopyingBaseSubobject) {
4488      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4489           L != LEnd; ++L) {
4490        if (L.getAccess() == AS_protected)
4491          L.setAccess(AS_public);
4492      }
4493    }
4494
4495    // Create the nested-name-specifier that will be used to qualify the
4496    // reference to operator=; this is required to suppress the virtual
4497    // call mechanism.
4498    CXXScopeSpec SS;
4499    SS.setRange(Loc);
4500    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4501                                               T.getTypePtr()));
4502
4503    // Create the reference to operator=.
4504    ExprResult OpEqualRef
4505      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4506                                   /*FirstQualifierInScope=*/0, OpLookup,
4507                                   /*TemplateArgs=*/0,
4508                                   /*SuppressQualifierCheck=*/true);
4509    if (OpEqualRef.isInvalid())
4510      return StmtError();
4511
4512    // Build the call to the assignment operator.
4513
4514    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4515                                                  OpEqualRef.takeAs<Expr>(),
4516                                                  Loc, &From, 1, Loc);
4517    if (Call.isInvalid())
4518      return StmtError();
4519
4520    return S.Owned(Call.takeAs<Stmt>());
4521  }
4522
4523  //     - if the subobject is of scalar type, the built-in assignment
4524  //       operator is used.
4525  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4526  if (!ArrayTy) {
4527    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4528    if (Assignment.isInvalid())
4529      return StmtError();
4530
4531    return S.Owned(Assignment.takeAs<Stmt>());
4532  }
4533
4534  //     - if the subobject is an array, each element is assigned, in the
4535  //       manner appropriate to the element type;
4536
4537  // Construct a loop over the array bounds, e.g.,
4538  //
4539  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4540  //
4541  // that will copy each of the array elements.
4542  QualType SizeType = S.Context.getSizeType();
4543
4544  // Create the iteration variable.
4545  IdentifierInfo *IterationVarName = 0;
4546  {
4547    llvm::SmallString<8> Str;
4548    llvm::raw_svector_ostream OS(Str);
4549    OS << "__i" << Depth;
4550    IterationVarName = &S.Context.Idents.get(OS.str());
4551  }
4552  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4553                                          IterationVarName, SizeType,
4554                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4555                                          SC_None, SC_None);
4556
4557  // Initialize the iteration variable to zero.
4558  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4559  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4560
4561  // Create a reference to the iteration variable; we'll use this several
4562  // times throughout.
4563  Expr *IterationVarRef
4564    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4565  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4566
4567  // Create the DeclStmt that holds the iteration variable.
4568  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4569
4570  // Create the comparison against the array bound.
4571  llvm::APInt Upper = ArrayTy->getSize();
4572  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4573  Expr *Comparison
4574    = new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4575                           IntegerLiteral::Create(S.Context,
4576                                                  Upper, SizeType, Loc),
4577                                                  BO_NE, S.Context.BoolTy, Loc);
4578
4579  // Create the pre-increment of the iteration variable.
4580  Expr *Increment
4581    = new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4582                                    UO_PreInc,
4583                                    SizeType, Loc);
4584
4585  // Subscript the "from" and "to" expressions with the iteration variable.
4586  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4587                                                         IterationVarRef, Loc));
4588  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4589                                                       IterationVarRef, Loc));
4590
4591  // Build the copy for an individual element of the array.
4592  StmtResult Copy = BuildSingleCopyAssign(S, Loc,
4593                                                ArrayTy->getElementType(),
4594                                                To, From,
4595                                                CopyingBaseSubobject, Depth+1);
4596  if (Copy.isInvalid())
4597    return StmtError();
4598
4599  // Construct the loop that copies all elements of this array.
4600  return S.ActOnForStmt(Loc, Loc, InitStmt,
4601                        S.MakeFullExpr(Comparison),
4602                        0, S.MakeFullExpr(Increment),
4603                        Loc, Copy.take());
4604}
4605
4606/// \brief Determine whether the given class has a copy assignment operator
4607/// that accepts a const-qualified argument.
4608static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4609  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4610
4611  if (!Class->hasDeclaredCopyAssignment())
4612    S.DeclareImplicitCopyAssignment(Class);
4613
4614  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4615  DeclarationName OpName
4616    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4617
4618  DeclContext::lookup_const_iterator Op, OpEnd;
4619  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4620    // C++ [class.copy]p9:
4621    //   A user-declared copy assignment operator is a non-static non-template
4622    //   member function of class X with exactly one parameter of type X, X&,
4623    //   const X&, volatile X& or const volatile X&.
4624    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4625    if (!Method)
4626      continue;
4627
4628    if (Method->isStatic())
4629      continue;
4630    if (Method->getPrimaryTemplate())
4631      continue;
4632    const FunctionProtoType *FnType =
4633    Method->getType()->getAs<FunctionProtoType>();
4634    assert(FnType && "Overloaded operator has no prototype.");
4635    // Don't assert on this; an invalid decl might have been left in the AST.
4636    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4637      continue;
4638    bool AcceptsConst = true;
4639    QualType ArgType = FnType->getArgType(0);
4640    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4641      ArgType = Ref->getPointeeType();
4642      // Is it a non-const lvalue reference?
4643      if (!ArgType.isConstQualified())
4644        AcceptsConst = false;
4645    }
4646    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4647      continue;
4648
4649    // We have a single argument of type cv X or cv X&, i.e. we've found the
4650    // copy assignment operator. Return whether it accepts const arguments.
4651    return AcceptsConst;
4652  }
4653  assert(Class->isInvalidDecl() &&
4654         "No copy assignment operator declared in valid code.");
4655  return false;
4656}
4657
4658CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4659  // Note: The following rules are largely analoguous to the copy
4660  // constructor rules. Note that virtual bases are not taken into account
4661  // for determining the argument type of the operator. Note also that
4662  // operators taking an object instead of a reference are allowed.
4663
4664
4665  // C++ [class.copy]p10:
4666  //   If the class definition does not explicitly declare a copy
4667  //   assignment operator, one is declared implicitly.
4668  //   The implicitly-defined copy assignment operator for a class X
4669  //   will have the form
4670  //
4671  //       X& X::operator=(const X&)
4672  //
4673  //   if
4674  bool HasConstCopyAssignment = true;
4675
4676  //       -- each direct base class B of X has a copy assignment operator
4677  //          whose parameter is of type const B&, const volatile B& or B,
4678  //          and
4679  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4680                                       BaseEnd = ClassDecl->bases_end();
4681       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4682    assert(!Base->getType()->isDependentType() &&
4683           "Cannot generate implicit members for class with dependent bases.");
4684    const CXXRecordDecl *BaseClassDecl
4685      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4686    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4687  }
4688
4689  //       -- for all the nonstatic data members of X that are of a class
4690  //          type M (or array thereof), each such class type has a copy
4691  //          assignment operator whose parameter is of type const M&,
4692  //          const volatile M& or M.
4693  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4694                                  FieldEnd = ClassDecl->field_end();
4695       HasConstCopyAssignment && Field != FieldEnd;
4696       ++Field) {
4697    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4698    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4699      const CXXRecordDecl *FieldClassDecl
4700        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4701      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4702    }
4703  }
4704
4705  //   Otherwise, the implicitly declared copy assignment operator will
4706  //   have the form
4707  //
4708  //       X& X::operator=(X&)
4709  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4710  QualType RetType = Context.getLValueReferenceType(ArgType);
4711  if (HasConstCopyAssignment)
4712    ArgType = ArgType.withConst();
4713  ArgType = Context.getLValueReferenceType(ArgType);
4714
4715  // C++ [except.spec]p14:
4716  //   An implicitly declared special member function (Clause 12) shall have an
4717  //   exception-specification. [...]
4718  ImplicitExceptionSpecification ExceptSpec(Context);
4719  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4720                                       BaseEnd = ClassDecl->bases_end();
4721       Base != BaseEnd; ++Base) {
4722    CXXRecordDecl *BaseClassDecl
4723      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4724
4725    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4726      DeclareImplicitCopyAssignment(BaseClassDecl);
4727
4728    if (CXXMethodDecl *CopyAssign
4729           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4730      ExceptSpec.CalledDecl(CopyAssign);
4731  }
4732  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4733                                  FieldEnd = ClassDecl->field_end();
4734       Field != FieldEnd;
4735       ++Field) {
4736    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4737    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4738      CXXRecordDecl *FieldClassDecl
4739        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4740
4741      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4742        DeclareImplicitCopyAssignment(FieldClassDecl);
4743
4744      if (CXXMethodDecl *CopyAssign
4745            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4746        ExceptSpec.CalledDecl(CopyAssign);
4747    }
4748  }
4749
4750  //   An implicitly-declared copy assignment operator is an inline public
4751  //   member of its class.
4752  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4753  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4754  CXXMethodDecl *CopyAssignment
4755    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4756                            Context.getFunctionType(RetType, &ArgType, 1,
4757                                                    false, 0,
4758                                         ExceptSpec.hasExceptionSpecification(),
4759                                      ExceptSpec.hasAnyExceptionSpecification(),
4760                                                    ExceptSpec.size(),
4761                                                    ExceptSpec.data(),
4762                                                    FunctionType::ExtInfo()),
4763                            /*TInfo=*/0, /*isStatic=*/false,
4764                            /*StorageClassAsWritten=*/SC_None,
4765                            /*isInline=*/true);
4766  CopyAssignment->setAccess(AS_public);
4767  CopyAssignment->setImplicit();
4768  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4769
4770  // Add the parameter to the operator.
4771  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4772                                               ClassDecl->getLocation(),
4773                                               /*Id=*/0,
4774                                               ArgType, /*TInfo=*/0,
4775                                               SC_None,
4776                                               SC_None, 0);
4777  CopyAssignment->setParams(&FromParam, 1);
4778
4779  // Note that we have added this copy-assignment operator.
4780  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4781
4782  if (Scope *S = getScopeForContext(ClassDecl))
4783    PushOnScopeChains(CopyAssignment, S, false);
4784  ClassDecl->addDecl(CopyAssignment);
4785
4786  AddOverriddenMethods(ClassDecl, CopyAssignment);
4787  return CopyAssignment;
4788}
4789
4790void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4791                                        CXXMethodDecl *CopyAssignOperator) {
4792  assert((CopyAssignOperator->isImplicit() &&
4793          CopyAssignOperator->isOverloadedOperator() &&
4794          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4795          !CopyAssignOperator->isUsed(false)) &&
4796         "DefineImplicitCopyAssignment called for wrong function");
4797
4798  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4799
4800  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4801    CopyAssignOperator->setInvalidDecl();
4802    return;
4803  }
4804
4805  CopyAssignOperator->setUsed();
4806
4807  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4808  ErrorTrap Trap(*this);
4809
4810  // C++0x [class.copy]p30:
4811  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4812  //   for a non-union class X performs memberwise copy assignment of its
4813  //   subobjects. The direct base classes of X are assigned first, in the
4814  //   order of their declaration in the base-specifier-list, and then the
4815  //   immediate non-static data members of X are assigned, in the order in
4816  //   which they were declared in the class definition.
4817
4818  // The statements that form the synthesized function body.
4819  ASTOwningVector<Stmt*> Statements(*this);
4820
4821  // The parameter for the "other" object, which we are copying from.
4822  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4823  Qualifiers OtherQuals = Other->getType().getQualifiers();
4824  QualType OtherRefType = Other->getType();
4825  if (const LValueReferenceType *OtherRef
4826                                = OtherRefType->getAs<LValueReferenceType>()) {
4827    OtherRefType = OtherRef->getPointeeType();
4828    OtherQuals = OtherRefType.getQualifiers();
4829  }
4830
4831  // Our location for everything implicitly-generated.
4832  SourceLocation Loc = CopyAssignOperator->getLocation();
4833
4834  // Construct a reference to the "other" object. We'll be using this
4835  // throughout the generated ASTs.
4836  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4837  assert(OtherRef && "Reference to parameter cannot fail!");
4838
4839  // Construct the "this" pointer. We'll be using this throughout the generated
4840  // ASTs.
4841  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4842  assert(This && "Reference to this cannot fail!");
4843
4844  // Assign base classes.
4845  bool Invalid = false;
4846  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4847       E = ClassDecl->bases_end(); Base != E; ++Base) {
4848    // Form the assignment:
4849    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4850    QualType BaseType = Base->getType().getUnqualifiedType();
4851    CXXRecordDecl *BaseClassDecl = 0;
4852    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4853      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4854    else {
4855      Invalid = true;
4856      continue;
4857    }
4858
4859    CXXCastPath BasePath;
4860    BasePath.push_back(Base);
4861
4862    // Construct the "from" expression, which is an implicit cast to the
4863    // appropriately-qualified base type.
4864    Expr *From = OtherRef->Retain();
4865    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4866                      CK_UncheckedDerivedToBase,
4867                      VK_LValue, &BasePath);
4868
4869    // Dereference "this".
4870    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4871
4872    // Implicitly cast "this" to the appropriately-qualified base type.
4873    Expr *ToE = To.takeAs<Expr>();
4874    ImpCastExprToType(ToE,
4875                      Context.getCVRQualifiedType(BaseType,
4876                                      CopyAssignOperator->getTypeQualifiers()),
4877                      CK_UncheckedDerivedToBase,
4878                      VK_LValue, &BasePath);
4879    To = Owned(ToE);
4880
4881    // Build the copy.
4882    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4883                                            To.get(), From,
4884                                            /*CopyingBaseSubobject=*/true);
4885    if (Copy.isInvalid()) {
4886      Diag(CurrentLocation, diag::note_member_synthesized_at)
4887        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4888      CopyAssignOperator->setInvalidDecl();
4889      return;
4890    }
4891
4892    // Success! Record the copy.
4893    Statements.push_back(Copy.takeAs<Expr>());
4894  }
4895
4896  // \brief Reference to the __builtin_memcpy function.
4897  Expr *BuiltinMemCpyRef = 0;
4898  // \brief Reference to the __builtin_objc_memmove_collectable function.
4899  Expr *CollectableMemCpyRef = 0;
4900
4901  // Assign non-static members.
4902  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4903                                  FieldEnd = ClassDecl->field_end();
4904       Field != FieldEnd; ++Field) {
4905    // Check for members of reference type; we can't copy those.
4906    if (Field->getType()->isReferenceType()) {
4907      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4908        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4909      Diag(Field->getLocation(), diag::note_declared_at);
4910      Diag(CurrentLocation, diag::note_member_synthesized_at)
4911        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4912      Invalid = true;
4913      continue;
4914    }
4915
4916    // Check for members of const-qualified, non-class type.
4917    QualType BaseType = Context.getBaseElementType(Field->getType());
4918    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4919      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4920        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4921      Diag(Field->getLocation(), diag::note_declared_at);
4922      Diag(CurrentLocation, diag::note_member_synthesized_at)
4923        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4924      Invalid = true;
4925      continue;
4926    }
4927
4928    QualType FieldType = Field->getType().getNonReferenceType();
4929    if (FieldType->isIncompleteArrayType()) {
4930      assert(ClassDecl->hasFlexibleArrayMember() &&
4931             "Incomplete array type is not valid");
4932      continue;
4933    }
4934
4935    // Build references to the field in the object we're copying from and to.
4936    CXXScopeSpec SS; // Intentionally empty
4937    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4938                              LookupMemberName);
4939    MemberLookup.addDecl(*Field);
4940    MemberLookup.resolveKind();
4941    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
4942                                                     Loc, /*IsArrow=*/false,
4943                                                     SS, 0, MemberLookup, 0);
4944    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
4945                                                   Loc, /*IsArrow=*/true,
4946                                                   SS, 0, MemberLookup, 0);
4947    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4948    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4949
4950    // If the field should be copied with __builtin_memcpy rather than via
4951    // explicit assignments, do so. This optimization only applies for arrays
4952    // of scalars and arrays of class type with trivial copy-assignment
4953    // operators.
4954    if (FieldType->isArrayType() &&
4955        (!BaseType->isRecordType() ||
4956         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4957           ->hasTrivialCopyAssignment())) {
4958      // Compute the size of the memory buffer to be copied.
4959      QualType SizeType = Context.getSizeType();
4960      llvm::APInt Size(Context.getTypeSize(SizeType),
4961                       Context.getTypeSizeInChars(BaseType).getQuantity());
4962      for (const ConstantArrayType *Array
4963              = Context.getAsConstantArrayType(FieldType);
4964           Array;
4965           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4966        llvm::APInt ArraySize = Array->getSize();
4967        ArraySize.zextOrTrunc(Size.getBitWidth());
4968        Size *= ArraySize;
4969      }
4970
4971      // Take the address of the field references for "from" and "to".
4972      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
4973      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
4974
4975      bool NeedsCollectableMemCpy =
4976          (BaseType->isRecordType() &&
4977           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4978
4979      if (NeedsCollectableMemCpy) {
4980        if (!CollectableMemCpyRef) {
4981          // Create a reference to the __builtin_objc_memmove_collectable function.
4982          LookupResult R(*this,
4983                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4984                         Loc, LookupOrdinaryName);
4985          LookupName(R, TUScope, true);
4986
4987          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4988          if (!CollectableMemCpy) {
4989            // Something went horribly wrong earlier, and we will have
4990            // complained about it.
4991            Invalid = true;
4992            continue;
4993          }
4994
4995          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4996                                                  CollectableMemCpy->getType(),
4997                                                  Loc, 0).takeAs<Expr>();
4998          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4999        }
5000      }
5001      // Create a reference to the __builtin_memcpy builtin function.
5002      else if (!BuiltinMemCpyRef) {
5003        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5004                       LookupOrdinaryName);
5005        LookupName(R, TUScope, true);
5006
5007        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5008        if (!BuiltinMemCpy) {
5009          // Something went horribly wrong earlier, and we will have complained
5010          // about it.
5011          Invalid = true;
5012          continue;
5013        }
5014
5015        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5016                                            BuiltinMemCpy->getType(),
5017                                            Loc, 0).takeAs<Expr>();
5018        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5019      }
5020
5021      ASTOwningVector<Expr*> CallArgs(*this);
5022      CallArgs.push_back(To.takeAs<Expr>());
5023      CallArgs.push_back(From.takeAs<Expr>());
5024      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5025      ExprResult Call = ExprError();
5026      if (NeedsCollectableMemCpy)
5027        Call = ActOnCallExpr(/*Scope=*/0,
5028                             CollectableMemCpyRef,
5029                             Loc, move_arg(CallArgs),
5030                             Loc);
5031      else
5032        Call = ActOnCallExpr(/*Scope=*/0,
5033                             BuiltinMemCpyRef,
5034                             Loc, move_arg(CallArgs),
5035                             Loc);
5036
5037      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5038      Statements.push_back(Call.takeAs<Expr>());
5039      continue;
5040    }
5041
5042    // Build the copy of this field.
5043    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5044                                                  To.get(), From.get(),
5045                                              /*CopyingBaseSubobject=*/false);
5046    if (Copy.isInvalid()) {
5047      Diag(CurrentLocation, diag::note_member_synthesized_at)
5048        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5049      CopyAssignOperator->setInvalidDecl();
5050      return;
5051    }
5052
5053    // Success! Record the copy.
5054    Statements.push_back(Copy.takeAs<Stmt>());
5055  }
5056
5057  if (!Invalid) {
5058    // Add a "return *this;"
5059    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5060
5061    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5062    if (Return.isInvalid())
5063      Invalid = true;
5064    else {
5065      Statements.push_back(Return.takeAs<Stmt>());
5066
5067      if (Trap.hasErrorOccurred()) {
5068        Diag(CurrentLocation, diag::note_member_synthesized_at)
5069          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5070        Invalid = true;
5071      }
5072    }
5073  }
5074
5075  if (Invalid) {
5076    CopyAssignOperator->setInvalidDecl();
5077    return;
5078  }
5079
5080  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5081                                            /*isStmtExpr=*/false);
5082  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5083  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5084}
5085
5086CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5087                                                    CXXRecordDecl *ClassDecl) {
5088  // C++ [class.copy]p4:
5089  //   If the class definition does not explicitly declare a copy
5090  //   constructor, one is declared implicitly.
5091
5092  // C++ [class.copy]p5:
5093  //   The implicitly-declared copy constructor for a class X will
5094  //   have the form
5095  //
5096  //       X::X(const X&)
5097  //
5098  //   if
5099  bool HasConstCopyConstructor = true;
5100
5101  //     -- each direct or virtual base class B of X has a copy
5102  //        constructor whose first parameter is of type const B& or
5103  //        const volatile B&, and
5104  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5105                                       BaseEnd = ClassDecl->bases_end();
5106       HasConstCopyConstructor && Base != BaseEnd;
5107       ++Base) {
5108    // Virtual bases are handled below.
5109    if (Base->isVirtual())
5110      continue;
5111
5112    CXXRecordDecl *BaseClassDecl
5113      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5114    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5115      DeclareImplicitCopyConstructor(BaseClassDecl);
5116
5117    HasConstCopyConstructor
5118      = BaseClassDecl->hasConstCopyConstructor(Context);
5119  }
5120
5121  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5122                                       BaseEnd = ClassDecl->vbases_end();
5123       HasConstCopyConstructor && Base != BaseEnd;
5124       ++Base) {
5125    CXXRecordDecl *BaseClassDecl
5126      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5127    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5128      DeclareImplicitCopyConstructor(BaseClassDecl);
5129
5130    HasConstCopyConstructor
5131      = BaseClassDecl->hasConstCopyConstructor(Context);
5132  }
5133
5134  //     -- for all the nonstatic data members of X that are of a
5135  //        class type M (or array thereof), each such class type
5136  //        has a copy constructor whose first parameter is of type
5137  //        const M& or const volatile M&.
5138  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5139                                  FieldEnd = ClassDecl->field_end();
5140       HasConstCopyConstructor && Field != FieldEnd;
5141       ++Field) {
5142    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5143    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5144      CXXRecordDecl *FieldClassDecl
5145        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5146      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5147        DeclareImplicitCopyConstructor(FieldClassDecl);
5148
5149      HasConstCopyConstructor
5150        = FieldClassDecl->hasConstCopyConstructor(Context);
5151    }
5152  }
5153
5154  //   Otherwise, the implicitly declared copy constructor will have
5155  //   the form
5156  //
5157  //       X::X(X&)
5158  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5159  QualType ArgType = ClassType;
5160  if (HasConstCopyConstructor)
5161    ArgType = ArgType.withConst();
5162  ArgType = Context.getLValueReferenceType(ArgType);
5163
5164  // C++ [except.spec]p14:
5165  //   An implicitly declared special member function (Clause 12) shall have an
5166  //   exception-specification. [...]
5167  ImplicitExceptionSpecification ExceptSpec(Context);
5168  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5169  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5170                                       BaseEnd = ClassDecl->bases_end();
5171       Base != BaseEnd;
5172       ++Base) {
5173    // Virtual bases are handled below.
5174    if (Base->isVirtual())
5175      continue;
5176
5177    CXXRecordDecl *BaseClassDecl
5178      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5179    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5180      DeclareImplicitCopyConstructor(BaseClassDecl);
5181
5182    if (CXXConstructorDecl *CopyConstructor
5183                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5184      ExceptSpec.CalledDecl(CopyConstructor);
5185  }
5186  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5187                                       BaseEnd = ClassDecl->vbases_end();
5188       Base != BaseEnd;
5189       ++Base) {
5190    CXXRecordDecl *BaseClassDecl
5191      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5192    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5193      DeclareImplicitCopyConstructor(BaseClassDecl);
5194
5195    if (CXXConstructorDecl *CopyConstructor
5196                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5197      ExceptSpec.CalledDecl(CopyConstructor);
5198  }
5199  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5200                                  FieldEnd = ClassDecl->field_end();
5201       Field != FieldEnd;
5202       ++Field) {
5203    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5204    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5205      CXXRecordDecl *FieldClassDecl
5206        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5207      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5208        DeclareImplicitCopyConstructor(FieldClassDecl);
5209
5210      if (CXXConstructorDecl *CopyConstructor
5211                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5212        ExceptSpec.CalledDecl(CopyConstructor);
5213    }
5214  }
5215
5216  //   An implicitly-declared copy constructor is an inline public
5217  //   member of its class.
5218  DeclarationName Name
5219    = Context.DeclarationNames.getCXXConstructorName(
5220                                           Context.getCanonicalType(ClassType));
5221  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5222  CXXConstructorDecl *CopyConstructor
5223    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5224                                 Context.getFunctionType(Context.VoidTy,
5225                                                         &ArgType, 1,
5226                                                         false, 0,
5227                                         ExceptSpec.hasExceptionSpecification(),
5228                                      ExceptSpec.hasAnyExceptionSpecification(),
5229                                                         ExceptSpec.size(),
5230                                                         ExceptSpec.data(),
5231                                                       FunctionType::ExtInfo()),
5232                                 /*TInfo=*/0,
5233                                 /*isExplicit=*/false,
5234                                 /*isInline=*/true,
5235                                 /*isImplicitlyDeclared=*/true);
5236  CopyConstructor->setAccess(AS_public);
5237  CopyConstructor->setImplicit();
5238  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5239
5240  // Note that we have declared this constructor.
5241  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5242
5243  // Add the parameter to the constructor.
5244  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5245                                               ClassDecl->getLocation(),
5246                                               /*IdentifierInfo=*/0,
5247                                               ArgType, /*TInfo=*/0,
5248                                               SC_None,
5249                                               SC_None, 0);
5250  CopyConstructor->setParams(&FromParam, 1);
5251  if (Scope *S = getScopeForContext(ClassDecl))
5252    PushOnScopeChains(CopyConstructor, S, false);
5253  ClassDecl->addDecl(CopyConstructor);
5254
5255  return CopyConstructor;
5256}
5257
5258void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5259                                   CXXConstructorDecl *CopyConstructor,
5260                                   unsigned TypeQuals) {
5261  assert((CopyConstructor->isImplicit() &&
5262          CopyConstructor->isCopyConstructor(TypeQuals) &&
5263          !CopyConstructor->isUsed(false)) &&
5264         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5265
5266  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5267  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5268
5269  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5270  ErrorTrap Trap(*this);
5271
5272  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5273      Trap.hasErrorOccurred()) {
5274    Diag(CurrentLocation, diag::note_member_synthesized_at)
5275      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5276    CopyConstructor->setInvalidDecl();
5277  }  else {
5278    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5279                                               CopyConstructor->getLocation(),
5280                                               MultiStmtArg(*this, 0, 0),
5281                                               /*isStmtExpr=*/false)
5282                                                              .takeAs<Stmt>());
5283  }
5284
5285  CopyConstructor->setUsed();
5286}
5287
5288ExprResult
5289Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5290                            CXXConstructorDecl *Constructor,
5291                            MultiExprArg ExprArgs,
5292                            bool RequiresZeroInit,
5293                            unsigned ConstructKind) {
5294  bool Elidable = false;
5295
5296  // C++0x [class.copy]p34:
5297  //   When certain criteria are met, an implementation is allowed to
5298  //   omit the copy/move construction of a class object, even if the
5299  //   copy/move constructor and/or destructor for the object have
5300  //   side effects. [...]
5301  //     - when a temporary class object that has not been bound to a
5302  //       reference (12.2) would be copied/moved to a class object
5303  //       with the same cv-unqualified type, the copy/move operation
5304  //       can be omitted by constructing the temporary object
5305  //       directly into the target of the omitted copy/move
5306  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5307      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5308    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5309    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5310  }
5311
5312  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5313                               Elidable, move(ExprArgs), RequiresZeroInit,
5314                               ConstructKind);
5315}
5316
5317/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5318/// including handling of its default argument expressions.
5319ExprResult
5320Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5321                            CXXConstructorDecl *Constructor, bool Elidable,
5322                            MultiExprArg ExprArgs,
5323                            bool RequiresZeroInit,
5324                            unsigned ConstructKind) {
5325  unsigned NumExprs = ExprArgs.size();
5326  Expr **Exprs = (Expr **)ExprArgs.release();
5327
5328  MarkDeclarationReferenced(ConstructLoc, Constructor);
5329  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5330                                        Constructor, Elidable, Exprs, NumExprs,
5331                                        RequiresZeroInit,
5332              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind)));
5333}
5334
5335bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5336                                        CXXConstructorDecl *Constructor,
5337                                        MultiExprArg Exprs) {
5338  ExprResult TempResult =
5339    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5340                          move(Exprs), false, CXXConstructExpr::CK_Complete);
5341  if (TempResult.isInvalid())
5342    return true;
5343
5344  Expr *Temp = TempResult.takeAs<Expr>();
5345  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5346  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5347  VD->setInit(Temp);
5348
5349  return false;
5350}
5351
5352void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5353  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5354  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5355      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5356    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5357    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5358    CheckDestructorAccess(VD->getLocation(), Destructor,
5359                          PDiag(diag::err_access_dtor_var)
5360                            << VD->getDeclName()
5361                            << VD->getType());
5362
5363    // TODO: this should be re-enabled for static locals by !CXAAtExit
5364    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5365      Diag(VD->getLocation(), diag::warn_global_destructor);
5366  }
5367}
5368
5369/// AddCXXDirectInitializerToDecl - This action is called immediately after
5370/// ActOnDeclarator, when a C++ direct initializer is present.
5371/// e.g: "int x(1);"
5372void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5373                                         SourceLocation LParenLoc,
5374                                         MultiExprArg Exprs,
5375                                         SourceLocation RParenLoc) {
5376  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5377
5378  // If there is no declaration, there was an error parsing it.  Just ignore
5379  // the initializer.
5380  if (RealDecl == 0)
5381    return;
5382
5383  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5384  if (!VDecl) {
5385    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5386    RealDecl->setInvalidDecl();
5387    return;
5388  }
5389
5390  // We will represent direct-initialization similarly to copy-initialization:
5391  //    int x(1);  -as-> int x = 1;
5392  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5393  //
5394  // Clients that want to distinguish between the two forms, can check for
5395  // direct initializer using VarDecl::hasCXXDirectInitializer().
5396  // A major benefit is that clients that don't particularly care about which
5397  // exactly form was it (like the CodeGen) can handle both cases without
5398  // special case code.
5399
5400  // C++ 8.5p11:
5401  // The form of initialization (using parentheses or '=') is generally
5402  // insignificant, but does matter when the entity being initialized has a
5403  // class type.
5404
5405  if (!VDecl->getType()->isDependentType() &&
5406      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5407                          diag::err_typecheck_decl_incomplete_type)) {
5408    VDecl->setInvalidDecl();
5409    return;
5410  }
5411
5412  // The variable can not have an abstract class type.
5413  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5414                             diag::err_abstract_type_in_decl,
5415                             AbstractVariableType))
5416    VDecl->setInvalidDecl();
5417
5418  const VarDecl *Def;
5419  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5420    Diag(VDecl->getLocation(), diag::err_redefinition)
5421    << VDecl->getDeclName();
5422    Diag(Def->getLocation(), diag::note_previous_definition);
5423    VDecl->setInvalidDecl();
5424    return;
5425  }
5426
5427  // C++ [class.static.data]p4
5428  //   If a static data member is of const integral or const
5429  //   enumeration type, its declaration in the class definition can
5430  //   specify a constant-initializer which shall be an integral
5431  //   constant expression (5.19). In that case, the member can appear
5432  //   in integral constant expressions. The member shall still be
5433  //   defined in a namespace scope if it is used in the program and the
5434  //   namespace scope definition shall not contain an initializer.
5435  //
5436  // We already performed a redefinition check above, but for static
5437  // data members we also need to check whether there was an in-class
5438  // declaration with an initializer.
5439  const VarDecl* PrevInit = 0;
5440  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5441    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5442    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5443    return;
5444  }
5445
5446  // If either the declaration has a dependent type or if any of the
5447  // expressions is type-dependent, we represent the initialization
5448  // via a ParenListExpr for later use during template instantiation.
5449  if (VDecl->getType()->isDependentType() ||
5450      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5451    // Let clients know that initialization was done with a direct initializer.
5452    VDecl->setCXXDirectInitializer(true);
5453
5454    // Store the initialization expressions as a ParenListExpr.
5455    unsigned NumExprs = Exprs.size();
5456    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5457                                               (Expr **)Exprs.release(),
5458                                               NumExprs, RParenLoc));
5459    return;
5460  }
5461
5462  // Capture the variable that is being initialized and the style of
5463  // initialization.
5464  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5465
5466  // FIXME: Poor source location information.
5467  InitializationKind Kind
5468    = InitializationKind::CreateDirect(VDecl->getLocation(),
5469                                       LParenLoc, RParenLoc);
5470
5471  InitializationSequence InitSeq(*this, Entity, Kind,
5472                                 Exprs.get(), Exprs.size());
5473  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5474  if (Result.isInvalid()) {
5475    VDecl->setInvalidDecl();
5476    return;
5477  }
5478
5479  Result = MaybeCreateCXXExprWithTemporaries(Result.get());
5480  VDecl->setInit(Result.takeAs<Expr>());
5481  VDecl->setCXXDirectInitializer(true);
5482
5483    if (!VDecl->isInvalidDecl() &&
5484        !VDecl->getDeclContext()->isDependentContext() &&
5485        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5486        !VDecl->getInit()->isConstantInitializer(Context,
5487                                        VDecl->getType()->isReferenceType()))
5488      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5489        << VDecl->getInit()->getSourceRange();
5490
5491  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5492    FinalizeVarWithDestructor(VDecl, Record);
5493}
5494
5495/// \brief Given a constructor and the set of arguments provided for the
5496/// constructor, convert the arguments and add any required default arguments
5497/// to form a proper call to this constructor.
5498///
5499/// \returns true if an error occurred, false otherwise.
5500bool
5501Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5502                              MultiExprArg ArgsPtr,
5503                              SourceLocation Loc,
5504                              ASTOwningVector<Expr*> &ConvertedArgs) {
5505  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5506  unsigned NumArgs = ArgsPtr.size();
5507  Expr **Args = (Expr **)ArgsPtr.get();
5508
5509  const FunctionProtoType *Proto
5510    = Constructor->getType()->getAs<FunctionProtoType>();
5511  assert(Proto && "Constructor without a prototype?");
5512  unsigned NumArgsInProto = Proto->getNumArgs();
5513
5514  // If too few arguments are available, we'll fill in the rest with defaults.
5515  if (NumArgs < NumArgsInProto)
5516    ConvertedArgs.reserve(NumArgsInProto);
5517  else
5518    ConvertedArgs.reserve(NumArgs);
5519
5520  VariadicCallType CallType =
5521    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5522  llvm::SmallVector<Expr *, 8> AllArgs;
5523  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5524                                        Proto, 0, Args, NumArgs, AllArgs,
5525                                        CallType);
5526  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5527    ConvertedArgs.push_back(AllArgs[i]);
5528  return Invalid;
5529}
5530
5531static inline bool
5532CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5533                                       const FunctionDecl *FnDecl) {
5534  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5535  if (isa<NamespaceDecl>(DC)) {
5536    return SemaRef.Diag(FnDecl->getLocation(),
5537                        diag::err_operator_new_delete_declared_in_namespace)
5538      << FnDecl->getDeclName();
5539  }
5540
5541  if (isa<TranslationUnitDecl>(DC) &&
5542      FnDecl->getStorageClass() == SC_Static) {
5543    return SemaRef.Diag(FnDecl->getLocation(),
5544                        diag::err_operator_new_delete_declared_static)
5545      << FnDecl->getDeclName();
5546  }
5547
5548  return false;
5549}
5550
5551static inline bool
5552CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5553                            CanQualType ExpectedResultType,
5554                            CanQualType ExpectedFirstParamType,
5555                            unsigned DependentParamTypeDiag,
5556                            unsigned InvalidParamTypeDiag) {
5557  QualType ResultType =
5558    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5559
5560  // Check that the result type is not dependent.
5561  if (ResultType->isDependentType())
5562    return SemaRef.Diag(FnDecl->getLocation(),
5563                        diag::err_operator_new_delete_dependent_result_type)
5564    << FnDecl->getDeclName() << ExpectedResultType;
5565
5566  // Check that the result type is what we expect.
5567  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5568    return SemaRef.Diag(FnDecl->getLocation(),
5569                        diag::err_operator_new_delete_invalid_result_type)
5570    << FnDecl->getDeclName() << ExpectedResultType;
5571
5572  // A function template must have at least 2 parameters.
5573  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5574    return SemaRef.Diag(FnDecl->getLocation(),
5575                      diag::err_operator_new_delete_template_too_few_parameters)
5576        << FnDecl->getDeclName();
5577
5578  // The function decl must have at least 1 parameter.
5579  if (FnDecl->getNumParams() == 0)
5580    return SemaRef.Diag(FnDecl->getLocation(),
5581                        diag::err_operator_new_delete_too_few_parameters)
5582      << FnDecl->getDeclName();
5583
5584  // Check the the first parameter type is not dependent.
5585  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5586  if (FirstParamType->isDependentType())
5587    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5588      << FnDecl->getDeclName() << ExpectedFirstParamType;
5589
5590  // Check that the first parameter type is what we expect.
5591  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5592      ExpectedFirstParamType)
5593    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5594    << FnDecl->getDeclName() << ExpectedFirstParamType;
5595
5596  return false;
5597}
5598
5599static bool
5600CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5601  // C++ [basic.stc.dynamic.allocation]p1:
5602  //   A program is ill-formed if an allocation function is declared in a
5603  //   namespace scope other than global scope or declared static in global
5604  //   scope.
5605  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5606    return true;
5607
5608  CanQualType SizeTy =
5609    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5610
5611  // C++ [basic.stc.dynamic.allocation]p1:
5612  //  The return type shall be void*. The first parameter shall have type
5613  //  std::size_t.
5614  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5615                                  SizeTy,
5616                                  diag::err_operator_new_dependent_param_type,
5617                                  diag::err_operator_new_param_type))
5618    return true;
5619
5620  // C++ [basic.stc.dynamic.allocation]p1:
5621  //  The first parameter shall not have an associated default argument.
5622  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5623    return SemaRef.Diag(FnDecl->getLocation(),
5624                        diag::err_operator_new_default_arg)
5625      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5626
5627  return false;
5628}
5629
5630static bool
5631CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5632  // C++ [basic.stc.dynamic.deallocation]p1:
5633  //   A program is ill-formed if deallocation functions are declared in a
5634  //   namespace scope other than global scope or declared static in global
5635  //   scope.
5636  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5637    return true;
5638
5639  // C++ [basic.stc.dynamic.deallocation]p2:
5640  //   Each deallocation function shall return void and its first parameter
5641  //   shall be void*.
5642  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5643                                  SemaRef.Context.VoidPtrTy,
5644                                 diag::err_operator_delete_dependent_param_type,
5645                                 diag::err_operator_delete_param_type))
5646    return true;
5647
5648  return false;
5649}
5650
5651/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5652/// of this overloaded operator is well-formed. If so, returns false;
5653/// otherwise, emits appropriate diagnostics and returns true.
5654bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5655  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5656         "Expected an overloaded operator declaration");
5657
5658  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5659
5660  // C++ [over.oper]p5:
5661  //   The allocation and deallocation functions, operator new,
5662  //   operator new[], operator delete and operator delete[], are
5663  //   described completely in 3.7.3. The attributes and restrictions
5664  //   found in the rest of this subclause do not apply to them unless
5665  //   explicitly stated in 3.7.3.
5666  if (Op == OO_Delete || Op == OO_Array_Delete)
5667    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5668
5669  if (Op == OO_New || Op == OO_Array_New)
5670    return CheckOperatorNewDeclaration(*this, FnDecl);
5671
5672  // C++ [over.oper]p6:
5673  //   An operator function shall either be a non-static member
5674  //   function or be a non-member function and have at least one
5675  //   parameter whose type is a class, a reference to a class, an
5676  //   enumeration, or a reference to an enumeration.
5677  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5678    if (MethodDecl->isStatic())
5679      return Diag(FnDecl->getLocation(),
5680                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5681  } else {
5682    bool ClassOrEnumParam = false;
5683    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5684                                   ParamEnd = FnDecl->param_end();
5685         Param != ParamEnd; ++Param) {
5686      QualType ParamType = (*Param)->getType().getNonReferenceType();
5687      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5688          ParamType->isEnumeralType()) {
5689        ClassOrEnumParam = true;
5690        break;
5691      }
5692    }
5693
5694    if (!ClassOrEnumParam)
5695      return Diag(FnDecl->getLocation(),
5696                  diag::err_operator_overload_needs_class_or_enum)
5697        << FnDecl->getDeclName();
5698  }
5699
5700  // C++ [over.oper]p8:
5701  //   An operator function cannot have default arguments (8.3.6),
5702  //   except where explicitly stated below.
5703  //
5704  // Only the function-call operator allows default arguments
5705  // (C++ [over.call]p1).
5706  if (Op != OO_Call) {
5707    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5708         Param != FnDecl->param_end(); ++Param) {
5709      if ((*Param)->hasDefaultArg())
5710        return Diag((*Param)->getLocation(),
5711                    diag::err_operator_overload_default_arg)
5712          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5713    }
5714  }
5715
5716  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5717    { false, false, false }
5718#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5719    , { Unary, Binary, MemberOnly }
5720#include "clang/Basic/OperatorKinds.def"
5721  };
5722
5723  bool CanBeUnaryOperator = OperatorUses[Op][0];
5724  bool CanBeBinaryOperator = OperatorUses[Op][1];
5725  bool MustBeMemberOperator = OperatorUses[Op][2];
5726
5727  // C++ [over.oper]p8:
5728  //   [...] Operator functions cannot have more or fewer parameters
5729  //   than the number required for the corresponding operator, as
5730  //   described in the rest of this subclause.
5731  unsigned NumParams = FnDecl->getNumParams()
5732                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5733  if (Op != OO_Call &&
5734      ((NumParams == 1 && !CanBeUnaryOperator) ||
5735       (NumParams == 2 && !CanBeBinaryOperator) ||
5736       (NumParams < 1) || (NumParams > 2))) {
5737    // We have the wrong number of parameters.
5738    unsigned ErrorKind;
5739    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5740      ErrorKind = 2;  // 2 -> unary or binary.
5741    } else if (CanBeUnaryOperator) {
5742      ErrorKind = 0;  // 0 -> unary
5743    } else {
5744      assert(CanBeBinaryOperator &&
5745             "All non-call overloaded operators are unary or binary!");
5746      ErrorKind = 1;  // 1 -> binary
5747    }
5748
5749    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5750      << FnDecl->getDeclName() << NumParams << ErrorKind;
5751  }
5752
5753  // Overloaded operators other than operator() cannot be variadic.
5754  if (Op != OO_Call &&
5755      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5756    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5757      << FnDecl->getDeclName();
5758  }
5759
5760  // Some operators must be non-static member functions.
5761  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5762    return Diag(FnDecl->getLocation(),
5763                diag::err_operator_overload_must_be_member)
5764      << FnDecl->getDeclName();
5765  }
5766
5767  // C++ [over.inc]p1:
5768  //   The user-defined function called operator++ implements the
5769  //   prefix and postfix ++ operator. If this function is a member
5770  //   function with no parameters, or a non-member function with one
5771  //   parameter of class or enumeration type, it defines the prefix
5772  //   increment operator ++ for objects of that type. If the function
5773  //   is a member function with one parameter (which shall be of type
5774  //   int) or a non-member function with two parameters (the second
5775  //   of which shall be of type int), it defines the postfix
5776  //   increment operator ++ for objects of that type.
5777  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5778    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5779    bool ParamIsInt = false;
5780    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5781      ParamIsInt = BT->getKind() == BuiltinType::Int;
5782
5783    if (!ParamIsInt)
5784      return Diag(LastParam->getLocation(),
5785                  diag::err_operator_overload_post_incdec_must_be_int)
5786        << LastParam->getType() << (Op == OO_MinusMinus);
5787  }
5788
5789  return false;
5790}
5791
5792/// CheckLiteralOperatorDeclaration - Check whether the declaration
5793/// of this literal operator function is well-formed. If so, returns
5794/// false; otherwise, emits appropriate diagnostics and returns true.
5795bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5796  DeclContext *DC = FnDecl->getDeclContext();
5797  Decl::Kind Kind = DC->getDeclKind();
5798  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5799      Kind != Decl::LinkageSpec) {
5800    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5801      << FnDecl->getDeclName();
5802    return true;
5803  }
5804
5805  bool Valid = false;
5806
5807  // template <char...> type operator "" name() is the only valid template
5808  // signature, and the only valid signature with no parameters.
5809  if (FnDecl->param_size() == 0) {
5810    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5811      // Must have only one template parameter
5812      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5813      if (Params->size() == 1) {
5814        NonTypeTemplateParmDecl *PmDecl =
5815          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5816
5817        // The template parameter must be a char parameter pack.
5818        // FIXME: This test will always fail because non-type parameter packs
5819        //   have not been implemented.
5820        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5821            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5822          Valid = true;
5823      }
5824    }
5825  } else {
5826    // Check the first parameter
5827    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5828
5829    QualType T = (*Param)->getType();
5830
5831    // unsigned long long int, long double, and any character type are allowed
5832    // as the only parameters.
5833    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5834        Context.hasSameType(T, Context.LongDoubleTy) ||
5835        Context.hasSameType(T, Context.CharTy) ||
5836        Context.hasSameType(T, Context.WCharTy) ||
5837        Context.hasSameType(T, Context.Char16Ty) ||
5838        Context.hasSameType(T, Context.Char32Ty)) {
5839      if (++Param == FnDecl->param_end())
5840        Valid = true;
5841      goto FinishedParams;
5842    }
5843
5844    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5845    const PointerType *PT = T->getAs<PointerType>();
5846    if (!PT)
5847      goto FinishedParams;
5848    T = PT->getPointeeType();
5849    if (!T.isConstQualified())
5850      goto FinishedParams;
5851    T = T.getUnqualifiedType();
5852
5853    // Move on to the second parameter;
5854    ++Param;
5855
5856    // If there is no second parameter, the first must be a const char *
5857    if (Param == FnDecl->param_end()) {
5858      if (Context.hasSameType(T, Context.CharTy))
5859        Valid = true;
5860      goto FinishedParams;
5861    }
5862
5863    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5864    // are allowed as the first parameter to a two-parameter function
5865    if (!(Context.hasSameType(T, Context.CharTy) ||
5866          Context.hasSameType(T, Context.WCharTy) ||
5867          Context.hasSameType(T, Context.Char16Ty) ||
5868          Context.hasSameType(T, Context.Char32Ty)))
5869      goto FinishedParams;
5870
5871    // The second and final parameter must be an std::size_t
5872    T = (*Param)->getType().getUnqualifiedType();
5873    if (Context.hasSameType(T, Context.getSizeType()) &&
5874        ++Param == FnDecl->param_end())
5875      Valid = true;
5876  }
5877
5878  // FIXME: This diagnostic is absolutely terrible.
5879FinishedParams:
5880  if (!Valid) {
5881    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5882      << FnDecl->getDeclName();
5883    return true;
5884  }
5885
5886  return false;
5887}
5888
5889/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5890/// linkage specification, including the language and (if present)
5891/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5892/// the location of the language string literal, which is provided
5893/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5894/// the '{' brace. Otherwise, this linkage specification does not
5895/// have any braces.
5896Decl *Sema::ActOnStartLinkageSpecification(Scope *S,
5897                                                     SourceLocation ExternLoc,
5898                                                     SourceLocation LangLoc,
5899                                                     llvm::StringRef Lang,
5900                                                     SourceLocation LBraceLoc) {
5901  LinkageSpecDecl::LanguageIDs Language;
5902  if (Lang == "\"C\"")
5903    Language = LinkageSpecDecl::lang_c;
5904  else if (Lang == "\"C++\"")
5905    Language = LinkageSpecDecl::lang_cxx;
5906  else {
5907    Diag(LangLoc, diag::err_bad_language);
5908    return 0;
5909  }
5910
5911  // FIXME: Add all the various semantics of linkage specifications
5912
5913  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5914                                               LangLoc, Language,
5915                                               LBraceLoc.isValid());
5916  CurContext->addDecl(D);
5917  PushDeclContext(S, D);
5918  return D;
5919}
5920
5921/// ActOnFinishLinkageSpecification - Complete the definition of
5922/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5923/// valid, it's the position of the closing '}' brace in a linkage
5924/// specification that uses braces.
5925Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
5926                                                      Decl *LinkageSpec,
5927                                                      SourceLocation RBraceLoc) {
5928  if (LinkageSpec)
5929    PopDeclContext();
5930  return LinkageSpec;
5931}
5932
5933/// \brief Perform semantic analysis for the variable declaration that
5934/// occurs within a C++ catch clause, returning the newly-created
5935/// variable.
5936VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
5937                                         TypeSourceInfo *TInfo,
5938                                         IdentifierInfo *Name,
5939                                         SourceLocation Loc) {
5940  bool Invalid = false;
5941  QualType ExDeclType = TInfo->getType();
5942
5943  // Arrays and functions decay.
5944  if (ExDeclType->isArrayType())
5945    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5946  else if (ExDeclType->isFunctionType())
5947    ExDeclType = Context.getPointerType(ExDeclType);
5948
5949  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5950  // The exception-declaration shall not denote a pointer or reference to an
5951  // incomplete type, other than [cv] void*.
5952  // N2844 forbids rvalue references.
5953  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5954    Diag(Loc, diag::err_catch_rvalue_ref);
5955    Invalid = true;
5956  }
5957
5958  // GCC allows catching pointers and references to incomplete types
5959  // as an extension; so do we, but we warn by default.
5960
5961  QualType BaseType = ExDeclType;
5962  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5963  unsigned DK = diag::err_catch_incomplete;
5964  bool IncompleteCatchIsInvalid = true;
5965  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5966    BaseType = Ptr->getPointeeType();
5967    Mode = 1;
5968    DK = diag::ext_catch_incomplete_ptr;
5969    IncompleteCatchIsInvalid = false;
5970  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5971    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5972    BaseType = Ref->getPointeeType();
5973    Mode = 2;
5974    DK = diag::ext_catch_incomplete_ref;
5975    IncompleteCatchIsInvalid = false;
5976  }
5977  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5978      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5979      IncompleteCatchIsInvalid)
5980    Invalid = true;
5981
5982  if (!Invalid && !ExDeclType->isDependentType() &&
5983      RequireNonAbstractType(Loc, ExDeclType,
5984                             diag::err_abstract_type_in_decl,
5985                             AbstractVariableType))
5986    Invalid = true;
5987
5988  // Only the non-fragile NeXT runtime currently supports C++ catches
5989  // of ObjC types, and no runtime supports catching ObjC types by value.
5990  if (!Invalid && getLangOptions().ObjC1) {
5991    QualType T = ExDeclType;
5992    if (const ReferenceType *RT = T->getAs<ReferenceType>())
5993      T = RT->getPointeeType();
5994
5995    if (T->isObjCObjectType()) {
5996      Diag(Loc, diag::err_objc_object_catch);
5997      Invalid = true;
5998    } else if (T->isObjCObjectPointerType()) {
5999      if (!getLangOptions().NeXTRuntime) {
6000        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6001        Invalid = true;
6002      } else if (!getLangOptions().ObjCNonFragileABI) {
6003        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6004        Invalid = true;
6005      }
6006    }
6007  }
6008
6009  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6010                                    Name, ExDeclType, TInfo, SC_None,
6011                                    SC_None);
6012  ExDecl->setExceptionVariable(true);
6013
6014  if (!Invalid) {
6015    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6016      // C++ [except.handle]p16:
6017      //   The object declared in an exception-declaration or, if the
6018      //   exception-declaration does not specify a name, a temporary (12.2) is
6019      //   copy-initialized (8.5) from the exception object. [...]
6020      //   The object is destroyed when the handler exits, after the destruction
6021      //   of any automatic objects initialized within the handler.
6022      //
6023      // We just pretend to initialize the object with itself, then make sure
6024      // it can be destroyed later.
6025      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6026      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6027                                            Loc, ExDeclType, 0);
6028      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6029                                                               SourceLocation());
6030      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6031      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6032                                         MultiExprArg(*this, &ExDeclRef, 1));
6033      if (Result.isInvalid())
6034        Invalid = true;
6035      else
6036        FinalizeVarWithDestructor(ExDecl, RecordTy);
6037    }
6038  }
6039
6040  if (Invalid)
6041    ExDecl->setInvalidDecl();
6042
6043  return ExDecl;
6044}
6045
6046/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6047/// handler.
6048Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6049  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6050  QualType ExDeclType = TInfo->getType();
6051
6052  bool Invalid = D.isInvalidType();
6053  IdentifierInfo *II = D.getIdentifier();
6054  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6055                                             LookupOrdinaryName,
6056                                             ForRedeclaration)) {
6057    // The scope should be freshly made just for us. There is just no way
6058    // it contains any previous declaration.
6059    assert(!S->isDeclScope(PrevDecl));
6060    if (PrevDecl->isTemplateParameter()) {
6061      // Maybe we will complain about the shadowed template parameter.
6062      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6063    }
6064  }
6065
6066  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6067    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6068      << D.getCXXScopeSpec().getRange();
6069    Invalid = true;
6070  }
6071
6072  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6073                                              D.getIdentifier(),
6074                                              D.getIdentifierLoc());
6075
6076  if (Invalid)
6077    ExDecl->setInvalidDecl();
6078
6079  // Add the exception declaration into this scope.
6080  if (II)
6081    PushOnScopeChains(ExDecl, S);
6082  else
6083    CurContext->addDecl(ExDecl);
6084
6085  ProcessDeclAttributes(S, ExDecl, D);
6086  return ExDecl;
6087}
6088
6089Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6090                                         Expr *AssertExpr,
6091                                         Expr *AssertMessageExpr_) {
6092  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6093
6094  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6095    llvm::APSInt Value(32);
6096    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6097      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6098        AssertExpr->getSourceRange();
6099      return 0;
6100    }
6101
6102    if (Value == 0) {
6103      Diag(AssertLoc, diag::err_static_assert_failed)
6104        << AssertMessage->getString() << AssertExpr->getSourceRange();
6105    }
6106  }
6107
6108  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6109                                        AssertExpr, AssertMessage);
6110
6111  CurContext->addDecl(Decl);
6112  return Decl;
6113}
6114
6115/// \brief Perform semantic analysis of the given friend type declaration.
6116///
6117/// \returns A friend declaration that.
6118FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6119                                      TypeSourceInfo *TSInfo) {
6120  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6121
6122  QualType T = TSInfo->getType();
6123  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6124
6125  if (!getLangOptions().CPlusPlus0x) {
6126    // C++03 [class.friend]p2:
6127    //   An elaborated-type-specifier shall be used in a friend declaration
6128    //   for a class.*
6129    //
6130    //   * The class-key of the elaborated-type-specifier is required.
6131    if (!ActiveTemplateInstantiations.empty()) {
6132      // Do not complain about the form of friend template types during
6133      // template instantiation; we will already have complained when the
6134      // template was declared.
6135    } else if (!T->isElaboratedTypeSpecifier()) {
6136      // If we evaluated the type to a record type, suggest putting
6137      // a tag in front.
6138      if (const RecordType *RT = T->getAs<RecordType>()) {
6139        RecordDecl *RD = RT->getDecl();
6140
6141        std::string InsertionText = std::string(" ") + RD->getKindName();
6142
6143        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6144          << (unsigned) RD->getTagKind()
6145          << T
6146          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6147                                        InsertionText);
6148      } else {
6149        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6150          << T
6151          << SourceRange(FriendLoc, TypeRange.getEnd());
6152      }
6153    } else if (T->getAs<EnumType>()) {
6154      Diag(FriendLoc, diag::ext_enum_friend)
6155        << T
6156        << SourceRange(FriendLoc, TypeRange.getEnd());
6157    }
6158  }
6159
6160  // C++0x [class.friend]p3:
6161  //   If the type specifier in a friend declaration designates a (possibly
6162  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6163  //   the friend declaration is ignored.
6164
6165  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6166  // in [class.friend]p3 that we do not implement.
6167
6168  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6169}
6170
6171/// Handle a friend type declaration.  This works in tandem with
6172/// ActOnTag.
6173///
6174/// Notes on friend class templates:
6175///
6176/// We generally treat friend class declarations as if they were
6177/// declaring a class.  So, for example, the elaborated type specifier
6178/// in a friend declaration is required to obey the restrictions of a
6179/// class-head (i.e. no typedefs in the scope chain), template
6180/// parameters are required to match up with simple template-ids, &c.
6181/// However, unlike when declaring a template specialization, it's
6182/// okay to refer to a template specialization without an empty
6183/// template parameter declaration, e.g.
6184///   friend class A<T>::B<unsigned>;
6185/// We permit this as a special case; if there are any template
6186/// parameters present at all, require proper matching, i.e.
6187///   template <> template <class T> friend class A<int>::B;
6188Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6189                                          MultiTemplateParamsArg TempParams) {
6190  SourceLocation Loc = DS.getSourceRange().getBegin();
6191
6192  assert(DS.isFriendSpecified());
6193  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6194
6195  // Try to convert the decl specifier to a type.  This works for
6196  // friend templates because ActOnTag never produces a ClassTemplateDecl
6197  // for a TUK_Friend.
6198  Declarator TheDeclarator(DS, Declarator::MemberContext);
6199  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6200  QualType T = TSI->getType();
6201  if (TheDeclarator.isInvalidType())
6202    return 0;
6203
6204  // This is definitely an error in C++98.  It's probably meant to
6205  // be forbidden in C++0x, too, but the specification is just
6206  // poorly written.
6207  //
6208  // The problem is with declarations like the following:
6209  //   template <T> friend A<T>::foo;
6210  // where deciding whether a class C is a friend or not now hinges
6211  // on whether there exists an instantiation of A that causes
6212  // 'foo' to equal C.  There are restrictions on class-heads
6213  // (which we declare (by fiat) elaborated friend declarations to
6214  // be) that makes this tractable.
6215  //
6216  // FIXME: handle "template <> friend class A<T>;", which
6217  // is possibly well-formed?  Who even knows?
6218  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6219    Diag(Loc, diag::err_tagless_friend_type_template)
6220      << DS.getSourceRange();
6221    return 0;
6222  }
6223
6224  // C++98 [class.friend]p1: A friend of a class is a function
6225  //   or class that is not a member of the class . . .
6226  // This is fixed in DR77, which just barely didn't make the C++03
6227  // deadline.  It's also a very silly restriction that seriously
6228  // affects inner classes and which nobody else seems to implement;
6229  // thus we never diagnose it, not even in -pedantic.
6230  //
6231  // But note that we could warn about it: it's always useless to
6232  // friend one of your own members (it's not, however, worthless to
6233  // friend a member of an arbitrary specialization of your template).
6234
6235  Decl *D;
6236  if (unsigned NumTempParamLists = TempParams.size())
6237    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6238                                   NumTempParamLists,
6239                                 (TemplateParameterList**) TempParams.release(),
6240                                   TSI,
6241                                   DS.getFriendSpecLoc());
6242  else
6243    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6244
6245  if (!D)
6246    return 0;
6247
6248  D->setAccess(AS_public);
6249  CurContext->addDecl(D);
6250
6251  return D;
6252}
6253
6254Decl *Sema::ActOnFriendFunctionDecl(Scope *S,
6255                                         Declarator &D,
6256                                         bool IsDefinition,
6257                              MultiTemplateParamsArg TemplateParams) {
6258  const DeclSpec &DS = D.getDeclSpec();
6259
6260  assert(DS.isFriendSpecified());
6261  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6262
6263  SourceLocation Loc = D.getIdentifierLoc();
6264  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6265  QualType T = TInfo->getType();
6266
6267  // C++ [class.friend]p1
6268  //   A friend of a class is a function or class....
6269  // Note that this sees through typedefs, which is intended.
6270  // It *doesn't* see through dependent types, which is correct
6271  // according to [temp.arg.type]p3:
6272  //   If a declaration acquires a function type through a
6273  //   type dependent on a template-parameter and this causes
6274  //   a declaration that does not use the syntactic form of a
6275  //   function declarator to have a function type, the program
6276  //   is ill-formed.
6277  if (!T->isFunctionType()) {
6278    Diag(Loc, diag::err_unexpected_friend);
6279
6280    // It might be worthwhile to try to recover by creating an
6281    // appropriate declaration.
6282    return 0;
6283  }
6284
6285  // C++ [namespace.memdef]p3
6286  //  - If a friend declaration in a non-local class first declares a
6287  //    class or function, the friend class or function is a member
6288  //    of the innermost enclosing namespace.
6289  //  - The name of the friend is not found by simple name lookup
6290  //    until a matching declaration is provided in that namespace
6291  //    scope (either before or after the class declaration granting
6292  //    friendship).
6293  //  - If a friend function is called, its name may be found by the
6294  //    name lookup that considers functions from namespaces and
6295  //    classes associated with the types of the function arguments.
6296  //  - When looking for a prior declaration of a class or a function
6297  //    declared as a friend, scopes outside the innermost enclosing
6298  //    namespace scope are not considered.
6299
6300  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6301  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6302  DeclarationName Name = NameInfo.getName();
6303  assert(Name);
6304
6305  // The context we found the declaration in, or in which we should
6306  // create the declaration.
6307  DeclContext *DC;
6308
6309  // FIXME: handle local classes
6310
6311  // Recover from invalid scope qualifiers as if they just weren't there.
6312  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6313                        ForRedeclaration);
6314  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6315    DC = computeDeclContext(ScopeQual);
6316
6317    // FIXME: handle dependent contexts
6318    if (!DC) return 0;
6319    if (RequireCompleteDeclContext(ScopeQual, DC)) return 0;
6320
6321    LookupQualifiedName(Previous, DC);
6322
6323    // Ignore things found implicitly in the wrong scope.
6324    // TODO: better diagnostics for this case.  Suggesting the right
6325    // qualified scope would be nice...
6326    LookupResult::Filter F = Previous.makeFilter();
6327    while (F.hasNext()) {
6328      NamedDecl *D = F.next();
6329      if (!DC->InEnclosingNamespaceSetOf(
6330              D->getDeclContext()->getRedeclContext()))
6331        F.erase();
6332    }
6333    F.done();
6334
6335    if (Previous.empty()) {
6336      D.setInvalidType();
6337      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6338      return 0;
6339    }
6340
6341    // C++ [class.friend]p1: A friend of a class is a function or
6342    //   class that is not a member of the class . . .
6343    if (DC->Equals(CurContext))
6344      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6345
6346  // Otherwise walk out to the nearest namespace scope looking for matches.
6347  } else {
6348    // TODO: handle local class contexts.
6349
6350    DC = CurContext;
6351    while (true) {
6352      // Skip class contexts.  If someone can cite chapter and verse
6353      // for this behavior, that would be nice --- it's what GCC and
6354      // EDG do, and it seems like a reasonable intent, but the spec
6355      // really only says that checks for unqualified existing
6356      // declarations should stop at the nearest enclosing namespace,
6357      // not that they should only consider the nearest enclosing
6358      // namespace.
6359      while (DC->isRecord())
6360        DC = DC->getParent();
6361
6362      LookupQualifiedName(Previous, DC);
6363
6364      // TODO: decide what we think about using declarations.
6365      if (!Previous.empty())
6366        break;
6367
6368      if (DC->isFileContext()) break;
6369      DC = DC->getParent();
6370    }
6371
6372    // C++ [class.friend]p1: A friend of a class is a function or
6373    //   class that is not a member of the class . . .
6374    // C++0x changes this for both friend types and functions.
6375    // Most C++ 98 compilers do seem to give an error here, so
6376    // we do, too.
6377    if (!Previous.empty() && DC->Equals(CurContext)
6378        && !getLangOptions().CPlusPlus0x)
6379      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6380  }
6381
6382  if (DC->isFileContext()) {
6383    // This implies that it has to be an operator or function.
6384    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6385        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6386        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6387      Diag(Loc, diag::err_introducing_special_friend) <<
6388        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6389         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6390      return 0;
6391    }
6392  }
6393
6394  bool Redeclaration = false;
6395  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6396                                          move(TemplateParams),
6397                                          IsDefinition,
6398                                          Redeclaration);
6399  if (!ND) return 0;
6400
6401  assert(ND->getDeclContext() == DC);
6402  assert(ND->getLexicalDeclContext() == CurContext);
6403
6404  // Add the function declaration to the appropriate lookup tables,
6405  // adjusting the redeclarations list as necessary.  We don't
6406  // want to do this yet if the friending class is dependent.
6407  //
6408  // Also update the scope-based lookup if the target context's
6409  // lookup context is in lexical scope.
6410  if (!CurContext->isDependentContext()) {
6411    DC = DC->getRedeclContext();
6412    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6413    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6414      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6415  }
6416
6417  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6418                                       D.getIdentifierLoc(), ND,
6419                                       DS.getFriendSpecLoc());
6420  FrD->setAccess(AS_public);
6421  CurContext->addDecl(FrD);
6422
6423  return ND;
6424}
6425
6426void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6427  AdjustDeclIfTemplate(Dcl);
6428
6429  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6430  if (!Fn) {
6431    Diag(DelLoc, diag::err_deleted_non_function);
6432    return;
6433  }
6434  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6435    Diag(DelLoc, diag::err_deleted_decl_not_first);
6436    Diag(Prev->getLocation(), diag::note_previous_declaration);
6437    // If the declaration wasn't the first, we delete the function anyway for
6438    // recovery.
6439  }
6440  Fn->setDeleted();
6441}
6442
6443static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6444  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6445       ++CI) {
6446    Stmt *SubStmt = *CI;
6447    if (!SubStmt)
6448      continue;
6449    if (isa<ReturnStmt>(SubStmt))
6450      Self.Diag(SubStmt->getSourceRange().getBegin(),
6451           diag::err_return_in_constructor_handler);
6452    if (!isa<Expr>(SubStmt))
6453      SearchForReturnInStmt(Self, SubStmt);
6454  }
6455}
6456
6457void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6458  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6459    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6460    SearchForReturnInStmt(*this, Handler);
6461  }
6462}
6463
6464bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6465                                             const CXXMethodDecl *Old) {
6466  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6467  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6468
6469  if (Context.hasSameType(NewTy, OldTy) ||
6470      NewTy->isDependentType() || OldTy->isDependentType())
6471    return false;
6472
6473  // Check if the return types are covariant
6474  QualType NewClassTy, OldClassTy;
6475
6476  /// Both types must be pointers or references to classes.
6477  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6478    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6479      NewClassTy = NewPT->getPointeeType();
6480      OldClassTy = OldPT->getPointeeType();
6481    }
6482  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6483    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6484      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6485        NewClassTy = NewRT->getPointeeType();
6486        OldClassTy = OldRT->getPointeeType();
6487      }
6488    }
6489  }
6490
6491  // The return types aren't either both pointers or references to a class type.
6492  if (NewClassTy.isNull()) {
6493    Diag(New->getLocation(),
6494         diag::err_different_return_type_for_overriding_virtual_function)
6495      << New->getDeclName() << NewTy << OldTy;
6496    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6497
6498    return true;
6499  }
6500
6501  // C++ [class.virtual]p6:
6502  //   If the return type of D::f differs from the return type of B::f, the
6503  //   class type in the return type of D::f shall be complete at the point of
6504  //   declaration of D::f or shall be the class type D.
6505  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6506    if (!RT->isBeingDefined() &&
6507        RequireCompleteType(New->getLocation(), NewClassTy,
6508                            PDiag(diag::err_covariant_return_incomplete)
6509                              << New->getDeclName()))
6510    return true;
6511  }
6512
6513  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6514    // Check if the new class derives from the old class.
6515    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6516      Diag(New->getLocation(),
6517           diag::err_covariant_return_not_derived)
6518      << New->getDeclName() << NewTy << OldTy;
6519      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6520      return true;
6521    }
6522
6523    // Check if we the conversion from derived to base is valid.
6524    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6525                    diag::err_covariant_return_inaccessible_base,
6526                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6527                    // FIXME: Should this point to the return type?
6528                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6529      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6530      return true;
6531    }
6532  }
6533
6534  // The qualifiers of the return types must be the same.
6535  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6536    Diag(New->getLocation(),
6537         diag::err_covariant_return_type_different_qualifications)
6538    << New->getDeclName() << NewTy << OldTy;
6539    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6540    return true;
6541  };
6542
6543
6544  // The new class type must have the same or less qualifiers as the old type.
6545  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6546    Diag(New->getLocation(),
6547         diag::err_covariant_return_type_class_type_more_qualified)
6548    << New->getDeclName() << NewTy << OldTy;
6549    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6550    return true;
6551  };
6552
6553  return false;
6554}
6555
6556bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6557                                             const CXXMethodDecl *Old)
6558{
6559  if (Old->hasAttr<FinalAttr>()) {
6560    Diag(New->getLocation(), diag::err_final_function_overridden)
6561      << New->getDeclName();
6562    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6563    return true;
6564  }
6565
6566  return false;
6567}
6568
6569/// \brief Mark the given method pure.
6570///
6571/// \param Method the method to be marked pure.
6572///
6573/// \param InitRange the source range that covers the "0" initializer.
6574bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6575  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6576    Method->setPure();
6577    return false;
6578  }
6579
6580  if (!Method->isInvalidDecl())
6581    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6582      << Method->getDeclName() << InitRange;
6583  return true;
6584}
6585
6586/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6587/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6588/// is a fresh scope pushed for just this purpose.
6589///
6590/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6591/// static data member of class X, names should be looked up in the scope of
6592/// class X.
6593void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6594  // If there is no declaration, there was an error parsing it.
6595  if (D == 0) return;
6596
6597  // We should only get called for declarations with scope specifiers, like:
6598  //   int foo::bar;
6599  assert(D->isOutOfLine());
6600  EnterDeclaratorContext(S, D->getDeclContext());
6601}
6602
6603/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6604/// initializer for the out-of-line declaration 'D'.
6605void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6606  // If there is no declaration, there was an error parsing it.
6607  if (D == 0) return;
6608
6609  assert(D->isOutOfLine());
6610  ExitDeclaratorContext(S);
6611}
6612
6613/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6614/// C++ if/switch/while/for statement.
6615/// e.g: "if (int x = f()) {...}"
6616DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6617  // C++ 6.4p2:
6618  // The declarator shall not specify a function or an array.
6619  // The type-specifier-seq shall not contain typedef and shall not declare a
6620  // new class or enumeration.
6621  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6622         "Parser allowed 'typedef' as storage class of condition decl.");
6623
6624  TagDecl *OwnedTag = 0;
6625  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6626  QualType Ty = TInfo->getType();
6627
6628  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6629                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6630                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6631    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6632      << D.getSourceRange();
6633    return DeclResult();
6634  } else if (OwnedTag && OwnedTag->isDefinition()) {
6635    // The type-specifier-seq shall not declare a new class or enumeration.
6636    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6637  }
6638
6639  Decl *Dcl = ActOnDeclarator(S, D);
6640  if (!Dcl)
6641    return DeclResult();
6642
6643  return Dcl;
6644}
6645
6646void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6647                          bool DefinitionRequired) {
6648  // Ignore any vtable uses in unevaluated operands or for classes that do
6649  // not have a vtable.
6650  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6651      CurContext->isDependentContext() ||
6652      ExprEvalContexts.back().Context == Unevaluated)
6653    return;
6654
6655  // Try to insert this class into the map.
6656  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6657  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6658    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6659  if (!Pos.second) {
6660    // If we already had an entry, check to see if we are promoting this vtable
6661    // to required a definition. If so, we need to reappend to the VTableUses
6662    // list, since we may have already processed the first entry.
6663    if (DefinitionRequired && !Pos.first->second) {
6664      Pos.first->second = true;
6665    } else {
6666      // Otherwise, we can early exit.
6667      return;
6668    }
6669  }
6670
6671  // Local classes need to have their virtual members marked
6672  // immediately. For all other classes, we mark their virtual members
6673  // at the end of the translation unit.
6674  if (Class->isLocalClass())
6675    MarkVirtualMembersReferenced(Loc, Class);
6676  else
6677    VTableUses.push_back(std::make_pair(Class, Loc));
6678}
6679
6680bool Sema::DefineUsedVTables() {
6681  // If any dynamic classes have their key function defined within
6682  // this translation unit, then those vtables are considered "used" and must
6683  // be emitted.
6684  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6685    if (const CXXMethodDecl *KeyFunction
6686                             = Context.getKeyFunction(DynamicClasses[I])) {
6687      const FunctionDecl *Definition = 0;
6688      if (KeyFunction->hasBody(Definition))
6689        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6690    }
6691  }
6692
6693  if (VTableUses.empty())
6694    return false;
6695
6696  // Note: The VTableUses vector could grow as a result of marking
6697  // the members of a class as "used", so we check the size each
6698  // time through the loop and prefer indices (with are stable) to
6699  // iterators (which are not).
6700  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6701    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6702    if (!Class)
6703      continue;
6704
6705    SourceLocation Loc = VTableUses[I].second;
6706
6707    // If this class has a key function, but that key function is
6708    // defined in another translation unit, we don't need to emit the
6709    // vtable even though we're using it.
6710    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6711    if (KeyFunction && !KeyFunction->hasBody()) {
6712      switch (KeyFunction->getTemplateSpecializationKind()) {
6713      case TSK_Undeclared:
6714      case TSK_ExplicitSpecialization:
6715      case TSK_ExplicitInstantiationDeclaration:
6716        // The key function is in another translation unit.
6717        continue;
6718
6719      case TSK_ExplicitInstantiationDefinition:
6720      case TSK_ImplicitInstantiation:
6721        // We will be instantiating the key function.
6722        break;
6723      }
6724    } else if (!KeyFunction) {
6725      // If we have a class with no key function that is the subject
6726      // of an explicit instantiation declaration, suppress the
6727      // vtable; it will live with the explicit instantiation
6728      // definition.
6729      bool IsExplicitInstantiationDeclaration
6730        = Class->getTemplateSpecializationKind()
6731                                      == TSK_ExplicitInstantiationDeclaration;
6732      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6733                                 REnd = Class->redecls_end();
6734           R != REnd; ++R) {
6735        TemplateSpecializationKind TSK
6736          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6737        if (TSK == TSK_ExplicitInstantiationDeclaration)
6738          IsExplicitInstantiationDeclaration = true;
6739        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6740          IsExplicitInstantiationDeclaration = false;
6741          break;
6742        }
6743      }
6744
6745      if (IsExplicitInstantiationDeclaration)
6746        continue;
6747    }
6748
6749    // Mark all of the virtual members of this class as referenced, so
6750    // that we can build a vtable. Then, tell the AST consumer that a
6751    // vtable for this class is required.
6752    MarkVirtualMembersReferenced(Loc, Class);
6753    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6754    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6755
6756    // Optionally warn if we're emitting a weak vtable.
6757    if (Class->getLinkage() == ExternalLinkage &&
6758        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6759      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6760        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6761    }
6762  }
6763  VTableUses.clear();
6764
6765  return true;
6766}
6767
6768void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6769                                        const CXXRecordDecl *RD) {
6770  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6771       e = RD->method_end(); i != e; ++i) {
6772    CXXMethodDecl *MD = *i;
6773
6774    // C++ [basic.def.odr]p2:
6775    //   [...] A virtual member function is used if it is not pure. [...]
6776    if (MD->isVirtual() && !MD->isPure())
6777      MarkDeclarationReferenced(Loc, MD);
6778  }
6779
6780  // Only classes that have virtual bases need a VTT.
6781  if (RD->getNumVBases() == 0)
6782    return;
6783
6784  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6785           e = RD->bases_end(); i != e; ++i) {
6786    const CXXRecordDecl *Base =
6787        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6788    if (Base->getNumVBases() == 0)
6789      continue;
6790    MarkVirtualMembersReferenced(Loc, Base);
6791  }
6792}
6793
6794/// SetIvarInitializers - This routine builds initialization ASTs for the
6795/// Objective-C implementation whose ivars need be initialized.
6796void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6797  if (!getLangOptions().CPlusPlus)
6798    return;
6799  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6800    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6801    CollectIvarsToConstructOrDestruct(OID, ivars);
6802    if (ivars.empty())
6803      return;
6804    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6805    for (unsigned i = 0; i < ivars.size(); i++) {
6806      FieldDecl *Field = ivars[i];
6807      if (Field->isInvalidDecl())
6808        continue;
6809
6810      CXXBaseOrMemberInitializer *Member;
6811      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6812      InitializationKind InitKind =
6813        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6814
6815      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6816      ExprResult MemberInit =
6817        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
6818      MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
6819      // Note, MemberInit could actually come back empty if no initialization
6820      // is required (e.g., because it would call a trivial default constructor)
6821      if (!MemberInit.get() || MemberInit.isInvalid())
6822        continue;
6823
6824      Member =
6825        new (Context) CXXBaseOrMemberInitializer(Context,
6826                                                 Field, SourceLocation(),
6827                                                 SourceLocation(),
6828                                                 MemberInit.takeAs<Expr>(),
6829                                                 SourceLocation());
6830      AllToInit.push_back(Member);
6831
6832      // Be sure that the destructor is accessible and is marked as referenced.
6833      if (const RecordType *RecordTy
6834                  = Context.getBaseElementType(Field->getType())
6835                                                        ->getAs<RecordType>()) {
6836                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6837        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6838          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6839          CheckDestructorAccess(Field->getLocation(), Destructor,
6840                            PDiag(diag::err_access_dtor_ivar)
6841                              << Context.getBaseElementType(Field->getType()));
6842        }
6843      }
6844    }
6845    ObjCImplementation->setIvarInitializers(Context,
6846                                            AllToInit.data(), AllToInit.size());
6847  }
6848}
6849