SemaDeclCXX.cpp revision 1d31833450e6d2947a33cb0840d87661d92eec07
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If the parameter doesn't have an identifier then the location
274      // points to the '=' which means that the fixit hint won't remove any
275      // extra spaces between the type and the '='.
276      SourceLocation Begin = NewParam->getLocation();
277      if (NewParam->getIdentifier())
278        Begin = PP.getLocForEndOfToken(Begin);
279
280      Diag(NewParam->getLocation(),
281           diag::err_param_default_argument_redefinition)
282        << NewParam->getDefaultArgRange()
283        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
284                                                        NewParam->getLocEnd()));
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      if (OldParam->hasUninstantiatedDefaultArg())
302        NewParam->setUninstantiatedDefaultArg(
303                                      OldParam->getUninstantiatedDefaultArg());
304      else
305        NewParam->setDefaultArg(OldParam->getDefaultArg());
306    } else if (NewParam->hasDefaultArg()) {
307      if (New->getDescribedFunctionTemplate()) {
308        // Paragraph 4, quoted above, only applies to non-template functions.
309        Diag(NewParam->getLocation(),
310             diag::err_param_default_argument_template_redecl)
311          << NewParam->getDefaultArgRange();
312        Diag(Old->getLocation(), diag::note_template_prev_declaration)
313          << false;
314      } else if (New->getTemplateSpecializationKind()
315                   != TSK_ImplicitInstantiation &&
316                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
317        // C++ [temp.expr.spec]p21:
318        //   Default function arguments shall not be specified in a declaration
319        //   or a definition for one of the following explicit specializations:
320        //     - the explicit specialization of a function template;
321        //     - the explicit specialization of a member function template;
322        //     - the explicit specialization of a member function of a class
323        //       template where the class template specialization to which the
324        //       member function specialization belongs is implicitly
325        //       instantiated.
326        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
327          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
328          << New->getDeclName()
329          << NewParam->getDefaultArgRange();
330      } else if (New->getDeclContext()->isDependentContext()) {
331        // C++ [dcl.fct.default]p6 (DR217):
332        //   Default arguments for a member function of a class template shall
333        //   be specified on the initial declaration of the member function
334        //   within the class template.
335        //
336        // Reading the tea leaves a bit in DR217 and its reference to DR205
337        // leads me to the conclusion that one cannot add default function
338        // arguments for an out-of-line definition of a member function of a
339        // dependent type.
340        int WhichKind = 2;
341        if (CXXRecordDecl *Record
342              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
343          if (Record->getDescribedClassTemplate())
344            WhichKind = 0;
345          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
346            WhichKind = 1;
347          else
348            WhichKind = 2;
349        }
350
351        Diag(NewParam->getLocation(),
352             diag::err_param_default_argument_member_template_redecl)
353          << WhichKind
354          << NewParam->getDefaultArgRange();
355      }
356    }
357  }
358
359  if (CheckEquivalentExceptionSpec(
360          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
361          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        if (!Param->hasUnparsedDefaultArg())
414          Param->getDefaultArg()->Destroy(Context);
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl)
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         QualType BaseType,
451                         SourceLocation BaseLoc) {
452  // C++ [class.union]p1:
453  //   A union shall not have base classes.
454  if (Class->isUnion()) {
455    Diag(Class->getLocation(), diag::err_base_clause_on_union)
456      << SpecifierRange;
457    return 0;
458  }
459
460  if (BaseType->isDependentType())
461    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
462                                Class->getTagKind() == RecordDecl::TK_class,
463                                Access, BaseType);
464
465  // Base specifiers must be record types.
466  if (!BaseType->isRecordType()) {
467    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
468    return 0;
469  }
470
471  // C++ [class.union]p1:
472  //   A union shall not be used as a base class.
473  if (BaseType->isUnionType()) {
474    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
475    return 0;
476  }
477
478  // C++ [class.derived]p2:
479  //   The class-name in a base-specifier shall not be an incompletely
480  //   defined class.
481  if (RequireCompleteType(BaseLoc, BaseType,
482                          PDiag(diag::err_incomplete_base_class)
483                            << SpecifierRange))
484    return 0;
485
486  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
487  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
488  assert(BaseDecl && "Record type has no declaration");
489  BaseDecl = BaseDecl->getDefinition(Context);
490  assert(BaseDecl && "Base type is not incomplete, but has no definition");
491  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
492  assert(CXXBaseDecl && "Base type is not a C++ type");
493
494  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
495  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
496    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
497    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
498      << BaseType;
499    return 0;
500  }
501
502  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
503
504  // Create the base specifier.
505  // FIXME: Allocate via ASTContext?
506  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
507                              Class->getTagKind() == RecordDecl::TK_class,
508                              Access, BaseType);
509}
510
511void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
512                                          const CXXRecordDecl *BaseClass,
513                                          bool BaseIsVirtual) {
514  // A class with a non-empty base class is not empty.
515  // FIXME: Standard ref?
516  if (!BaseClass->isEmpty())
517    Class->setEmpty(false);
518
519  // C++ [class.virtual]p1:
520  //   A class that [...] inherits a virtual function is called a polymorphic
521  //   class.
522  if (BaseClass->isPolymorphic())
523    Class->setPolymorphic(true);
524
525  // C++ [dcl.init.aggr]p1:
526  //   An aggregate is [...] a class with [...] no base classes [...].
527  Class->setAggregate(false);
528
529  // C++ [class]p4:
530  //   A POD-struct is an aggregate class...
531  Class->setPOD(false);
532
533  if (BaseIsVirtual) {
534    // C++ [class.ctor]p5:
535    //   A constructor is trivial if its class has no virtual base classes.
536    Class->setHasTrivialConstructor(false);
537
538    // C++ [class.copy]p6:
539    //   A copy constructor is trivial if its class has no virtual base classes.
540    Class->setHasTrivialCopyConstructor(false);
541
542    // C++ [class.copy]p11:
543    //   A copy assignment operator is trivial if its class has no virtual
544    //   base classes.
545    Class->setHasTrivialCopyAssignment(false);
546
547    // C++0x [meta.unary.prop] is_empty:
548    //    T is a class type, but not a union type, with ... no virtual base
549    //    classes
550    Class->setEmpty(false);
551  } else {
552    // C++ [class.ctor]p5:
553    //   A constructor is trivial if all the direct base classes of its
554    //   class have trivial constructors.
555    if (!BaseClass->hasTrivialConstructor())
556      Class->setHasTrivialConstructor(false);
557
558    // C++ [class.copy]p6:
559    //   A copy constructor is trivial if all the direct base classes of its
560    //   class have trivial copy constructors.
561    if (!BaseClass->hasTrivialCopyConstructor())
562      Class->setHasTrivialCopyConstructor(false);
563
564    // C++ [class.copy]p11:
565    //   A copy assignment operator is trivial if all the direct base classes
566    //   of its class have trivial copy assignment operators.
567    if (!BaseClass->hasTrivialCopyAssignment())
568      Class->setHasTrivialCopyAssignment(false);
569  }
570
571  // C++ [class.ctor]p3:
572  //   A destructor is trivial if all the direct base classes of its class
573  //   have trivial destructors.
574  if (!BaseClass->hasTrivialDestructor())
575    Class->setHasTrivialDestructor(false);
576}
577
578/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
579/// one entry in the base class list of a class specifier, for
580/// example:
581///    class foo : public bar, virtual private baz {
582/// 'public bar' and 'virtual private baz' are each base-specifiers.
583Sema::BaseResult
584Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
585                         bool Virtual, AccessSpecifier Access,
586                         TypeTy *basetype, SourceLocation BaseLoc) {
587  if (!classdecl)
588    return true;
589
590  AdjustDeclIfTemplate(classdecl);
591  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
592  QualType BaseType = GetTypeFromParser(basetype);
593  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
594                                                      Virtual, Access,
595                                                      BaseType, BaseLoc))
596    return BaseSpec;
597
598  return true;
599}
600
601/// \brief Performs the actual work of attaching the given base class
602/// specifiers to a C++ class.
603bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
604                                unsigned NumBases) {
605 if (NumBases == 0)
606    return false;
607
608  // Used to keep track of which base types we have already seen, so
609  // that we can properly diagnose redundant direct base types. Note
610  // that the key is always the unqualified canonical type of the base
611  // class.
612  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
613
614  // Copy non-redundant base specifiers into permanent storage.
615  unsigned NumGoodBases = 0;
616  bool Invalid = false;
617  for (unsigned idx = 0; idx < NumBases; ++idx) {
618    QualType NewBaseType
619      = Context.getCanonicalType(Bases[idx]->getType());
620    NewBaseType = NewBaseType.getLocalUnqualifiedType();
621
622    if (KnownBaseTypes[NewBaseType]) {
623      // C++ [class.mi]p3:
624      //   A class shall not be specified as a direct base class of a
625      //   derived class more than once.
626      Diag(Bases[idx]->getSourceRange().getBegin(),
627           diag::err_duplicate_base_class)
628        << KnownBaseTypes[NewBaseType]->getType()
629        << Bases[idx]->getSourceRange();
630
631      // Delete the duplicate base class specifier; we're going to
632      // overwrite its pointer later.
633      Context.Deallocate(Bases[idx]);
634
635      Invalid = true;
636    } else {
637      // Okay, add this new base class.
638      KnownBaseTypes[NewBaseType] = Bases[idx];
639      Bases[NumGoodBases++] = Bases[idx];
640    }
641  }
642
643  // Attach the remaining base class specifiers to the derived class.
644  Class->setBases(Context, Bases, NumGoodBases);
645
646  // Delete the remaining (good) base class specifiers, since their
647  // data has been copied into the CXXRecordDecl.
648  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
649    Context.Deallocate(Bases[idx]);
650
651  return Invalid;
652}
653
654/// ActOnBaseSpecifiers - Attach the given base specifiers to the
655/// class, after checking whether there are any duplicate base
656/// classes.
657void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
658                               unsigned NumBases) {
659  if (!ClassDecl || !Bases || !NumBases)
660    return;
661
662  AdjustDeclIfTemplate(ClassDecl);
663  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
664                       (CXXBaseSpecifier**)(Bases), NumBases);
665}
666
667/// \brief Determine whether the type \p Derived is a C++ class that is
668/// derived from the type \p Base.
669bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
670  if (!getLangOptions().CPlusPlus)
671    return false;
672
673  const RecordType *DerivedRT = Derived->getAs<RecordType>();
674  if (!DerivedRT)
675    return false;
676
677  const RecordType *BaseRT = Base->getAs<RecordType>();
678  if (!BaseRT)
679    return false;
680
681  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
682  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
683  return DerivedRD->isDerivedFrom(BaseRD);
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  const RecordType *DerivedRT = Derived->getAs<RecordType>();
693  if (!DerivedRT)
694    return false;
695
696  const RecordType *BaseRT = Base->getAs<RecordType>();
697  if (!BaseRT)
698    return false;
699
700  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
701  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
702  return DerivedRD->isDerivedFrom(BaseRD, Paths);
703}
704
705/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
706/// conversion (where Derived and Base are class types) is
707/// well-formed, meaning that the conversion is unambiguous (and
708/// that all of the base classes are accessible). Returns true
709/// and emits a diagnostic if the code is ill-formed, returns false
710/// otherwise. Loc is the location where this routine should point to
711/// if there is an error, and Range is the source range to highlight
712/// if there is an error.
713bool
714Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
715                                   unsigned InaccessibleBaseID,
716                                   unsigned AmbigiousBaseConvID,
717                                   SourceLocation Loc, SourceRange Range,
718                                   DeclarationName Name) {
719  // First, determine whether the path from Derived to Base is
720  // ambiguous. This is slightly more expensive than checking whether
721  // the Derived to Base conversion exists, because here we need to
722  // explore multiple paths to determine if there is an ambiguity.
723  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
724                     /*DetectVirtual=*/false);
725  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
726  assert(DerivationOkay &&
727         "Can only be used with a derived-to-base conversion");
728  (void)DerivationOkay;
729
730  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
731    if (InaccessibleBaseID == 0)
732      return false;
733    // Check that the base class can be accessed.
734    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
735                                Name);
736  }
737
738  // We know that the derived-to-base conversion is ambiguous, and
739  // we're going to produce a diagnostic. Perform the derived-to-base
740  // search just one more time to compute all of the possible paths so
741  // that we can print them out. This is more expensive than any of
742  // the previous derived-to-base checks we've done, but at this point
743  // performance isn't as much of an issue.
744  Paths.clear();
745  Paths.setRecordingPaths(true);
746  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
747  assert(StillOkay && "Can only be used with a derived-to-base conversion");
748  (void)StillOkay;
749
750  // Build up a textual representation of the ambiguous paths, e.g.,
751  // D -> B -> A, that will be used to illustrate the ambiguous
752  // conversions in the diagnostic. We only print one of the paths
753  // to each base class subobject.
754  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
755
756  Diag(Loc, AmbigiousBaseConvID)
757  << Derived << Base << PathDisplayStr << Range << Name;
758  return true;
759}
760
761bool
762Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
763                                   SourceLocation Loc, SourceRange Range,
764                                   bool IgnoreAccess) {
765  return CheckDerivedToBaseConversion(Derived, Base,
766                                      IgnoreAccess ? 0 :
767                                        diag::err_conv_to_inaccessible_base,
768                                      diag::err_ambiguous_derived_to_base_conv,
769                                      Loc, Range, DeclarationName());
770}
771
772
773/// @brief Builds a string representing ambiguous paths from a
774/// specific derived class to different subobjects of the same base
775/// class.
776///
777/// This function builds a string that can be used in error messages
778/// to show the different paths that one can take through the
779/// inheritance hierarchy to go from the derived class to different
780/// subobjects of a base class. The result looks something like this:
781/// @code
782/// struct D -> struct B -> struct A
783/// struct D -> struct C -> struct A
784/// @endcode
785std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
786  std::string PathDisplayStr;
787  std::set<unsigned> DisplayedPaths;
788  for (CXXBasePaths::paths_iterator Path = Paths.begin();
789       Path != Paths.end(); ++Path) {
790    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
791      // We haven't displayed a path to this particular base
792      // class subobject yet.
793      PathDisplayStr += "\n    ";
794      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
795      for (CXXBasePath::const_iterator Element = Path->begin();
796           Element != Path->end(); ++Element)
797        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
798    }
799  }
800
801  return PathDisplayStr;
802}
803
804//===----------------------------------------------------------------------===//
805// C++ class member Handling
806//===----------------------------------------------------------------------===//
807
808/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
809/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
810/// bitfield width if there is one and 'InitExpr' specifies the initializer if
811/// any.
812Sema::DeclPtrTy
813Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
814                               MultiTemplateParamsArg TemplateParameterLists,
815                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
816                               bool Deleted) {
817  const DeclSpec &DS = D.getDeclSpec();
818  DeclarationName Name = GetNameForDeclarator(D);
819  Expr *BitWidth = static_cast<Expr*>(BW);
820  Expr *Init = static_cast<Expr*>(InitExpr);
821  SourceLocation Loc = D.getIdentifierLoc();
822
823  bool isFunc = D.isFunctionDeclarator();
824
825  assert(!DS.isFriendSpecified());
826
827  // C++ 9.2p6: A member shall not be declared to have automatic storage
828  // duration (auto, register) or with the extern storage-class-specifier.
829  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
830  // data members and cannot be applied to names declared const or static,
831  // and cannot be applied to reference members.
832  switch (DS.getStorageClassSpec()) {
833    case DeclSpec::SCS_unspecified:
834    case DeclSpec::SCS_typedef:
835    case DeclSpec::SCS_static:
836      // FALL THROUGH.
837      break;
838    case DeclSpec::SCS_mutable:
839      if (isFunc) {
840        if (DS.getStorageClassSpecLoc().isValid())
841          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
842        else
843          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
844
845        // FIXME: It would be nicer if the keyword was ignored only for this
846        // declarator. Otherwise we could get follow-up errors.
847        D.getMutableDeclSpec().ClearStorageClassSpecs();
848      } else {
849        QualType T = GetTypeForDeclarator(D, S);
850        diag::kind err = static_cast<diag::kind>(0);
851        if (T->isReferenceType())
852          err = diag::err_mutable_reference;
853        else if (T.isConstQualified())
854          err = diag::err_mutable_const;
855        if (err != 0) {
856          if (DS.getStorageClassSpecLoc().isValid())
857            Diag(DS.getStorageClassSpecLoc(), err);
858          else
859            Diag(DS.getThreadSpecLoc(), err);
860          // FIXME: It would be nicer if the keyword was ignored only for this
861          // declarator. Otherwise we could get follow-up errors.
862          D.getMutableDeclSpec().ClearStorageClassSpecs();
863        }
864      }
865      break;
866    default:
867      if (DS.getStorageClassSpecLoc().isValid())
868        Diag(DS.getStorageClassSpecLoc(),
869             diag::err_storageclass_invalid_for_member);
870      else
871        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
872      D.getMutableDeclSpec().ClearStorageClassSpecs();
873  }
874
875  if (!isFunc &&
876      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
877      D.getNumTypeObjects() == 0) {
878    // Check also for this case:
879    //
880    // typedef int f();
881    // f a;
882    //
883    QualType TDType = GetTypeFromParser(DS.getTypeRep());
884    isFunc = TDType->isFunctionType();
885  }
886
887  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
888                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
889                      !isFunc);
890
891  Decl *Member;
892  if (isInstField) {
893    // FIXME: Check for template parameters!
894    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
895                         AS);
896    assert(Member && "HandleField never returns null");
897  } else {
898    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
899               .getAs<Decl>();
900    if (!Member) {
901      if (BitWidth) DeleteExpr(BitWidth);
902      return DeclPtrTy();
903    }
904
905    // Non-instance-fields can't have a bitfield.
906    if (BitWidth) {
907      if (Member->isInvalidDecl()) {
908        // don't emit another diagnostic.
909      } else if (isa<VarDecl>(Member)) {
910        // C++ 9.6p3: A bit-field shall not be a static member.
911        // "static member 'A' cannot be a bit-field"
912        Diag(Loc, diag::err_static_not_bitfield)
913          << Name << BitWidth->getSourceRange();
914      } else if (isa<TypedefDecl>(Member)) {
915        // "typedef member 'x' cannot be a bit-field"
916        Diag(Loc, diag::err_typedef_not_bitfield)
917          << Name << BitWidth->getSourceRange();
918      } else {
919        // A function typedef ("typedef int f(); f a;").
920        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
921        Diag(Loc, diag::err_not_integral_type_bitfield)
922          << Name << cast<ValueDecl>(Member)->getType()
923          << BitWidth->getSourceRange();
924      }
925
926      DeleteExpr(BitWidth);
927      BitWidth = 0;
928      Member->setInvalidDecl();
929    }
930
931    Member->setAccess(AS);
932
933    // If we have declared a member function template, set the access of the
934    // templated declaration as well.
935    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
936      FunTmpl->getTemplatedDecl()->setAccess(AS);
937  }
938
939  assert((Name || isInstField) && "No identifier for non-field ?");
940
941  if (Init)
942    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
943  if (Deleted) // FIXME: Source location is not very good.
944    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
945
946  if (isInstField) {
947    FieldCollector->Add(cast<FieldDecl>(Member));
948    return DeclPtrTy();
949  }
950  return DeclPtrTy::make(Member);
951}
952
953/// \brief Find the direct and/or virtual base specifiers that
954/// correspond to the given base type, for use in base initialization
955/// within a constructor.
956static bool FindBaseInitializer(Sema &SemaRef,
957                                CXXRecordDecl *ClassDecl,
958                                QualType BaseType,
959                                const CXXBaseSpecifier *&DirectBaseSpec,
960                                const CXXBaseSpecifier *&VirtualBaseSpec) {
961  // First, check for a direct base class.
962  DirectBaseSpec = 0;
963  for (CXXRecordDecl::base_class_const_iterator Base
964         = ClassDecl->bases_begin();
965       Base != ClassDecl->bases_end(); ++Base) {
966    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
967      // We found a direct base of this type. That's what we're
968      // initializing.
969      DirectBaseSpec = &*Base;
970      break;
971    }
972  }
973
974  // Check for a virtual base class.
975  // FIXME: We might be able to short-circuit this if we know in advance that
976  // there are no virtual bases.
977  VirtualBaseSpec = 0;
978  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
979    // We haven't found a base yet; search the class hierarchy for a
980    // virtual base class.
981    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
982                       /*DetectVirtual=*/false);
983    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
984                              BaseType, Paths)) {
985      for (CXXBasePaths::paths_iterator Path = Paths.begin();
986           Path != Paths.end(); ++Path) {
987        if (Path->back().Base->isVirtual()) {
988          VirtualBaseSpec = Path->back().Base;
989          break;
990        }
991      }
992    }
993  }
994
995  return DirectBaseSpec || VirtualBaseSpec;
996}
997
998/// ActOnMemInitializer - Handle a C++ member initializer.
999Sema::MemInitResult
1000Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1001                          Scope *S,
1002                          const CXXScopeSpec &SS,
1003                          IdentifierInfo *MemberOrBase,
1004                          TypeTy *TemplateTypeTy,
1005                          SourceLocation IdLoc,
1006                          SourceLocation LParenLoc,
1007                          ExprTy **Args, unsigned NumArgs,
1008                          SourceLocation *CommaLocs,
1009                          SourceLocation RParenLoc) {
1010  if (!ConstructorD)
1011    return true;
1012
1013  AdjustDeclIfTemplate(ConstructorD);
1014
1015  CXXConstructorDecl *Constructor
1016    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1017  if (!Constructor) {
1018    // The user wrote a constructor initializer on a function that is
1019    // not a C++ constructor. Ignore the error for now, because we may
1020    // have more member initializers coming; we'll diagnose it just
1021    // once in ActOnMemInitializers.
1022    return true;
1023  }
1024
1025  CXXRecordDecl *ClassDecl = Constructor->getParent();
1026
1027  // C++ [class.base.init]p2:
1028  //   Names in a mem-initializer-id are looked up in the scope of the
1029  //   constructor’s class and, if not found in that scope, are looked
1030  //   up in the scope containing the constructor’s
1031  //   definition. [Note: if the constructor’s class contains a member
1032  //   with the same name as a direct or virtual base class of the
1033  //   class, a mem-initializer-id naming the member or base class and
1034  //   composed of a single identifier refers to the class member. A
1035  //   mem-initializer-id for the hidden base class may be specified
1036  //   using a qualified name. ]
1037  if (!SS.getScopeRep() && !TemplateTypeTy) {
1038    // Look for a member, first.
1039    FieldDecl *Member = 0;
1040    DeclContext::lookup_result Result
1041      = ClassDecl->lookup(MemberOrBase);
1042    if (Result.first != Result.second)
1043      Member = dyn_cast<FieldDecl>(*Result.first);
1044
1045    // FIXME: Handle members of an anonymous union.
1046
1047    if (Member)
1048      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1049                                    LParenLoc, RParenLoc);
1050  }
1051  // It didn't name a member, so see if it names a class.
1052  QualType BaseType;
1053  TypeSourceInfo *TInfo = 0;
1054
1055  if (TemplateTypeTy) {
1056    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1057  } else {
1058    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1059    LookupParsedName(R, S, &SS);
1060
1061    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1062    if (!TyD) {
1063      if (R.isAmbiguous()) return true;
1064
1065      // If no results were found, try to correct typos.
1066      if (R.empty() &&
1067          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1068        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1069          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1070            // We have found a non-static data member with a similar
1071            // name to what was typed; complain and initialize that
1072            // member.
1073            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1074              << MemberOrBase << true << R.getLookupName()
1075              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1076                                               R.getLookupName().getAsString());
1077            Diag(Member->getLocation(), diag::note_previous_decl)
1078              << Member->getDeclName();
1079
1080            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1081                                          LParenLoc, RParenLoc);
1082          }
1083        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1084          const CXXBaseSpecifier *DirectBaseSpec;
1085          const CXXBaseSpecifier *VirtualBaseSpec;
1086          if (FindBaseInitializer(*this, ClassDecl,
1087                                  Context.getTypeDeclType(Type),
1088                                  DirectBaseSpec, VirtualBaseSpec)) {
1089            // We have found a direct or virtual base class with a
1090            // similar name to what was typed; complain and initialize
1091            // that base class.
1092            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1093              << MemberOrBase << false << R.getLookupName()
1094              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1095                                               R.getLookupName().getAsString());
1096
1097            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1098                                                             : VirtualBaseSpec;
1099            Diag(BaseSpec->getSourceRange().getBegin(),
1100                 diag::note_base_class_specified_here)
1101              << BaseSpec->getType()
1102              << BaseSpec->getSourceRange();
1103
1104            TyD = Type;
1105          }
1106        }
1107      }
1108
1109      if (!TyD) {
1110        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1111          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1112        return true;
1113      }
1114    }
1115
1116    BaseType = Context.getTypeDeclType(TyD);
1117    if (SS.isSet()) {
1118      NestedNameSpecifier *Qualifier =
1119        static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1120
1121      // FIXME: preserve source range information
1122      BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1123    }
1124  }
1125
1126  if (!TInfo)
1127    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1128
1129  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1130                              LParenLoc, RParenLoc, ClassDecl);
1131}
1132
1133/// Checks an initializer expression for use of uninitialized fields, such as
1134/// containing the field that is being initialized. Returns true if there is an
1135/// uninitialized field was used an updates the SourceLocation parameter; false
1136/// otherwise.
1137static bool InitExprContainsUninitializedFields(const Stmt* S,
1138                                                const FieldDecl* LhsField,
1139                                                SourceLocation* L) {
1140  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1141  if (ME) {
1142    const NamedDecl* RhsField = ME->getMemberDecl();
1143    if (RhsField == LhsField) {
1144      // Initializing a field with itself. Throw a warning.
1145      // But wait; there are exceptions!
1146      // Exception #1:  The field may not belong to this record.
1147      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1148      const Expr* base = ME->getBase();
1149      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1150        // Even though the field matches, it does not belong to this record.
1151        return false;
1152      }
1153      // None of the exceptions triggered; return true to indicate an
1154      // uninitialized field was used.
1155      *L = ME->getMemberLoc();
1156      return true;
1157    }
1158  }
1159  bool found = false;
1160  for (Stmt::const_child_iterator it = S->child_begin();
1161       it != S->child_end() && found == false;
1162       ++it) {
1163    if (isa<CallExpr>(S)) {
1164      // Do not descend into function calls or constructors, as the use
1165      // of an uninitialized field may be valid. One would have to inspect
1166      // the contents of the function/ctor to determine if it is safe or not.
1167      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1168      // may be safe, depending on what the function/ctor does.
1169      continue;
1170    }
1171    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1172  }
1173  return found;
1174}
1175
1176Sema::MemInitResult
1177Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1178                             unsigned NumArgs, SourceLocation IdLoc,
1179                             SourceLocation LParenLoc,
1180                             SourceLocation RParenLoc) {
1181  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1182  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1183  ExprTemporaries.clear();
1184
1185  // Diagnose value-uses of fields to initialize themselves, e.g.
1186  //   foo(foo)
1187  // where foo is not also a parameter to the constructor.
1188  // TODO: implement -Wuninitialized and fold this into that framework.
1189  for (unsigned i = 0; i < NumArgs; ++i) {
1190    SourceLocation L;
1191    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1192      // FIXME: Return true in the case when other fields are used before being
1193      // uninitialized. For example, let this field be the i'th field. When
1194      // initializing the i'th field, throw a warning if any of the >= i'th
1195      // fields are used, as they are not yet initialized.
1196      // Right now we are only handling the case where the i'th field uses
1197      // itself in its initializer.
1198      Diag(L, diag::warn_field_is_uninit);
1199    }
1200  }
1201
1202  bool HasDependentArg = false;
1203  for (unsigned i = 0; i < NumArgs; i++)
1204    HasDependentArg |= Args[i]->isTypeDependent();
1205
1206  CXXConstructorDecl *C = 0;
1207  QualType FieldType = Member->getType();
1208  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1209    FieldType = Array->getElementType();
1210  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1211  if (FieldType->isDependentType()) {
1212    // Can't check init for dependent type.
1213  } else if (FieldType->isRecordType()) {
1214    // Member is a record (struct/union/class), so pass the initializer
1215    // arguments down to the record's constructor.
1216    if (!HasDependentArg) {
1217      C = PerformInitializationByConstructor(FieldType,
1218                                             MultiExprArg(*this,
1219                                                          (void**)Args,
1220                                                          NumArgs),
1221                                             IdLoc,
1222                                             SourceRange(IdLoc, RParenLoc),
1223                                             Member->getDeclName(),
1224                  InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc),
1225                                             ConstructorArgs);
1226
1227      if (C) {
1228        // Take over the constructor arguments as our own.
1229        NumArgs = ConstructorArgs.size();
1230        Args = (Expr **)ConstructorArgs.take();
1231      }
1232    }
1233  } else if (NumArgs != 1 && NumArgs != 0) {
1234    // The member type is not a record type (or an array of record
1235    // types), so it can be only be default- or copy-initialized.
1236    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1237                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1238  } else if (!HasDependentArg) {
1239    Expr *NewExp;
1240    if (NumArgs == 0) {
1241      if (FieldType->isReferenceType()) {
1242        Diag(IdLoc, diag::err_null_intialized_reference_member)
1243              << Member->getDeclName();
1244        return Diag(Member->getLocation(), diag::note_declared_at);
1245      }
1246      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1247      NumArgs = 1;
1248    }
1249    else
1250      NewExp = (Expr*)Args[0];
1251    if (!Member->isInvalidDecl() &&
1252        PerformCopyInitialization(NewExp, FieldType, AA_Passing))
1253      return true;
1254    Args[0] = NewExp;
1255  }
1256
1257  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1258  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1259  ExprTemporaries.clear();
1260
1261  // FIXME: Perform direct initialization of the member.
1262  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1263                                                  C, LParenLoc, (Expr **)Args,
1264                                                  NumArgs, RParenLoc);
1265}
1266
1267Sema::MemInitResult
1268Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1269                           Expr **Args, unsigned NumArgs,
1270                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1271                           CXXRecordDecl *ClassDecl) {
1272  bool HasDependentArg = false;
1273  for (unsigned i = 0; i < NumArgs; i++)
1274    HasDependentArg |= Args[i]->isTypeDependent();
1275
1276  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1277  if (!BaseType->isDependentType()) {
1278    if (!BaseType->isRecordType())
1279      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1280        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1281
1282    // C++ [class.base.init]p2:
1283    //   [...] Unless the mem-initializer-id names a nonstatic data
1284    //   member of the constructor’s class or a direct or virtual base
1285    //   of that class, the mem-initializer is ill-formed. A
1286    //   mem-initializer-list can initialize a base class using any
1287    //   name that denotes that base class type.
1288
1289    // Check for direct and virtual base classes.
1290    const CXXBaseSpecifier *DirectBaseSpec = 0;
1291    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1292    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1293                        VirtualBaseSpec);
1294
1295    // C++ [base.class.init]p2:
1296    //   If a mem-initializer-id is ambiguous because it designates both
1297    //   a direct non-virtual base class and an inherited virtual base
1298    //   class, the mem-initializer is ill-formed.
1299    if (DirectBaseSpec && VirtualBaseSpec)
1300      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1301        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1302    // C++ [base.class.init]p2:
1303    // Unless the mem-initializer-id names a nonstatic data membeer of the
1304    // constructor's class ot a direst or virtual base of that class, the
1305    // mem-initializer is ill-formed.
1306    if (!DirectBaseSpec && !VirtualBaseSpec)
1307      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1308        << BaseType << ClassDecl->getNameAsCString()
1309        << BaseTInfo->getTypeLoc().getSourceRange();
1310  }
1311
1312  CXXConstructorDecl *C = 0;
1313  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1314  if (!BaseType->isDependentType() && !HasDependentArg) {
1315    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1316                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1317
1318    C = PerformInitializationByConstructor(BaseType,
1319                                           MultiExprArg(*this,
1320                                                        (void**)Args, NumArgs),
1321                                           BaseLoc,
1322                                           SourceRange(BaseLoc, RParenLoc),
1323                                           Name,
1324                InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc),
1325                                           ConstructorArgs);
1326    if (C) {
1327      // Take over the constructor arguments as our own.
1328      NumArgs = ConstructorArgs.size();
1329      Args = (Expr **)ConstructorArgs.take();
1330    }
1331  }
1332
1333  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1334  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1335  ExprTemporaries.clear();
1336
1337  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C,
1338                                                  LParenLoc, (Expr **)Args,
1339                                                  NumArgs, RParenLoc);
1340}
1341
1342bool
1343Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1344                              CXXBaseOrMemberInitializer **Initializers,
1345                              unsigned NumInitializers,
1346                              bool IsImplicitConstructor) {
1347  // We need to build the initializer AST according to order of construction
1348  // and not what user specified in the Initializers list.
1349  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1350  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1351  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1352  bool HasDependentBaseInit = false;
1353  bool HadError = false;
1354
1355  for (unsigned i = 0; i < NumInitializers; i++) {
1356    CXXBaseOrMemberInitializer *Member = Initializers[i];
1357    if (Member->isBaseInitializer()) {
1358      if (Member->getBaseClass()->isDependentType())
1359        HasDependentBaseInit = true;
1360      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1361    } else {
1362      AllBaseFields[Member->getMember()] = Member;
1363    }
1364  }
1365
1366  if (HasDependentBaseInit) {
1367    // FIXME. This does not preserve the ordering of the initializers.
1368    // Try (with -Wreorder)
1369    // template<class X> struct A {};
1370    // template<class X> struct B : A<X> {
1371    //   B() : x1(10), A<X>() {}
1372    //   int x1;
1373    // };
1374    // B<int> x;
1375    // On seeing one dependent type, we should essentially exit this routine
1376    // while preserving user-declared initializer list. When this routine is
1377    // called during instantiatiation process, this routine will rebuild the
1378    // ordered initializer list correctly.
1379
1380    // If we have a dependent base initialization, we can't determine the
1381    // association between initializers and bases; just dump the known
1382    // initializers into the list, and don't try to deal with other bases.
1383    for (unsigned i = 0; i < NumInitializers; i++) {
1384      CXXBaseOrMemberInitializer *Member = Initializers[i];
1385      if (Member->isBaseInitializer())
1386        AllToInit.push_back(Member);
1387    }
1388  } else {
1389    // Push virtual bases before others.
1390    for (CXXRecordDecl::base_class_iterator VBase =
1391         ClassDecl->vbases_begin(),
1392         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1393      if (VBase->getType()->isDependentType())
1394        continue;
1395      if (CXXBaseOrMemberInitializer *Value
1396            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1397        AllToInit.push_back(Value);
1398      }
1399      else {
1400        CXXRecordDecl *VBaseDecl =
1401          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1402        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1403        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1404        if (!Ctor) {
1405          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1406            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1407            << 0 << VBase->getType();
1408          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1409            << Context.getTagDeclType(VBaseDecl);
1410          HadError = true;
1411          continue;
1412        }
1413
1414        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1415        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1416                                    Constructor->getLocation(), CtorArgs))
1417          continue;
1418
1419        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1420
1421        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1422        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1423        // necessary.
1424        // FIXME: Is there any better source-location information we can give?
1425        ExprTemporaries.clear();
1426        CXXBaseOrMemberInitializer *Member =
1427          new (Context) CXXBaseOrMemberInitializer(Context,
1428                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1429                                                              SourceLocation()),
1430                                                   Ctor,
1431                                                   SourceLocation(),
1432                                                   CtorArgs.takeAs<Expr>(),
1433                                                   CtorArgs.size(),
1434                                                   SourceLocation());
1435        AllToInit.push_back(Member);
1436      }
1437    }
1438
1439    for (CXXRecordDecl::base_class_iterator Base =
1440         ClassDecl->bases_begin(),
1441         E = ClassDecl->bases_end(); Base != E; ++Base) {
1442      // Virtuals are in the virtual base list and already constructed.
1443      if (Base->isVirtual())
1444        continue;
1445      // Skip dependent types.
1446      if (Base->getType()->isDependentType())
1447        continue;
1448      if (CXXBaseOrMemberInitializer *Value
1449            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1450        AllToInit.push_back(Value);
1451      }
1452      else {
1453        CXXRecordDecl *BaseDecl =
1454          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1455        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1456         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1457        if (!Ctor) {
1458          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1459            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1460            << 0 << Base->getType();
1461          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1462            << Context.getTagDeclType(BaseDecl);
1463          HadError = true;
1464          continue;
1465        }
1466
1467        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1468        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1469                                     Constructor->getLocation(), CtorArgs))
1470          continue;
1471
1472        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1473
1474        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1475        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1476        // necessary.
1477        // FIXME: Is there any better source-location information we can give?
1478        ExprTemporaries.clear();
1479        CXXBaseOrMemberInitializer *Member =
1480          new (Context) CXXBaseOrMemberInitializer(Context,
1481                             Context.getTrivialTypeSourceInfo(Base->getType(),
1482                                                              SourceLocation()),
1483                                                   Ctor,
1484                                                   SourceLocation(),
1485                                                   CtorArgs.takeAs<Expr>(),
1486                                                   CtorArgs.size(),
1487                                                   SourceLocation());
1488        AllToInit.push_back(Member);
1489      }
1490    }
1491  }
1492
1493  // non-static data members.
1494  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1495       E = ClassDecl->field_end(); Field != E; ++Field) {
1496    if ((*Field)->isAnonymousStructOrUnion()) {
1497      if (const RecordType *FieldClassType =
1498          Field->getType()->getAs<RecordType>()) {
1499        CXXRecordDecl *FieldClassDecl
1500          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1501        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1502            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1503          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1504            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1505            // set to the anonymous union data member used in the initializer
1506            // list.
1507            Value->setMember(*Field);
1508            Value->setAnonUnionMember(*FA);
1509            AllToInit.push_back(Value);
1510            break;
1511          }
1512        }
1513      }
1514      continue;
1515    }
1516    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1517      AllToInit.push_back(Value);
1518      continue;
1519    }
1520
1521    if ((*Field)->getType()->isDependentType())
1522      continue;
1523
1524    QualType FT = Context.getBaseElementType((*Field)->getType());
1525    if (const RecordType* RT = FT->getAs<RecordType>()) {
1526      CXXConstructorDecl *Ctor =
1527        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1528      if (!Ctor) {
1529        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1530          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1531          << 1 << (*Field)->getDeclName();
1532        Diag(Field->getLocation(), diag::note_field_decl);
1533        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1534          << Context.getTagDeclType(RT->getDecl());
1535        HadError = true;
1536        continue;
1537      }
1538
1539      if (FT.isConstQualified() && Ctor->isTrivial()) {
1540        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1541          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1542          << 1 << (*Field)->getDeclName();
1543        Diag((*Field)->getLocation(), diag::note_declared_at);
1544        HadError = true;
1545      }
1546
1547      // Don't create initializers for trivial constructors, since they don't
1548      // actually need to be run.
1549      if (Ctor->isTrivial())
1550        continue;
1551
1552      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1553      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1554                                  Constructor->getLocation(), CtorArgs))
1555        continue;
1556
1557      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1558      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1559      ExprTemporaries.clear();
1560      CXXBaseOrMemberInitializer *Member =
1561        new (Context) CXXBaseOrMemberInitializer(Context,
1562                                                 *Field, SourceLocation(),
1563                                                 Ctor,
1564                                                 SourceLocation(),
1565                                                 CtorArgs.takeAs<Expr>(),
1566                                                 CtorArgs.size(),
1567                                                 SourceLocation());
1568
1569      AllToInit.push_back(Member);
1570      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1571    }
1572    else if (FT->isReferenceType()) {
1573      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1574        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1575        << 0 << (*Field)->getDeclName();
1576      Diag((*Field)->getLocation(), diag::note_declared_at);
1577      HadError = true;
1578    }
1579    else if (FT.isConstQualified()) {
1580      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1581        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1582        << 1 << (*Field)->getDeclName();
1583      Diag((*Field)->getLocation(), diag::note_declared_at);
1584      HadError = true;
1585    }
1586  }
1587
1588  NumInitializers = AllToInit.size();
1589  if (NumInitializers > 0) {
1590    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1591    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1592      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1593
1594    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1595    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1596      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1597  }
1598
1599  return HadError;
1600}
1601
1602static void *GetKeyForTopLevelField(FieldDecl *Field) {
1603  // For anonymous unions, use the class declaration as the key.
1604  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1605    if (RT->getDecl()->isAnonymousStructOrUnion())
1606      return static_cast<void *>(RT->getDecl());
1607  }
1608  return static_cast<void *>(Field);
1609}
1610
1611static void *GetKeyForBase(QualType BaseType) {
1612  if (const RecordType *RT = BaseType->getAs<RecordType>())
1613    return (void *)RT;
1614
1615  assert(0 && "Unexpected base type!");
1616  return 0;
1617}
1618
1619static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1620                             bool MemberMaybeAnon = false) {
1621  // For fields injected into the class via declaration of an anonymous union,
1622  // use its anonymous union class declaration as the unique key.
1623  if (Member->isMemberInitializer()) {
1624    FieldDecl *Field = Member->getMember();
1625
1626    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1627    // data member of the class. Data member used in the initializer list is
1628    // in AnonUnionMember field.
1629    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1630      Field = Member->getAnonUnionMember();
1631    if (Field->getDeclContext()->isRecord()) {
1632      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1633      if (RD->isAnonymousStructOrUnion())
1634        return static_cast<void *>(RD);
1635    }
1636    return static_cast<void *>(Field);
1637  }
1638
1639  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1640}
1641
1642/// ActOnMemInitializers - Handle the member initializers for a constructor.
1643void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1644                                SourceLocation ColonLoc,
1645                                MemInitTy **MemInits, unsigned NumMemInits) {
1646  if (!ConstructorDecl)
1647    return;
1648
1649  AdjustDeclIfTemplate(ConstructorDecl);
1650
1651  CXXConstructorDecl *Constructor
1652    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1653
1654  if (!Constructor) {
1655    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1656    return;
1657  }
1658
1659  if (!Constructor->isDependentContext()) {
1660    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1661    bool err = false;
1662    for (unsigned i = 0; i < NumMemInits; i++) {
1663      CXXBaseOrMemberInitializer *Member =
1664        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1665      void *KeyToMember = GetKeyForMember(Member);
1666      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1667      if (!PrevMember) {
1668        PrevMember = Member;
1669        continue;
1670      }
1671      if (FieldDecl *Field = Member->getMember())
1672        Diag(Member->getSourceLocation(),
1673             diag::error_multiple_mem_initialization)
1674          << Field->getNameAsString()
1675          << Member->getSourceRange();
1676      else {
1677        Type *BaseClass = Member->getBaseClass();
1678        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1679        Diag(Member->getSourceLocation(),
1680             diag::error_multiple_base_initialization)
1681          << QualType(BaseClass, 0)
1682          << Member->getSourceRange();
1683      }
1684      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1685        << 0;
1686      err = true;
1687    }
1688
1689    if (err)
1690      return;
1691  }
1692
1693  SetBaseOrMemberInitializers(Constructor,
1694                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1695                      NumMemInits, false);
1696
1697  if (Constructor->isDependentContext())
1698    return;
1699
1700  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1701      Diagnostic::Ignored &&
1702      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1703      Diagnostic::Ignored)
1704    return;
1705
1706  // Also issue warning if order of ctor-initializer list does not match order
1707  // of 1) base class declarations and 2) order of non-static data members.
1708  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1709
1710  CXXRecordDecl *ClassDecl
1711    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1712  // Push virtual bases before others.
1713  for (CXXRecordDecl::base_class_iterator VBase =
1714       ClassDecl->vbases_begin(),
1715       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1716    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1717
1718  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1719       E = ClassDecl->bases_end(); Base != E; ++Base) {
1720    // Virtuals are alread in the virtual base list and are constructed
1721    // first.
1722    if (Base->isVirtual())
1723      continue;
1724    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1725  }
1726
1727  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1728       E = ClassDecl->field_end(); Field != E; ++Field)
1729    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1730
1731  int Last = AllBaseOrMembers.size();
1732  int curIndex = 0;
1733  CXXBaseOrMemberInitializer *PrevMember = 0;
1734  for (unsigned i = 0; i < NumMemInits; i++) {
1735    CXXBaseOrMemberInitializer *Member =
1736      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1737    void *MemberInCtorList = GetKeyForMember(Member, true);
1738
1739    for (; curIndex < Last; curIndex++)
1740      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1741        break;
1742    if (curIndex == Last) {
1743      assert(PrevMember && "Member not in member list?!");
1744      // Initializer as specified in ctor-initializer list is out of order.
1745      // Issue a warning diagnostic.
1746      if (PrevMember->isBaseInitializer()) {
1747        // Diagnostics is for an initialized base class.
1748        Type *BaseClass = PrevMember->getBaseClass();
1749        Diag(PrevMember->getSourceLocation(),
1750             diag::warn_base_initialized)
1751          << QualType(BaseClass, 0);
1752      } else {
1753        FieldDecl *Field = PrevMember->getMember();
1754        Diag(PrevMember->getSourceLocation(),
1755             diag::warn_field_initialized)
1756          << Field->getNameAsString();
1757      }
1758      // Also the note!
1759      if (FieldDecl *Field = Member->getMember())
1760        Diag(Member->getSourceLocation(),
1761             diag::note_fieldorbase_initialized_here) << 0
1762          << Field->getNameAsString();
1763      else {
1764        Type *BaseClass = Member->getBaseClass();
1765        Diag(Member->getSourceLocation(),
1766             diag::note_fieldorbase_initialized_here) << 1
1767          << QualType(BaseClass, 0);
1768      }
1769      for (curIndex = 0; curIndex < Last; curIndex++)
1770        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1771          break;
1772    }
1773    PrevMember = Member;
1774  }
1775}
1776
1777void
1778Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1779  // Ignore dependent destructors.
1780  if (Destructor->isDependentContext())
1781    return;
1782
1783  CXXRecordDecl *ClassDecl = Destructor->getParent();
1784
1785  // Non-static data members.
1786  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1787       E = ClassDecl->field_end(); I != E; ++I) {
1788    FieldDecl *Field = *I;
1789
1790    QualType FieldType = Context.getBaseElementType(Field->getType());
1791
1792    const RecordType* RT = FieldType->getAs<RecordType>();
1793    if (!RT)
1794      continue;
1795
1796    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1797    if (FieldClassDecl->hasTrivialDestructor())
1798      continue;
1799
1800    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1801    MarkDeclarationReferenced(Destructor->getLocation(),
1802                              const_cast<CXXDestructorDecl*>(Dtor));
1803  }
1804
1805  // Bases.
1806  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1807       E = ClassDecl->bases_end(); Base != E; ++Base) {
1808    // Ignore virtual bases.
1809    if (Base->isVirtual())
1810      continue;
1811
1812    // Ignore trivial destructors.
1813    CXXRecordDecl *BaseClassDecl
1814      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1815    if (BaseClassDecl->hasTrivialDestructor())
1816      continue;
1817
1818    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1819    MarkDeclarationReferenced(Destructor->getLocation(),
1820                              const_cast<CXXDestructorDecl*>(Dtor));
1821  }
1822
1823  // Virtual bases.
1824  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1825       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1826    // Ignore trivial destructors.
1827    CXXRecordDecl *BaseClassDecl
1828      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1829    if (BaseClassDecl->hasTrivialDestructor())
1830      continue;
1831
1832    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1833    MarkDeclarationReferenced(Destructor->getLocation(),
1834                              const_cast<CXXDestructorDecl*>(Dtor));
1835  }
1836}
1837
1838void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1839  if (!CDtorDecl)
1840    return;
1841
1842  AdjustDeclIfTemplate(CDtorDecl);
1843
1844  if (CXXConstructorDecl *Constructor
1845      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1846    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1847}
1848
1849namespace {
1850  /// PureVirtualMethodCollector - traverses a class and its superclasses
1851  /// and determines if it has any pure virtual methods.
1852  class PureVirtualMethodCollector {
1853    ASTContext &Context;
1854
1855  public:
1856    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1857
1858  private:
1859    MethodList Methods;
1860
1861    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1862
1863  public:
1864    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1865      : Context(Ctx) {
1866
1867      MethodList List;
1868      Collect(RD, List);
1869
1870      // Copy the temporary list to methods, and make sure to ignore any
1871      // null entries.
1872      for (size_t i = 0, e = List.size(); i != e; ++i) {
1873        if (List[i])
1874          Methods.push_back(List[i]);
1875      }
1876    }
1877
1878    bool empty() const { return Methods.empty(); }
1879
1880    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1881    MethodList::const_iterator methods_end() { return Methods.end(); }
1882  };
1883
1884  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1885                                           MethodList& Methods) {
1886    // First, collect the pure virtual methods for the base classes.
1887    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1888         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1889      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1890        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1891        if (BaseDecl && BaseDecl->isAbstract())
1892          Collect(BaseDecl, Methods);
1893      }
1894    }
1895
1896    // Next, zero out any pure virtual methods that this class overrides.
1897    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1898
1899    MethodSetTy OverriddenMethods;
1900    size_t MethodsSize = Methods.size();
1901
1902    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1903         i != e; ++i) {
1904      // Traverse the record, looking for methods.
1905      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1906        // If the method is pure virtual, add it to the methods vector.
1907        if (MD->isPure())
1908          Methods.push_back(MD);
1909
1910        // Record all the overridden methods in our set.
1911        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1912             E = MD->end_overridden_methods(); I != E; ++I) {
1913          // Keep track of the overridden methods.
1914          OverriddenMethods.insert(*I);
1915        }
1916      }
1917    }
1918
1919    // Now go through the methods and zero out all the ones we know are
1920    // overridden.
1921    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1922      if (OverriddenMethods.count(Methods[i]))
1923        Methods[i] = 0;
1924    }
1925
1926  }
1927}
1928
1929
1930bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1931                                  unsigned DiagID, AbstractDiagSelID SelID,
1932                                  const CXXRecordDecl *CurrentRD) {
1933  if (SelID == -1)
1934    return RequireNonAbstractType(Loc, T,
1935                                  PDiag(DiagID), CurrentRD);
1936  else
1937    return RequireNonAbstractType(Loc, T,
1938                                  PDiag(DiagID) << SelID, CurrentRD);
1939}
1940
1941bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1942                                  const PartialDiagnostic &PD,
1943                                  const CXXRecordDecl *CurrentRD) {
1944  if (!getLangOptions().CPlusPlus)
1945    return false;
1946
1947  if (const ArrayType *AT = Context.getAsArrayType(T))
1948    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1949                                  CurrentRD);
1950
1951  if (const PointerType *PT = T->getAs<PointerType>()) {
1952    // Find the innermost pointer type.
1953    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1954      PT = T;
1955
1956    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1957      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1958  }
1959
1960  const RecordType *RT = T->getAs<RecordType>();
1961  if (!RT)
1962    return false;
1963
1964  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1965  if (!RD)
1966    return false;
1967
1968  if (CurrentRD && CurrentRD != RD)
1969    return false;
1970
1971  if (!RD->isAbstract())
1972    return false;
1973
1974  Diag(Loc, PD) << RD->getDeclName();
1975
1976  // Check if we've already emitted the list of pure virtual functions for this
1977  // class.
1978  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1979    return true;
1980
1981  PureVirtualMethodCollector Collector(Context, RD);
1982
1983  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1984       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1985    const CXXMethodDecl *MD = *I;
1986
1987    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1988      MD->getDeclName();
1989  }
1990
1991  if (!PureVirtualClassDiagSet)
1992    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1993  PureVirtualClassDiagSet->insert(RD);
1994
1995  return true;
1996}
1997
1998namespace {
1999  class AbstractClassUsageDiagnoser
2000    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2001    Sema &SemaRef;
2002    CXXRecordDecl *AbstractClass;
2003
2004    bool VisitDeclContext(const DeclContext *DC) {
2005      bool Invalid = false;
2006
2007      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2008           E = DC->decls_end(); I != E; ++I)
2009        Invalid |= Visit(*I);
2010
2011      return Invalid;
2012    }
2013
2014  public:
2015    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2016      : SemaRef(SemaRef), AbstractClass(ac) {
2017        Visit(SemaRef.Context.getTranslationUnitDecl());
2018    }
2019
2020    bool VisitFunctionDecl(const FunctionDecl *FD) {
2021      if (FD->isThisDeclarationADefinition()) {
2022        // No need to do the check if we're in a definition, because it requires
2023        // that the return/param types are complete.
2024        // because that requires
2025        return VisitDeclContext(FD);
2026      }
2027
2028      // Check the return type.
2029      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2030      bool Invalid =
2031        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2032                                       diag::err_abstract_type_in_decl,
2033                                       Sema::AbstractReturnType,
2034                                       AbstractClass);
2035
2036      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2037           E = FD->param_end(); I != E; ++I) {
2038        const ParmVarDecl *VD = *I;
2039        Invalid |=
2040          SemaRef.RequireNonAbstractType(VD->getLocation(),
2041                                         VD->getOriginalType(),
2042                                         diag::err_abstract_type_in_decl,
2043                                         Sema::AbstractParamType,
2044                                         AbstractClass);
2045      }
2046
2047      return Invalid;
2048    }
2049
2050    bool VisitDecl(const Decl* D) {
2051      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2052        return VisitDeclContext(DC);
2053
2054      return false;
2055    }
2056  };
2057}
2058
2059/// \brief Perform semantic checks on a class definition that has been
2060/// completing, introducing implicitly-declared members, checking for
2061/// abstract types, etc.
2062void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2063  if (!Record || Record->isInvalidDecl())
2064    return;
2065
2066  if (!Record->isDependentType())
2067    AddImplicitlyDeclaredMembersToClass(Record);
2068
2069  if (Record->isInvalidDecl())
2070    return;
2071
2072  if (!Record->isAbstract()) {
2073    // Collect all the pure virtual methods and see if this is an abstract
2074    // class after all.
2075    PureVirtualMethodCollector Collector(Context, Record);
2076    if (!Collector.empty())
2077      Record->setAbstract(true);
2078  }
2079
2080  if (Record->isAbstract())
2081    (void)AbstractClassUsageDiagnoser(*this, Record);
2082}
2083
2084void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2085                                             DeclPtrTy TagDecl,
2086                                             SourceLocation LBrac,
2087                                             SourceLocation RBrac) {
2088  if (!TagDecl)
2089    return;
2090
2091  AdjustDeclIfTemplate(TagDecl);
2092
2093  ActOnFields(S, RLoc, TagDecl,
2094              (DeclPtrTy*)FieldCollector->getCurFields(),
2095              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2096
2097  CheckCompletedCXXClass(
2098                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2099}
2100
2101/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2102/// special functions, such as the default constructor, copy
2103/// constructor, or destructor, to the given C++ class (C++
2104/// [special]p1).  This routine can only be executed just before the
2105/// definition of the class is complete.
2106void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2107  CanQualType ClassType
2108    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2109
2110  // FIXME: Implicit declarations have exception specifications, which are
2111  // the union of the specifications of the implicitly called functions.
2112
2113  if (!ClassDecl->hasUserDeclaredConstructor()) {
2114    // C++ [class.ctor]p5:
2115    //   A default constructor for a class X is a constructor of class X
2116    //   that can be called without an argument. If there is no
2117    //   user-declared constructor for class X, a default constructor is
2118    //   implicitly declared. An implicitly-declared default constructor
2119    //   is an inline public member of its class.
2120    DeclarationName Name
2121      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2122    CXXConstructorDecl *DefaultCon =
2123      CXXConstructorDecl::Create(Context, ClassDecl,
2124                                 ClassDecl->getLocation(), Name,
2125                                 Context.getFunctionType(Context.VoidTy,
2126                                                         0, 0, false, 0),
2127                                 /*TInfo=*/0,
2128                                 /*isExplicit=*/false,
2129                                 /*isInline=*/true,
2130                                 /*isImplicitlyDeclared=*/true);
2131    DefaultCon->setAccess(AS_public);
2132    DefaultCon->setImplicit();
2133    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2134    ClassDecl->addDecl(DefaultCon);
2135  }
2136
2137  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2138    // C++ [class.copy]p4:
2139    //   If the class definition does not explicitly declare a copy
2140    //   constructor, one is declared implicitly.
2141
2142    // C++ [class.copy]p5:
2143    //   The implicitly-declared copy constructor for a class X will
2144    //   have the form
2145    //
2146    //       X::X(const X&)
2147    //
2148    //   if
2149    bool HasConstCopyConstructor = true;
2150
2151    //     -- each direct or virtual base class B of X has a copy
2152    //        constructor whose first parameter is of type const B& or
2153    //        const volatile B&, and
2154    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2155         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2156      const CXXRecordDecl *BaseClassDecl
2157        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2158      HasConstCopyConstructor
2159        = BaseClassDecl->hasConstCopyConstructor(Context);
2160    }
2161
2162    //     -- for all the nonstatic data members of X that are of a
2163    //        class type M (or array thereof), each such class type
2164    //        has a copy constructor whose first parameter is of type
2165    //        const M& or const volatile M&.
2166    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2167         HasConstCopyConstructor && Field != ClassDecl->field_end();
2168         ++Field) {
2169      QualType FieldType = (*Field)->getType();
2170      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2171        FieldType = Array->getElementType();
2172      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2173        const CXXRecordDecl *FieldClassDecl
2174          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2175        HasConstCopyConstructor
2176          = FieldClassDecl->hasConstCopyConstructor(Context);
2177      }
2178    }
2179
2180    //   Otherwise, the implicitly declared copy constructor will have
2181    //   the form
2182    //
2183    //       X::X(X&)
2184    QualType ArgType = ClassType;
2185    if (HasConstCopyConstructor)
2186      ArgType = ArgType.withConst();
2187    ArgType = Context.getLValueReferenceType(ArgType);
2188
2189    //   An implicitly-declared copy constructor is an inline public
2190    //   member of its class.
2191    DeclarationName Name
2192      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2193    CXXConstructorDecl *CopyConstructor
2194      = CXXConstructorDecl::Create(Context, ClassDecl,
2195                                   ClassDecl->getLocation(), Name,
2196                                   Context.getFunctionType(Context.VoidTy,
2197                                                           &ArgType, 1,
2198                                                           false, 0),
2199                                   /*TInfo=*/0,
2200                                   /*isExplicit=*/false,
2201                                   /*isInline=*/true,
2202                                   /*isImplicitlyDeclared=*/true);
2203    CopyConstructor->setAccess(AS_public);
2204    CopyConstructor->setImplicit();
2205    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2206
2207    // Add the parameter to the constructor.
2208    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2209                                                 ClassDecl->getLocation(),
2210                                                 /*IdentifierInfo=*/0,
2211                                                 ArgType, /*TInfo=*/0,
2212                                                 VarDecl::None, 0);
2213    CopyConstructor->setParams(Context, &FromParam, 1);
2214    ClassDecl->addDecl(CopyConstructor);
2215  }
2216
2217  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2218    // Note: The following rules are largely analoguous to the copy
2219    // constructor rules. Note that virtual bases are not taken into account
2220    // for determining the argument type of the operator. Note also that
2221    // operators taking an object instead of a reference are allowed.
2222    //
2223    // C++ [class.copy]p10:
2224    //   If the class definition does not explicitly declare a copy
2225    //   assignment operator, one is declared implicitly.
2226    //   The implicitly-defined copy assignment operator for a class X
2227    //   will have the form
2228    //
2229    //       X& X::operator=(const X&)
2230    //
2231    //   if
2232    bool HasConstCopyAssignment = true;
2233
2234    //       -- each direct base class B of X has a copy assignment operator
2235    //          whose parameter is of type const B&, const volatile B& or B,
2236    //          and
2237    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2238         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2239      assert(!Base->getType()->isDependentType() &&
2240            "Cannot generate implicit members for class with dependent bases.");
2241      const CXXRecordDecl *BaseClassDecl
2242        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2243      const CXXMethodDecl *MD = 0;
2244      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2245                                                                     MD);
2246    }
2247
2248    //       -- for all the nonstatic data members of X that are of a class
2249    //          type M (or array thereof), each such class type has a copy
2250    //          assignment operator whose parameter is of type const M&,
2251    //          const volatile M& or M.
2252    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2253         HasConstCopyAssignment && Field != ClassDecl->field_end();
2254         ++Field) {
2255      QualType FieldType = (*Field)->getType();
2256      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2257        FieldType = Array->getElementType();
2258      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2259        const CXXRecordDecl *FieldClassDecl
2260          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2261        const CXXMethodDecl *MD = 0;
2262        HasConstCopyAssignment
2263          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2264      }
2265    }
2266
2267    //   Otherwise, the implicitly declared copy assignment operator will
2268    //   have the form
2269    //
2270    //       X& X::operator=(X&)
2271    QualType ArgType = ClassType;
2272    QualType RetType = Context.getLValueReferenceType(ArgType);
2273    if (HasConstCopyAssignment)
2274      ArgType = ArgType.withConst();
2275    ArgType = Context.getLValueReferenceType(ArgType);
2276
2277    //   An implicitly-declared copy assignment operator is an inline public
2278    //   member of its class.
2279    DeclarationName Name =
2280      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2281    CXXMethodDecl *CopyAssignment =
2282      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2283                            Context.getFunctionType(RetType, &ArgType, 1,
2284                                                    false, 0),
2285                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2286    CopyAssignment->setAccess(AS_public);
2287    CopyAssignment->setImplicit();
2288    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2289    CopyAssignment->setCopyAssignment(true);
2290
2291    // Add the parameter to the operator.
2292    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2293                                                 ClassDecl->getLocation(),
2294                                                 /*IdentifierInfo=*/0,
2295                                                 ArgType, /*TInfo=*/0,
2296                                                 VarDecl::None, 0);
2297    CopyAssignment->setParams(Context, &FromParam, 1);
2298
2299    // Don't call addedAssignmentOperator. There is no way to distinguish an
2300    // implicit from an explicit assignment operator.
2301    ClassDecl->addDecl(CopyAssignment);
2302    AddOverriddenMethods(ClassDecl, CopyAssignment);
2303  }
2304
2305  if (!ClassDecl->hasUserDeclaredDestructor()) {
2306    // C++ [class.dtor]p2:
2307    //   If a class has no user-declared destructor, a destructor is
2308    //   declared implicitly. An implicitly-declared destructor is an
2309    //   inline public member of its class.
2310    DeclarationName Name
2311      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2312    CXXDestructorDecl *Destructor
2313      = CXXDestructorDecl::Create(Context, ClassDecl,
2314                                  ClassDecl->getLocation(), Name,
2315                                  Context.getFunctionType(Context.VoidTy,
2316                                                          0, 0, false, 0),
2317                                  /*isInline=*/true,
2318                                  /*isImplicitlyDeclared=*/true);
2319    Destructor->setAccess(AS_public);
2320    Destructor->setImplicit();
2321    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2322    ClassDecl->addDecl(Destructor);
2323
2324    AddOverriddenMethods(ClassDecl, Destructor);
2325  }
2326}
2327
2328void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2329  Decl *D = TemplateD.getAs<Decl>();
2330  if (!D)
2331    return;
2332
2333  TemplateParameterList *Params = 0;
2334  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2335    Params = Template->getTemplateParameters();
2336  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2337           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2338    Params = PartialSpec->getTemplateParameters();
2339  else
2340    return;
2341
2342  for (TemplateParameterList::iterator Param = Params->begin(),
2343                                    ParamEnd = Params->end();
2344       Param != ParamEnd; ++Param) {
2345    NamedDecl *Named = cast<NamedDecl>(*Param);
2346    if (Named->getDeclName()) {
2347      S->AddDecl(DeclPtrTy::make(Named));
2348      IdResolver.AddDecl(Named);
2349    }
2350  }
2351}
2352
2353void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2354  if (!RecordD) return;
2355  AdjustDeclIfTemplate(RecordD);
2356  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2357  PushDeclContext(S, Record);
2358}
2359
2360void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2361  if (!RecordD) return;
2362  PopDeclContext();
2363}
2364
2365/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2366/// parsing a top-level (non-nested) C++ class, and we are now
2367/// parsing those parts of the given Method declaration that could
2368/// not be parsed earlier (C++ [class.mem]p2), such as default
2369/// arguments. This action should enter the scope of the given
2370/// Method declaration as if we had just parsed the qualified method
2371/// name. However, it should not bring the parameters into scope;
2372/// that will be performed by ActOnDelayedCXXMethodParameter.
2373void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2374}
2375
2376/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2377/// C++ method declaration. We're (re-)introducing the given
2378/// function parameter into scope for use in parsing later parts of
2379/// the method declaration. For example, we could see an
2380/// ActOnParamDefaultArgument event for this parameter.
2381void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2382  if (!ParamD)
2383    return;
2384
2385  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2386
2387  // If this parameter has an unparsed default argument, clear it out
2388  // to make way for the parsed default argument.
2389  if (Param->hasUnparsedDefaultArg())
2390    Param->setDefaultArg(0);
2391
2392  S->AddDecl(DeclPtrTy::make(Param));
2393  if (Param->getDeclName())
2394    IdResolver.AddDecl(Param);
2395}
2396
2397/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2398/// processing the delayed method declaration for Method. The method
2399/// declaration is now considered finished. There may be a separate
2400/// ActOnStartOfFunctionDef action later (not necessarily
2401/// immediately!) for this method, if it was also defined inside the
2402/// class body.
2403void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2404  if (!MethodD)
2405    return;
2406
2407  AdjustDeclIfTemplate(MethodD);
2408
2409  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2410
2411  // Now that we have our default arguments, check the constructor
2412  // again. It could produce additional diagnostics or affect whether
2413  // the class has implicitly-declared destructors, among other
2414  // things.
2415  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2416    CheckConstructor(Constructor);
2417
2418  // Check the default arguments, which we may have added.
2419  if (!Method->isInvalidDecl())
2420    CheckCXXDefaultArguments(Method);
2421}
2422
2423/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2424/// the well-formedness of the constructor declarator @p D with type @p
2425/// R. If there are any errors in the declarator, this routine will
2426/// emit diagnostics and set the invalid bit to true.  In any case, the type
2427/// will be updated to reflect a well-formed type for the constructor and
2428/// returned.
2429QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2430                                          FunctionDecl::StorageClass &SC) {
2431  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2432
2433  // C++ [class.ctor]p3:
2434  //   A constructor shall not be virtual (10.3) or static (9.4). A
2435  //   constructor can be invoked for a const, volatile or const
2436  //   volatile object. A constructor shall not be declared const,
2437  //   volatile, or const volatile (9.3.2).
2438  if (isVirtual) {
2439    if (!D.isInvalidType())
2440      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2441        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2442        << SourceRange(D.getIdentifierLoc());
2443    D.setInvalidType();
2444  }
2445  if (SC == FunctionDecl::Static) {
2446    if (!D.isInvalidType())
2447      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2448        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2449        << SourceRange(D.getIdentifierLoc());
2450    D.setInvalidType();
2451    SC = FunctionDecl::None;
2452  }
2453
2454  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2455  if (FTI.TypeQuals != 0) {
2456    if (FTI.TypeQuals & Qualifiers::Const)
2457      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2458        << "const" << SourceRange(D.getIdentifierLoc());
2459    if (FTI.TypeQuals & Qualifiers::Volatile)
2460      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2461        << "volatile" << SourceRange(D.getIdentifierLoc());
2462    if (FTI.TypeQuals & Qualifiers::Restrict)
2463      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2464        << "restrict" << SourceRange(D.getIdentifierLoc());
2465  }
2466
2467  // Rebuild the function type "R" without any type qualifiers (in
2468  // case any of the errors above fired) and with "void" as the
2469  // return type, since constructors don't have return types. We
2470  // *always* have to do this, because GetTypeForDeclarator will
2471  // put in a result type of "int" when none was specified.
2472  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2473  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2474                                 Proto->getNumArgs(),
2475                                 Proto->isVariadic(), 0);
2476}
2477
2478/// CheckConstructor - Checks a fully-formed constructor for
2479/// well-formedness, issuing any diagnostics required. Returns true if
2480/// the constructor declarator is invalid.
2481void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2482  CXXRecordDecl *ClassDecl
2483    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2484  if (!ClassDecl)
2485    return Constructor->setInvalidDecl();
2486
2487  // C++ [class.copy]p3:
2488  //   A declaration of a constructor for a class X is ill-formed if
2489  //   its first parameter is of type (optionally cv-qualified) X and
2490  //   either there are no other parameters or else all other
2491  //   parameters have default arguments.
2492  if (!Constructor->isInvalidDecl() &&
2493      ((Constructor->getNumParams() == 1) ||
2494       (Constructor->getNumParams() > 1 &&
2495        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2496      Constructor->getTemplateSpecializationKind()
2497                                              != TSK_ImplicitInstantiation) {
2498    QualType ParamType = Constructor->getParamDecl(0)->getType();
2499    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2500    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2501      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2502      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2503        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2504
2505      // FIXME: Rather that making the constructor invalid, we should endeavor
2506      // to fix the type.
2507      Constructor->setInvalidDecl();
2508    }
2509  }
2510
2511  // Notify the class that we've added a constructor.
2512  ClassDecl->addedConstructor(Context, Constructor);
2513}
2514
2515/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2516/// issuing any diagnostics required. Returns true on error.
2517bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2518  CXXRecordDecl *RD = Destructor->getParent();
2519
2520  if (Destructor->isVirtual()) {
2521    SourceLocation Loc;
2522
2523    if (!Destructor->isImplicit())
2524      Loc = Destructor->getLocation();
2525    else
2526      Loc = RD->getLocation();
2527
2528    // If we have a virtual destructor, look up the deallocation function
2529    FunctionDecl *OperatorDelete = 0;
2530    DeclarationName Name =
2531    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2532    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2533      return true;
2534
2535    Destructor->setOperatorDelete(OperatorDelete);
2536  }
2537
2538  return false;
2539}
2540
2541static inline bool
2542FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2543  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2544          FTI.ArgInfo[0].Param &&
2545          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2546}
2547
2548/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2549/// the well-formednes of the destructor declarator @p D with type @p
2550/// R. If there are any errors in the declarator, this routine will
2551/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2552/// will be updated to reflect a well-formed type for the destructor and
2553/// returned.
2554QualType Sema::CheckDestructorDeclarator(Declarator &D,
2555                                         FunctionDecl::StorageClass& SC) {
2556  // C++ [class.dtor]p1:
2557  //   [...] A typedef-name that names a class is a class-name
2558  //   (7.1.3); however, a typedef-name that names a class shall not
2559  //   be used as the identifier in the declarator for a destructor
2560  //   declaration.
2561  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2562  if (isa<TypedefType>(DeclaratorType)) {
2563    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2564      << DeclaratorType;
2565    D.setInvalidType();
2566  }
2567
2568  // C++ [class.dtor]p2:
2569  //   A destructor is used to destroy objects of its class type. A
2570  //   destructor takes no parameters, and no return type can be
2571  //   specified for it (not even void). The address of a destructor
2572  //   shall not be taken. A destructor shall not be static. A
2573  //   destructor can be invoked for a const, volatile or const
2574  //   volatile object. A destructor shall not be declared const,
2575  //   volatile or const volatile (9.3.2).
2576  if (SC == FunctionDecl::Static) {
2577    if (!D.isInvalidType())
2578      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2579        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2580        << SourceRange(D.getIdentifierLoc());
2581    SC = FunctionDecl::None;
2582    D.setInvalidType();
2583  }
2584  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2585    // Destructors don't have return types, but the parser will
2586    // happily parse something like:
2587    //
2588    //   class X {
2589    //     float ~X();
2590    //   };
2591    //
2592    // The return type will be eliminated later.
2593    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2594      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2595      << SourceRange(D.getIdentifierLoc());
2596  }
2597
2598  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2599  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2600    if (FTI.TypeQuals & Qualifiers::Const)
2601      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2602        << "const" << SourceRange(D.getIdentifierLoc());
2603    if (FTI.TypeQuals & Qualifiers::Volatile)
2604      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2605        << "volatile" << SourceRange(D.getIdentifierLoc());
2606    if (FTI.TypeQuals & Qualifiers::Restrict)
2607      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2608        << "restrict" << SourceRange(D.getIdentifierLoc());
2609    D.setInvalidType();
2610  }
2611
2612  // Make sure we don't have any parameters.
2613  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2614    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2615
2616    // Delete the parameters.
2617    FTI.freeArgs();
2618    D.setInvalidType();
2619  }
2620
2621  // Make sure the destructor isn't variadic.
2622  if (FTI.isVariadic) {
2623    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2624    D.setInvalidType();
2625  }
2626
2627  // Rebuild the function type "R" without any type qualifiers or
2628  // parameters (in case any of the errors above fired) and with
2629  // "void" as the return type, since destructors don't have return
2630  // types. We *always* have to do this, because GetTypeForDeclarator
2631  // will put in a result type of "int" when none was specified.
2632  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2633}
2634
2635/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2636/// well-formednes of the conversion function declarator @p D with
2637/// type @p R. If there are any errors in the declarator, this routine
2638/// will emit diagnostics and return true. Otherwise, it will return
2639/// false. Either way, the type @p R will be updated to reflect a
2640/// well-formed type for the conversion operator.
2641void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2642                                     FunctionDecl::StorageClass& SC) {
2643  // C++ [class.conv.fct]p1:
2644  //   Neither parameter types nor return type can be specified. The
2645  //   type of a conversion function (8.3.5) is "function taking no
2646  //   parameter returning conversion-type-id."
2647  if (SC == FunctionDecl::Static) {
2648    if (!D.isInvalidType())
2649      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2650        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2651        << SourceRange(D.getIdentifierLoc());
2652    D.setInvalidType();
2653    SC = FunctionDecl::None;
2654  }
2655  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2656    // Conversion functions don't have return types, but the parser will
2657    // happily parse something like:
2658    //
2659    //   class X {
2660    //     float operator bool();
2661    //   };
2662    //
2663    // The return type will be changed later anyway.
2664    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2665      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2666      << SourceRange(D.getIdentifierLoc());
2667  }
2668
2669  // Make sure we don't have any parameters.
2670  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2671    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2672
2673    // Delete the parameters.
2674    D.getTypeObject(0).Fun.freeArgs();
2675    D.setInvalidType();
2676  }
2677
2678  // Make sure the conversion function isn't variadic.
2679  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2680    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2681    D.setInvalidType();
2682  }
2683
2684  // C++ [class.conv.fct]p4:
2685  //   The conversion-type-id shall not represent a function type nor
2686  //   an array type.
2687  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2688  if (ConvType->isArrayType()) {
2689    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2690    ConvType = Context.getPointerType(ConvType);
2691    D.setInvalidType();
2692  } else if (ConvType->isFunctionType()) {
2693    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2694    ConvType = Context.getPointerType(ConvType);
2695    D.setInvalidType();
2696  }
2697
2698  // Rebuild the function type "R" without any parameters (in case any
2699  // of the errors above fired) and with the conversion type as the
2700  // return type.
2701  R = Context.getFunctionType(ConvType, 0, 0, false,
2702                              R->getAs<FunctionProtoType>()->getTypeQuals());
2703
2704  // C++0x explicit conversion operators.
2705  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2706    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2707         diag::warn_explicit_conversion_functions)
2708      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2709}
2710
2711/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2712/// the declaration of the given C++ conversion function. This routine
2713/// is responsible for recording the conversion function in the C++
2714/// class, if possible.
2715Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2716  assert(Conversion && "Expected to receive a conversion function declaration");
2717
2718  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2719
2720  // Make sure we aren't redeclaring the conversion function.
2721  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2722
2723  // C++ [class.conv.fct]p1:
2724  //   [...] A conversion function is never used to convert a
2725  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2726  //   same object type (or a reference to it), to a (possibly
2727  //   cv-qualified) base class of that type (or a reference to it),
2728  //   or to (possibly cv-qualified) void.
2729  // FIXME: Suppress this warning if the conversion function ends up being a
2730  // virtual function that overrides a virtual function in a base class.
2731  QualType ClassType
2732    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2733  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2734    ConvType = ConvTypeRef->getPointeeType();
2735  if (ConvType->isRecordType()) {
2736    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2737    if (ConvType == ClassType)
2738      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2739        << ClassType;
2740    else if (IsDerivedFrom(ClassType, ConvType))
2741      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2742        <<  ClassType << ConvType;
2743  } else if (ConvType->isVoidType()) {
2744    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2745      << ClassType << ConvType;
2746  }
2747
2748  if (Conversion->getPrimaryTemplate()) {
2749    // ignore specializations
2750  } else if (Conversion->getPreviousDeclaration()) {
2751    if (FunctionTemplateDecl *ConversionTemplate
2752                                  = Conversion->getDescribedFunctionTemplate()) {
2753      if (ClassDecl->replaceConversion(
2754                                   ConversionTemplate->getPreviousDeclaration(),
2755                                       ConversionTemplate))
2756        return DeclPtrTy::make(ConversionTemplate);
2757    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2758                                            Conversion))
2759      return DeclPtrTy::make(Conversion);
2760    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2761  } else if (FunctionTemplateDecl *ConversionTemplate
2762               = Conversion->getDescribedFunctionTemplate())
2763    ClassDecl->addConversionFunction(ConversionTemplate);
2764  else
2765    ClassDecl->addConversionFunction(Conversion);
2766
2767  return DeclPtrTy::make(Conversion);
2768}
2769
2770//===----------------------------------------------------------------------===//
2771// Namespace Handling
2772//===----------------------------------------------------------------------===//
2773
2774/// ActOnStartNamespaceDef - This is called at the start of a namespace
2775/// definition.
2776Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2777                                             SourceLocation IdentLoc,
2778                                             IdentifierInfo *II,
2779                                             SourceLocation LBrace) {
2780  NamespaceDecl *Namespc =
2781      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2782  Namespc->setLBracLoc(LBrace);
2783
2784  Scope *DeclRegionScope = NamespcScope->getParent();
2785
2786  if (II) {
2787    // C++ [namespace.def]p2:
2788    // The identifier in an original-namespace-definition shall not have been
2789    // previously defined in the declarative region in which the
2790    // original-namespace-definition appears. The identifier in an
2791    // original-namespace-definition is the name of the namespace. Subsequently
2792    // in that declarative region, it is treated as an original-namespace-name.
2793
2794    NamedDecl *PrevDecl
2795      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2796                         ForRedeclaration);
2797
2798    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2799      // This is an extended namespace definition.
2800      // Attach this namespace decl to the chain of extended namespace
2801      // definitions.
2802      OrigNS->setNextNamespace(Namespc);
2803      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2804
2805      // Remove the previous declaration from the scope.
2806      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2807        IdResolver.RemoveDecl(OrigNS);
2808        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2809      }
2810    } else if (PrevDecl) {
2811      // This is an invalid name redefinition.
2812      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2813       << Namespc->getDeclName();
2814      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2815      Namespc->setInvalidDecl();
2816      // Continue on to push Namespc as current DeclContext and return it.
2817    } else if (II->isStr("std") &&
2818               CurContext->getLookupContext()->isTranslationUnit()) {
2819      // This is the first "real" definition of the namespace "std", so update
2820      // our cache of the "std" namespace to point at this definition.
2821      if (StdNamespace) {
2822        // We had already defined a dummy namespace "std". Link this new
2823        // namespace definition to the dummy namespace "std".
2824        StdNamespace->setNextNamespace(Namespc);
2825        StdNamespace->setLocation(IdentLoc);
2826        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2827      }
2828
2829      // Make our StdNamespace cache point at the first real definition of the
2830      // "std" namespace.
2831      StdNamespace = Namespc;
2832    }
2833
2834    PushOnScopeChains(Namespc, DeclRegionScope);
2835  } else {
2836    // Anonymous namespaces.
2837    assert(Namespc->isAnonymousNamespace());
2838    CurContext->addDecl(Namespc);
2839
2840    // Link the anonymous namespace into its parent.
2841    NamespaceDecl *PrevDecl;
2842    DeclContext *Parent = CurContext->getLookupContext();
2843    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2844      PrevDecl = TU->getAnonymousNamespace();
2845      TU->setAnonymousNamespace(Namespc);
2846    } else {
2847      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2848      PrevDecl = ND->getAnonymousNamespace();
2849      ND->setAnonymousNamespace(Namespc);
2850    }
2851
2852    // Link the anonymous namespace with its previous declaration.
2853    if (PrevDecl) {
2854      assert(PrevDecl->isAnonymousNamespace());
2855      assert(!PrevDecl->getNextNamespace());
2856      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2857      PrevDecl->setNextNamespace(Namespc);
2858    }
2859
2860    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2861    //   behaves as if it were replaced by
2862    //     namespace unique { /* empty body */ }
2863    //     using namespace unique;
2864    //     namespace unique { namespace-body }
2865    //   where all occurrences of 'unique' in a translation unit are
2866    //   replaced by the same identifier and this identifier differs
2867    //   from all other identifiers in the entire program.
2868
2869    // We just create the namespace with an empty name and then add an
2870    // implicit using declaration, just like the standard suggests.
2871    //
2872    // CodeGen enforces the "universally unique" aspect by giving all
2873    // declarations semantically contained within an anonymous
2874    // namespace internal linkage.
2875
2876    if (!PrevDecl) {
2877      UsingDirectiveDecl* UD
2878        = UsingDirectiveDecl::Create(Context, CurContext,
2879                                     /* 'using' */ LBrace,
2880                                     /* 'namespace' */ SourceLocation(),
2881                                     /* qualifier */ SourceRange(),
2882                                     /* NNS */ NULL,
2883                                     /* identifier */ SourceLocation(),
2884                                     Namespc,
2885                                     /* Ancestor */ CurContext);
2886      UD->setImplicit();
2887      CurContext->addDecl(UD);
2888    }
2889  }
2890
2891  // Although we could have an invalid decl (i.e. the namespace name is a
2892  // redefinition), push it as current DeclContext and try to continue parsing.
2893  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2894  // for the namespace has the declarations that showed up in that particular
2895  // namespace definition.
2896  PushDeclContext(NamespcScope, Namespc);
2897  return DeclPtrTy::make(Namespc);
2898}
2899
2900/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2901/// is a namespace alias, returns the namespace it points to.
2902static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2903  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2904    return AD->getNamespace();
2905  return dyn_cast_or_null<NamespaceDecl>(D);
2906}
2907
2908/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2909/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2910void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2911  Decl *Dcl = D.getAs<Decl>();
2912  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2913  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2914  Namespc->setRBracLoc(RBrace);
2915  PopDeclContext();
2916}
2917
2918Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2919                                          SourceLocation UsingLoc,
2920                                          SourceLocation NamespcLoc,
2921                                          const CXXScopeSpec &SS,
2922                                          SourceLocation IdentLoc,
2923                                          IdentifierInfo *NamespcName,
2924                                          AttributeList *AttrList) {
2925  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2926  assert(NamespcName && "Invalid NamespcName.");
2927  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2928  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2929
2930  UsingDirectiveDecl *UDir = 0;
2931
2932  // Lookup namespace name.
2933  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2934  LookupParsedName(R, S, &SS);
2935  if (R.isAmbiguous())
2936    return DeclPtrTy();
2937
2938  if (!R.empty()) {
2939    NamedDecl *Named = R.getFoundDecl();
2940    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2941        && "expected namespace decl");
2942    // C++ [namespace.udir]p1:
2943    //   A using-directive specifies that the names in the nominated
2944    //   namespace can be used in the scope in which the
2945    //   using-directive appears after the using-directive. During
2946    //   unqualified name lookup (3.4.1), the names appear as if they
2947    //   were declared in the nearest enclosing namespace which
2948    //   contains both the using-directive and the nominated
2949    //   namespace. [Note: in this context, "contains" means "contains
2950    //   directly or indirectly". ]
2951
2952    // Find enclosing context containing both using-directive and
2953    // nominated namespace.
2954    NamespaceDecl *NS = getNamespaceDecl(Named);
2955    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2956    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2957      CommonAncestor = CommonAncestor->getParent();
2958
2959    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2960                                      SS.getRange(),
2961                                      (NestedNameSpecifier *)SS.getScopeRep(),
2962                                      IdentLoc, Named, CommonAncestor);
2963    PushUsingDirective(S, UDir);
2964  } else {
2965    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2966  }
2967
2968  // FIXME: We ignore attributes for now.
2969  delete AttrList;
2970  return DeclPtrTy::make(UDir);
2971}
2972
2973void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2974  // If scope has associated entity, then using directive is at namespace
2975  // or translation unit scope. We add UsingDirectiveDecls, into
2976  // it's lookup structure.
2977  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2978    Ctx->addDecl(UDir);
2979  else
2980    // Otherwise it is block-sope. using-directives will affect lookup
2981    // only to the end of scope.
2982    S->PushUsingDirective(DeclPtrTy::make(UDir));
2983}
2984
2985
2986Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2987                                            AccessSpecifier AS,
2988                                            bool HasUsingKeyword,
2989                                            SourceLocation UsingLoc,
2990                                            const CXXScopeSpec &SS,
2991                                            UnqualifiedId &Name,
2992                                            AttributeList *AttrList,
2993                                            bool IsTypeName,
2994                                            SourceLocation TypenameLoc) {
2995  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2996
2997  switch (Name.getKind()) {
2998  case UnqualifiedId::IK_Identifier:
2999  case UnqualifiedId::IK_OperatorFunctionId:
3000  case UnqualifiedId::IK_LiteralOperatorId:
3001  case UnqualifiedId::IK_ConversionFunctionId:
3002    break;
3003
3004  case UnqualifiedId::IK_ConstructorName:
3005    // C++0x inherited constructors.
3006    if (getLangOptions().CPlusPlus0x) break;
3007
3008    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3009      << SS.getRange();
3010    return DeclPtrTy();
3011
3012  case UnqualifiedId::IK_DestructorName:
3013    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3014      << SS.getRange();
3015    return DeclPtrTy();
3016
3017  case UnqualifiedId::IK_TemplateId:
3018    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3019      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3020    return DeclPtrTy();
3021  }
3022
3023  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3024  if (!TargetName)
3025    return DeclPtrTy();
3026
3027  // Warn about using declarations.
3028  // TODO: store that the declaration was written without 'using' and
3029  // talk about access decls instead of using decls in the
3030  // diagnostics.
3031  if (!HasUsingKeyword) {
3032    UsingLoc = Name.getSourceRange().getBegin();
3033
3034    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3035      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3036                                               "using ");
3037  }
3038
3039  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3040                                        Name.getSourceRange().getBegin(),
3041                                        TargetName, AttrList,
3042                                        /* IsInstantiation */ false,
3043                                        IsTypeName, TypenameLoc);
3044  if (UD)
3045    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3046
3047  return DeclPtrTy::make(UD);
3048}
3049
3050/// Determines whether to create a using shadow decl for a particular
3051/// decl, given the set of decls existing prior to this using lookup.
3052bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3053                                const LookupResult &Previous) {
3054  // Diagnose finding a decl which is not from a base class of the
3055  // current class.  We do this now because there are cases where this
3056  // function will silently decide not to build a shadow decl, which
3057  // will pre-empt further diagnostics.
3058  //
3059  // We don't need to do this in C++0x because we do the check once on
3060  // the qualifier.
3061  //
3062  // FIXME: diagnose the following if we care enough:
3063  //   struct A { int foo; };
3064  //   struct B : A { using A::foo; };
3065  //   template <class T> struct C : A {};
3066  //   template <class T> struct D : C<T> { using B::foo; } // <---
3067  // This is invalid (during instantiation) in C++03 because B::foo
3068  // resolves to the using decl in B, which is not a base class of D<T>.
3069  // We can't diagnose it immediately because C<T> is an unknown
3070  // specialization.  The UsingShadowDecl in D<T> then points directly
3071  // to A::foo, which will look well-formed when we instantiate.
3072  // The right solution is to not collapse the shadow-decl chain.
3073  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3074    DeclContext *OrigDC = Orig->getDeclContext();
3075
3076    // Handle enums and anonymous structs.
3077    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3078    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3079    while (OrigRec->isAnonymousStructOrUnion())
3080      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3081
3082    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3083      if (OrigDC == CurContext) {
3084        Diag(Using->getLocation(),
3085             diag::err_using_decl_nested_name_specifier_is_current_class)
3086          << Using->getNestedNameRange();
3087        Diag(Orig->getLocation(), diag::note_using_decl_target);
3088        return true;
3089      }
3090
3091      Diag(Using->getNestedNameRange().getBegin(),
3092           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3093        << Using->getTargetNestedNameDecl()
3094        << cast<CXXRecordDecl>(CurContext)
3095        << Using->getNestedNameRange();
3096      Diag(Orig->getLocation(), diag::note_using_decl_target);
3097      return true;
3098    }
3099  }
3100
3101  if (Previous.empty()) return false;
3102
3103  NamedDecl *Target = Orig;
3104  if (isa<UsingShadowDecl>(Target))
3105    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3106
3107  // If the target happens to be one of the previous declarations, we
3108  // don't have a conflict.
3109  //
3110  // FIXME: but we might be increasing its access, in which case we
3111  // should redeclare it.
3112  NamedDecl *NonTag = 0, *Tag = 0;
3113  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3114         I != E; ++I) {
3115    NamedDecl *D = (*I)->getUnderlyingDecl();
3116    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3117      return false;
3118
3119    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3120  }
3121
3122  if (Target->isFunctionOrFunctionTemplate()) {
3123    FunctionDecl *FD;
3124    if (isa<FunctionTemplateDecl>(Target))
3125      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3126    else
3127      FD = cast<FunctionDecl>(Target);
3128
3129    NamedDecl *OldDecl = 0;
3130    switch (CheckOverload(FD, Previous, OldDecl)) {
3131    case Ovl_Overload:
3132      return false;
3133
3134    case Ovl_NonFunction:
3135      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3136      break;
3137
3138    // We found a decl with the exact signature.
3139    case Ovl_Match:
3140      if (isa<UsingShadowDecl>(OldDecl)) {
3141        // Silently ignore the possible conflict.
3142        return false;
3143      }
3144
3145      // If we're in a record, we want to hide the target, so we
3146      // return true (without a diagnostic) to tell the caller not to
3147      // build a shadow decl.
3148      if (CurContext->isRecord())
3149        return true;
3150
3151      // If we're not in a record, this is an error.
3152      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3153      break;
3154    }
3155
3156    Diag(Target->getLocation(), diag::note_using_decl_target);
3157    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3158    return true;
3159  }
3160
3161  // Target is not a function.
3162
3163  if (isa<TagDecl>(Target)) {
3164    // No conflict between a tag and a non-tag.
3165    if (!Tag) return false;
3166
3167    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3168    Diag(Target->getLocation(), diag::note_using_decl_target);
3169    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3170    return true;
3171  }
3172
3173  // No conflict between a tag and a non-tag.
3174  if (!NonTag) return false;
3175
3176  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3177  Diag(Target->getLocation(), diag::note_using_decl_target);
3178  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3179  return true;
3180}
3181
3182/// Builds a shadow declaration corresponding to a 'using' declaration.
3183UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3184                                            UsingDecl *UD,
3185                                            NamedDecl *Orig) {
3186
3187  // If we resolved to another shadow declaration, just coalesce them.
3188  NamedDecl *Target = Orig;
3189  if (isa<UsingShadowDecl>(Target)) {
3190    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3191    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3192  }
3193
3194  UsingShadowDecl *Shadow
3195    = UsingShadowDecl::Create(Context, CurContext,
3196                              UD->getLocation(), UD, Target);
3197  UD->addShadowDecl(Shadow);
3198
3199  if (S)
3200    PushOnScopeChains(Shadow, S);
3201  else
3202    CurContext->addDecl(Shadow);
3203  Shadow->setAccess(UD->getAccess());
3204
3205  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3206    Shadow->setInvalidDecl();
3207
3208  return Shadow;
3209}
3210
3211/// Hides a using shadow declaration.  This is required by the current
3212/// using-decl implementation when a resolvable using declaration in a
3213/// class is followed by a declaration which would hide or override
3214/// one or more of the using decl's targets; for example:
3215///
3216///   struct Base { void foo(int); };
3217///   struct Derived : Base {
3218///     using Base::foo;
3219///     void foo(int);
3220///   };
3221///
3222/// The governing language is C++03 [namespace.udecl]p12:
3223///
3224///   When a using-declaration brings names from a base class into a
3225///   derived class scope, member functions in the derived class
3226///   override and/or hide member functions with the same name and
3227///   parameter types in a base class (rather than conflicting).
3228///
3229/// There are two ways to implement this:
3230///   (1) optimistically create shadow decls when they're not hidden
3231///       by existing declarations, or
3232///   (2) don't create any shadow decls (or at least don't make them
3233///       visible) until we've fully parsed/instantiated the class.
3234/// The problem with (1) is that we might have to retroactively remove
3235/// a shadow decl, which requires several O(n) operations because the
3236/// decl structures are (very reasonably) not designed for removal.
3237/// (2) avoids this but is very fiddly and phase-dependent.
3238void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3239  // Remove it from the DeclContext...
3240  Shadow->getDeclContext()->removeDecl(Shadow);
3241
3242  // ...and the scope, if applicable...
3243  if (S) {
3244    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3245    IdResolver.RemoveDecl(Shadow);
3246  }
3247
3248  // ...and the using decl.
3249  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3250
3251  // TODO: complain somehow if Shadow was used.  It shouldn't
3252  // be possible for this to happen, because
3253}
3254
3255/// Builds a using declaration.
3256///
3257/// \param IsInstantiation - Whether this call arises from an
3258///   instantiation of an unresolved using declaration.  We treat
3259///   the lookup differently for these declarations.
3260NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3261                                       SourceLocation UsingLoc,
3262                                       const CXXScopeSpec &SS,
3263                                       SourceLocation IdentLoc,
3264                                       DeclarationName Name,
3265                                       AttributeList *AttrList,
3266                                       bool IsInstantiation,
3267                                       bool IsTypeName,
3268                                       SourceLocation TypenameLoc) {
3269  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3270  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3271
3272  // FIXME: We ignore attributes for now.
3273  delete AttrList;
3274
3275  if (SS.isEmpty()) {
3276    Diag(IdentLoc, diag::err_using_requires_qualname);
3277    return 0;
3278  }
3279
3280  // Do the redeclaration lookup in the current scope.
3281  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3282                        ForRedeclaration);
3283  Previous.setHideTags(false);
3284  if (S) {
3285    LookupName(Previous, S);
3286
3287    // It is really dumb that we have to do this.
3288    LookupResult::Filter F = Previous.makeFilter();
3289    while (F.hasNext()) {
3290      NamedDecl *D = F.next();
3291      if (!isDeclInScope(D, CurContext, S))
3292        F.erase();
3293    }
3294    F.done();
3295  } else {
3296    assert(IsInstantiation && "no scope in non-instantiation");
3297    assert(CurContext->isRecord() && "scope not record in instantiation");
3298    LookupQualifiedName(Previous, CurContext);
3299  }
3300
3301  NestedNameSpecifier *NNS =
3302    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3303
3304  // Check for invalid redeclarations.
3305  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3306    return 0;
3307
3308  // Check for bad qualifiers.
3309  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3310    return 0;
3311
3312  DeclContext *LookupContext = computeDeclContext(SS);
3313  NamedDecl *D;
3314  if (!LookupContext) {
3315    if (IsTypeName) {
3316      // FIXME: not all declaration name kinds are legal here
3317      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3318                                              UsingLoc, TypenameLoc,
3319                                              SS.getRange(), NNS,
3320                                              IdentLoc, Name);
3321    } else {
3322      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3323                                           UsingLoc, SS.getRange(), NNS,
3324                                           IdentLoc, Name);
3325    }
3326  } else {
3327    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3328                          SS.getRange(), UsingLoc, NNS, Name,
3329                          IsTypeName);
3330  }
3331  D->setAccess(AS);
3332  CurContext->addDecl(D);
3333
3334  if (!LookupContext) return D;
3335  UsingDecl *UD = cast<UsingDecl>(D);
3336
3337  if (RequireCompleteDeclContext(SS)) {
3338    UD->setInvalidDecl();
3339    return UD;
3340  }
3341
3342  // Look up the target name.
3343
3344  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3345
3346  // Unlike most lookups, we don't always want to hide tag
3347  // declarations: tag names are visible through the using declaration
3348  // even if hidden by ordinary names, *except* in a dependent context
3349  // where it's important for the sanity of two-phase lookup.
3350  if (!IsInstantiation)
3351    R.setHideTags(false);
3352
3353  LookupQualifiedName(R, LookupContext);
3354
3355  if (R.empty()) {
3356    Diag(IdentLoc, diag::err_no_member)
3357      << Name << LookupContext << SS.getRange();
3358    UD->setInvalidDecl();
3359    return UD;
3360  }
3361
3362  if (R.isAmbiguous()) {
3363    UD->setInvalidDecl();
3364    return UD;
3365  }
3366
3367  if (IsTypeName) {
3368    // If we asked for a typename and got a non-type decl, error out.
3369    if (!R.getAsSingle<TypeDecl>()) {
3370      Diag(IdentLoc, diag::err_using_typename_non_type);
3371      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3372        Diag((*I)->getUnderlyingDecl()->getLocation(),
3373             diag::note_using_decl_target);
3374      UD->setInvalidDecl();
3375      return UD;
3376    }
3377  } else {
3378    // If we asked for a non-typename and we got a type, error out,
3379    // but only if this is an instantiation of an unresolved using
3380    // decl.  Otherwise just silently find the type name.
3381    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3382      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3383      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3384      UD->setInvalidDecl();
3385      return UD;
3386    }
3387  }
3388
3389  // C++0x N2914 [namespace.udecl]p6:
3390  // A using-declaration shall not name a namespace.
3391  if (R.getAsSingle<NamespaceDecl>()) {
3392    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3393      << SS.getRange();
3394    UD->setInvalidDecl();
3395    return UD;
3396  }
3397
3398  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3399    if (!CheckUsingShadowDecl(UD, *I, Previous))
3400      BuildUsingShadowDecl(S, UD, *I);
3401  }
3402
3403  return UD;
3404}
3405
3406/// Checks that the given using declaration is not an invalid
3407/// redeclaration.  Note that this is checking only for the using decl
3408/// itself, not for any ill-formedness among the UsingShadowDecls.
3409bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3410                                       bool isTypeName,
3411                                       const CXXScopeSpec &SS,
3412                                       SourceLocation NameLoc,
3413                                       const LookupResult &Prev) {
3414  // C++03 [namespace.udecl]p8:
3415  // C++0x [namespace.udecl]p10:
3416  //   A using-declaration is a declaration and can therefore be used
3417  //   repeatedly where (and only where) multiple declarations are
3418  //   allowed.
3419  // That's only in file contexts.
3420  if (CurContext->getLookupContext()->isFileContext())
3421    return false;
3422
3423  NestedNameSpecifier *Qual
3424    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3425
3426  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3427    NamedDecl *D = *I;
3428
3429    bool DTypename;
3430    NestedNameSpecifier *DQual;
3431    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3432      DTypename = UD->isTypeName();
3433      DQual = UD->getTargetNestedNameDecl();
3434    } else if (UnresolvedUsingValueDecl *UD
3435                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3436      DTypename = false;
3437      DQual = UD->getTargetNestedNameSpecifier();
3438    } else if (UnresolvedUsingTypenameDecl *UD
3439                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3440      DTypename = true;
3441      DQual = UD->getTargetNestedNameSpecifier();
3442    } else continue;
3443
3444    // using decls differ if one says 'typename' and the other doesn't.
3445    // FIXME: non-dependent using decls?
3446    if (isTypeName != DTypename) continue;
3447
3448    // using decls differ if they name different scopes (but note that
3449    // template instantiation can cause this check to trigger when it
3450    // didn't before instantiation).
3451    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3452        Context.getCanonicalNestedNameSpecifier(DQual))
3453      continue;
3454
3455    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3456    Diag(D->getLocation(), diag::note_using_decl) << 1;
3457    return true;
3458  }
3459
3460  return false;
3461}
3462
3463
3464/// Checks that the given nested-name qualifier used in a using decl
3465/// in the current context is appropriately related to the current
3466/// scope.  If an error is found, diagnoses it and returns true.
3467bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3468                                   const CXXScopeSpec &SS,
3469                                   SourceLocation NameLoc) {
3470  DeclContext *NamedContext = computeDeclContext(SS);
3471
3472  if (!CurContext->isRecord()) {
3473    // C++03 [namespace.udecl]p3:
3474    // C++0x [namespace.udecl]p8:
3475    //   A using-declaration for a class member shall be a member-declaration.
3476
3477    // If we weren't able to compute a valid scope, it must be a
3478    // dependent class scope.
3479    if (!NamedContext || NamedContext->isRecord()) {
3480      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3481        << SS.getRange();
3482      return true;
3483    }
3484
3485    // Otherwise, everything is known to be fine.
3486    return false;
3487  }
3488
3489  // The current scope is a record.
3490
3491  // If the named context is dependent, we can't decide much.
3492  if (!NamedContext) {
3493    // FIXME: in C++0x, we can diagnose if we can prove that the
3494    // nested-name-specifier does not refer to a base class, which is
3495    // still possible in some cases.
3496
3497    // Otherwise we have to conservatively report that things might be
3498    // okay.
3499    return false;
3500  }
3501
3502  if (!NamedContext->isRecord()) {
3503    // Ideally this would point at the last name in the specifier,
3504    // but we don't have that level of source info.
3505    Diag(SS.getRange().getBegin(),
3506         diag::err_using_decl_nested_name_specifier_is_not_class)
3507      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3508    return true;
3509  }
3510
3511  if (getLangOptions().CPlusPlus0x) {
3512    // C++0x [namespace.udecl]p3:
3513    //   In a using-declaration used as a member-declaration, the
3514    //   nested-name-specifier shall name a base class of the class
3515    //   being defined.
3516
3517    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3518                                 cast<CXXRecordDecl>(NamedContext))) {
3519      if (CurContext == NamedContext) {
3520        Diag(NameLoc,
3521             diag::err_using_decl_nested_name_specifier_is_current_class)
3522          << SS.getRange();
3523        return true;
3524      }
3525
3526      Diag(SS.getRange().getBegin(),
3527           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3528        << (NestedNameSpecifier*) SS.getScopeRep()
3529        << cast<CXXRecordDecl>(CurContext)
3530        << SS.getRange();
3531      return true;
3532    }
3533
3534    return false;
3535  }
3536
3537  // C++03 [namespace.udecl]p4:
3538  //   A using-declaration used as a member-declaration shall refer
3539  //   to a member of a base class of the class being defined [etc.].
3540
3541  // Salient point: SS doesn't have to name a base class as long as
3542  // lookup only finds members from base classes.  Therefore we can
3543  // diagnose here only if we can prove that that can't happen,
3544  // i.e. if the class hierarchies provably don't intersect.
3545
3546  // TODO: it would be nice if "definitely valid" results were cached
3547  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3548  // need to be repeated.
3549
3550  struct UserData {
3551    llvm::DenseSet<const CXXRecordDecl*> Bases;
3552
3553    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3554      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3555      Data->Bases.insert(Base);
3556      return true;
3557    }
3558
3559    bool hasDependentBases(const CXXRecordDecl *Class) {
3560      return !Class->forallBases(collect, this);
3561    }
3562
3563    /// Returns true if the base is dependent or is one of the
3564    /// accumulated base classes.
3565    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3566      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3567      return !Data->Bases.count(Base);
3568    }
3569
3570    bool mightShareBases(const CXXRecordDecl *Class) {
3571      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3572    }
3573  };
3574
3575  UserData Data;
3576
3577  // Returns false if we find a dependent base.
3578  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3579    return false;
3580
3581  // Returns false if the class has a dependent base or if it or one
3582  // of its bases is present in the base set of the current context.
3583  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3584    return false;
3585
3586  Diag(SS.getRange().getBegin(),
3587       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3588    << (NestedNameSpecifier*) SS.getScopeRep()
3589    << cast<CXXRecordDecl>(CurContext)
3590    << SS.getRange();
3591
3592  return true;
3593}
3594
3595Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3596                                             SourceLocation NamespaceLoc,
3597                                             SourceLocation AliasLoc,
3598                                             IdentifierInfo *Alias,
3599                                             const CXXScopeSpec &SS,
3600                                             SourceLocation IdentLoc,
3601                                             IdentifierInfo *Ident) {
3602
3603  // Lookup the namespace name.
3604  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3605  LookupParsedName(R, S, &SS);
3606
3607  // Check if we have a previous declaration with the same name.
3608  if (NamedDecl *PrevDecl
3609        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3610    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3611      // We already have an alias with the same name that points to the same
3612      // namespace, so don't create a new one.
3613      if (!R.isAmbiguous() && !R.empty() &&
3614          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3615        return DeclPtrTy();
3616    }
3617
3618    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3619      diag::err_redefinition_different_kind;
3620    Diag(AliasLoc, DiagID) << Alias;
3621    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3622    return DeclPtrTy();
3623  }
3624
3625  if (R.isAmbiguous())
3626    return DeclPtrTy();
3627
3628  if (R.empty()) {
3629    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3630    return DeclPtrTy();
3631  }
3632
3633  NamespaceAliasDecl *AliasDecl =
3634    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3635                               Alias, SS.getRange(),
3636                               (NestedNameSpecifier *)SS.getScopeRep(),
3637                               IdentLoc, R.getFoundDecl());
3638
3639  CurContext->addDecl(AliasDecl);
3640  return DeclPtrTy::make(AliasDecl);
3641}
3642
3643void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3644                                            CXXConstructorDecl *Constructor) {
3645  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3646          !Constructor->isUsed()) &&
3647    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3648
3649  CXXRecordDecl *ClassDecl
3650    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3651  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3652
3653  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3654    Diag(CurrentLocation, diag::note_member_synthesized_at)
3655      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3656    Constructor->setInvalidDecl();
3657  } else {
3658    Constructor->setUsed();
3659  }
3660}
3661
3662void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3663                                    CXXDestructorDecl *Destructor) {
3664  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3665         "DefineImplicitDestructor - call it for implicit default dtor");
3666  CXXRecordDecl *ClassDecl = Destructor->getParent();
3667  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3668  // C++ [class.dtor] p5
3669  // Before the implicitly-declared default destructor for a class is
3670  // implicitly defined, all the implicitly-declared default destructors
3671  // for its base class and its non-static data members shall have been
3672  // implicitly defined.
3673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3674       E = ClassDecl->bases_end(); Base != E; ++Base) {
3675    CXXRecordDecl *BaseClassDecl
3676      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3677    if (!BaseClassDecl->hasTrivialDestructor()) {
3678      if (CXXDestructorDecl *BaseDtor =
3679          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3680        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3681      else
3682        assert(false &&
3683               "DefineImplicitDestructor - missing dtor in a base class");
3684    }
3685  }
3686
3687  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3688       E = ClassDecl->field_end(); Field != E; ++Field) {
3689    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3690    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3691      FieldType = Array->getElementType();
3692    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3693      CXXRecordDecl *FieldClassDecl
3694        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3695      if (!FieldClassDecl->hasTrivialDestructor()) {
3696        if (CXXDestructorDecl *FieldDtor =
3697            const_cast<CXXDestructorDecl*>(
3698                                        FieldClassDecl->getDestructor(Context)))
3699          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3700        else
3701          assert(false &&
3702          "DefineImplicitDestructor - missing dtor in class of a data member");
3703      }
3704    }
3705  }
3706
3707  // FIXME: If CheckDestructor fails, we should emit a note about where the
3708  // implicit destructor was needed.
3709  if (CheckDestructor(Destructor)) {
3710    Diag(CurrentLocation, diag::note_member_synthesized_at)
3711      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3712
3713    Destructor->setInvalidDecl();
3714    return;
3715  }
3716
3717  Destructor->setUsed();
3718}
3719
3720void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3721                                          CXXMethodDecl *MethodDecl) {
3722  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3723          MethodDecl->getOverloadedOperator() == OO_Equal &&
3724          !MethodDecl->isUsed()) &&
3725         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3726
3727  CXXRecordDecl *ClassDecl
3728    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3729
3730  // C++[class.copy] p12
3731  // Before the implicitly-declared copy assignment operator for a class is
3732  // implicitly defined, all implicitly-declared copy assignment operators
3733  // for its direct base classes and its nonstatic data members shall have
3734  // been implicitly defined.
3735  bool err = false;
3736  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3737       E = ClassDecl->bases_end(); Base != E; ++Base) {
3738    CXXRecordDecl *BaseClassDecl
3739      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3740    if (CXXMethodDecl *BaseAssignOpMethod =
3741          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3742                                  BaseClassDecl))
3743      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3744  }
3745  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3746       E = ClassDecl->field_end(); Field != E; ++Field) {
3747    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3748    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3749      FieldType = Array->getElementType();
3750    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3751      CXXRecordDecl *FieldClassDecl
3752        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3753      if (CXXMethodDecl *FieldAssignOpMethod =
3754          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3755                                  FieldClassDecl))
3756        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3757    } else if (FieldType->isReferenceType()) {
3758      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3759      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3760      Diag(Field->getLocation(), diag::note_declared_at);
3761      Diag(CurrentLocation, diag::note_first_required_here);
3762      err = true;
3763    } else if (FieldType.isConstQualified()) {
3764      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3765      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3766      Diag(Field->getLocation(), diag::note_declared_at);
3767      Diag(CurrentLocation, diag::note_first_required_here);
3768      err = true;
3769    }
3770  }
3771  if (!err)
3772    MethodDecl->setUsed();
3773}
3774
3775CXXMethodDecl *
3776Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3777                              ParmVarDecl *ParmDecl,
3778                              CXXRecordDecl *ClassDecl) {
3779  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3780  QualType RHSType(LHSType);
3781  // If class's assignment operator argument is const/volatile qualified,
3782  // look for operator = (const/volatile B&). Otherwise, look for
3783  // operator = (B&).
3784  RHSType = Context.getCVRQualifiedType(RHSType,
3785                                     ParmDecl->getType().getCVRQualifiers());
3786  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3787                                                           LHSType,
3788                                                           SourceLocation()));
3789  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3790                                                           RHSType,
3791                                                           CurrentLocation));
3792  Expr *Args[2] = { &*LHS, &*RHS };
3793  OverloadCandidateSet CandidateSet;
3794  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3795                              CandidateSet);
3796  OverloadCandidateSet::iterator Best;
3797  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3798    return cast<CXXMethodDecl>(Best->Function);
3799  assert(false &&
3800         "getAssignOperatorMethod - copy assignment operator method not found");
3801  return 0;
3802}
3803
3804void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3805                                   CXXConstructorDecl *CopyConstructor,
3806                                   unsigned TypeQuals) {
3807  assert((CopyConstructor->isImplicit() &&
3808          CopyConstructor->isCopyConstructor(TypeQuals) &&
3809          !CopyConstructor->isUsed()) &&
3810         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3811
3812  CXXRecordDecl *ClassDecl
3813    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3814  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3815  // C++ [class.copy] p209
3816  // Before the implicitly-declared copy constructor for a class is
3817  // implicitly defined, all the implicitly-declared copy constructors
3818  // for its base class and its non-static data members shall have been
3819  // implicitly defined.
3820  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3821       Base != ClassDecl->bases_end(); ++Base) {
3822    CXXRecordDecl *BaseClassDecl
3823      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3824    if (CXXConstructorDecl *BaseCopyCtor =
3825        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3826      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3827  }
3828  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3829                                  FieldEnd = ClassDecl->field_end();
3830       Field != FieldEnd; ++Field) {
3831    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3832    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3833      FieldType = Array->getElementType();
3834    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3835      CXXRecordDecl *FieldClassDecl
3836        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3837      if (CXXConstructorDecl *FieldCopyCtor =
3838          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3839        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3840    }
3841  }
3842  CopyConstructor->setUsed();
3843}
3844
3845Sema::OwningExprResult
3846Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3847                            CXXConstructorDecl *Constructor,
3848                            MultiExprArg ExprArgs,
3849                            bool RequiresZeroInit) {
3850  bool Elidable = false;
3851
3852  // C++ [class.copy]p15:
3853  //   Whenever a temporary class object is copied using a copy constructor, and
3854  //   this object and the copy have the same cv-unqualified type, an
3855  //   implementation is permitted to treat the original and the copy as two
3856  //   different ways of referring to the same object and not perform a copy at
3857  //   all, even if the class copy constructor or destructor have side effects.
3858
3859  // FIXME: Is this enough?
3860  if (Constructor->isCopyConstructor()) {
3861    Expr *E = ((Expr **)ExprArgs.get())[0];
3862    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3863      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3864        E = ICE->getSubExpr();
3865    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3866      E = FCE->getSubExpr();
3867    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3868      E = BE->getSubExpr();
3869    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3870      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3871        E = ICE->getSubExpr();
3872
3873    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3874      Elidable = !CE->getCallReturnType()->isReferenceType();
3875    else if (isa<CXXTemporaryObjectExpr>(E))
3876      Elidable = true;
3877    else if (isa<CXXConstructExpr>(E))
3878      Elidable = true;
3879  }
3880
3881  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3882                               Elidable, move(ExprArgs), RequiresZeroInit);
3883}
3884
3885/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3886/// including handling of its default argument expressions.
3887Sema::OwningExprResult
3888Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3889                            CXXConstructorDecl *Constructor, bool Elidable,
3890                            MultiExprArg ExprArgs,
3891                            bool RequiresZeroInit) {
3892  unsigned NumExprs = ExprArgs.size();
3893  Expr **Exprs = (Expr **)ExprArgs.release();
3894
3895  MarkDeclarationReferenced(ConstructLoc, Constructor);
3896  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
3897                                        Constructor, Elidable, Exprs, NumExprs,
3898                                        RequiresZeroInit));
3899}
3900
3901Sema::OwningExprResult
3902Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3903                                  QualType Ty,
3904                                  SourceLocation TyBeginLoc,
3905                                  MultiExprArg Args,
3906                                  SourceLocation RParenLoc) {
3907  unsigned NumExprs = Args.size();
3908  Expr **Exprs = (Expr **)Args.release();
3909
3910  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3911  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3912                                                    TyBeginLoc, Exprs,
3913                                                    NumExprs, RParenLoc));
3914}
3915
3916
3917bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3918                                        CXXConstructorDecl *Constructor,
3919                                        MultiExprArg Exprs) {
3920  OwningExprResult TempResult =
3921    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3922                          move(Exprs));
3923  if (TempResult.isInvalid())
3924    return true;
3925
3926  Expr *Temp = TempResult.takeAs<Expr>();
3927  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3928  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
3929  VD->setInit(Context, Temp);
3930
3931  return false;
3932}
3933
3934void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3935  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3936                                  DeclInitType->getAs<RecordType>()->getDecl());
3937  if (!ClassDecl->hasTrivialDestructor())
3938    if (CXXDestructorDecl *Destructor =
3939        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3940      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3941}
3942
3943/// AddCXXDirectInitializerToDecl - This action is called immediately after
3944/// ActOnDeclarator, when a C++ direct initializer is present.
3945/// e.g: "int x(1);"
3946void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3947                                         SourceLocation LParenLoc,
3948                                         MultiExprArg Exprs,
3949                                         SourceLocation *CommaLocs,
3950                                         SourceLocation RParenLoc) {
3951  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
3952  Decl *RealDecl = Dcl.getAs<Decl>();
3953
3954  // If there is no declaration, there was an error parsing it.  Just ignore
3955  // the initializer.
3956  if (RealDecl == 0)
3957    return;
3958
3959  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3960  if (!VDecl) {
3961    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3962    RealDecl->setInvalidDecl();
3963    return;
3964  }
3965
3966  // We will represent direct-initialization similarly to copy-initialization:
3967  //    int x(1);  -as-> int x = 1;
3968  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3969  //
3970  // Clients that want to distinguish between the two forms, can check for
3971  // direct initializer using VarDecl::hasCXXDirectInitializer().
3972  // A major benefit is that clients that don't particularly care about which
3973  // exactly form was it (like the CodeGen) can handle both cases without
3974  // special case code.
3975
3976  // If either the declaration has a dependent type or if any of the expressions
3977  // is type-dependent, we represent the initialization via a ParenListExpr for
3978  // later use during template instantiation.
3979  if (VDecl->getType()->isDependentType() ||
3980      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3981    // Let clients know that initialization was done with a direct initializer.
3982    VDecl->setCXXDirectInitializer(true);
3983
3984    // Store the initialization expressions as a ParenListExpr.
3985    unsigned NumExprs = Exprs.size();
3986    VDecl->setInit(Context,
3987                   new (Context) ParenListExpr(Context, LParenLoc,
3988                                               (Expr **)Exprs.release(),
3989                                               NumExprs, RParenLoc));
3990    return;
3991  }
3992
3993
3994  // C++ 8.5p11:
3995  // The form of initialization (using parentheses or '=') is generally
3996  // insignificant, but does matter when the entity being initialized has a
3997  // class type.
3998  QualType DeclInitType = VDecl->getType();
3999  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4000    DeclInitType = Context.getBaseElementType(Array);
4001
4002  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4003                          diag::err_typecheck_decl_incomplete_type)) {
4004    VDecl->setInvalidDecl();
4005    return;
4006  }
4007
4008  // The variable can not have an abstract class type.
4009  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4010                             diag::err_abstract_type_in_decl,
4011                             AbstractVariableType))
4012    VDecl->setInvalidDecl();
4013
4014  const VarDecl *Def = 0;
4015  if (VDecl->getDefinition(Def)) {
4016    Diag(VDecl->getLocation(), diag::err_redefinition)
4017    << VDecl->getDeclName();
4018    Diag(Def->getLocation(), diag::note_previous_definition);
4019    VDecl->setInvalidDecl();
4020    return;
4021  }
4022
4023  // Capture the variable that is being initialized and the style of
4024  // initialization.
4025  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4026
4027  // FIXME: Poor source location information.
4028  InitializationKind Kind
4029    = InitializationKind::CreateDirect(VDecl->getLocation(),
4030                                       LParenLoc, RParenLoc);
4031
4032  InitializationSequence InitSeq(*this, Entity, Kind,
4033                                 (Expr**)Exprs.get(), Exprs.size());
4034  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4035  if (Result.isInvalid()) {
4036    VDecl->setInvalidDecl();
4037    return;
4038  }
4039
4040  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4041  VDecl->setInit(Context, Result.takeAs<Expr>());
4042  VDecl->setCXXDirectInitializer(true);
4043
4044  if (VDecl->getType()->getAs<RecordType>())
4045    FinalizeVarWithDestructor(VDecl, DeclInitType);
4046}
4047
4048/// \brief Add the applicable constructor candidates for an initialization
4049/// by constructor.
4050static void AddConstructorInitializationCandidates(Sema &SemaRef,
4051                                                   QualType ClassType,
4052                                                   Expr **Args,
4053                                                   unsigned NumArgs,
4054                                                   InitializationKind Kind,
4055                                           OverloadCandidateSet &CandidateSet) {
4056  // C++ [dcl.init]p14:
4057  //   If the initialization is direct-initialization, or if it is
4058  //   copy-initialization where the cv-unqualified version of the
4059  //   source type is the same class as, or a derived class of, the
4060  //   class of the destination, constructors are considered. The
4061  //   applicable constructors are enumerated (13.3.1.3), and the
4062  //   best one is chosen through overload resolution (13.3). The
4063  //   constructor so selected is called to initialize the object,
4064  //   with the initializer expression(s) as its argument(s). If no
4065  //   constructor applies, or the overload resolution is ambiguous,
4066  //   the initialization is ill-formed.
4067  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4068  assert(ClassRec && "Can only initialize a class type here");
4069
4070  // FIXME: When we decide not to synthesize the implicitly-declared
4071  // constructors, we'll need to make them appear here.
4072
4073  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4074  DeclarationName ConstructorName
4075    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4076              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4077  DeclContext::lookup_const_iterator Con, ConEnd;
4078  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4079       Con != ConEnd; ++Con) {
4080    // Find the constructor (which may be a template).
4081    CXXConstructorDecl *Constructor = 0;
4082    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4083    if (ConstructorTmpl)
4084      Constructor
4085      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4086    else
4087      Constructor = cast<CXXConstructorDecl>(*Con);
4088
4089    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4090        (Kind.getKind() == InitializationKind::IK_Value) ||
4091        (Kind.getKind() == InitializationKind::IK_Copy &&
4092         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4093        ((Kind.getKind() == InitializationKind::IK_Default) &&
4094         Constructor->isDefaultConstructor())) {
4095      if (ConstructorTmpl)
4096        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4097                                             /*ExplicitArgs*/ 0,
4098                                             Args, NumArgs, CandidateSet);
4099      else
4100        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
4101    }
4102  }
4103}
4104
4105/// \brief Attempt to perform initialization by constructor
4106/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4107/// copy-initialization.
4108///
4109/// This routine determines whether initialization by constructor is possible,
4110/// but it does not emit any diagnostics in the case where the initialization
4111/// is ill-formed.
4112///
4113/// \param ClassType the type of the object being initialized, which must have
4114/// class type.
4115///
4116/// \param Args the arguments provided to initialize the object
4117///
4118/// \param NumArgs the number of arguments provided to initialize the object
4119///
4120/// \param Kind the type of initialization being performed
4121///
4122/// \returns the constructor used to initialize the object, if successful.
4123/// Otherwise, emits a diagnostic and returns NULL.
4124CXXConstructorDecl *
4125Sema::TryInitializationByConstructor(QualType ClassType,
4126                                     Expr **Args, unsigned NumArgs,
4127                                     SourceLocation Loc,
4128                                     InitializationKind Kind) {
4129  // Build the overload candidate set
4130  OverloadCandidateSet CandidateSet;
4131  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4132                                         CandidateSet);
4133
4134  // Determine whether we found a constructor we can use.
4135  OverloadCandidateSet::iterator Best;
4136  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4137    case OR_Success:
4138    case OR_Deleted:
4139      // We found a constructor. Return it.
4140      return cast<CXXConstructorDecl>(Best->Function);
4141
4142    case OR_No_Viable_Function:
4143    case OR_Ambiguous:
4144      // Overload resolution failed. Return nothing.
4145      return 0;
4146  }
4147
4148  // Silence GCC warning
4149  return 0;
4150}
4151
4152/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
4153/// may occur as part of direct-initialization or copy-initialization.
4154///
4155/// \param ClassType the type of the object being initialized, which must have
4156/// class type.
4157///
4158/// \param ArgsPtr the arguments provided to initialize the object
4159///
4160/// \param Loc the source location where the initialization occurs
4161///
4162/// \param Range the source range that covers the entire initialization
4163///
4164/// \param InitEntity the name of the entity being initialized, if known
4165///
4166/// \param Kind the type of initialization being performed
4167///
4168/// \param ConvertedArgs a vector that will be filled in with the
4169/// appropriately-converted arguments to the constructor (if initialization
4170/// succeeded).
4171///
4172/// \returns the constructor used to initialize the object, if successful.
4173/// Otherwise, emits a diagnostic and returns NULL.
4174CXXConstructorDecl *
4175Sema::PerformInitializationByConstructor(QualType ClassType,
4176                                         MultiExprArg ArgsPtr,
4177                                         SourceLocation Loc, SourceRange Range,
4178                                         DeclarationName InitEntity,
4179                                         InitializationKind Kind,
4180                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4181
4182  // Build the overload candidate set
4183  Expr **Args = (Expr **)ArgsPtr.get();
4184  unsigned NumArgs = ArgsPtr.size();
4185  OverloadCandidateSet CandidateSet;
4186  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4187                                         CandidateSet);
4188
4189  OverloadCandidateSet::iterator Best;
4190  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4191  case OR_Success:
4192    // We found a constructor. Break out so that we can convert the arguments
4193    // appropriately.
4194    break;
4195
4196  case OR_No_Viable_Function:
4197    if (InitEntity)
4198      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4199        << InitEntity << Range;
4200    else
4201      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4202        << ClassType << Range;
4203    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates);
4204    return 0;
4205
4206  case OR_Ambiguous:
4207    if (InitEntity)
4208      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
4209    else
4210      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
4211    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates);
4212    return 0;
4213
4214  case OR_Deleted:
4215    if (InitEntity)
4216      Diag(Loc, diag::err_ovl_deleted_init)
4217        << Best->Function->isDeleted()
4218        << InitEntity << Range;
4219    else {
4220      const CXXRecordDecl *RD =
4221          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
4222      Diag(Loc, diag::err_ovl_deleted_init)
4223        << Best->Function->isDeleted()
4224        << RD->getDeclName() << Range;
4225    }
4226    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates);
4227    return 0;
4228  }
4229
4230  // Convert the arguments, fill in default arguments, etc.
4231  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4232  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
4233    return 0;
4234
4235  return Constructor;
4236}
4237
4238/// \brief Given a constructor and the set of arguments provided for the
4239/// constructor, convert the arguments and add any required default arguments
4240/// to form a proper call to this constructor.
4241///
4242/// \returns true if an error occurred, false otherwise.
4243bool
4244Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4245                              MultiExprArg ArgsPtr,
4246                              SourceLocation Loc,
4247                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4248  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4249  unsigned NumArgs = ArgsPtr.size();
4250  Expr **Args = (Expr **)ArgsPtr.get();
4251
4252  const FunctionProtoType *Proto
4253    = Constructor->getType()->getAs<FunctionProtoType>();
4254  assert(Proto && "Constructor without a prototype?");
4255  unsigned NumArgsInProto = Proto->getNumArgs();
4256
4257  // If too few arguments are available, we'll fill in the rest with defaults.
4258  if (NumArgs < NumArgsInProto)
4259    ConvertedArgs.reserve(NumArgsInProto);
4260  else
4261    ConvertedArgs.reserve(NumArgs);
4262
4263  VariadicCallType CallType =
4264    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4265  llvm::SmallVector<Expr *, 8> AllArgs;
4266  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4267                                        Proto, 0, Args, NumArgs, AllArgs,
4268                                        CallType);
4269  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4270    ConvertedArgs.push_back(AllArgs[i]);
4271  return Invalid;
4272}
4273
4274/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4275/// determine whether they are reference-related,
4276/// reference-compatible, reference-compatible with added
4277/// qualification, or incompatible, for use in C++ initialization by
4278/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4279/// type, and the first type (T1) is the pointee type of the reference
4280/// type being initialized.
4281Sema::ReferenceCompareResult
4282Sema::CompareReferenceRelationship(SourceLocation Loc,
4283                                   QualType OrigT1, QualType OrigT2,
4284                                   bool& DerivedToBase) {
4285  assert(!OrigT1->isReferenceType() &&
4286    "T1 must be the pointee type of the reference type");
4287  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4288
4289  QualType T1 = Context.getCanonicalType(OrigT1);
4290  QualType T2 = Context.getCanonicalType(OrigT2);
4291  Qualifiers T1Quals, T2Quals;
4292  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4293  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4294
4295  // C++ [dcl.init.ref]p4:
4296  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4297  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4298  //   T1 is a base class of T2.
4299  if (UnqualT1 == UnqualT2)
4300    DerivedToBase = false;
4301  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4302           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4303           IsDerivedFrom(UnqualT2, UnqualT1))
4304    DerivedToBase = true;
4305  else
4306    return Ref_Incompatible;
4307
4308  // At this point, we know that T1 and T2 are reference-related (at
4309  // least).
4310
4311  // If the type is an array type, promote the element qualifiers to the type
4312  // for comparison.
4313  if (isa<ArrayType>(T1) && T1Quals)
4314    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4315  if (isa<ArrayType>(T2) && T2Quals)
4316    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4317
4318  // C++ [dcl.init.ref]p4:
4319  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4320  //   reference-related to T2 and cv1 is the same cv-qualification
4321  //   as, or greater cv-qualification than, cv2. For purposes of
4322  //   overload resolution, cases for which cv1 is greater
4323  //   cv-qualification than cv2 are identified as
4324  //   reference-compatible with added qualification (see 13.3.3.2).
4325  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4326    return Ref_Compatible;
4327  else if (T1.isMoreQualifiedThan(T2))
4328    return Ref_Compatible_With_Added_Qualification;
4329  else
4330    return Ref_Related;
4331}
4332
4333/// CheckReferenceInit - Check the initialization of a reference
4334/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4335/// the initializer (either a simple initializer or an initializer
4336/// list), and DeclType is the type of the declaration. When ICS is
4337/// non-null, this routine will compute the implicit conversion
4338/// sequence according to C++ [over.ics.ref] and will not produce any
4339/// diagnostics; when ICS is null, it will emit diagnostics when any
4340/// errors are found. Either way, a return value of true indicates
4341/// that there was a failure, a return value of false indicates that
4342/// the reference initialization succeeded.
4343///
4344/// When @p SuppressUserConversions, user-defined conversions are
4345/// suppressed.
4346/// When @p AllowExplicit, we also permit explicit user-defined
4347/// conversion functions.
4348/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4349/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4350/// This is used when this is called from a C-style cast.
4351bool
4352Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4353                         SourceLocation DeclLoc,
4354                         bool SuppressUserConversions,
4355                         bool AllowExplicit, bool ForceRValue,
4356                         ImplicitConversionSequence *ICS,
4357                         bool IgnoreBaseAccess) {
4358  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4359
4360  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4361  QualType T2 = Init->getType();
4362
4363  // If the initializer is the address of an overloaded function, try
4364  // to resolve the overloaded function. If all goes well, T2 is the
4365  // type of the resulting function.
4366  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4367    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4368                                                          ICS != 0);
4369    if (Fn) {
4370      // Since we're performing this reference-initialization for
4371      // real, update the initializer with the resulting function.
4372      if (!ICS) {
4373        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4374          return true;
4375
4376        Init = FixOverloadedFunctionReference(Init, Fn);
4377      }
4378
4379      T2 = Fn->getType();
4380    }
4381  }
4382
4383  // Compute some basic properties of the types and the initializer.
4384  bool isRValRef = DeclType->isRValueReferenceType();
4385  bool DerivedToBase = false;
4386  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4387                                                  Init->isLvalue(Context);
4388  ReferenceCompareResult RefRelationship
4389    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4390
4391  // Most paths end in a failed conversion.
4392  if (ICS) ICS->setBad();
4393
4394  // C++ [dcl.init.ref]p5:
4395  //   A reference to type "cv1 T1" is initialized by an expression
4396  //   of type "cv2 T2" as follows:
4397
4398  //     -- If the initializer expression
4399
4400  // Rvalue references cannot bind to lvalues (N2812).
4401  // There is absolutely no situation where they can. In particular, note that
4402  // this is ill-formed, even if B has a user-defined conversion to A&&:
4403  //   B b;
4404  //   A&& r = b;
4405  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4406    if (!ICS)
4407      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4408        << Init->getSourceRange();
4409    return true;
4410  }
4411
4412  bool BindsDirectly = false;
4413  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4414  //          reference-compatible with "cv2 T2," or
4415  //
4416  // Note that the bit-field check is skipped if we are just computing
4417  // the implicit conversion sequence (C++ [over.best.ics]p2).
4418  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4419      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4420    BindsDirectly = true;
4421
4422    if (ICS) {
4423      // C++ [over.ics.ref]p1:
4424      //   When a parameter of reference type binds directly (8.5.3)
4425      //   to an argument expression, the implicit conversion sequence
4426      //   is the identity conversion, unless the argument expression
4427      //   has a type that is a derived class of the parameter type,
4428      //   in which case the implicit conversion sequence is a
4429      //   derived-to-base Conversion (13.3.3.1).
4430      ICS->setStandard();
4431      ICS->Standard.First = ICK_Identity;
4432      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4433      ICS->Standard.Third = ICK_Identity;
4434      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4435      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4436      ICS->Standard.ReferenceBinding = true;
4437      ICS->Standard.DirectBinding = true;
4438      ICS->Standard.RRefBinding = false;
4439      ICS->Standard.CopyConstructor = 0;
4440
4441      // Nothing more to do: the inaccessibility/ambiguity check for
4442      // derived-to-base conversions is suppressed when we're
4443      // computing the implicit conversion sequence (C++
4444      // [over.best.ics]p2).
4445      return false;
4446    } else {
4447      // Perform the conversion.
4448      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4449      if (DerivedToBase)
4450        CK = CastExpr::CK_DerivedToBase;
4451      else if(CheckExceptionSpecCompatibility(Init, T1))
4452        return true;
4453      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4454    }
4455  }
4456
4457  //       -- has a class type (i.e., T2 is a class type) and can be
4458  //          implicitly converted to an lvalue of type "cv3 T3,"
4459  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4460  //          92) (this conversion is selected by enumerating the
4461  //          applicable conversion functions (13.3.1.6) and choosing
4462  //          the best one through overload resolution (13.3)),
4463  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4464      !RequireCompleteType(DeclLoc, T2, 0)) {
4465    CXXRecordDecl *T2RecordDecl
4466      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4467
4468    OverloadCandidateSet CandidateSet;
4469    const UnresolvedSet *Conversions
4470      = T2RecordDecl->getVisibleConversionFunctions();
4471    for (UnresolvedSet::iterator I = Conversions->begin(),
4472           E = Conversions->end(); I != E; ++I) {
4473      NamedDecl *D = *I;
4474      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4475      if (isa<UsingShadowDecl>(D))
4476        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4477
4478      FunctionTemplateDecl *ConvTemplate
4479        = dyn_cast<FunctionTemplateDecl>(D);
4480      CXXConversionDecl *Conv;
4481      if (ConvTemplate)
4482        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4483      else
4484        Conv = cast<CXXConversionDecl>(D);
4485
4486      // If the conversion function doesn't return a reference type,
4487      // it can't be considered for this conversion.
4488      if (Conv->getConversionType()->isLValueReferenceType() &&
4489          (AllowExplicit || !Conv->isExplicit())) {
4490        if (ConvTemplate)
4491          AddTemplateConversionCandidate(ConvTemplate, ActingDC,
4492                                         Init, DeclType, CandidateSet);
4493        else
4494          AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet);
4495      }
4496    }
4497
4498    OverloadCandidateSet::iterator Best;
4499    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4500    case OR_Success:
4501      // This is a direct binding.
4502      BindsDirectly = true;
4503
4504      if (ICS) {
4505        // C++ [over.ics.ref]p1:
4506        //
4507        //   [...] If the parameter binds directly to the result of
4508        //   applying a conversion function to the argument
4509        //   expression, the implicit conversion sequence is a
4510        //   user-defined conversion sequence (13.3.3.1.2), with the
4511        //   second standard conversion sequence either an identity
4512        //   conversion or, if the conversion function returns an
4513        //   entity of a type that is a derived class of the parameter
4514        //   type, a derived-to-base Conversion.
4515        ICS->setUserDefined();
4516        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4517        ICS->UserDefined.After = Best->FinalConversion;
4518        ICS->UserDefined.ConversionFunction = Best->Function;
4519        ICS->UserDefined.EllipsisConversion = false;
4520        assert(ICS->UserDefined.After.ReferenceBinding &&
4521               ICS->UserDefined.After.DirectBinding &&
4522               "Expected a direct reference binding!");
4523        return false;
4524      } else {
4525        OwningExprResult InitConversion =
4526          BuildCXXCastArgument(DeclLoc, QualType(),
4527                               CastExpr::CK_UserDefinedConversion,
4528                               cast<CXXMethodDecl>(Best->Function),
4529                               Owned(Init));
4530        Init = InitConversion.takeAs<Expr>();
4531
4532        if (CheckExceptionSpecCompatibility(Init, T1))
4533          return true;
4534        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4535                          /*isLvalue=*/true);
4536      }
4537      break;
4538
4539    case OR_Ambiguous:
4540      if (ICS) {
4541        ICS->setAmbiguous();
4542        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4543             Cand != CandidateSet.end(); ++Cand)
4544          if (Cand->Viable)
4545            ICS->Ambiguous.addConversion(Cand->Function);
4546        break;
4547      }
4548      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4549            << Init->getSourceRange();
4550      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates);
4551      return true;
4552
4553    case OR_No_Viable_Function:
4554    case OR_Deleted:
4555      // There was no suitable conversion, or we found a deleted
4556      // conversion; continue with other checks.
4557      break;
4558    }
4559  }
4560
4561  if (BindsDirectly) {
4562    // C++ [dcl.init.ref]p4:
4563    //   [...] In all cases where the reference-related or
4564    //   reference-compatible relationship of two types is used to
4565    //   establish the validity of a reference binding, and T1 is a
4566    //   base class of T2, a program that necessitates such a binding
4567    //   is ill-formed if T1 is an inaccessible (clause 11) or
4568    //   ambiguous (10.2) base class of T2.
4569    //
4570    // Note that we only check this condition when we're allowed to
4571    // complain about errors, because we should not be checking for
4572    // ambiguity (or inaccessibility) unless the reference binding
4573    // actually happens.
4574    if (DerivedToBase)
4575      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4576                                          Init->getSourceRange(),
4577                                          IgnoreBaseAccess);
4578    else
4579      return false;
4580  }
4581
4582  //     -- Otherwise, the reference shall be to a non-volatile const
4583  //        type (i.e., cv1 shall be const), or the reference shall be an
4584  //        rvalue reference and the initializer expression shall be an rvalue.
4585  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4586    if (!ICS)
4587      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4588        << T1 << int(InitLvalue != Expr::LV_Valid)
4589        << T2 << Init->getSourceRange();
4590    return true;
4591  }
4592
4593  //       -- If the initializer expression is an rvalue, with T2 a
4594  //          class type, and "cv1 T1" is reference-compatible with
4595  //          "cv2 T2," the reference is bound in one of the
4596  //          following ways (the choice is implementation-defined):
4597  //
4598  //          -- The reference is bound to the object represented by
4599  //             the rvalue (see 3.10) or to a sub-object within that
4600  //             object.
4601  //
4602  //          -- A temporary of type "cv1 T2" [sic] is created, and
4603  //             a constructor is called to copy the entire rvalue
4604  //             object into the temporary. The reference is bound to
4605  //             the temporary or to a sub-object within the
4606  //             temporary.
4607  //
4608  //          The constructor that would be used to make the copy
4609  //          shall be callable whether or not the copy is actually
4610  //          done.
4611  //
4612  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4613  // freedom, so we will always take the first option and never build
4614  // a temporary in this case. FIXME: We will, however, have to check
4615  // for the presence of a copy constructor in C++98/03 mode.
4616  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4617      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4618    if (ICS) {
4619      ICS->setStandard();
4620      ICS->Standard.First = ICK_Identity;
4621      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4622      ICS->Standard.Third = ICK_Identity;
4623      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4624      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4625      ICS->Standard.ReferenceBinding = true;
4626      ICS->Standard.DirectBinding = false;
4627      ICS->Standard.RRefBinding = isRValRef;
4628      ICS->Standard.CopyConstructor = 0;
4629    } else {
4630      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4631      if (DerivedToBase)
4632        CK = CastExpr::CK_DerivedToBase;
4633      else if(CheckExceptionSpecCompatibility(Init, T1))
4634        return true;
4635      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4636    }
4637    return false;
4638  }
4639
4640  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4641  //          initialized from the initializer expression using the
4642  //          rules for a non-reference copy initialization (8.5). The
4643  //          reference is then bound to the temporary. If T1 is
4644  //          reference-related to T2, cv1 must be the same
4645  //          cv-qualification as, or greater cv-qualification than,
4646  //          cv2; otherwise, the program is ill-formed.
4647  if (RefRelationship == Ref_Related) {
4648    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4649    // we would be reference-compatible or reference-compatible with
4650    // added qualification. But that wasn't the case, so the reference
4651    // initialization fails.
4652    if (!ICS)
4653      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4654        << T1 << int(InitLvalue != Expr::LV_Valid)
4655        << T2 << Init->getSourceRange();
4656    return true;
4657  }
4658
4659  // If at least one of the types is a class type, the types are not
4660  // related, and we aren't allowed any user conversions, the
4661  // reference binding fails. This case is important for breaking
4662  // recursion, since TryImplicitConversion below will attempt to
4663  // create a temporary through the use of a copy constructor.
4664  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4665      (T1->isRecordType() || T2->isRecordType())) {
4666    if (!ICS)
4667      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4668        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4669    return true;
4670  }
4671
4672  // Actually try to convert the initializer to T1.
4673  if (ICS) {
4674    // C++ [over.ics.ref]p2:
4675    //
4676    //   When a parameter of reference type is not bound directly to
4677    //   an argument expression, the conversion sequence is the one
4678    //   required to convert the argument expression to the
4679    //   underlying type of the reference according to
4680    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4681    //   to copy-initializing a temporary of the underlying type with
4682    //   the argument expression. Any difference in top-level
4683    //   cv-qualification is subsumed by the initialization itself
4684    //   and does not constitute a conversion.
4685    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4686                                 /*AllowExplicit=*/false,
4687                                 /*ForceRValue=*/false,
4688                                 /*InOverloadResolution=*/false);
4689
4690    // Of course, that's still a reference binding.
4691    if (ICS->isStandard()) {
4692      ICS->Standard.ReferenceBinding = true;
4693      ICS->Standard.RRefBinding = isRValRef;
4694    } else if (ICS->isUserDefined()) {
4695      ICS->UserDefined.After.ReferenceBinding = true;
4696      ICS->UserDefined.After.RRefBinding = isRValRef;
4697    }
4698    return ICS->isBad();
4699  } else {
4700    ImplicitConversionSequence Conversions;
4701    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4702                                                   false, false,
4703                                                   Conversions);
4704    if (badConversion) {
4705      if (Conversions.isAmbiguous()) {
4706        Diag(DeclLoc,
4707             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4708        for (int j = Conversions.Ambiguous.conversions().size()-1;
4709             j >= 0; j--) {
4710          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4711          NoteOverloadCandidate(Func);
4712        }
4713      }
4714      else {
4715        if (isRValRef)
4716          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4717            << Init->getSourceRange();
4718        else
4719          Diag(DeclLoc, diag::err_invalid_initialization)
4720            << DeclType << Init->getType() << Init->getSourceRange();
4721      }
4722    }
4723    return badConversion;
4724  }
4725}
4726
4727static inline bool
4728CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4729                                       const FunctionDecl *FnDecl) {
4730  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4731  if (isa<NamespaceDecl>(DC)) {
4732    return SemaRef.Diag(FnDecl->getLocation(),
4733                        diag::err_operator_new_delete_declared_in_namespace)
4734      << FnDecl->getDeclName();
4735  }
4736
4737  if (isa<TranslationUnitDecl>(DC) &&
4738      FnDecl->getStorageClass() == FunctionDecl::Static) {
4739    return SemaRef.Diag(FnDecl->getLocation(),
4740                        diag::err_operator_new_delete_declared_static)
4741      << FnDecl->getDeclName();
4742  }
4743
4744  return false;
4745}
4746
4747static inline bool
4748CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4749                            CanQualType ExpectedResultType,
4750                            CanQualType ExpectedFirstParamType,
4751                            unsigned DependentParamTypeDiag,
4752                            unsigned InvalidParamTypeDiag) {
4753  QualType ResultType =
4754    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4755
4756  // Check that the result type is not dependent.
4757  if (ResultType->isDependentType())
4758    return SemaRef.Diag(FnDecl->getLocation(),
4759                        diag::err_operator_new_delete_dependent_result_type)
4760    << FnDecl->getDeclName() << ExpectedResultType;
4761
4762  // Check that the result type is what we expect.
4763  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4764    return SemaRef.Diag(FnDecl->getLocation(),
4765                        diag::err_operator_new_delete_invalid_result_type)
4766    << FnDecl->getDeclName() << ExpectedResultType;
4767
4768  // A function template must have at least 2 parameters.
4769  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4770    return SemaRef.Diag(FnDecl->getLocation(),
4771                      diag::err_operator_new_delete_template_too_few_parameters)
4772        << FnDecl->getDeclName();
4773
4774  // The function decl must have at least 1 parameter.
4775  if (FnDecl->getNumParams() == 0)
4776    return SemaRef.Diag(FnDecl->getLocation(),
4777                        diag::err_operator_new_delete_too_few_parameters)
4778      << FnDecl->getDeclName();
4779
4780  // Check the the first parameter type is not dependent.
4781  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4782  if (FirstParamType->isDependentType())
4783    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4784      << FnDecl->getDeclName() << ExpectedFirstParamType;
4785
4786  // Check that the first parameter type is what we expect.
4787  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4788      ExpectedFirstParamType)
4789    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4790    << FnDecl->getDeclName() << ExpectedFirstParamType;
4791
4792  return false;
4793}
4794
4795static bool
4796CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4797  // C++ [basic.stc.dynamic.allocation]p1:
4798  //   A program is ill-formed if an allocation function is declared in a
4799  //   namespace scope other than global scope or declared static in global
4800  //   scope.
4801  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4802    return true;
4803
4804  CanQualType SizeTy =
4805    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4806
4807  // C++ [basic.stc.dynamic.allocation]p1:
4808  //  The return type shall be void*. The first parameter shall have type
4809  //  std::size_t.
4810  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4811                                  SizeTy,
4812                                  diag::err_operator_new_dependent_param_type,
4813                                  diag::err_operator_new_param_type))
4814    return true;
4815
4816  // C++ [basic.stc.dynamic.allocation]p1:
4817  //  The first parameter shall not have an associated default argument.
4818  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4819    return SemaRef.Diag(FnDecl->getLocation(),
4820                        diag::err_operator_new_default_arg)
4821      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4822
4823  return false;
4824}
4825
4826static bool
4827CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4828  // C++ [basic.stc.dynamic.deallocation]p1:
4829  //   A program is ill-formed if deallocation functions are declared in a
4830  //   namespace scope other than global scope or declared static in global
4831  //   scope.
4832  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4833    return true;
4834
4835  // C++ [basic.stc.dynamic.deallocation]p2:
4836  //   Each deallocation function shall return void and its first parameter
4837  //   shall be void*.
4838  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4839                                  SemaRef.Context.VoidPtrTy,
4840                                 diag::err_operator_delete_dependent_param_type,
4841                                 diag::err_operator_delete_param_type))
4842    return true;
4843
4844  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4845  if (FirstParamType->isDependentType())
4846    return SemaRef.Diag(FnDecl->getLocation(),
4847                        diag::err_operator_delete_dependent_param_type)
4848    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4849
4850  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4851      SemaRef.Context.VoidPtrTy)
4852    return SemaRef.Diag(FnDecl->getLocation(),
4853                        diag::err_operator_delete_param_type)
4854      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4855
4856  return false;
4857}
4858
4859/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4860/// of this overloaded operator is well-formed. If so, returns false;
4861/// otherwise, emits appropriate diagnostics and returns true.
4862bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4863  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4864         "Expected an overloaded operator declaration");
4865
4866  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4867
4868  // C++ [over.oper]p5:
4869  //   The allocation and deallocation functions, operator new,
4870  //   operator new[], operator delete and operator delete[], are
4871  //   described completely in 3.7.3. The attributes and restrictions
4872  //   found in the rest of this subclause do not apply to them unless
4873  //   explicitly stated in 3.7.3.
4874  if (Op == OO_Delete || Op == OO_Array_Delete)
4875    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4876
4877  if (Op == OO_New || Op == OO_Array_New)
4878    return CheckOperatorNewDeclaration(*this, FnDecl);
4879
4880  // C++ [over.oper]p6:
4881  //   An operator function shall either be a non-static member
4882  //   function or be a non-member function and have at least one
4883  //   parameter whose type is a class, a reference to a class, an
4884  //   enumeration, or a reference to an enumeration.
4885  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4886    if (MethodDecl->isStatic())
4887      return Diag(FnDecl->getLocation(),
4888                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4889  } else {
4890    bool ClassOrEnumParam = false;
4891    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4892                                   ParamEnd = FnDecl->param_end();
4893         Param != ParamEnd; ++Param) {
4894      QualType ParamType = (*Param)->getType().getNonReferenceType();
4895      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4896          ParamType->isEnumeralType()) {
4897        ClassOrEnumParam = true;
4898        break;
4899      }
4900    }
4901
4902    if (!ClassOrEnumParam)
4903      return Diag(FnDecl->getLocation(),
4904                  diag::err_operator_overload_needs_class_or_enum)
4905        << FnDecl->getDeclName();
4906  }
4907
4908  // C++ [over.oper]p8:
4909  //   An operator function cannot have default arguments (8.3.6),
4910  //   except where explicitly stated below.
4911  //
4912  // Only the function-call operator allows default arguments
4913  // (C++ [over.call]p1).
4914  if (Op != OO_Call) {
4915    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4916         Param != FnDecl->param_end(); ++Param) {
4917      if ((*Param)->hasDefaultArg())
4918        return Diag((*Param)->getLocation(),
4919                    diag::err_operator_overload_default_arg)
4920          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4921    }
4922  }
4923
4924  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4925    { false, false, false }
4926#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4927    , { Unary, Binary, MemberOnly }
4928#include "clang/Basic/OperatorKinds.def"
4929  };
4930
4931  bool CanBeUnaryOperator = OperatorUses[Op][0];
4932  bool CanBeBinaryOperator = OperatorUses[Op][1];
4933  bool MustBeMemberOperator = OperatorUses[Op][2];
4934
4935  // C++ [over.oper]p8:
4936  //   [...] Operator functions cannot have more or fewer parameters
4937  //   than the number required for the corresponding operator, as
4938  //   described in the rest of this subclause.
4939  unsigned NumParams = FnDecl->getNumParams()
4940                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4941  if (Op != OO_Call &&
4942      ((NumParams == 1 && !CanBeUnaryOperator) ||
4943       (NumParams == 2 && !CanBeBinaryOperator) ||
4944       (NumParams < 1) || (NumParams > 2))) {
4945    // We have the wrong number of parameters.
4946    unsigned ErrorKind;
4947    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4948      ErrorKind = 2;  // 2 -> unary or binary.
4949    } else if (CanBeUnaryOperator) {
4950      ErrorKind = 0;  // 0 -> unary
4951    } else {
4952      assert(CanBeBinaryOperator &&
4953             "All non-call overloaded operators are unary or binary!");
4954      ErrorKind = 1;  // 1 -> binary
4955    }
4956
4957    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4958      << FnDecl->getDeclName() << NumParams << ErrorKind;
4959  }
4960
4961  // Overloaded operators other than operator() cannot be variadic.
4962  if (Op != OO_Call &&
4963      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4964    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4965      << FnDecl->getDeclName();
4966  }
4967
4968  // Some operators must be non-static member functions.
4969  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4970    return Diag(FnDecl->getLocation(),
4971                diag::err_operator_overload_must_be_member)
4972      << FnDecl->getDeclName();
4973  }
4974
4975  // C++ [over.inc]p1:
4976  //   The user-defined function called operator++ implements the
4977  //   prefix and postfix ++ operator. If this function is a member
4978  //   function with no parameters, or a non-member function with one
4979  //   parameter of class or enumeration type, it defines the prefix
4980  //   increment operator ++ for objects of that type. If the function
4981  //   is a member function with one parameter (which shall be of type
4982  //   int) or a non-member function with two parameters (the second
4983  //   of which shall be of type int), it defines the postfix
4984  //   increment operator ++ for objects of that type.
4985  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4986    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4987    bool ParamIsInt = false;
4988    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4989      ParamIsInt = BT->getKind() == BuiltinType::Int;
4990
4991    if (!ParamIsInt)
4992      return Diag(LastParam->getLocation(),
4993                  diag::err_operator_overload_post_incdec_must_be_int)
4994        << LastParam->getType() << (Op == OO_MinusMinus);
4995  }
4996
4997  // Notify the class if it got an assignment operator.
4998  if (Op == OO_Equal) {
4999    // Would have returned earlier otherwise.
5000    assert(isa<CXXMethodDecl>(FnDecl) &&
5001      "Overloaded = not member, but not filtered.");
5002    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5003    Method->getParent()->addedAssignmentOperator(Context, Method);
5004  }
5005
5006  return false;
5007}
5008
5009/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5010/// linkage specification, including the language and (if present)
5011/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5012/// the location of the language string literal, which is provided
5013/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5014/// the '{' brace. Otherwise, this linkage specification does not
5015/// have any braces.
5016Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5017                                                     SourceLocation ExternLoc,
5018                                                     SourceLocation LangLoc,
5019                                                     const char *Lang,
5020                                                     unsigned StrSize,
5021                                                     SourceLocation LBraceLoc) {
5022  LinkageSpecDecl::LanguageIDs Language;
5023  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5024    Language = LinkageSpecDecl::lang_c;
5025  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5026    Language = LinkageSpecDecl::lang_cxx;
5027  else {
5028    Diag(LangLoc, diag::err_bad_language);
5029    return DeclPtrTy();
5030  }
5031
5032  // FIXME: Add all the various semantics of linkage specifications
5033
5034  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5035                                               LangLoc, Language,
5036                                               LBraceLoc.isValid());
5037  CurContext->addDecl(D);
5038  PushDeclContext(S, D);
5039  return DeclPtrTy::make(D);
5040}
5041
5042/// ActOnFinishLinkageSpecification - Completely the definition of
5043/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5044/// valid, it's the position of the closing '}' brace in a linkage
5045/// specification that uses braces.
5046Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5047                                                      DeclPtrTy LinkageSpec,
5048                                                      SourceLocation RBraceLoc) {
5049  if (LinkageSpec)
5050    PopDeclContext();
5051  return LinkageSpec;
5052}
5053
5054/// \brief Perform semantic analysis for the variable declaration that
5055/// occurs within a C++ catch clause, returning the newly-created
5056/// variable.
5057VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5058                                         TypeSourceInfo *TInfo,
5059                                         IdentifierInfo *Name,
5060                                         SourceLocation Loc,
5061                                         SourceRange Range) {
5062  bool Invalid = false;
5063
5064  // Arrays and functions decay.
5065  if (ExDeclType->isArrayType())
5066    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5067  else if (ExDeclType->isFunctionType())
5068    ExDeclType = Context.getPointerType(ExDeclType);
5069
5070  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5071  // The exception-declaration shall not denote a pointer or reference to an
5072  // incomplete type, other than [cv] void*.
5073  // N2844 forbids rvalue references.
5074  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5075    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5076    Invalid = true;
5077  }
5078
5079  QualType BaseType = ExDeclType;
5080  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5081  unsigned DK = diag::err_catch_incomplete;
5082  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5083    BaseType = Ptr->getPointeeType();
5084    Mode = 1;
5085    DK = diag::err_catch_incomplete_ptr;
5086  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5087    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5088    BaseType = Ref->getPointeeType();
5089    Mode = 2;
5090    DK = diag::err_catch_incomplete_ref;
5091  }
5092  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5093      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5094    Invalid = true;
5095
5096  if (!Invalid && !ExDeclType->isDependentType() &&
5097      RequireNonAbstractType(Loc, ExDeclType,
5098                             diag::err_abstract_type_in_decl,
5099                             AbstractVariableType))
5100    Invalid = true;
5101
5102  // FIXME: Need to test for ability to copy-construct and destroy the
5103  // exception variable.
5104
5105  // FIXME: Need to check for abstract classes.
5106
5107  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5108                                    Name, ExDeclType, TInfo, VarDecl::None);
5109
5110  if (Invalid)
5111    ExDecl->setInvalidDecl();
5112
5113  return ExDecl;
5114}
5115
5116/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5117/// handler.
5118Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5119  TypeSourceInfo *TInfo = 0;
5120  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5121
5122  bool Invalid = D.isInvalidType();
5123  IdentifierInfo *II = D.getIdentifier();
5124  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5125    // The scope should be freshly made just for us. There is just no way
5126    // it contains any previous declaration.
5127    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5128    if (PrevDecl->isTemplateParameter()) {
5129      // Maybe we will complain about the shadowed template parameter.
5130      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5131    }
5132  }
5133
5134  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5135    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5136      << D.getCXXScopeSpec().getRange();
5137    Invalid = true;
5138  }
5139
5140  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5141                                              D.getIdentifier(),
5142                                              D.getIdentifierLoc(),
5143                                            D.getDeclSpec().getSourceRange());
5144
5145  if (Invalid)
5146    ExDecl->setInvalidDecl();
5147
5148  // Add the exception declaration into this scope.
5149  if (II)
5150    PushOnScopeChains(ExDecl, S);
5151  else
5152    CurContext->addDecl(ExDecl);
5153
5154  ProcessDeclAttributes(S, ExDecl, D);
5155  return DeclPtrTy::make(ExDecl);
5156}
5157
5158Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5159                                                   ExprArg assertexpr,
5160                                                   ExprArg assertmessageexpr) {
5161  Expr *AssertExpr = (Expr *)assertexpr.get();
5162  StringLiteral *AssertMessage =
5163    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5164
5165  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5166    llvm::APSInt Value(32);
5167    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5168      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5169        AssertExpr->getSourceRange();
5170      return DeclPtrTy();
5171    }
5172
5173    if (Value == 0) {
5174      Diag(AssertLoc, diag::err_static_assert_failed)
5175        << AssertMessage->getString() << AssertExpr->getSourceRange();
5176    }
5177  }
5178
5179  assertexpr.release();
5180  assertmessageexpr.release();
5181  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5182                                        AssertExpr, AssertMessage);
5183
5184  CurContext->addDecl(Decl);
5185  return DeclPtrTy::make(Decl);
5186}
5187
5188/// Handle a friend type declaration.  This works in tandem with
5189/// ActOnTag.
5190///
5191/// Notes on friend class templates:
5192///
5193/// We generally treat friend class declarations as if they were
5194/// declaring a class.  So, for example, the elaborated type specifier
5195/// in a friend declaration is required to obey the restrictions of a
5196/// class-head (i.e. no typedefs in the scope chain), template
5197/// parameters are required to match up with simple template-ids, &c.
5198/// However, unlike when declaring a template specialization, it's
5199/// okay to refer to a template specialization without an empty
5200/// template parameter declaration, e.g.
5201///   friend class A<T>::B<unsigned>;
5202/// We permit this as a special case; if there are any template
5203/// parameters present at all, require proper matching, i.e.
5204///   template <> template <class T> friend class A<int>::B;
5205Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5206                                          MultiTemplateParamsArg TempParams) {
5207  SourceLocation Loc = DS.getSourceRange().getBegin();
5208
5209  assert(DS.isFriendSpecified());
5210  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5211
5212  // Try to convert the decl specifier to a type.  This works for
5213  // friend templates because ActOnTag never produces a ClassTemplateDecl
5214  // for a TUK_Friend.
5215  Declarator TheDeclarator(DS, Declarator::MemberContext);
5216  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5217  if (TheDeclarator.isInvalidType())
5218    return DeclPtrTy();
5219
5220  // This is definitely an error in C++98.  It's probably meant to
5221  // be forbidden in C++0x, too, but the specification is just
5222  // poorly written.
5223  //
5224  // The problem is with declarations like the following:
5225  //   template <T> friend A<T>::foo;
5226  // where deciding whether a class C is a friend or not now hinges
5227  // on whether there exists an instantiation of A that causes
5228  // 'foo' to equal C.  There are restrictions on class-heads
5229  // (which we declare (by fiat) elaborated friend declarations to
5230  // be) that makes this tractable.
5231  //
5232  // FIXME: handle "template <> friend class A<T>;", which
5233  // is possibly well-formed?  Who even knows?
5234  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5235    Diag(Loc, diag::err_tagless_friend_type_template)
5236      << DS.getSourceRange();
5237    return DeclPtrTy();
5238  }
5239
5240  // C++ [class.friend]p2:
5241  //   An elaborated-type-specifier shall be used in a friend declaration
5242  //   for a class.*
5243  //   * The class-key of the elaborated-type-specifier is required.
5244  // This is one of the rare places in Clang where it's legitimate to
5245  // ask about the "spelling" of the type.
5246  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5247    // If we evaluated the type to a record type, suggest putting
5248    // a tag in front.
5249    if (const RecordType *RT = T->getAs<RecordType>()) {
5250      RecordDecl *RD = RT->getDecl();
5251
5252      std::string InsertionText = std::string(" ") + RD->getKindName();
5253
5254      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5255        << (unsigned) RD->getTagKind()
5256        << T
5257        << SourceRange(DS.getFriendSpecLoc())
5258        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5259                                                 InsertionText);
5260      return DeclPtrTy();
5261    }else {
5262      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5263          << DS.getSourceRange();
5264      return DeclPtrTy();
5265    }
5266  }
5267
5268  // Enum types cannot be friends.
5269  if (T->getAs<EnumType>()) {
5270    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5271      << SourceRange(DS.getFriendSpecLoc());
5272    return DeclPtrTy();
5273  }
5274
5275  // C++98 [class.friend]p1: A friend of a class is a function
5276  //   or class that is not a member of the class . . .
5277  // This is fixed in DR77, which just barely didn't make the C++03
5278  // deadline.  It's also a very silly restriction that seriously
5279  // affects inner classes and which nobody else seems to implement;
5280  // thus we never diagnose it, not even in -pedantic.
5281
5282  Decl *D;
5283  if (TempParams.size())
5284    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5285                                   TempParams.size(),
5286                                 (TemplateParameterList**) TempParams.release(),
5287                                   T.getTypePtr(),
5288                                   DS.getFriendSpecLoc());
5289  else
5290    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5291                           DS.getFriendSpecLoc());
5292  D->setAccess(AS_public);
5293  CurContext->addDecl(D);
5294
5295  return DeclPtrTy::make(D);
5296}
5297
5298Sema::DeclPtrTy
5299Sema::ActOnFriendFunctionDecl(Scope *S,
5300                              Declarator &D,
5301                              bool IsDefinition,
5302                              MultiTemplateParamsArg TemplateParams) {
5303  const DeclSpec &DS = D.getDeclSpec();
5304
5305  assert(DS.isFriendSpecified());
5306  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5307
5308  SourceLocation Loc = D.getIdentifierLoc();
5309  TypeSourceInfo *TInfo = 0;
5310  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5311
5312  // C++ [class.friend]p1
5313  //   A friend of a class is a function or class....
5314  // Note that this sees through typedefs, which is intended.
5315  // It *doesn't* see through dependent types, which is correct
5316  // according to [temp.arg.type]p3:
5317  //   If a declaration acquires a function type through a
5318  //   type dependent on a template-parameter and this causes
5319  //   a declaration that does not use the syntactic form of a
5320  //   function declarator to have a function type, the program
5321  //   is ill-formed.
5322  if (!T->isFunctionType()) {
5323    Diag(Loc, diag::err_unexpected_friend);
5324
5325    // It might be worthwhile to try to recover by creating an
5326    // appropriate declaration.
5327    return DeclPtrTy();
5328  }
5329
5330  // C++ [namespace.memdef]p3
5331  //  - If a friend declaration in a non-local class first declares a
5332  //    class or function, the friend class or function is a member
5333  //    of the innermost enclosing namespace.
5334  //  - The name of the friend is not found by simple name lookup
5335  //    until a matching declaration is provided in that namespace
5336  //    scope (either before or after the class declaration granting
5337  //    friendship).
5338  //  - If a friend function is called, its name may be found by the
5339  //    name lookup that considers functions from namespaces and
5340  //    classes associated with the types of the function arguments.
5341  //  - When looking for a prior declaration of a class or a function
5342  //    declared as a friend, scopes outside the innermost enclosing
5343  //    namespace scope are not considered.
5344
5345  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5346  DeclarationName Name = GetNameForDeclarator(D);
5347  assert(Name);
5348
5349  // The context we found the declaration in, or in which we should
5350  // create the declaration.
5351  DeclContext *DC;
5352
5353  // FIXME: handle local classes
5354
5355  // Recover from invalid scope qualifiers as if they just weren't there.
5356  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5357                        ForRedeclaration);
5358  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5359    // FIXME: RequireCompleteDeclContext
5360    DC = computeDeclContext(ScopeQual);
5361
5362    // FIXME: handle dependent contexts
5363    if (!DC) return DeclPtrTy();
5364
5365    LookupQualifiedName(Previous, DC);
5366
5367    // If searching in that context implicitly found a declaration in
5368    // a different context, treat it like it wasn't found at all.
5369    // TODO: better diagnostics for this case.  Suggesting the right
5370    // qualified scope would be nice...
5371    // FIXME: getRepresentativeDecl() is not right here at all
5372    if (Previous.empty() ||
5373        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5374      D.setInvalidType();
5375      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5376      return DeclPtrTy();
5377    }
5378
5379    // C++ [class.friend]p1: A friend of a class is a function or
5380    //   class that is not a member of the class . . .
5381    if (DC->Equals(CurContext))
5382      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5383
5384  // Otherwise walk out to the nearest namespace scope looking for matches.
5385  } else {
5386    // TODO: handle local class contexts.
5387
5388    DC = CurContext;
5389    while (true) {
5390      // Skip class contexts.  If someone can cite chapter and verse
5391      // for this behavior, that would be nice --- it's what GCC and
5392      // EDG do, and it seems like a reasonable intent, but the spec
5393      // really only says that checks for unqualified existing
5394      // declarations should stop at the nearest enclosing namespace,
5395      // not that they should only consider the nearest enclosing
5396      // namespace.
5397      while (DC->isRecord())
5398        DC = DC->getParent();
5399
5400      LookupQualifiedName(Previous, DC);
5401
5402      // TODO: decide what we think about using declarations.
5403      if (!Previous.empty())
5404        break;
5405
5406      if (DC->isFileContext()) break;
5407      DC = DC->getParent();
5408    }
5409
5410    // C++ [class.friend]p1: A friend of a class is a function or
5411    //   class that is not a member of the class . . .
5412    // C++0x changes this for both friend types and functions.
5413    // Most C++ 98 compilers do seem to give an error here, so
5414    // we do, too.
5415    if (!Previous.empty() && DC->Equals(CurContext)
5416        && !getLangOptions().CPlusPlus0x)
5417      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5418  }
5419
5420  if (DC->isFileContext()) {
5421    // This implies that it has to be an operator or function.
5422    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5423        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5424        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5425      Diag(Loc, diag::err_introducing_special_friend) <<
5426        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5427         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5428      return DeclPtrTy();
5429    }
5430  }
5431
5432  bool Redeclaration = false;
5433  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5434                                          move(TemplateParams),
5435                                          IsDefinition,
5436                                          Redeclaration);
5437  if (!ND) return DeclPtrTy();
5438
5439  assert(ND->getDeclContext() == DC);
5440  assert(ND->getLexicalDeclContext() == CurContext);
5441
5442  // Add the function declaration to the appropriate lookup tables,
5443  // adjusting the redeclarations list as necessary.  We don't
5444  // want to do this yet if the friending class is dependent.
5445  //
5446  // Also update the scope-based lookup if the target context's
5447  // lookup context is in lexical scope.
5448  if (!CurContext->isDependentContext()) {
5449    DC = DC->getLookupContext();
5450    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5451    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5452      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5453  }
5454
5455  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5456                                       D.getIdentifierLoc(), ND,
5457                                       DS.getFriendSpecLoc());
5458  FrD->setAccess(AS_public);
5459  CurContext->addDecl(FrD);
5460
5461  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5462    FrD->setSpecialization(true);
5463
5464  return DeclPtrTy::make(ND);
5465}
5466
5467void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5468  AdjustDeclIfTemplate(dcl);
5469
5470  Decl *Dcl = dcl.getAs<Decl>();
5471  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5472  if (!Fn) {
5473    Diag(DelLoc, diag::err_deleted_non_function);
5474    return;
5475  }
5476  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5477    Diag(DelLoc, diag::err_deleted_decl_not_first);
5478    Diag(Prev->getLocation(), diag::note_previous_declaration);
5479    // If the declaration wasn't the first, we delete the function anyway for
5480    // recovery.
5481  }
5482  Fn->setDeleted();
5483}
5484
5485static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5486  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5487       ++CI) {
5488    Stmt *SubStmt = *CI;
5489    if (!SubStmt)
5490      continue;
5491    if (isa<ReturnStmt>(SubStmt))
5492      Self.Diag(SubStmt->getSourceRange().getBegin(),
5493           diag::err_return_in_constructor_handler);
5494    if (!isa<Expr>(SubStmt))
5495      SearchForReturnInStmt(Self, SubStmt);
5496  }
5497}
5498
5499void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5500  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5501    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5502    SearchForReturnInStmt(*this, Handler);
5503  }
5504}
5505
5506bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5507                                             const CXXMethodDecl *Old) {
5508  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5509  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5510
5511  QualType CNewTy = Context.getCanonicalType(NewTy);
5512  QualType COldTy = Context.getCanonicalType(OldTy);
5513
5514  if (CNewTy == COldTy &&
5515      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
5516    return false;
5517
5518  // Check if the return types are covariant
5519  QualType NewClassTy, OldClassTy;
5520
5521  /// Both types must be pointers or references to classes.
5522  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
5523    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
5524      NewClassTy = NewPT->getPointeeType();
5525      OldClassTy = OldPT->getPointeeType();
5526    }
5527  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
5528    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
5529      NewClassTy = NewRT->getPointeeType();
5530      OldClassTy = OldRT->getPointeeType();
5531    }
5532  }
5533
5534  // The return types aren't either both pointers or references to a class type.
5535  if (NewClassTy.isNull()) {
5536    Diag(New->getLocation(),
5537         diag::err_different_return_type_for_overriding_virtual_function)
5538      << New->getDeclName() << NewTy << OldTy;
5539    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5540
5541    return true;
5542  }
5543
5544  // C++ [class.virtual]p6:
5545  //   If the return type of D::f differs from the return type of B::f, the
5546  //   class type in the return type of D::f shall be complete at the point of
5547  //   declaration of D::f or shall be the class type D.
5548  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5549    if (!RT->isBeingDefined() &&
5550        RequireCompleteType(New->getLocation(), NewClassTy,
5551                            PDiag(diag::err_covariant_return_incomplete)
5552                              << New->getDeclName()))
5553    return true;
5554  }
5555
5556  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5557    // Check if the new class derives from the old class.
5558    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5559      Diag(New->getLocation(),
5560           diag::err_covariant_return_not_derived)
5561      << New->getDeclName() << NewTy << OldTy;
5562      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5563      return true;
5564    }
5565
5566    // Check if we the conversion from derived to base is valid.
5567    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5568                      diag::err_covariant_return_inaccessible_base,
5569                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5570                      // FIXME: Should this point to the return type?
5571                      New->getLocation(), SourceRange(), New->getDeclName())) {
5572      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5573      return true;
5574    }
5575  }
5576
5577  // The qualifiers of the return types must be the same.
5578  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
5579    Diag(New->getLocation(),
5580         diag::err_covariant_return_type_different_qualifications)
5581    << New->getDeclName() << NewTy << OldTy;
5582    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5583    return true;
5584  };
5585
5586
5587  // The new class type must have the same or less qualifiers as the old type.
5588  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5589    Diag(New->getLocation(),
5590         diag::err_covariant_return_type_class_type_more_qualified)
5591    << New->getDeclName() << NewTy << OldTy;
5592    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5593    return true;
5594  };
5595
5596  return false;
5597}
5598
5599bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5600                                             const CXXMethodDecl *Old)
5601{
5602  if (Old->hasAttr<FinalAttr>()) {
5603    Diag(New->getLocation(), diag::err_final_function_overridden)
5604      << New->getDeclName();
5605    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5606    return true;
5607  }
5608
5609  return false;
5610}
5611
5612/// \brief Mark the given method pure.
5613///
5614/// \param Method the method to be marked pure.
5615///
5616/// \param InitRange the source range that covers the "0" initializer.
5617bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5618  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5619    Method->setPure();
5620
5621    // A class is abstract if at least one function is pure virtual.
5622    Method->getParent()->setAbstract(true);
5623    return false;
5624  }
5625
5626  if (!Method->isInvalidDecl())
5627    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5628      << Method->getDeclName() << InitRange;
5629  return true;
5630}
5631
5632/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5633/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5634/// is a fresh scope pushed for just this purpose.
5635///
5636/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5637/// static data member of class X, names should be looked up in the scope of
5638/// class X.
5639void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5640  // If there is no declaration, there was an error parsing it.
5641  Decl *D = Dcl.getAs<Decl>();
5642  if (D == 0) return;
5643
5644  // We should only get called for declarations with scope specifiers, like:
5645  //   int foo::bar;
5646  assert(D->isOutOfLine());
5647  EnterDeclaratorContext(S, D->getDeclContext());
5648}
5649
5650/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5651/// initializer for the out-of-line declaration 'Dcl'.
5652void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5653  // If there is no declaration, there was an error parsing it.
5654  Decl *D = Dcl.getAs<Decl>();
5655  if (D == 0) return;
5656
5657  assert(D->isOutOfLine());
5658  ExitDeclaratorContext(S);
5659}
5660
5661/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5662/// C++ if/switch/while/for statement.
5663/// e.g: "if (int x = f()) {...}"
5664Action::DeclResult
5665Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5666  // C++ 6.4p2:
5667  // The declarator shall not specify a function or an array.
5668  // The type-specifier-seq shall not contain typedef and shall not declare a
5669  // new class or enumeration.
5670  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5671         "Parser allowed 'typedef' as storage class of condition decl.");
5672
5673  TypeSourceInfo *TInfo = 0;
5674  TagDecl *OwnedTag = 0;
5675  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5676
5677  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5678                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5679                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5680    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5681      << D.getSourceRange();
5682    return DeclResult();
5683  } else if (OwnedTag && OwnedTag->isDefinition()) {
5684    // The type-specifier-seq shall not declare a new class or enumeration.
5685    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5686  }
5687
5688  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5689  if (!Dcl)
5690    return DeclResult();
5691
5692  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5693  VD->setDeclaredInCondition(true);
5694  return Dcl;
5695}
5696
5697void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5698                                             CXXMethodDecl *MD) {
5699  // Ignore dependent types.
5700  if (MD->isDependentContext())
5701    return;
5702
5703  CXXRecordDecl *RD = MD->getParent();
5704
5705  // Ignore classes without a vtable.
5706  if (!RD->isDynamicClass())
5707    return;
5708
5709  // Ignore declarations that are not definitions.
5710  if (!MD->isThisDeclarationADefinition())
5711    return;
5712
5713  if (isa<CXXConstructorDecl>(MD)) {
5714    switch (MD->getParent()->getTemplateSpecializationKind()) {
5715    case TSK_Undeclared:
5716    case TSK_ExplicitSpecialization:
5717      // Classes that aren't instantiations of templates don't need their
5718      // virtual methods marked until we see the definition of the key
5719      // function.
5720      return;
5721
5722    case TSK_ImplicitInstantiation:
5723    case TSK_ExplicitInstantiationDeclaration:
5724    case TSK_ExplicitInstantiationDefinition:
5725      // This is a constructor of a class template; mark all of the virtual
5726      // members as referenced to ensure that they get instantiatied.
5727      break;
5728    }
5729  } else if (!MD->isOutOfLine()) {
5730    // Consider only out-of-line definitions of member functions. When we see
5731    // an inline definition, it's too early to compute the key function.
5732    return;
5733  } else if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD)) {
5734    // If this is not the key function, we don't need to mark virtual members.
5735    if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl())
5736      return;
5737  } else {
5738    // The class has no key function, so we've already noted that we need to
5739    // mark the virtual members of this class.
5740    return;
5741  }
5742
5743  // We will need to mark all of the virtual members as referenced to build the
5744  // vtable.
5745  ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5746}
5747
5748bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5749  if (ClassesWithUnmarkedVirtualMembers.empty())
5750    return false;
5751
5752  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5753    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5754    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5755    ClassesWithUnmarkedVirtualMembers.pop_back();
5756    MarkVirtualMembersReferenced(Loc, RD);
5757  }
5758
5759  return true;
5760}
5761
5762void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5763  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5764       e = RD->method_end(); i != e; ++i) {
5765    CXXMethodDecl *MD = *i;
5766
5767    // C++ [basic.def.odr]p2:
5768    //   [...] A virtual member function is used if it is not pure. [...]
5769    if (MD->isVirtual() && !MD->isPure())
5770      MarkDeclarationReferenced(Loc, MD);
5771  }
5772}
5773
5774